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Cerebral small vessel disease (SVD) is an umbrella term describing different pathological 
processes that affect the smallest blood vessels of the brain, including the perforating 
arterioles, capillaries, and venules. The most common types are arteriolosclerosis and 
cerebral amyloid angiopathy (CAA).1 Arteriolosclerosis is characterized by thickening of 
the wall and narrowing of the lumen of perforating vessels in subcortical brain regions, 
and is related with ageing and several cardiovascular risk factors, especially hypertension.1 
Therefore, it is often referred to as age-related or hypertensive small vessel disease. CAA is 
characterized by the accumulation of amyloid-β in the walls of predominantly posteriorly 
located arterioles and capillaries in the cerebral cortex and overlying leptomeninges.2 It is 
related with ageing and an APOE genotype, but not with hypertension. CAA is common 
in the elderly population and is often accompanied by Alzheimer’s disease pathology.2 

SVD is a major cause of cognitive decline, dementia and stroke.3 Worldwide, over 40 million 
people suffer from dementia and this is expected to almost double every 20 years.4 SVD 
contributes to up to 45% of all dementias and is as such the second most common cause 
of dementia after Alzheimer’s disease.5,6 Stroke is currently the second leading cause of 
death worldwide and one of the leading causes of long-term disability. SVD accounts for 
approximately 25% of all ischemic strokes and the majority of spontaneous hemorrhagic 
strokes (either due to arteriolosclerosis [more often in the basal ganglia, thalamus and 
brainstem; “hypertensive” hemorrhages] or CAA [more often lobar]).7,8 Despite its high 
prevalence and impact, limited SVD specific therapeutic options are currently available, 
and primarily consist of general management of cardiovascular risk factors and antiplatelet 
therapy in patients with ischemic stroke due to SVD. Furthermore, the available treatment 
strategies have been developed primarily for large vessel disease (i.e. atherosclerosis) 
affecting large blood vessels elsewhere in the body (e.g. coronary arteries, aorta). This 
lack of treatment options can be partly explained by the limited understanding of the 
pathophysiology of SVD. Brain Magnetic Resonance Imaging (MRI) has proven to be an 
important technique in the research field aiming to clarify the pathophysiology of SVD.

Detecting SVD lesions on MRI

Several lesions can be detected as manifestations of SVD on conventional brain MRI, 
including white matter hyperintensities of presumed vascular origin (WMHs), lacunes 
of presumed vascular origin, cerebral microbleeds, recent small subcortical infarcts and 
perivascular spaces (Figure 1.1). Cortical microinfarcts can be a manifestation of both 
SVD and large vessel disease (Figure 1.1). 

Both presence and severity of these lesions can be quantified using established criteria.9,10 
These different lesion types can reflect different disease processes affecting different vessels, 
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in different parts of the brain. For instance, in arteriolosclerosis WMHs occur throughout 
the brain, cerebral microbleeds predominantly occur in the deep areas of the brain and 
lacunes are common, particularly in the basal ganglia or deep white matter. By contrast, 
in CAA WMHs predominantly occur in posterior brain regions, cerebral microbleeds 
occur strictly in lobar brain regions and lacunes are not typically present.2 As such, these 
different lesion types and distributions can be used to study the effects of different types 
of SVD in the brain.

Eff ects of SVD beyond the visible lesions – looking beyond the obvious

In the past years, increasing evidence suggests that visible SVD lesions on conventional 
structural MRI do not fully capture the burden of SVD-related brain injury.11 Previous 
studies have suggested that focal SVD lesions represent only the tip of the iceberg and that 
SVD-related changes seem to occur in the brain’s gray and white matter beyond the visible 
lesions.12-14 It is thought that these changes can occur directly surrounding the visible SVD 
lesions (i.e. ‘perilesional effects’) or more distant to the visible SVD lesions (i.e. ‘distant 

Figure 1.1 | Examples of diff erent SVD lesion types on conventional brain MRI. Depicted with yellow 
arrows are WMHs (A), a lacune of presumed vascular origin (B), a cerebral microbleed (C), perivascular 
spaces (D), a cortical microinfarct (E) and a recent small subcortical infarct (F).
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effects’).11 An example of a perilesional effect are abnormalities that can be found in the 
‘normal appearing’ white matter surrounding WMHs (the so called ‘lesion penumbra’).12–14 
An example of a distant effect is the cortical thinning that can occur distant to new 
subcortical infarcts in cortical areas connected to the lesioned area by white matter tracts.15 

When considering SVD-related brain changes it is also important to take a more global view 
by looking at the brain as a complex network.11 This complex network is often referred to as 
the human connectome, in which white matter fibers are vital in transferring information 
by connecting different brain regions with each other. Disconnection of the network (either 
structural, functional or both) can subsequently lead to clinical symptoms. The network 
can be disconnected as the direct result of visible SVD lesions, but disconnections can also 
occur due to tissue injury directly surrounding the visible SVD lesions,13 as well as more 
diffuse or distant injury partially independent of SVD lesions.14 

Effects of SVD that occur beyond the visible lesions provide a new framework to look at 
the impact of SVD. These effects can be used to better understand the functional impact 
of SVD than visible SVD lesions alone, as they have been shown to relate to cognitive 
decline and dementia.14-20 However, there are still some open questions regarding effects 
of SVD beyond the visible lesions. For instance, are these effects similar for different types 
and manifestations of SVD? Do these effects also occur in patients with cortical cerebral 
microinfarcts (a relatively new MRI marker of SVD)? Do these effects have specific patterns? 
Is there an interplay with Alzheimer’s disease, a common co-morbidity of SVD.

• The overarching aim of the work described in this thesis was to examine changes 
in the gray and white matter of the brain that extend beyond the visible lesions in 
patients with SVD.

Until now, changes in the gray and white matter of the brain that extend beyond the 
visible lesions have not been systematically investigated in memory clinic patients with 
both SVD and co-occurring Alzheimer’s disease pathology. As such, I chose to measure 
brain volumes (using structural brain MRI) as well as white matter connectivity (using 
diffusion tensor imaging) and investigate the severity and pattern of changes in both the 
gray and white matter of the brain in memory clinic patients, how these changes relate to 
visible SVD lesions and whether this differed between lesion types, the impact of these 
changes on cognition, and the interplay with co-occurring Alzheimer’s disease pathology.

Challenges when measuring SVD-related changes in the brain on MRI

When measuring SVD-related changes in the brain, it is important that measurements 
are reliable. Reliability of measurements can be defined in several ways.21 For instance, 
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robustness refers to whether measurements are constant under different circumstances (e.g. 
different MRI field strength). Accuracy refers to how well a measurement actually measures 
what it is supposed to measure, or in other words whether it is correct. Measurements 
of SVD-related changes on MRI can be obtained using various qualitative and (semi)
quantitative techniques, where the quantitative techniques in particular depend on brain 
segmentation. Brain segmentation refers to techniques that partition a digital image (e.g. 
MRI) into multiple segments (e.g. gray and white matter). Several automated methods have 
been developed using various algorithms to classify each voxel on MRI and subsequently 
measuring a volume or SVD lesion of interest, such as WMHs.22,23 Segmentation results 
can be influenced by several factors, such as the burden of pathology, including presence of 
SVD lesions, motion artifacts, and technical issues (e.g. field strength or scan protocol).24

Dealing with technical issues is of great importance, since pooling of multicenter brain MRI 
data has become a trend in various research fields, for example in studies on age-related 
brain diseases.25 Pooling has the advantage that it increases sample sizes (and thus statistical 
power), and can support a faster patient inclusion. Moreover, findings of multicenter studies 
may have larger external validity and are more readily translatable to a clinical setting. 
However, pooling of multicenter data poses challenges for brain and WMH segmentation 
by introducing variation in measurements due to different MRI acquisition techniques. 
Therefore, as a first step in my thesis I dealt with some of these technical issues that needed 
to be resolved for the analysis of our multicenter data. Part 1 of this thesis describes two 
studies in which I compare the performance of several automated segmentation methods 
to support segmentation in a multicenter setting.

Key objectives were to:
• compare the performance of automated brain segmentation methods across dif-

ferent MRI field strengths (chapter 2).
• compare the performance of automated WMH segmentation methods in a mul-

ticenter setting (chapter 3). 

The relation between visible SVD lesions and changes occurring beyond these 

lesions

While effects of SVD on the brain beyond the visible lesions have been demonstrated in 
patients with several manifestations of SVD (e.g. WMHs, lacunes), this is not clear for 
cortical microinfarcts (CMIs). CMIs are small (< 5 mm) ischemic lesions that can be 
detected in vivo on MRI.10 Therefore, in part 2 of this thesis I look at possible effects of 
SVD on white matter connectivity in patients with CMIs.
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• A key objective was to determine the distribution of CMIs in the brain and whether 
their presence relates with impaired white matter connectivity (chapter 4). 

