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1 | Introduction

1.1 Motivation – technological knowledge, human
development, and geography

On 17 December 1903, four miles south of Kitty Hawk, North Carolina, on a windy
and cold winter day, a powered airplane took off and flew for 12 seconds - wob-
bly and brief. Onboard the small plane: Orville Wright. Shortly afterwards, his
brother Wilbur repeated the attempts and even lifted the Wright airplane off the
ground for 59 seconds. On this historic day, the Wright brothers completed the
first powered manned air flight, a technological milestone in human aviation history
(Mohler 2004). In June 1919, sixteen years after the Wright brothers, John Alcock
and Arthur W. Brown landed in Clifdon, Ireland, sixteen hours after they took off
in St. John, Newfoundland. They accomplished the first non-stop flight across the
Atlantic Ocean (New York Times 1919). The blink of an eye later in terms of human
history, in 1961, the cosmonaut Yuri Alekseyevich Gagarin entered outer space. His
journey was part of the moon race between the Soviet Union and the United States,
which ended on 21 July 1969. 357,923 kilometers from Houston mission control
center, Apollo 11 touched down on an unknown place on which no human had ever
before set foot – the moon. Neil Armstrong and Buzz Aldrin were to be the first
humans to walk on the moon 66 years after the Wright brothers flew 260 meters
above the ground.

Scientific discoveries and technological progress are cornerstones of human de-
velopment and deeply shape our society. We cannot imagine our world without
technology and without its advancement. The speed at which technological im-
provements occur has significantly increased since the industrial revolution. For
centuries of human history, horses and horse carriages were the dominant transport
vehicle - from the Roman Empire in the first century AD to the British Empire 1,900
years later. More than 300,000 horses in London and more than 100,000 in New
York worked for the cities’ transportation systems around 1900. The dependence
on horses for the transportation of people and goods even caused a manure problem
that began to poison the local population (Johnson 2015). But in the space of just a
few years, horses were replaced by cars, Gagarin entered the cosmos, and Armstrong
and Aldrin walked on the moon.

Groundbreaking milestones such as the first powered flight and the moon landing
stand out in the history of technology and they help to balance the bigger picture.
The rapid succession of such breakthroughs in the blink of an eye in terms of human
history suggests that the speed of technological progress has dramatically increased.
The acceleration of human development is not restricted to such illustrative ex-
amples, but concerns technological development in general. One way to quantify
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2 Chapter 1

Figure 1.1: Number of inventions at the USPTO since 1836 and EPO since 1975
(data source: USPTO and OECD REGPAT Database for EPO patents)

technological development is to use data on patented inventions (Griliches 1990).
Figure 1.1 visualizes the development of technological knowledge from 1836 to 2017
using patents from the United States Patent and Trademark Office (USPTO) and
the European Patent Office (EPO). Patents document the what, when, and where of
technological development and are widely used in empirical research (Griliches 1990;
Feldman 1994; Acs et al. 2002; Verspagen and Schoenmakers 2004). The figure not
only indicates that the annual number of inventions has continuously increased over
the last century, but that patent growth shows exponential features. Accordingly,
technological progress has significantly accelerated since the 1950s and technological
knowledge plays an important role in our society.

Technological development, more generally, influences our daily lives and well-
being. Technical achievements in agriculture allow an increasing world population
to be supplied with food (Godfray et al. 2010) and advances in the life sciences have
increased average life expectancy in most parts of the world in the last two centuries
(Cervellati and Sunde 2005). Technological knowledge and its development certainly
also has negative effects, such as increasing carbon dioxide emissions since the in-
dustrial revolution (Lamarque et al. 2010), but nevertheless generally contributes to
a better life.

The effects of technological knowledge also include economic development.
Abramovitz (1956) and Solow (1957) showed that conventional factors such as cap-
ital and labor cannot explain 90 percent of economic growth observed in developed,
industrialized countries. Instead of capital and labor accumulation, it was argued
that the unexplained residual must be due to other factors such as productivity
growth. In his growth model, Solow (1957) attributed productivity growth to tech-
nical change, which allowed capital and labor to be more productive. Solow’s model
is called the exogenous growth model, as technological change is not included di-
rectly, but was present exogenously. Since then, much research has been devoted
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Figure 1.2: Invention maps of A European countries, B US States, C European
NUTS 3 regions, and D US counties showing the number of inventions between 2011
and 2015 (data source: OECD REGPAT Database for EPO patents and USPTO)

to including technological knowledge and progress into economic growth theories
and to explaining technological development (Nelson and Winter 1982; Romer 1990;
Grossman and Helpman 1991; Aghion and Howitt 1998).

Economic growth, however, is not equally distributed across countries, and even
regions within countries show substantial variation (Fagerberg et al. 1997). One
fundamental reason for different levels of economic growth is the uneven distribu-
tion of knowledge creation in regions (Glaeser et al. 1992; Henderson et al. 2001).
Mapping invention activities, for example, in Europe and the USA (see Figure 1.2)
reveals that regions within countries differ greatly in their ability to produce new
knowledge. Hence, countries represent relatively large-scale spatial units that hide
much of the prevalent regional variation of invention activities. Figure 1.2, secondly,
highlights that invention activities concentrate in particular hotspots of knowledge
creation such as Silicon Valley in California. The spatial concentration of knowl-
edge has been documented in several empirical studies (Feldman 1994; Acs et al.
2002; Verspagen and Schoenmakers 2004; Moreno et al. 2005). In models of regional
growth, knowledge, for example, indicated by the number of inventions, number
of R&D employees, or total R&D expenditures, is therefore often considered as an
important variable with which to explain regional economic success (e.g. Barrell
and Pain 1997; Rodríguez-Pose 1999; Crescenzi 2005; Audretsch and Keilbach 2008;
Parent and LeSage 2012; Piergiovanni et al. 2012). Hence, explaining the spatial
concentration of knowledge and thus differences of knowledge production in regions
informs our understanding of the uneven economic development in regions.

But why does knowledge so pervasively concentrate in space? The spatial con-
centration of knowledge and the importance of location seems extremely paradoxical



4 Chapter 1

in an era in which modern information and communication technology (ICT) and
global airline networks increasingly reshape our perception of distance. Amster-
dam, for example, might be more tightly connected to New York than to Groningen
(Brockmann and Helbing 2013). Although advances in ICT and low-price air travel
have moved geographically dispersed places closer together, firms still tend to co-
locate in close geographic proximity (Rodríguez-Pose and Crescenzi 2008).

To understand the benefits of co-location and therefore the spatial clustering of
innovation, it is necessary to understand fundamental elements of knowledge and
knowledge production. New knowledge is rarely entirely new, but rather builds on
existing knowledge. When the Wright brothers conducted their first flight attempts,
they could build on previous discoveries and developments of aviation pioneers such
as George Cayley, Percy Pilcher, Otto Lilienthal, or Hiram Maxim (Mohler 2004).
The metaphor of dwarfs standing on the shoulders of giants nicely expresses what
theories of innovation and technological change teach us: new knowledge is often
the result of the combination of existing pieces of knowledge (Usher 1954; Kuznets
1962; Nelson and Winter 1982; Utterback 1996). Deconstructing the Wright airplane
reveals several essential building blocks: the wing design, the propellers, the com-
bustion engine, and the control system. Many of these components were improved
by the Wright brothers, but their technological origins date back to foregone inven-
tors (Mohler 2004). Hence, existing knowledge is a key resource for new knowledge
and innovation.

Combining knowledge components requires interaction with other people in order
to solve complex problems (Wuchty et al. 2007; Aunger 2010). The Wright brothers
did not work on their plane in lonesome ingenuity, but collaborated with specialized
engineers to advance their dream of powered aviation (Mohler 2004). However,
not all knowledge is alike, and some knowledge is more difficult to communicate
and share than other forms of knowledge. The concept of tacitness (Polanyi 1966)
describes knowledge that is immensely difficult if not impossible to codify, as it is
deeply embedded in individual memories and routines. For example, the Wright
brothers conducted a series of 700 to 1,000 flights between 1902 and 1903, equipping
them with extraordinal piloting skills particularly suited for their plane (Mohler
2004). Teaching others how to fly their aircraft might have been impossible given
their experience. Other prominent examples of tacit knowledge are swimming or
cycling. It is impossible to teach someone how to cycle by only using words, but it
is possible to cook a delicious meal by following a recipe, which represents codified
knowledge about cooking the meal. Thinking of tacitness as a degree rather than
a category allows the conceptualization of knowledge ranging from fully tacit (e.g.
cycling) to fully codified (e.g. recipe) (Cowan et al. 2000). Codifying knowledge
thereby increases the speed and decreases the cost of transaction (Zander and Kogut
1995). More tacit knowledge, in contrast, remains highly exclusive to its owner
(Maskell and Malmberg 1999).

The tacit dimension of knowledge therefore constrains knowledge flows in space
and provides a clear link to economic geography. Exchanging and combining tacit
knowledge requires face-to-face interaction between individuals, which is difficult
over long distances (Gertler 2003). Urban regions with their agglomerations of
skilled people in close geographic proximity provide a fruitful environment for intense
knowledge interaction (Feldman and Audretsch 1999). Although knowledge flows
are subtle and thus often elude a clear observation, empirical research shows that
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they are more likely to occur in close geographic proximity (Jaffe et al. 1993). The
geographic stickiness of knowledge hinders rapid dissemination and binds knowledge
to specific places (Hippel 1994).

Knowledge can spill over not only via intended knowledge exchange (e.g. for-
mal collaboration), but also due to unintended knowledge flows. Another crucial
attribute of knowledge therefore concerns its excludability or non-excludability re-
spectively. If knowledge is excludable, firms investing in knowledge creation and
innovation exclusively benefit from their outcomes or restrict knowledge flows to
partners. In contrast, if knowledge is non-excludable, it can spill over to third par-
ties, intended or unintended, that did not pay for the knowledge creation process
(Grossman and Helpman 1991). Firms can therefore benefit from investments in in-
novation on the part of others by co-locating to them in close geographic proximity.
Knowledge thereby flows along specific channels, as firms and their employees are, for
example, linked to other firms in the region via formal (e.g. business partnerships,
research collaborations) and informal (e.g. friendships, occasional interactions) rela-
tions, increasing the likelihood of knowledge exchange in close geographic proximity
(Granovetter 1985; Uzzi 1997; Bathelt et al. 2004).

Hence, location is important for knowledge production! Places, however, are not
equal, differing substantially in important prerequisites of knowledge generation.
Population size is one fundamental characteristic in which places are different and
which has concrete implications for knowledge production. New knowledge might
emerge in many places, but is produced at faster rates and in larger quantities in
cities. The productivity of larger cities has been elaborated upon and documented in
the early work of Kuznets (1960). The core argument is that larger cities are more
productive than smaller towns regarding a variety of socio-economic phenomena
due to the density of population and skills. In a recent approach, Bettencourt et al.
(2007a) borrows the concept of scaling from biology and explores how socio-economic
outcomes scale with cities’ population size. Scaling analyses suggest that invention
activities and the number of inventors grow disproportionately with city size. More
precisely, doubling the population of a city results in more than twice as many
inventions and inventors, indicating a super-linear relationship and illustrating the
productivity of cities in purely quantitative terms.

The economic reasoning for the productivity of cities is often associated with
different types of externalities in urban environments. Urbanization externalities,
for example, describe the advantages that arise from the pure size of cities such as
the infrastructure including transportation networks, education facilities, financial
institutions, or the large local labor market allowing firms to seek qualified employees
(Mills 1967; Henderson 1974; Sveikauskas 1975). In addition, the central place theory
(Christaller 1933) locates cities within a hierarchical city network according to their
functionalities. All the functions of smaller towns can be found in larger ones but
not vice versa. Larger cities such as New York, London and Singapore, with their
rich infrastructure of financial institutions, top universities, and research facilities,
attract highly educated and skilled people. The density of heterogeneous people
in general and the diversity of skilled individuals more specifically increases the
likelihood of interaction of diverse knowledge in large cities (Jacobs 1969).

Chinitz (1961) argues that beyond cities’ pure size, their economic structure
is particularly important to explain the benefits of co-localization. Therefore, two
other types of externalities describe how the benefits of co-location are linked to
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knowledge spillover and the economic structure of places. Firstly, Marshall-Arrow-
Romer externalities describe that the spatial concentration of firms within the same
or similar industry provides a variety of advantages for co-located firms (Marshall
1890; Arrow 1962; Romer 1986). Besides labor market pooling and input-output
linkages, this concerns knowledge spillovers. The main argument is that valuable
knowledge primarily spills over between firms within the same industry. Hence,
firms benefit from the co-location of firms of the same industry. Secondly, Jacobs
externalities state that crucial sources of knowledge spillovers are external to the
industry (Jacobs 1969). Accordingly, the advantage of co-location is not so much
related to specialization, but to local diversity, which is highly related to the pop-
ulation size of cities. A diverse pool of knowledge in cities provides opportunities
for cross-fertilization of knowledge between different industries and stimulates the
emergence of entirely new ideas. Current empirical research is not in favor of one or
the other externality (Beaudry and Schiffauerova 2009).

The concepts of relatedness and related variety build a bridge between Marshall
and Jacobs externalities (Frenken et al. 2007; Boschma and Frenken 2011; Neffke
et al. 2011). Due to bounded rationality and absorptive capacity, actors cannot use
any knowledge that spills over. Recipients need a cognitive base to communicate,
understand, and process new knowledge effectively (Cohen and Levinthal 1990).
According to Nooteboom et al. (2007), actors benefit most from knowledge exchange
if their knowledge bases are neither too similar nor too distant, but related to each
other. The so-called optimal cognitive distance describes the cognitive proximity
when learning is most effective. These findings elevated the concept of cognitive
proximity from the micro scale of individual learning of firms (Nooteboom et al.
2007) to the macro scale of collective learning of regions and countries (Frenken et
al. 2007; Hidalgo et al. 2007). Accordingly, an economic structure characterized by
related variety should induce the fruitful exchange of ideas and stimulate regional
development (Frenken et al. 2007).

Economic structures are, however, not static, but change over time. While some
regions undergo severe structural changes and lose their former leading role in inno-
vation (e.g. Detroit), others prosper and become epicenters of knowledge creation
(e.g. Silicon Valley). An evolutionary perspective explicitly considers the hetero-
geneity of places with all their economic and socio-institutional characteristics that
have evolved over time and that are fundamental to understanding current economic
structures in regions (Boschma and Frenken 2006; Martin and Sunley 2006). Acquir-
ing new knowledge depends strongly on existing knowledge, its combination, and
invested resources. Economic actors develop specific routines and heuristics to man-
age the riskiness and uncertainty of knowledge creation (Nelson and Winter 1982).
Knowledge production therefore becomes strongly path-dependent and accumulates
over time. As a consequence, economic actors cannot jump between any activity,
but only gradually adjust or change their current activities (Neffke et al. 2011).

At the regional level, path dependency expresses that past developments shape
today’s structures. Hence, understanding current regional developments is only
possible by understanding the shadow of the past. In economic geography, a path
often describes the development of a particular industry or technology at a specific
place with all its institutional endowments. In the beginning, small historic events
initialize self-reinforcing processes that lead to the creation and establishment of
new development paths in regions (Maskell and Malmberg 1999; Martin and Sun-
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ley 2006). Path dependency also explains the downfall of old industrial regions.
Regional lock-ins occur when regions are dependent on and trapped in maturing
industries. The Ruhr Area, for example, was strongly dependent on coal mining
and heavy machinery, industries without much of a future in Germany, but most of
the local knowledge and institutional setting was tailored to this specific industry
(Grabher 1993). A deviation from such developments by creating and establishing
new sustaining paths is difficult and protracted. Regional competences therefore do
not change fast, but evolve over time.

Pairing our understanding of path dependency and tacitness with the advan-
tage of agglomeration helps to understand why knowledge activities concentrate in
specific places. Over time, regions not only accumulate knowledge and skills, but
also infrastructure and institutions that sustain their regional development paths.
Maskell and Malmberg (1999) used the term localized capabilities to emphasize that
many of these competences cannot simply be transferred to other places due to their
path-dependent and tacit nature. Present capabilities therefore shape future oppor-
tunities by attracting specific sectors for which they are particularly suited or by
providing ideal conditions for new path creation. As a result, certain knowledge con-
centrates at specific places in which agglomeration externalities exhibit their forces
and thereby contribute to a spatial clustering of industries (Malmberg et al. 1996;
Maskell and Malmberg 1999). Hence, places develop certain capabilities, specialize
in specific industries, and produce different knowledge outcomes.

1.2 Qualitative differences of technological knowl-
edge

Although existing approaches often highlight the heterogeneity of places and knowl-
edge creation, the empirical literature tends to focus on knowledge creation as either
a pure quantitative outcome or input. Precisely, knowledge usually enters models
of knowledge production and diffusion or economic development as a pure quantity
without considering differences in the quality of knowledge (O’hUallichain 1999;
Rodríguez-Pose 1999; Acs et al. 2002; Fritsch 2002; Crescenzi 2005; O’hUallichain
and Leslie 2005; Buesa et al. 2006; Bettencourt et al. 2007a; Bettencourt et al.
2007b). Research from various disciplines, however, emphasizes that knowledge
is not alike, showing substantial differences regarding quality (Trajtenberg 1990;
Chandy and Tellis 1998; Hargadon 2003).

The Wright brothers’ achievement in powered flying reset the prevalent imagi-
nation and opportunities of mobility around 1900. Shortly after their first powered
flight, airlines began to connect the world, reshaped the perception of geographic dis-
tances, and gave birth to the modern aviation industry (Pirie 2009). Some domains
are inherently complex to understand and involve problems that are only solved by
tremendous efforts in science and technology. For example, no private businessman
ever tried to land on the moon. The USA, as a nation, entered the space race when
the Soviets launched Gagarin as the first man into space in 1961. Only ten years
later, NASA put Armstrong and Aldrin on the moon. The moon landing is certainly
a milestone in the human history of space and aviation technology. Its realization
in such a short amount of time definitely represents a complex endeavor involving
numerous scientists, engineers, and large amounts of public funding in order to mas-
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ter the grand technical challenges (Stine 2009). The Apollo mission substantially
advanced countless technologies (e.g. information and communication technology)
and reshaped existing understandings of what is technologically feasible (Mazzucato
2014).

Qualitative differences of new knowledge might be related to the heterogeneity of
places. Places differ in their ability to produce outstanding technological improve-
ments, and these differences potentially impact regional economic development. For
example, Carl Benz, Gottlieb Daimler and Wilhelm Maybach advanced automobile
technology in the 1880s and 1890s. Only 70 kilometers apart from each other, Benz
in Mannheim and Daimler together with Maybach in Stuttgart, developed the first
automobiles. Benz’ patent of the first automobile can be considered as the birth
of the global automotive industry. Shortly after, Daimler and Maybach founded
the Daimler Motoren Gesellschaft in Stuttgart and sold their first automobile in
1892. Later, the company became the world-renowned Daimler AG. Today, the
headquarters of Daimler, including its large production site, are still located in the
region of Stuttgart. The regions now hosts more than 3,000 specialized suppliers
with approximately 200,000 employees working in the regional automotive industry
(Strambach and Klement 2013).

These illustrations show that knowledge and innovation greatly differ in quality,
and they emphasize that quality is not a one-dimensional concept. In fact, the liter-
ature provides a range of dimensions according to which knowledge quality can be
differentiated. For instance, new knowledge production relies on the combination of
existing knowledge. Relatedness highlights that not every technology, or more gen-
erally, any piece of knowledge can be combined with the same effort and with the
same success. Relatedness between technologies facilitates effective communication
and learning and reduces uncertainties and risks (Nooteboom et al. 2007; Frenken et
al. 2007; Neffke et al. 2011). Alternatively, knowledge differs in its underlying com-
plexity. Advancing and connecting the multitude of different technologies required
for the moon landing might have been more complex than developing the PageRank
algorithm for Google’s search engine (Fleming and Sorenson 2001). Knowledge also
varies in its degree of novelty. Some inventions introduce radically new products or
processes such as Gutenberg’s printing press, whereas others add marginal improve-
ments or represent incremental modifications (Chandy and Tellis 1998). Knowledge
is also heterogeneous in its impact on the economy, society and technology (Trajten-
berg 1990). The invention of the first automobile or the first powered airplane led
to the emergence of new industries and reshaped existing technological paradigms.
Other inventions do not even make it to the market. Hence, (a) relatedness, (b)
complexity, (c) degree of novelty, and (d) impact represent four important dimen-
sions of knowledge quality, on which the present thesis centers. More precisely, each
of the four dimensions represents the core of a chapter, introduced in more detail in
the following section.

1.2.1 Relatedness

Regions undergo continuous change and relatedness plays an important role in the
evolution of regional economic structures (Boschma and Frenken 2011; Neffke et al.
2011). New industries emerge, while others diminish. This continuous change is
linked to technological progress. New technological knowledge gives birth to new in-
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dustries, such as the invention of the automobile around 1900 in Southwest Germany,
and makes other sectors obsolete, such as the coach making industry. Boschma and
Wenting (2007) studied how and where the British automobile industry emerged.
According to their findings, regions were more likely to acquire new competences in
the production of automobiles when they could build on strong competences in the
manufacturing of bicycles and coaches. Regions equipped with related competences
(e.g. bicycle and coach making) had more favorable starting conditions than regions
missing such knowledge.

The concept of knowledge relatedness is therefore important for understanding
the collective learning and evolution of regional capabilities as a path-dependent
process. Regions are unlikely to acquire new knowledge independent of existing
competences. Hidalgo et al. (2007) show that countries are more likely to export
new products if they are related to their existing export portfolio. Beyond product
diversification of countries, relatedness also shows its relevance for the regional level
and a variety of different indicators (Neffke et al. 2011; Boschma et al. 2015; Klement
and Strambach 2019). Hence, the empirical literature presents ample evidence that
related diversification is the norm rather than the exception (Hidalgo et al. 2018).

The notion of relatedness and related diversification provides solid arguments
for place-based policies and tailored policy schemes in favor of related diversifica-
tion. For instance, the Smart Specialization policy of the EU requires regions to
identify their existing strength and future opportunities in order to receive public
support (Foray et al. 2011). In case of Smart Specialization, policy supports the
path-dependent process of related diversification for which there might be solid ar-
guments, as regions specialize and build competitive advantages in specific domains
while policy reduces risks of failed investments (Martin and Sunley 2006). How-
ever, related diversification as one expression of path dependency might not be able
to prevent potential regional cognitive-lock ins. Rather than supporting existing
strengths, as evident in the current EU strategy, regional policy might also be well-
advised to support unrelated instead of related diversification to increase regional
resilience against cognitive lock-ins and external shocks (Frenken et al. 2007). Ir-
respective of the diversification type, i.e. related or unrelated, it still remains an
open question as to what extent policy can intervene in the path-dependent process
of regional diversification. Boschma and Gianelle (2014, p. 6) phrased this as the
“one-million-dollar” question.

Chapter 2 takes this research gap as a starting point and asks: Do publicly funded
R&D projects break the path dependency of collective learning in regions? The em-
pirical approach in Chapter 2 relies on patents from the OECD REGPAT Database
as an indicator of technological knowledge and on information on subsidized R&D
projects from the German Federal Ministry of Education and Research (BMBF).
The dataset has been used in a series of previous works studying the relationship
between government support and innovation in regions (Fornahl et al. 2011; Broekel
and Graf 2012; Broekel 2015). The BMBF data entails information about the recip-
ients, purposes, locations and duration of the funded projects. A self-constructed
concordance based on the matched-patent-subsidies-firm database of the Halle In-
stitute of Economic Research links the data of subsidized R&D projects to patented
inventions. With this data at hand, the link between publicly funded R&D projects
and regional diversification is investigated for 141 German labor market regions be-
tween 1991 and 2010. The results confirm prior studies: relatedness is an important



10 Chapter 1

explanation for diversification in German labor market regions. Regarding inno-
vation policy, R&D subsidies are more likely to be allocated to related activities.
In addition, subsidized R&D projects are found to be positively associated with
regional diversification. Previous research emphasized the different effects of R&D
subsidies when granted to individual and collaborative research projects (Broekel
and Graf 2012; Broekel et al. 2017). The BMBF data allowed such a distinction
and the empirical results suggest that collaborative R&D more strongly influence
regional diversification than individual R&D projects. Moreover, collaborative R&D
can to some extent compensate for missing relatedness by increasing the likelihood
of successful entries when relatedness density is low. Although policy is part of
the path dependency of collective learning in regions, as it is more likely to allo-
cate resources to related activities, joint research projects can nevertheless facilitate
diversification into unrelated activities.

1.2.2 Complexity

Classical models of endogenous growth suggest that an increase in R&D resources
should increase the growth rate of an economy (Romer 1990; Aghion and Howitt
1998). Jones (1995), however, observed that US growth rates experienced no sig-
nificant increase although research intensity and educational attainment has grown
substantially over the long term. Pintea and Thompson (2007) relate this paradox
to the rising complexity of technology and technological development. Technologies
are said to be complex if they consist of a large number of components and require
large amounts of information for their reproduction (Simon 1962; Winter 1987;
Zander and Kogut 1995). Complex technologies therefore require the functioning
of multiple, interdependent components, and small errors can cause large problems
(Sorenson et al. 2006). The learning model of Jovanovic and Nyarko (1995) indicates
that learning in complex domains is therefore more difficult, slower, and increasingly
demands more R&D resources.

In today’s knowledge economy, knowledge represents a key resource and knowl-
edge complexity is argued to have concrete economic consequences. Knowledge
that is simple and easy to copy is less likely to equip economic actors with profound
growth potentials. Complex knowledge, in contrast, is less likely to spill over to com-
petitors, as it exhibits stronger tendencies to resist diffusion and is therefore likely to
represent a valuable resource (Sorenson et al. 2006). Economic actors equipped with
competitive advantage in complex domains are therefore likely to earn the economic
benefits (Kogut and Zander 1992; Zander and Kogut 1995).

Although the economic consequences of technological complexity have been well
discussed, the empirical evidence, however, is still scarce and unsatisfying for two
primary reasons. Firstly, empirical approaches investigating the impact of tech-
nological complexity on regional economic development are restricted to indirect
evidence either by relying on economic complexity as an implicit measure of tech-
nological complexity (Hidalgo and Hausmann 2009; Hausmann et al. 2013; Bahar
et al. 2014) or by indirectly relating technological development with corresponding
economic growth (Petralia et al. 2017; Balland et al. 2019). Secondly, the empirical
evidence is primarily restricted to the country level (Hidalgo and Hausmann 2009;
Hausmann et al. 2013; Bahar et al. 2014; Petralia et al. 2017). Regions within coun-
tries, however, show substantial differences in their capability to produce complex



Introduction 11

technologies (Balland and Rigby 2017). Countries therefore represent rather crude
spatial units, which neglect substantial regional variation within countries. Hence,
to what extent technological complexity is linked to the economic development of
regions remains unexplored.

The empirical investigation in Chapter 3 is motivated by this research gap and
particularly asks: Are complex technologies important for regional economic devel-
opment? The empirical approach relies on GDP per capita as an indicator of eco-
nomic growth in 166 European NUTS 2 regions between 2000 and 2015. The OECD
REGPAT Database provides information on patented inventions and serves as the
indicator of technological knowledge. Technological complexity is calculated based
on the complexity index developed by Broekel (2019) called structural diversity.
The complexity values are linked to regional invention activities to assess a region’s
capability to produce complex knowledge. The findings of the empirical analysis
suggest that European regions substantially differ in their ability to produce com-
plex technologies. Although complex knowledge concentrates in some large urban
areas such as Paris, Madrid and Munich, the results indicate that it is not exclu-
sively an urban phenomenon. In addition, it is shown that regional variances in
knowledge complexity are linked to economic growth in regions. More precisely,
a 10 percent increase in complexity is associated with a corresponding increase in
regional economic growth of about 0.28 percent.

1.2.3 Degree of novelty

It was in Mainz sometime in 1454 or 1455 when Johannes Gutenberg printed the
last page of the bible, later known as the Gutenberg Bible. This moment might
represent the start of modern book printing and revolutionized the production and
diffusion of books fundamentally. Before the Gutenberg revolution, the production
of written material was time and cost-intensive because it relied on manual repro-
duction, limiting production and diffusion of books to a small share of people such
as monks and nuns. Gutenberg’s development of the printing press, however, fun-
damentally reshaped the art of printing and represents a turning point in human
history. Clearly, he relied on existing technologies, for example presses used in wine
production, modifying them in a revolutionary way and putting them into a new
context. His printing press reduced the time and cost for book reproduction dra-
matically and thus allowed a faster dissemination of books to a larger share of the
population (Rees 2005).

Gaining a better understanding of novelty and its geographic patterns is therefore
taken up in Chapter 4. It builds on the theoretical as well as empirical insights of
scaling analyses, which show that the geographic concentration of knowledge produc-
tion is not random, but in favor of larger cities (O’hUallichain 1999; O’hUallichain
and Leslie 2005; Bettencourt et al. 2007a; Bettencourt et al. 2007b). These authors
estimate a scaling model with the reported coefficients, however only reflecting the
productivity of cities in pure quantitative terms with respect to innovation with-
out considering different degrees of novelty in technological knowledge. Cities as
hotspots of innovation, however, also concentrate essential functionalities and fun-
damental resources that might influence novelty creation in qualitative terms. In
particular, Jacobs externalities state that innovation activities benefit from the di-
versity in larger cities as it facilitates cross-fertilization of unrelated knowledge rather
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than being locked in industry-internal thought patterns. Empirical evidence sup-
ports this argument and even goes a step further. Atypical combinations, which
bridge unrelated knowledge areas, have the potential to create radically new out-
comes, whereas typical combinations, in contrast, continue to link related knowledge
leading to rather incremental novelties (Schilling and Green 2011; Uzzi et al. 2013;
Kim et al. 2016).

Chapter 4 examines this research gap and asks: Are cities hotspots of truly novel
ideas? Historical patent documents covering the years 1836 to 2010 serve as the
empirical basis to investigate the research question (Petralia et al. 2016). A time
span of 174 years allows the unraveling of long-term trends in technological devel-
opment and acknowledges the path dependency in knowledge creation that leads
to persistent geographic patterns. The empirical approach relies on the theoretical
conceptualization of inventions as the result of knowledge combinations. Decon-
structing inventions into their combinations allows the application of z-scores to
distinguish between atypical (i.e. truly novel) and typical (i.e. incremental) combi-
nations (Schilling and Green 2011; Uzzi et al. 2013; Kim et al. 2016). The scaling
analysis in Chapter 4 first reveals that novelty has increasingly concentrated in large
metropolitan areas in the last 174 years of US invention history. Hence, cities’ pro-
ductivity in knowledge production not only refers to pure quantity, but also includes
novelty. This observation is connected to the second finding in this exercise that
technological diversity in cities increases linearly with their size. Inventors in larger
cities have more local opportunities to explore new combinations than inventors in
smaller towns.

1.2.4 Impact

New knowledge varies greatly according to its impact on subsequent innovation
(Trajtenberg 1990). Researchers assess impact on subsequent knowledge creation
processes, for instance by using citation data in scientific publications or patents
(Garfield 1970; Trajtenberg 1990). Citation data reveals how often a certain scien-
tific publication or patent is used as an input for subsequent ones and therefore allows
a distinction between highly impactful and less impactful knowledge outcomes. Em-
pirical research indicates that highly cited outcomes, e.g. impactful innovations, are
also likely to generate economic value(Harhoff et al. 1999; Hall et al. 2005).

A famous example in this context is the following: in 1998, the journal Computer
Networks and ISDN Systems published the paper “The anatomy of a large-scale hy-
pertextual Web search engine”. In the paper, the authors first present the prototype
of a large-scale algorithm that searches the web. Their algorithm uses the link struc-
ture of web pages to identify important pages and to create a quality ranking. The
authors were Sergey Brin and Lawrence Page (1998) (1998). They called their al-
gorithm PageRank and their prototype of a search engine Google. Shortly after the
publication, Brin and Page founded Google Inc. located in the garage of their friend
Susan Wojcicki in Menlo Park, California (Vise and Malseed 2005). Now, Google
employs around 20,000 people in Mountain View, 10 kilometers from its birth loca-
tion in Menlo Park. Just as other technological breakthroughs deeply shaped the
economic structure in San Francisco’s Bay Area long before, Google has done so
again in the last twenty years (Storper et al. 2015). Thus far, Brin and Page’s pa-
per has received nearly 4,000 citations in the Web of Science (July 2019). The fact
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that approximately 0.03% of all publications in the Web of Science collection receive
more than 1,000 citations illustrates the impact of this paper1 (Van Noorden et al.
2014).

Although impactful innovation can have substantial regional consequences, as
illustrated by the example of Google, variations in the impact of innovations are
rarely considered in economic geography research. However, it should be important
whether a region produces large amounts of knowledge with marginal impact or
if it produces impactful outcomes that substantially affect regional development
by offering new growth paths. Among the few studies in economic geography that
consider technological impact in their empirical analyses, the works of Ejermo (2009)
as well as Castaldi and Los (2017) highlight that impactful innovations concentrate
more strongly in space than conventional innovations. The strong concentration
of impactful innovations, however, raises more questions. Why are some regions
more capable of producing impactful innovations than others or, asked differently,
what explains the geographic concentration of impactful innovations? Castaldi et al.
(2015) find that an economic structure characterized by unrelated variety is linked
to the emergence of high-impact innovations in regions. Beyond this, however,
research in economic geography is (still) astonishingly silent about the underlying
reasons behind regions’ ability to produce impactful outcomes.

Chapter 5 approaches this research gap and presents the prevailing regional cul-
ture regarding openness to innovation as one possible explanation for the observed
regional variation in creating impactful innovations. In particular, a regional social
climate that cultivates new ideas and values creative thinking is argued to play a
crucial role for the emergence of impactful innovations. Chapter 5 thereby builds
on existing theoretical frameworks in economic geography that – sometimes explic-
itly and sometimes implicitly – discuss the role of regional openness for innovation
without considering its role for the creation of impactful innovation (Saxenian 1994;
Rodríguez-Pose 1999; Florida 2002). However, existing works rely on rather crude
and indirect proxies to measure regional openness, such as the share of homosex-
uals (Florida 2003). To overcome these shortcomings, Chapter 5 builds on recent
insights in the field of geographical psychology. Psychologists have made substantial
advances in conceptualizing and measuring individuals’ personality via personality
traits. The so-called Big Five summarize five personality traits (agreeableness, ex-
traversion, conscientiousness, neuroticism and openness) (John and Srivastava 1999).
The trait openness, in particular, is associated with innovation, as it describes indi-
viduals’ inventiveness, creativity, originality and curiosity (McCrae 1987; King et al.
1996; McCrae 1996; John and Srivastava 1999). Chapter 5 follows such a macro-
psychological approach and asks: Does regional openness influence the impactfulness
of regional innovation activities?

The empirical approach relies on patent data from the USPTO as a proxy for
innovation activities in 382 metropolitan statistical areas (MSAs) in the US between
2000 and 2010. Following previous approaches, innovations’ impact is assessed using
class and cohort corrected patent citation counts as a reliable measure of impact
(Trajtenberg 1990; Hall et al. 2005). Specifically, regional innovation activities are
ranked according to their received number of citations, which allows a calculation

1The corresponding USPTO patent US6285999 received 923 citations (July 2019), which is also
considered a high number. Citation frequencies between scholarly publications and patents are not
comparable.
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of the impact of regional innovation activities in different percentiles of the regional
impact distribution. To capture regional personality differences in openness, the
responses of approximately 1.26 million participants from the internet personality
project (Gosling et al. 2004) are aggregated to the MSA level. The empirical results
support the substantial differences between highly impactful innovations and the
average innovation quality (Castaldi et al. 2015). Regional openness is associated
with a stronger output of highly impactful innovation in regions, but not with the
average innovation quality. Macro-psychological openness is tested against indirect
indicators of openness applied in previous research, such as Florida’s "Gay Index".
The obtained results are robust, as macro-psychological openness either outperforms
indirect measures of open-mindedness or explains an additional share of the regional
variation of highly impactful innovations alongside open-mindedness.

1.3 Outline of the thesis

In summary, scientific discoveries and technological milestones are important char-
acteristics of human development. The curiosity and passion of bright minds such as
Gutenberg or the Wright brothers and the considerable efforts made by humans to
accomplish outstanding achievements (e.g. moon landing) highlights the fascination
for technological development and the importance of new knowledge for our society.
The importance of new knowledge for economic growth paired with the spatial con-
centration of innovation activities has motivated previous research and has put the
topic high on the research agenda in economic geography.

Many concepts in economic geography highlight the heterogeneity of places and
knowledge. The focus in previous research, however, has been more on knowledge
quantity and less on differences in knowledge quality across places. This disserta-
tion therefore emphasizes that quality is an important feature of new knowledge
and innovation varying substantially between places. Assessing knowledge quality
in places has the potential to improve our understanding of knowledge production
and regional development. To acknowledge that differences in knowledge quality
manifest themselves along multiple dimensions, this thesis assesses quality by rely-
ing on relatedness, complexity, degree of novelty and impact as important quality
characteristics. Each quality dimension represents the core of one chapter.

Hence, this dissertation begins by asking if policy can intervene in the path-
dependent process of regional diversification by focusing on the role of public subsi-
dies for R&D projects that may influence (related) diversification of regions (Chapter
2). Subsequently, Chapter 3 places knowledge complexity at the center of empiri-
cal analysis and studies the role of complexity for regional economic development.
Chapter 4 unravels US invention history by quantifying novelty in knowledge combi-
nations and studies their relation to city size. Finally, Chapter 5 shifts the attention
to impactful innovations regions. It presents differences in regions’ openness to
innovation as a hidden cultural trait to explain regional variations in impactful in-
novations. The concluding Chapter 6 summarizes the contribution of all empirical
chapters, discusses limitations of this research and presents future research oppor-
tunities.



