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A B S T R A C T

Many videos depict people, and it is their interactions that inform us of their activities, relation to one another
and the cultural and social setting. With advances in human action recognition, researchers have begun to
address the automated recognition of these human–human interactions from video. The main challenges stem
from dealing with the considerable variation in recording setting, the appearance of the people depicted and
the coordinated performance of their interaction. This survey provides a summary of these challenges and
datasets to address these, followed by an in-depth discussion of relevant vision-based recognition and detection
methods. We focus on recent, promising work based on deep learning and convolutional neural networks
(CNNs). Finally, we outline directions to overcome the limitations of the current state-of-the-art to analyze
and, eventually, understand social human actions.

1. Introduction

Despite significant research progress in the automated analysis of
humans and their activities (Cheng et al., 2015; Herath et al., 2017;
Koohzadi and Charkari, 2017; Poppe, 2010), the recognition of human
interactions from video remains a challenging topic. Integral part of the
difficulty is that understanding interactions between people requires
more than analyzing the actions of each person in isolation. Rather, it is
the coordination, in both space and time, between people that reveals
the true nature of their collective behavior. In addition, the context in
terms of who is interacting why and where determines to a large extent
how the interaction unfolds.

There is a long history of the manual and automatic description
of human interactions, see Birdwhistell (1952), Poppe (2017) and
Vinciarelli et al. (2009) for overviews. Still, the relation between the
observable form of the bodily interaction and the more subjective
interpretation thereof is relatively understudied. For example, putting
a hand on someone’s shoulder can be objectively identified, whereas
more information is required to know that one person is comforting the
other, or trying to get the other’s attention. The scarcity of a more so-
cial, contextual perspective in the automated analysis of human–human
interactions is also reflected in computer vision literature, where inter-
actions are typically reduced to visually and temporally well-defined
events. Despite this somewhat artificial view on human behavior, cur-
rent advances pave the way for a more social perspective. In this paper,
we survey the research in the recognition of human–human interactions
in videos, with a focus on methods based on convolutional neural
networks (CNNs). We then discuss promising directions to leverage the
current state-of-the-art to a more social analysis.
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1.1. Scope and motivation

In this survey, we focus on dyadic interactions between two people.
We consider joint actions of both people that can be characterized by
the positions, movements and coordination of their bodies (see Fig. 1).
For example, we consider a handshake as an interaction that can be
part of an activity such as an agreement or a greeting. Interactions can
be made up of several motions in sequence, such as extending the right
arm, grasping the right hand of the other and moving the hands up-
and-down. The duration of the interactions that we consider can be
anywhere between half of a second and several seconds. There can
be considerable variation in the performance of an interaction, most
notably in the duration but also in the coordination. This variation
can also lead to ambiguities in how they are perceived. For example,
the hug interaction in Fig. 1(center) could also be considered a lift
interaction. The works discussed in this survey exclusively treat the
interaction recognition task as deterministic, which does not fully
reflect the more ambiguous nature in the perception of social behavior.
We discuss alternative representations and methods in the Discussion
section.

The automated recognition of bodily interactions from video mainly
benefits content-based video retrieval (Liu et al., 2015; Sempena et al.,
2011), security (Aran and Gatica-Perez, 2013) and surveillance
(Cristani et al., 2011; Tian et al., 2012; Yi et al., 2014) and interactive
human–computer interfaces (Rehg et al., 2013; Sheerman-Chase et al.,
2011). The vast majority of the research has considered a functional
perspective by labeling the visual aspect of videos. This leaves room for
a more contextual interpretation of the joint behavior. Opportunities
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Fig. 1. Three interactions: handshake, hug or lift, and object passing. These examples
show non-standard body poses (left), ambiguous class labeling (center) and the need
for temporal information (right).

for a broader use of automated measures arise when computers can
understand the interactions in terms of communicative and affective
intent. In this survey, we present the current basis and potential
directions to take the important step from interaction recognition to
understanding. We discuss the evolution of the current state-of-the-
art in interaction recognition towards this social perspective in the
Discussion section.

1.2. Main challenges in the field

We identify challenges when dealing with the visual and structural
aspects of interaction videos. Additionally, we outline practical chal-
lenges in the development of methods of automated human–human
action recognition.

1.2.1. Variation in visual appearance
Interactions between people can be observed in many different

environments, and under vastly different recording settings. Most no-
tably, a change of viewpoint has a large effect on how the interaction
is observed. Especially when people are interacting physically, it is
likely that their body parts partially occlude each other. This presents
challenges in the recognition of interactions from a single viewpoint,
as characteristic movements or the poses of key body parts are not
visible. Typically, we do not have access to other viewpoints to deal
with potential ambiguities.

Variation in clothing and lighting conditions further adds to the
challenge of robustly observing the smaller movements. Especially in
low-resolution videos, the level of detail might be insufficient to dis-
tinguish between subtly different interaction classes such as handshake
and fist bump greetings.

1.2.2. Intra-class variation in interaction performance
The performance of an interaction in terms of body movements and

coordination can differ significantly, see Fig. 1(left). Ronchi and Perona
(2015) has analyzed the variation for single images. Additionally, there
is significant variation in the temporal execution of the movement.
While such deviations can be used to differentiate between classes (An-
derson and Perona, 2014), the dissimilarity of performance within an
interaction class is typically too large to derive general rules.

Interactions, like individual actions, often present an intrinsic se-
quential nature of movements. For example, an extension of the hand of
one person is normally followed with the extension of the other actor’s
hand. Results from works that aim at the prediction of future actions
have immediate impact on the improvement of scene understanding
(e.g., Vondrick et al. (2016)). Other works build on the key idea that
future actions can be predicted by classifying an action or interaction
solely on its start (Ziaeefard et al., 2015). Such an approach might
work well for goal-directed interactions (Cao et al., 2013; Ryoo, 2011),
but is less successful when the variation in the performance increases
(see Fig. 1(right)). This is especially true when the interactions are
more social and reactive in a communicative or affective way, such as
jokingly stomping someone.