Another important issue is the question whether to ‘lump’ or ‘split’ SVD lesions when 
investigating their causes and consequences. This also applies when investigating effects 
of SVD on the brain beyond visible SVD lesions. In recent years, it has become a trend in 
SVD research to use a SVD burden score to capture multiple types of vascular brain injury 
in a single measure.26 The rationale behind this “lumping” is creating a single measure of 
vascular brain injury that relies on more than just a single SVD lesion, is easy to use and 
could serve as a surrogate endpoint in clinical research. Therefore, in part 2 of this thesis, 
I investigate the effects of SVD on white matter connectivity by using a SVD burden score.

• A key objective was to assess the relation between total SVD burden on MRI, 
global brain network efficiency and cognition (chapter 5). 

Splitting SVD lesion types is the preferred method when investigating specific disease 
mechanisms underlying effects of SVD, since different lesion types can reflect different 
underlying pathological processes, affecting different vessels, in different parts of the 
brain.27 Therefore, in part 2 of this thesis, I also investigate the effects of SVD on gray 
matter atrophy by looking at different SVD lesion types.

• A key objective was to investigate whether different SVD lesion types differentially 
affect brain atrophy (chapter 6). 

Interplay between SVD and Alzheimer’s disease

When investigating SVD-related brain changes, it is important to consider the possible 
confounding effect of common co-occurring pathologic processes that can also lead to 
changes in the gray and white matter, such as Alzheimer’s disease. Alzheimer’s disease, a 
neurodegenerative disease characterized microscopically by the presence of aggregations 
of amyloid-β and tau, is the most common cause of cognitive dysfunction and dementia.28 
It has been shown to damage both the gray and white matter of the brain.29

SVD and Alzheimer’s disease often co-occur, especially with increasing age.30 Post-
mortem studies have shown that in patients with Alzheimer’s disease histopathological 
evidence of arteriolosclerosis can be found in up to 41% of cases and of CAA in 78–98% 
of cases.2,31 The relation between SVD, Alzheimer’s disease and brain changes has gained 
increasing attention in the past decade.32 However, whether SVD and Alzheimer’s disease 
have independent, additive or interactive effects on the brain remains unclear. Therefore, 
part 2 of this thesis also focusses on investigating the effects of both SVD and Alzheimer’s 
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disease on gray matter atrophy as well as the independent effect of each disease on white 
matter connectivity.

Key objectives were to:

• investigate whether co-occurring amyloid-β pathology modifies the relation 
between SVD lesion type and brain atrophy (chapter 6). 

• determine whether the pattern of impaired white matter connectivity differed 
between patients with primarily SVD and patients with primarily Alzheimer’s 
disease (chapter 7). 

I conclude this thesis with a general discussion of the results (chapter 8).
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ABSTRACT 

Pooling of multicenter brain imaging data is a trend in studies on ageing related brain 
diseases. This poses challenges to MR-based brain segmentation. The performance 
across different field strengths of three widely used automated methods for brain volume 
measurements was assessed in the present study. 

Ten subjects (mean age: 64 years) were scanned on 1.5T and 3T MRI on the same day. We 
determined robustness across field strength (i.e., whether measured volumes between 3T 
and 1.5T scans in the same subjects were similar) for SPM12, Freesurfer 5.3.0 and FSL 5.0.7. 
As a frame of reference, 3T MRI scans from 20 additional subjects (mean age: 71 years) 
were segmented manually to determine accuracy of the methods (i.e., whether measured 
volumes corresponded with expert-defined volumes). 

Total brain volume (TBV) measurements were robust across field strength for Freesurfer 
and FSL (mean absolute difference as % of mean volume ≤ 1%), but less so for SPM 
(4%). Gray matter (GM) and white matter (WM) volume measurements were robust for 
Freesurfer (1%; 2%) and FSL (2%; 3%) but less so for SPM (5%; 4%). For intracranial volume 
(ICV), SPM was more robust (2%) than FSL (3%) and Freesurfer (9%). TBV measurements 
were accurate for SPM and FSL, but less so for Freesurfer. For GM volume, SPM was 
accurate, but accuracy was lower for Freesurfer and FSL. For WM volume, Freesurfer was 
accurate, but SPM and FSL were less accurate. For ICV, FSL was accurate, while SPM and 
Freesurfer were less accurate. 

Brain volumes and ICV could be measured quite robustly in scans acquired at different field 
strengths, but performance of the methods varied depending on the assessed compartment 
(e.g., TBV or ICV). Selection of an appropriate method in multicenter brain imaging studies 
therefore depends on the compartment of interest.
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INTRODUCTION

Pooling of multicenter brain MRI data is a trend in various research fields, for example in 
studies on ageing related brain diseases.1–3 Pooling of multicenter data increases sample size 
(and thus statistical power) and can support a faster patient inclusion. Moreover, findings 
of multicenter studies may have larger external validity and are more readily translatable 
to a clinical setting. However, use of different MRI acquisition techniques, for example 
with regard to scanner types or field strength,4–6 across centers could introduce variation 
in results of frequently used MR-based automated brain segmentation methods.6 This 
variation could potentially even be larger than the actual effect size of the brain changes 
studied.7,8

To date, the performance of the most recent versions of Statistical Parametric Mapping 
(SPM),9 Freesurfer10 and FMRIB Software Library (FSL)11 in datasets with different MRI 
acquisition techniques (such as different field strengths) is not well studied. Performance of 
these methods can be assessed in terms of robustness (i.e., whether measured volumes on 
scans with different acquisitions techniques in the same subjects are similar) and accuracy 
(i.e., whether measured volumes correspond with expert-defined reference volumes). It 
is important to consider both measures of performance together, since neither a robust, 
inaccurate method nor an accurate, non-robust method will lead to valid results in a 
multicenter study.

In the present study, we evaluated the performance of three widely used automated methods 
for brain volume measurements (SPM, Freesurfer and FSL). Robustness was assessed in 
subjects that were scanned on 1.5T and 3T MRI on the same day. Accuracy was determined 
by comparing the measurements of the methods with manual segmentations on 3T MRI 
scans of additional subjects. 

MATERIALS AND METHODS

Automated methods for brain volume measurements and image processing

SPM (version 12), Freesurfer (version 5.3.0) and FSL (version 5.0.7 with use of SIENAX, 
version 2.6) were used to calculate brain volumes and intracranial volume (ICV) on T1-
weighted MRI images.

SPM12. SPM (Wellcome Department of Cognitive Neurology, Institute of Neurology, 
Queen Square, London; available at http://www.fil.ion.ucl.ac.uk/spm/) uses the unified 
segmentation (US) algorithm, which combines tissue classification, bias correction and 
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image registration in the same generative model.9 It produces partial volume segmentation 
results for each tissue compartment, using tissue prior probability maps based on intensity 
values. From these results absolute volumes of gray matter (GM), white matter (WM) and 
cerebrospinal fluid (CSF) are calculated. Additional tissue maps for soft tissue, bone and 
air/background were included in SPM8 and are now part of standard segmentation.12 This 
reduces the possibility of misclassification of non-brain tissue. In our study, segmentation was 
performed using the advised default settings. Partial volume segmentation results for each 
of the three tissue compartments (GM, WM and CSF) were obtained and extracted by using 
the ‘Tissue Volumes’ utility in SPM. Total brain volume (TBV) was calculated by summing 
up GM and WM volumes. ICV was determined by summing up TBV and CSF volumes. 

Freesurfer. Freesurfer (Martinos Center for Biomedical Imaging, Harvard-MIT, Boston; 
available at http://surfer.nmr.mgh.harvard.edu/) consists of surface based analysis13 and 
volumetric segmentation.10,14 It involves intensity non-uniformity correction,15 affine 
transformation to a MNI305 template, intensity normalization, removal of non-brain 
tissue,16 linear and non-linear transformations to a probabilistic brain atlas and labeling 
of cortical and subcortical structures.10,14 It uses a Markov Random Field model for each 
structure for each point in space. Spatial localization priors are used in determining the 
right label per voxel.17 Since Freesurfer version 5.2, surface-based calculations are used 
to calculate various brain volumes to get better accuracy. In our study, segmentation was 
performed using default settings (i.e. using the command: ‘recon-all’). For our study, we 
used the compartment measurements reported by Freesurfer. All volumes were extracted 
from the stat files that Freesurfer produces using the ‘asegstats2table’ command. Since 
Freesurfer estimates ICV and does not perform segmentation of extracerebral CSF, we 
obtained the CSF volume by subtracting TBV from the estimated ICV.