2 | Subsidized to Change? Analyz-
ing the Impact of R&D Policy on
Regional Diversification

Abstract: Previous research shows ample evidence that regional diversification is strongly
path-dependent, as regions are more likely to diversify into related than unrelated activi-
ties. Although related diversification strengthens regions’ existing capabilities, it also can
lead to cognitive lock-ins. In this paper, we ask whether innovation policy in terms of
R&D subsidies can intervene in regional diversification. Can R&D subsidies even break
the path-dependency by facilitating unrelated diversification? We answer this question by
linking information on R&D subsidies with patent data and analyzing the technological
diversification of 141 German labor-market regions between 1991 and 2010. Our findings
suggest that R&D subsidies positively influence regional diversification. In addition, we
find significant differences between types of subsidy. Subsidized joint R&D projects have a
larger effect on entry probabilities than subsidized R&D projects conducted by single orga-
nizations. To some extent, collaborative R&D can even compensate for missing relatedness
by facilitating diversification into unrelated activities.

This chapter is co-authored with Tom Broekel. The PhD candidate is the first author of the
article. The paper has been revised and resubmitted to The Annals of Regional Science.
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2.1 Introduction

R&D subsidies are a crucial tool of modern (regional) innovation policy. Promi-
nently, the EU-Framework Programmes are based on direct, project-based R&D
subsidization, and so are many national as well as regional initiatives (Dohse 2000;
Breschi and Cusmano 2004; Defazio et al. 2009; Barajas et al. 2012; Broekel 2015).
Existing investigations of such programs’ effects tend to focus on their contribution
to innovation processes whereby particular attention is being paid to the quantity of
additional R&D efforts invested and alternatively the numbers of innovations being
created (Czarnitzki et al. 2007; Zúñiga-Vicente et al. 2014).

The present paper extends the analysis of R&D support programs by investigat-
ing their impact on regional (technological) diversification. For regions, diversifying
into new activities has been shown to be key for their long-term economic develop-
ment (Frenken et al. 2007; Pinheiro et al. 2018). In recognition of this, the European
Union supports diversification with its Smart Specialization strategy implemented
in its current cohesion policy (McCann and Ortega-Argiles 2013; Foray et al. 2011).

We argue that R&D support programs that are not intended to contribute to
diversification processes may nevertheless be effective in this direction. Most impor-
tantly, this is because many of these programs facilitate R&D and stimulate inter-
organizational collaboration. These two activities are at the heart of (technological)
diversification, and organizations are highly interested in obtaining public support
for both. Moreover, the current allocation of R&D subsidization has the potential
of (unintentionally) steering parts of the support toward regions and technologies
with larger potentials of successful diversification. The evaluation of the potentials
utilizes the idea of related diversification (Boschma and Frenken 2011; Boschma et
al. 2017), according to which diversification processes are more likely to occur and
be successful when the new activity is related to existing regional competences.

Our paper thereby fills a gap in the existing literature, as, so far, few efforts
have been made to assess systematically the contribution of R&D policy to regional
diversification (Boschma and Gianelle 2014). Moreover, most investigations of R&D
support are restricted to the firm level (Czarnitzki et al. 2007; Czarnitzki and Lopes-
Bento 2013), while attention has only recently been drawn to the regional level
(Maggioni et al. 2014; Broekel 2015; Broekel et al. 2017).

We support our theoretical arguments with an empirical investigation on the
contribution of project-based R&D subsidization by the Federal Government of
Germany to regional technological diversification processes. Firstly, we explore the
extent to which the allocation of R&D subsidies facilitates regional diversification.
Secondly, we test if these R&D subsidies increase the chances of successful diversifi-
cation in general and if they are rather conducive for regions gaining competences in
related or unrelated technological fields. Thirdly, we differentiate between subsidies
for individual and for joint projects.

Our empirical study builds on a panel regression approach utilizing data on
141 German labor-market regions covering the period from 1991 to 2010. Patent
information is used as an indicator for technology-oriented R&D activities in re-
gions and matched with subsidized R&D projects. Our empirical results confirm
the path-dependent nature of regional technological diversification, which is driven
by technological relatedness. In addition, R&D subsidies are more likely allocated
to related capabilities in regions, indicating the tendency of policy to be part of the
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path dependency in regional diversification. Our study confirms that R&D subsidies
stimulate technological diversification in regions. The identified positive effects are
particularly pronounced and robust in the case of subsidized joint R&D projects.
Lastly, we find that R&D subsidies are an appropriate policy to help regions broaden-
ing their technological portfolio by (partially) compensating for lacking relatedness.

The remainder of the study is organized as followss Section 2.2 provides an
overview of the existing literature on regional diversification and R&D policy. We
describe our data and empirical approach in Section 2.3. The empirical results are
part of Section 2.4. The paper concludes with a discussion of our results in Section
2.5.

2.2 R&D subsidies and regional diversification

2.2.1 R&D subsidies and diversification

R&D policy programs are justified by knowledge creation and innovation being
important production factors for economic growth. Nevertheless, knowledge cre-
ation suffers from significant market failures (Nelson 1959; Arrow 1962; McCann
and Ortega-Argiles 2013). For instance, firms cannot fully benefit from their R&D
investments, as new knowledge might lack appropriability and spills over to third
parties, giving rise to positive externalities. Similarly, R&D projects are character-
ized by significant uncertainty making, ex-ante calculations of investments into R&D
a difficult task. Increasing complexity of technologies also requires efforts exceeding
individual firms’ capabilities. Accordingly, collaboration with other organizations
becomes a necessity, which raises the danger of moral hazard and unintended knowl-
edge spillover (Hagedoorn 2002; Cassiman and Veugelers 2002; Broekel 2015). In
sum, private R&D investments are likely to fall short of a social optimum. This mo-
tivates and justifies public intervention, which seeks to close the gap between actual
and socially desired levels of knowledge creation by supporting R&D activities.

There are numerous instruments policy may use to achieve this goal. Among
the most prominent and frequently used are project-based R&D subsidies (Aschhoff
2008). These are intended to increase R&D activities of organizations regarding
innovation input and output. Concerning the input, one major question is whether
firms use public subsidies as a complementary and additional financial source to
realize R&D projects or if they "crowd out" private investments. The large body
of empirical research finds mixed results. Although a general crowding-out effect
cannot be ruled out and depends largely on firm characteristics, the majority of
studies find evidence for additionality effects (Busom 2000; Czarnitzki and Hussinger
2004; Zúñiga-Vicente et al. 2014). Regarding innovation output, public subsidies
seem to stimulate R&D activities. A number of studies show the positive effect
of R&D subsidies on firms’ innovativeness (Czarnitzki et al. 2007; Czarnitzki and
Hussinger 2018; Ebersberger and Lehtoranta 2008). That is, significant parts of
private R&D activities would not have been realized without subsidization, implying
that public subsidies seem to complement private R&D.

Yet the design of R&D subsidization programs offers a lot of flexibility, which
allows for substantial "fine-tuning" of initiatives. For instance, subsidization can be
restricted to specific organizations (location, size, industry), to selected fields (tech-
nologies, sectors), or to particular modes of R&D (individual or joint). Policy can
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also decide about starting dates and time periods of support. Usually, R&D subsidies
are granted through competitive bidding procedures (Aschhoff 2008), and they are
targeted at innovative self-discovery processes (Hausmann and Rodrik 2003) with
the stimulation of inter-organizational knowledge exchange becoming an increasingly
important feature (Broekel and Graf 2012).

All of these features are used in contemporary policies to varying degrees. For in-
stance, the EU-Framework programmes (EU-FRP) are focused on supporting R&D
and on stimulating interregional as well as international knowledge diffusion by
exclusively supporting collaborative projects (Scherngell and Barber 2009; Mag-
gioni et al. 2014). Another example of R&D subsidization with specific features is
the German BioRegio contest. This initiative focused on advancing one particu-
lar technology (biotechnology) and rewarded proposals building on and stimulating
intra-regional collaboration (Dohse 2000).

While most empirical studies have examined at the effects of R&D subsidies at
the firm level evaluating their allocation and impact, we seek to extend this perspec-
tive in this study. More precisely, we argue that project-based R&D subsidization
may play a role in regional diversification processes. Interestingly, linking policy to
regional diversification has rarely been done in the literature. An exception concerns
the case study by Coenen et al. (2015) that investigates opportunities, barriers, and
limits of regional innovation policy aiming at the renewal of mature industries. The
authors show, for the case of the forest industry in North Sweden, that regional
innovation policy can accompany the process of regional diversification by support-
ing the adoption and creation of related technologies. Our study complements this
approach by focusing on a particular policy, namely, R&D subsidies and their effects
on regional diversification.

2.2.2 Regional diversification and relatedness

Regional diversification is in the focus of contemporary innovation policy. For in-
stance, the EU’s Smart Specialization strategy aims at fostering (technological)
diversification around regions’ core activities (Foray et al. 2011). Thereby, policy
seeks to exploit the benefits associated with diversification. For instance, diversifica-
tion positively relates to the level of income, allowing regions to climb the ladder of
economic development (Imbs and Wacziarg 2003). Diversified regions are, moreover,
less likely to run into the trap of cognitive lock-ins (Grabher 1993) and are less prone
to suffer from exogenous shocks because of portfolio effects (Frenken et al. 2007).
Regional R&D competences in multiple fields also give rise to synergies increasing
the exploitation and experimentation of technological opportunities (Foray et al.
2011).

A large stream of literature increasingly devotes its research to the path-
dependent feature of regional diversification expressed by the crucial role of related-
ness (Hidalgo et al. 2007; Boschma and Frenken 2011; Neffke et al. 2011; Hidalgo et
al. 2018). Concepts such as related diversification and regional branching (Boschma
and Frenken 2011) highlight that regional diversification is not a random process
but that existing capabilities influence the development of future capabilities. The
so-called "principle of relatedness" (Hidalgo et al. 2018) is not only working at the
individual level of firms (Teece et al. 1994; Breschi et al. 2003) but shows its im-
portance at different spatial scales. For example, Hidalgo et al. (2007) show that
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nations are more likely to diversify into new export products that are related to
their existing product portfolio. Neffke et al. (2011) transferred this approach to
the regional level. By relying on information about products of Swedish manufac-
turing firms, they show that new industries do not emerge randomly across space.
Rather, they are more likely to emerge in regions where related capabilities already
exist. Essletzbichler (2015) confirms this finding for industrial diversification in US
metropolitan areas. Similar results are obtained by Boschma et al. (2013) for the ex-
port profile of Spanish regions. By comparing the impact of relatedness for different
spatial levels, the authors also show related industries to play a more crucial role at
the regional compared to the national level. (Rigby 2015) and (Boschma et al. 2015)
analyze regional diversification in US metropolitan areas. Both find that technology
entries are positively, and exits are negatively, correlated with their relatedness to
regions’ technology portfolios.

The ample empirical evidence for related diversification being the norm rather
than the exception reveals the dominant role of path dependency in diversification
processes. By building on related capabilities, economic actors follow existing tech-
nological trajectories, rely on established routines, and build on familiar knowledge
(Nelson and Winter 1982; Dosi 1988). Building on existing capabilities rather than
exploring completely new ones reduces uncertainties and risks while increasing the
likelihood of successful diversification.

The path dependency in regional diversification certainly has substantial ad-
vantages. For instance, regions can specialize and build competitive advantages
in certain activities providing them with important growth opportunities (Martin
and Sunley 2006; Boschma and Frenken 2006). The continuous specialization of
the Silicon Valley into information and communication technologies is a prominent
example of successful related diversification along a promising path (Storper et al.
2015). Nevertheless, related diversification can also lead to regional lock-ins by fol-
lowing mature paths with little future prospects, such as in the German Ruhr-Area
(Grabher 1993). Diversification into unrelated activities can prevent such lock-ins
by broadening the set of regional capabilities. In addition, it increases regional
resilience toward external shocks (Frenken et al. 2007). Yet unrelated diversifica-
tion requires the exploration of new knowledge, which is uncertain, risky, and less
promising.

2.2.3 R&D subsidies and regional diversification

Can project-based R&D subsidies impact regional diversification? If so, how?
Firstly, diversification requires organizations to leave existing routines by exploring
new activities involving novel (at least to the organization) knowledge and tech-
nologies. It further implies less foresight on potential outcomes and lower abilities
to plan R&D processes as well as commercialization possibilities. Existing routines
are less helpful in designing financial plans, selecting appropriate suppliers, or buy-
ing needed equipment. Consequently, diversification-oriented R&D can be expected
to represent a risky and uncertain undertaking. Economic actors therefore show a
tendency to avoid diversification into completely new activities. As subsidization
is more strongly utilized for riskier projects (Fier et al. 2006), we argue that or-
ganizations are highly likely to make use of subsidization for (risky) diversification
activities.
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Secondly, the effects of project-based R&D subsidies unfold beyond the individual
firm (Broekel 2015; Maggioni et al. 2014). Organizations are embedded into regional
economies through labor mobility, collaboration, social networks, input-output link-
ages, and other types of interactions. This is highlighted in various approaches,
including regional innovation systems, learning regions, and clusters (Cooke 1998;
Florida 1995; Porter 2000). Accordingly, knowledge and competences that are ac-
quired in subsidized projects are more likely to be picked up and utilized by other
regional actors. In this sense, R&D subsidies present a resource inflow into the re-
gion’s innovation system, which supports its general innovation activities, including
those oriented toward diversification.

Thirdly, regional diversification frequently takes place through spin-off and start-
up processes (Boschma and Wenting 2007; Boschma and Frenken 2011). At the
same time, spin-offs in particular have been identified as frequent and above-average
recipients of R&D subsidies (Cantner and Kösters 2012). The added value of the
support thereby exceeds what has been discussed above. (Fier et al. 2006) identify
subsidies to support university spin-outs by adding credibility and strengthening
public relations. Under the assumption that there is no discrimination against spin-
offs active in technologies new to a region, R&D subsidies thereby directly support
regional diversification.

Fourthly, many R&D subsidization initiatives seek to advance particular tech-
nologies (e.g., biotechnology). Announcing such initiatives signals to economic ac-
tors that these technologies are (at least in the eyes of policymakers) promising and
may offer economic potential. If effective, this is likely to stimulate actors to expand
already-existing activities in these technologies or diversify into these activities.

In sum, R&D subsidies encourage riskier research, expand R&D resources, and
exert particular benefits for spin-offs as well as spin-outs. In turn, all these contribute
to regional diversification. Notably, the discussed effects are largely independent of
the policy being designed to support diversification. Naturally, such diversification-
enhancing effects are amplified when R&D subsidization policies aim to support
diversification, as was the case in the BioRegio contest (Dohse 2000).

On this basis, we further argue that subsidies do not equally impact all diversi-
fication processes. We particularly expect them to matter more for regions diversi-
fying along existing technological trajectories (related diversification). The primary
reason for this is that the subsidies are more likely to be received by projects building
on existing regional competences. Innovation policy does not allocate R&D subsi-
dies randomly. Applications need to pass a review process, which usually aims at
selecting those with the highest chances of being successful (Aubert et al. 2011).
This applies to applications with applicants’ competences meeting those necessary
for the successful completion of projects. In addition, organizations usually require
technological expertise, prior experiences, infrastructure, and matching qualifica-
tions to write convincing applications. Such is more likely given when organizations
are active in similar or related activities (Blanes and Busom 2004; Aschhoff 2008).

This is not restricted to the organizational level. For instance, (Broekel et al.
2015b) show that even when controlling for organizational characteristics, being
located in a regional cluster (of related activities) increases the chances of receiving
R&D subsidies (at least in the case of EU-FRP). One of the reasons for this is that
organizations located within clusters "are more likely to learn about subsidization
programs, which is probable to translate into higher application rates" (Broekel et



Relatedness 21

al. 2015b, p. 1433). It seems reasonable to assume that this especially applies
to policy initiatives related to activities of the organizations within the cluster.
Consequently, we expect that R&D policy plays a role in the path dependency in
regional diversification by preferentially allocating public resources to related, rather
than to unrelated, capabilities in regions. Our first hypothesis reads as follows:

H1a: Project-based subsidization of R&D positively influences technological diversi-
fication in regions.

H1b: Project-based subsidization of R&D is more likely to to contribute to related
diversification.

While these arguments refer to R&D subsidies in general, we argue that the in-
fluence of R&D policy depends on its specific mode. Previous research has shown
that the effects of R&D subsidization differ between subsidies granted to individual-
and joint-research projects (Broekel and Graf 2012; Broekel 2015). In contrast to
subsidies for individual projects, supporting joint R&D projects has a greater poten-
tial for stimulating the exploration of new knowledge and activities, as these require
organizations to collaborate. Consequently, such support is likely to alter organi-
zations’ and regions’ embeddedness into intra-regional and inter-regional knowledge
networks (Fier et al. 2006; Wanzenböck et al. 2013; Broekel 2015; Töpfer et al. 2017).
For instance, (Broekel et al. 2017) measure the technological similarity of partners
in subsidized projects and find these to be rather heterogeneous. Firms are also
shown to particularly add science organizations to their portfolio of collaboration
partners when participating in subsidized R&D projects (Fier et al. 2006).

The utilization of subsidies to explore new knowledge is further highlighted by
the location of collaboration partners. In Germany, only 12% of collaborations estab-
lished by joint projects subsidized by the federal government connect partners within
the same region (Broekel and Mueller 2018). In the case of the EU-FRP for biotech-
nology, this figure is as small as one percent (Broekel et al. 2015b). Accordingly,
project-based subsidies are frequently employed to establish or strengthen relations
with dissimilar actors from different regions, which is crucial and typical for diversi-
fication activities (Hagedoorn 1993; Boschma and Frenken 2011; Oort et al. 2015).
We therefore expect subsidies for joint (collaborative) research to have stronger ef-
fects than individual grants, due to their impact on collaboration and knowledge
networks. As collaborative R&D subsidies facilitate knowledge exchange between
new and heterogeneous actors, we particularly expect joint-research projects to in-
crease the likelihood of unrelated diversification in regions. Our second hypothesis
summarizes these arguments as follows:

H2a: Subsidized joint R&D projects contribute to a larger extent to technological
diversification in regions than do individual R&D projects.

H2b: Subsidized joint R&D projects facilitate regional diversification into unrelated
activities.
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2.3 Data and methods

2.3.1 Measuring regional diversification

To study the relationship between R&D subsidies and regional diversification, we
focus on 141 German labor-market regions (LMR), as defined by Kosfeld and Werner
(2012). Moreover, our data cover the years from 1991 to 2010. In a common
manner, we use patent data to approximate technological activities (Boschma et al.
2015; Rigby 2015; Balland et al. 2019). Despite well-discussed drawbacks (Griliches
1990; Cohen et al. 2000), patents entail detailed information about the invention
process, such as the date, location, and technology, all of which are fundamental for
our empirical analysis. We extract patent information from the OECD REGPAT
Database, which covers patent applications at the European Patent Office (EPO).
Based on inventors’ residences, we assign patents to the corresponding LMR. For
smaller regions in particular, annual patent counts are known to fluctuate, strongly
challenging robust estimations. We therefore aggregate our data into four 5-year
periods (1991-1995, 1996-2000, 2001-2005, 2006-2010).

Technologies are classified according to the International Patent Classification
(IPC). The IPC summarizes hierarchically eight classes at the highest and more
than 71,000 classes at the lowest level. We aggregate the data to the four-digit IPC
level, which differentiates between 630 distinct technology classes. The four-digit
level represents the best trade-off between a maximum number of technologies and
sufficiently large patent counts in each of these classes.

Previous studies relied on the location quotient (LQ), also called reveal tech-
nological advantage (RTA), to identify diversification processes. For example, LQ
values larger than one signal the existence of technological competences in a region,
and values below signal their absence. Successful diversification is then identified
when the LQ grows from below one to above one between two periods (Boschma
et al. 2015; Rigby 2015; Cortinovis et al. 2017; Balland et al. 2019). We refrain from
this approach for two important reasons. Firstly, being a relative measure, the LQ
approach allows technologies to "artificially" emerge in regions simply by decreasing
patent numbers in other regions. Secondly, the LQ is normalized at the regional and
technology levels, which can interfere with the inclusion of regional and technology
fixed effects in panel regressions.

We therefore rely on an alternative and more direct approach to assess diversifi-
cation processes by concentrating on absolute changes in regional patent numbers.
More precisely, we create the binary dependent variable Entry with a value of 1
if we do not observe any patents in technology k in region r and period t, and a
positive value in the subsequent period t + 1. We intensively checked the data for
random fluctuations between subsequent periods, which can inflate the number of
observed entries. The aggregation of regional patent information into 5-year periods,
however, eliminated such cases almost completely.

2.3.2 Information on R&D subsidies

Our main explanatory variable, Subsidies, represents the sum of R&D projects
in technology class k and region r at time t. The so-called Foerderkatalog of the
German Federal Ministry of Education and Research (BMBF) serves as our data
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source. The BMBF data cover the largest parts of project-based R&D support at
the national level in Germany (Czarnitzki et al. 2007; Broekel and Graf 2012) and
have been used in a number of previous studies (Broekel and Graf 2012; Broekel et
al. 2015a; Broekel et al. 2015b; Cantner and Kösters 2012; Fornahl et al. 2011). The
data provide detailed information on granted individual and joint R&D projects,
such as the starting and ending dates, the location of the executing organization,
and a technological classification called Leistungsplansystematik (LPS).

The LPS is a classification scheme developed by the BMBF and consists of 47
main classes. The main classes are, similarly to the IPC, disaggregated into more
fine-grained subclasses, which comprise 1,395 unique classes at the most detailed
level. To create the variable Subsidies, we need to match the information on R&D
subsidies with the patent data. Both are based on different classification schemes
(IPC and LPS), which prevents a direct matching. Moreover, there is no existing
concordance of the two classifications.

We therefore develop such a concordance. For this, we reduce the information
contained in the Foerderkatalog by excluding classes that are irrelevant for patent-
based innovation activities. This primarily refers to subsidies in the fields of social
sciences, general support for higher education, gender support, and labor conditions.
Next, we utilize a matched-patent-subsidies-firm database created by the Halle In-
stitute of Economic Research. This database includes 325,497 patent applications
by 5,398 German applicants between 1999 and 2017. It also contains information
on 64,156 grants of the Foerderkatalog with 10,624 uniquely identified beneficiaries.
In this case, beneficiaries represent so-called executive units ("Ausführende Stelle")
(see Broekel and Graf 2012).

In this database, grant beneficiaries and patent applicants are linked by name-
matching. Hence, the IPC classes of their patents can be linked to the LPS classes
of their grants. In principle, this information allows for a matching of the most
fine-grained level of the IPC and LPS. In this case, however, the majority of links
are established by a single incidence of IPC classes coinciding with LPS classes, i.e.,
there is only one organization with a patent in IPC class k and a grant in LPS class
l. Moreover, the concordance is characterized by an excessive number of zeros, as
only few matches of the 71, 000 (IPC) ∗ 1, 395 (LPS) cases are realized.

To render the concordance more robust, we therefore establish the link on a more
aggregated level, which also makes the concordance correspond to the data employed
in this study. More precisely, we aggregate the IPC classes to the four-digit level
and the LPC to the 47 main classes defined in (BMBF 2014). It is important to
note that, not all LPS main classes are relevant for patent-based innovation (e.g.,
arts and humanities). We eliminate such classes and eventually obtain 30 LPS main
classes that are matched to 617 out of 630 empirically observed IPC classes. For
these, we calculate the share of organizations Sl,k with grants in LPS l that also
patent in IPC k:

Sl,k =
nl,k∑Xl

x=1 nx
(2.1)

with nl,k being the number of organizations with at least one patent in k and grant in
l. Xl is the total number of organizations with grants in l. On this basis, we calculate
the number of subsidized projects, Subsidiesl,k, assigned to region r and technology
k by multiplying the number of grants in l acquired by regional organizations with
patents in k with Sl,k.
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Following the discussion in Section 2.2, we calculate Subsidies in three ver-
sions: on the basis of all subsidized projects (Subsidies), for individual projects
(SubsidiesSingle), and considering only joint projects (SubsidiesJoint).

2.3.3 Relatedness density

Our second most important explanatory variable is relatedness. We follow the liter-
ature in constructing this variable as a density measure (Hidalgo et al. 2007; Rigby
2015; Boschma et al. 2015). More precisely, relatedness density reveals how well
technologies fit to the regional technology landscape. It is constructed in two steps.

Firstly, we measure technological relatedness between each pair of technologies.
The literature suggests four major approaches: (i) entropy-based (Frenken et al.
2007), (ii) input-output linkages (Essletzbichler 2015), (iii) spatial co-occurrence (Hi-
dalgo et al. 2007), and (iv) co-classification (Engelsman and Raan 1994). We follow
the fourth approach and calculate technological relatedness between two technologies
(four-digit patent classes) based on their co-classification pattern (co-occurrence of
patent classes on patents). The cosine similarity gives us a measure of technological
relatedness between each technology pair (Breschi et al. 2003).

Secondly, we determine which technologies belong to regions’ technology portfo-
lios at a given time. Straightforwardly, we use patent counts with positive numbers
indicating the presence of a technology in a region. Following Hidalgo et al. (2007),
we measure relatedness density on this basis as:

Densityk,r =

∑
m xm ρk,m∑
m ρk,m

∗ 100 (2.2)

where Density stands for relatedness density. ρ indicates the technological related-
ness between technology k and m, while xm is equal to 1 if technology m is part of
the regional portfolio (Patents > 0) and 0 otherwise (Patents = 0). Consequently,
we obtain a 141 x 630 matrix including the relatedness density for each of the 630
IPC classes in all 141 LMRs indicating their respective relatedness to the existing
technology portfolio of regions.

2.3.4 Control variables

In addition to R&D subsidies and relatedness density, the empirical literature
has identified a number of other determinants of regional technological diversifi-
cation. Firstly, knowledge spillover from adjacent regions can potentially impact
regional diversification processes (Boschma et al. 2013). We account for these po-
tential spatial spillovers and include technological activities in neighboring regions
(Neighbor Patents) as a spatially lagged variable. The variable counts the number
of patents in technology k of all neighboring regions s of region r. Regions s and r
are neighbors if they share a common border.

Hidalgo et al. (2007) demonstrate that diverse regions with larger sets of capa-
bilities have more opportunities to move into new fields than regions with narrow
sets. The regional diversity (Diversity) variable detects this. It is defined as the
number of technologies with positive patent counts in a region.

We also consider the number of regional patents (Regional Patentsi) to control
for the size of the regional patent stock. Lastly, the size of technologies is controlled
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for by considering the number of patents in a given technology (Technology Sizek).
Descriptive statistics and correlations for all variables are reported in Table 2.1.

Table 2.1: Summary statistics and correlation matrix

Variables Min Max Mean SD (1) (2) (3) (4) (5) (6) (7) (8)

1 Entry 0 1 0.13 0.33
2 Subsidies 0 7.89 0.08 0.21 0.31
3 SubsidiesSingle 0 7.03 0.05 0.16 0.28 0.97
4 SubsidiesJoint 0 2.30 0.03 0.07 0.29 0.86 0.72
5 Density 0 100 8.55 16.14 0.15 0.13 0.06 0.27
6 Neighbor Patents 0 419.66 2.64 8.96 0.19 0.03 0.01 0.09 0.14
7 Regional Patents 0 13, 144.90 451.05 952.56 0.11 0.12 0.03 0.28 0.56 0.05
8 Diversity 0 469 77.04 86.10 0.15 0.14 0.05 0.31 0.64 0.11 0.83
9 Technology Size 0 5, 829.40 93.24 229.64 0.15 0.07 0.03 0.15 0.07 0.54 -0.02 0.02

All correlations are significant with p < 0.001

2.3.5 Empirical model

We follow an established approach in the literature on regional diversification to set
up our empirical model (Boschma et al. 2015; Balland et al. 2019). More precisely,
we rely on panel regressions to explain the status of technological diversification in
a region. Our basic model is specified as follows:

Entryk,r,t = β1Subsidiesk,r,t−1+β2Densityk,r,t−1+Xk,r,t−1+τk+πr+ωt+εk,r,t (2.3)

Entry indicates the status of diversification into technology k of region r at time t.
Accordingly, all estimations are based at the region-technology level. Subsidies sum-
marizes the number of subsidized R&D projects. In alternative models, it is replaced
with the number of individual (SubsidiesSingle) and joint projects (SubsidiesJoint).
Density is the relatedness density, and X is the vector of control variables. All
estimations include technology (τ), region (π), and time (ω) fixed effects captur-
ing time-invariant, unobserved, heterogeneity. We assume a time delay with which
our dependent variable responds to variation in the explanatory variables. R&D
subsidies, for example, are unlikely to cause immediate effects visible in innovation
activities as approximated by patents. Rather, they unfold their influence in sub-
sequent years. Consequently, we lag the explanatory variables by one time period,
which corresponds to 5 years.

As Entry is a binary variable, a logit regression is applicable. Nevertheless, logit
regressions with many fixed effects and few time periods can lead to the prominent
incidental parameters problem causing biased results (Neyman and Scott 1948).
Therefore, we rather rely on a linear probability model (LPM) to assess the prob-
ability that technology k emerges in region r. We nevertheless, report the results
of the three-way fixed effects logit regression in our robustness checks (see table 2.7
in Appendix section 2.A). An entry model implies restricting the observations to
those cases in which an entry is possible. Accordingly, we reduce the sample to all
potential cases of entry, which corresponds to technology k being absent from the
regional technology portfolio in t− 1 (zero patents).
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Figure 2.1: Distribution of A R&D subsidies and B percentage of entries across IPC
subclasses between 2006 and 2010. Colors indicate the eight IPC main sections. The
dashed horizontal lines represent the sample mean.
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2.4 Results

2.4.1 The allocation of R&D subsidies

We start with the exploration of R&D subsidies’ allocation. Panel A in figure 2.1 re-
veals the distribution of R&D subsidies across the 630 IPC subclasses between 2006
and 2010. The colors indicate the eight main sections of the IPC. Panel A shows that
subsidies are not widely scattered across all main sections but rather concentrate in
specific domains. A large portion of subsidies flows into technologies belonging to
physics, chemistry, electricity, and human necessities. In contrast, textiles, mechan-
ical engineering, and construction technologies receive considerably less subsidies.
IPC subclasses, such as G01N (Investigating or Analysing Material), H01L (Semi-
conductors), A61K (Preparation for Medical Purposes), and C12N (Microorganisms
and Genetic engineering) are among the most strongly subsidized technologies.

Panel B of Figure 2.1 shows how frequently technologies emerge in regions.
Larger entry numbers indicate that many regions diversified into the according tech-
nologies. This reflects the spatial diffusion of these technologies within Germany.
Entry numbers vary considerably between technologies, with each IPC subsection
being characterized by low- and high-entry technologies. The visual inspection of
Figure 2.1 reveals that subsidies are not necessarily allocated to technologies with
the highest numbers of entries. For example, technologies in mechanical engineering
and fixed construction show large numbers of entries and receive comparatively few
subsidies. In other cases, there seems to be some alignment. For instance, the top
four technologies with the highest entry numbers (F24J = Production of use of heat,
C10L = Fuels, F03D = Wind motors, and E21B = Earth and rock drilling) represent
technological fields related to renewable energy production or energy usage. Renew-
able energies have become very popular in Germany and are still strongly subsidized
to support the transition from fossil energy sources to renewables (Jacobsson and
Lauber 2006). This is also reflected in our data, as in this case, subsidization seems
to correspond to technological entry.

Another interesting aspect to look at is the relationship between subsidy alloca-
tion and relatedness density. Figure 2.2 visualizes relatedness density differentiated
by subsidized and non-subsidized projects over all four time periods (panel A to D).
It is striking that relatedness density substantially differs between subsidized and
non-subsidized technologies. Subsidized technologies are on average characterized
by higher relatedness densities than the non-subsidized ones. Notably, this differ-
ence has grown over time. This suggests that R&D policy is increasingly subsidizing
related technologies in regions.

We expand the visual inspection of the relationship between subsidy allocation
and relatedness density with a linear panel regression. Subsidies (and its disag-
gregation into SubsidiesSingle and SubsidiesJoint ) serves as the dependent variable
and Density as the main explanatory variable. Fixed effects and additional control
variables capture potential confounders. Table 2.2 reports the results. They clearly
support the previous visual interpretation. Technologies in regions are more likely
to receive R&D subsidies when they are related to existing regional capabilities.

In sum, the results for the allocation of subsidies in Germany suggest that
contemporary project-based R&D subsidization has a tendency to support path-
dependent, related diversification in regions.
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Figure 2.2: Relationship between relatedness density and R&D subsidies in different
time periods with A 1991-1995, B 1996-2000, C 2001-2005, and D 2006-2010.
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Table 2.2: Regression results for the allocation of subsidies

Y = Subsidies

Subsidies SubsidiesSingle SubsidiesJoint

(1a) (1b) (1c)

Density 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0002) (0.0001) (0.0001)

Neighbor Patents −0.0004 −0.0002∗ −0.0002
(0.0002) (0.0001) (0.0002)

Regional Patents −0.00003∗∗∗ −0.00003∗∗∗ −0.00001∗
(0.00000) (0.00000) (0.00000)

Diversity −0.0003∗∗ −0.0004∗∗∗ 0.00005
(0.0001) (0.0001) (0.00004)

Technology Size −0.0001∗∗∗ −0.0001∗∗∗ 0.00000
(0.00003) (0.00002) (0.00001)

Time FE Yes Yes Yes
Region FE Yes Yes Yes
Technology FE Yes Yes Yes
Observations 280,392 280,392 280,392
Adjusted R2 0.471 0.424 0.475

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors were clustered at the regional and technology level.

2.4.2 The relationship between R&D subsidies and techno-
logical diversification in regions

The link between R&D subsidies and technological diversification in regions is at
the center of the present paper. Figure 2.3 maps entry rates1(panel A), the average
relatedness density (panel B), the spatial allocation of R&D subsidies (panel C),
and the number of patents (panel D) across the 141 German regions. The maps
highlight a number of interesting spatial patterns. Firstly, entry rates tend to be
larger in regions with higher patenting activities. For example, South Germany,
with Munich and Stuttgart as innovative regions, is characterized by particularly
high entry rates. Similar patterns are also observed for the West of Germany with
Cologne and North Germany with Hamburg and Hanover as centers of innovation
and technological entries. Nevertheless, some regions experience high entry rates
while being only moderately successful in patenting (e.g., Chemnitz and Dresden in
Saxony).

Secondly, higher entry rates seem to strongly correlate with the average related-
ness density in regions. That is, regions characterized by higher relatedness densities

1Entry rates correspond to the number of realized entries divided by the number of potential
entries.
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Figure 2.3: A Entry rates, i.e., realized entries divided by possible entries, B average
relatedness density of realized entries, C number of subsidized R&D projects, and
D number of patents in German LMRs between 2006-2010.

also realize a larger share of their entries. This visual observation corresponds to the
ample empirical evidence that related activities are more likely to emerge in regions
than unrelated activities (Neffke et al. 2011; Boschma et al. 2013; Boschma et al.
2015; Rigby 2015; Balland et al. 2019).

Thirdly, regions with lower patenting activities and lower entry rates (e.g., North-
Eastern regions) receive more R&D subsidies than innovative regions with higher
entry rates. More precisely, 9 out of the top 10, and 12 of the top 20 regions with
the most subsidized R&D projects are located in the North and East of Germany.
Accordingly, the allocation of R&D subsidies seems to follow a convergence strategy
by favoring regions with fewer technological activities.

Our central results of the regression analysis linking subsidies to entries are re-
ported in Table 2.3. Regarding the control variables (see Model 2d, 2e, and 2f),
we find patenting activities in neighboring regions (Neighbor Patents) to be pos-
itively associated with regional technological diversification, which is indicated by
the significantly positive coefficients for this variable in all models. Accordingly,
being in spatial proximity to regions already successful in a particular technology,
renders diversification into this technology more likely. The positive link between
activities in neighboring regions and regional diversification supports the idea of
spatial knowledge spillovers, which are intensified by geographic proximity (Jaffe
et al. 1993).

In addition, our models suggest that entries are less likely to occur in regions with
large knowledge stocks. The corresponding coefficient of Regional Patents is signif-
icantly negative. Most likely, this is the outcome of a level effect: regions with strong
inventive activities are already well diversified and successful and, hence, there are
fewer opportunities for further diversification (see for example, Imbs and Wacziarg
2003). A similar argument applies to the size of technologies, Technology Size. Its
coefficient is significantly negative, indicating that large technologies are less likely
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to emerge in regions. This is likely driven by large technologies already being well
diffused in space and, hence, they have fewer (remaining) opportunities to emerge.
Diversity remains insignificant, which is most likely due to its effect being captured
by Regional Patents or by the fixed effects.

Table 2.3: Regression results of linear probability model for entries

Y = Entry

(2a) (2b) (2c) (2d) (2e) (2f)

Subsidies 0.288∗∗∗ 0.288∗∗∗ 0.284∗∗∗ 0.274∗∗∗
(0.030) (0.030) (0.030) (0.028)

Density 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Neighbor Patents 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗
(0.001) (0.0005) (0.0005)

Diversity −0.0001 −0.0001 −0.0001
(0.0001) (0.0001) (0.0001)

Regional Patents −0.00003∗∗∗ −0.00001∗∗ −0.00001∗∗
(0.00001) (0.00000) (0.00000)

Technology Size −0.0001∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗
(0.00002) (0.00002) (0.00002)

Subsidies x Density 0.001
(0.001)

Time FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Observations 273,825 288,543 273,825 288,543 273,825 273,825
Adjusted R2 0.212 0.192 0.213 0.202 0.222 0.222

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors were clustered at the regional and technology level.

