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Abstract Integrated Assessment Models (IAMs) are an important tool to compare the costs
and benefits of different climate policies. Recently, attention has been given to the effect of
different discounting methods and damage estimates on the results of IAMs. One aspect to
which little attention has been paid is how the representation of the climate system may
affect the estimated benefits of mitigation action. In that respect, we analyse several well-
known IAMs, including the newest versions of FUND, DICE and PAGE. Given the role of
IAMs in integrating information from different disciplines, they should ideally represent
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both best estimates and the ranges of anticipated climate system and carbon cycle behaviour
(as e.g. synthesised in the IPCC Assessment reports). We show that in the longer term,
beyond 2100, most IAM parameterisations of the carbon cycle imply lower CO2

concentrations compared to a model that captures IPCC AR4 knowledge more closely,
e.g. the carbon-cycle climate model MAGICC6. With regard to the climate component,
some IAMs lead to much lower benefits of mitigation than MAGICC6. The most important
reason for the underestimation of the benefits of mitigation is the failure in capturing
climate dynamics correctly, which implies this could be a potential development area to
focus on.

1 Introduction

Integrated Assessment Models (IAMs) describe many of the complex relations between
environmental, social and economic systems that determine future climate change and the
effectiveness of climate policy. They are increasingly used to compare the costs and
benefits of alternative mitigation proposals, and also the balance between emission
reductions to avoid climate change and adaptive responses to cope with its consequences
(see e.g. Harremoës and Turner 2001; Hope 2005; Nordhaus 2010; Weyant et al. 1996). To
explicitly represent all of the known and quantifiable processes that contribute to the future
state of the climate and associated impacts would be an immense challenge, so IAMs
typically use relatively simple equations or sets of equations to simulate the behaviour of
the socio-economic and environmental systems. In many IAMs, the carbon cycle and
climate components, for instance, consist of only a few equations (Goodess et al. 2003).
Van Vuuren et al. (2011b) and Warren et al. (2010) have shown that the different
representations of carbon cycle and climate response within IAMs can lead to large
differences in the climate outcomes of these models.

This paper builds on this work by focusing on the consequences of the representation of
the carbon cycle and climate system in IAMs for their evaluation of the benefits of climate
policy. It is not our aim to explain in detail the differences in climate outcomes (since this
was done by van Vuuren et al. (2011b) and Warren et al. (2010)), but to show the
consequences of these differences for the cost–benefit applications of IAMs. Earlier,
Schultz and Kasting (1997) have focused on the implications of the carbon cycle
representation of one IAM (the 1994 model version of DICE; a model that has now been
updated) for optimal emission reductions. This study, instead, looks at several IAMs and the
implications of the differences in both the climate and carbon cycle components across the
models. For comparison, we also look at other critical assumptions that determine the
outcome of cost–benefit analyses, such as baseline assumptions, discounting and damage
function (Hof et al. 2008; Hope 2006b; Mastrandrea and Schneider 2004; Tol 2008).

The approach we have taken in this paper is to evaluate the sensitivity of the benefits of
mitigation in a range of well-known economic IAMs to climate and carbon cycle
assumptions. The benefits of mitigation (the difference between damage costs between a
baseline scenario and a low emission trajectory) are a major factor for determining the
preferred mitigation strategy. In our assessment, we only look at economic IAMs and not
on more complex process-based IAMs, because the latter generally do not estimate the
benefits of mitigation in monetary terms.

It is not our aim to exactly explore the boundaries of uncertainty or rigorously define the
shape of the probability distribution of outcomes. Instead, we want to elucidate the degree
to which the different outcomes of economic IAMs are determined by the way they represent
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the carbon cycle and climate system. The IAMs included in this study are PAGE-2002 (Hope
2006a), PAGE09 (Hope 2011), DICE-2007 (Nordhaus 2008),1 DICE-2009,2 FUND 2.8 (Tol
2006), FUND 3.3 (Anthoff and Tol 2009)3 and MERGE 5.1 (Manne and Richels 2006).

As the purpose of IAMs is to integrate existing information in different fields, one may
argue that IAMs should focus on best-guess values for the carbon cycle and climate system
and/or to represent the uncertainty ranges reported by assessments that synthesise the full
spectrum of the relevant literature, specifically the IPCC Assessment Reports. In order to
obtain a reasonable indication of both best guess values and such uncertainty ranges, we use
the MAGICC6 climate model (Meinshausen et al. 2011a, b), which is specifically calibrated
towards IPCC AR4 results in terms of radiative forcing efficiencies, climate and carbon cycle
responses. While MAGICC is still a simple model in comparison to high-complexity general
circulation models (GCMs) or coupled dynamic vegetation land and ocean carbon cycle
models, for the variables of interest for this study, Meinshausen et al. (2011a, b) have shown
that MAGICC6 can successfully emulate the current generation of GCMs (Meehl et al. 2005)
as well as carbon cycle models that took part in the C4MIP intercomparison (Friedlingstein et
al. 2006). Here, we use a joint distribution of MAGICC6’s radiative forcing and climate
response parameters that has been constrained by comparison with historical observations, i.e.
the “illustrative default” case described in Meinshausen et al. (2009).