FSL. FSL (Analysis Group, FMRIB, Oxford, United Kingdom; available at http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/) uses the SIENAX package for estimating brain tissue volumes from 
a single image.11,18,19 SIENAX starts by extracting brain and skull images from the single 
whole-head input data.20 The brain image is then affine-registered to MNI152 space.21,22 
Next, tissue-type segmentation with partial volume estimation is carried out.23 From these 
estimations, GM, WM and ventricular CSF volumes were calculated. In our study, we 
stripped excessive slices at the level of the neck to allow accurate skull stripping, which 
in an earlier study yielded optimal results with various scan protocols.24 In concordance 
with a previous study investigating the optimal settings for the brain extraction tool (BET) 
we used the following settings: a fraction intensity threshold value of 0.1 and use of the 
B-option (bias field and neck clean up).24 Partial volume segmentation results for each of 
the three tissue compartments (GM, WM and CSF) were obtained. TBV was calculated 
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by summing up GM and WM volumes (as reported by FSL). We used MeVisLab (MeVis 
Medical Solutions AG, Bremen, Germany, version 2.5) to obtain CSF measurements from 
the FSL partial volume segmentation (since FSL only reports ventricular CSF volume). 
ICV was calculated by summing up GM, WM and (total) CSF volumes.

Robustness analysis

Study population. To determine the robustness across field strengths, subjects were 
scanned on 1.5T and 3T MRI on the same day. The intention was to recruit a group of 
patients with ageing related brain changes, but without a known primary cerebral disease. 
Therefore, patients, aged 50–80 years, with chronic idiopathic axonal polyneuropathy 
(CIAP) were recruited from an ongoing cohort study at the University Medical Center 
Utrecht, Utrecht, the Netherlands between September 2012 and October 2013.25 Exclusion 
criteria were a history of brain disease, not living independently and/or a contra-indication 
for MRI. Written informed consent was provided by all participants. The study was 
approved by the local medical ethics committee.

MRI data acquisition. The 1.5T MRI (Achieva; Philips, Best, the Netherlands) protocol 
consisted of the following sequences covering the entire brain: a sagittal 3D T1-weighted 
sequence (170 continuous slices, voxel size: 0.94 × 0.94 × 1.00 mm, repetition time (TR)/
echo time (TE): 7.0/3.2 ms) and an axial 2D fluid attenuated inversion recovery (FLAIR) 
sequence (38 continuous slices, voxel size: 0.90 × 0.90  × 4.0 mm, TR/TE/inversion time 
(TI): 6.000/100/2000 ms). The 3T MRI (Achieva; Philips, Best, the Netherlands) protocol 
consisted of the following sequences: a sagittal 3D T1-weighted sequence (192 continuous 
slices, voxel size: 1.00 × 1.00 × 1.00 mm, TR/TE: 7.9/4.5 ms) and an axial 2D FLAIR sequence 
(48 continuous slices, voxel size: 0.96 × 0.95 × 3.00 mm, TR/TE/TI: 11000/125/2800 ms). 
Additionally, to evaluate robustness across different spatial resolutions (high versus low), 
the 3D T1 images of the 1.5T and 3T MRI scans were downsampled to a voxel size of 0.96 
× 0.96 × 3.00 mm.

Statistical analysis. Non-parametric statistical tests were used because of the limited 
number of subjects. Robustness was assessed in two ways. First, we assessed potential 
systematic bias across field strength for each method with a Wilcoxon signed rank test. 
Next, the amount of variation/bias between 3T and 1.5T measurements was assessed by 
mean absolute differences (also expressed as a percentage of the mean volume at 3T). To 
further evaluate these differences we determined coefficients of repeatability as well as 
Bland Altman plots. The coefficient of repeatability is calculated by multiplying the standard 
deviation of the absolute differences (i.e., square root of the mean squared difference) 
between measurements at 3T and 1.5T by 1.96.26 It thus represents the upper limit of the 
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mean difference between two measurements in 95% of cases. Bland Altman plots give a 
graphical representation of presence/absence of systematic bias and the amount of variation 
between measurements. In these plots, a mean difference close to zero indicates absence 
of systematic bias. A narrow width of the limits of agreement reflects a small amount of 
variation between measurements at 3T and 1.5T. In secondary analyses we repeated the 
entire analysis for the high versus low resolution comparison.

Accuracy analysis

Study population and MRI data. To determine accuracy, scans from healthy control 
subjects were selected from a cohort study of functionally independent elderly subjects 
(65–80 years of age) without a history of stroke or other brain diseases.27 Subjects were 
scanned on 3T MRI with an identical scanning protocol as the subjects of the robustness 
analysis. Written informed consent was provided by all participants and the study was 
approved by the local medical ethics committee.

Reference data. Manual segmentations were used as reference data. The procedure for 
manual segmentations was described previously (for details see28). First, the 3D T1 and 
2D T1-IR scans were registered to the 2D FLAIR scan by means of Elastix.29 The 3D T1 
scan was downsampled so that all scans had a resulting voxel size of 0.96 × 0.96 × 3.00 
mm. Subsequently, bias correction was performed using SPM8.30 Manual segmentations 
were performed on the axial T1, T1-IR and FLAIR slices by trained research assistants, 
using an inhouse developed tool based on MeVisLab (MeVis Medical Solutions AG, 
Bremen, Germany). This tool allowed a closed freehand spline drawing technique, which 
was used to delineate the outline of each tissue compartment (GM, WM and CSF). The 
closed contours were then converted into hard segmentations. The resulting images were 
checked and corrected by three experts (WB, AM, JdB). 

Because manual segmentations that separate the cerebellum in GM and WM cannot be 
performed with high reliability, we chose not to differentiate between GM and WM in the 
manual segmentations of the cerebellum and other infratentorial structures. A mask of the 
manually segmented infratentorial structures was used to obtain supratentorial GM and 
WM volumes for each of the three automated segmentation methods for the analysis of 
accuracy in MeVisLab (MeVis Medical Solutions AG, Bremen, Germany, version 2.5). In 
the accuracy analysis, the infratentorial structures were not excluded from the TBV, CSF 
volume and ICV for all methods. 

Statistical analysis. Non-parametric statistical tests were used because of the limited 
number of subjects. We performed similar analyses as for the robustness part, but now 
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volume measurements of the methods were compared with the reference standard. 
Furthermore, we also calculated a Dice’s similarity coefficient (DSC) to evaluate spatial 
overlap between the segmentations of the methods and the reference data. As required 
for these analyses, the probabilistic segmentations of SPM and FSL were thresholded on 
a probability of 0.5. For Freesurfer the spatial overlap analyses required the output to be 
brought to native space by nearest neighbor interpolation (using the following command: 
‘mri_vol2vol—mov aseg.mgz—targ rawavg.mgz—regheader—o asegCorrect.mgz—
nearest—no-save-reg’) and divided in the three tissue compartments (GM, WM, CSF).

RESULTS

Quality assessment

Examples of the performed measurements of one subject using SPM, Freesurfer and FSL are 
shown in Figure 2.1 for the robustness analysis and in Figure 2.2 for the accuracy analysis. 
Output of all subjects was visually checked and was considered to be of good quality. No 
manual editing was performed. None of the patients proved to have (major) structural 
abnormalities on their scans that could influence automated segmentation results. Minor 
segmentation differences between methods can visually be appreciated in the figure. For 
example FSL generally segments less GM in the basal ganglia and thalamus, while this was 
less pronounced in SPM (Figures 2.1 and 2.2).

Robustness across fi eld strength

Ten patients (four male, six female) were included for the robustness analyses. They had 
a mean age of 64 ± 7 years. For the evaluation of robustness across 3T and 1.5T, mean and 
individual brain volume measurements are presented in Table 2.1 and Supplementary 
Figure S2.1.

TBV. Measurements of TBV at 3T and 1.5T were robust for Freesurfer and FSL (i.e., non-
significant mean differences between field strengths as shown in Table 2.2; see also the Bland 
Altman plots in Figure 2.3). Mean absolute differences were also small. Freesurfer gave a 
mean absolute difference ± SD of 8.4 ± 5.6 cc, which is < 1% of mean TBV as measured 
by this method at 3T. Corresponding figures for FSL were 14 ± 12 cc; 1%. The coefficients 
of repeatability were in line with these findings (see Figure 2.3). By comparison, SPM was 
less robust across field strength for TBV (mean difference ± SD: -42 ± 33 cc; p = 0.007; 
see also the Bland Altman plots in Figure 2.3). The mean absolute difference (43 ± 33 cc; 
4%) was also larger than that of the other methods. 
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GM volume. Freesurfer and FSL were robust for GM volume measurements across field 
strength (Table 2.2 and the Bland Altman plots in Figure 2.3) and the mean absolute 
differences were small: Freesurfer (8 ± 6 cc; 1%); FSL (10 ± 8 cc; 2%). SPM was less robust 
for GM volume across field strength (-20 ± 32 cc; p = 0.047; see also the Bland Altman 
plots in Figure 2.3). In line with this, the mean absolute difference (26 ± 26 cc; 5%) was 
larger compared with Freesurfer and FSL (Table 2.2; see also the coefficient of repeatability 
in Table 2.2).