In all models, relatedness density is significantly positive. Technologies are more
likely to emerge in regions that are related to existing regional capabilities, which
confirms the path dependency of regional diversification and the idea of regional
branching. Hence, our results confirm the numerous empirical studies on this matter
(Boschma et al. 2013; Boschma et al. 2015; Rigby 2015; Balland et al. 2019).

We now turn toward the heart of our analysis. Subsidies is included into the
base Model 2b without any additional variables. Its coefficient becomes signifi-
cantly positive. The variable remains significant when including relatedness density
(Model 1c) and further control variables (Model 1e). Accordingly, we confirm our
hypothesis H1a, as the relationship between subsidized R&D projects and regional
diversification is positive.

To approach our hypothesis H1b regarding a potential interplay between sub-
sidies and relatedness, we included an interaction term of Density and Subsidies
in Model 2f. Nevertheless, the corresponding coefficient remains insignificant. Ac-
cordingly, entries are not more likely to occur when the underlying technologies are
related to the regional technology portfolio and receive R&D subsidies. Based on
this finding, we reject our hypothesis H1b.
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Besides the significance of the coefficient, it is usually also interesting to discuss
the effect strength. Our matching of subsidies to patent data has severe implica-
tions for the interpretation of effect sizes of Subsidies, however. Most subsidized
R&D projects are allocated (i.e., divided) to multiple technologies (IPC subclasses).
This results in a fractional counting of projects, such that for each observation
(technology-region combination), the absolute numbers of assigned projects do not
reflect full projects but rather the corresponding shares of a project assigned to
this technology by the matching procedure presented in Section 2.3.2. Accordingly,
the obtained coefficient of Subsidies does not correspond to full projects but to
fractionally allocated project numbers. With this in mind, we suggest the follow-
ing interpretation: Increasing the numbers of fractionally allocated subsidized R&D
projects by 0.012 will increase the probability of entries by approximately 0.35%.2.
Accordingly, subsidies’ effects appear to be relatively small.

We hypothesized that subsidies for single and joint projects are likely to have
distinct effects on regional diversification (H2a). Table 2.4 reports the corresponding
results of this differentiation. We include both subsidy types in different models.
The results are robust throughout all specifications (Models 3a to 3f).

We observe substantial differences between the two subsidy variables. Both vari-
ables’ coefficients are significantly positive, which confirms the previously identified
positive relation of subsidies and diversification. In line with previous studies (For-
nahl et al. 2011; Broekel et al. 2015a), however, the coefficient of SubsidiesJoint
[lower bound = 0.69, upper bound = 1.06], as reported in Model 3b, is significantly
larger than SubsidiesSingle [lower bound = 0.2, upper bound = 0.40], as reported
in Model 3a. This suggests that subsidies for joint R&D projects increase the like-
lihood of entries to a larger extent than do subsidies for individual projects, which
confirms our hypothesis H2a. Expanding the numbers of joint projects by the av-
erage change between two consecutive time periods of 0.015 increases the entry
probability by approximately 1.31%3. We also test for potential interaction effects
of the differentiated versions of subsidies and relatedness to investigate hypothe-
sis H2b. Interestingly, and in contrast to the findings for all subsidies, we find a
significantly negative coefficient for the interaction of SubsidiesJoint and Density.
This finding suggests that subsidizing joint projects can compensate for a lack of
relatedness to some extent.

We investigate the interaction of Subsidies and Density in more detail by group-
ing our observations into three sub-samples. The sub-samples represent different
parts of the distribution of relatedness density values, namely, low, mid, and higher
relatedness values4. Models 4a and 4b in Table 2.5 report the results for the sub-
sample with low relatedness density. Density is found to be insignificant, while

2Increasing the average numbers of subsidized projects in a technology and region by one unit
(the standard way of interpretation) equals an increase of about 91% in the numbers of projects.
Due to the fractionally allocated project numbers, this is, however incorrect. Rather, the coefficient
of Subsidies in Model 2b (0.288) and the average change of subsidized projects between t and t−1
in our entry sample, which equals 0.012, correspond to the following effect sizes: 0.012∗0.288∗100 =
0.35%.

30.015 (average change in number of joint projects) * 0.875 (coefficient of SubsidiesJoint in
Model 3b) * 100.

4The three groups are defined by observations belonging to the 5-25% lowest relatedness density
values (low), to the highest 75-95% (high), and those falling in between, i.e., 40-60% of relatedness
density values (mid).



Relatedness 33

Table 2.4: Regression results of linear probability model for entries and subsidies
for individual and joint projects

Y = Entry

(3a) (3b) (3c) (3d) (3e) (3f)

SubsidiesSingle 0.333∗∗∗ 0.169∗∗∗ 0.151∗∗∗ 0.316∗∗∗
(0.035) (0.033) (0.036) (0.032)

SubsidiesJoint 0.875∗∗∗ 0.630∗∗∗ 0.642∗∗∗ 0.957∗∗∗
(0.094) (0.088) (0.086) (0.122)

Density 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0001) (0.0001) (0.0001)

Neighbor Patents 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗
(0.0005) (0.0005) (0.0005)

Diversity −0.0002∗∗ −0.00004 −0.0003∗∗∗
(0.0001) (0.0001) (0.0001)

Regional Patents −0.00002∗∗∗ −0.00001∗∗ −0.00002∗∗∗
(0.00000) (0.00000) (0.00000)

Technology Size −0.0001∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗
(0.00002) (0.00002) (0.00002)

SubsidiesSingle x Density 0.001
(0.001)

SubsidiesJoint x Density −0.003∗
(0.002)

Time FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Observations 273,825 273,825 273,825 273,825 273,825 273,825
Adjusted R2 0.207 0.211 0.214 0.224 0.218 0.222

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors were clustered at the regional and technology level.
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the estimated coefficient of Subsidies is significantly positive. Again, our results
suggest that it is important to consider the subsidy mode, as SubsidiesSingle [lower
bound = -0.068, upper bound = 0.161] is insignificant and SubsidiesJoint [lower
bound = 0.111, upper bound = 0.897] is significantly positive. This suggests that
R&D subsidies for collaborative projects can compensate for missing relatedness, as
there are no instances of high density in this sample and, hence, they cannot drive
entry probabilities. The results change for larger relatedness values. Now Density
becomes significant as well, while the coefficient of SubsidiesJoint [lower bound =
0.234, upper bound = 0.512] decreases in size (Model 4f). Accordingly, these re-
sults confirm our hypothesis H2b: Subsidies for joint projects are able to facilitate
unrelated diversification, while this is not the case for subsidized individual projects.

Table 2.5: Regression results of linear probability model for three different levels of
relatedness density

Y = Entry

Low Low Mid Mid High High

(4a) (4b) (4c) (4d) (4e) (4f)

Subsidies 0.146∗∗∗ 0.133∗∗∗ 0.132∗∗∗
(0.025) (0.030) (0.024)

SubsidiesSingle 0.047 0.043 0.069
(0.059) (0.038) (0.037)

SubsidiesJoint 0.504∗ 0.449∗∗∗ 0.373∗∗∗
(0.201) (0.078) (0.071)

Density −0.0001 −0.0002 0.002∗ 0.003∗ 0.002∗∗∗ 0.002∗∗∗
(0.002) (0.002) (0.001) (0.001) (0.0003) (0.0003)

Neighbor Patents 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Regional Patents −0.00002 −0.00001 −0.00001 −0.00001 −0.00001∗ −0.00001∗∗
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Diversity −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.0005∗∗ −0.001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Technology Size −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗
(0.00004) (0.00004) (0.00003) (0.00003) (0.00003) (0.00003)

Time FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Observations 25,394 25,115 25,466 25,240 26,109 26,041
Adjusted R2 0.218 0.221 0.226 0.229 0.250 0.252

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors were clustered at the regional and technology level.

2.4.3 Robustness analyses

When evaluating the effects of R&D subsidies on regional diversification, endogeneity
of subsidies represents a crucial concern. In our case, endogeneity can occur if
technology entries in regions impact subsidy allocation. The use of time lags of
5 years implies that technology entries would need to influence the allocation of
subsidies to that same technology in the region 5 years before (when it was not
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existent there). While this is a highly unlikely scenario, there might be effects at
work that operate over long time periods.

Another reason for endogeneity to arise in our context is the non-random se-
lection of recipients (Busom 2000; David et al. 2000; Aubert et al. 2011). R&D
policy is more likely to reward projects with higher likelihoods of success. Such
is probable when recipients have been successful in acquiring projects in previous
periods. For instance, subsidy recipients could have accomplished entries of tech-
nologies in regions in previous time periods, which, in turn, positively influenced
the likelihood of receiving grants in subsequent projects in related technologies.
Addressing this endogeneity problem is not straightforward. One possibility is to
apply instrumental variables regressions (IV). Such requires a valid instrument at
the level of technology-region pairs that additionally varies over time, however. We
follow (Koski and Pajarinen 2015) and use the total numbers of subsidized projects
(across all regions) in each technology to instrument the potentially endogenous
subsidy variables at the region-technology level. The underlying rationale is that
an increase in the total numbers of subsidized projects generally increases a specific
regions’ probability to acquire a subsidized project in this technology.

The instrument fulfills the exclusion restriction, as the number of supported
projects at the national level in a specific technology 5 years prior, has no effect on
the entry probability of this technology in a particular region, other than through
their direct allocation to this region. This argumentation would not hold in the
case of individual regions dominating the receiving of subsidies and the entry of
related technologies. Our data clearly show, however, that this is not the case.
Another challenge could be that our dependent variable, Entry, again, has an effect
on the allocation of federal subsidies to technologies 5 years before. We believe
this to be highly unlikely, as the emergence of single technologies in some regions
does not influence the allocation of subsidies by the federal government five years
before. In principle, this concerns influential recipients of R&D grants, such as
large universities, research institutions, and firms. Although these actors receive
most subsidies (Broekel and Brachert 2015), the average share of subsidized projects
received by an individual region of all subsidized projects in one technology is 0.6%
(median share equals 0.22%). Accordingly, the influence of large regional actors on
the general allocation seems to be rather marginal. Consequently, we are confident
that our instrument, the total number of subsidized projects in a technology for
the region-specific numbers, is suitable to address potential endogeneity concerns.
To achieve a closer link to the instrumented variables, we differentiate between
individual (TotalSingle) and joint projects (TotalJoint) in the construction of the
instruments.

The IV regressions emphasize that the distinction between individual and col-
laborative subsidies is fundamentally important. Table 2.6 reports the results of
the first- and second-stage regressions. The first-stage regression confirms that
TotalSingle (Model 5a) and TotalJoint (Model 5c) are positively related to the number
of subsidized projects at the regional level. Nevertheless, the previously observed
(weak) effect of individual projects on entry probably disappears in the second-
stage regression. The coefficient remains positive but is insignificant (p-value =
0.36) (Model 5b). In contrast, the instrumental variable regression in model 5d con-
firms our results for the subsidization of joint projects. The obtained coefficient of
SubsidiesJoint remains significantly positive (p-value = 0.01) in the IV specification.
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Consequently, the IV regressions substantiate our previous finding of a positive effect
of collaborative R&D subsidies on regional technological entry.

Table 2.6: Results of instrumental variables regression

1st Stage 2nd Stage 1st Stage 2nd Stage
(Y = SubsidiesSingle) (Y = Entry) (Y = SubsidiesJoint) (Y = Entry)

(5a) (5b) (5c) (5d)

TotalSingle 0.004∗∗∗
(0.001)

SubsidiesSingle 0.148
(0.161)

TotalJoint 0.001∗∗∗
(0.0004)

SubsidiesJoint 1.031∗∗
(0.400)

Density 0.001∗∗∗ 0.001∗∗∗ 0.0004∗∗∗ 0.001∗∗∗
(0.0001) (0.0002) (0.0001) (0.0002)

Neighbor Patents −0.0004∗∗ 0.004∗∗∗ −0.0002 0.004∗∗∗
(0.0001) (0.0005) (0.0001) (0.0005)

Regional Patents −0.00003∗∗∗ −0.00002∗∗ −0.00001∗ −0.00002∗∗
(0.00000) (0.00001) (0.00000) (0.00001)

Diversity −0.0004∗∗∗ −0.0001 0.0001 −0.0003∗∗∗
(0.0001) (0.0001) (0.00004) (0.0001)

Technology Size −0.0001∗∗∗ −0.0001∗∗ −0.00001∗ −0.0001∗∗∗
(0.00002) (0.00003) (0.00001) (0.00002)

Time FE Yes Yes Yes Yes
Region FE Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes
Observations 273,790 273,790 273,790 273,790
Adjusted R2 0.454 0.214 0.441 0.222

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors were clustered at the regional and technology level.

2.5 Discussion and conclusion

Our study discusses and empirically tests the relationship between project-based
R&D subsidies and regional technological diversification. It thereby contributes to
two literature streams: the assessment of R&D subsidies’ effects and the literature
on regional diversification. Existing studies on the effects of R&D subsidies primar-
ily focus on their general contribution to innovation activities and their potential
stimulation of R&D efforts, efficiency, and outputs. In this study, we argue that
they may also support technological diversification, despite not necessarily being
intended to do so. Accordingly, R&D subsidies may induce additional (positive)
effects that have not yet been considered in existing evaluations. With respect to
the literature on regional diversification, our study adds a crucial perspective that
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remains underdeveloped. While (related) diversification is empirically well investi-
gated (Hidalgo et al. 2007; Rigby 2015; Boschma et al. 2015; Essletzbichler 2015),
little attention has been paid to the role of R&D policy in this context. Although
we are not evaluating contemporary R&D policies’ general support for regional di-
versification, our study draws attention toward potential side effects of other, not
directly diversification-related R&D policies.

We complement our arguments with an empirical study on the technological
diversification of German regions and project-based R&D subsidization of the fed-
eral government. Our empirical results for the allocation of these R&D subsidies
show their allocation tends to be positively biased toward regions offering related
competences. Accordingly, R&D policy seems to be part of the path dependency
in regional diversification, as it manifests related activities. This suggests a rather
risk-averse allocation strategy. As related activities have greater chances of becom-
ing successful than other activities (Neffke et al. 2011; Boschma et al. 2015; Rigby
2015), supporting such minimizes the chances of failure (see discussions in Dohse
(2000), Cantner and Kösters (2012), and Aubert et al. (2011)). Most likely, it is the
competitive character of the allocation process through which this risk aversion is
implemented. When evaluating applications, applicants’ and applications’ quality
are relatively easy to assess and evaluate. Therefore, they are likely to be weighted
more strongly than less "objective" aspects, such as novelty and future development
potentials.

From the perspective of the literature on related variety (Frenken et al. 2007;
Neffke et al. 2011) and the Smart Specialization strategy of the EU (Foray et al.
2011), our findings have to be evaluated as evidence for a positive contribution of
the R&D subsidization policy to regions’ future growth and prosperity. By allocat-
ing subsidies to technologies related to regions’ existing portfolios, R&D subsidies
support the emergence and growth of related variety. This has been argued and em-
pirically shown to stimulate regional (related) technological diversification, which, in
turn, has been confirmed to matter for regions’ long-term economic growth (Frenken
et al. 2007; Neffke et al. 2011; Kogler et al. 2013).

However, our study raises a crucial question rarely discussed in this context:
Should policy, in fact, try to (directly or indirectly) facilitate related diversification?
The regional branching mechanism suggests that related technologies are the most
likely to emerge in regions (Boschma and Frenken 2010). Put differently, is related
diversification truly troubled by market failures justifying policy intervention? In
addition, one may argue that regional branching implies that diversification is a
path-dependent process that eventually leads to a thinning out of regional knowledge
diversity. This in turn makes lock-in scenarios more likely, which are to be avoided
due to their negative impact on growth and future developments.

In contrast, from a market-failure perspective, it can be argued that stimulating
unrelated diversification should be the focus of R&D policy, to break the constraints
of existing path dependencies. Supporting unrelated diversification policy increases
regional knowledge diversity. Through a portfolio effect, diversity will render re-
gions more resilient to external shocks, which is proposed as one of the main goals
of innovation policy (Martin 2012). In addition, regional technological diversity lays
the foundation for unexpected and uncommon knowledge recombination, which fre-
quently forms the basis for breakthrough inventions (Uzzi et al. 2013; Kim et al.
2016).
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In accordance to this perspective, our empirical results do not hint at a multi-
plicative effect of R&D subsidies and relatedness. In contrast, our findings suggest
the existence of a substitutional relationship between relatedness and R&D subsidies
at the regional level. Hence, R&D subsidies contribute to regions diversifying into
unrelated activities to some extent.

In addition, our results reveal the importance of differentiating between subsidies
for individual- and joint-research projects (Broekel 2015). Subsidies for joint R&D
projects exert a much stronger effect on regional technological diversification than
those for individual projects. The difference becomes even more pronounced when
applying instrumental variable regressions. In particular, subsidies for joint R&D
projects are also able to compensate for missing relatedness to some extent. Similar
is not observed for individual R&D subsidies. Most likely, it is their stimulation of
interactions between new and heterogeneous actors from different regions facilitating
inter-organizational learning that explains their advantage in this context. This adds
to existing research showing their higher effectiveness for stimulating innovation
activities in general (Fornahl et al. 2011; Broekel 2015; Broekel et al. 2017). It also
begs the question of why the majority of projects subsidized by the German federal
government do not yet involve inter-organizational collaboration (Broekel and Graf
2012).

Our paper opens a number of avenues for future research. The scope of our
study is limited to technological diversification in regions, approximated by patent
data. Although patent data have their justification and are often used in this context
(Boschma et al. 2015; Rigby 2015; Balland et al. 2019), they also limit our analysis to
technologies that can be patented. It is therefore important to study the link between
subsidies and other forms of diversification to improve our understanding of policy
impact on regional diversification. For instance, this concerns sectoral diversification
measured with information on the occupational composition in regions, representing
a crucial next step for future research.

Additionally, R&D policy still lacks the appropriate tools to identify promising
but underdeveloped technologies and for evaluating the spatial context in which
they (best) evolve. We believe that our paper takes a step in that direction by
showing that regional branching helps in understanding the economic transformation
of regions. Moreover, we provide an empirical set-up for evaluating the role of a
specific policy tool (R&D subsidies) in this context.
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2.A Robustness analyses

Table 2.7: Regression results of logit model for entries

Y = Entry

(6a) (6b) (6c) (6d) (6e) (6f)

Subsidies 1.059∗∗∗ 1.064∗∗∗ 0.969∗∗∗ 0.892∗∗∗
(0.125) (0.124) (0.118) (0.132)

Density 0.008∗∗∗ 0.008∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.010∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.001)

Neighbor Patents 0.015∗∗∗ 0.016∗∗∗ 0.016∗∗∗
(0.002) (0.002) (0.002)

Diversity −0.005∗∗∗ −0.004∗∗∗ −0.004∗∗∗
(0.0005) (0.001) (0.001)

Regional Patents −0.00003 −0.00002 −0.00003
(0.00003) (0.00002) (0.00002)

Technology Size −0.0004∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗
(0.0001) (0.0001) (0.0001)

Subsidies x Density 0.005∗
(0.002)

Time FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Observations 273,825 288,543 273,825 288,543 273,825 273,825

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors were clustered at the regional and technology level.
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Table 2.8: Regression results for specialization (LQ greater 1 as entry threshold)

Y = Entry

(7a) (7b) (7c) (7d) (7e) (7f)

Subsidies −0.013 −0.014∗ −0.016∗ 0.002
(0.007) (0.007) (0.007) (0.012)

Density 0.0002 0.0002∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Neighbor Patents 0.0004∗∗ 0.0004∗∗ 0.0004∗∗
(0.0001) (0.0001) (0.0001)

Diversity −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗
(0.0001) (0.0001) (0.0001)

Regional Patents −0.00000 −0.00000 0.00000
(0.00000) (0.00000) (0.00000)

Technology Size −0.0001∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗
(0.00001) (0.00001) (0.00001)

Subsidies x Density −0.0003∗
(0.0002)

Time FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Observations 277,135 291,650 277,135 291,650 277,135 277,135
Adjusted R2 0.056 0.058 0.056 0.065 0.062 0.062

Note:∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Robust standard errors were clustered at the regional and technology level.



3 | Technological Complexity and
Economic Growth of Regions

Abstract: The effect of technological complexity on regional economic growth has yet not
been investigated. We assess the complexity of technological activities in 166 European
NUTS 2 regions using the new measure of Structural Diversity. Panel regressions covering
the years 2000 to 2015 suggest that technological complexity is a positive predictor of
economic growth at the regional level. A ten percent increase in regional complexity is
associated with a corresponding GDP per capita growth by about 0.28 percent. The
conducive role of knowledge complexity for economic growth is therefore not only evident
for countries, but also for regions revealing a relationship, which is systematic at different
spatial scales and for different types of knowledge complexity.

This chapter is co-authored with Tom Broekel. The PhD candidate is the first author of
the article. The paper is currently in a revise-and-resubmit stage in Research Policy.
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3.1 Introduction

"I remember thinking how comfortable it was, this division of labor which made it
unnecessary for me to study fogs, winds, tides, and navigation, in order to visit my
friend who lived across an arm of the sea. It was good that men should be specialists
[. . . ]. The peculiar knowledge of the pilot and captain sufficed for many thousands
of people who knew no more of the sea and navigation than I knew" (London 1904).

Over a hundred years ago, Humphrey van Weyden praised the benefits of special-
ization and division of labor aboard a small vessel in Jack London’s famous novel
“The Sea Wolf”. They allowed him to concentrate on the things that caught his
interest and talents more than others. An implicit consequence of specialization
and division of labor is the constantly increasing complexity of the world’s knowl-
edge (Aunger 2010). Another one is increasing productivity, which makes greater
economic surpluses possible and allows for sustaining larger population sizes (Smith
1776). The division of labor, however, requires the coordination and cooperation
of specialists to utilize large amounts of diverse knowledge, which is easier in larger
and more densely populated areas (Becker and Murphy 1992). In turn, such larger
and more densely connected populations fuel further specialization and division of
labor (Sveikauskas 1975). This self-reinforcing process accelerated the richness and
complexity of knowledge production over time (Kremer 1993; Henrich 2004).

Knowledge, in general, represents a critical resource in today’s knowledge econ-
omy (Lucas 1988; Romer 1990). However, not all knowledge is equally valuable.
More complex knowledge is argued to be a fundamental building block of com-
petitive advantage and economic growth (Kogut and Zander 1992). Its economic
relevance rests on the idea that complex knowledge is difficult to imitate and only
few economic actors have the capabilities to produce it (Storper 2010). Accordingly,
firms and economies with complex knowledge are likely to earn rents in form of
higher growth and wealth (Kogut and Zander 1992; Teece et al. 1997; Hidalgo and
Hausmann 2009).

Until now, empirical evidence is scarce and restricted to economic complexity
as measured by the product portfolio of an economy (Hidalgo and Hausmann 2009;
Hausmann et al. 2013; Bahar et al. 2014). Production, however, is only one dimen-
sion of knowledge complexity in which economies compete. Technological knowledge
production is complementary and similarly vital for economies’ competitiveness and
growth (Nelson and Winter 1982; Lucas 1988; Romer 1990). Yet, the empirical
relation between technological complexity and economic growth is still unexplored.

In this article, we seek to close this research gap by explicitly studying this
relation at the regional level, i.e. for European NUTS 2 regions between 2000 and
2016. Following previous studies, we approximate the complexity of technologies
by relying on patent documents (Fleming and Sorenson 2001). In particular, we
assess technological complexity using the recently developed measure of Structural
Diversity (Broekel 2019).

The panel regression results confirm that technological complexity is a positive
and significant predictor of economic growth in European regions. More precise,
we find that a 10 percent increase in technological complexity relates to a 0.28 per-
cent increase in regional GDP. Accordingly, the paper complements previous studies
highlighting a positive link between economic complexity and economic growth by
presenting quantitative evidence of the economic relevance of technological complex-
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ity.
Our study is structured as follows. Section 3.2 provides an overview of the

theoretical and empirical literature on knowledge complexity. Section 3.3 presents
the empirical data and our estimation approach. The empirical results are presented
in Section 3.4. Section 3.5 concludes the paper.

3.2 Theoretical background and literature overview

Knowledge production is a fundamental source of long-term economic growth
(Kuznets 1962; Nelson and Winter 1982; Romer 1990; Grossman and Helpman
1991; Aghion and Howitt 1998) and helps to understand the uneven growth pat-
terns of regions (Glaeser et al. 1992; Fagerberg et al. 1997; Henderson et al. 2001).
Knowledge accumulates over time in and adheres to certain locations, which leads
to a strong spatial concentration of knowledge in regions (Feldman 1994). One im-
portant reason for the spatial concentration of knowledge is due to the sensitivity of
knowledge spillovers to geographic distance limiting the spatial diffusion of knowl-
edge and contributing to its geographic concentration (Jaffe et al. 1993; Markusen
1996). Crucially, the degree of spatial concentration varies significantly between
knowledge domains (Breschi and Malerba 1997). While in the past, researchers
highlighted the role of tacit knowledge in this context, knowledge complexity has
increasingly been in the focus as one crucial dimension that explains the varying
spatial concentration of knowledge domains.

However, in contrast to the intensity of the discussion on knowledge complexity
and its economic relevance in the literature, there is (still) no common definition of
knowledge complexity. Yet, consensus seems to exist on a number of basic features.
To Winter (1987, p. 177), complexity is "the amount of information required to
characterize the item of knowledge in question". Zander and Kogut (1995) rely on
a similar understanding of knowledge complexity, which focuses on the diversity of
knowledge combination. Accordingly, knowledge "is more complex when it draws
upon distinct and multiple kinds of components" (Zander and Kogut 1995, p. 79).
Kauffman (1993) defines complexity in a related manner, as the interaction between
size and interdependence of components. This builds on Simon’s (1962) description
of complex systems. For him, complexity is "made up of a large number of parts
that interact in a nonsimple way" (Simon 1962, p. 468). Interestingly, there is
a some similarity to Polanyi’s (1966) notion of tacitness. The more information,
e.g. diverse range of combinations, interdependencies, and competences, a system
entails, the more difficult becomes communication and codification. Similar argu-
ments are found in the literature on technological complexity. Here, technologies
are described as compositions of multiple components that are combined to fulfill a
specific purpose (Usher 1954; Hargadon 2003; Arthur 2009). The number of compo-
nents, their intensity of combination, and the ways how they are combined, are here
seen as primary determinants of technologies’ complexity (Fleming and Sorenson
2001; Broekel 2019).

Complexity is one important dimension determining the costs and time of knowl-
edge imitation. Particular capabilities are required to absorb and successfully in-
tegrate more complex types of knowledge (Teece 1977; Rogers 1983; Winter 1987;
Kogut and Zander 1992). In addition, errors in imitation tend to become more fre-
quent with growing complexity, which impacts performance negatively and suggests
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that imitation is not a promising strategy in complex knowledge domains (Rivkin
2000). Hence, complex knowledge is less likely to spillover to competitors. In addi-
tion, Yayavaram and Chen (2015) demonstrate that complexity not only challenges
learning inputs, but also influences innovation output. The acquisition of new and
complex knowledge in innovation processes impedes learning and hurts innovation
outcomes. Consequently, complex knowledge represents an entry barrier, as it is
more difficult to learn and to copy.

The ability to learn and acquire complex knowledge is therefore argued to be
more valuable and to translate into higher economic rents than knowledge that can
be easily acquired (Winter 1987; Kogut and Zander 1992; Zander and Kogut 1995;
Teece et al. 1997; Storper 2010). As complex knowledge represents a critical resource,
economic actors can build competitive advantage based on complex knowledge pro-
viding them with profound growth potentials and access to quasi-monopolistic rents
(Teece 1977; Kogut and Zander 1992; Zander and Kogut 1995; Teece et al. 1997;
Rivkin 2000; McEvily and Chakravarthy 2002; Sorenson et al. 2006). Empirical in-
sights back this argument, as Fleming and Sorenson (2001) show that more complex
inventions receive more citations (as an indicator of impact and value) indicating
that complex inventions are more valuable than technologically simpler inventions.
Their benefits are also shown to stay with the inventor (Sorenson et al. 2006).

Crucially, geographic proximity plays an important role in the creation and dif-
fusion of complex knowledge. It is widely accepted and empirically confirmed that
geographic proximity facilitates interactions and engagement in networks (Becker
et al. 1999; Boschma 2005; Breschi and Lissoni 2009). Thereby, geographic prox-
imity stimulates interactive learning required for the creation of complex knowl-
edge. In addition, it eases its exchange by allowing for easier and quicker feedback,
spontaneous interactions of heterogeneous actors, and more efficient communica-
tion (Malmberg and Power 2005). Empirical confirmation for these arguments are
delivered by the study of Balland and Rigby (2017). These authors find that com-
plex technologies diffuse slower in space than simple ones. More indirectly, Broekel
(2019) studies the relation between technological complexity and spatial concentra-
tion by using information on patented inventions. His empirical evidence suggests
a positive relationship between technological complexity and geographic concentra-
tion. Importantly, complex technologies do not randomly concentrate in space, but
rather seem to follow a distinct spatial pattern as shown by Balland et al. (2018).
Their results highlight that complex technologies concentrate in large urban agglom-
erations. Moreover, this concentration in urban areas has steadily increased over the
last 150 years.

In light of the previous discussion, this also suggest that the economic benefits of
complex knowledge are unevenly distributed in space with a tendency to concentrate
in urban agglomerations. The question at the heart of the present paper is therefore,
if regional differences in complex knowledge explain the uneven economic growth of
regions?

Existing empirical research only provides indirect evidence for the economic rel-
evance of technological complexity at the country level. In their seminal paper,
Hidalgo and Hausmann (2009) introduce the Economic Complexity Index (ECI) to
approximate the economic complexity of countries based on their production capa-
bilities. The ECI builds on the spatial distribution of export products across coun-
tries. In this framework, products (and the knowledge underlying their production)
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exported by few and most diversified economies are assumed to be more complex.
On this basis, the authors show empirically that countries with greater economic
complexity are characterized by higher levels of GDP per capita and experience
higher short-term GDP growth. Subsequent studies have supported the findings of
Hidalgo and Hausmann (2009) that economic complexity matters for countries’ eco-
nomic growth (Ferrarini and Scaramozzino 2016; Stojkoski et al. 2016). However,
the effects of technological complexity on economic growth have not been studied at
the regional level so far. This contrasts the crucial role of geographic proximity for
the production and diffusion of complex knowledge, which is more likely captured
at the regional than at the national level (Balland and Rigby 2017; Balland et al.
2018; Broekel 2019). The present paper seeks to fill this gap and the argumentation
above leads to the following hypothesis:

H1: Higher levels of technological complexity are beneficial for regional economic
growth.

3.3 Materials and methods

Our unit of analysis are NUTS 2 regions in Europe for which we collect a rich set of
variables for all years between 2000 and 2015. We choose NUTS 2 regions primarily
for reasons of data availability. Clearly, labor market regions would be more appro-
priate to capture the regional dimension of innovation processes. However, there is
no common definition for all EU member states and many empirical variables are
not available at other levels. The final sample size for the empirical estimations
is 2,656 observations composed of 166 unique regions observed in 16 years. Figure
3.1 maps the regions in our sample. We only consider regions for which we have
the full set of information for all variables. In a common manner, we approximate
economic growth by change in GDP. Information on GDP in NUTS 2 regions comes
from Eurostat, which provides regional time-series data. On this basis we define our
dependent variable as GDP per capita at Power Purchasing Standards in year t.

3.3.1 Regional technological complexity

Our central independent variable is technological complexity at the regional level.
The construction of this variable relies on patent information. We use patent data
of the OECD REGPAT Database (March 2018 version), which covers annual patent
applications to the European Patent Office (EPO). Although patents come with
several disadvantages, they are nevertheless widely-used in empirical analyses to
study technological activities (Griliches 1990). This is mainly because patents are
the only large-scale data source providing such detailed information about regional
knowledge stocks.

Calculating technological complexity is not a straightforward task, as there is
no established method so far. The Economic Complexity Indicator by Hidalgo and
Hausmann (2009) seems to be the most prominent approach in today’s literature.
However, it was developed to assess the economic complexity of countries based on
their export portfolios. While the ECI has been used to approximate technological
complexity using information on patent activities of countries and regions (Balland
and Rigby 2017; Petralia et al. 2017), such applications face a number of issues. For
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instance, the ECI is based on the spatial distribution of technologies, which may
create endogeneity issues in spatial research. Moreover, the spatial distribution of
technologies is shaped by many factors of which complexity is but one. The character
of an index also makes the comparison of the ECI over time and its inclusion in
panel regressions problematic. Moreover, many of its empirical characteristics do
not reflect with what one would expect of technological complexity (see Broekel 2019
for a discussion). We therefore rely on the measure of Structural Diversity that was
recently developed by Broekel (2019) and is more closely attached to the notion of
technological complexity as presented in the previous section1.

Structural Diversity relies on information theory and assesses the diversity of
knowledge combinations of a technology. It rests on the idea of technologies con-
sisting of components that are combined with each other (Hargadon 2003; Arthur
2009). Consequently, they can be represented as networks with components as nodes
and their combinations as links (so-called combinatorial networks). For instance, a
table can be seen as a combination of four poles and one table plate, i.e. its com-
ponents. The idea of structural diversity is to measure the diversity of how these
components are combined with each other. In case of a table, all four poles are
directly "combined" with the table plate but not among each other. Accordingly,
the combinatorial network of a table corresponds to a star-like network composed
of one central and four peripheral components. Since little information is required
for its description, the star-like network of a table represents a relatively simple
network structure. In contrast, some components of a car might also be related in a
star-like manner (front, back and side windows with the car body), while others may
rather be connected in form of a "line": steering wheel to steering column to steering
gear2. The diversity of these combinatorial structures (topologies), in addition to
their size and interdependency, determines the amount of information required for
their description.

Complex networks entail more information than simpler networks (Emmert-
Streib and Dehmer 2012; Broekel 2019). Accordingly, the complexity of a technol-
ogy increases with the information required to describe its combinatorial network.
Structural Diversity exactly measures this diversity of combinatorial structures that
determines the amount of information required for their description. Since com-
plex technologies entail more information, they are in turn more difficult to learn
and to copy limiting their diffusion, which represents one essential characteristic of
complexity (Kogut and Zander 1992).

In practice, Structural Diversity is approximated with the Network Diversity-
Score (NDS) developed by Emmert-Streib and Dehmer (2012). The NDS uses net-
work topologies (e.g. size, modules, graphlets) to assess the complexity of network
structures by distinguishing between simple/ordered, complex, and random net-
works. Complex networks are characterized by larger topological diversity than
simple/ordered ones, and random networks show even higher levels of topological
diversity than complex ones3. The NDS measure captures and quantifies these differ-
ences on a continuous scale with small values indicating networks with high degrees

1We also used the ECI (Hidalgo and Hausmann 2009) to estimate regional complexity scores
(see Appendix 3.B for more details).

2This is a very simplified illustration to highlight the central idea and not an actually represen-
tation of the "car" technology.

3This is not to say that there are actually fully random combinatorial networks. Rather, net-
works with less ordered structures tend to have higher levels topological diversity.
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of randomness and larger values signaling the extent to which ordered, i.e. simpler,
topologies shape these networks’ structures. However, when considering knowledge
production, higher complexity is generally associated with higher values. Hence,
Broekel (2019) suggests to invert and log-scale the measure such that larger values
indicate higher complexity values. This transformation simplifies the interpretation.

We calculate technological complexity for all 655 4-digit technology classes of the
Cooperative Patent Classification (CPC) using this measure of structural diversity.
For each technology class c (c = 1, . . . , n), we build its corresponding (binarized)
network composed of the co-occurrence of the most fine-grained classes (10-digit)
appearing on patents p classified into c. In this way, the combinatorial network
entails all components that constitute technology c as well as all components they
are combined with (Broekel 2019). The NDS is applied to each network resulting
in the complexity measure cpxc. Note, to make the networks more stable, we use
a three-year moving window approach, i.e. the value cpxc in year t is based on all
patents in c in the years t to t− 2.

The 655 individual complexity scores are subsequently assigned to the corre-
sponding CPC classes appearing on patent documents. The mean complexity of all
classes c on patent i represents the average patent complexity pcpx:

pcpxi =
1

n

n∑
c=1

pi,c (3.1)

The literature does not provide a common approach of how to adequately aggregate
a patent level (complexity) measure to the regional level. Put differently, what is the
appropriate way to approximate the technological complexity of a regions’ patent
portfolio when only the complexity of each patent is known? Inspired by the work
of Balland et al. (2018), we therefore propose a regional complexity measure based
on the regional distribution of patents’ complexity values. More precisely, we define
regional complexity as the average complexity of all patents that are above any
xth percentile of the regional complexity distribution. This is motivated by the idea
that the existence of relatively less complex patents in a region, i.e. simple activities,
does not provide any information about a region’s capability to develop and manage
complex technological activities. The raw mean, for example, would discriminate
against complex technologies by including the simplest ones. More formally, let P th

denote the set of patents’ complexity scores pcpx (pcpx = 1, . . . , n) belonging to the
xth percentile of the regional complexity distribution. Regional complexity rcpx in
region r and time t can then be defined as follows:

pcpxr,t =
1

n

n∑
i∈Pth

pcpxi,r,t (3.2)

where th defines the percentile threshold. For example, if th takes the value 10,
the regional complexity represents the average of the top 10% of the most complex
patents in region r at time t. Obviously, the obtained regional complexity value
depends on the rather arbitrary definition of th. We assume that the relationship
between regional complexity and economic growth increases by shifting the threshold
to more complex activities (e.g. from top 50% to the top 10%), as, in light of the
above discussion, the top percentiles represent the (unobserved) regional ability to
produce and utilize complex technologies. We present the threshold sensitivity along
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with our results in Section 3.4. The chosen approach is similar to the one applied
in Balland et al. (2018), who chose a threshold of the top 25 percent most complex
activities in order to identify scaling relations.