This paper is organised as follows. In the next section we describe the methodology, and
give an overview of how the carbon cycle and climate response are modelled in the IAMs
that are analysed in this study. In Section 3, we present the results and Section 4 draws
conclusions.

2 Method

IAMs simulate the chain of processes that begins with a description of human activities that
give rise to greenhouse gas emissions. These emissions lead to an increase in greenhouse gas
concentrations in the atmosphere. In IAMs, this is calculated by some representation of the
carbon cycle and by additional (usually simple) chemistry parameterisations for atmospheric
abundances of other non-CO2 gases and aerosol pre-cursors. The changes in greenhouse gas
and aerosol concentrations, in turn, lead to a radiative forcing. The climate component of the
IAMs calculates the effect on near surface temperature, and in some cases sea level rise. All
IAMs analysed in this paper include a module to calculate the costs of reducing greenhouse
gas emissions compared to the baseline and a module to calculate the monetary damages of
climate change. In order to compare the costs and benefits of mitigation over time, a discount
factor is used. The discount factor enables representing all future costs and benefits in a single
number, namely the net present value of these future costs and benefits.

Earlier, Van Vuuren et al. (2011b) described for each model how they have represented
the carbon cycle and climate system. This is summarised in Table 1, with the new versions
of DICE, PAGE and FUND added.

We investigate the marginal effect of different climate and carbon cycle representations
on the benefits of mitigation by varying parameter values for one specific link in the causal
change—with everything else being set to the same default values (Fig. 1; default values
are marked). This transparent approach highlights the contribution of uncertainty in each

1 Available at http://nordhaus.econ.yale.edu/
2 Available at http://nordhaus.econ.yale.edu/. Note that the DICE-2009 model is a beta-version.
3 Both FUND 2.8 and FUND 3.3 are available at http://www.mi.uni-hamburg.de/FUND.5679.0.html
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individual step—but ignores possible non-linear interactions between the steps (e.g. the
impact of a slow climate response is different for a high or a low discount rate).

As indicated in the introduction, we not only look into the uncertainty introduced by the
carbon cycle and climate system representation, but for comparison also vary the baseline,
damage function and discount rate as these factors are known to be important for the
outcomes of cost–benefit analysis. To simplify the comparison, we do not run the original
models—but recode a stand-alone version of the climate/carbon cycle parts of the models in
MyM4 (Beusen et al. 2011); the exceptions being both versions of the PAGE IAMs and
MAGICC6 climate model, of which the original model codes are run. In the case of DICE-
2007 and DICE-2009, we have tested the recoded models and found they produce results
identical to the original models. The equations of the stand-alone versions are available
online in the Electronic supplementary material.

In the experiments, the linking of the different steps as described above can be
performed easily in the recoded models. Taking the default case as an example, we can
easily run the recoded FUND 3.3 carbon cycle model driven with emissions data as input
into the DICE-2009 climate model. Next, the DICE-2009 damage function can be used to
estimate the damages of temperature projections over time. Finally, a 2.5% fixed discount
rate is applied to determine the present value of these damages. In this set-up, it is relatively
simple to replace any of these default elements for the carbon cycle, climate system,
damage function and discount rate with an alternative set. For MAGICC6 and PAGE, the
same approach is used but using soft-linkages (i.e. exchanging data files).

2.1 Emission scenarios

As input into our model runs, we use standardised emission scenarios. We focus on the
calculated damage costs of a baseline scenario, with no explicit mitigation policy, and of an
ambitious mitigation scenario. The difference in damages between these scenarios gives the
benefits of mitigation.5

In our calculations, the default baseline is the SRES B2 illustrative marker scenario and
the alternative the SRES A2 illustrative marker scenario (Nakicenovic et al. 2000). The A2
scenario is comparable to the new RCP8.5—the highest scenario of a the Representative
Concentration Pathways (RCP) set, recently developed to allow standardised climate model
runs as input into IPCC 5th Assessment Report (Moss et al. 2010; Van Vuuren et al. 2011a).
The B2 scenario, in contrast, lies between the two middle RCPs (RCP4.5 and RCP6).

B2*
A2

FUND 2.8 & 3.3*
DICE-2007
DICE-2009
PAGE-2002

PAGE09
MERGE 5.1
MAGICC 6.0

DICE-2009*
DICE-2007
FUND 2.8
FUND 3.3

PAGE-2002
PAGE09

MERGE 5.1
MAGICC 6.0

DICE
Stern

UK Green Book

DICE-2009*
Low alternative 

Fig. 1 Overview of the default (denoted by an asterisk) and alternative assumptions

5 More specifically, the benefits of mitigation are presented in this paper as the discounted difference of
climate change damages in the reference and mitigation scenario as share of the present value of GDP, over
the time period 2010–2200

4 MyM is an integrated environment for the development, visualization and application of simulations of
dynamic systems. More information can be found on http://www.my-m.eu/
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The contrasting ambitious mitigation scenario used in this study is an overshoot scenario
developed by the IMAGE model for the ENSEMBLES project to stabilise radiative forcing
in the long run at 2.6 W/m2, reaching a 2,100 radiative forcing level of 2.9 W/m2 (Johns et
al. 2011; Lowe et al. 2009). In this scenario, CO2 emissions peak in 2015 at about 9 GtC
and decline sharply to 0.5 GtC at the end of the century. This scenario is among the lowest
scenarios in the literature; approximately 1 GtC/year higher than the RCP3-PD by the end
of the 21st century, with RCP3-PD being the lowest scenario in the RCP-set. The scenarios
run until 2100, after which we assume that emissions remain constant at the 2100 level.