WM volume. WM volume measurements were robust across field strengths for Freesurfer 
and FSL (Table 2.2 and the Bland Altman plots in Figure 2.3) and the mean absolute 
differences were small: Freesurfer (8 ± 5 cc; 2%); FSL (13 ± 9 cc; 3%). For SPM, WM volume 
was less robust across field strength (-22 ± 6 cc; p = 0.005). The mean absolute difference 
(22 ± 6 cc; 4%) was also larger than for the other methods (Table 2.2). 

CSF volume. None of the methods were robust for CSF. Substantial relative and absolute 
differences in measured CSF volume across field strength were observed for all methods 
(Table 2.2, Figure 2.3), which was also reflected in a large coefficient of repeatability (Table 
2.2).

ICV. ICV measurements were robust across field strengths for SPM (Table 2.2 and the Bland 
Altman plots in Figure 2.3) with also a small mean absolute difference (23 ± 21 cc; 2%). 
ICV measurements were less robust across field strength for Freesurfer (-100 ± 113 cc; p = 
0.037) and FSL (38 ± 48 cc; p = 0.028; see also the Bland Altman plots in Figure 2.3). The 
mean absolute difference was smaller for FSL (47 ± 39 cc; 3%) than for Freesurfer (115 ± 
95 cc; 9%); which was reflected in the coefficient of repeatability (Table 2.2).

Table 2.1 | Automated volume measurements at 3T and 1.5T (n = 10)

SPM Freesurfer FSL

TBV 1.5T 3D 1062 ± 80 1016 ± 72 1042 ± 74
3T 3D 1020 ± 57 1013 ± 67 1049 ± 82

GM 1.5T 3D 610 ± 46 548 ± 38 552 ± 41
3T 3D 590 ± 29 545 ± 37 554 ± 43

WM 1.5T 3D 452 ± 38 468 ± 38 491 ± 39
3T 3D 430 ± 33 468 ± 36 495 ± 42

CSF 1.5T 3D 294 ± 56 440 ± 72 333 ± 36
3T 3D 323 ± 90 342 ± 118 364 ± 43

ICV 1.5T 3D 1356 ± 121 1456 ± 102 1376 ± 99 
3T 3D 1343 ± 128 1355 ± 168 1413 ± 111

All volumes are expressed as means (in cc) ± SD. TBV, total brain volume; GM, gray matter volume; WM, 
white matter volume; CSF, cerebrospinal fl uid volume; ICV, intracranial volume.
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Robustness across diff erent spatial resolutions

In secondary analyses we assessed robustness across different spatial resolutions (high 
versus low, i.e., 3T 3D T1 versus downsampled T1). Mean brain volume measurements at 3D 
and downsampled resolutions are shown in Supplementary Table S2.1 and measurements 
per subject are shown in Supplementary Figure S2.2. For SPM and FSL, results were 
comparable with the across field strength analysis (see Supplementary Table S2.2). The 
performance of Freesurfer was less robust for TBV (18 ± 9 cc; p = 0.005), GM (25 ± 9 cc; 
p = 0.005) and WM (-6 ± 5 cc; p = 0.013; see also Bland Altman plots in Supplementary 
Figure S2.3) when using low resolution T1-weighted MR-images for segmentation. The 
mean absolute differences for Freesurfer (as % of mean volume at 3D for TBV, GM and 

Table 2.2 | Robustness analysis across diff erent fi eld strengths (n = 10)

SPM Freesurfer FSL

TBV 3T vs 1.5T (3D) Mean diff erence -42 ± 35* -2 ± 10 7 ± 17
Mean absolute diff erence 43 ± 33 8 ± 6 14 ± 12
as % of mean TBV at 3T 4 < 1 1
Coeffi  cient of repeatability 107 20 35
as % of mean TBV at 3T 11 2 3

GM 3T vs 1.5T (3D) Mean diff erence -20 ± 32* -2 ± 10 2 ± 13
Mean absolute diff erence 26 ± 26 8 ± 6 10 ± 8
as % of mean GM at 3T 5 1 2
Coeffi  cient of repeatability 72 20 25
as % of mean GM at 3T 13 4 5

WM 3T vs 1.5T (3D) Mean diff erence -22 ± 6* < 1 ± 10 4 ± 16
Mean absolute diff erence 22 ± 6 8 ± 5 13 ± 9
as % of mean WM at 3T 4 2 3
Coeffi  cient of repeatability 46 18 32
as % of mean WM at 3T 11 4 6

CSF 3T vs 1.5T (3D) Mean diff erence 29 ± 56 -98 ± 113 31 ± 35*
Mean absolute diff erence 45 ± 43 115 ± 93 36 ± 29
as % of mean CSF at 3T 14 34 10
Coeffi  cient of repeatability 122 291 90
as % of mean CSF at 3T 36 85 25

ICV 3T vs 1.5T (3D) Mean diff erence -13 ± 30 -100 ± 113* 38 ± 48*
Mean absolute diff erence 23 ± 21 115 ± 95 46 ± 39
as % of mean ICV at 3T 2 9 3
Coeffi  cient of repeatability 62 293 118
as % of mean ICV at 3T 5 22 8

All volumes (in cc) are expressed as means ± SD. Coeffi  cients of repeatability are expressed as a volume (in 
cc). TBV, total brain volume; GM, gray matter volume; WM, white matter volume; CSF, cerebrospinal fl uid 
volume; ICV, intracranial volume. Mean diff erences between 3T and 1.5T were tested for each method 
separately using Wilcoxon signed rank test (* p < 0.05).
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Figure 2.3 | Bland-Altman plots at 3T and 1.5T. X-axis: mean brain volume measurements at 3T and 1.5T. 
Y-axis: diff erence (in cc) in brain volume measurements between 3T and 1.5T. The mean, lower (-1.96 SD) 
and upper (+1.96 SD) limits of agreement are shown. A negative diff erence on the y-axis is seen when brain 
volume measurements at 1.5T were larger than at 3T. TBV, total brain volume; GM, gray matter volume; WM, 
white matter volume; CSF, cerebrospinal fl uid volume; ICV, intracranial volume.

WM: 2%; 5%; 1%) were also larger compared with the 3T versus 1.5T comparison of 
Freesurfer (1%; 1%; 1%). The other results for Freesurfer were in line with the results of 
the 3T versus 1.5T comparison.
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Accuracy assessments

Twenty subjects (ten male, ten female) were included for the accuracy analysis. They had a 
mean age of 71 ± 4 years. For the comparison between the automated methods and manual 
segmentation, individual brain volume measurements are presented in Supplementary 
Figures S2.4 and S2.5. 

TBV. Measurements of TBV were accurate compared to manual segmentation for FSL 
and SPM (non-significant mean differences as shown in Table 2.3; see also the Bland 
Altman plots in Figure 2.4) with small mean absolute differences: FSL, when compared to 
mean TBV as measured by manual segmentation (29 ± 15 cc; 3%); SPM (36 ± 34 cc; 3%). 
Freesurfer was less accurate in measuring TBV (mean difference: -50 ± 36 cc; p < 0.001; 
also see the Bland Altman Plots in Figure 2.4). The mean absolute difference (52 ± 32 cc; 
5%) was also larger for Freesurfer than for to the other methods.

GM volume. SPM was accurate for supratentorial GM volume, but FSL (-47 ± 43 cc; p < 
0.001) and Freesurfer (-69 ± 38 cc; p < 0.001) were less accurate (Table 2.3 and the Bland 
Altman plots in Figure 2.4). The mean absolute difference was also smaller for SPM (35 ± 
31 cc; 7%) than for FSL (49 ± 40 cc; 9%) and Freesurfer (69 ± 38 cc; 13%).

WM volume. Supratentorial WM volume measurements for Freesurfer were accurate 
(Table 2.3 and the Bland Altman plots in Figure 2.4). The mean absolute difference (26 ± 
15 cc; 7%) was also smaller for Freesurfer than for the other methods. SPM (17 ± 37 cc; 
p = 0.037) and FSL (75 ± 31 cc; p < 0.001) were both less accurate, but the mean absolute 
differences were smaller for SPM (31 ± 26 cc; 8%) than for FSL (75 ± 31 cc; 20%).