Some works have addressed the estimation of a skeletal repre-
sentation in order to circumvent having to learn interaction patterns
directly from video (Cavazza et al., 2016; Pham et al., 2018; Yub Jung
et al., 2015; Yun et al., 2012). Recent methods rely on CNN-based
approaches (e.g., Cao et al. (2017), Carreira et al. (2016), Güler et al.
(2018), Insafutdinov et al. (2017) and Li et al. (2015), Yang et al.
(2017)) and allow to investigate both pose and movement of a person.
Skeleton representations are informative for actions and interactions
and present an attractive alternative or complement for image features.
However, errors and inaccuracies in the pose estimation process might
be propagated to the classification task. In addition, there is a need
for quantitative units that capture the characteristic information of an
interaction in terms of pose, movement and coordination in space and
time.

1.2.3. Challenges in data collection and labeling
The study of interactions is further complicated by a relative lack

of large datasets. In Section 2, we discuss the most popular resources,
but most of them focus on a relatively limited domain (e.g. sports or
surveillance). In addition, there is no common labeling of the inter-
action classes. For example, a handshake might be a category of its
own, or might be part of a greeting class. This lack of standardization
hinders cross-dataset studies and consequently limits the generalization
of methods developed in one particular scenario to address another.
While human–human interactions are increasingly part of large datasets
containing web videos, the interactions considered are often relatively
dissimilar and well-defined (e.g. a handshake and a hug). This puts
the focus on dealing with the variations in the visual input, rather
than subtle variations in the physical performance of the interactions.
Also, this practice neglects issues with potentially ambiguous labeling
such as in Fig. 1(center). We deem an increased consideration of the
coordination of body movements as a key requirement for successful
application in more social settings, in which a multitude of subtly
varying interactions may be encountered.

1.3. Survey overview

The survey structure is as follows. Section 2 summarizes publicly
available datasets. We then continue with an in-depth discussion of
human–human interaction recognition literature. We distinguish be-
tween the more traditional methods based on hand-crafted features
(Section 3) and those based on deep learning (Section 4). Finally, we
discuss the limitations of the state-of-the-art and present promising
avenues for further research.

2. Datasets

The availability of labeled datasets and the direct comparisons
between methods generally lead to better understanding of the relative
algorithmic advantages and limitations and, consequently, progression
in performance. Compared to datasets available for individual action
recognition (e.g., Heilbron et al. (2015), Kuehne et al. (2011), Ro-
driguez et al. (2008) and Soomro et al. (2012)), resources for human–
human interactions are scarce. Most notably, the limited variation in
viewpoint, application context and movement performance has hin-
dered remarkable breakthroughs in the recognition of subtly different
interactions such as those encountered in social settings. This section
provides an overview of the most common datasets. Example frames
appear in Fig. 2. A summary of the datasets appears in Table 1.

2.1. UT-Interaction

UT-Interaction (Ryoo and Aggarwal, 2010) contains 20 sequences
and six interaction classes. With almost static background, limited
occlusions and a fixed viewpoint, the classification difficulty is low. UT-
Interaction is used as benchmark for many methodologies, ranging from
bounding boxes techniques (Motiian et al., 2017; Shu et al., 2017) to
bags-of-visual-words (Shariat and Pavlovic, 2013; Slimani et al., 2014).
Some works have also addressed the detection of interactions in both
space and time (Van Gemeren et al., 2018).
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Fig. 2. Example video frames from different datasets depicting different interaction categories.

Table 1
Summary of datasets with footage type and quantity, number of action/interaction classes and actors.

Dataset Footage type Scripted Sequences Duration Classes Actors

UT-Interaction Outside recordings Yes 60 10–25 s 6 8
TV human interaction TV shows Yes 300 1–5 s 4 100+
Hollywood2 Films Yes 3669 10–15 s 12 100+
ShakeFive2 Lab recordings Yes 153 with pose data 5–10 s 5 33
SBU Kinect Lab recordings Yes 300 with pose data 1–5 s 21 9
AVA Films Yes ∼57.6k 15 min 80 100+
CMU Panoptic Lab recordings Partially 65 multi-view with pose data 10–15 min N/A 16
SALSA Inside recordings No 8 multi-view with sensor data 30 min N/A 18
Kinetics YouTube videos No ∼500k 10–15 s 700 100+
Moments in time YouTube videos No ∼800k 1–5 s 340 100+
HACS YouTube videos No ∼1.5M clips (∼490k positive) 2 s 201 100+

2.2. TV Human Interaction

The TV Human Interaction dataset is composed of short video seg-
ments of four classes (handshake, hug, kiss and high-five), taken from
popular TV series (Patron-Perez et al., 2010, 2012). The dataset in-
cludes annotations of the upper bodies, head orientations and inter-
action labels for each person in the scene. Compared to UT-Interaction,
the video quality is higher, more different viewpoints and scenes are
included and there is more variation in the number of people in the
scene. All interactions are acted and the recording setting is highly
controlled.

2.3. Hollywood2

Hollywood2 (Marszalek et al., 2009) also consists of clips from
movies. Subtitles were used to align script data with the correspond-
ing movie scenes. Despite the significant variation in the videos, the
controlled nature of the movie domain limits generalization to more
realistic domains. The four interaction classes are fight, handshake, hug
and kiss.

2.4. ShakeFive2

A collection of human interaction clips with complementary skeletal
data was introduced by Van Gemeren et al. (2016). The videos are
captured with fixed viewpoint and static background. The challenge
of the dataset is in the similarity of the interaction classes (fist bump,
handshake, pass object, high-five and hug).

2.5. SBU Kinect Interaction

Additional depth data (RGB-D images), obtained from a Kinect
sensor, is available in the SBU Kinect Interaction dataset (Yun et al.,
2012). It features eight two-person interactions: approach, depart, kick,
punch, hand shake, hug and pass object. The clips are segmented in time,
with the interactions fully occupying the frame.