Figure 2 shows the CO2 emissions in the different scenarios over time. We consider it
appropriate to confine ourselves to CO2 only, since this is the most important gas in terms
of radiative forcing. Moreover, in some of the models covered here (the two DICE versions)
non-CO2 gases are not modelled. Instead, an exogenous radiative forcing term is added to
take into account non-CO2 emissions. However, we do acknowledge that temperature
variations driven by other greenhouse gases and aerosols would modify the carbon cycle
and climate system response.

2.2 Carbon cycle representation

The first step in the causal chain from emissions to climate change damages is the
calculation of the atmospheric CO2 concentration as a function of emissions. Table 1
summarises the representation of the carbon cycle in the IAMs included in our analysis.
Van Vuuren et al. (2011b) describe experiments that analyse the behaviour of each of these
models (except DICE-2009, PAGE09 and FUND 3.3, which were not yet available at that
time).

In both DICE-2007 and DICE-2009, the carbon cycle is represented by different carbon
pools, representing the atmosphere, the upper ocean and biosphere (combined), and the
deep ocean. The parameters in DICE-2009 have been revised in order to match the
MAGICC 5.3 model and earth system models of intermediate complexity.

In contrast, MERGE 5.1, FUND 2.8 and FUND 3.3 represent the entire carbon cycle by
an impulse–response function based on Maier-Reimer and Hasselmann (1987). The
functions of Maier-Reimer and Hasselmann consist of five integrals, each of which deal
with a certain fraction of the emissions and are characterised by a typical exponential decay
time. In the original paper, three sets of parameters were provided for different sizes of
pulse emission, corresponding to increases in the carbon dioxide concentration to 1.25×, 2×

2000 2020 2040 2060 2080 2100
0

5

10

15

20

25

30

35
Emissions (GtC)

B2

A2

450

Fig. 2 CO2 emission trajectories
for the two baseline scenarios
used in this study and the
mitigation scenario (emissions
after 2100 are assume to be
constant at the 2100 level)
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and 4× the pre-industrial CO2 concentration, respectively. The need for different sets of
parameters, depending on the size of the pulse, is a consequence of non-linearity of the
carbon cycle response. Given the need of simplification, however, the IAMs only use one
parameter set. The MERGE model uses the parameters derived from the 1.25× CO2 pre-
industrial pulse, while both versions of the FUND model use the parameters corresponding
to the 2× CO pre-industrial pulse (note that the parameters in FUND 3.3 are based on
normal probability distributions, with mean values the same as in FUND 2.8). In practise,
this means that in FUND, 13% of total emissions remain forever in the atmosphere, while
10% is removed in 2 years. In MERGE, 14% of total emissions remain forever in the
atmosphere, while 9% is removed in 1.7 years.

Also the two versions of the PAGE model (2002 and 2009) use a pulse–response
function—but here using only one exponential decay time, in combination with a fraction
of the emissions that is removed immediately. PAGE-2002 and PAGE09 include an explicit
representation of carbon cycle feedbacks, by a ‘natural emissions’ term that increases as a
function of temperature in PAGE-2002, and by a ‘CO2 concentration gain’ that increases as
a function of temperature in PAGE09. In PAGE09, the strength of the carbon cycle
feedback is about the same as in PAGE-2002 for high emission scenarios, but lower than in
PAGE-2002 in the long term for stringent abatement scenarios.

The FUND 2.8 model (which is identical to the mean settings of the carbon cycle of
FUND 3.3) is used as default setting. We compare the results of the individual IAMs with
the 90% confidence interval of the carbon cycle component of MAGICC6. The MAGICC
model has a process description of carbon flows between the terrestrial vegetation stock, the
atmosphere and the ocean. The model has been calibrated in order to represent the
behaviour of ocean and land carbon pools and fluxes of individual more complex models
from the C4MIP model comparison exercise, as described in Meinshausen et al. (2011a, b).

2.3 Climate representation

The climate model component of IAMs defines the relationship between greenhouse gas
concentration and temperature. Damages are actually determined by the transient
temperature response, which in all assessed IAMs is a function of the equilibrium
temperature response and a measure of the response time of the climate system (see
Table 1). Again, Van Vuuren et al. (2011b) describe the results of a set of experiments that
describe the performance of the climate models in each of the IAMs, mostly in terms of the
level and timing of warming.