3.3.2 Control variables

In addition to complexity, the literature has identified other determinants of regional
growth and potential confounders of complexity, which are important to control
for. We distinguish between two sets of control variables that approximate regional
technological capabilities and those providing information on the local economic
structure of regions.

Technological Capabilities
We consider the number of regional patents to control for the size of the local

knowledge stock and thus for the cumulative character of knowledge. The long dis-
cussion about specialization and diversity indicates that not only size effects, but
also the local technology structure plays a fundamental role for regional growth.
This debate has not come to a final conclusion yet and it rather seems that both,
specialization and diversity, can be beneficial (Beaudry and Schiffauerova 2009). The
distribution of patents across technologies gives information about regional special-
ization and diversity respectively. In a common manner, we measure specialization
as the average location quotient. To approximate regional diversity, we rely on the
Shannon entropy. The exponential of the individual entropy scores gives a diversity
score, which is comparable across regions (Jost 2006).

Lastly, complexity is sometimes associated with high-tech activities (Eurostat
2016). For example, Eurostat defines high-tech as a predetermined set of patent
classes. To test complexity against this exogenous definition of high-tech activities,
we include the regional share of patents in high-technologies (as defined by 2016
2016) as an explanatory variable into the analysis.

Regional Economic Structure
We complement our patent-based indicators with economic variables at the re-

gional level, which we all collected from Eurostat. The literature on urban scaling
has shown that populated places are more productive with respect to socio-economic
outcomes such as GDP and innovation (Bettencourt et al. 2007b). To control for
these urbanization effects, we include population density as an additional explana-
tory variable. The availability of human capital in form of highly educated people is
also beneficial for regional growth (Lucas 1988). Additionally, the increasing com-
plexity of technologies requires better skilled labor. In line with previous studies,
we use the share of people with a tertiary education as a proxy for human capital
(Broekel 2012). We also control for local unemployment rates, as higher rates are
negatively associated with economic growth. Lastly, we include the share of employ-
ees in manufacturing. Table 3.1 summarizes all variables, their empirical definition,
and their data sources. Basic descriptive statistics and correlations between these
variables are reported in Table 3.2.
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Table 3.1: List of variables with their definitions and data sources

Variable Definition Data Source

rcpx Average regional complexity (in ln): [Average
of the top % most complex patents of the
regional complexity distribution]

OECD REGPAT
Database, own calcu-
lation

lgdp Gross domestic product per inhabitant (in
ln): [Total gross domestic product (purchas-
ing power standards) divided by total popu-
lation]

Eurostat

lpat Total number of regional patents (in ln) OECD REGPAT
Database, own calcu-
lation

lq Average regional location quotient OECD REGPAT
Database, own calcu-
lation

div Regional diversity measured as the exponen-
tial of the Shannon entropy of the regional
patent distribution (Jost 2006).

OECD REGPAT
Database, own calcu-
lation

htec-pat Share of patents in high-tech (in %): [Total
regional patents in high-tech classes divided
by total number of regional patents * 100]

OECD REGPAT
Database, own cal-
culation. Note:
High-tech classifi-
cation is based on
predefined technology
classes considered as
high-tech by Eurostat
(2016).

lpopdens Population density (in ln): [Economically ac-
tive population aged 15-64 / Land area in
square km]

Eurostat

hc Human capital (in %) defined as: [Persons
with tertiary education aged 25-64 divided
by total population aged 25-64]

Eurostat

unemp Regional unemployment rate (in %) defined
as: [Unemployed persons divided by econom-
ically active population * 100]

Eurostat

share man-
ufac

Employees in manufacturing (in %) defined
as: [Employees in manufacturing divided by
total number of employees * 100]

Eurostat
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Table
3.2:

D
escriptives

and
C
orrelations

V
ariables

M
in

M
ax

M
ean

SD
(1)

(2)
(3)

(4)
(5)

(6)
(7)

(8)
(9)

1
lgdp

9.43
11.26

10.17
0.25

2
rcpx

11.14
13.15

12.17
0.27

0.12
3

lpat
3.91

9.35
6.53

1.11
0.42

0.28
4

lq
1.31

46.06
4.75

4.25
-0.06

-0.33
-0.52

5
div

10.31
264.32

126.51
43.67

0.24
-0.02

0.71
-0.57

6
htec-pat

0.31
16

4.13
2.60

0.02
0.66

0.12
-0.21

-0.20
7

lpopdens
0.38

7.67
4.44

1.17
0.30

0.09
0.33

-0.33
0.23

0.05
8

share
m
anufac

4.70
44.88

22.12
8.16

-0.24
-0.12

0.14
0.01

0.24
-0.20

-0.15
9

hc
7

52.20
26.16

8.14
0.35

0.23
0.16

-0.11
-0.09

0.28
0.16

-0.51
10

unem
p

1.20
36.20

7.36
4.08

-0.35
0.09

-0.14
-0.02

-0.09
0.06

-0.05
-0.15

0.01
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3.3.3 Methodology

We estimate a dynamic panel model with region and time fixed effects to identify the
relationship between regional complexity and economic development in the following
form:

lgdpr,t+x = τ lgdpr,t + β1rcpxr,t + γXr,t + φr + vt + µr,t (3.3)

where lgdpr,t+x denotes our dependent variable GDP per capita for every spatial
unit r in the sample at time t + x and rcpxr,t represents regional technological
complexity. The subscript t + x denotes that GDP on the left-hand side is serially
leading. The dynamic nature of our panel model assumes that past values of lgdpt
influence subsequent ones in t + x. Since the nature of the underlying time lag
structure is unknown, we explore time lags of 1 to 6 years. The scalar τ is the
response parameter of our dependent variable in its lagged version in time lgdpt.
Xr,t is a N × K matrix of control variables. The corresponding K × 1 vector γ
contains the response parameters of our control variables. As mentioned above, we
include regional and time fixed effects as denoted by φr and vt respectively, to control
for unobserved heterogeneity that is constant over time. µr,t denotes the error term,
which is assumed to be spatially as well as serially autocorrelated. Therefore, we
calculate robust standard errors clustered at the regional and time level (Cameron
et al. 2011).

3.4 Results

3.4.1 Complexity and regional growth

All results in this section rely on the chosen threshold of the 10th percentile in the
calculations of regional complexities. That is, a region’s technological complexity
corresponds to the mean structural diversity of patents with the 10% highest values4.
We also restricted our analysis to regions with at least 50 patents per year. This
threshold is necessary to provide reliable results for all variables that are based on
patent data5.

Before we turn to our estimation outcomes, we present descriptive results re-
garding regional complexity in Europe. Figure 3.1 maps regional complexity across
our sample of regions for the time period 2000-2015 (panel A). Values are grouped
from low to high complexity using quantiles of the cross-regional complexity dis-
tribution. The map visualizes some interesting spatial patterns. In general, high
complexities are relatively scattered across the continent. Almost every country has
at least one region in the highest complexity group and in many cases, this is the
capital city or the region with the largest population. The south of Germany and
large parts of Scandinavia, generally considered as highly R&D intensive with many
technological leaders, represent agglomerations of high complexity regions. Figure
3.1 panel B shows the distribution of regional complexity in our sample. Regional

4The results are very robust with respect to the choice of the percentile, which will be further
discussed at the end of this section.

5Due to the threshold of 50, 59 regions were removed from the sample. Our results, however,
are not sensitive to the chosen patent threshold as indicated by our robustness check reported in
Section 3.C
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Figure 3.1: Technological complexity in Europe between 2000 and 2015. A Map
and B distribution of regional complexity scores across all regions. Patents’ com-
plexity distribution in all regions (red line) compared with three selected regions C
urban region (Berlin, Germany),D technology-intensive region (Oxfordshire, United
Kingdom), and E resource-intensive region (Agder og Rogaland, Norway).

complexity scores are rather normally distributed with some outliers at both ends
of the distribution.

Figures 3.1 C-E visualizes intra-regional complexity distributions in three sample
regions in relation to the regional average. Berlin represents a large metropolitan
area considered as a growing tech-region (panel C, "Urban"), Oxfordshire is a well-
known R&D intensive region (panel D, "Tech"), and the economy of Agder og
Rogaland in South-West Norway is focused on extracting technologies in the oil and
gas industry (panel E, "Resource"). The complexity distribution of their patenting
activities visualizes these structural differences. The distribution of Agder og Roga-
land has a wide range and is centered at relatively low complexity values compared
with the European average. Oxfordshire’s distribution is characterized by a rather
narrow range concentrated at the top end of the complexity distribution supporting
the region’s image as a R&D hub. Berlin’s (urban) distribution of patents’ com-
plexity is similar to that of Oxfordshire signaling its strength in highly complex
technologies. However, its distribution is, in contrast, much wider, as the city is also
producing substantial numbers of patents with rather medium levels of complexity.
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Figure 3.2: Cross-regional dynamics of complexity over time. A Regional complexity
in two consecutive time periods. The corresponding correlation coefficient is 0.79.
B Annual Spearman correlation of regional complexity between 2001 and 2015.

Similar distributions can be observed for other large urban regions in Europe such
as Paris, Munich or Madrid. Accordingly, the regional complexity distribution illus-
trates structural differences in regions’ technology profiles that correspond to their
general technological and economic structures.

Figure 3.2 displays cross-regional dynamics of complexity over time. Panel A
compares the complexity of regions in two consecutive time periods. Both values are
highly correlated with, as indicated by the Spearman correlation coefficient of 0.79.
This suggests that regional complexity is relatively persistent over time. Panel B in
Figure 3.2 further supports this observations by showing the Spearman correlation
coefficient of consecutive complexity values, i.e. rcpxt and rcpxt+1. Over a 15-year
time period, the coefficient lies in the range of 0.90 and 0.96 indicating that regional
complexity changed relatively slowly between 2000 and 2015. Nevertheless, regional
technological complexity is not time-invariant as illustrated by panel A in Figure
3.2. Some regions managed to substantially increase their ability to produce complex
technologies. This particularly applies to regions in North and West Europe such
as Stockholm (SE11) or Oxfordshire (UKJ1). The strongest increase is observed in
Vorarlberg (AT34) with about 4.5%.

To answer our main research question, we employ growth regressions to under-
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stand the underlying time dynamics between complexity and GDP growth. For
these, it is essential to consider the potential of a time lag in complexity’s effect
on regional growth. Table 3.3 summarizes the results for the full regression model
considering all control variables and columns 1 to 6 correspond to different time lags
in years (i.e. 1-6 years).

All models are relatively robust regarding the results of the control variables.
With three exceptions, all control variables behave in line with our expectations.
Past values of GDP (lgdp) are a strong and positive predictor for subsequent GDP.
Its explanatory power also declines with increasing time lags until it finally yields
insignificant estimates in Model 6. This finds reflection in the constantly decreasing
goodness of fit from Model 1 to 6.The local knowledge stock (lpat) and specialization
(lq) are significantly positive indicating the importance of the local knowledge stock
in terms of size and structure for economic growth (Model 1 to 3). However, the
local knowledge stock becomes insignificant when considering time lags exceeding
three years (Models 4-6). Regional unemployment (unemp) is significantly negative
when lagged by one or two years.

Three findings do not correspond to our expectations. The share of high-tech
patents (htec−pat) does not predict economic growth in any Model specification. To
a certain extent, this is due to the consideration of technological complexity, which
outperforms the share of high-tech patents (see also Table 3.4). The coefficient of
population density (lpopdens) is significantly negative in most models (Model 4 to
6). It implies that urban regions grow less than rural regions. Similarly human
capital (hc) is not a robust predictor of economic growth, as the variable yields
insignificant and in later models significantly negative results. We believe that the
consideration of patents and GDP already capture most of differences population
densities and in the quality of regions’ human capital explaining the results for both
variables.

Using this empirical set-up, we explore the relationship between complexity and
economic growth. The coefficient of complexity (rcpx) is insignificant when time
lags of one and two years are applied (Model 1 and 2). This changes for time lags
of three and more years (Model 3 to Model 6). Complexity becomes a positive and
significant predictor of economic growth. The dependence of complexity’s coefficient
on the applied time-lag is visualized in Figure 3.3. The coefficient increases from
0.028 (Model 3) to a maximum of 0.045 (Model 5). The difference, however, is not
statistically significant (see Figure 3.3). The insignificance of rcpx for small time
lags is very reasonable because technological capabilities do not unfold a direct and
immediate effect on economic growth but rather seem more important for economic
growth in longer time periods.

Complexity and GDP per capita are measured on a logarithmic scale (see Table
3.1 for an overview). Therefore, we can interpret the coefficients as elasticities.
That is to say, a one percent increase in average regional complexity yields a 0.027%
increase in GDP per capita three years later (Model 3). To put this into perspective,
the average growth rate of complexity between 2000 and 2015 is 1.3%. Accordingly,
a one percent increase in regional complexity represents a change, which is close to
the average growth of complexity over 15 years.

As an additional benchmark, a one percent increase in patents translates into
a growth in GDP per capita by about 0.031% (see Model 3). The effect size of
lpat is 14% larger compared with rcpx. Accordingly, technological complexity ap-
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Table 3.3: Panel regressions with different time lags ranging from 1 to 6 years

Y: GDP per capita (in ln)

(1) (2) (3) (4) (5) (6)

lgdp 0.809∗∗∗ 0.615∗∗∗ 0.445∗∗∗ 0.298∗∗∗ 0.161 0.049
(0.041) (0.066) (0.084) (0.089) (0.085) (0.058)

rcpx 0.008 0.014 0.028∗ 0.039∗∗ 0.045∗∗ 0.041∗∗
(0.005) (0.009) (0.012) (0.014) (0.015) (0.014)

lpat 0.014∗∗ 0.027∗∗ 0.032∗∗ 0.028 0.012 −0.005
(0.005) (0.008) (0.010) (0.015) (0.017) (0.020)

lq 0.001 0.002∗ 0.002∗∗ 0.002 0.002 0.0005
(0.0004) (0.001) (0.001) (0.001) (0.001) (0.001)

div 0.00003 0.0001 0.0001 0.0001 0.0002 0.0001
(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

htec-pat 0.001 0.002 0.002 0.002 0.001 0.0002
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

lpopdens −0.041 −0.075 −0.119 −0.159∗ −0.193∗∗ −0.222∗∗
(0.029) (0.054) (0.063) (0.071) (0.075) (0.080)

share manufac 0.0003 0.002 0.003 0.003 0.002 0.001
(0.001) (0.001) (0.002) (0.002) (0.002) (0.001)

hc 0.0004 0.0004 −0.0001 −0.002 −0.005∗∗∗ −0.006∗∗∗
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

unemp −0.002∗∗ −0.003∗∗ −0.003 −0.002 0.002 0.006∗
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

Observations 2,375 2,209 2,043 1,877 1,711 1,545
R2 0.748 0.521 0.328 0.180 0.110 0.134
Adjusted R2 0.726 0.477 0.260 0.089 0.003 0.019

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
All independent variables are lagged from 1 to 6 years.
The corresponding time lags in years are represented by the column numbers.
Models are calculated using regional and time fixed effects.
Robust standard errors are clustered at the regional and time level.
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Figure 3.3: Coefficients of regional complexity and corresponding confidence inter-
vals estimated in different time lags ranging from 1 to 6 years. The results correspond
with the those of rcpx obtained in Models 1 to 6 in Table 3.3.

pears to be a significant but rather weak factor for explaining regional variations in
economic growth. It should be pointed out that when excluding htec − pat from
the estimations, the coefficient of regional complexity increases from 0.028 to 0.034.
That means, it reaches about the same magnitude as the coefficient for the number
of regional patents (see Table 3.4).

3.4.2 Robustness analysis

Considering a time lag of three years between complexity and economic growth yields
the most robust results. We therefore use this set-up to further explore the robust-
ness of our findings for alternative model specification. For instance, we change the
set of control variables (Table 3.4). Data on population density, human capital,
manufacturing share, and unemployment was not equally available for every region
throughout all time periods. This explains the changing numbers of observations
between the models. The results in general and the significantly positive coefficient
of complexity in particular, are robust to changing sets of control variables and with
respect to small variations in sample sizes.

As mentioned in Section 3.3.1, we expect the relationship between regional com-
plexity and economic growth to be conditional on the chosen xth percentile threshold.
To test this, we re-calculate the full model including all variables and successively
increase the percentile of patents considered as the basis for regional complexity. We
shift the threshold to less complex activities and keep the time-lag constant at three
years. Figure 3.4 displays the estimated coefficients of regional complexity for these
different thresholds. Up to the 70th percentile (i.e. top 70% of the regional com-
plexity distribution,), rcpx remains a significant and positive predictor of regional
growth excluding the fifth percentile. Thresholds above the 70th percentile result
in insignificant coefficients. Shifting percentiles to the left discriminates against
the ability to produce complex technologies by successively including simpler ones.
As these are less relevant for complexity-based regional competitive advantage, the
indicator loses its explanatory power for regional growth.

Important to note, our results provide evidence of a statistically positive asso-
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Table 3.4: Panel regressions with constant time lags of 3 years and different sets of
variables

Y: GDP per capita (in ln)

Base Controls Full Without Without
lpat htec-pat

(1) (2) (3) (4) (5)

lgdp 0.552∗∗∗ 0.450∗∗∗ 0.445∗∗∗ 0.479∗∗∗ 0.440∗∗∗
(0.072) (0.087) (0.084) (0.082) (0.086)

rcpx 0.022∗ 0.028∗ 0.026∗ 0.034∗∗
(0.010) (0.012) (0.011) (0.011)

lpat 0.031∗∗ 0.032∗∗ 0.034∗∗
(0.011) (0.010) (0.011)

lq 0.002∗ 0.002∗∗ 0.002∗ 0.002∗∗
(0.001) (0.001) (0.001) (0.001)

div 0.0001 0.0001 0.0001 0.0001
(0.0002) (0.0002) (0.0002) (0.0002)

htec-pat 0.003∗ 0.002 0.003
(0.002) (0.002) (0.002)

lpopdens −0.116 −0.119 −0.103 −0.119
(0.066) (0.063) (0.060) (0.063)

share manufac 0.003 0.003 0.003 0.003
(0.002) (0.002) (0.002) (0.002)

hc −0.0002 −0.0001 −0.0001 0.00001
(0.002) (0.002) (0.002) (0.002)

unemp −0.003 −0.003 −0.003 −0.003
(0.002) (0.002) (0.002) (0.002)

Observations 2,158 2,043 2,043 2,043 2,043
R2 0.271 0.323 0.328 0.319 0.326
Adjusted R2 0.205 0.255 0.260 0.251 0.259

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
All independent variables are lagged from 1 to 6 years.
Time lags in years are represented by the column numbers.
Models are calculated using regional and time fixed effects.
Robust standard errors are clustered at the regional and time level.
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Figure 3.4: Effects of threshold choice on the relationship between regional com-
plexity and economic growth.

ciation, i.e. correlation, between knowledge complexity and economic growth. In
our estimations, we include complexity in different time lags, considered time and
region fixed effects as well as a rich set of potential confounders. However, this might
not be enough to control for all potential endogeneity issues. That is to say, higher
rates of economic growth could, in principle, attract and enable regions to engage
in complex activities. To get a first insight into this, we repeat the analysis but
this time with complexity as the dependent variable. The results show that GDP is
insignificant in all estimations suggesting that it is complexity, which drives growth
and not vice versa (see Appendix 3.A). In the future, researchers may find ways
to instrument regional complexity and thereby substantiate the statistical evidence
such that causal inference becomes possible.

3.5 Conclusion

In this article, we analyzed the economic benefits of technological complexity for
regional economic growth. Our results suggest that the relationship between tech-
nological complexity and economic growth in regions is positive. Regional differences
in the capability to produce and exploit complex knowledge can therefore explain
differences in the economic growth of regions. These findings therefore underpin the
conceptualization of knowledge complexity as a competitive advantage and com-
plements existing studies at the firm and country level (Kogut and Zander 1992;
Hidalgo and Hausmann 2009).

However, there are a number of aspects that need to be taken into consideration
when interpreting the results. We approximate technological complexity with infor-
mation on patented inventions in Europe and calculate regional complexity scores
for European NUTS 2 regions using the measure of structural diversity. Applying a
dynamic panel-regression, we identify the relationship between regional complexity
and economic growth to be positive and significant. Moreover, its strength is simi-
lar to that between patents and economic growth. However, our results suggest the
existence of a statistically positive association, i.e. correlation, between knowledge
complexity and economic growth. While we do not find any indication of a signif-
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icant relationship the other way around, lacking an instrument for complexity, our
study design does not allow for causal inference.

Due to data limitations, our analysis was restricted to a specific time horizon
of 15 years. Considering the longevity of economic development, 15 years captures
primarily short-term dynamics. It is likely that complexity unfolds its effects on
economic growth over even longer time periods (Fink et al. 2017). In addition,
our analysis was based on NUTS 2 regions in Europe. Although NUTS 2 regions
are important entities for regional policy decisions, they represent administrative
rather than functional units. Functional regions in terms of metropolitan areas or
labor market regions are often used in empirical analyses to limit spatial biases, for
instance, due to commuting patterns. Future research should replicate our study
using functional regions to ensure the robustness of our results for different spatial
units and scales.

Although our robustness checks underline the importance of technological com-
plexity for regional economic growth, our findings only apply for technological com-
plexity measured with Structural Diversity. Using two alternative complexity in-
dicators, Hidalgo and Hausmann (2009) and Fleming and Sorenson (2001) yielded
different results emphasizing a crucial problem in complexity research. Current
empirical investigations use a large variety of complexity measures (Hidalgo and
Hausmann 2009; Balland and Rigby 2017; Balland et al. 2018) impeding the com-
parison of empirical results across studies. The study of Broekel (2019) was a first
attempt to compare different measures of technological complexity suggesting crucial
differences between them, which explains why different complexity measures yield
different results. Clearly, more methodological research is necessary to improve our
understanding about the appropriate application of the complexity measures.

Nevertheless, our results fuel a number of important discussions. By showing
that knowledge complexity has economic implications, our findings highlight the
importance of building competitive advantage in complex activities. As knowledge
complexity grows over time and demands more qualified individuals and more in-
tensive collaboration (Powell et al. 1996; Pintea and Thompson 2007; Wuchty et
al. 2007; Broekel 2019), places that attract qualified individuals and that are em-
bedded in inter-regional knowledge networks will further benefit in this regard. As
suggested by Balland et al. (2018), this is likely to amplify the geographic concen-
tration of complex innovation activities even more and might be one of the reasons
why urban agglomerations are increasingly becoming the epicenters of innovation.
Although our results imply that knowledge complexity shows a tendency to concen-
trate in large metropolitan areas (e.g. Paris, Madrid, Berlin, Stockholm, Munich),
complexity is restricted to urban agglomerations. This finding stays in contrast
to the findings of Balland et al. (2018), who demonstrate that large cities have
increasingly become hotspots of complex knowledge production in the USA. The
cross-country case of European regions in this study suggests that complexity might
have different implications for regions depending on the geographic context. Future
research should investigate regional characteristics that influence regions’ capability
to produce complex technologies in more detail.

Knowledge complexity has also entered current policy debates (Balland et al.
2019). In this vein, knowledge complexity represents an ambivalent concept for pol-
icy makers. Nowadays, policy requires regions to invest in promising diversification
strategies as evident in the smart specialization strategy of the EU to facilitate re-
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gional development (Foray et al. 2011). As argued by Balland et al. (2019), the
combination of complexity and relatedness therefore provides a promising concept
to derive such “smart” diversification strategies. Accordingly, building regional com-
petitive advantage in new activities should be beneficial (i.e. complex activities)
and feasible (i.e. related activities) for regions. Besides its positive impact on tech-
nological growth (Balland et al. 2019), our results indicate that such a policy might
also directly facilitate economic growth.

However, it remains unknown how regions can exactly build competitive advan-
tage in complex activities and if this strategy is suited and desirable for every region.
Of similar relevance is the question if and how policy can influence the level of re-
gional complexity. As the increasing complexity of knowledge production demands
better qualified individuals and more collaboration, programs targeting these are
promising candidates in this context. The EU Framework Programme (FP) might
be important in this respect, as it is explicitly designed to facilitate knowledge and
expertise exchange between regions. Their monetary incentives may help in over-
coming barriers of knowledge diffusion that are particularly pronounced in case of
complex knowledge (Balland and Rigby 2017).
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3.A Reverse causality

As mentioned in the conclusion (see Section 3.5), our results reveal statistical asso-
ciations and should not be interpreted as causal relationships. One potential source
of endogeneity represents reverse causality. That is, complex technological activities
might be attracted or made possible by higher growth rates of GDP. To assess this
issue in more detail, we ran regressions with regional complexity rcpx as dependent
variable and GDP per capita as the main explanatory variable. Table 3.5 reports
the corresponding results. lgdp stays insignificant in all other models. Accordingly,
these results suggest that lagged values of GDP do not predict regional complexity.

Table 3.5: Panel regressions with different time lags ranging from 1 to 6 years and
rcpx as the dependent variable

Y: Regional Complexity

(1) (2) (3) (4) (5) (6)

lgdp −0.057 −0.086 −0.047 −0.044 −0.030 −0.060
(0.061) (0.116) (0.159) (0.178) (0.172) (0.191)

rcpx 0.776∗∗∗ 0.469∗∗∗ 0.098 −0.056 −0.167∗∗∗ −0.199∗∗∗
(0.020) (0.048) (0.064) (0.065) (0.050) (0.043)

lpat 0.014 0.021 0.025 0.031 0.051 0.060
(0.021) (0.039) (0.052) (0.057) (0.053) (0.051)

lq −0.002 −0.003 −0.003 −0.001 −0.002 −0.003
(0.002) (0.003) (0.003) (0.004) (0.004) (0.005)

div −0.0002 −0.0003 −0.0003 −0.0005 −0.001∗ −0.002∗∗∗
(0.0002) (0.0004) (0.0005) (0.0005) (0.0005) (0.001)

htec_pat 0.003 0.008 0.013∗ 0.010 0.004 −0.006
(0.003) (0.005) (0.006) (0.006) (0.006) (0.006)

lpopdens −0.077 −0.045 −0.085 −0.070 −0.029 0.262
(0.060) (0.132) (0.165) (0.165) (0.196) (0.174)

share_manufac 0.001 0.0004 0.001 −0.0001 −0.001 −0.002
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

hc 0.0002 0.002 0.002 0.003 0.002 −0.002
(0.001) (0.003) (0.003) (0.003) (0.003) (0.003)

unemp 0.002 0.005∗ 0.009∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.007∗
(0.001) (0.002) (0.003) (0.003) (0.003) (0.003)

Observations 2,375 2,209 2,043 1,877 1,711 1,545
R2 0.640 0.284 0.067 0.045 0.064 0.090
Adjusted R2 0.609 0.217 −0.027 −0.060 −0.050 −0.031

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
All independent variables are lagged from 1 to 6 years.
The corresponding time lags in years are represented by the column numbers.
Models are calculated using regional and time fixed effects.
Robust standard errors are clustered at the regional and time level.
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3.B Alternative complexity measures

There is no standard way of calculating regional complexity. In the main part of
our study, we use Structural Diversity as complexity indicator (see Section 3.3.1 for
more details). As Broekel (2019) shows, this measure captures important proper-
ties of technological complexity: It grows over time, it is larger for collaborative
and younger technologies, and it is positively associated to R&D and spatial con-
centration. Nevertheless, to explore the sensitivity of the results with respect to
the choice of the applied complexity measure, we replicated the regressions using
alternative measures. We follow Balland and Rigby (2017) and estimate regional
complexity using the Economic Complexity Indicator (ECI) originally developed by
Hidalgo and Hausmann (2009). The ECI builds on the idea that complex activities
are geographically concentrated in the most diverse places. Although the measure
has primarily been developed to assess a country’s economic complexity based on
its export portfolio, Balland and Rigby (2017) transfer the measure to calculate
regional technological complexity. We estimate the regional complexity kci based
on the distribution of 655 different technologies at the four-digit CPC level across
all NUTS 2 regions. Table 3.6 reports the corresponding regression results. The
measure is not significant in Models 1 to 5. In Model 6, kci is even significantly
negative.

A second alternative is the NK measure introduced by Fleming and Sorenson
(2001). Similarly to structural diversity, NK was constructed to fit patent data.
NK approximates the interdependence of knowledge components within technolo-
gies by quantifying the co-occurrence frequency of technology classes on patents.
For this, we use the most fine-grained level of the CPC. The resulting measure of
interdependence can be interpreted as technological complexity. We calculate nk for
every patent and, as for Structural Diversity, we aggregate the patent level indicator
to the regional level by taking the average of nk in the xth percentile of the regional
complexity distribution. Again, we use the 10th percentile to calculate regional com-
plexity scores, as these provided robust results in case of structural diversity. As
reported in Table 3.7, nk is insignificant in Models 2 to 6 and significantly negative
in Model 1. Accordingly, our results remain conditional on the use of the measure
of structural diversity.

3.C Sensitivity to sample selection

We measure regional complexity values using the average of xth percentile complex-
ity distribution in each region. To ensure robust estimates, a considerable amount
of regional number of patents is necessary. In the estimations reported in Section
3.4, we therefore remove observations, which have less than 50 patents in a given
time period. Certainly, this threshold is arbitrary and conditions the general sample
on existing patent activities. We therefore rerun our regression considering the full
set of control variables using different patent thresholds. Figure 3.5 reports the sen-
sitivity of our results to the chosen threshold. All independent variables are lagged
three years. The results are robust for different patent thresholds between excluding
the a threshold of ten, which seems to be an outlier.
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Table 3.6: Panel regressions with different time lags ranging from 1 to 6 years and
kci as the regional complexity indicator

Y: GDP per capita (in ln)

(1) (2) (3) (4) (5) (6)

lgdp 0.807∗∗∗ 0.617∗∗∗ 0.448∗∗∗ 0.300∗∗∗ 0.172∗ 0.062
(0.042) (0.066) (0.084) (0.090) (0.086) (0.059)

kci 0.0002 −0.0001 0.0002 0.0003 −0.001 −0.002∗
(0.0002) (0.0004) (0.001) (0.001) (0.001) (0.001)

lpat 0.014∗∗ 0.027∗∗ 0.030∗∗ 0.025 0.012 −0.002
(0.005) (0.009) (0.011) (0.015) (0.018) (0.020)

lq 0.001 0.001∗ 0.002∗ 0.002 0.002 0.0005
(0.0004) (0.001) (0.001) (0.001) (0.001) (0.001)

div 0.00002 0.0001 0.0001 0.0001 0.0002 0.0002
(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

htec-pat 0.001 0.002 0.003∗ 0.004 0.003 0.002
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

lpopdens −0.041 −0.073 −0.116 −0.155∗ −0.187∗ −0.216∗∗
(0.030) (0.056) (0.067) (0.076) (0.079) (0.082)

share manufac 0.0003 0.002 0.003 0.002 0.002 0.001
(0.001) (0.001) (0.002) (0.002) (0.002) (0.001)

hc 0.0005 0.0003 −0.0002 −0.002 −0.006∗∗∗ −0.006∗∗∗
(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

unemp −0.002∗∗ −0.003∗ −0.003 −0.001 0.002 0.006∗
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

Observations 2,375 2,209 2,043 1,877 1,711 1,545
R2 0.747 0.520 0.323 0.170 0.101 0.137
Adjusted R2 0.726 0.475 0.255 0.078 −0.009 0.022

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
All independent variables are lagged from 1 to 6 years.
The corresponding time lags in years are represented by the column numbers.
Models are calculated using regional and time fixed effects.
Robust standard errors are clustered at the regional and time level.
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Table 3.7: Panel regressions with different time lags ranging from 1 to 6 years and
nk as the regional complexity indicator

Y: GDP per capita (in ln)

(1) (2) (3) (4) (5) (6)

lgdp 0.808∗∗∗ 0.616∗∗∗ 0.449∗∗∗ 0.302∗∗ 0.165 0.052
(0.042) (0.068) (0.087) (0.092) (0.087) (0.059)

nk −0.005∗ −0.005 −0.006 −0.009 −0.003 0.0004
(0.002) (0.004) (0.006) (0.007) (0.007) (0.006)

lpat 0.015∗∗ 0.028∗∗ 0.032∗∗ 0.028 0.010 −0.008
(0.005) (0.009) (0.011) (0.015) (0.018) (0.020)

lq 0.001 0.001∗ 0.002∗ 0.002 0.001 0.0002
(0.0004) (0.001) (0.001) (0.001) (0.001) (0.001)

div 0.00002 0.0001 0.0001 0.0001 0.0002 0.0001
(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

htec-pat 0.001 0.002 0.003∗ 0.004 0.003 0.002
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

lpopdens −0.041 −0.074 −0.117 −0.157∗ −0.188∗ −0.216∗∗
(0.030) (0.055) (0.066) (0.075) (0.080) (0.080)

share manufac 0.0003 0.002 0.003 0.003 0.002 0.001
(0.001) (0.001) (0.002) (0.002) (0.002) (0.001)

hc 0.0004 0.0003 −0.0002 −0.002 −0.005∗∗∗ −0.006∗∗∗
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

unemp −0.002∗∗ −0.003∗ −0.003 −0.001 0.002 0.006∗
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

Observations 2,375 2,209 2,043 1,877 1,711 1,545
R2 0.748 0.521 0.324 0.171 0.096 0.122
Adjusted R2 0.726 0.476 0.255 0.080 −0.013 0.004

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
All independent variables are lagged from 1 to 6 years.
The corresponding time lags in years are represented by the column numbers.
Models are calculated using regional and time fixed effects.
Robust standard errors are clustered at the regional and time level.
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Figure 3.5: Sensitivity of estimations to the chosen patent threshold.





4 | Scaling of Atypical Knowl-
edge Combinations in American
Metropolitan Areas from 1836
to 2010

Abstract: Cities are epicenters for invention. Scaling analyses have verified the produc-
tivity of cities and demonstrate a superlinear relationship between cities’ population size
and invention performance. However, little is known about what kinds of inventions corre-
late with city size. Is the productivity of cities only limited to invention quantity? I shift
the focus on the quality of idea creation by investigating how cities influence the art of
knowledge combinations. Atypical combinations introduce novel and unexpected linkages
between knowledge domains. They express creativity in inventions and are particularly
important for technological breakthroughs. My study of 174 years of invention history in
metropolitan areas in the US reveals a superlinear scaling of atypical combinations with
population size. The observed scaling grows over time indicating a geographic shift toward
cities since the early twentieth century. The productivity of large cities is thus not only
restricted to quantity but also includes quality in invention processes.

This chapter is a single authored paper published in 2019 as "Scaling of Atypical Knowl-
edge Combinations in American Metropolitan Areas from 1836 to 2010" in
Economic Geography, 95(4), 341-361.
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4.1 Introduction

It is well known that invention activities are spatially concentrated (Audretsch and
Feldman 1996) and primarily an urban phenomenon (Bettencourt et al. 2007b).
Empirically, scaling analyses demonstrate the predominance of cities and reveal a
superlinear scaling of inventors and inventions with respect to city size. That is,
a disproportionate number of inventors and inventions concentrate in large cities
indicating increasing returns to urbanization (O’hUallichain 1999; O’hUallichain
and Leslie 2005; Bettencourt et al. 2007b; Bettencourt et al. 2007a).

The productivity of cities rests on the idea of inventions being the outcome of
knowledge combinations. This requires people to interact as knowledge is distributed
across individuals, organizations, and institutions (Usher 1954; Nelson and Winter
1982; Utterback 1996; Hargadon 2003). Large cities provide more opportunities for
knowledge combinations due to the concentration of critical requirements such as
people, diversity, creativity, skills, infrastructure, and financial resources (Kuznets
1960; Jacobs 1969; Florida 2002; Glaeser 2011). The compactness of these factors
in cities facilitates information flows among actors, stimulating knowledge combi-
nations and in turn inventive outcomes (Bettencourt et al. 2007b). But how urban
environments influence the art of knowledge combinations remains unexplored.

The large and diverse pool of existing knowledge provides large cities with more
opportunities to explore atypical combinations than their nonurban counterparts.
Atypical combinations introduce novel and unfamiliar linkages between less con-
nected knowledge domains. They are an essential feature of creativity and a fun-
damental building block of high-impact science and technological breakthroughs
(Schilling and Green 2011; Uzzi et al. 2013; Kim et al. 2016). The exclusive focus
on invention quantity in existing scaling analyses, however, overlooks such differ-
ences in quality (O’hUallichain 1999; O’hUallichain and Leslie 2005; Bettencourt
et al. 2007b; Bettencourt et al. 2007a).

In this article, I address the lacuna in scaling analysis by studying knowledge
combinations with respect to city size and particularly ask the following: How
does urban knowledge diversity relate to knowledge combinations? How do atypical
knowledge combinations scale with city size? Are cities more explorative because
their diversity allows them to be?