2.6. CMU Panoptic

The CMU Panoptic dataset (Joo et al., 2015) is recorded in a large
geometric dome with RGB and Kinect cameras distributed across the
surface. The data are comprised of 480 synchronized video streams
with additional pose information. Each clip depicts 3–8 people par-
ticipating in social engagements: ultimatum, prisoner’s dilemma, mafia,
haggling and 007-bang. The activities are scripted but the interactions
are genuine. No action classes have been defined but the participants
closely interact.

2.7. Kinetics

The Kinetics dataset (Carreira et al., 2019; Kay et al., 2017) contains
700 video classes with approximately 600 videos per class. There are
11 interaction classes, including handshake, hug and massage feet. The
dataset is a collection of clips from YouTube videos. The video material
is not professionally edited and features a large variety of background
clutter, illumination settings and motion blur.

2.8. Atomic Visual Actions (AVA)

The AVA dataset (Gu et al., 2018) is composed of 15-min segments
from 432 movies. In addition to the labeling of clips for recognition,
the interactions and actions of the actors within scenes are localized for
tracking and detection tasks. The dataset contains 80 classes, including
13 interaction categories. The videos contain limited camera blur and
most of the scenes have been shot with a still camera.

2.9. Synergetic sociAL Scene Analysis (SALSA)

The SALSA dataset (Alameda-Pineda et al., 2016) contains 30 min
of a poster presentation event, and 30 min of a cocktail party. In
addition to camera views, the events have been recorded with various
other sensors, including microphones and accelerometers. The data is
richly annotated in terms of body and head orientation, and group
membership. SALSA allows for the analysis of more social (group)
interactions.
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2.10. Moments in Time

The Moments in Time dataset (Monfort et al., 2018) is composed of
three-second clips of events and activities. The dataset contains signifi-
cant intra-class variation. Apart from common activity and interaction
classes such as hugging and handshaking, some classes focus on group
events such as dinning, baptizing or autographing.

2.11. Human Action Clips and Segments (HACS)

The HACS dataset (Zhao et al., 2019) contains annotations of
roughly 50k YouTube videos that correspond to 1.5M clips in total. The
extracted two-second clips from the videos cover 201 classes, and also
include negative samples that do not contain any action or interaction
of interest, but are shot under the same image conditions. The dataset
contains 23 interaction classes, mostly relating to sport activities.

3. Recognition from handcrafted features

Traditionally, the recognition of interactions from video starts with
the representation of the scene and events as image features, and the
subsequent classification of these features into an interaction class.
Image features should be invariant to image conditions and interac-
tion performance, while being sufficiently rich to deal with subtle
differences between interaction classes.

We distinguish between local feature approaches that rely on salient
points in the video, and template-based approaches that take into
account regions in the video that roughly correspond to a person’s body
or body parts.

3.1. Local features approach

In general, local feature algorithms take a bottom-up approach by
first detecting interesting points in a video, and then to aggregate
detections over time and space to understand which behavior is being
performed. These interesting points are selected locally, typically at
edges or motion boundaries. Popular descriptors are based on Harris
corners (Marín-Jiménez et al., 2013; Zhang et al., 2013), SIFT descrip-
tors (Delaitre et al., 2010; Lowe, 1999) or optical flow (Yu et al.,
2012). There is typically no direct correspondence between a point
and a person or body part. As a consequence, factors such as camera
motion, dynamic backgrounds and occlusions affect the presence of
local features.

To increase the robustness of local descriptors, a distribution of
points is usually described as a bag-of-words (BoW) or Fisher vector
(FV) (Gao et al., 2016; Oneata et al., 2013). Instances of the same
interaction class are assumed to have similar descriptors. To allow
for a more complex distribution of the features, Niebles et al. (2008)
construct a vocabulary using latent topics models.

Instead of modeling the trajectories of individual points, researchers
have addressed the sequential nature of interactions by modeling the
changes in the distribution of interest points over time. Zhang et al.
(2012) use spatio-temporal phases to create a histogram of bag-of-
phases. Each phase is composed of local words with specific ordering
and spatial position. Instead of jointly mapping both dimensions, au-
thors have addressed separation as well (Shariat and Pavlovic, 2013;
Tran et al., 2014). The computed histograms represent similar features
in single or multiple frames. Histograms of visual words have also
been utilized by Kong et al. (2012). Here, the words derived from the
quantization of the spatial–temporal descriptors were clustered to form
a high-level representation of dyadic interactions, termed interactive
phases. These phases include motion relationships such as the shaking
of two hands. This idea has been extended to localize interactions
by spatially clustering the phrases (Tran et al., 2013). To allow for
variation in the temporal domain, Prabhakar and Rehg (2012) model
the causality of the occurrence of visual words.

Not all motions and attributes are informative, such as the po-
sitioning of the feet when performing certain greetings. Kong et al.
(2014) consider only body parts that characterize the interaction. Their
method pools BoW responses in a coarse grid. This allows them to iden-
tify specific motion patterns relative to a person’s location. The level of
detail of the analysis is limited by the granularity of the patches and the
accuracy of the person detector. Additionally, they take into account
the temporal nature of interactions by linking subsequent detections
into trajectories. Mohammadi et al. (2015) extend this approach by
grouping the motion patterns as BoW vectors. Similarly, Turchini et al.
(2016) introduce an approach to localize interactions from the tra-
jectories of multiple local feature types. Wang and Schmid (2013)
have introduced Improved Dense Trajectories (DT), a widely adopted
way of finding and describing trajectories of points. In DT, a point is
encoded as a combination of Histograms of Oriented Gradients (HOG),
Histograms of Oriented Flow (HOF) and Motion Boundary Histograms
(MBH). Points are linked over time.