The equilibrium temperature response is denoted by the equilibrium climate sensitivity
(Knutti and Hegerl 2008), i.e. the equilibrium change in global mean temperature resulting
from a radiative forcing corresponding to a doubling of atmospheric CO2 concentration. In
GCMs the climate sensitivity is an emergent quantity but in simple climate models
(including MAGICC6) and all of the IAMs included in our analysis except PAGE09,
climate sensitivity is exogenously determined (in addition, MAGICC6 includes parameters
to capture time–variable effective climate sensitivities). According to the IPCC (2007) the
likely range of climate sensitivity is between 2°C and 4.5°C, with a best estimate of 3°C. In
both DICE models, the climate sensitivity is set at 3.0°C; in FUND 2.8 and MERGE 5.1 at
2.5°C. The climate sensitivity in FUND 3.3 is given by a gamma probability distribution
with a mean of 2.85°C and a mode of 2.5°C. PAGE-2002 denotes climate sensitivity by a
triangular probability distribution with a minimum of 1.5°C, a mode of 2.5°C, and a
maximum of 5°C. In PAGE09, the climate sensitivity is calculated from the transient
climate response and feedback response time. The MAGICC6 climate model is a more

Climatic Change (2012) 113:897–917 903



complex model, here constrained by a comparison with historical observations, resulting in
a joint distribution of underlying parameters as described in Meinshausen et al. (2009).
Here, we use the “illustrative default” case that implies a median of climate sensitivity close
to 3°C and a likely range in the marginal distribution close to the IPCC Fourth Assessment
Report estimate of 2 to 4.5°C—matching the posterior distribution in Frame et al. (2006),
derived from a uniform prior on the transient climate response.

The investigated IAMs calculate the actual temperature response by applying some kind
of delay function on top of the equilibrium temperature calculation. Both versions of the
PAGE model, both versions of the FUND model and MERGE 5.1 describe the actual
temperature as a constant proportion (the delay parameter) of the equilibrium temperature
and the temperature of last year. The level of the delay parameter differs across the models.
MERGE 5.1 uses a delay parameter of 26 (meaning that the actual temperature at a
particular time is calculated as 1/26 of the equilibrium temperature at that time and 25/26 of
the realised temperature from the previous year). FUND 2.8 uses a delay parameter of 50,
resulting in a much slower transient temperature response than in MERGE 5.1. In FUND
3.3, the delay parameter is determined by a triangular distribution function with a minimum
of 25, a mode of 75, and a maximum of 125. PAGE-2002 also adopts a triangular
distribution function, but with a minimum of 25, a mode of 50, and a maximum of 75,
while in PAGE09 the minimum is 10, the mode is 30 and the maximum is 65. Finally,
DICE-2007 and DICE-2009 do not adopt a single delay parameter, but instead the transient
temperature response depends on both a delay parameter and the heat loss from the
atmosphere to oceans. The transient response time of MAGICC6 is more complex than a
simple lag function, modelled by a diffusion-upwelling-entrainment ocean model
(Meinshausen et al. 2009).

It should be noted that the uncertainty in equilibrium climate sensitivity and the earth
system’s response times are (partially) correlated. A higher equilibrium climate sensitivity
necessarily suggests a slower temperature response time to explain the current level of
climate change (although this correlation is complicated by the uncertainty in actual
forcings, in particular aerosol forcings). Therefore, the differences in response time among
the IAMs should be interpreted in the light of the differences in equilibrium climate
sensitivity between the IAMs. For instance, MERGE 5.1 combines a relatively low
equilibrium climate sensitivity with a relatively fast transient temperature response. In the
analysis, we use the combination of climate sensitivity and climate response for each model
as a set.

In our default calculations, we use the climate model of DICE-2009, simply because this
is the most recent one. Again, we have included the confidence interval of the MAGICC6
climate model for comparison.

2.4 Damage functions

There are large uncertainties involved in projecting climate change damages, partly
originating from the uncertainties in damage functions themselves that are used in IAMs
(Tol et al. 2004). Here, we briefly look into the possible effect of these differences on the
benefits of mitigation to put the influence of different representations of the climate system
and carbon cycle in context.

The cost–benefit IAMs analysed in this study differ with respect to the sectoral and
regional detail and of the impact categories included in the damage estimates. Global
damages in DICE are calculated using a single power law function of global temperature
increase, which is based on regional damages by impact category as projected by the RICE
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model (Nordhaus and Boyer 2000). FUND, MERGE and PAGE do not include a global
damage function: global damages are obtained by summing regional damages.

Of all IAMs included in our study, FUND has the most disaggregated damage estimates:
damages are projected for a wide range of impact categories (but excluding the costs of
catastrophic events) and for 16 world regions. These damage projections are not only a
function of global mean temperature, but also of the rate of temperature change and per
capita income. PAGE includes separate damage functions for market, non-market and
catastrophic impacts. MERGE includes a market and a non-market damage function.
Damages in MERGE are a function of both temperature change and per capita income—
with damages increasing sharply above a certain per capita income threshold.

With regard to sectoral coverage, the most important distinction between the IAMs is
whether or not they include the probabilities of catastrophic events. PAGE and DICE
include this probability, and these models arrive at higher damage estimates than FUND,
which does not take into account the probabilities of catastrophic events.