Empirically, I rely on scaling analysis to study how knowledge combinations
relate to cities’ population size and technological diversity. Following Uzzi et al.
(2013), I distinguish between atypical and typical knowledge combinations based
on z-score measures to proxy knowledge exploration and exploitation, respectively.
This empirical approach relies on historic patent data from 1836 to 2010, which
enables me to study the geography of knowledge combinations over 174 years of US
invention history (Petralia et al. 2016). Studying almost two centuries allows me to
reveal true long-term dynamics of knowledge combinations.

My main findings suggest that large cities increasingly concentrate atypical com-
binations and thus have become crucially important for knowledge exploration in
the long run. I associate this development to the systematic relationship between
knowledge diversity and city size. The knowledge diversity in large cities provides
more opportunities for distinct knowledge combinations and to explore new com-
binations. Thus, large cities drive technological progress not only in quantitative
but also in qualitative terms. The increasing concentration in large cities, however,
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reinforces a widening between urban centers and the rest of the country.
The article is organized as follows. The literature on the geography of invention

and knowledge combinations is presented in the next section. I describe the data
and empirical methods in the two sections following that. The results are presented
and discussed in the penultimate section. The final section concludes the article.

4.2 Theoretical underpinnings

4.2.1 The geography of invention

The notion of the death of distance has culminated in Friedman’s (2005) claim of
the flat world. This stream of research argues that technological change erodes the
obstacles (e.g., physical barriers, travel time, sociocultural differences) that once
limited the exchange of labor, goods, and knowledge (O’Brien 1992; Castells 1996;
Cairncross 1997). In particular, innovation in telecommunication and computing
technologies unfasten the mobility of production factors and detach economic ac-
tivity from its territorial and socioeconomic context (O’Brien 1992; Castells 1996).
Accordingly, technological progress spreads economic activities to every part of the
world and enhances the global diffusion of knowledge. In such a scenario, location
becomes less relevant, reducing the geographic concentration of economic activities
of all kinds and eventually diminishing spatial inequalities over time.

Friedman’s thesis has revitalized an active debate about the role of geography for
economic activities (Christopherson et al. 2008; Florida et al. 2008b; Rodríguez-Pose
and Crescenzi 2008). The spatial distribution of the world economy doubts a flat-
tening of the world, as economic activities and wealth are increasingly concentrated
in space. More precisely, overwhelming empirical evidence is pointing in the exact
opposite direction to what was proclaimed by Friedman and others. Scott (1993)
and Saxenian (1994), for example, analyzed the prevailing concentration of cer-
tain industries (i.e. semiconductors and aerospace) in California and Massachusetts
showing that geographic clustering is a common phenomenon. Most paradoxically,
the digital industry - believed to be the driver that flattens the world - is itself highly
clustered (Zook 2000). Beyond single case studies, it has been shown that economic
activities, more generally, concentrate in specific locations and that the concentra-
tion tends to grow over time (Marshall 1890; Hall and Markusen 1985; Ellison and
Glaeser 1999; Dumais et al. 2002; Ellison et al. 2010). Geography therefore repre-
sents an important determinant in order to understand economic development and
inequalities between cities.

Of all economic activities, the tendency toward spatial concentration is even
stronger for invention activities. Spatial patterns of invention have been the subject
in a growing body of empirical studies, showing that invention activities are not
equally distributed across regions, but rather occur highly concentrated in space
(Feldman 1994; O’hUallichain 1999; Acs et al. 2002; Dumais et al. 2002; Sonn and
Storper 2008; Feldman and Kogler 2010; Castaldi and Los 2017). Most striking, the
spatial concentration is relatively persistent and, more importantly, increases over
time (Varga 1999; Co 2002; O’hUallichain and Leslie 2005; Sonn and Park 2011)
challenging the death of distance argument. Since knowledge is a crucial source for
economic growth (Lucas 1988; Romer 1990), regions more capable of creating new
knowledge possess an economic advantage over less inventive regions (Feldman and
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Florida 1994).
The observed concentration is systematic, since a large body of empirical research

suggests invention is primarily an urban phenomenon. In particular, the inventive
performance of metropolitan areas grows disproportionately with population size,
indicating increasing returns to urbanization (O’hUallichain 1999; O’hUallichain
and Leslie 2005; Bettencourt et al. 2007b; Bettencourt et al. 2007a). These find-
ings indicate a spatial concentration of invention activities in larger metropolitan
areas.Kuznets (1960) elaborated how a larger population size is associated with a
greater productivity of new knowledge. However, not explicitly referring to Kuznets’
work, more recent contributions rely on his thoughts about cities as centers for
knowledge creation. Bettencourt et al. (2007a) adopted a theoretical and method-
ological framework called scaling, which stems from biology (Schmidt-Nielsen 1984;
West 1997) and quantifies the relation between size (e.g., body size, population size)
and aggregated outcomes (e.g., metabolism rate, wealth, and inventions). The de-
pendence of invention activity Y on population size N can be expressed as a scaling
law of the following form (Bettencourt et al. 2007b):

Y = Y0N
β (4.1)

where β is the scaling exponent, which falls into three broad categories revealing
three different scaling mechanisms. First, β smaller than one expresses a sublinear
relationship implying economies of scale. Second, a linear relationship is evident if
β equals one. Third, if β is greater than one, the relation between population size
and inventive performance of a city is superlinear, revealing increasing returns to
urbanization, as reported, for example, in Bettencourt et al. (2007b). That is, if a
city doubles its population size, it increases its inventive output more than twice as
much. The empirically confirmed superlinear scaling of invention activities (Carlino
et al. 2007; Arbesman et al. 2009) reveals the dominant role of large metropolitan
areas for invention, at least, in quantitative terms.

But why are cities so remarkably productive with respect to inventions? The
literature on urban scaling attributes the productivity to two major interdependent
factors: population size and knowledge diversity (Kuznets 1960; Jacobs 1969; Bet-
tencourt et al. 2007b). Highly skilled and creative minds increasingly concentrate
in urban areas stimulating creative processes such as invention activities. Inventors
in cities thus have access to a larger and also more diverse pool of knowledge than
inventors living outside of cities. This is crucially important, since inventions often
build on the combination of existing knowledge (Usher 1954; Nelson and Winter
1982; Utterback 1996) and thus on interpersonal interactions that are facilitated by
geographic proximity (Liben-Nowell et al. 2005). Urban environments provide more
opportunities for knowledge exchange between actors and thus facilitate knowledge
combinations (Bettencourt et al. 2007b). Nevertheless, existing scaling analyses do
not ask how cities influence knowledge combinations. Therefore, they disregard
qualitative differences of knowledge combinations and treat inventions as a homo-
geneous quantity (O’hUallichain 1999; O’hUallichain and Leslie 2005; Bettencourt
et al. 2007b; Bettencourt et al. 2007a; Carlino et al. 2007; Sonn and Park 2011).
By analyzing and evaluating the novelty of knowledge combinations, I particularly
shift the focus from quantity to quality and extend existing approaches. In the
next section, I argue that knowledge combinations are heterogeneous and that cities
concentrate essential factors, which affect knowledge combinations in their quality.
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4.2.2 Geography of knowledge combinations

Knowledge combinations represent an important mechanism of idea creation (Usher
1954; Nelson and Winter 1982; Utterback 1996; Hargadon 2003; Arthur 2009). In-
ventions consist of multiple components that are put together in a novel way to fulfill
a specific purpose. The components themselves are rarely completely new; rather,
they typically represent existing pieces of knowledge (Arthur 2009). Crucially, the
art of creatively combining different knowledge domains is one important source for
different degrees of novelty across inventions (Ahuja and Lampert 2001).

Exploration and exploitation are two important search processes in research and
development (R&D), which differ significantly in their underlying combinatorial
characteristics (March 1991). Exploitation thereby refers to the reuse and refinement
of existing combinations, whereas exploration describes the search for and develop-
ment of new combinations. Exploring new combinations implies higher costs and
risks than reusing proven combinations. Due to these characteristics, combinations
identifying exploitation occur more frequently and hence represent typical combi-
nations. In contrast, combinations resulting from exploration are rather rare and
atypical among observed combinations. In line with previous studies, I rely on the
terminology of atypical (typical) combinations as proxies for exploration (exploita-
tion) (Schilling and Green 2011; Uzzi et al. 2013; Kim et al. 2016). Combinatorial
characteristics are a strong predictor for the impact of inventions. It is the combi-
nation of previously disconnected components, i.e. exploration, that leads to novel
ideas and high impact results (Fleming 2001; Dahlin and Behrens 2005; Schoenmak-
ers and Duysters 2010; Schilling and Green 2011; Uzzi et al. 2013; Kim et al. 2016;
Verhoeven et al. 2016).

Consequently, spatial variance of exploration and exploitation will affect the re-
gional outcome of invention quality. That is, places of knowledge exploration (i.e.,
regions that are more capable of combining knowledge in an explorative fashion)
are more likely to produce atypical inventions. However, no study exists that seeks
to identify such interregional variations. The literature on knowledge combinations
is silent about possible geographic patterns and offers little insight into the geogra-
phy of invention. Although the combinatorial character of knowledge is embedded in
contemporary concepts of economic geography, for example, related variety (Frenken
et al. 2007), differences between regions have not been taken into account to explain
spatial inequalities. I therefore shift the focus explicitly to knowledge combinations
as the research object in order to disentangle the geography of invention in qualita-
tive terms. But why should places differ regarding the intensity of exploration and
exploitation?

The literature on urbanization externalities suggests regional diversity playing
a major role for knowledge combinations. The argument harkens back to Jacobs
(1969), who described the benefits of large and diverse cities for socioeconomic in-
teractions. Firms, for example, benefit from a cross-fertilization of ideas between
industries, rather than being stuck in industry-internal thought patterns. Hence, di-
versity increases the likelihood of knowledge spillovers between heterogeneous actors
(Bettencourt et al. 2008; Arbesman et al. 2009). Regions with large (knowledge) di-
versity, in particular, provide more opportunities for knowledge combinations than
less diverse cities where such diversity is missing. Being located in diverse envi-
ronments allows drawing from larger pools of distinct knowledge pieces (e.g., tech-
nologies, sectors, industries), which in turn increases the opportunities for atypical
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combinations.
The geographic nature of knowledge spillovers reinforces the importance of re-

gional diversity for combination processes. An exhaustive literature demonstrates
that knowledge, in general, does not travel easily over long geographic distances.
More precisely, knowledge tends to stay in the same region where it was once cre-
ated, although the effect diminishes as technologies mature (Jaffe 1989; Jaffe et al.
1993; Anselin et al. 1997; Varga 2000). It is often argued that codified knowledge
travels more easily than tacit knowledge, while tacit knowledge is more likely to
adhere to specific places (Hippel 1994; Maskell and Malmberg 1999; Gertler 2003).
Yet, it is difficult to assess the difference between codified and tacit knowledge empir-
ically. Balland and Rigby (2017) disentangled the two knowledge types by arguing
that tacitness can at least partially be captured by the complexity of what is known.
Their findings suggested that knowledge complexity limits the geographic distance
of knowledge spillovers even more. However, in most instances, codified and tacit
knowledge are complements, and, hence, the geographic stickiness of the latter will
also reduce the mobility of the former (Cowan and Foray 1997). Accordingly, the
local knowledge base represents a crucial determinant of regional knowledge combi-
nation processes. Consequently, more diverse cities have access to a larger variety
of local knowledge, enabling them to realize more distinct combinations than less
diverse cities.

Diversity is critically linked to urbanization. Larger cities, usually, host more
different industries than smaller towns. Recently, Youn et al. (2016) analyzed how
diversity of business activities relates to city size in US metropolitan areas. They
found a linear relationship between city size and business diversity. In an earlier
work, Mori et al. (2008) observed a similar relationship between industrial activities
and the population size of metropolitan areas in Japan. Clearly, this pattern is not
limited to a single nation. The theoretical logic behind the observed linear scaling
of population and diversity rests on the notion of the urban hierarchy (Christaller
1933). The central idea is that activities found in the largest cities include those
located in the smallest towns, but not vice versa. Larger cities (i.e. central places)
provide more sophisticated products, services, and technologies for their less popu-
lated surroundings. New York, for example, has a larger potential to explore new
knowledge combinations than Branson, Missouri.

Regional diversity, however, is not sufficient to actually explore new combina-
tions. It rather indicates the potential that could be explored. Importantly, explo-
ration requires certain skills and actors to use the given potential, which are not
equally distributed across space (Glaeser and Maré 2001; Florida 2002; Bettencourt
et al. 2007a; Combes et al. 2008; Bacolod et al. 2009; Storper and Scott 2008; Lee
et al. 2016). Spatial wage disparities (i.e. the urban wage premium) indicate that
people living in larger cities earn more then their nonurban counterparts (Weber
1899; Glaeser and Maré 2001). Combes et al. (2008)) attributed this observation
to the spatial sorting of skills. Up to half of the wage disparities is explained by
differences of the local workforce composition. Relatedly,Bettencourt et al. (2007a)
observed a superlinear scaling for both creative employment, as defined by Florida
(2002), and R&D employment. That is, individuals with better qualifications for
exploring and exploiting knowledge combinations tend to concentrate in larger and
more densely populated cities. It follows that cities not only have the larger poten-
tial for atypical knowledge combinations but also have a higher capacity (due to the
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urban concentration of the skills and talents needed for this task) to exploit these
potentials. Based on this, I expect atypical combinations to concentrate in large
cities. I hypothesize this relationship as follows:

Atypical and typical knowledge combinations scale superlinearly with city size. How-
ever, atypical combinations scale to a larger extent with city size than typical com-
binations.

4.3 Data

In line with previous studies, I rely on patent data to analyze invention activities as
results of combinatorial search processes (Fleming 2001; Dahlin and Behrens 2005;
Schoenmakers and Duysters 2010; Arts and Veugelers 2015; Kim et al. 2016). Patent
data has some peculiarities, which affect the results. Patent activities are not equally
distributed across firms, technologies, and sectors. Most importantly, the tendency
to patent an invention is biased in favor of manufacturing activities (Griliches 1990).
Thus, patents underestimate the inventive outcome in less manufacturing-intensive
regions. Eventually, the decision to patent rests on strategic judgment. Not every
invention results in a patent for various reasons, for example, information disclosure,
the ease of circumventing patent claims, and application costs (Cohen et al. 2000).
Acs et al. (2002), however, found that patents are a reliable indicator for measuring
invention activities at the regional level.

I draw the patent data from three different data sources. The first source is Hist-
Pat, which was recently generated by Petralia et al. (2016) and is publicly available.
This data set contains geographic information on patents from the United States
Patent and Trademark Office (USPTO) ranging from 1836 to 1975. I complement
HistPat by using the data set from Li et al. (2014), which covered the years 1975
to 2010 and contained geographic information as well. Third, I used the Master
Classification File of the USPTO Bulk Storage System, which provides information
on technology classes for the whole time span. The data sets were matched by using
patent numbers as unique identifiers. With this data in hand, I was able to analyze
the geography of knowledge combinations for granted US patents over the last 174
years.

Patent data reveal how knowledge is combined, as each invention is classified
into at least one technology class. In many cases, one single invention is grouped
into more than one class. This information has been used to study the knowledge
combination process (Fleming 2001; Dahlin and Behrens 2005; Schoenmakers and
Duysters 2010; Kim et al. 2016). The underlying classification scheme is the Coop-
erative Patent Classification (CPC). The CPC has been established to harmonize
individual classification systems between the USPTO and the European Patent Of-
fice. Using the CPC thus allows for cross-country comparison of empirical results.

Scholars have long debated how to define a city theoretically and for the purposes
of quantitative research (Arcaute et al. 2014; Louf and Barthelemy 2014). HistPat
locates patents not to American cities, but rather to counties. This signifier of inven-
tion location does not suffice. The county level represents a narrow administrative
boundary; it does not take into account interregional dependencies crossing county
boundaries. Focusing on county boundaries can therefore lead to spatial bias, since
inventors living in one region could potentially generate their invention in neighbor-
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ing ones. To capture such interregional interdependencies and to minimize spatial
bias, most geographic analyses use functional units (Bettencourt et al. 2007a; Youn
et al. 2016). In this study, I use 171 Combined Statistical Areas (CSA), which is the
largest unit of the Metropolitan Statistical Areas in the United States.

I gathered population data of US counties back to the first documented entries,
which were in New York County in 1656. I used Wikipedia as a data source to obtain
the information for every US county, then aggregated the population size to the CSA
level1. The population data are only available for ten-year periods. However, these
data allow for constructing a panel covering a long time period.

4.4 Methods

4.4.1 Z-scores approach

Following Uzzi et al. (2013) and Kim et al. (2016), I investigate the combinatorial
nature of invention by applying z-score measures at the subclass level of the CPC2.
Teece et al. (1994) introduced z-scores for estimating the relatedness between in-
dustries. Z-scores compare the observed combinations of technology classes to what
would be expected under the assumption that combinations are random. More
formally, the z-score is expressed as follows:

zi,j =
oi,j − ui,j
σi,j

(4.2)

where oi,j, j is the empirically observed co-occurrence count of technology classes i
and j. The expected co-occurrence and standard deviation are ui,j and σi,j, respec-
tively. A high value for oi,j can be driven by the combination of i and j or by a
high number of patents n for both classes. If ni and nj are large, one can expect to
observe a fair amount of combinations, even if there is little synergy between them.
By contrast, a small ni and nj result in a relative small number of combinations.
To control for this effect, I compare the observed co-occurrence oi,j to what can
be expected given ni and nj, if knowledge combinations were random (Teece et al.
1994).

The expected co-occurrence, ui,j, represents a hypergeometric distribution and
is thus given by the product of the number of patents in both technology classes ni
and nj divided by the total number of patents N :

ui,j =
ninj
N

(4.3)

and its standard deviation σi,j is given by:

σ2
i,j = ui,j

(
1− ni

N

)(N − nj
N − 1

)
(4.4)

1I used Wikipedia because it offers data for the entire 174 years of observation. I compared
the population size for the most recent years with official data sources, such as www.census.gov,
finding no differences.

2As a robustness check, I also used the CPC class level (three digits) showing that results are
independent of the technological resolution (see Appendix 4.B.
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If i and j were combined more often than expected, equation 4.2 produces a positive
value. A positive z-score indicates a typical class combination and, relatedly, an
invention that recombines known elements. Conversely, if the two classes i and j are
rarely paired together relative to their expected occurrence, equation 4.2 produces a
negative number. This indicates an atypical knowledge combination and, relatedly,
an innovative invention.

I can only consider patents that were assigned to at least two technology classes
when discussing knowledge combinations because z-scores measure the typicality of
combinations between technology pairs. Single class patents shed no light on the
combination process. This provides a total sample of 1,706,499 patents granted to
inventors living in US metropolitan areas.

4.4.2 Cumulative knowledge combinations

Knowledge accumulates over time, giving rise to the emergence of technological
trajectories (Dosi 1982; Nelson and Winter 1982). However, the characteristics of
knowledge combinations can vary over time. An atypical combination, for exam-
ple, can diffuse in the knowledge space, if it is repeated in subsequent inventions.
Atypical then becomes typical, under the right circumstances and on a long enough
time line. Conversely, a certain combination can lose its typicality over time if it is
superseded by newer knowledge combinations. To capture this temporal evolution,
I rely on an approach similar to the one applied by Kim et al. (2016). For example,
if t is 1950, I consider all patents from the beginning of the observation in 1836 to
1950 to calculate oi,j3. This approach takes into account the cumulative nature of
knowledge production and allows the z-scores to evolve over time.

4.4.3 Scaling analysis

Urban scaling analyses express the dependency of a certain quantity Y (e.g., air
pollution, bike thefts, inventions) on cities’ population size N as a power-law relation
(Bettencourt et al. 2007a):

Y = Y0N
β (4.5)

or its linear transformation

log(Y ) = log(Y0) + β log(N) (4.6)

with Y0 representing a normalization constant. I estimated β by using an ordinary
least squares estimation. Thus, β can be interpreted as the exponent of population
size N , with β falling into one of three categories: β = 1 (linear), β < 1 (sublinear),
and β > 1 (superlinear) (see Section 4.2.1). I use 95 percent confidence intervals
to test the significance of the exponents falling into one of the three categories.
A superlinear relation, for example, is often associated with increasing returns to
urbanization. When N doubles in size, Y increases more than twice as much.

3I also applied a twenty-year rolling window approach in which the history of knowledge com-
bination washes out over time; see Figure 4.6 in Appendix 4.A. The cumulative and the rolling
window approach correlated on average at a high level, with 0.9 < R < 1.
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4.5 Results

In a first step, I analyzed the scaling relation between technological diversity and the
population size of cities. One simple measure of diversity is the number of distinct
technologies D in a city. A given technology class belongs to the local portfolio if at
least one corresponding patent is filed. The hierarchical nature of the CPC allows
the number of distinct technologies at a more granular level to be analyzed. Youn
et al. (2016) showed that the resolution by which technologies are considered distinct
clearly affects the results. I control for this observation by using three different levels
of technological resolution as defined by the CPC: subclasses (Dmax = 654), groups
(Dmax = 10, 154), and subgroups (Dmax = 218, 570).

Figure 4.1 illustrates D as a function of population size at different levels of
technological resolution for the whole time span. D is normalized by Dmax to ensure
comparability between resolution levels (Figure 4.1, panel A). Diversity at the sub-
class (red dots) and group level (green dots) strongly follows a logarithmic law. The
corresponding exponents βsubclass = 0.22± 0.02 and βgroup = 0.56± 0.03 imply that
diversity relates sublinearly to population size as β < 1. This finding suggests that
larger cities are more diverse but that diversity does not increase disproportionately
with city size.

When using the most fine-grained level of distinction, subgroups (blue dots in
panels A and D of Figure 4.1), the exponent changes to βsubgroup = 0.95± 0.04. The
corresponding 95 percent confidence interval ranges from 0.86 to 1.03. Hence, the
range includes β ≈ 1, which corresponds to a linear relation of diversity and city
size. The result is similar to that of Youn et al. (2016), who observed an exponent of
β = 0.98±0.02 for the relation between diversity of business activities and city size.
Accordingly, technological diversity is also strongly related to city size in a linear
fashion. This relationship, however, is very sensitive to the level of technological
resolution.

Next, I analyzed how the US cities’ local diversity relates to knowledge combi-
nations. As was explained in “Theoretical Underpinnings,” a proportional increase
of diversity shifts knowledge combination opportunities (distinct knowledge combi-
nations). The CPC distinguishes 654 different subclasses (Dmax), enabling 213,531
distinct class combinations. Using subclasses is sufficient to study knowledge com-
binations, as cities realize only a small fraction of what is theoretically feasible. The
average share of realized combinations across all cities is 3 percent. The most di-
verse city is New York, with patents in 630 different technologies between 1990 and
2010. New York’s knowledge base allows for 198,135 distinct combinations, of which
17,182 were realized (9 percent). Local diversity can be seen as the endogenous
potential for knowledge combinations.

Figure 4.2 plots the relationship between diversity and distinct class combina-
tions at the city level at four different time periods. In 1850, the relationship was
almost linear. Over the years, the curve became steeper, as cities’ technology port-
folios grew more diverse.

I investigated the relationship between diversity and knowledge combinations
once more by employing the scaling approach. Figure 4.3 visualizes the development
of the scaling exponent, β, over time. The scaling exponent of diversity is larger
than one, indicating an overproportionate increase of distinct class combinations
with cities’ diversity.
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Figure 4.1: Technological diversity as a function of population size at three different
levels of technological resolution. Diversity is normalized in A by Dmax for compa-
rability reasons. Scaling relations between population and technological diversity B
at the subclass level (Dmax = 654), C at the group level (Dmax = 10, 154), and D
at the subgroup level (Dmax = 218, 570).
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Figure 4.2: Scaling relationship between technological diversity and the total number
of distinct class combinations A in 1850, B in 1900, C in 1950, and D in 2010 in
US metropolitan areas.
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Figure 4.3: Scaling exponent of diversity with respect to the number of distinct
combinations over time. Dashed lines indicate the 95 percent confidence interval.

Figure 4.4: Average number of technologies in the most diversified (green line) and
least diversified cities (orange line). Dashed lines indicate the 95 percent confidence
intervals.

In addition, Figure 4.3 shows that scaling increases over time. I interpret this
finding as evidence for growing disparities between the least and the most diverse
cities. To understand this finding in greater depth, I divided the sample into two
subsamples based on each city’s diversity in each year. The most diverse cities belong
to the upper quartile, and the least diverse cities to the lower quartile. I compared
both groups’ sample means and corresponding 95 percent confidence intervals based
on the one sample t-test. Figure 4.4 visualizes the result. The difference between
both sample means is significant and clearly increases over time, emphasizing the
increasing disparity between the groups. This disparity is largely driven by the
increasing diversity of the most diverse cities, such as New York, Greater Boston,
Los Angeles, Chicago, and the Bay Area (in San Francisco).

In a further analysis, I examined the correlation between knowledge combinations
typicality and population size. My hypothesis claims that the resources needed for
expanding the set of knowledge combinations are especially concentrated in large
cities, such that larger cities have more atypical knowledge combinations (see Section
4.2.2).

Figure 4.5 illustrates β of atypical (red line) and typical (blue line) combinations
in relation to population size over time. Typical combinations serve as the baseline
scaling of knowledge combinations against which atypical combinations are tested
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Figure 4.5: Scaling exponent of population size over time for atypical (red line) and
typical combinations (blue line). Dashed lines indicate the 95 percent confidence
interval.

and put into relation. The scaling exponent of atypical combinations has increased
over the last 174 years. Until 1900, the exponent was smaller than one; this indicates
there were no particular benefits of city size at that time. Since then, atypical
combinations appear to become an urban phenomenon, with β > 1 and a maximum
of 1.54± 0.07 in 1970. Between 1970 and 2010, the scaling exponent, however, has
slightly decreased.

Interestingly, urbanization is not just favorable for atypical but also for typical
combinations. For most years since 1836, the scaling exponent of typical combina-
tions has been greater than one and larger than the exponent of atypical combi-
nations. That is, cities have been more successful at knowledge exploitation than
exploration. In the last decade, both exponents have converged to almost the same
value. Based on this finding, I may only partially confirm my hypothesis: both
atypical and typical combinations scale superlinearly with city size, but atypical
combinations do not scale to a larger extent than typical combinations.

4.6 Conclusion

The increasing availability of large and historic data sets opens new possibilities
for empirical research. This study is among the first analyzing the geography of
invention over almost two centuries. My analysis of American invention history
reveals that knowledge exploration clearly concentrates in large cities. That is,
atypical combinations scale superlinearly with cities’ population size. The scaling
exponent significantly increased over the last 174 years, which suggests that large
cities drive technological progress not only in quantitative but also in qualitative
terms. This finding challenges the prominent death of distance thesis in almost all
regards (Friedman 2005).

I attribute the growing importance to the opportunities given in large cities. In
particular, knowledge diversity in large cities provides opportunities for knowledge
combinations not found in smaller and less diverse towns. Beyond diversity, larger
cities also concentrate the skills to exploit the given diversity. Inventors in large
cities realize a disproportionate number of distinct knowledge combinations, which
also affects the exploration of new combinations. Given the cumulative nature of
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knowledge, wealth, innovation, and human skill, my results suggest a self-reinforcing
process that favors metropolitan centers for knowledge creation. Thus, knowledge
creation plays a major role for creating and maintaining spatial inequalities.

Increasing spatial inequalities have profound implications for regional develop-
ment and policy making. Inequalities unfold in the form of invention activities, as
one crucial economic activity that transforms our economy and society. The benefits
of knowledge creation in large cities are not shared by all regions and reinforces a
widening divergence between large cities - as centers of knowledge exploration - and
smaller towns. Given the importance of geography for knowledge generation, it is
unlikely that spatial concentration of invention activities will stop. Earlier research,
moreover, observes a decreasing productivity of R&D and highlights that more re-
sources and capabilities are necessary to yield useful R&D outcomes (Lanjouw and
Schankerman 2004; Wuchty et al. 2007; Jones et al. 2008). Large cities provide
the required resources and capabilities in close geographic proximity. Smaller towns
lack the requirements to compete, get disconnected, and fall behind. It should be,
furthermore, in the interest of policy makers that all places benefit from urban ex-
ternalities. That is, policy has to consider how to distribute the novelty created in
the centers down the urban hierarchy to smaller towns and lagging regions.

However, much research remains to be done. Why did it take longer for atypical
combinations to scale that strongly with city size? Has this process stopped, or will
it continue? Moreover, atypical knowledge combinations do not automatically imply
a high technological impact or economic value. Thus, it remains unclear precisely
how (a)typical combinations relate to the economic performance of cities and how
they explain local stories of success and failure.
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4.A Moving window vs. cumulative approach

Figure 4.6: Correlation coefficient between z-scores calculated in a rolling window
(twenty years) and a cumulative approach (see Section 4.5).
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4.B Robustness analysis

To check if the results described are not affected by the choice to use the four-digit
CPC level (CPC4), I repeated the analysis by using a different level of technological
aggregation, that is, three-digit CPC (CPC3). The CPC3 distinguishes between 127
different technologies. The figures clearly show that my results are relatively robust
using the CPC3. As the CPC4 reveals more technological details than CPC3, I
decided to use the CPC4 as the main level for my analysis.

Figure 4.7: Scaling relationship between technological diversity and the total number
of distinct class combinations A in 1850, B in 1900, C in 1950, and D in 2010 in
US metropolitan areas using the CPC3.
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Figure 4.8: Scaling exponent of diversity with respect to the number of distinct
combinations over time using CPC3. Dashed lines indicate the 95 percent confidence
interval.

Figure 4.9: Average number of technologies in the most diversified (green line) and
least diversified cities (orange line) using CPC3. Dashed lines indicate the 95 percent
confidence intervals.

Figure 4.10: Scaling exponent of population size over time for atypical (red line) and
typical combinations (blue line) using CPC3. Dashed lines indicate the 95 percent
confidence interval.



5 | The Effect of Macro-
Psychological Openness on
Impactful Innovation in US
Metropolitan Areas

Abstract: High-impact innovations yield important benefits for the economic well-being
of regions. While previous research has shown that regions substantially differ regarding
their innovation quality, the sources of these regional differences remain largely unexplored.
Here we argue, and test the assumption, that cultural differences between regions in terms
of population-level trait openness help explaining the observed regional differences in in-
novation quality. Although previous research studied the effect of regional openness on
innovation, the empirical evidence is limited to innovation quantity and relies on indi-
rect statistical indicators of regional openness. To overcome the shortcomings, we directly
measure peoples’ openness in regions based on personality information of more than 1.26
million individuals from 382 Metropolitan Statistical Areas in the United States and test
the macro-psychological approach against the indirect open-mindedness indicators applied
in previous research (Florida’s "Creative Class", "Gay Index", and "Bohemian Index").
We assess innovation quality in regions by relying on patent data and patent citations.
Our results show that the effect of macro-psychological openness on innovation quality
in regions is substantial for highly impactful innovations and nearly absent for the aver-
age innovation quality. These unique effects of macro-psychological openness persist even
when controlling for indirect open-mindedness indicators, educational attainment, and the
economic structure of regions.

This chapter is co-authored with Tobias Ebert, Martin Obschonka, P. Jason Rentfrow, Sam
Gosling, and Jeff Potter. The PhD candidate is the first author of the article.
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5.1 Introduction

On July 12, 2019, researchers from San Francisco proclaimed the rejuvenation of
nine elderly men by turning back the men’s biological clocks two years (Bahnsen
2019). Although their research has not gone through a peer-review process yet, the
expected economic value, the impact on society and subsequent innovation could be
tremendous. Was it just a coincidence that such an innovation was developed in San
Francisco? Previous research suggests that it was not. Places substantially differ
in their ability to produce high-impact innovations and California is one of them
(Ejermo 2009; Castaldi and Los 2017). Little is known about the places that produce
innovations of outstanding impact, as much research has been devoted to innovation
quantity and less to quality (see Malecki 2010, for a review). Because innovations
vary enormously in their importance, simple innovation counts are less informative
and yield indistinct conclusions, as, for example, the number of innovations grows,
while their quality declines (Hall and Ziedonis 2001). The larger technological and
economic gains associated with high-impact innovations (Trajtenberg 1990) suggest
that more innovations must not necessarily imply increasing benefits. But why are
some places more successful in producing impactful innovations?

It might need a specific regional culture for impactful ideas to rise and flourish
(Boytchev 2019). In fact, the importance of regional cultures for innovation is –
sometimes explicitly and implicitly – discussed in previous research (Saxenian 1994;
Rodríguez-Pose 1999; Florida 2002; Sandberg and Aarikka-Stenroos 2014). In her
case study,Saxenian (1994) compared regional characteristics to explain the success
in Silicon Valley and the decline along Route 128 in Massachusetts. Much of her work
emphasizes cultural differences with people in the Valley being more open and flexi-
ble towards innovation than along Route 128. More general, Rodríguez-Pose (1999),
distinguishes between innovation prone and innovation averse societies, which trans-
late the regional potential into actual innovation behavior. Florida (2002) argues
that regions’ level of tolerance, which includes open-mindedness, plays an important
role for innovation. In contrast, restrictive cultures represent an essential barrier for
innovation. Sandberg and Aarikka-Stenroos (2014, p. 1298) define a restrictive cul-
ture as “shared values and beliefs that characterize groups of people in a particular
place and orient their resistance to innovations.” Such restrictive cultures may not
only prevent single minds from having great ideas, but also create an environment
in which novel ideas lack necessary appreciation and support (Riffai et al. 2012).

Regional culture, however, remains an elusive concept. While all the previously
described contributions assume a prominent role of regional openness, a common
understanding of regional openness is missing and its intangible nature greatly chal-
lenged empirical investigations. Lacking direct measurements, existing approaches
therefore relied on indirect proxies. Prominently, Florida (2002) used the share
of homosexuals, bohemians or creative occupations as indicators of tolerance. Al-
though these measures surely have their justification given the available data and
have greatly advanced our understanding of the importance of regional cultures to
explain differences in innovation across regions, their interpretation is far from being
clear and contain strong assumptions.

A way to overcome many shortcomings of previous research comes from psy-
chology and uses personality characteristics of individuals (e.g. traits) living in a
region to assess local cultures (Rentfrow et al. 2013). By using large-scale data sets



Impact 87

with personality information of millions of people, psychologists reveal regional dif-
ferences in the prevalence of personality traits (Rentfrow et al. 2008; Rentfrow et al.
2013; Jokela et al. 2015). Recent empirical research suggests that regional person-
ality differences have crucial implications for regional development, as they impact
economic growth and entrepreneurship in regions (Stuetzer et al. 2018; Garretsen
et al. 2018b; Obschonka et al. 2015; Stuetzer et al. 2016).

Here we assess regional openness based on the personality information of more
than 1.26 million participants from an online survey (Gosling et al. 2004). We aggre-
gated the trait openness of the people in 382 Metropolitan Statistical Areas (MSAs)
in the United States (US) and study the relationship between regional openness
on innovation quality in regions. As a proxy for regional innovation, we rely on
patent data from the United States Patent and Trademark Office (USPTO). Rather
than assume that all innovation are equally important, we distinguish innovations‘
impact based on citation data (Trajtenberg 1990; Harhoff et al. 1999; Hall et al.
2005). We test our personality-based approach against the widely-used tolerance
indicators of Florida (2003) to differentiate macro-psychological openness from the
open-mindedness included in tolerance.

Our results indicate that a psychological regional climate of high openness is
associated with a stronger output of impactful innovations, but not with a stronger
output of average innovations. Regional openness as measured with these psycho-
logical data explains a substantial share of the regional variation of impactful inno-
vations beyond potential confounders and the tolerance indicators used in previous
research (Florida 2002). Hence, such an open psychological climate might indeed
function as a hotbed for particularly creative and ambitious innovations, whereas it
seems not necessary for the production of average, less impactful innovations.

The remainder of our article is structured as follows: We present and discuss rel-
evant theoretical underpinnings as well as empirical works and derive our research
hypothesis in Section 5.2. Section 3.3 entails the data and our methodological ap-
proach. We present our main results and robustness checks in Section 5.4 Section
5.5 concludes the paper.

5.2 Theoretical and empirical literature overview

5.2.1 Impactful innovations

Although previous research highlights the heterogeneity of knowledge (Polanyi 1966;
Nelson and Winter 1982) and places (Malmberg and Power 2005; Maskell and Malm-
berg 1999; Martin and Sunley 2006; Boschma and Frenken 2011), the primary focus
of empirical research is still on innovation quantity (Malecki 2010). Innovations are
not a homogeneous quantity but substantially differ regarding qualitative features
of which impact represents a crucial one. The differences in innovations’ impact
emphasizes that innovations vary in their importance for subsequent innovations,
their implications for society, and their economic value (Trajtenberg 1990; Harhoff
et al. 1999; Hall et al. 2005).

The literature uses terminologies such as radical innovations (Chandy and Tellis
1998), disruptive innovations (Christensen 1997), or technological breakthroughs
(Hargadon 2003) to indicate valuable innovations. Such terminologies, however,
imply a specific consequence, for example, a breakthrough or the introduction of a
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radically new product, which is often not represented by the empirical measures.
As we measure the impact of innovations in our empirical investigations, we use
impactful innovations throughout the article to ensure a close bonding of theory
and empirical analysis and to avoid misleading interpretations.