Local features can be used to isolate a person in video first. Ex-
tensive work has been done on the detection of humans from local
features, encoded with HOG and HOF descriptors (Caba Heilbron et al.,
2016). Once a person has been localized, the context of motions and
actions of other people in the scene can provide useful cues for the
recognition of their interactions. Reddy and Shah (2013) exploit the in-
formation obtained through a scene context descriptor which combines
the location and surroundings extracted with optical flow and 3D-SIFT,
based on the moving and stationary pixels. Cho et al. (2017) introduced
the compositional interaction descriptor that takes into account the
local, global and individual movement in video sequences. By linking
local features to persons, we can describe their surroundings. Lan et al.
(2012) presented an Action Context (AC) descriptor that is based on
connected action probability vectors of several people. Similarly, Choi
and Savarese (2014) perform joint tracking, classification of the ac-
tions of an individual and the recognition of collective activities by
considering bounding boxes of extracted local features.

3.2. Template-based approaches

When applied to a single frame, a HOG descriptor can represent
a characteristic pose. For example, a high-five interaction can be de-
scribed as two people facing each other with outstretched hands that
meet above their heads. This notion was adopted by Bourdev et al.
(2010) to detect people engaged in specific actions, and was applied to
human–human interactions by Raptis and Sigal (2013). Sefidgar et al.
(2015) have formulated an implementation with discriminative key
frames and their relative distance and timing within the interaction.
Alternatively, Sener and Ikizler-Cinbis (2015) formulate interaction
detection as a multiple-instance learning problem to focus on rele-
vant frames, because not all frames in an interaction are considered
informative.

The motion around a characteristic pose can provide complemen-
tary information. Van Gemeren et al. (2014) combine HOG and HOF
descriptors to encode the characteristic frame of a two-person interac-
tion. Yu and Yuan (2015) concatenate HOG and HOF descriptors and
applied FV to make the detection linearly separable, thus allowing the
model to concurrently utilize spatial and temporal features.

Instead of relying on interest points, we can first detect faces or
bodies using a generic face or body detector (Patron-Perez et al., 2012;
Ryoo and Aggarwal, 2011). Given two close detections, interactions can
subsequently be classified based on extracted features within the detec-
tion region (Ryoo and Aggarwal, 2011). Various attributes, including
gross body movement and proximity, have been employed to classify
the interaction. Patron-Perez et al. (2012) also include the relative size
and orientation of each person. Khodabandeh et al. (2015) consider
clusters of similar frames based on proximity and appearance of pairs of
people. They find that user feedback helps to increase the purity of the
clusters, in turn improving the interaction classification. The drawback
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of this two-stage approach is that classification is sub-optimal when the
person localization fails, for example when people partly occlude each
other. This is a common situation, especially when people interact in
close proximity.

This issue is mitigated when employing Deformable Parts Models
(DPMs) (Felzenszwalb et al., 2010). Here, an articulated object such
as a person or multiple interacting people are modeled as a set of
parts and deformations between them. This allows for more flexibility
in the spatial layout of the parts. As such, parts that are generally
well detected, e.g. a person’s head, can be coupled with parts that are
traditionally more challenging to detect, such as a lower arm. Lu et al.
(2015) use a DPM as a prior to localize the rough outline of a person.
Optical flow is then used to propagate the outline to subsequent frames.
The resulting volume is then segmented into supervoxels to refine the
person’s outline in each frame, and classified as action. Van Gemeren
et al. (2018) use interaction-specific DPMs with poselet parts (Bour-
dev et al., 2010) to locate people in poses characteristic for a given
interaction. Instead of encoding the orientation of (pairs of) limbs as
poselets, DPMs can also include a larger number of articulations by
using a mixture of parts (Yang and Ramanan, 2011). This approach has
been used to describe the joint poses of two interacting people (Yang
et al., 2012).

While DPMs encode a particular pose or motion spatially only,
extensions have been proposed to deal with the time-varying nature
of human interactions. Yao et al. (2014) focus on human–object in-
teractions and capture the movement related to a key pose using a
DPM and a linked set of motion templates that also correspond to
different phases of the performance. Tian et al. (2013) have extended
DPMs for action detection to model changes in pose over time. These
formulations work well for the representation of coarse movements, but
finer-scale movements are difficult to model because the motion is not
linked to specific parts of the body.

4. Interaction detection from learned features

The hand-coded feature descriptors described in Section 3 focus on
local or global spatial or spatio-temporal information. The manual se-
lection of descriptors leaves room for improvement because the process
is agnostic to the specific classification task, application domain or class
of behaviors.

Based on the introduction of multiple convolutions by LeCun et al.
(1998), Convolutional Neural Networks (CNNs or ConvNets) have been
used for classification tasks of both image and video data. CNNs allow
for the simultaneous training of a classifier, and the automated selec-
tion of informative features. Consequently, they can overcome the issue
of sub-optimal feature selection. While multiple convolution kernels
allow for the selection of a wide range of image or video features, the
stacking of consecutive convolution operations allows for a hierarchical
extraction of complex features (Simonyan and Zisserman, 2014b). Typ-
ically, the characteristics extracted in the first layers of the network
correspond to low-level features such as edges and simple textures.
Deeper layers of the network are targeted towards the extraction of
higher-level features.

Methods based on neural networks have shown notable improve-
ments in human action and interaction classification tasks. Deep learn-
ing benefits from extensive amounts of data without saturation in the
accuracy rates equivalent to the data growth rate. This allows deep
learning architectures to generalize their feature assumptions, based on
the utilization of all potential information in images and videos, rather
than being limited to a predefined set of features, as in the hand-crafted
methods.

The purpose of this section is to present neural network architec-
tures for human interactions that operate on single frames. We then
show how temporal information can be incorporated in the convolu-
tions and finally discuss recurrent models.

4.1. Single frame networks

CNNs have been used to classify actions and interactions in single
frames (Asadi-Aghbolaghi et al., 2017; Bilen et al., 2016; Gkioxari
et al., 2015). Similar to the use of handcrafted features, the focus is
on characteristic joint poses. To extend this methodology to sequences
of images, several approaches have been proposed.