Given the large differences in methodology of calculating damages, we have chosen to
use the simple global damage function of DICE-2007 (which is the same as DICE-2009)
for the default setting. Of all IAMs included in our analysis, this function results in the
highest mean damages (Hof et al. 2008; Smith et al. 2001). For a representation of low
damage estimates, as a contrast, we use a simplified version of the equity weighted damage
function of Tol as depicted in Fig. 19-4 in Smith et al. (2001). The equations of both
damage functions are available online in the Electronic supplementary material. The two
damage functions bracket the whole range of the damage estimates from the IAMs included
in our analysis, except for the extremes of the probability distributions in both PAGE model
versions.6 Moreover, these two functions have a very different shape. The DICE function is
used as the default representation. For a more detailed comparison of damage functions of
different IAMs, we refer to earlier publications of Warren et al. (2006), Stern (2006),
Watkiss et al. (2005), IMF (2008), and Smith et al. (2001).

2.5 Discounting method

Different views exist on what constitutes the best discounting method, if any, for
intergenerational cost–benefit analyses such as climate change policy (Hoel and Sterner
2007; Howarth 2003; Nordhaus 2007; Stern 2006; UK Treasury 2003; Weitzman 2001,
2007). Most studies use the Ramsey equation for determining the discounting method. This
equation states that the discount rate should be equal to the rate of pure time preference plus
the negative of the elasticity of the marginal utility of consumption times the per-capita
growth rate of consumption. Nordhaus uses the estimated market return on capital as basis
for the appropriate discounting method for both versions of the DICE model. In practice,
this means that the rate of pure time preference is chosen at 1.5% per year and the elasticity
of the marginal utility of consumption at −2, leading to an average discount rate in the first
half of the century of 5.5% per year in the DICE models (Nordhaus 2008). Some argue that
a lower discount rate should be used for climate change policy analysis. For instance, Stern
(2006) follows the argument made by among others Ramsey (1928), Harrod (1948) and
Solow (1974), that the welfare of future generations should be treated the same as the
current one on ethical grounds. Therefore, Stern calibrates the Ramsey equation using a rate of
pure time preference of 0.1% and an elasticity of the marginal utility of consumption of −1.0,

6 PAGE uses probability distributions to model climate change damage given the large uncertainties of the
(shape of the) damage function.
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resulting in a discount rate of 1.3% in the Stern Review (Stern 2006). Other arguments for
using a lower discount rate than the market interest rate are made by Ackerman et al. (2009),
Hoel and Sterner (2007), Howarth (2003), Weitzman (2007) and van den Bergh (2010). Hoel
and Sterner argue that if the relative price of the ecosystem service rises, the discount rate
used for these services should be lower. Ackerman et al., Howarth and Weitzman all argue
that the discount rate applied to climate change policy should be lower than the market rate
because of uncertainty in future consumption. Finally, van den Bergh argues that individual
time preference is a wrong analogy for social discounting, since societies are immortal
(implicitly recognised by Stern).

To reflect the range of different positions, we apply the discounting methods of
Nordhaus and Stern. Apart from these two discount rates, we also include the discounting
method for long-term appraisals recommended by the UK Green Book (UK Treasury
2003). This is a decreasing discounting method, starting at 3.5% per year and gradually
declining towards 2.0% per year after 130 years. For our default calculations, we use a
simple constant discount rate of 2.5%.

3 Results

First, we discuss the sensitivity of the individual steps in the causal chain—baseline
emissions, carbon cycle component, climate component, and discounting method—on
climate change damages and the benefits of mitigation. Subsequently, we compare the
sensitivity of these individual steps with each other.

3.1 Sensitivity of baseline emissions

For analysing the sensitivity of the baseline emissions, we analyse the impact of using the
default B2 emission scenario and the alternative baseline (A2) (see Fig. 2). The other
components in the cause–effect chain of climate change are held constant at their default
values (see Fig. 1). The higher CO2 emissions in the A2 baseline result in a higher
temperature increase. As expected, the benefits of the mitigation scenario (equal to the
difference in damages between the baseline and mitigation scenario) are also much larger
for the A2 baseline: the benefits are 0.9% of GDP for the B2 baseline and 2.1% of GDP for
the A2 baseline (Fig. 3).

3.2 Sensitivity of the carbon cycle

The carbon cycle model determines the CO2 concentration in the atmosphere as a result of
emissions. Van Vuuren et al. (2011b) ran several, more generic experiments with most of
the models. To understand the impacts of the carbon cycle on the damage costs, we briefly
discuss the impacts of the different representation of the carbon cycle here for the CO2

concentration (note that the newest versions of DICE, FUND and PAGE were not included
in van Vuuren et al. 2011b)—before moving to the additional information on the
consequences for temperature and damage costs.

The carbon cycle models of all IAMs, with the exception of PAGE-2002, lead to similar
concentration pathways given a fixed emission pathway (Fig. 4).

In the mitigation scenario, the range of the peak in CO2 concentrations of all IAMs
(except PAGE-2002) is 445 ppm to 453 ppm (the 90% uncertainty range of PAGE09 being
432 to 462 ppm). This peak is reached around 2,050 in these IAMs. PAGE-2002 forms an
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exception, as the relative strong carbon cycle feedback (see Van Vuuren et al. 2011b) lead to a
situation in which concentration does not peak, but keeps rising to 459 to 623 ppm in 2200
in the mitigation scenario (which is above the MAGICC6 uncertainty range). This effect
has been revised downwards in PAGE09. In the short to medium term, the concentration
levels resulting from the carbon cycle models of the IAMs are within the confidence
interval of MAGICC6. By 2200, however, most IAMs arrive at lower concentrations than
MAGICC6. A reason for these lower concentrations in the IAM carbon cycle models than
in MAGICC in the long run has already been shown in van Vuuren et al. (2011b) by a
simple pulse experiment: the simple carbon cycle parameterisations of some IAMs do not
capture the slower removal rates at higher CO2 concentrations and the possible saturation of
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Fig. 4 Impact of carbon cycle model on concentration levels over time for the CO2-only baseline scenario
and mitigation scenario
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the available carbon sinks. This was reported earlier by Schultz and Kasting (1997) for the
DICE model.