CSF volume. FSL showed accurate CSF measurements (Table 2.3 and the Bland Altman 
plots in Figure 2.4). The mean absolute difference was also smaller for FSL (42 ± 23 cc; 
10%) than for the other methods. Both SPM (-80 ± 77 cc; p = 0.001) and Freesurfer (120 
± 68 cc; p < 0.001) were less accurate for CSF volume (see also the Bland Altman plots in 
Figure 2.4) and had large mean absolute differences: SPM (95 ± 56 cc; 24%); Freesurfer 
(120 ± 68 cc; 30%).

ICV. FSL was accurate for ICV (Table 2.3 and the Bland Altman plots in Figure 2.4). The 
mean absolute difference was also smaller for FSL (39 ± 21 cc; 3%) than for the other 
methods. Both SPM (-78 ± 63 cc; p < 0.001) and Freesurfer (70 ± 55 cc; p < 0.001) were 
less accurate for ICV (also see the Bland Altman plots in Figure 2.4) and had large mean 
absolute differences: Freesurfer (74 ± 50 cc; 5%); SPM (84 ± 55 cc; 6%).
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Summary

A summary of the results of the robustness across field strengths as well as the accuracy 
analysis can be found in Table 2.4. 

Table 2.3 | Accuracy of automated volume measurements (n = 20)

SPM Freesurfer FSL

TBV Volume (method) 1045 ± 82 994 ± 85 1044 ± 85
Volume (manual segmentation) 1044 ± 97 1044 ± 97 1044 ± 97
Mean diff erence 1 ± 50 -50 ± 36* < 1 ± 33
Mean absolute diff erence 36 ± 34 52 ± 32 29 ± 15
as % of mean TBV with manual segmentation 3 5 3
Dice’s similarity coeffi  cient 0.94 ± 0.008 0.92 ± 0.007 0.94 ± 0.006

SGM Volume (method) 526 ± 44 459 ± 33 481 ± 38
Volume (manual segmentation) 528 ± 59 528 ± 59 528 ± 59
Mean diff erence -2 ± 47 -69 ± 38* -47 ± 43*

Mean absolute diff erence 35 ± 31 69 ± 38 49 ± 40
as % of mean SGM with manual segmentation 7 13 9
Dice’s similarity coeffi  cient 0.79 ± 0.03 0.77 ± 0.02 0.77 ± 0.03

SWM Volume (method) 390 ± 50 384 ± 56 448 ± 46
Volume (manual segmentation) 373 ± 56 373 ± 56 373 ± 56
Mean diff erence 17 ± 37* 11 ± 28 75 ± 31*

Mean absolute diff erence 31 ± 26 26 ± 15 75 ± 31
as % of mean SWM with manual segmentation 8 7 20
Dice’s similarity coeffi  cient 0.85 ± 0.03 0.85 ± 0.02 0.84 ± 0.03

CSF Volume (method) 324 ± 83 523 ± 77 413 ± 45
Volume (manual segmentation) 403 ± 68 403 ± 68 403 ± 68
Mean diff erence -80 ± 77* 120 ± 68* 10 ± 48
Mean absolute diff erence 95 ± 56 120 ± 68 42 ± 23
as % of mean CSF with manual segmentation 24 30 10
Dice’s similarity coeffi  cient 0.69 ± 0.05 0.65 ± 0.03 0.70 ± 0.03

ICV Volume (method) 1368 ± 119 1517 ± 144 1458 ± 121
Volume (manual segmentation) 1447 ± 118 1447 ± 118 1447 ± 118
Mean diff erence -78 ± 63* 70 ± 55* 11 ± 43
Mean absolute diff erence 84 ± 55 74 ± 50 39 ± 21
as % of mean ICV with manual segmentation 6 5 3
Dice’s similarity coeffi  cient 0.95 ± 0.01 0.93 ± 0.007 0.95 ± 0.007

All volumes are expressed as means (in cc) ± SD. The DSC is shown as mean ± SD. TBV, total brain volume 
(sum of supratentorial GM and WM, cerebellar and brainstem volume); SGM, supratentorial GM volume; 
SWM, supratentorial WM volume; CSF, total cerebrospinal fl uid volume; ICV, intracranial volume. Diff erences 
between automated and manual measurements were tested for each method separately using Wilcoxon 
signed rank test (* p < 0.05).
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Figure 2.4 | Bland-Altman plots automated versus manual volume measurements. X-axis: mean brain 
volume measurement of automated and manual volume measurements. Y-axis: diff erence (in cc) in brain 
volume measurement between automated and manual volume measurements. The mean, lower (-1.96 
SD) and upper (+ 1.96 SD) limits of agreement are shown. A negative diff erence on the y-axis is seen 
when brain volume measurements were larger with manual volume measurements than with automated 
volume measurements. TBV, total brain volume; GM, gray matter volume; WM, white matter volume; CSF, 
cerebrospinal fl uid volume; ICV, intracranial volume.
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DISCUSSION

Brain volumes and ICV could be measured quite robustly in scans acquired using different 
MRI acquisition techniques. However, performance of SPM, Freesurfer and FSL varied 
depending on the assessed compartment.

Comparison with previous studies

Few studies have evaluated the robustness across different field strengths of brain volume 
and ICV measurements. Previous work has focused on ICV measurements with older 
software versions of SPM, Freesurfer and/or FSL.4,5 One study assessed robustness of ICV 
measurements across field strengths using SPM5 and the Brain Extraction Tool (BET) of 
FSL and compared it with their own method.5 This study showed that especially SPM5 
and to a lesser extent BET showed large differences between ICV measurements at 3T 
and 1.5T. Another study focused on ICV measurements across field strengths obtained 
with Freesurfer.4 This study showed that, using Freesurfer, systematic bias occurred in 
ICV measurements between 3T and 1.5T. The findings of both studies are in line with 
our study, showing that bias can occur in ICV measurements between 3T and 1.5T MRI 
data, especially when using Freesurfer. This might be caused by Freesurfer’s registration 
procedure, which is susceptible to (slight) differences in MRI acquisition techniques. 
Contrary to a previous study, SPM did show robust ICV measurements in our study.5 This 
could be due to recent improvements in the segmentation algorithm (tissue classification, 
bias correction and image registration in the same generative model). The suboptimal 
performance of Freesurfer for ICV assessment is clearly an important issue. Correction for 
inter-subject variation in head size by using ICV is common practice in studies of brain 
volume and brain atrophy.31 Hence, bias in ICV thus also affects brain volume analyses.32 To 
avoid this, a segmentation method should be chosen that has a robust ICV segmentation. 
Since none of the methods in our current study was robust as well as accurate for all 

Table 2.4 | Summary of robustness across fi eld strength and accuracy results

TBV GM WM CSF ICV

R A R A R A R A R A

SPM 4% 3% 5% 7% 4% 8% 14% 24% 2% 6%

Freesurfer < 1% 5% 1% 13% 2% 7% 34% 30% 9% 5%

FSL 1% 3% 2% 9% 3% 20% 10% 10% 3% 3%

R, robustness, shown as the mean absolute diff erence between 3T and 1.5T measurements as a percentage 
of the mean measurement at 3T; A, accuracy, shown as the mean absolute diff erence between automated 
and manual measurements as a percentage of the mean manual measurement.
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volumes, it may be feasible to combine measurements obtained with different methods 
to get both robust and accurate brain volume and ICV measurements. As for robustness 
across spatial resolutions, we found similar results than two previous studies.4,33 These 
studies, that only investigated the performance of (older versions of) Freesurfer, showed 
differences in spatial resolution could lead to variations in brain volume measurements. 
For a detailed overview of previous studies on robustness of brain volumes and other brain 
MRI abnormalities, specifically in the context of ageing related cerebrovascular disease, 
we refer to recently published work.34

Strengths and limitations

The strength of our study is the set of high quality scan-rescan data, the selection of subjects 
(comparable with subjects in brain ageing studies, but without a primary cerebral disease) 
and the large number of manually segmented scans that allowed us to make a reliable 
comparison of the performance of the brain segmentation methods. In addition, our study 
is the first that assessed the robustness across different MRI acquisition techniques as well 
as accuracy of the most recent versions of three widely used automated methods for brain 
volume measurements in a common framework.

A limitation could be that manual segmentations were performed on MRI slices with a 
thickness of 3 mm. Although manual segmentations of higher resolution data might be 
preferable (i.e. with a slice thickness of 1 mm), creating these manual segmentations is 
very labor intensive. By selecting a lower resolution we chose to invest in a higher quantity 
of datasets to better include variations in brain anatomy. Importantly, our results were 
similar for non-down sampled 3D T1 images. Another limitation could be the relatively 
small sample size. However, we chose to invest in a high quality dataset that could assess 
both robustness and accuracy.