Based on the classification of individual frames, Karpathy et al.
(2014) proposed three techniques to fuse the scores of multiple frames
using different convolutional configurations. In the Early Fusion strat-
egy, the input of the network is a stack of subsequent frames. Late
Fusion combines the convolutional features of the first and last frames
of a sequence in the final, fully connected layers. Slow Fusion is a
combination of these two approaches, that empowers a progressive
fusion over frames and activation maps, with the extension of convolu-
tional layer connections through time. All three approaches are limited
in their capability to deal with subtle temporal variations between
classes, and large intra-class variations. It is a challenge to deal with
these variations as they have to be modeled from the typically modest
number of training videos.

To partly mitigate this issue, authors have investigated the use of
Transfer Learning (Bengio et al., 2011; Bengio, 2012; Caruana, 1998;
Pan and Yang, 2010; Yosinski et al., 2014). This is a process in which
the network is first trained on a large dataset with general examples,
and subsequently re-purposed for another, more specific, classification
task. In general, this means that the deeper layers are retrained for the
specific domain. Consequently, fewer parameters need to be learned for
the novel domain, which reduces the risk of overfitting.

4.2. Motion-based and stream networks

Two-stream CNNs combine regular images and optical flow images
as input (Simonyan and Zisserman, 2014a), and are an alternative ap-
proach to model temporal information. The rationale is that still images
encode the pose of an interaction, while the optical flow provides
information about the motion. The network consists of two streams,
branches in the network structure. The spatial-based CNN is trained
on individual video frames, and the temporal stream CNN takes as
input stacked optical flow fields from multiple frames. The results
from the two networks are concatenated with late fusion. Different
information fusion methods for each stream were explored by Park
et al. (2016). Wang et al. (2016a) added a Temporal Segment Network
(TSN) to the two-stream CNN architecture, applied on sporadically
sampled fragments from the video, thus making a prediction on each
of the snippets independently. The predicted class is then the ‘point of
agreement’ between the video segments. This method capitalizes on in-
formation from small temporal segments rather than using the video as
a single input. Following the use of selected frames (Diba et al., 2017)
also proposes a representation and encoding of the sequence features in
a Temporal Linear Encoding (TLE) layer, after the convolution feature
extraction is performed. It is based on the aggregation of appearance
features from each of the individual temporal fragments. Works have
also included the use of depth data as stream inputs (Garcia et al.,
2018) in which features from the depth stream are distilled in order
for the depth stream to be simulated at test time as the test data does
not include this supplementary modality.

Inputs in the two-stream CNN are processed independently and
only fused as a last step. This approach prevents the exchange of
information between the streams. As such, it is not possible to develop
attention mechanisms that focus on specific parts on the input in either
stream. One way of establishing these links is by using skip connections
of Residual Networks (He et al., 2016; Hara et al., 2018) and addi-
tional shortcut connections between convolutional layers of the motion
stream to the spatial stream. This provides benefits in optimizing the
network architecture and increasing the network depth (Feichtenhofer
et al., 2016). Residual learning enables the model to avoid degradation
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in deep structures, which relates to the saturation of accuracy followed
by a significant drop when optimizing the parameters as layers of the
network are not able to effectively learn the identity map and instead
‘‘threshold’’ to zero mappings.

Recent advances in reinforcement learning and evolutionary al-
gorithms have contributed to a reduction in human supervision for
creating robust network architectures (Zoph and Le, 2017). This trend
has further enabled the construction of architectures for specific tasks
rather than general architectures (Zoph et al., 2018). With an increasing
number of options for layers and connections, such techniques are wel-
come to avoid the slow research progress due to extensive parameter
testing.

Typically, a human interaction does not occupy the entire frame. So
instead of taking the entire image or image sequence as an input, the
region corresponding to the actual interaction can be identified first
and used as input. One technique that takes this two-step approach
is Regional CNNs (R-CNN) (Girshick et al., 2014), that classify each
region with a category-specific linear SVM. Notably, Peng and Schmid
(2016) demonstrated a multi-regional two-stream R-CNN which uses a
region-of-interest fusion layer for both appearance and motion models.
Region-focused, stream-based models have also been used by Tran and
Cheong (2017), who introduce cross-connections from the temporal to
the spatial stream. These include convolutions that reduce the dimen-
sionality of the temporal activation maps. The hierarchical model for
features has also been used for the creation of action tubes (Gkioxari
and Malik, 2015): spatio-temporal volumes centered on the perfor-
mance of a particular action or interaction. Here, region proposals
are found based on motion-appearance cues extracted with a two-
stream CNN. The notion of using tubes for the representation of motion
has also been adopted for different body parts by Mavroudi et al.
(2017). Saha et al. (2016), Hou et al. (2017) have also implemented
a model based on action tubes and R-CNNs as well as connections
between the spatial and temporal models.

Adaptations to regional CNN models have been created by Gkioxari
et al. (2015) and Mettes and Snoek (2017) to include multiple regions
per example. The primary region contains the main actor or actors,
while secondary regions are based on contextual cues of the scene.
Similarly, Wang et al. (2016b) used a two-stream semantic region-
based CNN (SR-CNNs) as an extension of Faster R-CNNs (Ren et al.,
2015). The idea of using multiple independent or dependent regions
for various cues, and using separate streams to encode the input, also
allows to focus on discriminative regions such as a hand of one person
that touches the body of another (Singh et al., 2016; Miao et al., 2017;
Tu et al., 2018; Wu et al., 2016). Typically, such regions complement
each other.