Innovation activities are generally strongly clustered in specific regions (Feld-
man 1994; Acs et al. 2002; Verspagen and Schoenmakers 2004). Considering inno-
vations’ impact reveals that impactful innovations are even more concentrated in
space (Ejermo 2009; Castaldi and Los 2017). In other words, only very few places
are able to create impactful innovations - these high-performing regions appear to
benefit from "special regional features" that enables these impactful innovations.
As impactful innovations are associated with higher economic returns (Trajtenberg
1990), it is important for regional economies if they produce highly impactful or
less-impactful innovations. For instance, the Haber-Bosch innovation at BASF se-
cured global food production and created hundreds of jobs in the region (Bosch
1932). Brin’s and Page’s innovation of an algorithm that searches the web lead to
the foundation of Google, which now employs more than 20,000 people in the region
(Brin and Page 1998).

However, we still know very little why some places produce more impactful in-
novations than others - what are these special regional features that enable some
regions to produce innovations of outstanding quality? Among the few existing stud-
ies in this field, Castaldi et al. (2015) analyzed the influence of regional capabilities
on highly impactful innovations. Their findings suggest that unrelated variety en-
hances the emergence of impactful innovations in regions and, hence, highlights the
importance of the local economic structure for regional innovation quality. Except
these insights, empirical research is (still) astonishingly silent about the underlying
reasons of regions’ ability to produce innovations of outstanding quality.

Beyond conventional, "hard", economic factors, such as the local economic struc-
ture, other, more "soft" factors might play a crucial role to explain the regional
variance in innovation quality. These soft, or intangible, factors emphasize that
regional innovation is not only dependent on the people directly involved in R&D
processes but requires trust (Fukuyama 1995), social capital (Putnam 2001), in-
formal institutions (Rodríguez-Pose 1999), or a specific regional culture (Huggins
and Thompson 2017). Regional culture as one important regional feature expresses
the collective behavior of the local population determined by shared beliefs, social
values and norms (Hofstede 1980; Huggins and Thompson 2017). One reason that
people think and act differently in different places is due to differences in regional
cultures (Oyserman 2017). Regional culture, however, remains elusive and its in-
tangible characteristics emphasize that "something is in the air" (Marshall 1890, p.
198) that is difficult to capture empirically but that impacts regional innovation.

The framework of Florida (2002) highlights the importance of regional culture for
regional development, including innovation. More precisely, tolerance, as a measure
of openness to innovation, of the local population is an important building block in
Florida’s framework to explain regional differences in innovation. Open-mindedness
indicates a regional social climate that cultivates new ideas and enhances knowledge
flows (Florida 2002). Florida’s work has influenced a large stream of research, in-
vestigating the role openness plays for regional innovation (Knudsen et al. 2008; Lee
et al. 2010; Qian 2013; Sleuwaegen and Boiardi 2014). These empirical studies are,
however, limited to the effect of regional openness on innovation quantity.
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We argue that differences found in regional openness also play a crucial role in
explaining the differences in regional innovation quality observed by Ejermo (2009)
and Castaldi and Los (2017). A second limitation of previous research concerns the
use of indirect openness indicators that are based on strong assumptions, such as the
regional share of creative, bohemian, and homosexual people (Florida 2002; Florida
2003; Knudsen et al. 2008; Florida et al. 2008a; Acs and Megyesi 2009; Qian 2013).
Although there might be a statistical link between sexual orientation or occupational
choices and personal mindset, it is clear that not all homosexual people, bohemians
or creative workers are necessarily truly tolerant or open-minded. In addition, high
regional shares of, for example, homosexuals might be due to regions’ openness, but
other, not observed, factors could also play an important role. We therefore present
and test a new approach from psychology to assess regional cultures, i.e. regional
openness in this case, to overcome the shortcomings of previous empirical research
by using the personality of the local population as a direct and robust measure of
regional openness.

5.2.2 Regional personality differences

The emergence of the so-called Five Factor Model (Big Five) of personality (John
and Srivastava 1999) has enabled psychologists to reliably and robustly assess per-
sonality differences between individuals. The Big Five are an exhaustive taxonomy
of personality consisting of five broad dimensions (extraversion, agreeableness, con-
scientiousness, neuroticism, and openness). These five personality dimensions are
partially rooted in biology (Jang et al. 1998), culturally universal (Benet-Martínez
and John 2000) and fairly stable across the lifespan (Roberts et al. 2006). Given
their robustness and universality, the Big Five form a valid instrument to measure
cultural differences (McCrae 2001; Hofstede and McCrae 2004; Rentfrow et al. 2008).

Large-scale personality data allowed studying more fine-grained cultural differ-
ences between regions. In their pioneering paper,Rentfrow et al. (2008) examined
personality traits across US states based on data of more than half a million resi-
dents. Their empirical analysis of aggregated personalities suggests that US states
show significant differences for all big five personality traits. Openness, for exam-
ple, is highest in Washington DC, New York, Oregon, Massachusetts, Washington
State, and California. In contrast, states low on openness are Wyoming, Nebraska,
Iowa, Kentucky, and Alabama. As US states still represent a relatively large re-
gional entity, studies have analyzed the granularity of personality differences for
different definitions of regions such as metropolitan areas (Ebert et al. 2019), coun-
ties (Obschonka et al. 2018), and city districts (Jokela et al. 2015). These studies
demonstrate the persistence of personality differences for a multitude of spatial
scales. Systematic differences between regions are not restricted to a single nation,
but have also been documented for various national and cultural contexts such as
Great Britain (Rentfrow et al. 2015), Switzerland (Götz et al. 2018), Russia (Allik
et al. 2009), and China (Wei et al. 2017) indicating regional personality differences
as a universal phenomenon.

Crucially, these differences of personality across regions are linked to correspond-
ing socio-economic behavior in regions. Spanning various national contexts, regional
personality differences have been linked to critical macro-level outcomes such as vot-
ing behaviors (Obschonka et al. 2018; Garretsen et al. 2018a), emotional health (Mc-
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Cann 2011), drug use (Harrington and Gelfand 2014), personal well-being (Rentfrow
et al. 2009), entrepreneurial activities (Obschonka et al. 2015; Stuetzer et al. 2018),
economic resilience (Obschonka et al. 2016), or economic growth (Stuetzer et al.
2018; Garretsen et al. 2018b).

5.2.3 Macro-psychological openness and impactful innova-
tions

Among the Big Five traits, openness is the dimension most closely associated with
innovation (George and Zhou 2001). Openness describes people’s inventiveness, cre-
ativity, originality, and curiosity (McCrae 1987; King et al. 1996; McCrae 1996).
Open individuals are able to create and tolerate new ideas, while less open individ-
uals, are less likely to try something new and tend to be less flexible to new ideas
(McCrae 1987; Gurtman 1995) . A positive effect of openness on innovation is highly
intuitive and backed by empirical research at the country level (Steel et al. 2012).
However, the relationship has not been confirmed at the regional level. Specifically,
Lee (2017) studied the relationship between personality differences and innovation
quantity in UK regions and did not find an effect of regional openness on innovation
quantity. Instead, his results report a positive association between conscientiousness
and innovation quantity. Such a finding suggests that not an open regional culture,
but rather the prevalence of hard-working mindsets with focus on self-discipline and
task completion are conducive to innovation.

There might be good reasons for Lee’s (2017) finding and a clear explanation
why openness is less relevant for a region’s quantitative innovation output. Impor-
tantly, there are strong theoretical arguments why regional openness might be more
relevant for innovation quality. Impactful innovations meaningfully differ from in-
cremental innovations regarding their characteristics and prerequisites. Incremental
innovations represent minor improvements of existing technologies and are consid-
ered technologically as well as economically less valuable (Trajtenberg 1990). For
these types of innovations, hard-work, commitment, and discipline, i.e. attributes
associated with conscientiousness, might be more important than inventive and cre-
ative thinking (Drucker 1985).

In contrast, high-impact innovations can break with main-stream conventions,
leave existing trajectories, and create new technological paths (Hargadon 2003).
They explicitly involve exploration and unconventionality (Schilling and Green 2011;
Uzzi et al. 2013; Kaplan and Vakili 2015; Kim et al. 2016). Such an exploration
of new ideas requires (a) creativity and action outside core competences and (b)
overcoming rigidities and uncertainties (Leonard-Barton 1992; O’Connor 1998). Ac-
cordingly, for these types of innovations, out-of-the-box thinking, risk taking, and
tolerance of mistakes, i.e. attributes associated with openness, might be key.

This view on a particular relevance of openness for impactful innovations is in
line with research in psychology and management showing that open cultures are
particularly relevant for the qualitative output of innovation processes. Open cul-
tures welcome new ideas, creativity, and unconventional thinking. In other words,
open cultures provide an environment that is conducive to the emergence and subse-
quent acceptance of novel and creative ideas (Reilly et al. 2002; Aronson et al. 2008;
Tellis et al. 2009; Sandberg and Aarikka-Stenroos 2014; Fitjar and Rodríguez-Pose
2011). In contrast, strong barriers preventing highly impactful innovations are rigid
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thinking (Leonard-Barton 1992) and restrictive mindsets including a “fear of change,
fear of failure, conservative decision-making, and restrictive organizational culture”
(Sandberg and Aarikka-Stenroos 2014, p. 1298).

5.2.4 How can regional openness influence impactful innova-
tions in regions?

Innovations are produced by only a tiny fraction of the regional population: innova-
tors. Focusing on innovation impact, yields an even smaller subsample of innovators.
So, how are regional levels of openness in local populations linked to a regional out-
come produced by only a tiny group?

The conceptual framework of Rentfrow et al. (2008) provides two mechanisms
through which regional levels of openness manifest in aggregate innovation per-
formance. First, the observed outcome at the regional level might result from a
clustering of persons expressing their individual disposition (Roberts et al. 2007;
Huggins and Thompson 2017). Individual level research shows that the personality
of inventors is linked to their success. Precisely, inventors high on openness produce
more impactful inventions than inventors low on openness, which is more likely in
more open regions (Zwick et al. 2017). Accordingly, regions higher on openness
feature a higher probability that open people are directly involved in the innovation
process.

The second mechanism focuses on social influence. If a region features a dis-
proportionate share of people with a specific disposition (openness in our case), the
behavioral tendencies associated with that disposition occur more often, become
accepted, and socially valued (i.e. a social norm) (Rentfrow et al. 2008). Living in
a region where a large share of people is open, could produce a social norm, which
welcomes new ideas and values originality. Via social influences, the regional social
norm eventually affects peoples’ behavior and attitudes, irrespective of their natural
disposition (Latané 1981; Huggins and Thompson 2017). Regional social norms can
influence innovators via different channels. Through imprinting, for example, firms
can take on elements of their local environment (Stinchcombe 1965). Accordingly,
firms adopt persistent characteristics that reflect prominent features of the local en-
vironment such as the prevalent social norm (Marquis and Tilcsik 2013). Hence, the
regional social norm becomes apparent in firm attributes and influence the behavior
of their employees. Another channel is based on the embeddedness of people and
firms in networks (Granovetter 1985). Individuals constantly interact with their
social environment outside the firm including formal (e.g. business relations) as well
as informal links (e.g. friendships, occasional relationships) (Granovetter 1985; Uzzi
1997). Firms are also linked to other organizations or institutions (e.g. inter-firm or
university-firm collaborations, spin-off activities, buyer-supplier relations). Bathelt
et al. (2004) call the sum of social and economic relations within a region local
buzz, which facilitates the diffusion of the prevalent social norm among economic
actors. Consequently, even if innovators are not open themselves, they can be in-
fluenced in their behavior by the accepted social norm in the region (Sandberg and
Aarikka-Stenroos 2014). Our theoretical reflections lead to the following hypothesis:

H1: Regional openness has a positive effect on highly impactful innovations in re-
gions, but not on the average innovation quality.
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5.3 Materials and methods

Defining regions is not a trivial task and can have significant implications for regional
analyses (Manley 2014). We choose Metropolitan Statistical Areas (MSAs) in the US
as our spatial unit of analysis, as they are functional regions - consisting of an urban
core and adjacent hinterland with strong social and economic ties. MSAs represent
a standard set of spatial entities, which reveal pronounced differences in innovations
(Boschma et al. 2015) and macro-psychological characteristics (Obschonka et al.
2015). Hence, all variables represent regional aggregations on the level of 382 MSAs.

5.3.1 Impactful innovations in regions

Patents are the most widely established indicator of innovation activities used in
countless studies analyzing innovation activities. Although patents as a measure
of innovation certainly have well-known limitations (Griliches 1990; Cohen et al.
2000), they nevertheless are one of most established and best-validated indicator of
innovations (Acs et al. 2002). We use patent data from the USPTO as our primary
data source. Additionally, we rely on the location information by (Li et al. 2014) to
assign patents to corresponding MSAs based on inventors’ residential information.

Patents vary substantially regarding their socio-economic and technological im-
pact (Trajtenberg 1990; Harhoff et al. 1999; Hall et al. 2005). These differences in
patents quality show significant geographic variation highlighting the importance
to consider patents’ impact in geographic analyses (Ejermo 2009; Castaldi and Los
2017). Following a common approach, we weight patents according to their received
number of citations as a measure of impact. In analogy to citations in academia,
patents also refer to preceding patents to indicate the relevance of the cited patent for
subsequent ones. Hence, forward citations are a suitable way to measure a patent’s
impact (Trajtenberg 1990; Hall et al. 2001; Hall et al. 2005).

Citation counts, however, have some peculiarities, which are important to control
for. First, proximity influences citation behavior (Hall et al. 2001). Citations are,
therefore, more likely when citing and cited patent occur close to each other. That
is to say, patents cite others not only because of their importance, but because they
appeared in close geographic proximity (Jaffe et al. 1993). To control for geographic
proximity, we applied a rather conservative approach and excluded all intra-regional
citations from our sample.

Second, cohort specific citation patterns can distort citation counts. Citation
patterns vary significantly between technology classes. Some classes cite more and
faster than others (Hall et al. 2001). These patterns can have severe consequences
for geographic analyses, as some technology classes concentrate in specific regions
(Breschi and Malerba 1997). Relying on simple citations counts can therefore distort
the results and their interpretation, because differences in citations counts are biased
by location decisions. Some regions might have higher citation counts, simply be-
cause they are home to many citation-intensive technology classes. Hall et al. (2001)
therefore suggest class and cohort corrected citation counts by dividing the received
number of citations with the average number of citations in a given class and year.
This correction eliminates any variance in citations counts due to location decisions
and reveals true impact differences. Theoretically, the corrected citation count runs
from zero to infinity. Counts greater than one indicate that patents received more
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citations than the average patent in the same class and year.
But when is a patent truly impactful or even highly impactful? Clearly, there

is no correct answer to this question. Studies usually rely on a fixed and rather
arbitrary threshold to identify high-impact such as the top 1, 5, and 10 percent
cited patents (Uzzi et al. 2013; Kim et al. 2016). Few exceptions identify high-impact
based on endogenous selection procedures (Castaldi et al. 2015; Castaldi and Los
2017). Both approaches, however, have three disadvantages, which are crucial in the
context of our analysis. Firstly, they dichotomize a continuous outcome, i.e. either
high-impact or not. This disregards information and treats all impactful innovations
as a homogeneous group. Secondly, grouping invention in either high-impact or not
unnecessarily results in a count variable with many zeros at the regional level, which
again removes important information and makes impactful innovations a rare event.
Third, bucketing patents into two groups seems also inflexible, as it only allows
to compare high-impact with the general population of patents. The link between
openness and innovation, however, might have more fine-grained nuances.

We therefore present an alternative approach based on each regions’ impact
distribution. The regional impact distributions represents the ranking of patents
according to their impact in decreasing order for every regions. We calculate the
mean of the corresponding regional impact distribution in different xth percentiles
of the distribution. For example, if x takes the value 10, the corresponding mean
in the 10th percentile indicates the average number of citations received by the top
10 percent of the cited patents in a region. The 100th percentile obviously gives
the mean impact of all cited patents, i.e. the average innovation quality in regions.
This approach allows us to gradually shift percentiles from high-impact closer to the
average and analyze the relationship between openness and impact more flexibly for
all percentiles of the impact distribution. Similar approaches, for example, have
been applied to measure the complexity of economic and technological activities in
a region (Balland et al. 2018).

5.3.2 Macro-psychological openness in regions

Our main independent variable is regional openness based on personality informa-
tion of the local population in regions. To measure regional levels of openness across
MSAs, we used data collected between 2005 and 2015 via the Gosling-Potter Inter-
net Personality project – a website that gives participants customized feedback on
their personality after completion of an online survey (Gosling et al. 2004). The
Gosling-Potter data is the largest self-report database in psychology and has proven
its demographic and psychometric suitability for cross-regional research in a wide
variety of previous studies (Rentfrow et al. 2008; Rentfrow et al. 2013). Within
this data, personality is assessed via the Big Five Inventory (BFI), a widely es-
tablished measure of the Big Five (John and Srivastava 1999). The BFI consists
of 44 items that contain short phrases of prototypical markers of each of the five
dimensions: extraversion, agreeableness, conscientiousness, emotional stability and
openness. Participants reported the degree to which they agreed with each state-
ment using a 5-point rating scale (ranging from 1 [Disagree strongly ] to 5 [Agree
strongly ]).

For the present investigation, we only included participants who reported living
within one of the 382 US metropolitan areas, were between 18 and 90 years of
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age, and completed the personality measure. Regional sample sizes range from 149
(The Villages, Florida) to 63,877 (New York-New Jersey). Overall, regional sample
sizes almost perfectly correlated with the size of the actual regional population (r
= 0.96, p < 0.000). We therefore considered all of the 382 MSAs in our empirical
analysis. Our final sample comprised 1,269,225 participants. However, as is typical
for online studies (Gosling et al. 2004), the demographic composition of our sample
is skewed, with females (64.82%) and younger people (mean age: 31.07, SD: 11.86)
being overrepresented . To derive regional openness scores, we followed the standard
approach in geographical psychology (Rentfrow et al. 2008) and averaged individual
openness scores for each region.

Previous economic research on regional openness typically considers indirect
open-mindedness indicators such the share of creatives, bohemians, and homosexuals
in a region (Florida 2003; Lee et al. 2004; Florida et al. 2008a; Knudsen et al. 2008;
Acs and Megyesi 2009; Qian 2013; Sleuwaegen and Boiardi 2014). We thus explore
to what extent trait openness differentiates or goes beyond these open-mindedness
indicators applied in previous research. To create the open-mindedness variables
we rely on data from the American Community Survey (U.S. Census Bureau 2010)
and calculate the share of people employed in creative industries (“creative”) defined
as arts, design, entertainment, sports, and media occupations. A subsample of this
group are, what Florida (2003) calls bohemians, people working as actors, dancers,
designers, directors, musicians, photographers, producers, and writers. Using these
occupations, we calculate the regional share of bohemians (“bohemians”). Finally, we
consider the share of same-sex couples in a region (“homosexuals”) to approximate
the number of homosexuals in a region.

5.3.3 Control variables

We try to carve out the unique effect of regional openness on impactful innovations.
Therefore, we applied a conservative analysis and included a rich set of potential
confounders and standard control variables. Firstly, the regional knowledge intensity
can have an influence on innovation quality in regions. Human capital is a crucial
variable that explains regional differences in innovation (Pater and Lewandowska
2015) and better qualified workers are also more likely to produce more impactful
innovations (Zwick et al. 2017). Relying on data from the American Community
Survey (U.S. Census Bureau 2010), we constructed two different variables to indicate
human capital, which are the share of the regional population with a bachelor’s de-
gree (“bachelor”) and the share of the regional population working in science related
occupations (“science”) defined as computer, engineering, and science occupations.
To control for the regional presence of high-quality research, we also collected data
about so-called star scientists (“stars”) from Clarivate Analytics’ list of Highly-Cited
Researches (hcr.clarivate.com) (Zucker and Darby 1996). Additionally, we consider
the number of patents per capita (“patents”) as an indicator of the regional knowl-
edge stock, which we also draw from the USPTO.

Secondly, innovation activities are dependent on the regional economic struc-
ture. A large body of research in economic geography discusses the impact of spe-
cialization and diversity on local outcomes (Beaudry and Schiffauerova 2009). We
therefore calculated the average location quotient (Balland 2017) as a standard in-
dicator of technological specialization (“lq”) and the exponentiated Shannon entropy
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(Jost 2006) as a measure of technological diversity (“diversity”) based on regional
patenting activities. Patents are also likely biased towards innovation activities in
manufacturing sectors. We therefore calculated the share of the local labor force em-
ployed in manufacturing (“manufacturing”) based on US census data (U.S. Census
Bureau 2010).

Finally, we control for the regional population density (“popdens”), because ur-
ban areas are disproportionately more innovative than smaller towns (O’hUallichain
1999; Bettencourt et al. 2007b). Additionally, population density can also be re-
garded as a catch-all variable to proxy a large array of regional attributes such
as such as land prices, size of the labor market, and availability of infrastructure.
Again, the US Census (U.S. Census Bureau 2010) serves as our data source for the
regional population. Table 5.1 summarizes all variables used in our analyses, their
definitions, time coverage, and data sources. Table 5.2 provides summary statistics
a correlation matrix of all variables.

5.4 Empirical results

5.4.1 Mapping regional openness and impactful innovations
in regions

Figure 5.1 panel A maps z-standardized openness scores for 382 MSAs and shows
substantial regional variation. Openness concentrates along the coastal regions, in
urban areas, and university towns (Madison, Wisconsin and Boulder, Colorado).
MSAs with a pronounced open regional culture are Santa Fe (New Mexico), Sa-
vannah (Georgia), Santa Cruz-Watsonville (California), Santa Maria-Santa Barbara
(California), and San Francisco-Oakland-Hayward (California). In contrast, MSAs
low on openness are Grand Island (Nebraska), Chambersburg-Waynesboro (Pennsyl-
vania), Rome (Georgia), Danville (Illinois), and Lima (Ohio). Substantial regional
variation of openness has been shown for US states in previous studies (Rentfrow
et al. 2008; Rentfrow et al. 2013). Panel A also emphasizes that US states represent
relatively large regional entities that hide much of the regional heterogeneity. MSAs
within the same state show substantial differences regarding openness. For example,
Texas congregates MSAs ranging from very low (San Angelo) to very high (Austin-
Round Rock) openness values. This is not restricted to relatively large states such as
Texas, but also observed for smaller states such as Washington, Indiana or Louisiana.

As reported in many studies, innovation activities strongly concentrate in space
(Feldman 1994; Acs et al. 2002; Verspagen and Schoenmakers 2004). Mapping the
average innovation quality in panel B of Figure 5.1, confirms these strong geographic
patterns for MSAs in the US. Panel C visualizes highly impactful innovations, i.e. the
average in the 10th percentile of the regional impact distribution. Interestingly, some
regions that produce highly impactful innovations (panel C) have on average a rather
medium innovation quality (panel B) such as Seattle-Tacoma-Bellevue (Washington
State), Boise-City (Idaho), and Sacramento-Roseville (California). The different
geographic patterns in panel B and C suggest that the average innovation quality
in regions does not automatically imply that regions also produce highly impactful
innovations.

By comparing the maps in panel A and panel C of Figure 5.1, we observe con-
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Table 5.1: List of variables with their definitions, time coverage, and data sources

Variable Definition Time Cover-
age

Data Source

average inno-
vation impact

Average number of citations received by
patents in a region

2001-2010 USPTO for raw patent data and
Li et al. (2014) for geographic in-
formation

impactful in-
novations

Average number of citations in xth of
the regional impact distribution [For
example: x = 10, indicates the aver-
age number of citations received by the
top 10 percent of the cited patents in a
region]

2001-2010 USPTO for raw patent data and
Li et al. (2014) for geographic in-
formation

openness Average trait openness of individuals in
regions

2004-2014 Gosling-Potter Internet Personal-
ity Project (Gosling et al. 2004)

bachelor Percentage of the regional population
(25 to 64) years with bachelor degree
or higher

2006-2010 U.S. Census Bureau (2010)

stars Regional number of highly-cited re-
searchers (i.e. star scientists) per 1,000
college students

2001 Clarivate Analytics for highly-
cited researchers and U.S. Cen-
sus Bureau (2000) for college un-
dergraduates

patents Regional number of patents per capita
in log

2001-2010 USPTO for raw patent data and
Li et al. (2014) for geographic in-
formatio

science Percentage of the regional labor force
employed in science-related (computer,
engineering, and science) occupations

2006-2010 U.S. Census Bureau (2010)

lq Average location quotient 2001-2010 USPTO for raw patent data and
Li et al. (2014) for geographic in-
formation

diversity Exponentiated Shannon entropy (Jost
2006)

2001-2010 USPTO for raw patent data and
Li et al. (2014) for geographic in-
formation

manufacturing Percentage of the regional labor force
employed in manufacturing

2006-2010 U.S. Census Bureau (2010)

popdens Regional population density calculated
as the total population per square km
in log

2006-2010 U.S. Census Bureau (2010)

Open-mindedness, i.e. indirect tolerance indicators

creative Percentage of the regional labor force
employed in creative (arts, design, en-
tertainment, sports, and media) occu-
pations

2006-2010 U.S. Census Bureau (2010)

bohemians Regional number of bohemian occupa-
tions per 1,000 occupations According
to Florida (2003), bohemian occupa-
tions are actors, dancers, designers, di-
rectors, musicians, photographers, pro-
ducers, and writers

2006-2010 U.S. Census Bureau (2010)

homosexuals Regional number of same-sex couples
per 1,000 households

2006-2010 U.S. Census Bureau (2010)
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siderable overlaps between regions that are high on openness and produce very im-
pactful innovations. For example, among these regions are Santa Cruz-Watsonville
(California) and San Francisco-Oakland-Hayward (California). Both regions appear
in the top five MSAs regarding openness and high-impact. To go beyond a visual in-
terpretation, we analyze the relationship between openness and innovation activities
more systematically in the next subsection.

5.4.2 The relationship between regional openness and im-
pactful innovations

Our hypothesis states that regional openness and is more important for highly im-
pactful innovations in regions. To investigate our hypothesis more systematically,
we calculated impact in different percentiles along the regional impact distribution
(see Section 5.3.1). In a first approach, we correlate regional openness with the
average impact in different percentiles by shifting xth from 1 to 100, i.e. from the
most impactful innovations in regions to the average innovation quality. Figure 5.2
displays the correlation coefficient of regional openness and innovation quality with
corresponding confidence intervals. The correlation between regional openness and
highly impactful innovations is 0.35 (lower = 0.26, upper = 0.44) and considerably
decreases as we consider less impactful innovations. This result suggests that the link
between regional openness and innovation quality is stronger for highly impactful
innovations.

To examine the link more systematically, we investigate the relationship between
regional openness and innovation in several multivariate settings relying on linear
regressions. That is, we analyze the extent to which regional openness explains
additional variance of innovation activities’ impact beyond a conservative set of
economic control variables. Note, that we cannot include all control variables in
the same estimations as some variables are highly correlated. For example, the
correlation between the share of individuals with bachelor degree and science related
occupations is 0.78 with p < 0.000. We therefore restrict our analysis in this section
to a selected set of control variables and explore the sensitivity of the results with
alternative controls in our robustness checks in the next subsection. The variance
inflation vector is below 3 in all estimated models suggesting that multicollinearity
is not an issue in our main estimations. As our analysis is based on spatial data,
we test the presence of spatial dependencies of the residuals by applying a Lagrange
Multiplier Test (LMT). The LMT’s p-values are reported in every results table.
Spatial autocorrelation is present in a number of models as indicated by a LMT
p-value below 0.05. To test the effect of spatial dependency on our results, we
estimated a spatial lag model in our robustness checks (see Section 5.4.4).

In a first set of models, we regress the average innovation quality on regional
openness and our selected set of control variables. Table 5.3 reports the results
with standardized coefficients. Regarding the control variables, human capital is a
positive and significant predictor of average innovation quality in regions as indicated
by the general level of educational attainment (“bachelor”, b = 0.015, lower = 0.003,
upper = 0.027, p = 0.015) as well as the presence of top researchers (“stars”, b =
0.007, lower = 0.001, upper = 0.013, p = 0.025) in Model 1b and also in Model
1c when we include openness. The average quality is also higher in regions with a
stronger focus on manufacturing industries, as the share of manufacturing activities



Impact 99

Figure 5.1: Maps of A regional openness, B average innovation quality (average
innovation impact), and C highly impactful innovations (average of the 10% most
impactful innovations in regions). All three variables have been standardized.
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Figure 5.2: Pearson correlation coefficient and corresponding confidence intervals
between innovation quality calculated in different percentiles of the regional impact
distribution and regional openness.

is positive and significant (“manufacturing”, b = 0.01, lower = 0.002, upper = 0.018,
p = 0.019).

Model 1a demonstrates that openness is positively related to the average quality
in regions (b = 0.011, lower = 0.001, upper = 0.020, p = 0.029). If we consider
the set of control variables, the coefficient of openness stays positive, but becomes
insignificant (b = 0.007, lower = -0.003, upper = 0.018, p = 0.172). In general, the
goodness of fit is rather low if we only consider openness in the base Model 1a (R2 =
0.01) and also if we consider openness together with our control variables in Model
1c (R2 = 0.167). By comparing the R2 in Model 1b and 1c, we can calculate the
additional gain of considering openness beyond the standard set of economic control
variables. Accordingly, including regional openness results in a 1.83 percent increase
in R2.

In a second set of models, we analyze the relationship between regional open-
ness and highly impactful innovations measured as the average impact in the 10th
percentile of the regional impact distribution. Table 5.4 reports the corresponding
results. Again, human capital is positive and significant for the share of people with
bachelor’s degree (“bachelor”, b = 0.209, lower = 0.152, upper = 0.265, p < 0.000)
and the presence of top researchers (“stars”, b = 0.048, lower = 0.006, upper = 0.090,
p = 0.026). Interestingly, population density was insignificant in Model 1c and 1b
and becomes significant in Models 2b (“popdens”, b = 0.068, lower = 0.016, upper
= 0.119, p = 0.01) and 2c (“popdens”, b = 0.063, lower = 0.012, upper = 0.114, p
= 0.016). This result suggests that urban environments are more important for the
emergence of highly impactful innovations in MSAs than for the average innovation
quality.

Regarding openness, the coefficient is positively significant in the base Model 2a
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Table 5.3: Regression results for the average innovation quality

Y = Average innovation quality in regions (xth = 100th)

Openness Controls Openness +
Controls

(1a) (1b) (1c)

openness 0.011∗ 0.007
(0.005) (0.005)

bachelor 0.015∗ 0.014∗
(0.006) (0.006)

stars 0.007∗ 0.006∗
(0.003) (0.003)

lq −0.023 −0.023
(0.032) (0.034)

diversity −0.002 −0.003
(0.009) (0.010)

manufacturing 0.010∗ 0.012∗∗
(0.004) (0.005)

popdens 0.004 0.004
(0.005) (0.005)

constant 0.984∗∗∗ 0.984∗∗∗ 0.984∗∗∗
(0.004) (0.004) (0.004)

LMT p-value 0.117 0.045 0.079
Observations 382 382 382
Adjusted R2 0.014 0.164 0.167

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors in parentheses.
All independent variables are standardized.
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Table 5.4: Regression results for highly impactful innovations

Y = Highly impactful innovations in regions (xth = 10th)

Openness Controls Openness +
Controls

(2a) (2b) (2c)

openness 0.177∗∗∗ 0.097∗∗∗
(0.027) (0.024)

bachelor 0.209∗∗∗ 0.196∗∗∗
(0.029) (0.028)

stars 0.048∗ 0.037
(0.021) (0.019)

lq −0.129∗∗∗ −0.136∗∗∗
(0.028) (0.013)

diversity −0.006 −0.025
(0.027) (0.026)

manufacturing −0.009 0.023
(0.021) (0.023)

popdens 0.068∗ 0.063∗
(0.026) (0.026)

constant 2.468∗∗∗ 2.468∗∗∗ 2.468∗∗∗
(0.024) (0.020) (0.020)

LMT p-value 0.002 0 0.004
Observations 382 382 382
Adjusted R2 0.122 0.406 0.434

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors in parentheses.
All independent variables are standardized.
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without any control variables (b = 0.177, lower = 0.124, upper = 0.230, p < 0.000).
The coefficient size decreases in Model 2c with control variables, but keeps its sign
and significance (b = 0.097, lower = 0.051, upper = 0.144, p < 0.000) suggesting
a robust link between highly impactful innovations and regional openness. Ceteris
paribus, a one standard deviation increase of openness (which is comparable with
the difference of openness between Miami and San Francisco) increases the average
impact of highly impactful innovations in regions by 0.097. Miami’s innovation
impact would grow by 3.63 percent. Regarding the explanatory power of openness,
its consideration results in a 6.9 percent growth in R2 (comparison of Model 2b and
2c).

To analyze the sensitivity of our results with regard to the chosen percentile xth,
we rerun the full Model (2c) for different definitions of impact. Figure 5.3 summa-
rizes the sensitivity analysis and has two important implications. Firstly, panel A
shows the coefficients of openness and its corresponding confidence intervals. As
the dependent variable was calculated in different percentiles of the regional impact
distribution in which citation scores significantly differ, the coefficients cannot be
compared directly. Higher percentiles automatically have higher values and thus
gain higher coefficient estimates. To allow for direct comparison and to ease the in-
terpretation, we standardize the variables on both sides of the equation. As shown
by panel A, the results are robust regarding the chosen threshold, since regional
openness is positive and significant in high-impact percentiles, for example, ranging
from 1 to 20 and turns insignificant in upper percentiles ranging from 76 to 100.
Additionally, the size of the coefficient constantly decreases.

Secondly, panel B depicts the goodness of fit as measured by the adjusted R2

again for all percentiles of the regional impact distribution. The adjusted R2 con-
stantly decreases. By comparing the R2 in models with and without openness, we
can calculate the growth in R2, which is attributed to openness. Panel C visual-
izes the growth in R2 and shows that openness produces the highest growth in the
high-impact percentiles. The additional gain of openness constantly decreases by
shifting the percentiles towards the average innovation quality in regions. Based
on the results presented in this subsection, we conclude that considering innova-
tions’ impact has crucial effects on the results. In sum, we interpret our findings as
a support for our hypothesis that the link between regional openness and innova-
tion is strongest for highly impactful innovations and less important for the average
innovation quality in regions.

5.4.3 Macro-psychological openness against open-
mindedness

The intangible nature of openness challenged empirical investigations. Previous ap-
proaches therefore relied on indirect measures. Prominently,Florida (2002) argues
that technology, talent, and tolerance are three important factors of regional devel-
opment. He defines tolerance as “openness, inclusiveness, and diversity to all ethnic-
ities, races, and walks of life” (Florida 2003, p. 10). Lacking direct measurements,
he relied on indirect proxies such as the share of creative occupations, bohemians,
and homosexuals to approximate regional open-mindedness (Florida 2003). Instead,
geographical psychologists argue that openness measured as a personality trait is a
more robust and more direct way to assess the prevailing culture in a region via the
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Figure 5.3: Sensitivity of regression results to the chosen percentiles of the regional
impact distribution. A Coefficient and corresponding confidence intervals of open-
ness, B adjusted R2 for the estimated models, and C the growth in R2 due to
openness.
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personality of its individuals (Rentfrow et al. 2008). We explore how trait open-
ness explains regional variation of highly impactful innovations in comparison with
Florida’s indirect indicators of open-mindedness. Table 5.5 documents our results.
Note that the number of observations varies in Models 3a to 3d, since information
about the relevant indicators were not existing for all regions.

Table 5.5: Regression results for macro-psychological openness against open-
mindedness

Y = Highly impactful innovations in regions (xth = 10th)

Openness + Openness + Openness + Full
Creative Bohemians Homosexuals Model

(3a) (3b) (3c) (3d)

openness 0.083∗∗ 0.086∗∗ 0.088∗∗∗ 0.078∗∗
(0.026) (0.026) (0.026) (0.028)

creative 0.054 −0.033
(0.037) (0.058)

bohemians 0.068∗ 0.073
(0.034) (0.049)

homosexuals 0.060∗∗ 0.049∗
(0.022) (0.024)

bachelor 0.153∗∗∗ 0.159∗∗∗ 0.191∗∗∗ 0.168∗∗∗
(0.038) (0.038) (0.029) (0.042)

stars 0.041∗ 0.033 0.026 0.030
(0.019) (0.020) (0.021) (0.022)

lq −0.127∗ −0.141∗∗∗ −0.145∗∗∗ −0.129∗
(0.050) (0.012) (0.012) (0.062)

diversity −0.036 −0.045 −0.038 −0.047
(0.027) (0.027) (0.026) (0.027)

manufacturing 0.018 0.026 0.032 0.024
(0.026) (0.024) (0.023) (0.027)

popdens 0.063∗ 0.063∗ 0.065∗ 0.058∗
(0.026) (0.026) (0.025) (0.026)

constant 2.481∗∗∗ 2.472∗∗∗ 2.471∗∗∗ 2.482∗∗∗
(0.020) (0.020) (0.020) (0.022)

LMT p-value 0.008 0.019 0.027 0.033
Observations 366 352 352 341
Adjusted R2 0.396 0.445 0.450 0.409

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors in parentheses.
All independent variables are standardized.

In all models, trait openness is a robust and significant predictor of impactful
innovations beyond or alongside indirect measures of open-mindedness used in pre-
vious studies. In Model 3a, we test trait openness against the share of creative
occupations, which turns out to be insignificant (“creative”, b = 0.054, lower = -
0.02, upper = 0.127, p = 0.151). The share of bohemians is positively significant
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(“bohemians”, b = 0.086, lower = 0.001, upper = 0.135, p = 0.048) alongside trait
openness in Model 3b. Both coefficients show a similar magnitude suggesting that
openness and the share of bohemians capture different aspects. The same applies for
the share of homosexuals (“homosexuals”, b = 0.06, lower = 0.017, upper = 0.103,
p = 0.007) in Model 3c, which is also positively significant alongside regional open-
ness. However, openness is in all models the strongest predictor among the proxies
suggested by Florida. These results (a) underline the robustness of our results with
regards to alternative measures and (b) highlight that open-mindedness approxi-
mated by the share of bohemians and homosexuals measures something different
than trait openness.