As is common in brain segmentation studies, we have compared binary manual segmen-
tations with probabilistic (partial volume estimated) automated segmentations. Another 
approach could be the creation of probabilistic manual segmentations (e.g. by combining 
binary manual segmentations of the same subject but performed by different raters into a 
single probabilistic segmentation.35 However, this is very labor intensive and has limited 
added value compared with manually segmenting more subjects.

Another limitation could be that variations in scanner related parameters might give 
differences in the measures of robustness of the different methods. Therefore, MRI data 
acquired with scanner parameters that are different from the ones we have used could 
possibly lead to a different ranking in performance of the methods for one or more of the 
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tissue compartments considered. Moreover, presence of severe brain abnormalities (for 
example as seen in patients with dementia or multiple sclerosis) could potentially also 
lead to a different ranking in performance of the methods, as some methods might be 
more robust for brain abnormalities. Generalizability of our results should therefore be 
performed with caution. 

Conclusions

We showed that robust brain volume measurements can be obtained with state-of-the-art 
generic brain MRI analysis packages in datasets with different MRI acquisitions (such 
as different field strengths). However, all methods showed variations in robustness and 
accuracy over various tissue compartments. This needs to be taken into account when 
selecting an appropriate method in multicenter brain imaging studies.
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Supplementary Figure S2.1 | Individual automated volume measurements 3T and 1.5T. X-axis: subject 
number. Y-axis: individual brain volume measurements (in cc). TBV, total brain volume; GM, gray matter 
volume; WM, white matter volume; CSF, cerebrospinal fl uid volume; ICV, intracranial volume.
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Supplementary Figure S2.2 | Individual automated volume measurements high and low spatial 

resolution. X-axis: subject number. Y-axis: individual brain volume measurements (in cc). TBV, total 
brain volume; GM, gray matter volume; WM, white matter volume; CSF, cerebrospinal fl uid volume; ICV, 
intracranial volume.
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Supplementary Figure S2.3 | Bland-Altman plots high and low spatial resolution. X-axis: mean 
brain volume measurement at high and low spatial resolution. Y-axis: diff erence (in cc) in brain volume 
measurement between high and low spatial resolution. The mean, lower (-1.96 SD) and upper (+1.96 SD) 
limits of agreement are shown. A negative diff erence on the y-axis is seen when brain volume measurement 
at a lower resolution was larger than at a higher resolution. TBV, total brain volume; GM, gray matter volume; 
WM, white matter volume; CSF, cerebrospinal fl uid volume; ICV, intracranial volume.



Chapter 2

44

S
u

p
p

le
m

e
n

ta
ry

 F
ig

u
re

 S
2

.4
 | 

In
d

iv
id

u
a

l a
u

to
m

a
te

d
 a

n
d

 m
a

n
u

a
l T

B
V

, G
M

 a
n

d
 W

M
 m

e
a

su
re

m
e

n
ts

. T
BV

, t
ot

al
 b

ra
in

 v
ol

um
e;

 G
M

, s
up

ra
te

nt
or

ia
l g

ra
y 

m
at

te
r v

ol
um

e;
 W

M
, 

su
pr

at
en

to
ria

l w
hi

te
 m

at
te

r v
ol

um
e.



Brain volume measurements across different MRI field strengths

45

Ch
ap

te
r 2

S
u

p
p

le
m

e
n

ta
ry

 F
ig

u
re

 S
2

.5
 |

 I
n

d
iv

id
u

a
l 

a
u

to
m

a
te

d
 a

n
d

 m
a

n
u

a
l 

C
S

F
 a

n
d

 I
C

V
 m

e
a

su
re

m
e

n
ts

. C
SF

, t
ot

al
 c

er
eb

ro
sp

in
al

 fl 
ui

d 
vo

lu
m

e;
 IC

V,
 in

tr
ac

ra
ni

al
 v

ol
um

e.



Chapter 2

46

Supplementary Table S2.1 | Automated volume measurements across diff erent spatial resolutions (n 

= 10)

Resolution SPM Freesurfer FSL

TBV 3T Low 1035 ± 59 995 ± 68 1052 ± 80
High 1020 ± 57 1013 ± 67 1049 ± 82

GM 3T Low 621 ± 32 520 ± 36 558 ± 42
High 590 ± 29 545 ± 37 554 ± 43

WM 3T Low 414 ± 34 475 ± 36 494 ± 41
High 430 ± 33 468 ± 36 495 ± 42

CSF 3T Low 303 ± 105 489 ± 72 387 ± 36
High 323 ± 90 342 ± 118 364 ± 43

ICV 3T Low 1338 ± 140 1484 ± 121 1439 ± 106
High 1343 ± 128 1355 ± 168 1413 ± 111

All volumes are expressed as means (in cc) ± SD. TBV, total brain volume; GM, gray matter volume; WM, 
white matter volume; CSF, cerebrospinal fl uid volume; ICV, intracranial volume; T, Tesla.
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Supplementary Table S2.2 | Robustness analysis across diff erent spatial resolutions (n = 10)

SPM Freesurfer FSL

TBV High vs low (3T) Mean diff erence -15 ± 7* 18 ± 9* -3 ± 11
Mean absolute diff erence 15 ± 7 18 ± 9 10 ± 4
as % of mean TBV at 3D 2 2 1
Coeffi  cient of repeatability 33 40 21
as % of mean TBV at 3D 3 4 2

GM High vs low (3T) Mean diff erence -31 ± 7* 25 ± 9* -3 ± 7
Mean absolute diff erence 31 ± 7 25 ± 9 6 ± 4
as % of mean GM at 3D 5 5 1
Coeffi  cient of repeatability 64 53 14
as % of mean GM at 3D 11 10 3

WM High vs low (3T) Mean diff erence 16 ± 2* -6 ± 5* < 1 ± 5
Mean absolute diff erence 16 ± 2 7 ± 5 4 ± 3
as % of mean WM at 3D 4 1 1
Coeffi  cient of repeatability 32 16 10
as % of mean WM at 3D 7 4 2

CSF High vs low (3T) Mean diff erence 20 ± 18 -147 ± 91* -23 ± 29*
Mean absolute diff erence 22 ± 15 147 ± 91 31 ± 19
as % of mean CSF at 3D 7 43 9
Coeffi  cient of repeatability 53 341 71
as % of mean CSF at 3D 16 99.8 20

ICV High vs low (3T) Mean diff erence 5 ± 18 -129 ± 86* -26 ± 38*
Mean absolute diff erence 14 ± 12 129 ± 86 37 ± 25
as % of mean ICV at 3D 1 9 3
Coeffi  cient of repeatability 35 305 88
as % of mean ICV at 3D 3 23 6

All volumes (in cc) are expressed as means ± SD. Coeffi  cients of repeatability are expressed as a volume (in 
cc). TBV, total brain volume; GM, gray matter volume; WM, white matter volume; CSF, cerebrospinal fl uid 
volume; ICV, intracranial volume; T, Tesla. Mean diff erences between high and low resolutions were tested 
for each method separately using Wilcoxon signed rank test (* p < 0.05).
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ABSTRACT 

White matter hyperintensities (WMHs) are a common manifestation of cerebral small 
vessel disease, that is increasingly studied with large, pooled multicenter datasets. This data 
pooling increases statistical power, but poses challenges for automated WMH segmentation. 
Although there is extensive literature on the evaluation of automated WMH segmentation 
methods, such evaluations in a multicenter setting are lacking. We performed WMH 
segmentations in sixty patients scanned on six different magnetic resonance imaging 
(MRI) scanners (10 patients per scanner) using five freely available and fully-automated 
WMH segmentation methods (Cascade, kNN-TTP, Lesion-TOADS, LST-LGA and LST-
LPA). Different MRI scanner vendors and field strengths were included. We compared 
these automated WMH segmentations with manual WMH segmentations as a reference. 
Performance of each method both within and across scanners was assessed using spatial 
and volumetric correspondence with the reference segmentations by Dice’s similarity 
coefficient (DSC) and intra-class correlation coefficient (ICC) respectively. We found the 
best performance, both within and across scanners, for kNN-TTP, followed by LST-LPA 
and LST-LGA, with worse performance for Lesion-TOADS and Cascade. Our findings 
can serve as a guide for choosing a method and also highlight the importance to further 
improve and evaluate consistency of methods in a multicenter setting.
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INTRODUCTION

Pooling of multicenter brain magnetic resonance imaging (MRI) data is a trend in various 
research fields, including studies on ageing related brain diseases.1–3 Pooling of multicenter 
data increases sample size (and thus statistical power) and can support a faster patient 
inclusion. Moreover, findings of multicenter studies may have a larger external validity 
and are more readily translatable to a clinical setting. However, pooling of brain MRI 
data poses challenges in automated segmentation due to variations in image acquisition.