Instead of treating the image and motion aspects of a video in
separate streams, a video sequence can be represented as a 3D volume
that is composed of stacked frames. Baccouche et al. (2011) and Ji
et al. (2013) use 3D convolutions to simultaneously encode the spatial
and temporal features of such a volume. This approach is essentially
an extension of the standard 2D convolutions to 3D. The resulting
feature maps encode informative spatio-temporal patterns in the video
volume. Tran et al. (2015) presented the C3D architecture and demon-
strated its superiority over 2D CNNs. 3D convolutions can also be
used concurrently with a two-stream network. Carreira and Zisserman
(2017) have introduced a fusion of these two methodologies, two-
stream inflated 3D-CNNs (I3D), that adds a temporal dimension to the
kernels of both convolutional and pooling layers. The work considers
the creation of two I3D models that are applied to static image and
optical flow inputs, and thus allows the 3D-CNNs to benefit from the ad-
ditional information of motion patterns in optical flow streams. Spatio-
temporal networks can be used as a base architectures to extend the
type of information processed such as queries for people regions (Gird-
har et al., 2019), position and motion (Choutas et al., 2018) and feature
neighborhood correspondence across time (Cao et al., 2019; Wang
et al., 2018).

The larger number of parameters in 3D convolution blocks and,
consequently, the demand of larger datasets for 3D-CNNs to train,
have motivated the introduction of alternative convolution blocks.
Notably, Qiu et al. (2017) have proposed three supplementary blocks
with different configurations of a single 2D convolutional kernel for the
extraction of appearance information per frame and a temporal kernel
responsible for the changes of pixel values over time loosely inspired by
the separable convolutions of 2D-CNNs (Chollet, 2017; Howard et al.,
2017). This idea has also been used to separate spatio-temporal kernels
into purely spatial and purely temporal ones by Tran et al. (2018)
with the introduction of (2+1)D convolution blocks. Others have fused
both solely-spatial and spatio-temporal convolutions in an effort to
emphasize the spatial signal (Zhou et al., 2018). Chen et al. (2018) have
also proposed the slicing of convolutional blocks in sets of fibers that
are processed in parallel by the model. This significantly reduces the
computation overhead, owing to the decreased size of the activation
maps produced by each operation at each fiber (see Fig. 3).

4.3. Recurrent networks

While CNNs can recognize image components and learn to combine
them to classify different classes, they lack the ability to recognize
patterns across time. Stream-based networks and 3D convolutions can
take into account motion, but do not explicitly deal with variations in
the temporal performance of an action or interaction. An alternative
approach is to use recurrent neural networks (RNNs) that model tem-
poral patterns. The key idea is to use some form of recurrence in the
network that allows the persistence of information through sequences
of inputs. Thus the temporal variations in videos can be efficiently
modeled alongside to the spatial variations.

Recurrent neural networks have been effectively used as a supple-
mentary architecture to CNNs for extracting temporal features. In such
architectures, spatial information is extracted though CNNs and is then
passed to recurrent networks for learning the temporal characteris-
tics of each interaction class (Bagautdinov et al., 2017; Deng et al.,
2016). Zhao et al. (2017) proposed an approach based on the normal-
ization of each layer of the network with batch normalization (Ioffe
and Szegedy, 2015). The architecture is combined with a 3D-CNN
using a two-stream fusion of the RNN and CNN. The use of multiple
recurrent networks has also been extended to include tree structures
(RNN-T) (Li et al., 2017), to perform a hierarchical recognition process
in which each RNN is responsible for learning an action instance based
on an Action Category Hierarchy (ACH). This allows for the distinction
between very dissimilar classes high in the hierarchy, while subtle
differences between related classes such as a handshake and a fist bump
are dealt with in the lower nodes.

Recurrent Neural Networks suffer from vanishing gradients. This
issue causes the updates in the network weights of the top layers
to gradually diminish as the number of data-processing iterations in-
creases. This hinders learning the temporal parameters effectively. To
overcome this issue, Long Short-Term Memory (LSTM) RNNs (Hochre-
iter and Schmidhuber, 1997) have been introduced that include addi-
tional ‘memory cell’ modules that decide whether to keep the processed
information. As such, they are capable of maintaining information
over longer periods, which allows them to learn long-term depen-
dencies (Chung et al., 2014). This is essential for the modeling of
interaction classes as the distinctive information is often present in
different phases of the interaction.

Donahue et al. (2015) and Li et al. (2018), Varol et al. (2017) have
shown that the combination of convolutions and long-term recursions
performs well for recognition tasks in videos. Donahue et al. (2015)
was effective in both image and video description by directly connect-
ing powerful feature extractors such as CNNs with recurrent models.
Similarly, Baccouche et al. (2011) extracted features from the 3D-CNN
architecture and extended the work to a two-step recognition process
with a LSTM. The first step was the use of 3D convolutions for the
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Fig. 3. Building blocks of video classification networks: (i) 3D-convolution (Ji et al., 2013), (ii) 2D-Convolutional LSTM over a sequence of frames (Donahue et al., 2015), (iii) 3D
LSTM (Baccouche et al., 2011), (iv) slow-fusion (Karpathy and Fei-Fei, 2015), (v) two/multi-stream CNN (Simonyan and Zisserman, 2014a; Wang et al., 2016b; Miao et al., 2017;
Tu et al., 2018), (vi) two-stream 3D-Conv network (Carreira and Zisserman, 2017), (vii) (2+1)D convolutions (Qiu et al., 2017; Tran et al., 2018) and (viii) Multi-fiber CNN (Chen
et al., 2018).

extraction of spatio-temporal features. The second step is based on
these learned features that are passed to the LSTM so the model can
make predictions on the entire video sequence. As such, the network
can benefit from both short-term and long-term temporal information.

Besides LSTMs, Highway Networks are an alternative solution to
the vanishing gradient problem (Srivastava et al., 2015b). These net-
works allow for the direct passing of information through so-called
highway modules that connect layers of the architecture similarly to
LSTM’s adaptive gating mechanism. Zilly et al. (2017) have extended
this approach to include the spatial dimensionality in the information
highways inside recurrent transitions.