5.4.4 Robustness analysis

To address the direction of effects and to rule out alternative explanations, we ap-
plied a number of robustness checks. First, we test additional control variables and
the effect of spatial dependencies. Second, we test if selection-bias of the online
survey drive the results. Finally, we discuss and analyze endogeneity concerns due
to selective migration. We restrict our robustness check to highly impactful innova-
tions as measured by the 10th percentile of the regional impact distribution, since
these represent the focus of our study and delivered robust results

Additional control variables and spatial autocorrelation

Some variables are highly correlated and their inclusion in the model would result
in multicollinearity. This particularly concerns variables for human capital such as
patents and science related occupations (r = 0.71, p < 0.000). We include these
alternative variables for human capital and exclude the share of individuals with
bachelor degree. Table 5.6 reports the corresponding results. As expected, the
number of patents per capita (“patents”, b = 0.246, lower = 0.198, upper = 0.293, p
< 0.000) in Model 4a as well as the share of science related occupations (“science”,
b = 0.179, lower = 0.122, upper = 0.237, p < 0.000) in Model 4b are positive and
significant. Regions that produce more innovations, i.e. have a larger knowledge
stock, are also more likely to produce more impactful ones. Correspondingly, a larger
share of scientific occupations is also beneficial for more impactful innovations. The
link between openness and high-impact is not affected by the two variables indicating
robust results in this regard.

Openness is only one of the Big Five personality traits. We therefore tested,
whether our results might be driven by a different personality dimension that par-
tially overlaps with openness (e.g. extraversion). Model 4c, therefore, reports the
remaining four Big Five traits alongside openness. Again, the point estimate of
openness is smaller in size, but stays significant (b = 0.067, lower = 0.009, upper =
0.124, p = 0.024). The smaller point estimate is not surprising, since the personality
traits show substantial correlations and are not orthogonal. For example, regional
openness and extraversion are correlated with r = -0.409 (p < 0.000). Among the
four remaining traits, only neuroticism (b = -0.052, lower = -0.105, upper = 0.000,
p = 0.052) and conscientiousness (b = -0.055, lower = -0.115, upper = 0.004, p =
0.07) show p-values around a significance level of 5 percent. Both traits are neg-
atively associated with innovation activities in regions. Particularly the result of
conscientiousness crucially qualifies Lee’s (2017) finding, who reported a positive
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Table 5.6: Regression results for additional control variables

Y = Highly impactful innovations in regions (xth = 10th)

Openness + Openness + Openness +
Patents Science Traits

(4a) (4b) (4c)

openness 0.076∗∗ 0.093∗∗∗ 0.067∗
(0.023) (0.026) (0.029)

patents 0.246∗∗∗
(0.024)

science 0.179∗∗∗
(0.029)

conscientiousness −0.055
(0.031)

extraversion −0.019
(0.029)

agreeableness −0.031
(0.037)

neuroticism −0.052
(0.027)

bachelor 0.188∗∗∗
(0.029)

stars 0.037∗ 0.041∗ 0.033
(0.018) (0.020) (0.018)

lq −0.091∗∗∗ −0.117∗ −0.134∗∗∗
(0.023) (0.050) (0.019)

diversity −0.020 −0.013 −0.033
(0.024) (0.027) (0.026)

manufacturing −0.088∗∗∗ −0.023 0.021
(0.026) (0.027) (0.022)

popdens 0.057∗ 0.069∗ 0.076∗∗
(0.026) (0.028) (0.027)

constant 2.468∗∗∗ 2.486∗∗∗ 2.468∗∗∗
(0.019) (0.021) (0.019)

LMT p-value 0.058 0.003 0.016
Observations 382 366 382
Adjusted R2 0.477 0.395 0.447

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors in parentheses.
All independent variables are standardized.
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link with pure innovation quantity. Our results thus clearly suggest that openness
is most important for the creation of highly impactful innovations. Looking beyond
innovation quantity by conditioning on innovations’ impact reveals a different pic-
ture and highlight that different regional cultures are relevant for different types of
innovation outcomes depending on innovations’ quality.

Spatial autocorrelation can affect regression results (Anselin 1988). Spatial de-
pendency was an issue in some model specifications as indicated by significant LMT
p-values. To explore whether spatial dependencies truly affect our results, we esti-
mate a spatial lag model in which we include the spatially lagged dependent variable
as an additional control variable on the right hand side of the equation. That is,
innovation activities in neighboring regions can potentially affect innovation activ-
ities in the focal region. Table 5.7 reports the corresponding results. The spatial
lag (“rho”, b = 0.068, lower = 0.025, upper = 0.110, p = 0.002) is positive and sig-
nificant suggesting that a spatial lag model is the correct choice to address spatial
dependency. The significant spatial lag variable also indicates that being located
in a cluster of regions with highly impactful innovation outcomes is beneficial. The
LMT for spatial autocorrelation also suggests that the spatial lag model reduces
spatial dependencies as the corresponding p-value increases to 0.114 compared with
a value of 0.004 in Model 2c in Table 5.4. Again, neither the magnitude nor the
p-value of regional openness is affected by the spatial lag highlighting the robustness
of our results.

Sample skewness and endogeneity

To address the skewness of our sample, we follow previous approaches (Ebert et al.
2019; Stuetzer et al. 2018) and measure openness with sampling weights. To do
so, we formed three age groups (18 to 24, 25 to 34; and greater than 34) for both
genders. For each region, we then calculated (a) the share of participants in our data
and (b) the share of the actual regional population that falls into each of the six
category (3 age groups and 2 genders). We divided the actual shares by the shares
in our data and then used this ratio as sampling weight when aggregating our data
to the regional level. For example, when a participant belongs to a group that is
undersampled in our data (e.g. old males) than this observation will receive a weight
greater than 1, while a participant belonging to a group that is oversampled (e.g.
young females) will receive a weight smaller than 1. Model 6a in Table 5.8 reports
the results for the sample-corrected measure of openness. Although the coefficient is
smaller in size, openness stays significant (b = 0.063, lower = 0.014, upper = 0.112,
p = 0.012). This result suggests that sample bias does not significantly affect our
results.

Endogeneity can arise as people with open personalities migrate to innovative
MSAs. Innovative regions might attract open people, because they are more likely
to meet their personal preferences for novelty and innovation. To account for this
endogeneity issue, we follow previous research (Stuetzer et al. 2018) and compute
regional openness based on the respondents’ residences in their youth before any
occupational and migration choices were made. Model 6b documents the corre-
sponding results. The point estimate of openness (b = 0.094, lower = 0.041, upper
= 0.148, p < 0.000) is slightly smaller compared with the main Model 2c in Table
5.4, but stays significant. This finding suggests that selective migration does not
influence our results.
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Table 5.7: Regression results for spatial lag model

Y = Highly impactful innovations in regions (xth = 10th)

Spatial Lag
(5a)

openness 0.095∗∗∗
(0.022)

bachelor 0.200∗∗∗
(0.025)

stars 0.032
(0.023)

lq −0.138∗∗∗
(0.021)

diversity −0.028
(0.026)

manufacturing 0.018
(0.022)

popdens 0.045
(0.025)

rho 0.068∗∗∗
(0.022)

constant 2.317∗∗∗
(0.052)

LMT p-value 0.114
Observations 382

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
All independent variables are standardized.
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Table 5.8: Regression results for sample skewness and selective migration

Y = Highly impactful innovations in regions (xth = 10th)

Openness Openness
Sample Weights Youth Residence

(6a) (6b)

openness 0.063∗ 0.094∗∗∗
(0.025) (0.027)

bachelor 0.192∗∗∗ 0.189∗∗∗
(0.030) (0.029)

stars 0.044∗ 0.037
(0.021) (0.021)

lq −0.128∗∗∗ −0.137∗∗∗
(0.019) (0.015)

diversity −0.016 −0.018
(0.026) (0.026)

manufacturing 0.002 0.013
(0.022) (0.021)

popdens 0.064∗ 0.060∗
(0.026) (0.026)

constant 2.468∗∗∗ 2.468∗∗∗
(0.020) (0.020)

LMT p-value 0.002 0.009
Observations 382 382
Adjusted R2 0.417 0.433

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Robust standard errors in parentheses.
All independent variables are standardized.
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5.5 Discussion and conclusions

In this article, we investigated the role of regional culture, the psychological climate
characterized by a strong openness, to explain regional differences in innovation qual-
ity as measured with innovations’ impact. We used a personality-based approach to
overcome the shortcomings of previous research in approximating regional cultures.
Our results suggest substantial difference between high-quality innovations, i.e. the
most impactful innovations and the average innovation quality regarding the role of
regional openness. Our empirical results show that the relationship between regional
openness and innovation quality is strongest for highly impactful innovations and
less pronounced for the average innovation quality in regions. Our results are robust
to a multitude of robustness checks including alternative control variables, spatial
modelling, and selective-migration strengthening the substance of our findings.

Our results complement previous findings demonstrating a positive link between
openness and innovation at the national level (Steel et al. 2012) and extend these
by considering innovations’ impact. Considering the quality of innovation might
explain previous findings at the regional level that regional openness has no effect
on innovation quantity (Lee 2017). The sensitivity of highly impactful innovations
to the regional innovation culture might be due to substantial differences between
innovations of average and high quality. Highly impactful ideas can transform tech-
nological landscapes, give birth to new industries or are responsible for the decline
of others with unknown socio-economic consequences. Curiosity and trust in inno-
vation processes with hardly predictable outcomes is a beneficial prerequisite in this
context. Impactful ideas might therefore depend more on a local culture, which is
open with respect to innovation, than innovations with average impact.

Previous research primarily focused on innovation quantity and less on regional
differences in innovation quality. Among the few contributions, Castaldi et al. (2015)
reveal that regional capabilities are important to explain innovation quality in re-
gions. Our study adds a different dimensions and shows that regional culture plays a
curcial role in explaining the regional variation in innovation quality. Our investiga-
tion complements previous research that highlighted the role of regional cultures and
regional openness (Florida 2002) but that focused on innovation quantity and used
indirect indicators of regional culture. Based on our findings, the personality-based
approach, provides a new and robust methodology to overcome the shortcomings of
previous research in measuring intangible constructs such as culture and the local
psychological climate.

However, there might be complex mechanisms at play – the "special regional
features" – that together enable some regions to produce more high-quality inno-
vations than others. Regional capabilities (Castaldi et al. 2015) and culture play
an important role (as indicated in our study), but other determinants might be im-
portant as well. For example, Cortinovis et al. (2017) highlighted the importance
of social capital for regional development. In particular, bridging social capital,
which connects diverse groups of actors (Putnam 2001), is an important regional as-
set that might drive innovation quality. More specifically, regional openness paired
with bridging social capital could increase the innovation quality in regions, as re-
gional openness generally facilitates interaction (McCrae 1996), while bridging social
capital enhances knowledge exchange between heterogeneous groups. Higher levels
of regional openness coupled with higher levels of bridging social capital can facil-



112 Chapter 5

itate knowledge exchange between diverse groups of actors, which is necessary for
high-quality innovation (Schilling and Green 2011; Kim et al. 2016).

Although we applied several robustness checks, our study still has a number
of limitations, which are important for future research. Foremost, this concerns
the direction of effects. We addressed selective-migration as one crucial source of
endogeneity and showed that it does not interfere our results. Besides selective-
migration, endogeneity can also arise due to regional innovation quality influencing
the institutional endowment of regions, which in turn increases regional openness.
For instance, higher innovation quality might improve the regional endowment with
education infrastructure, as firms need highly-skilled employees to produce top qual-
ity innovations. Educational attainment in turn is a strong predictor of openness
(Rentfrow et al. 2008). Hence, it might be the longevity of innovation quality in re-
gions that also impacts regional openness. We included the share of academics, star
scientists, and science occupations in regions as control variables for the educational
attainment in regions to rule out the potential confounding of education. Openness
remained a strong predictor of innovation quality in regions. To address the issue
of endogeneity more adequately, however, an instrumental variable regression (IV)
represents one possible solution. Finding a valid instrument that fulfills all require-
ments is a necessary precondition, otherwise the cure can be worse than the disease
(Bound et al. 1995). Although we could think of possible instruments, we were not
confident that these fulfill the exclusion restriction as such that they improve the
empirical investigation. Unraveling the true causal effects of regional openness on
innovation quality is important in future research.

We discussed how regional openness can influence innovation activities by re-
ferring to the social-impact theory (Latané 1981), which highlights that individual
innovators can be influenced in their behavior by the prevalent social norm that is
part of the psychological climate in a region. As we analyzed regional aggregates,
the interplay of micro scale and macro scale still represents a black-box. Future
research could unravel the link between individual and regional level by using a
multi-level research design. However, this requires personality data of individual
innovators. Such individual-level data are difficult, if not impossible, to obtain, but
new big data methods (e.g., social media analyses) might enable a new generation
of research in this field (Obschonka and Audretsch 2019). Uncovering the impact of
regional cultures on individual behavior could shed light on the social-impact theory
at the macro-scale of regions and allows to ask which effect is more important – the
individual or regional trait characteristics?
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6.1 Main empirical findings

Knowledge and new knowledge creation are fundamental building blocks of our so-
ciety and are linked to economic prosperity. Knowledge production concentrates
in particular places, which explains why some regions are economically more suc-
cessful than others. Consequently, identifying the causes that lead to and assessing
the implications that follow from the spatial concentration of knowledge is key to
understanding regional development. This dissertation has studied four dimensions
of knowledge quality and has analyzed their implications for regional development:
relatedness, complexity, novelty and impact. These four dimensions frame the thesis
and are at the center of the four research questions that have been investigated in
the four central chapters of this dissertation. The findings presented in this thesis
for these four dimensions are briefly discussed in the following section, before central
implications of the thesis for future research and policy are derived.

6.1.1 Relatedness

Existing research has shown the importance of knowledge relatedness to understand
knowledge production as a path-dependent process (Neffke et al. 2011). Regions are
unlikely to jump between any activity, but are more likely to develop new compe-
tences if these are related to existing ones. The empirical literature shows ample
evidence that regions are more likely to diversify into related than into unrelated
activities (Neffke et al. 2011; Boschma et al. 2015; Rigby 2015; Essletzbichler 2015).
Overcoming a research gap on this issue, Chapter 2 investigated the role that policy
plays for regional diversification and asked if policy can break the path dependency
of regional diversification. To answer this question, the empirical analysis in Chap-
ter 2 focused on subsidized R&D as one important form of policy intervention in
knowledge production processes. The data on public R&D subsidies were obtained
from the German Federal Ministry of Education and Research (BMBF) and were
linked to technological activities in regions proxied by patent data.

The empirical findings in Chapter 2 indicate that R&D resources are more likely
to be allocated to related activities in regions, suggesting that R&D policy plays a
crucial role in the path dependency of regional diversification processes. The results
further indicate that diversification into new activities is more likely when these
activities have received R&D subsidies. Hence, R&D policy plays a crucial role for
regional diversification. Previous research has argued that collaborative research has
a larger potential to facilitate knowledge exchange between heterogeneous partners
than individual projects, and therefore is more likely to lead to successful knowledge
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production (Broekel and Graf 2012; Broekel et al. 2017). The BMBF data allowed
such a distinction to be made between collaborative and individual R&D projects.
The results support this view and indicate that collaborative projects contribute
to regional diversification to a larger extent than individual projects. A primary
research goal was to investigate if policy can break the path dependency of regional
diversification. Although policy is more likely to support related diversification, the
results obtained in Chapter 2 suggest that the distinction between individual and
joint projects is crucially important. R&D subsidies for collaborative projects show
a tendency to compensate for missing relatedness and likely facilitate diversification
into more unrelated activities, whereas individual projects do not show any effect
on unrelated diversification.

The importance of relatedness can help regional policymakers to identify possible
diversification options by identifying related activities in which regions have not
yet built competitive advantages. Such an approach has entered current policy
strategies, as evident in the Smart Specialization framework of the European Union
in its 2020 strategy (Foray et al. 2011). However, it can also be questioned whether
it is smart to publicly support diversification processes which are most likely to
take place without policy intervention. The investigation in Chapter 2 indicates
that R&D subsidies are more likely to be allocated to activities related to existing
regional competences. It might also be "smart" from a regional policy perspective
to support unrelated instead of related diversification. While related diversification
rather supports specialization, unrelated diversification broadens the set of regional
capabilities into different knowledge domains, which is argued to increase regional
resilience against external shocks (Frenken et al. 2007). Collaborative research
projects seem to represent a promising tool in this context.

6.1.2 Complexity

Previous research indicates that – in addition to relatedness – knowledge complexity
has important implications for knowledge production in regions (Petralia et al. 2017;
Balland and Rigby 2017; Balland et al. 2018; Balland et al. 2019). The increasing
interest in knowledge complexity in recent years rests, among other factors, on
the potential economic value attributed to complex knowledge and its relevance
for regional development. However, there are few studies that relate knowledge
complexity to regional development. It is this research gap that motivated Chapter
3.

Chapter 3 investigated the geographic patterns of knowledge complexity over
time and its role for regional economic growth by building on a sample of 166 Euro-
pean NUTS 2 regions covering the years 2000 to 2015. Mapping regions’ complexity
of invention activities shows substantial variation between regions, suggesting dif-
ferences in regions’ capability to produce complex knowledge. Large quantities of
knowledge in regions do not automatically translate into knowledge complexity. The
relatively low correlation coefficient between patent counts and knowledge complex-
ity in regions (r = 0.27) suggests some overlaps, but also highlights substantial
differences between quantity and quality of knowledge production. The empirical
analysis in Chapter 3 reveals that regional differences in knowledge complexity are
relatively persistent over time.

The empirical investigation in Chapter 3 linked the spatial distribution of knowl-
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edge complexity with regional economic growth. In doing so, GDP per capita is
regressed on the complexity of regional invention activities using fixed effects panel
estimations. The regression results identify important time lag patterns. Knowl-
edge complexity does not immediately link to economic growth, rather taking 3 to 6
years before gains in regional knowledge complexity translate into regional economic
growth. More precisely, a 10 percent increase in regional complexity is associated
with a corresponding increase in regional GDP per capita of about 0.28 percent.
Taken together, the analysis confirms that regional variances in knowledge complex-
ity are linked to economic growth of regions.

Accordingly, Chapter 3 complements existing works that – implicitly and ex-
plicitly – have studied the link between knowledge complexity and economic de-
velopment. For example, Hidalgo and Hausmann (2009) provide evidence for the
economic benefits of economic complexity at the country level. Taking the results
at different spatial scales (e.g. countries, regions) for different indicators of knowl-
edge complexity (e.g. economic complexity, technological complexity) together, the
current empirical picture therefore suggests that knowledge complexity is associated
with economic growth in a systematic way.

6.1.3 Degree of novelty

Previous research has highlighted that new knowledge varies greatly in its degree
of novelty (Schilling and Green 2011; Uzzi et al. 2013; Kim et al. 2016). How-
ever, differences in novelty have rarely played a central role in economic geogra-
phy. For instance, the prominent scaling analyses have previously demonstrated
the productivity of cities regarding knowledge creation in purely quantitative terms
(O’hUallichain 1999; O’hUallichain and Leslie 2005; Bettencourt et al. 2007a; Bet-
tencourt et al. 2007b). Chapter 4 shifted the focus of scaling from pure knowledge
quantities to the degree of novelty and argued that cities concentrate important
features that not only facilitate knowledge production in quantitative terms, but in
particular involve the degree of novelty. For instance, the density of heterogeneous
knowledge components in larger cities might provide more opportunities to explore
new combinations than in smaller, less diverse towns (Youn et al. 2016).

By building on historic patent information of patented inventions in the US
between 1836 and 2010, Chapter 4 provides a true long-term perspective on novelty
creation in American cities with a particular focus on the relationship between city
size and the degree of novelty. Z-score measures reveal the degree of novelty in
knowledge combinations and treat novelty as a continuum ranging from very atypical
(i.e. radically new combinations) to very typical (i.e. established combinations).

The empirical findings of Chapter 4 first reveal a linear relationship between
technological diversity and city size as indicated by the obtained scaling coefficient.
These results complement the study by Youn et al. (2016), who also find a linear
relationship between city size and diversity of business activities. Accordingly, in-
ventors in larger cities can draw locally from much more heterogeneous knowledge
components than inventors in smaller towns, which allows for greater possibilities
to explore and realize newer combinations. Importantly, Chapter 4 highlights that
the linear scaling of technological diversity with city size is dependent on the depth
of technological disaggregation. That is to say, higher levels of technological aggre-
gation tend to hide much of the diversity existing in the largest cities. As shown in
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Chapter 4, the 4-digit CPC level is not capable of representing the diversity found
in the largest cities, as the scaling coefficient clearly suggests a sublinear scaling
when depending on the 4-digit CPC. This result would suggest that larger cities are
more diverse, but that diversity is not increasing disproportionately with city size.
Using more fine-grained aggregate levels instead systematically shifts the relation-
ship between technological diversity and city size towards linearity. In short, it is
important for empirical research on which scale technological diversity is assessed.

The systematic relationship between technological diversity and city size might
explain the main findings of Chapter 4 that atypical combinations increasingly con-
centrate in larger cities. Atypical combinations began to scale super-linearly with
city size at the beginning of the 20th century and continued to increase until the
1970s. Since then, the scaling has remained on a constant level without showing
any significant variation towards or away from further spatial concentration. Hence,
Chapter 4 complements existing scaling analyses (O’hUallichain 1999; O’hUallichain
and Leslie 2005; Bettencourt et al. 2007a; Bettencourt et al. 2007b) by indicating
that cities’ productivity in terms of knowledge production is not only restricted to
pure quantity, but also includes novelty.

6.1.4 Impact

The last dimension studied in this thesis was impact. Previous research has shown
that impactful innovations concentrate more strongly in space than conventional
innovations (Ejermo 2009; Castaldi and Los 2017). Chapter 5 took the observed
geographic variation as the primary motivation and asked for the underlying reasons
why some regions are more capable of producing impactful knowledge outcomes than
others. More precisely, Chapter 5 investigated the role of regional openness towards
innovation for impactful innovations in regions and was particularly inspired by
the study of Lee (2017) in which he relates the big five personality traits, which
include openness, to regional innovation activities. Lee did not find any significant
relationship between regional openness and innovation in the UK. It was argued
that Lee’s finding might be due to the exclusive focus on innovation production in
purely quantitative terms.

Innovations are, however not a homogeneous quantity, but rather show sub-
stantial variation in several qualitative dimensions, of which impact is a crucial one.
Impactful innovations deviate from less impactful innovations in a number of charac-
teristics, which are fundamental. For example, impactful innovations require social
climates that value creativity, originality, and out-of-the-box thinking (Sandberg
and Aarikka-Stenroos 2014), which are attributes captured by openness. Chap-
ter 5 thereby complements existing research in economic geography, in particular
the work of Florida (2002) on the creative class, as open-mindedness is an explicit
building-block of tolerance. However, due to a lack of systematic methodologies
and data sources, Florida used rather indirect proxies such as the share of creatives,
bohemians and homosexuals to assess regional levels of tolerance. It was therefore
a second aim of Chapter 5 to overcome the indirect approaches of previous research
by assessing regional openness using a personality-based approach.

Data on regional openness was obtained from the Internet-Personality Project
using the Big-Five inventory (Gosling et al. 2004). The empirical analysis in Chapter
5 used patent citation data from the USPTO to approximate impactful innovations
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in metropolitan regions. In particular, impactful innovations were calculated on
a continuous scale ranging from low-impact to high-impact based on the regional
impact distribution. Assessing impactful innovations as a continuum rather than a
homogeneous group as in previous approaches (Ejermo 2009; Castaldi et al. 2015;
Castaldi and Los 2017) allowed an investigation of the relationship between regional
openness and impactful innovations in more detail.

The results show that regional openness is particularly important for the most
impactful innovations. The estimated effect sizes gradually decrease when shifting
the impact distribution to less impactful innovations, indicating that openness is
less important for average innovations. These results provide an explanation for the
findings of Lee (2017) and therefore highlight that quantity and quality of knowl-
edge production are not identical. It is therefore important to include impact in
empirical analyses in order to study innovation beyond pure quantity. Secondly,
the findings also emphasize the important role of regional openness to explain the
geographic variation in impactful innovations observed by Castaldi and Los (2017).
Including openness explained an additional 6.9 percent of the regional variance of
impactful innovations beyond the standard set of economic control variables. In a ro-
bustness check, the empirical investigations tested regional openness measured with
personality trait data against Florida’s tolerance indicators, i.e. share of bohemians,
homosexuals and creatives. The findings suggest that regional openness is related
to the tolerance indicators, but it is not identical. Moreover, it was shown that
regional openness either outperforms Florida’s indicators in predicting impactful
innovations or explains additional variance alongside tolerance. Hence, these re-
sults suggest that geographical psychology more generally and a personality-based
approach more specifically can greatly inform research in economic geography by
providing methodologies to capture intangible variables such as social norms, values
and cultures (Obschonka 2017; Obschonka and Audretsch 2019).

6.2 Implications for future research

This dissertation highlighted that the consideration of knowledge quality in em-
pirical research on knowledge production greatly improves our understanding of
regional differences in innovative success, and that these differences are significant
for their economic development. However, it is important to emphasize a number
of limitations to acknowledge the boundaries of this dissertation and to indicate
opportunities for future research.

Linking novelty and complexity – does complexity makes nov-
elty creation more difficult?

Each empirical chapter was devoted to one of the four quality dimensions outlined in
the introductory Chapter 1. Hence, the quality dimensions have been treated more
in isolation and less in relation to each other. However, they are not necessarily inde-
pendent of each other and show, conceptually as well as empirically, some significant
overlaps. For example, coupling novelty and complexity has the potential to inform
the decreasing research productivity observed by Jones (1995) and other empirical
studies. Moore’s law, for example, states that "the number of transistors packed
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onto a computer chip doubles approximately every two years" (Bloom et al. 2017,
p. 2). However, the corresponding growth has only been reached by an increasing
number of researchers that push Moore’s law forward (Bloom et al. 2017). Larger
team sizes are not restricted to semi-conductors, but are more generally observed in
science and technology (Wuchty et al. 2007; Broekel 2019). Adding to this are the
findings of Griliches (1994) that research spending per patent is increasing. Accord-
ingly, the growth of inventive outcomes might be just the result of more R&D inputs,
and the empirical evidence suggests that the efficiency of this process is decreasing.

Pintea and Thompson (2007) link this decreasing research productivity to in-
creasing complexity over time, with the latter being empirically confirmed by Broekel
(2019). So far, however, there is no empirical study that directly links the two phe-
nomena. Accordingly, is research productivity decreasing because of complexity, or
asked differently, are novel ideas becoming harder to find because of complexity?

If there is a positive relationship between complexity and research productiv-
ity, this might also suggest that the increasing complexity has slowed down novelty
creation in cities since 1970, which provides an explanation for the empirical find-
ings of Chapter 4. As with novelty, complexity also shows substantial variations
between regions, with some regions producing more complex knowledge than others
(see Chapter 3). Even more so, there is a trend that more complex knowledge in-
creasingly concentrates in cities (Balland et al. 2018). This suggests that cities not
only concentrate the functionalities and skills to produce more novelty, but also to
advance complex knowledge domains. However, similarly to the decrease in scaling
of novelty since the 1970s, as observed in the empirical analysis in Chapter 4, the
scaling of knowledge complexity slows down around the same time period with only
marginal increases since the 1970s (Balland et al. 2018). This raises the question of
whether the two observations are linked or even consequential to each other. Has
the increase in complexity slowed down novelty creation in cities? Or do the two di-
mensions evolve in a co-evolutionary process? This surely represents an interesting
avenue for future research.

The role of formal institutions for knowledge quality - is gov-
ernmental support required to manage ever-increasing com-
plexity?

The increasing complexity of technologies paired with the difficulty to produce nov-
elty constitutes a strong argument to call for more government support in knowledge
production. In general, the state plays an important role for collective learning and
innovation. The Apollo mission, for example, would not have been possible without
government intervention. Although largely motivated by reasons of national prestige
and interest, the research efforts during the Apollo mission fueled the development
of crucial technologies that affected our society, economy and technological devel-
opment far beyond the mission (Mazzucato 2014). Google’s Page Rank algorithm,
as another example, was partly financed by government support (Fleming et al.
2019). Government-funded patents receive on average more citations and tend to
introduce greater novelty (Fleming et al. 2019). The results in Chapter 2 provide
evidence that federally funded R&D projects can increase the success of regional
diversification and that collaborative research, to some extent, can break the strong
path dependencies of regional diversification. Hence, government support can play
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an important role for the quality of knowledge production.
The share of governmental funding in science and technology has steadily in-

creased since World War II in the United States. In 1945, the share of public
funding on all patented inventions in the US grew from 5 percent in 1945 to 30
percent in 2016 (Fleming et al. 2019). Knowledge production seems to increasingly
rely on governmental support, either directly with the state as the primary actor
(state conducts research) or indirectly as a crucial knowledge source (private re-
search relies on public research). But why is this so? Complexity might be one of
the explanations, as the increase of governmental support corresponds to an increase
in technological complexity observed by Broekel (2019) for the same time period. As
increasing complexity demands more research efforts, governmental support might
be necessary to manage the increasing complexity and the corresponding difficulty
to produce novel outcomes. Hence, the question remains as to whether government
support of knowledge production is the answer to novelty creation having become
more complex, and if so - to what end? Future research should start from these
correlations and analyze the possible relationship between governmental support in
certain knowledge domains and their complexity in more detail.

The role of informal institutions for knowledge quality and
diversification

Governmental intervention in knowledge creation highlights the role of formal insti-
tutions. Besides formal institutions, informal institutions are also fundamental for
knowledge creation (Amin 1999; Rodríguez-Pose and Storper 2009; Rodríguez-Pose
and Di Cataldo 2015) and might impact the quality of created knowledge. However,
the inherent fuzzyness of informal institutions represents an empirical challenge to
investigate their role for innovation. As presented in Chapter 5, the emerging field
of geographical psychology offers systematic and robust methodologies to assess the
personalities of individuals in regions, representing one opportunity to capture in-
formal institutions in the form of social norms and social values or cultures. In a
first attempt, Obschonka et al. (2015) use the prevalence of personality traits in re-
gions to assess entrepreneurial cultures in US metro areas and show their importance
for explaining regional patterns of entrepreneurial activities. Chapter 5 represents
another step in this direction by using regional openness to approximate the re-
gional attitude towards (or against) innovation as a hidden informal institution. It
was shown that regional openness is highly relevant for the emergence of impactful
innovations in regions.

However, the underlying mechanisms driving the results in Chapter 5 are diffi-
cult to identify and rather indirect, leaving much room for future research on the
role of informal institutions and knowledge quality. Conducting empirical analysis
exclusively at the regional level has the disadvantage of hiding crucial mechanisms
that either unfold at the individual level or are the result of the interplay between
the individual and the regional level. As there is empirical evidence at the micro
level of individuals and innovation performance (Zwick and Frosch 2017), the inter-
action between individuals and their socio-spatial environment still remains a black
box. As argued in Chapter 5, one possible explanation for the importance of re-
gional openness for impactful innovations might be that individuals are influenced
in their own behavior by their local social environment irrespective of their natural
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disposition (Rentfrow et al. 2008). Hence, if less open innovators are surrounded by
many open people, they are likely to adopt the prevalent social norms and values
associated with openness in the region, which in turn might impact their innovation
outcomes. Although this explanation is backed by the social-impact theory (Latané
1981), the interplay of individuals with their personality and their regional environ-
ment has not been studied with respect to regional innovation activities. One major
obstacle in this context is data availability. The interplay between individuals and
their social environment represents a multi-level problem that requires personality
data at the individual level of innovators and the regional level. Such data is dif-
ficult but not impossible to obtain. Future research with access to big data at the
individual level might be able to overcome this issue.

Besides innovation, informal institutions also impact regional diversification pro-
cesses. For example, Cortinovis et al. (2017) analyze the role of bonding and bridging
social capital as informal institutions in the context of regional diversification. Their
findings suggest that bridging rather than bonding social capital influences the like-
lihood of a region diversifying into new activities. However, these authors also show
that social capital cannot break the dominant role of relatedness (and thereby path
dependency), although there are good arguments as to why bridging social capi-
tal, in particular, should be important for unrelated diversification. Bridging social
capital shows the tendency to link heterogeneous groups of actors and facilitates
information diffusion (Putnam 2001). This seems to be insufficient though to over-
come path dependencies, and hence the question of how to accomplish unrelated
diversification remains an important issue for future research.

Bridging heterogeneous groups of actors might also require openness of the local
people to become engaged in such bridging interactions to facilitate unrelated di-
versification. Trait openness summarizes aspects that might not only be important
for impactful innovations, but also for unrelated diversification processes. Regional
openness might establish informal institutions in regions that allow them to jump in
their technological evolution. In particular, an open regional culture values novelty,
originality and creativity (McCrae 1996). These represent key characteristics that
facilitate the combination of hitherto disconnected activities in regions. As open-
ness also facilitates peoples’ engagement in social relations and interaction (McCrae
1996), regional openness can also stimulate knowledge exchange between hetero-
geneous actors enhancing local knowledge diffusion. However, communication and
particularly knowledge sharing requires common trust between different groups of
actors, which is not guaranteed by openness alone. However, bridging social capi-
tal might be able to accomplish this (Putnam 2001). Hence, it might require both
higher levels of regional openness and the existence of bridging social capital to
overcome the forces of relatedness for regional diversification. Pairing social capital
with a personality-based approach therefore offers a promising future research field
to study unrelated diversification.

The interplay of openness and bridging social capital is not only important in
the context of unrelated diversification, but also when it comes to the management
of complex knowledge production. The Apollo program employed 400,000 people in
over 20,000 private organizations, universities and research institutions (Gisler and
Sornette 2009). Organizing and coordinating complexity thus demands the combi-
nation of countless heterogeneous components involving strong communication and
interaction between various groups of actors from different organizations. Higher
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levels of bridging social capital in combination with openness is therefore likely to
stimulate the production of complex knowledge by facilitating effective communica-
tion between heterogeneous actors. However, these relationships are still speculative
and hence represent a promising venue for future research.

Impactful innovations as an outcome of relatedness, novelty
and complexity in regions?

Chapter 5 placed impactful innovation at the center of attention and presented re-
gional openness as an explanation of the observed variation in the creation of impact-
ful innovations among regions. Until now, economic geography has not paid much
attention to impactful innovations or related concepts such as superstar patents
(Castaldi and Los 2017). Among the few existing studies, Castaldi et al. (2015)
analyzed the importance of regional capabilities for the emergence of so-called su-
perstar patents. Their study shows that an economic structure characterized by
unrelated variety is particularly conducive for the development of high-impact inno-
vations. This argument harkens back to the advantage of Jacobs externalities that
local diversity facilitates cross-fertilization between different knowledge domains.
However, even jointly, the results of Chapter 5 and the findings of Castaldi et al.
(2015) present only initial insights into the subject of impactful innovations.

Impactful innovations might be an outcome which is characterized and driven
by the other three dimensions of knowledge quality discussed in this dissertation.
For instance, a large stream of inter-disciplinary research investigates the underlying
mechanisms of impactful innovation from the perspective of knowledge recombina-
tion. Knowledge combinations play a particular role, as they are a strong predictor
for the later impact of inventions. More precisely, new combinations connecting
formerly disconnected components. i.e. atypical combinations, are a fundamen-
tal building block of high-impact outcomes in science and technology. In contrast,
typical combinations linking related knowledge rather translate into less impactful
outcomes (Schilling and Green 2011; Uzzi et al. 2013; Arts and Veugelers 2015; Kim
et al. 2016). One can also establish a link between impactful innovation and knowl-
edge complexity. Fleming and Sorenson (2001) demonstrate that complex patents
represent a critical source for subsequent knowledge creation processes. Accordingly,
more complex patents receive more citations, which signals their impact. Hence, the
impact of knowledge production outcomes might be a consequence of the other three
dimensions of knowledge quality and their interplay. In light of the results of the
empirical analyses in this thesis, it seems plausible to argue that all the other three
quality dimensions (relatedness, complexity, novelty) show substantial regional vari-
ation and might contribute to regions’ ability to produce impactful knowledge. So
far, however, each dimensions has been analyzed mostly in isolation from the others,
calling for empirical studies considering the interaction of these dimensions.

Novelty and impact as drivers of economic development?

As previously mentioned, the degree of novelty is an essential feature of innovations’
impact (Schilling and Green 2011; Uzzi et al. 2013; Arts and Veugelers 2015; Kim
et al. 2016). However, both have been analyzed independently in this dissertation.
Chapter 4 assessed the novelty in knowledge combinations without considering their
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impact on subsequent combinations or on regional development, and Chapter 5 stud-
ied impactful innovations without considering their degree of novelty. However, not
every new combination is useful for subsequent developments and will translate into
economic benefits. It could also be the case that some new combinations are in “ad-
vance of their time” and will only unfold their economic potential with a significant
time delay (Raan 2004). Therefore, impact might be an important indicator for
distinguishing less impactful from impactful combinations. Accordingly, measuring
the impactfulness of knowledge combinations and linking it to regional economic
development represents a crucial research opportunity for future investigations.

Similarly, the effects of impactful innovation for regional (economic) development
are largely unexplored. In Chapter 5, it was implicitly assumed that more impactful
innovations have a larger economic impact. The local success stories of impactful
innovations, such as the invention of the automobile or Google, presented in the
introduction to this thesis, provide anecdotal evidence that impactful ideas have
the potential to stimulate subsequent regional development. However, we still know
little about the extent to which novel and impactful outcomes may contribute to
regional development.