White matter hyperintensities of presumed vascular origin (WMHs) are frequently 
encountered in studies on ageing related brain diseases. Achieving accurate and precise 
WMH segmentations can be challenging across MRI scanners of different vendors, field 
strengths and scan protocols. Variability in MRI acquisition can lead to differences in the 
contrast and borders of WMHs and thereby quantification bias.4–6

Several automated and semi-automated methods to segment WMHs currently exist, using 
various algorithms that rely on intensity, spatial information, or both.5 These methods 
can be broadly classified as supervised (i.e. trained using manual segmentations as a 
reference),7,8 unsupervised (without training)9–11 and semi-supervised (with only a small 
portion of the available data used for training.12 A recent study provided an extensive 
overview of existing supervised, unsupervised and semi-supervised methods.13 Challenges 
for these methods include false positive (e.g. artefacts, infarcts) and false negative (often 
for punctate lesions) results. Other challenges include dealing with varying WMH lesion 
loads (usually lower in MS than in patients with WMHs of presumed vascular origin) and 
with co-occurring pathologies (e.g. extensive atrophy). There is extensive literature on the 
evaluation of WMH segmentation methods in different settings, also addressing these 
challenges.4 However, the performance of such methods is typically evaluated on single 
center, single scanner datasets. For WMHs of presumed vascular origin, there is a lack of 
studies comparing performance of these methods in multicenter, multiscanner datasets 
and this is an important knowledge gap.4,14

Therefore, the present study aimed to assess performance, in terms of spatial and volumetric 
correspondence with reference segmentations, of five automated WMH segmentation 
methods in a multicenter, multiscanner dataset of patients with WMHs of presumed 
vascular origin. In particular, we also addressed which methods showed variation in 
performance across scanners. In addition, we assessed if performance was dependent on 
WMH lesion load. To this end, we selected five methods that were fully automatic and 
freely available for academic research: Cascade,15,16 k-nearest neighbor classification with 
tissue type priors (kNN-TTP),17 Lesion-TOpology-preserving Anatomical Segmentation 
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(Lesion-TOADS),11 the Lesion Segmentation Tool Lesion Prediction Algorithm (LST-LPA) 
and the Lesion Segmentation Tool Lesion Growth Algorithm (LST-LGA).10 

RESULTS

Reference segmentations

The reference segmentations showed a very good inter-rater agreement regarding spatial 
(Dice’s similarity coefficient (DSC) ± standard deviation (SD): 0.80 ± 0.09) and volumetric 
agreement (Intra-class correlation coefficient (ICC): 0.97). The intra-rater agreement (DSC 
± SD: 0.80 ± 0.08; ICC: 0.99) was also very good. In the test set, seventeen subjects had a 
Fazekas rating of 1, eighteen subjects had a 2 and seven subjects had a 3. The mean WMH 
volume (± SD) was 21 ± 10 mL with a median of 10 mL and volumes per patient ranging 
from 0.9 to 199 mL (see Table 3.1). 

Table 3.1 | Mean WMH volume of the reference segmentations and the segmentations of the methods 

for each scanner (n = 42; n = 7 per scanner)

WMH volume

GE Signa 
HDx
1.5T

GE Signa 
HDxt

3T

GE Discovery 
MR750

3T

Philips 
Ingenuity 

3T

Philips 
Ingenia

3T

Philips 
Achieva 

3T

Overall
mean 
± SD

Reference 22 ± 31 16 ± 18 9 ± 10 14 ± 17 41 ± 71 24 ± 26 21 ± 10

Cascade 26 ± 20 19 ± 11 13 ± 5 19 ± 10 12 ± 4 11 ± 5 17 ± 5

kNN-TTP 16 ± 19 14 ± 13 9 ± 10 14 ± 17 32 ± 49 20 ± 22 18 ± 7

Lesion-TOADS 19 ± 20 16 ± 12 11 ± 9 36 ± 24 30 ± 45 31 ± 16 24 ± 9

LST-LGA 20 ± 19 19 ± 23 12 ± 15 15 ± 20 22 ± 28 14 ± 17 17 ± 4

LST-LPA 18 ± 22 15 ± 18 11 ± 13 14 ± 18 33 ± 51 18 ± 22 18 ± 7

Values represent mean WMH volumes ± SD in mL. Reference: reference segmentations.

Quality assessment

Examples of the automated WMH segmentation results are shown in Figure 3.1. Several 
differences between methods can be visually appreciated. For example, methods seemed to 
differ on how they segment (over or under) different types of WMHs (i.e. periventricular, 
confluent and punctuate WMHs). Also, the nature of segmentation errors varied between 
methods (i.e. false-positive (FP) versus false-negative (FN) WMH voxels: see Figure 3.1). In 
a quantitative analysis, kNN-TTP showed the lowest mean FP and FN volumes (mean FP 
volume ± SD / mean FN volume ± SD: 2 ± 2 / 5 ± 11 mL), followed by LST-LPA (4 ± 4 / 6 
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Figure 3.1 | WMH segmentations of the methods regarding periventricular, confl uent and punctuate 

WMHs. Example of WMH segmentations for a subject (subject A) with predominantly periventricular 
WMHs (panel A), a subject (subject B) with large confl uent WMHs (panel B) and a subject (subject C) with 
predominantly punctuate WMHs (panel C). Top row panels A-C: original FLAIR scan and WMH reference 
segmentation (green) and WMH segmentations of all methods (red) are shown. Bottom row panels A-C: 
false negative voxels are shown in blue; false positive voxels are shown in yellow.

± 10 mL), LST-LGA (5 ± 5 / 8 ± 19 mL). Cascade showed a lower mean FP volume (8 ± 7 
mL) but higher mean FN volume (12 ± 29 mL) than Lesion-TOADS (10 ± 16 / 7 ± 12 mL). 

Performance of WMH segmentation methods

Performance of each method, both within and averaged across all scanners, is shown in 
Table 3.2. The highest mean performance across scanners was seen for kNN-TTP, both in 
terms of spatial correspondence with the reference segmentations (mean DSC ± SD: 0.73 
± 0.03) as in terms of volumetric correspondence with the reference segmentations (mean 
ICC ± SD: 0.97 ± 0.02) (see Table 3.2). LST-LPA showed a slightly lower performance in 
terms of volumetric correspondence (mean ICC ± SD: 0.92 ± 0.03) and performed less than 
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kNN-TTP in terms of spatial correspondence (mean DSC ± SD: 0.60 ± 0.06). The mean 
absolute WMH volume differences between the methods and the reference segmentations 
were also lowest for kNN-TTP (5 ± 3 mL; percentage of the mean WMH volume of the 
reference segmentations: 24%) and LST-LPA (5 ± 2 mL; 24%) (see Table 3.2). Both methods 
did show a tendency for slight underestimation of the WMH volume compared to the 
reference segmentations. LST-LGA showed a performance comparable to LST-LPA (mean 
DSC ± SD: 0.57 ± 0.03; mean ICC ± SD: 0.65 ± 0.29) but with a larger mean absolute WMH 
volume difference (8 ± 5 mL; 38%). Performance was lower for Lesion-TOADS (0.53 ± 
0.08 / 0.65 ± 0.29) and Cascade (0.40 ± 0.05 / 0.44 ± 0.01) with also markedly higher mean 
absolute WMH volume differences for both methods (Lesion-TOADS: 12 ± 8 mL; 57%; 
Cascade: 16 ± 7 mL; 76%) (see Table 3.2). 

Because some methods (Cascade, Lesion-TOADS, LST-LGA, and LST-LPA) do not 
necessarily have to be trained, analyses were repeated on all subjects (n = 60) without 
training of the methods. This did not change the ranking of methods (data not shown). 
The average run time was shortest for Cascade (2 minutes), followed by kNN-TTP (10 
minutes), LST-LPA (12 minutes), LST-LGA (25 minutes) and Lesion-TOADS (30 minutes).

Variations in performance across scanners

For each method, we determined if the DSC (i.e. spatial correspondence with the refer-
ence standard) for each scanner differed relative to the other five scanners (Table 3.3). 
In this analysis, consistency of a method across scanners is reflected in small effect sizes. 
kNN-TTP showed the smallest variation in performance with the smallest effect sizes 
(range unstandardized beta coefficient: -0.06 to 0.01), followed by LST-LGA (-0.04 to 
0.07), Cascade (-0.08 to 0.09), LST-LPA (-0.10 to 0.11) and Lesion-TOADS (-0.12 to 
0.12). None of the effect sizes were significant after family wise error rate correction for 
multiple testing. Along the same lines, consistency of volumetric correspondence across 
scanners was assessed, by determining for each method the interaction between scanner 
and the relation between the assessed volume and the reference volume. Here we found 
a significant interaction for Lesion-TOADS on the Philips Ingenuity 3T scanner (family 
wise error rate corrected p < 0.05), indicating that performance was biased by scanner 
type. All other interactions were not significant (data not shown). 