Because the discriminative information of an interaction is typically
found in selective parts of the input, several approaches have addressed
methods for selection. In line with the multi-stream approaches (Sec-
tion 4.2), Wang et al. (2017) have implemented LSTMs that consist
of three branches that deal with person action, group action and
scene recognition. This work is inspired by Gkioxari et al. (2017),
who focused on human–object interactions instead. Multiple recurrent
modules can be used to analyze human interactions. For example, Yan
et al. (2017) built a model from three attention-specific LSTMs that
use information from each of the two interacting actors and the overall
scene of each example. Similarly, Si et al. (2019) also included spatio-
temporal focused LSTMs, through a temporal hierarchy, for increasing
the temporal receptive field of the network and allowing the explo-
ration of co-occurring features in space and time. Ibrahim et al. (2016)
presented a two-stage temporal model in which LSTMs are used to an-
alyze each person in the scene while their combined outputs synthesize
the relationship between them. Srivastava et al. (2015a) created an
Encoder–Decoder architecture, in which the encoder LSTM maps input
sequences to a delineation of specified length. The decoder LSTM then
either reconstructs the inputs or creates predictions for future examples.
The motivation of the work is to capture all information required to
reproduce the input and therefore to select the most important features.
This is achieved by minimizing the loss of the constructed sequence
from the decoder LSTM and the actual input sequence. For example,
in an interaction video, the decoder would focus on modeling the
movement of the hands if the interaction is a handshake, or focus on
the upper bodies if the interaction is a hug.

Of increasing importance for interaction recognition is the use of
skeletal data, or poses. Pose data is a compact representation that is
invariant to many typical image factors such as partial occlusions, low
resolution and viewpoint. Consequently, the focus is mainly on mod-
eling the temporal dynamics. Often, pose information can be regarded
as a complementary input. For example, Gammulle et al. (2017) have
created a spatio-temporal two-stream architecture with an addition of
a LSTM with both frames and optical flow working as an attention
mechanism. Attention mechanisms have also been used with pose

information in recurrent structures to learn pose-related features in
each time step (Du et al., 2017). This permits the analysis of the action
from the collection of the per-frame human poses. Moreover, based
on alternatives to LSTMs, Liu et al. (2016) have introduced gating
mechanisms for creating a spatio-temporal LSTM (ST-LSTM). Given
skeletal data in a tree-like structure, each ST-LSTM unit corresponds
to a joint and receives spatio-temporal information from the previous
and its own node. The new gating mechanism predicts the possible
input based on the generated probabilities and compares it to the actual
input. They implement the idea of assimilating the sequential input of
videos by adjusting the effects on the context-based information stored
in the network by allowing to analyze the data at each step and to
decide when to update, remember of forget the contents in the memory
cell with a tree-like representation of the skeleton.

Skeletal data have also been used by Zhu et al. (2016) in a fully con-
nected LSTM model including internal gates, outputs and neurons that
could be dropped by the network. Si et al. (2018) have proposed a com-
bination of networks. The first network analyzes spatial information
between frames by capturing the relationships between skeletal joins,
while the second network focuses on the dynamics and the detailed
temporal features that define each example. Other extensions include
Lattice-LSTM (L2STM) that enhances the capability of the memory cell
to understand motion dynamics of the video sequence through indi-
vidual local patterns, by leveraging both image and flow information
extracted from a CNN classifier (Sun et al., 2017). Since there might be
different patterns for different body parts and phases in the interaction,
LSTMs have been adapted to consist of part-based sub-cells to model
the long-term motion of key body parts (Du et al., 2015; Shahroudy
et al., 2016). Because these models break down the interaction into
meaningful blocks of motion, they can be used as the basis to learn
a repertoire for action and interaction as shown by Shi et al. (2019).
They introduce a directed acyclic graph (DAG) representation for the
information of joints, bones and their relationship. Other approaches
have targeted the dependencies among joints (Li et al., 2019) where
information is also separated to actional links based on movement and
structural links based on joint locations. By partitioning the interaction
into sub-parts, these approaches can further reduce training cost and
lead to the distinction between subtly different interaction classes.

5. Discussion

The past decades have seen impressive progress in the automated
understanding of human behavior in videos. With the introduction of
learned feature approaches such as CNNs, we can now analyze videos
recorded in unconstrained settings. Consequently, there is a focus on
more realistic video material. The result of initial works on specially
recorded benchmarks datasets have largely saturated. In the meantime,
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Fig. 4. Examples of ambiguous interactions. Sequence 1 shows that ambiguity can arise from an unexpected outcome: a high five that ends in holding hands. In Sequence 2, there
is no contact between the two persons but their motivation for a high-five is apparent. There is comical intent in the interaction in Sequence 3. The comprehension of this scene
requires deeper understanding of the interactions.

we have begun to address sustained, natural human interactions in
a social context. This opens up a host of applications, from more
intelligent video indexing to smart surveillance.

In Section 1.2, we discussed a number of challenges. The intro-
duction of learned feature representations has alleviated some of the
issues when dealing with variations in recording setting, person ap-
pearance and, to a lesser extent, viewpoint. The decoupling of the
visual and temporal aspects of human interactions, for example using
LSTMs (Alahi et al., 2016), has allowed researchers to focus more
on the dynamics of interactions. Still, the promise of understanding
social interactions directly from video is far from being met. Below, we
discuss limitations of the state-of-the-art and highlight current trends
and future directions.

Training scenarios with less data. Advances owing to CNNs come at a
cost because learned feature representations require large amounts of
relevant training data. While the datasets that focus on human interac-
tions are still increasing in the number of classes and available videos,
it will remain hard to harvest such datasets. Some works have exploited
synthetic data generators to increase the amount and variation of the
training data (Chen et al., 2017; Shotton et al., 2013). The generation
of the data can also explicitly be part of the training process. Gener-
ative Adversarial Networks (GANs, Goodfellow et al. (2014)) contain
a generative and a discriminative model that are jointly optimized.
Recent work on the walking motion of pedestrians demonstrates the
efficacy of the technique to model social behavior (Gupta et al., 2018).
It remains to be investigated to what extend these results generalize to
less-constrained interactions. Another line of approach is to use transfer
learning (Weiss et al., 2016), to learn the parts of the network that deal
with the lower-level aspects of the input from more general and more
widely available training data. Despite these partial solutions, there
typically is relatively few relevant data available given the complexity
of the classification problem.