The CO2 concentration levels for the baseline scenarios are also similar according to the
carbon cycle models of the different IAMs. PAGE-2002 forms, again, the exception with
higher concentrations in the long term (2200). Just as for the mitigation scenario, in the
long term the carbon cycle models of the IAMs lead to lower concentrations than
MAGICC6 (PAGE-2002 forms again an exception). However, intercomparisons of the last
generation of high complexity carbon cycle models (C4MIP) was limited to 2100 and one
higher monotonously increasing scenario (SRES A2) only. The emulation beyond this
calibration space is hence inherently uncertain—albeit applying physical process parameter-
isations, even though of very simplified nature, instead of mere statistical fits and tests with
earlier longer-term carbon cycle intercomparisons (Orr 2002) provide some confidence in
the validity of these longer-term emulations.

Figure 5 shows how these differences in CO2 concentrations affect global temperature
increase (according to the DICE-2009 climate model and a constant 2.5% discount rate). As
expected due to the small differences in concentrations resulting from the carbon cycle
models of IAMs, temperature differences are small: in 2200, the range of temperature
increase in the baseline is 3.6 to 3.8°C relative to pre-industrial levels. PAGE-2002 is the
only exception with a temperature increase of 4.1°C (with a 90% probability range of 3.5 to
4.6°C). As can be expected from the concentration results, the temperatures projected by
the carbon cycle models of the IAMs are lower than projected by MAGICC6 in the long
term (except for PAGE-2002).

Figure 6 shows damage estimates resulting from the temperature projections (using the
DICE damage function). The present values of the damage estimates in the baseline are (as
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Fig. 5 Impact of carbon cycle model on global temperature increase over time, keeping the other
assumptions listed at their default values as listed in Fig. 1 (Note: the confidence interval of the difference
assumes that the distribution of the confidence interval for the baseline and mitigation scenario are the same.
This is supported by a comparison of the distribution of confidence intervals between different scenarios of
MAGICC6)
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expected) very similar across most of the models. All estimates are well within the range of
MAGICC6-related estimates, because the difference in the present value of damages is not
strongly affected by long term temperature differences due to discounting. The differences
in the present value for the mitigation scenario are also small—again with the exception of
PAGE-2002.

The resulting impact on the benefits of mitigation is correspondingly small and all
estimates are within the uncertainty range estimated by our default IAM elements in
combination with MAGICC6’ carbon cycle. All carbon cycle models lead to benefits of
about 0.9 to 1% of GDP, except both PAGE models, which result in lower mean benefits of
about 0.8%. For PAGE-2002, this is due to relative high damage projections for the
mitigation scenario (a result of the high carbon cycle feedback); for PAGE09, this is due to
the relatively low damage projections of the baseline scenario.

3.3 Sensitivity of the climate model

The sensitivity of the climate model has been analysed by providing the climate models
with the same trajectory of CO2 concentrations, resulting from the carbon cycle model of
the FUND model (see Fig. 1). Again, generic experiments looking at the climate model
only were run by van Vuuren et al. (2011b), and we use the results of their experiments to
explain the results found here. As shown in Table 1, PAGE-2002, PAGE09 and FUND 3.3
use a probabilistic function for both the climate sensitivity and transient temperature
response. For the PAGE model versions, we focus on the 90% confidence interval and for
FUND 3.3, we include the mean and the mode (best guess) of these functions in our
analysis.

Figure 7 shows that the climate models lead to considerable differences in temperature
outcomes, especially for the baseline. The FUND 2.8 climate model leads to a temperature
increase of less than 3.3°C by 2200 in the baseline, whereas the climate model of PAGE09
leads to an increase of almost 4°C for the mean (with a large uncertainty range of 2.5 to 6°C).
The MAGICC6 90% uncertainty range for 2200 is also large (2.5 to 4.9°C), which indicates
the uncertainties in our current understanding of the climate system. The climate models of all
IAMs fall within this range, although all except both versions of PAGE are in the lower half
of this range. The finding that the climate models of MERGE, FUND 2.8 and the mode of
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FUND 3.3 lead to the lowest temperatures is expected, since these models assume the lowest
climate sensitivity (see Table 1). In the shorter term, both FUND model versions even lead to
temperatures below the MAGICC6 uncertainty range—for FUND 2.8, this replicates the
finding by van Vuuren et al. (2011b). FUND 3.3 leads to even lower temperatures than
FUND 2.8; a direct consequence of the slower response time in FUND 3.3.