Larger numbers of impactful innovations in regions might have a positive effect
on the regional economy via several mechanisms. Firstly, ideas are one of the most
crucial sources for entrepreneurial activities. The invention of the PageRank algo-
rithm by Brin and Page (1998) led to the foundation of Google, which now employs
thousands of people in the Bay Area. Higher levels of new firm creation in regions
are, in turn, associated with higher levels of economic growth (Praag and Versloot
2008). Secondly, impactful innovations of existing firms in regions are positively as-
sociated with economic value and thus might induce regional growth. For example,
Hall et al. (2005) showed that patent citations as a measure of patents’ impact are
positively associated with firm market values. Thirdly, impactful innovations carry
the potential to offer new growth paths by creating new markets and industries
(Chandy and Tellis 1998; Chandy and Tellis 2000). This dissertation, however, has
not looked at the economic importance of impactful innovations. In light of this,
studying the economic benefits of impactful innovations for regional development
appears to be another promising topic for future research.

What makes complexity economically valuable?

The empirical analysis presented in Chapter 3 indicates that knowledge complexity
is associated with economic growth in regions. The theoretical reasoning for this is
based on the idea of complex knowledge’s spatial stickiness (Kogut and Zander 1992).
Complex knowledge is difficult to learn and copy, and is hence less likely to spill over
to competitors. Therefore, complex knowledge usually gives its owners a temporary
monopoly, which may translate into competitive advantages (Kogut and Zander
1992; Zander and Kogut 1995). How this actually happens and how the economic
benefits of complexity unfold at the regional level, however, remains a black box. It is
possible that complex knowledge gives firms in region A a competitive advantage over
competitors in other regions. As a result, firms with complex knowledge in region
A experience higher growth rates than firms in other regions. But is knowledge
complexity only valuable because it resists a fast dissemination to other places,
or because it provides more opportunities for future advancements (Hidalgo and
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Hausmann 2009), or are there even other forces at play?
Another possible explanation for the superior economic value of complex knowl-

edge may lie in its dependence on large investments and skilled individuals.
Huntsville in Alabama, for example, has been endowed with NASA’s Marshall Space
Flight Center (MSFC) since 1960. It was set up to plan and construct the Saturn
rocket that eventually brought Aldrin, Armstrong and Collins to the moon. Hous-
ton was equipped with the Lyndon B. Johnson Space Center in 1961 to conduct
NASA’s training, research and flight control for its human spaceflight programs,
including Apollo. Such organizations represent large public investments with di-
rect effects on local employment. During the Apollo program, about 7,500 people
worked at MSFC’s facilities in Huntsville. Many of the employees were not based
in Huntsville, but moved there to work at the MSFC. Effects on employment were
not exclusively restricted to the MSFC, but also involved contracting firms in the
region. For example, Brown engineering grew from a small local firm to a prominent
aerospace engineering corporation. In other cases, the new technical expertise in the
region encouraged entrepreneurial activities. For instance, a computer scientist who
came to Huntsville to work on the Saturn rocket founded Intergraph, which became
a global computer and software firm (Dunar and Waring 1999). Hence, these sto-
ries might be related to the complexity of the knowledge involved in the projects,
which required large investments that gave rise to employment and economic ef-
fects, which via strong multipliers stimulated local growth. While plausible, it is
not clear whether similarly large investments focused on rather simple knowledge
would have had the same type of effects. Accordingly, there are multiple alternative
explanations for the observed empirical findings in Chapter 3. Each has distinct
implications. Consequently, it is imperative to unravel the true working forces of
complexity in more detail in future research.

How to measure knowledge complexity?

Complexity research in economic geography is still at an early stage, and there are
a number of caveats which need to be addressed before this concept can be used to
inform policymakers. Complexity still remains conceptually and empirically elusive.
There are different measures which are based on different theoretical foundations,
rely on different indicators, and use different data sources to capture knowledge com-
plexity. The economic complexity indicator developed by Hidalgo and Hausmann
(2009) relies on export products, whereas Balland et al. (2018) use the average age of
education of employees in an industry to indicate economic complexity. In the same
article, Balland et al. (2018) also measure complexity in scientific activities based on
team sizes of authors in a scientific publication and technological complexity based
on the vintage of knowledge combined in patents. Furthermore, Balland and Rigby
(2017) deploy the method of Hidalgo and Hausmann (2009) to patent data to assess
technological complexity with the so-called Knowledge Complexity Indicator (KCI).
Fleming and Sorenson (2001) developed Modular Complexity and Broekel (2019)
introduced Structural Diversity to indicate the complexity of patenting activities.

Clearly, it is principally fruitful for a research field when there are empirical
opportunities to study a specific topic, but it also makes it difficult to compare
and reproduce empirical results. For example, Chapter 3 relied on the measure of
Structural Diversity to assess the link between technological complexity and eco-
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nomic growth, but also included robustness checks using alternative measures such
as the KCI and Modular Complexity yielding different results. Critically reflect-
ing on existing complexity measures is therefore crucial in future research, as the
empirical results and derived implications depend on it. In addition, we still know
little about the interplay between different complexity indicators, i.e. economic and
technological complexity. For example, technological and economic complexity are
often studied in isolation, but there might be strong interdependencies that could
also inform regional policy and provide a more comprehensive picture of how com-
plex technological and economic activities affect each other and influence regional
development.

6.3 Policy implications

The complex system of regional policy, in the EU in particular, involves many spatial
scales, numerous programs with a multitude of targets, and countless actors. Al-
though the four empirical chapters in this thesis covered a relatively broad range of
topics from regional diversification to technological complexity and economic growth,
this dissertation still has a narrow scope in comparison to such policies. The focus
was on knowledge creation as one crucial aspect, but clearly not the only aspect
of regional development. It is therefore important to keep in mind that all pol-
icy implications put forward on the basis of this thesis only apply to regions that
produce (technological) knowledge and for which this is an essential ingredient to
their economic development. A second restriction is that this dissertation only dealt
directly with policy in Chapter 2, while it was considered rather indirectly in Chap-
ter 3. The two remaining Chapters 4 and 5 did not consider the policy dimension.
Nevertheless, the theoretical arguments and empirical results of this dissertation
provide some implications that support place-based approaches, which consider the
heterogeneity of places and knowledge.

Chapter 3 has investigated the economic importance of technological complexity
for regional economic development, which links it to Chapter 2 that analyzed the
interplay of relatedness and public R&D support. Pairing complexity with relat-
edness (i.e. two dimensions of knowledge quality) has recently stimulated works in
economic geography. Moreover, it represents a basis from which to derive policy im-
plications. While relatedness reveals the ease of diversification by relying on existing
capabilities, complexity gives the potential economic benefits of specific diversifica-
tion directions. Accordingly, it can be argued that regions should diversify into
complex but related technologies because this strategy offers the most promising
opportunities (Balland et al. 2019). As shown in existing works and in this thesis,
both dimensions can be measured using large-scale data, which then can be used
to derive customized place-based strategies for regions. Despite a continued lack
of empirical support, this strategy has already entered and shaped policy debates
(Balland et al. 2019). In this context, Chapter 3 adds some much needed empirical
evidence for the economic growth potentials of technological complexity.

However, such a strategy also relates to a number of central issues of regional
policy. Firstly, when and how should policy intervene in the process of regional de-
velopment? Learning complex activities is inherently slow and difficult and requires
more resources than simple activities. Accordingly, they are rather costly but tend
to be more risky. This may result in market failures and therefore justifies policy
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intervention. Given the need to approach complex problems in a collaborative fash-
ion, supporting collaborative projects in complex areas seems to be an adequate
policy recommendation. However, much of this is rather speculative and empirical
research in this context is still sparse. The extent to which policy can facilitate
complex knowledge production thus remains largely unknown.

A second central issue refers to related and unrelated diversification. As related
diversification appears to be the norm rather than the exception, the question can be
raised as to whether policy support should focus on unrelated instead of related ac-
tivities in regions. Accordingly, policy can support activities that are rather unlikely
to happen, i.e. unrelated activities. In this case, policy contributes to a broadening
of the regional knowledge space. Such a policy has the potential to increase regional
resilience against external shocks (Frenken et al. 2007) and to contribute to increas-
ing the quality of regional knowledge production outcomes (Castaldi et al. 2015).
Accordingly, such a policy requires the identification of the path-dependent devel-
opments in regions and the derivation of strategies that overcome these. Chapter 2
showed that R&D subsidies for collaborative research projects can to some extent
compensate for missing relatedness, representing a promising policy tool to support
unrelated activities. However, as was shown in previous research, R&D subsidies (at
least in Germany) are primarily allocated to individual projects (Broekel and Graf
2012). Considering the effects of collaborative research revealed in Chapter 2 sug-
gests to rethink the prevalent allocation strategies of R&D subsidies in Germany. In
addition, Chapter 2 revealed that R&D policy primarily supports related activities
in regions, suggesting that policy is rather part of the path-dependent development
of regions for which there are good reasons. Supporting unrelated activities brings
the danger of building cathedrals in the desert. Allocating public resources to re-
lated activities, in contrast, has a greater chance to be successful and hence justifies
allocation decisions of policymakers.

Although related diversification seems to be the norm, not all regions might
be equally successful in diversifying into related activities. Related diversification
rather supports the further specialization into related activities providing regions
with potentials to build competitive advantages. In particular, regions with a narrow
set of capabilities are likely to have disadvantages, as they have fewer opportunities
for related diversification. In such cases, policy might be advised to support related
instead of unrelated diversification. This debate shows that there is no "one-size-
fits-all" policy (Tödtling and Trippl 2005). Unfortunately, few empirical works have
disentangled the extent to which related and unrelated diversification contribute to
regional development. One study by Pinheiro et al. (2018) is a first step in this
direction. Their findings suggest that unrelated diversification is associated with
higher levels of economic growth in regions. However, more empirical investigations
are necessary in future research.

This dissertation marks an important step forward, as it has emphasized that
knowledge quality is a key feature of new knowledge production often overlooked in
previous research. The first printing press, the first automobile, the first powered
flight and the first manned moon landing stand out in the history of technological
development and illustrate that new knowledge substantially varies along multiple
dimensions. The focus of this thesis was therefore on four important dimensions:
relatedness, complexity, degree of novelty and impact, which acknowledge the multi-
dimensionality of knowledge quality often overlooked in previous research. The het-
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erogeneity of places is not only important for differences in the production of new
knowledge in pure quantitative terms, as often highlighted in existing studies, but
also crucially important to explain differences between places regarding the quality
of new knowledge. It has been shown throughout this thesis that the four quality di-
mensions substantially vary between regions. Moreover, these qualitative differences
of knowledge production between regions are crucial to explain the uneven devel-
opment of places, for instance in terms of economic growth and collective learning.
Policy should therefore increasingly include knowledge quality to design place-based
development strategies. However, the empirical boundaries and the limitations of
this thesis to derive concrete policy implications clearly show that much more re-
search is needed. For instance, it was discussed that interdependencies between
the quality dimensions can be expected and are likely to inform our understanding
of knowledge quality and regional development. In addition, the four dimensions
studied in this dissertation are not exclusive. There might be other dimensions of
knowledge quality that have not been discussed yet and that might become impor-
tant building blocks of future research. Further investigation is needed into how
knowledge quality can improve our understanding of regional development, and bet-
ter policies must be tailored to this.
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Baanbrekende mijlpalen als de eerste gemotoriseerde vlucht van de gebroeders
Wright of de maanlanding zijn hoogtepunten in de geschiedenis van de technolo-
gie en dragen bij aan een evenwichtig beeld van het grotere geheel. Technologieën
beïnvloeden ons dagelijks leven en welzijn en in het bijzonder beïnvloedt technol-
ogische kennis de economische ontwikkeling. Abramovitz (1956) en Solow (1957)
toonden aan dat conventionele factoren zoals kapitaal en arbeid geen verklaring vor-
men voor 90 procent van de economische groei in ontwikkelde, geïndustrialiseerde
landen. Zij betoogden dat niet de vermeerdering van kapitaal en arbeid, maar andere
factoren zoals productiviteitsgroei verantwoordelijk moeten zijn voor het onverk-
laarde restant. In zijn groeimodel schrijft Solow (1957) productiviteitsgroei toe aan
technische vooruitgang, waardoor de productiviteit van kapitaal en arbeid kon toen-
emen. Solows model wordt het exogene groeimodel genoemd, aangezien technologis-
che verandering niet direct is opgenomen, maar als exogene factor wordt beschouwd.
Sindsdien is er veel onderzoek verricht om technologische kennis en vooruitgang op
te nemen in economische groeitheorieën en om technologische ontwikkeling te verk-
laren (Kuznets 1962, Nelson en Winter 1982, Romer 1990, Grossman en Helpman
1991, Aghion en Howitt 1998).

Economische groei is echter niet gelijk verdeeld over landen en zelfs regio’s binnen
een land vertonen grote verschillen (Fagerberg et al. 1997). Een belangrijke reden
voor de uiteenlopende niveaus van economische groei is de ongelijke verdeling van
kenniscreatie in regio’s (Glaeser et al. 1992, Henderson et al. 2001). In regionale
groeimodellen wordt kennis daarom vaak als belangrijke variabele beschouwd voor de
verklaring van regionaal economisch succes (bijv. Barrel en Pain 1997, Rodriguez-
Pose 1999, Crescenci 2005, Audretsch en Keilbach 2008, Parent en LeSage 2012,
Piergiovanni et al. 2012). Door de geografische concentratie van kennis en bijgevolg
de uiteenlopende niveaus van kennisproductie in regio’s te verklaren, krijgen we een
beter inzicht in de ongelijke economische ontwikkeling van regio’s.

In de empirische literatuur wordt kenniscreatie echter vaak zuiver als kwantiteit
gezien. In modellen voor kennisproductie of economische ontwikkeling wordt kennis
vaak eenvoudigweg als kwantitatieve factor ingevoerd zonder dat rekening wordt
gehouden met de verschillen in de kwaliteit van de kennis (zie Malecki 2010 voor een
bespreking). Uit onderzoek op diverse vakgebieden blijkt echter dat niet alle kennis
gelijk is, maar grote kwalitatieve verschillen vertoont (Trajtenberg 1990, Chandy en
Tellis 1998, Hargadon 2003).

In de literatuur is een reeks aspecten terug te vinden aan de hand waarvan
de kwaliteit van kennis kan worden gedifferentieerd. Zo is nieuwe kennisproductie
afhankelijk van de combinatie van bestaande kennis. Verwantschap benadrukt dat
niet elke technologie, of meer algemeen, niet alle kennis met dezelfde inspanningen
en met hetzelfde succes kan worden gecombineerd. Verwantschap tussen technolo-
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gieën vergemakkelijkt doeltreffende communicatie en leerprocessen en vermindert
onzekerheden en risico’s (Nooteboom et al. 2007, Frenken et al. 2007, Neffke et al.
2011). Daarnaast onderscheidt kennis zich wat betreft onderliggende complexiteit.
Het ontwikkelen en verbinden van het grote aantal verschillende technologieën dat
nodig was voor de maanlanding was wellicht complexer dan het ontwikkelen van het
PageRank-algoritme voor de zoekmachine van Google (Fleming en Sorenson 2001).
Ook is niet alle kennis even nieuw. Sommige uitvindingen leiden tot radicaal nieuwe
producten of processen zoals de drukpers van Gutenberg, terwijl andere beperkte
verbeteringen of incrementele wijzigingen vormen (Chandy en Tellis 1998). Kennis
heeft bovendien een uiteenlopende impact op de economie, maatschappij en tech-
nologie (Trajtenberg 1990). De uitvinding van de eerste automobiel door Daimler en
Benz of de eerste gemotoriseerde vlucht van de gebroeders Wright leidde tot de op-
komst van nieuwe industrieën en hervormde bestaande technologische paradigma’s.
Andere uitvindingen worden zelfs geen innovaties. Kortom, (a) verwantschap, (b)
complexiteit, (c) mate van nieuwigheid en (d) impact zijn vier belangrijke aspecten
van de kwaliteit van kennis en vormen het middelpunt van deze dissertatie. Pre-
ciezer gezegd, aan elk van deze vier aspecten wordt een hoofdstuk gewijd. Deze
hoofdstukken zullen hierna uitgebreider worden ingeleid.

Verwantschap

Regio’s veranderen voortdurend en verwantschap speelt een belangrijke rol in de evo-
lutie van regionale economische structuren (Boschma en Frenken 2011, Neffke et al.
2011). Nieuwe industrieën komen op, terwijl andere verdwijnen. Deze voortdurende
verandering is verbonden aan technologische vooruitgang. Nieuwe technologische
kennis leidt tot het ontstaan van nieuwe industrieën, zoals de uitvinding van de
automobiel rond 1900 in Zuidwest-Duitsland en maakt andere sectoren achterhaald,
zoals die van de koetsenmakers. Het concept van gerelateerde kennis geeft ons
inzicht in het vermogen van regio’s om collectief te leren en zich te ontwikkelen als
padafhankelijk proces. Het is onwaarschijnlijk dat regio’s los van bestaande compe-
tenties nieuwe kennis verwerven. Hidalgo en Hausmann (2007) laten zien dat er een
grotere kans bestaat dat landen nieuwe producten exporteren als deze gerelateerd
zijn aan het bestaande exportportfolio. Verwantschap heeft niet alleen betrekking
op de productdiversificatie van landen, maar ook van regio’s (Neffke et al. 2011,
Boschma et al. 2015, Rigby 2015, Balland et al. 2018). Derhalve levert de em-
pirische literatuur overvloedig bewijs voor de stelling dat gerelateerde diversificatie
eerder regel dan uitzondering is (Hidalgo et al. 2018).

Het concept van verwantschap en gerelateerde diversificatie biedt goed onder-
bouwde argumenten voor regionaal beleid en toegesneden beleidsregelingen ten gun-
ste van gerelateerde diversificatie. Zo schrijft de EU-strategie voor slimme spe-
cialisatie (Smart Specialization) voor dat regio’s hun bestaande sterke punten en
toekomstige kansen identificeren om subsidies te ontvangen (Foray et al. 2011). In
het geval van slimme specialisatie steunt het beleid het padafhankelijke proces van
gerelateerde diversificatie waarvoor degelijke argumenten kunnen bestaan, aangezien
regio’s zich specialiseren en concurrentievoordelen op specifieke gebieden creëren ter-
wijl het beleid het risico op verkeerde investeringen beperkt (Martin en Sunley 2006).
Gerelateerde diversificatie als een uiting van padafhankelijkheid is echter misschien
niet in staat om mogelijke regionale cognitieve lock-ins te voorkomen. In plaats van
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bestaande sterke punten te ondersteunen, zoals gebeurt in de huidige EU-strategie,
zou het regionale beleid er wellicht ook goed aan doen om niet-gerelateerde in plaats
van gerelateerde diversificatie te steunen om cognitieve lock-ins en externe schokken
in de regio beter te kunnen opvangen (Frenken et al. 2007). Ongeacht het type di-
versificatie – gerelateerd of niet-gerelateerd – blijft het nog steeds de vraag in welke
mate beleid het padafhankelijke proces van regionale diversificatie kan beïnvloeden.
Dit is volgens Boschma en Gianelle (2014, p. 6) de hamvraag.

In hoofdstuk 2 wordt deze leemte in het onderzoek als uitgangspunt genomen met
de vraag: Verbreken door de overheid gefinancierde O&O-projecten de padafhanke-
lijkheid van collectief leren in regio’s? De empirische aanpak in hoofdstuk 2 gaat uit
van octrooien uit de OESO REGPAT-database als indicator van technologische ken-
nis en van informatie over gesubsidieerde O&O-projecten door het Duitse ministerie
van Onderwijs en Onderzoek (BMBF). De dataset is gebruikt in een reeks eerdere
projecten waarin de relatie tussen overheidssteun en innovatie in regio’s werd onder-
zocht (Fornahl et al. 2011, Broekel en Graf 2012, Broekel 2015). De gegevens van het
BMBF bevatten informatie over de begunstigden, doelstellingen, locaties en duur
van de gefinancierde projecten. Een zelf vervaardigde concordantie op basis van de
database met gegevens over octrooien en bijbehorende subsidies en bedrijven van het
Halle Instituut voor Economisch Onderzoek koppelt de gegevens van gesubsidieerde
O&O-projecten aan gepatenteerde uitvindingen. Met behulp van deze gegevens is
de relatie onderzocht tussen door de overheid gefinancierde O&O-projecten en re-
gionale diversificatie voor 141 Duitse arbeidsmarktregio’s tussen 1991 en 2010. De
resultaten bevestigen eerdere studies: verwantschap is een belangrijke verklaring
voor diversificatie in Duitse arbeidsmarktregio’s. Voor het innovatiebeleid geldt
dat O&O-subsidies eerder worden toegekend aan gerelateerde activiteiten. Boven-
dien blijkt er een positief verband te zijn tussen door de overheid gefinancierde
O&O-projecten en regionale diversificatie. Eerder onderzoek (Broekel en Graf 2012,
Broekel et al. 2017) benadrukt dat O&O-subsidies die worden toegekend aan indi-
viduele en gezamenlijke onderzoeksprojecten verschillende effecten hebben. Op basis
van de gegevens van het BMBF kan een dergelijk onderscheid worden gemaakt en
de empirische resultaten suggereren dat gezamenlijke O&O-projecten de regionale
diversificatie sterker beïnvloeden dan individuele. Bovendien kunnen gezamenlijke
O&O-projecten tot op zekere hoogte een gebrek aan verwantschap compenseren door
de kans op een succesvolle inschrijving te vergroten wanneer de concentratie van ver-
wantschap laag is. Hoewel beleidsvorming deel uitmaakt van de padafhankelijkheid
van collectief leren in regio’s (aangezien de overheid meer geneigd is middelen toe
te kennen aan gerelateerde activiteiten) kunnen gezamenlijke onderzoeksprojecten
desalniettemin de diversificatie tot niet-gerelateerde activiteiten bevorderen.

Complexiteit

Klassieke modellen voor endogene groei suggereren dat een toename van O&O-
middelen zou moeten leiden tot een sterkere groei van een economie (Romer 1990,
Aghion en Howitt 1998). Jones (1995) merkte echter op dat de groei van de VS niet
bijzonder toenam, ondanks het feit dat over een lange periode aanzienlijk meer was
geïnvesteerd in onderzoek en onderwijs. Pintea en Thompson (2007) brengen deze
paradox in verband met de toenemende complexiteit van technologieën en technol-
ogische ontwikkeling. Technologieën worden complex genoemd als ze uit een groot
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aantal onderdelen bestaan en voor hun reproductie grote hoeveelheden informatie
vereist is (Simon 1962, Winter 1987, Zander en Kogut 1995). Voor complexe tech-
nologieën moeten meerdere, onderling afhankelijke componenten functioneren en
kleine fouten kunnen grote problemen opleveren (Sorenson et al. 2006). Jovanovic
en Nyarko’s (1995) leertheorie geeft aan dat leerprocessen in complexe domeinen
daarom moeizamer en trager verlopen en steeds meer O&O-middelen vergen.

In de huidige kenniseconomie is kennis een essentieel hulpmiddel en de com-
plexiteit van kennis kan concrete economische gevolgen hebben. Simpele kennis die
eenvoudig te kopiëren is, zal economische actoren waarschijnlijk geen groot groeipo-
tentieel opleveren. Complexe kennis zal daarentegen niet zo snel in handen van con-
currenten terechtkomen, aangezien deze moeilijker kan worden verspreid en vormt
zo eerder een waardevolle hulpbron (Sorenson et al. 2006). Economische actoren
met een concurrentievoorsprong in complexe domeinen zullen derhalve eerder de
economische voordelen opstrijken (Kogut en Zander 1992, Zander en Kogut 1995).

Hoewel de economische gevolgen van technologische complexiteit veelvuldig zijn
besproken, is er nog weinig empirisch bewijs. Het bestaande empirisch bewijs is
om twee hoofdredenen onbevredigend. Ten eerste zijn de empirische benaderin-
gen die worden gebruikt om de impact van technologische complexiteit op regionale
economische ontwikkeling te onderzoeken beperkt tot indirect bewijs. Ze gaan ofwel
uit van economische complexiteit als impliciete maatstaf voor technologische com-
plexiteit (Hidalgo en Hausmann 2009, Hausmann et al. 2013, Bahar et al. 2014) of
ze relateren technologische ontwikkeling indirect aan overeenkomstige economische
groei (Petralia et al. 2017, Balland et al. 2018). Ten tweede is het empirisch bewijs
hoofdzakelijk beperkt tot nationaal niveau (Hidalgo en Hausmann 2009, Hausmann
et al. 2013, Bahar et al. 2014, Petralia et al. 2017). Regio’s binnen landen kunnen
complexe technologieën echter op heel verschillende manieren produceren (Balland
en Rigby 2017). Landen zijn daarom nogal grove ruimtelijke eenheden die geen oog
hebben voor de aanzienlijke regionale variatie binnen een land. De vraag in welke
mate technologische complexiteit gerelateerd is aan de economische ontwikkeling van
regio’s blijft derhalve onbeantwoord.

Deze leemte in het onderzoek is de drijfveer voor het empirisch onderzoek in
hoofdstuk 3. De hoofdvraag luidt: zijn complexe technologieën van belang voor
regionale economische ontwikkeling? In de empirische aanpak wordt uitgegaan van
bbp per capita als indicator voor economische groei in 166 Europese NUTS 2-regio’s
tussen 2000 en 2015. De OESO REGPAT-database biedt informatie over gepaten-
teerde uitvindingen en dient als indicator voor technologische kennis. Technologische
complexiteit wordt gemeten op basis van de complexiteitsindex van Broekel (2019)
die structurele diversiteit wordt genoemd. De complexiteitswaarden worden verbon-
den aan regionale uitvindingsactiviteiten om vast te stellen hoe goed regio’s in staat
zijn complexe kennis te produceren. De resultaten van de empirische analyse sug-
gereren dat Europese regio’s behoorlijk verschillen in hun vermogen om complexe
technologieën te produceren. Hoewel complexe kennis zich concentreert in een aantal
grote stedelijke gebieden zoals Parijs, Madrid en München, wijst de analyse uit dat
het niet uitsluitend om een stedelijk fenomeen gaat. Daarnaast blijkt dat regionale
verschillen in de complexiteit van kennis gerelateerd zijn aan economische groei in
regio’s. Om preciezer te zijn: een toename in complexiteit van tien procent wordt in
verband gebracht met een overeenkomstige toename van de regionale economische
groei van circa 0,28 procent.
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Mate van nieuwigheid

Niet alle nieuwe kennis is even nieuw. In de economische geografie wordt nieuwigheid
echter vaak als gegeven vereiste beschouwd voor technologische ontwikkeling, hoewel
diverse concepten zoals radicale innovaties (Chandy en Tellis 1998), disruptieve inno-
vaties (Christensen 1997) of technologische doorbraken (Hargadon 2003) substantiële
verschillen tussen uitvindingen laten zien wat betreft nieuwigheid. Radicaal nieuwe
uitvindingen kunnen bijvoorbeeld bestaande technologische paradigma’s hervormen
(Chandy en Tellis 1998) en kunnen bijgevolg de opkomst van nieuwe sectoren met
aanmerkelijk groeipotentieel bevorderen terwijl andere sectoren achterhaald worden
(Christensen 1997). De mate van nieuwigheid heeft daarom tamelijk sterke gevolgen
voor de technologische ontwikkeling en heeft het potentieel om de socio-economische
ontwikkeling van een regio te transformeren.

Hoofdstuk 4 heeft tot doel een beter inzicht te krijgen in het concept van
nieuwigheid en zijn geografische patronen. Het maakt gebruik van de theoretis-
che en empirische inzichten van schaalanalyses die aantonen dat de geografische
concentratie van kennisproductie niet willekeurig is, maar grotere steden begun-
stigt (O’hUallichain 1999, O’hUallichain en Leslie 2005, Bettencourt et al. 2007a,
Bettencourt et al. 2007b). Deze auteurs veronderstellen een schaalmodel met de
gerapporteerde coëfficiënten, maar geven de productiviteit van steden ten aanzien
van innovatie enkel in zuiver kwantitatieve begrippen weer, zonder de verschillende
gradaties van nieuwigheid van technologische kennis in aanmerking te nemen. Ste-
den als hotspots voor innovatie brengen echter ook essentiële functionaliteiten en
fundamentele middelen samen die innovatie in kwalitatieve begrippen kunnen beïn-
vloeden.

In hoofdstuk 4 wordt deze onderzoeksleemte onderzocht en de vraag gesteld:
zijn steden hotspots van werkelijk nieuwe ideeën? Historische octrooidocumenten
van 1836 tot 2010 dienen als empirische grondslag om de onderzoeksvraag te beant-
woorden (Petralia et al. 2016). Een tijdspanne van 174 jaar maakt het mogelijk om
langetermijntendensen in technologische ontwikkeling te ontrafelen en bevestigt de
padafhankelijkheid in kenniscreatie die leidt tot vaste geografische patronen. De em-
pirische benadering in dit hoofdstuk gaat uit van de theoretische conceptualisering
van uitvindingen als gevolg van kenniscombinaties. Door uitvindingen te ontleden
in de combinaties waaruit ze bestaan, kunnen z scores worden toegepast om een on-
derscheid te maken tussen atypische (werkelijk nieuwe) en typische (incrementele)
combinaties (Schilling en Green 2011, Uzzi et al. 2013, Kim et al. 2016). De schaal-
analyse in hoofdstuk 4 laat ten eerste zien dat nieuwigheid zich de afgelopen 174
jaar van de Amerikaanse uitvindingsgeschiedenis steeds meer in grote metropolen
concentreert. De productiviteit van steden wat betreft kennisproductie is dus niet
zuiver kwantitatief van aard, maar heeft ook betrekking op de nieuwigheid.

Impact

De impact die nieuwe kennis op verdere innovatie heeft, loopt sterk uiteen (Trajten-
berg 1990). Onderzoekers beoordelen de impact op verdere kenniscreatieprocessen
bijvoorbeeld door gebruik te maken van citatiegegevens in wetenschappelijke pub-
licaties of octrooien (Garfield 1970, Trajtenberg 1990). Citatiegegevens laten zien
hoe vaak een bepaald wetenschappelijk artikel of octrooi is gebruikt als input voor
latere artikelen of octrooien en maken het daardoor mogelijk een onderscheid te
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maken tussen kennisresultaten met een grote impact en die met minder impact.
Empirisch onderzoek geeft aan dat veel geciteerde resultaten, zoals innovaties met
grote impact, waarschijnlijk ook economische waarde opleveren (Trajtenberg 1990).

Hoewel innovatie met een grote impact aanzienlijke regionale gevolgen kan
hebben, worden verschillen in de impact van innovaties zelden in aanmerking
genomen bij onderzoek op het gebied van economische geografie. Toch zou het
van belang moeten zijn of een regio grote hoeveelheden kennis met geringe impact
produceert of kennis met veel impact die de regionale ontwikkeling aanmerkelijk
kan beïnvloeden. Enkele van de weinige studies in economische geografie die tech-
nologische impact opnemen in hun empirische analyses zijn van Ejermo (2009) en
Castaldi en Los (2017). Zij benadrukken dat er geografisch gezien een sterkere con-
centratie van innovaties met grote impact bestaat dan van conventionele innovaties.
De sterke concentratie van invloedrijke innovaties werpt meer vragen op. Waarom
zijn sommige regio’s beter in staat om belangrijke innovaties te produceren dan an-
dere? Castaldi et al. (2015) stellen vast dat een economische structuur die wordt
gekenmerkt door niet-gerelateerde diversiteit verband houdt met het verschijnen
van innovaties met een grote impact in regio’s. Buiten dat wordt er in onderzoek
naar economische geografie echter (nog) verbazingwekkend weinig gesproken over
de onderliggende redenen waardoor regio’s in staat zijn invloedrijke resultaten te
produceren.

Hoofdstuk 5 behandelt deze leemte in het onderzoek en presenteert het heersende
sociale klimaat ten aanzien van innovatie als een mogelijke verklaring voor de
waargenomen regionale variatie in het creëren van innovaties met grote impact.
Er wordt gesteld dat met name een regionaal sociaal klimaat dat open staat voor
nieuwe ideeën en creatief denken waardeert, van doorslaggevend belang is voor het
ontstaan van invloedrijke innovaties. In hoofdstuk 5 wordt daarom voortgebouwd
op bestaand onderzoek naar de rol van het open karakter van regio’s voor innovatie
zonder rekening te houden met het belang ervan voor de creatie van invloedrijke
innovaties (Rodríguez-Pose 1999, Florida 2002). Bestaande studies gaan echter uit
van tamelijk grove en indirecte indicatoren om te meten hoe open regio’s zijn, zoals
het aandeel homoseksuelen (Florida 2003). Om deze tekortkomingen te verhelpen,
wordt in hoofdstuk 5 gebruik gemaakt van psychologisch onderzoek. Psychologen
hebben aanzienlijke vooruitgang geboekt in de conceptualisering en het meten van
de persoonlijkheid van individuen via persoonlijkheidskenmerken. De zogenoemde
‘grote vijf’ zijn vijf persoonlijkheidskenmerken (John en Srivastava 1999). In het
bijzonder het kenmerk openheid wordt geassocieerd met innovatie aangezien het
beschrijft hoe vindingrijk, creatief, origineel en nieuwsgierig een persoon is (McCrae
1987, King et al. 1996, McCrae 1996, John en Srivastava 1999). In hoofdstuk 5
wordt een dergelijke macro-psychologische benadering gevolgd met de vraag: is een
open karakter van regio’s van invloed op de kwaliteit van innovatie in regio’s?

De empirische aanpak in hoofdstuk 5 gaat uit van octrooigegevens van het
Amerikaanse octrooi- en merkenbureau (USPTO) als indicator voor innovatie-
activiteiten in 382 grootstedelijke statistische gebieden (MSA) in de Verenigde
Staten tussen 2000 en 2010. Net als in voorgaande benaderingen wordt de im-
pact van innovaties gemeten aan de hand van een telling van geciteerde octrooien,
gecorrigeerd voor klasse en cohort (Trajtenberg 1990, Cohen et al 2002, Hall et al.
2005). Om precies te zijn, worden regionale innovatie-activiteiten gerangschikt vol-
gens het aantal ontvangen citaten. Hiermee kan een berekening worden gemaakt
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van de impact van regionale innovatie-activiteiten in verschillende percentielen van
de regionale impactverdeling. Om regionale persoonlijkheidsverschillen in openheid
vast te leggen, worden de antwoorden van 1,27 miljoen deelnemers van het online
persoonlijkheidsproject (Gosling et al. 2004) samengevoegd op MSA-niveau. Uit
de empirische resultaten blijkt dat regio’s onderling substantieel verschillen in hun
vermogen om innovaties met grote impact te produceren. Het effect van een open
karakter is het sterkst voor de meest invloedrijke innovaties en vrijwel niet bestaand
voor de gemiddelde innovatiekwaliteit van regio’s. Kortom, regio’s met een open
karakter produceren meer innovaties met grote impact.

Conclusies

Deze dissertatie vormt een belangrijke vooruitgang aangezien hierin, in tegenstelling
tot eerder onderzoek, wordt benadrukt dat de kwaliteit van kennis een wezenlijke
factor is voor de productie van nieuwe kennis. De eerste drukpers, de eerste auto,
de eerste gemotoriseerde vlucht en de eerste man op de maan zijn hoogtepunten in
de geschiedenis van de technologische ontwikkeling en illustreren dat nieuwe kennis
op meerdere vlakken sterk uiteenloopt. Deze dissertatie is daarom gericht op vier
belangrijke aspecten: verwantschap, complexiteit, mate van nieuwigheid en impact.
Deze aspecten erkennen dat de kwaliteit van kennis meerdere dimensies heeft. In
deze dissertatie is aangetoond dat deze kwaliteitsaspecten sterk uiteenlopen tussen
regio’s. De heterogeniteit van plaatsen is niet alleen van belang voor verschillen
in de productie van nieuwe kennis in louter kwantitatieve begrippen, zoals vaak in
eerder onderzoek is benadrukt, maar ook van fundamenteel belang om verschillen
in kwaliteit van nieuwe kennis in verschillende plaatsen te verklaren. Daarnaast zijn
deze kwalitatieve verschillen in kennisproductie tussen regio’s essentieel om de on-
gelijke ontwikkeling van plaatsen te verklaren, bijvoorbeeld wat betreft economische
groei en collectief leren. Bij beleid dient daarom de kwaliteit van kennis in aan-
merking te worden genomen om regionale ontwikkelingsstrategieën te ontwerpen.
De empirische grenzen en de beperkingen van deze dissertatie om concrete beleid-
simplicaties af te leiden, laten echter duidelijk zien dat er nog veel meer onderzoek
nodig is. Zo kan bijvoorbeeld worden aangenomen dat de kwaliteitsaspecten van
elkaar afhankelijk zijn en dit kan bijdragen aan ons inzicht in de kwaliteit van ken-
nis en regionale ontwikkeling. Bovendien zijn de vier aspecten die in deze dissertatie
zijn bestudeerd niet exclusief. Er kunnen andere aspecten van kenniskwaliteit zijn
die nog niet zijn behandeld en die belangrijke bouwstenen kunnen vormen voor
toekomstig onderzoek. Er is meer onderzoek nodig naar hoe de kwaliteit van ken-
nis ons begrip van regionale ontwikkeling kan verbeteren en om beter beleid uit te
werken.
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