Increasing interaction class repertoire. Current work on the analysis of
human interactions is limited by a relatively coarse division into be-
havior classes such as a handshake or a hug. Often, there is much more
information contained in these interactions and humans have little dif-
ficulty identifying an awkward hug from a heartfelt one. Semantically,
such interactions are very different. Yet, they can be visually very
similar. With an increased focus on realistic human interactions comes
a need to be able to distinguish between a larger number of classes,
each of which might only subtly differ from others. These differences
might originate from temporal aspects such as the coordination in
time, but also from differences in poses or orientation. Completely
separating the visual aspect from the temporal characteristics is likely
to be sub-optimal. We consider the use of recurrent networks with more
sophisticated gating functions as a promising trend.

The current practice is to consider an interaction as belonging
to a single class only. But human behavior is often more open to
subjectivity, and a less strict separation into classes could be beneficial
for the generalization. The work on overlapping labels or behavior
hierarchies (e.g., Frosst and Hinton, 2017; Yeung et al., 2018) is
promising because it facilitates the focus on distinctive patterns at
different levels of granularity, dependent on the type of interaction. A
shift away from the one-vs-all classification can additionally facilitate
the introduction of loss functions that take into account how related,
visually or semantically, interactions are.

Units of interaction. Predominantly, interactions are classified directly
based on the input. Some works have considered semantic mid-level
features such as the action of an individual (e.g., Lan et al. (2012)
and Sefidgar et al. (2015)) or the action of a body part (e.g., Chéron
et al. (2015), Kong et al. (2012) and Tian et al. (2015)). Such method-
ologies bring some invariance in the representation, and can be learned
per person. This effectively removes some of the dependencies and
can facilitate the modeling of interactions as spatio-temporal patterns
of these mid-level features. This approach can even be extended to
deal with interactions for which no, or very little, training data is
available. Specifically for human–human interactions, the coordination
of pose and motion is crucial to distinguish between subtly different
classes (Van Gemeren et al., 2018). Mid-level representations should
take into account this coordination in both space and time, such as the
distance and orientation between people, or the relative placement of
a hand on the other’s shoulder. Recent work on capsules by Hinton
et al. (2018) and Sabour et al. (2017) appears promising in this respect.
These works have shown great potential for accurately learning the
pose of an object and constructing a hierarchy of parts enabling the
understanding of features that is specific to a class. As such, geometric
relations can be modeled in detail. An additional advantage is that
capsules can be parallelized (Goyal et al., 2017), which limits the
computational requirements.

Role of skeleton data. Human poses are one particular form of mid-
level representation. We foresee an increased role of skeleton data, both
during training and as additional input modality. Temporal patterns of
interactions can be learned from skeleton data directly without having
to take into account factors such as viewpoint and person appearance.
Especially when units of interactions can be defined, pose and motion
for an individual, as well as the coordination between people can be
readily analyzed from skeleton data. Recent advances in human pose
estimation from images and video (e.g., Carreira et al. (2016), Insafut-
dinov et al. (2017) and Yang et al. (2017)) have paved the way for
effective pose-based attention mechanisms. While the computational
requirements of the pose estimation task are significant, the benefit for
the recognition of interactions has also been demonstrated (Du et al.,
2017; Liu et al., 2016).
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Detection and classification. The research on the automated analysis of
human interactions has predominantly focused on recognition rather
than detection. This means that interaction labels are usually not
assigned to a region but to the image or video sequence as a whole.
Rather, the understanding of human behavior would benefit from a
link between person and interaction class. This permits us to say
who interacted with whom, when. Especially in sustained or repeated
social encounters, for example in public spaces, knowing the actors
that interact would increase the efficacy of the analysis. A few works
have addressed interaction detection (e.g., Van Gemeren et al. (2018)
and Tian et al. (2013)) but usually in a two-step approach by first
detection humans (e.g., Patron-Perez et al., 2012) and then considering
their interactions. Especially in more crowded settings where partial
occlusions are more common, such an approach is more likely to fail.
An approach that focuses on the distinctive parts of the interaction is
therefore favorable.

From observation to understanding. Finally, we see much potential in
leveraging the recognition of interactions to the understanding of in-
teractive human behavior. While the analysis of the observations is an
essential step to understanding video contents, it often is not sufficient
for our common use and demands. Often we are looking for anomalies,
deviations from common practice. For example, Sequences 1 and 2 in
Fig. 4 show interactions that are difficult to recognize but are more
likely to be of interest to a user. Descriptive units of interactions can
be instrumental in modeling anomalies. Commonly, it is the context of
the behavior that is more descriptive, or gives a different meaning to
our interactions. When a person is observed pushing another, it could
be a playful instance between two friends or an actual act of violence.
Longer-term analysis of the actors, their roles or relation to each other
and knowledge of social and cultural norms can help in providing a
deeper understanding of the observed social behavior. In particular, the
understanding of the intentions of a person can help to analyze what a
person is doing, instead of focusing on how that is achieved.

When looking at videos, we should deviate from the current agnostic
perspective and treat videos not as sequences of images but as visual
representations of social behavior. We foresee that datasets that target
a more constrained setting, yet contain a wealth of social behavior
(e.g., Alameda-Pineda et al. (2016)) are used as a step-up towards more
generalized understanding of interactions from video. We identify a
particular need for such datasets.

We are just scratching the surface when it comes to really under-
standing social behavior from video. But with the solid state-of-the-art
performance in the analysis of interactions from videos, and the promis-
ing directions of research to deal with the current limitations, we expect
that great strides can be made to close to the gap to the automated
understanding of human interactions.
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