In the mitigation scenario, temperature differences between the models are very small.
Interestingly, the 2200 temperature outcome of the mean version of FUND 3.3 now exceeds
those of the DICE model versions. This again can be explained by the relatively slow response
time in FUND 3.3., because of which mitigation is less effective. The relatively fast response
time of MERGE 5.1 leads to higher temperatures in 2050, but lower temperature in 2200
compared to the FUNDmodels. With the exception of the year 2050, the climate models of all
IAMs fall within the uncertainty range of MAGICC6 in the mitigation scenario.

The relatively small difference in temperature outcome between the mitigation and
baseline scenario according to the FUND model versions implies that there is a smaller
benefit of mitigation compared to other models, as can be seen in Fig. 8. The benefits of the
mitigation scenario (in terms of avoided damage, again using the DICE damage function
and a constant 2.5% discount rate) of the FUND models are somewhere between 0.4% and
0.5% of GDP. For the DICE-2007 and PAGE09 climate models, the benefits are about
twice as high. The climate model of DICE-2009 leads to slightly lower benefits, a result of
the somewhat slower temperature response time in DICE-2009. The benefits of the climate
module in MERGE 5.1, finally, are between those in the FUND and DICE models. Even
though MERGE 5.1 assumes a relatively low climate sensitivity of 2.5°C, the temperature
response time is relatively fast, which leads to the higher benefits compared to the FUND
model versions. The benefits of mitigation according to the climate models of DICE and
PAGE09 are close to the central range as projected by our default IAM elements in
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combination with MAGICC6 as climate module. For the climate modules included in the
other models, especially FUND, the projections are on the low end or even below the
uncertainty range of MAGICC6.

As already noted above, the large differences in the benefits of mitigation caused by
different climate models can be caused by differences in climate sensitivity and differences
in temperature response time. To test which of these two factors are more important, we ran
the climate models again—but this time, with the same climate sensitivity of 3.0°C for all
models. As both DICE and PAGE model versions and MAGICC6 already assume a (mean)
climate sensitivity of 3.0°C, only the results of MERGE and FUND differ in this run. The
empty bars of Fig. 8 show the results of setting the climate sensitivity to 3.0°C in MERGE
and FUND. The mean and mode of FUND 3.3 lead to the same results, since the mode and
mean of the temperature response time is the same (see Table 1).

As expected, increasing the climate sensitivity to 3.0°C leads to higher damages for both
the mitigation and baseline scenario. The net effect leads to higher benefits of mitigation.
MERGE moves from the lower end of the MAGICC6 uncertainty range to the middle and
gives now very similar results to DICE and the mean of both PAGE model versions. This
implies that for MERGE, the relatively low climate sensitivity explains why the benefits of
mitigation are lower than for PAGE and DICE. The benefits of FUND 2.8 also increase
substantially, although they are still in the lower end of the MAGICC6-related uncertainty
range. For FUND 3.3, the increase in the benefits of mitigation is very small. This implies
that for FUND 3.3, climate dynamics (i.e. the slow temperature response time) largely
explains why the benefits of mitigation are small compared to the climate models of other
IAMs and MAGICC6. Indeed, Table 1 already showed that the temperature response time
of FUND 3.3 is relatively slow—leading to much lower discounted damages in the baseline
but only slightly lower discounted damages in the mitigation scenario.

3.4 Sensitivity of the damage function

We examine the possible effect of the damage estimates by comparing the results of the
default DICE damage function with the alternative damage function based on the FUND
model (see Section 2.4). These two damage functions cover the whole range of damage
estimates of the IAMs included in our analysis, except for the extremes of the probability
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distributions in both PAGE models. The results are shown in Fig. 9. According to the
alternative damage function, the mitigation scenario leads to small benefits. The damages in
the baseline are also much smaller: about 0.3% of GDP against more than 1.4% of GDP for
the DICE damage function. The benefits of mitigation are therefore smaller according to the
alternative damage function (about 0.4% of GDP) than according to the DICE damage
function (about 0.9% of GDP).

3.5 Sensitivity of the discounting method

For analysing the effect of the discounting method on the benefits of the mitigation
scenario, we computed the difference in discounted impacts between the mitigation and
baseline scenario for the different discounting methods included in our study. The results
are shown in Fig. 10. As expected, the discounting method of Nordhaus (relatively high
discount rates) leads to the lowest benefits of mitigation: slightly less than 0.6% of GDP.
The benefits resulting from the UK Green Book discounting method are about 0.9% of
GDP. This is comparable to the results of a constant 2.5% per year discount rate. Finally,
the discounting method as applied in the Stern Review leads to the highest benefits of
mitigation of 1.5% of GDP.

3.6 Synthesis

Figure 11 compares the relative importance of the different assumptions in the cause–effect
chain of climate change benefits. The purpose is to assess the relative impact of different
climate change/carbon cycle representations in IAMs. We compare the differences due to
different representation of the carbon cycle and climate system in IAMs to those by other
factors.

Different assumptions of both baseline emissions and discount rate result in a fairly wide
range of possible values for the benefits of the mitigation scenario. For the high A2
baseline, the difference in present value of climate impacts are 2.1% of GDP compared to
the mitigation case, instead of 0.9% for the more average B2 baseline. It should be noted
that we have not looked into the question whether the mitigation scenario can actually be
reached from the A2 baseline. In any case, a higher baseline (like A2) also leads to higher
mitigation costs—and for cost–benefit analysis the difference between mitigation costs and
avoided damages are important. These trends thus work in opposite direction. The strong
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effect of the discounting method on the present value of the benefits of the mitigation
scenario is also not surprising, since this has been found in numerous other studies as well
(Hof et al. 2008; Hope 2006b; Tol 2008).

An important finding of this study is that the representation of the climate model has an
almost equally important impact. The MAGICC6 model results indicate the influence of a
fuller range of uncertainty (including the climate sensitivity range)—but the differences
between different climate models in IAMs are large as well. Arguably, one may expect
IAMs to represent the climate system by a “best guess” response derived from more
complex models. Nevertheless, the climate system as represented by the mean calibration of
PAGE09 leads to 2.5 times the benefits as the mode climate model of FUND 3.3. Needless
to say, this has a large impact on the outcomes of cost–benefit studies. The effect of

Fig. 11 Sensitivity of different assumptions on climate change benefits of mitigation
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different carbon cycle models on the benefits of the mitigation scenario between the IAMs
is relatively small (about one third of the effect of different climate models).

4 Conclusions and discussion

This paper analysed how the benefits of climate change mitigation as projected by well-
known IAMs may be influenced by their representation of the carbon cycle and climate
system. The main reason for such an analysis is that, while in the past attention has been
given to the influence of discounting methods and damage functions to the outcomes of
different IAMs, relatively little attention has been given to the influence of the carbon cycle
and climate system. Two recent papers (van Vuuren et al. 2011b; Warren et al. 2010),
however, have shown that the temperature outcome between climate models in IAMs can
differ substantially as a consequence of different carbon cycle and climate system
representations. This paper builds on these findings to investigate what these differences
imply for the outcome of cost–benefit applications.

The sensitivity of the carbon cycle representation in the IAMs on the benefits of
mitigation—equal to the difference in damages between the mitigation scenario and
baseline—is small compared to other factors. There are a few reasons for this. First, the
differences in CO2 concentration as a result of the carbon cycle differences are relatively
small. Second, the differences occur for both the baseline and mitigation scenario—and
therefore part of the impact is offset for the indicator we use here. Finally, long-term
differences are given much less weight compared to short-term differences due to the
discount rate. As a result, even though PAGE-2002 does lead to higher mean temperatures,
due to a relatively strong carbon cycle feedback, this only has a small effect on the mean
benefits of mitigation. In fact, the carbon cycle model of PAGE-2002 leads to smaller mean
benefits of mitigation than according to all of the other IAMs analysed. The mean result and
90% confidence interval for PAGE09 is very similar. The carbon cycle representations in
MERGE 5.1, FUND 2.8, FUND 3.3, DICE-2007 and DICE-2009 all lead to similar present
values of damages, which are close to the central range as projected by the carbon cycle
component of the MAGICC6 climate model. It should be noted that in the long run, there
are noticeable differences between those based on the carbon cycle model of MAGICC6
and the carbon cycle models within the IAMs. The carbon cycle models of the IAMs
generally lead to lower temperatures in the long term.

In contrast to the impact of the carbon cycle representation, the climate system
representation does lead to very different results across IAMs. This seems to be consistent
with the fact that the uncertainty in the climate system is much larger than the uncertainty in
the carbon cycle (Gregory et al. 2009; Jungclaus et al. 2010). Overall, the climate
component of some IAMs leads to temperature outcomes that are below—or near the very
low end—of the MAGICC6 90% confidence interval. This is notably the case for the
different FUND model versions and can be explained by a relatively slow temperature
response time (the main factor for FUND 3.3) and a relatively low climate sensitivity (the
main factor for FUND 2.8). This leads to much smaller benefits of mitigation according to
the FUND climate model compared to the climate models of the other IAMs. For a discount
rate of 2.5%, this difference can be up to a factor of 2.5 (for higher discount rates, the
difference would be smaller). This means that the effect of the (dynamics of the) climate
system representation may be almost as high as that of discounting.

It should be noted that the models examined in this paper do not include an explicit land-
use model and therefore do not cover the possible connections between the energy system,
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land use and impacts on the carbon cycle/climate system. A well-known example of such a
feedback is the increased deforestation rate as a consequence of increased use of bio-energy
(Searchinger et al. 2008; van Vuuren et al. 2007; Wise et al. 2009).

What does this imply for the recommendations resulting from the different IAMs? Some
guidance to policy makers can be given from the results of this paper. So far, discussions on
interpretation of IAM results seem to focus more on the differences of their assumptions for
socio-economic parameters. We have shown that the elaboration of the climate component
in the current IAMs, especially the climate dynamics, does matter strongly for their results
as well. In comparing the results of different IAMs, one would not only need to have a look
at differences in baseline or the discount rate that has been applied—but also at the climate
representation. For instance, the FUND model versions lead to lower mitigation benefits
than other IAMs and are very close to the low end of the uncertainty range of the
MAGICC6 model. This will automatically imply a higher preferred emission pathway in
cost–benefit applications. Given the role of IAMs (integration of information of different
disciplines) one may argue that ideally, they would represent both the most likely values
(according to expert models) and the ranges.
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