Performance of WMH segmentation methods for diff erent WMH lesion loads

For all methods the DSC increased when Fazekas scores increased (see Table 3.4), as the 
DSC is particularly dependent on the absolute lesion load and the size of the individual 
lesions.18 kNN-TTP and LST-LPA showed a good volumetric correspondence compared to 
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the reference segmentations across all WMH lesion loads (see Table 3.4 and Supplementary 
Figure S3.1). Also, variation in WMH volume measurements of these methods was small 
(i.e. narrow limits of agreement in the Bland Altman plots; see Figure 3.2). Cascade, Lesion-
TOADS and LST-LGA showed greater variation for different WMH lesion loads (i.e. wider 
limits of agreement in the Bland Altman plots, see Figure 3.2). LST-LGA underestimated 
WMH volume at higher WMH lesion loads (see Figure 3.2 and Supplementary Figure 
S3.1). Cascade and Lesion-TOADS overestimated WMH volumes at lower WMH lesion 
loads, while Cascade underestimated WMH volumes at higher WMH lesion loads (see 
Figure 3.2 and Supplementary Figure S3.1). 

Table 3.4 | Performance of WMH segmentation methods for diff erent WMH lesion loads

Method
Fazekas 

scale

WMH 
volume 

reference

WMH 
volume 
method ΔWMH |ΔWMH| DSC ICC

Cascade 1 4 ± 4 12 ± 6 8 ± 6 8 ± 6 0.24 ± 0.16 0.02 (-0.12;0.27)
2 16 ± 10 18 ± 11 2 ± 12 10 ± 6 0.50 ± 0.15 0.31 (-0.16;0.67)
3 73 ± 61 26 ± 18 -47 ± 62 49 ± 60 0.54 ± 0.22 0.13 (-0.23;0.67)

kNN-TTP 1 4 ± 4 5 ± 4 0.4 ± 1 0.9 ± 0.6 0.64 ± 0.10 0.91 (0.67;0.97)
2 16 ± 10 15 ± 9 -1 ± 3 3 ± 2 0.78 ± 0.06 0.96 (0.90;0.99)
3 73 ± 61 56 ± 41 -17 ± 22 18 ± 21 0.82 ± 0.06 0.92 (0.62;0.99)

Lesion 
TOADS

1 4 ± 4 18 ± 20 13 ± 21 13 ± 21 0.35 ± 0.21 0.11 (-0.13;0.43)
2 16 ± 10 19 ± 11 3 ± 13 6 ± 12 0.61 ± 0.20 0.50 (0.08;0.78)
3 73 ± 61 53 ± 37 -20 ± 24 22 ± 22 0.77 ± 0.06 0.90 (0.49;0.98)

LST-LGA 1 4 ± 4 4 ± 5 -0.3 ± 2 2 ± 2 0.47 ± 0.12 0.76 (0.46;0.91)
2 16 ± 10 15 ± 10 -0.4 ± 7 5 ± 5 0.61 ± 0.14 0.84 (0.63;0.94)
3 73 ± 61 53 ± 17 -20 ± 48 31 ± 40 0.70 ± 0.08 0.68 (-0.11;0.94)

LST-LPA 1 4 ± 4 5 ± 5 0.3 ± 3 2 ± 2 0.49 ± 0.13 0.76 (0.45;0.91)
2 16 ± 10 14 ± 10 -2 ± 6 4 ± 4 0.64 ± 0.14 0.85 (0.60;0.94)
3 73 ± 61 62 ± 39 -11 ± 23 16 ± 18 0.78 ± 0.07 0.90 (0.53;0.98)

WMH, ΔWMH, |ΔWMH| and DSC are shown as means ± SD. ICC is shown as means (95% confi dence interval). 
ΔWMH, mean diff erence in WMH volume (mL) between the reference segmentations and segmentations of 
the methods; |ΔWMH|, mean absolute diff erence in WMH volume (mL) between the reference segmenta-
tions and segmentations of the methods; DSC, dice similarity coeffi  cient; ICC, intra-class correlation coef-
fi cient. Seventeen subjects had a Fazekas scale of 1, eighteen subjects had a Fazekas scale of 2 and seven 
subjects had a Fazekas scale of 3.
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DISCUSSION

The current study is the first to investigate the performance of five freely available and 
fully automated segmentation methods in a multicenter dataset of patients with WMHs 
of presumed vascular origin. Overall, performance of methods in terms of spatial and 
volumetric correspondence varied markedly both within and across scanners, with kNN-
TTP and LST-LPA being the most consistent and best performing methods.

Many different automated methods currently exist to segment WMHs. Evaluation of these 
methods has mainly been performed in a single-center, single scanner setting, with variable 
performance across methods.6–8,10,11,17,19–40 Some of these methods have also been assessed 
for scan-rescan reproducibility,6,8,18 which is of particular importance when performing 
longitudinal research. However, since pooling of data across multiple centers is an important 
trend in small vessel disease research,41 there also is a need for automated WMH segmentation 
methods that perform well across different scanners. Clearly, a multicenter setting with 
different scan vendors poses challenges, as the method cannot be tuned to one single scan 
protocol. The question is thus which methods perform robustly enough in such a setting, but 
this has been explored by few studies. A recent study, coordinated by our group, compared 
the performance of twenty methods, but in contrast to the present study, many of the tested 
methods are not freely available yet.42 Two previous studies compared different linear and 
nonlinear classification techniques to segment WMHs of presumed vascular origin.43,44 
The important difference between these and the current is that they primarily focused on 
the optimal choice of classifiers for WMH segmentation, using a general preprocessing 
pipeline. By contrast, we evaluated some of the same classifiers as an integral part of a fully 
automated WMH segmentation method, where the classifier only partially determines the 
performance of the entire method.

We observed that for segmentation of WMHs of presumed vascular origin, performance of 
the five tested methods varied markedly, both within and across scanners. kNN-TTP and 
LST-LPA were the most consistent methods across scanners. kNN-TTP was also the best 
performing method within scanners with a DSC comparable to a manual segmentation as 
performed by a trained rater and an excellent ICC, whereas LST-LPA performed less with 
regard to spatial correspondence with the reference segmentations. This could be relevant 
when choosing a method to segment WMHs for further analysis where spatial information 
of WMHs is of particular importance (e.g. lesion symptom mapping).45 By contrast, when 
analyzing WMH volumes as a primary outcome, both methods could be suitable. 

All methods tended to slightly underestimate WMH volumes at higher lesion loads, but 
this was most prominent for LST-LGA and Lesion-TOADS. Lesion-TOADS and Cascade 



Chapter 3

60

showed the lowest spatial and volumetric correspondence compared to the reference 
segmentation and especially performance of Lesion-TOADS also varied across scanners. A 
possible explanation for the differences in performance between methods, both within and 
across scanners, could be that some methods are more robust to sources of variation in MRI 
acquisition than others. In our study it is impossible to determine which MRI related factors 
contribute most to this variation. Future studies are therefore encouraged to determine 
these sources of variation and the relation to various methods. Another explanation within 
our study might be the variation in WMH volumes between scanners, which might have 
introduced variation caused by selection bias. Above all, our study highlights the need 
to further improve WMH segmentation methods. An important initiative was recently 
taken in the form of a WMH segmentation challenge.42 In this challenge, new WMH 
segmentation methods were developed and evaluated on a multicenter dataset. The best 
performing method showed a similar DSC compared to kNN-TTP in the present study. 

White matter lesions can also have a non-vascular etiology, like in multiple sclerosis (MS). 
White matter lesions in MS show a different load, morphology and distribution compared to 
WMHs of presumed vascular origin.5 Nevertheless, evaluation of methods for segmentation 
of MS lesions can still be informative for WMH of vascular origin. In the field of MS, a 
previous study assessed the performance across scanners of Cascade, kNN-TTP, Lesion-
TOADS, LST-LGA and LST-LPA47. This study showed the highest performance across 
scanners for kNN-TTP (DSC mean ± SD: 0.44 ± 0.14), followed by LST-LPA (0.37 ± 0.23), 
Lesion-TOADS (0.35 ± 0.18), LST-LGA (0.31 ± 0.23) and Cascade (0.26 ± 0.17). Although 
the etiology of MS lesions is different, the overall ranking of methods is comparable to the 
ranking in our study, with Cascade being the method with the worst performance. The 
overall performance for MS lesion segmentation of each method is however lower than 
in our study. This discrepancy can possibly be explained by the difference in white matter 
lesion load between the previous study in MS (WMH volume mean ± SD: 5 ± 7 mL) and 
our study (20 ± 9 mL). Particularly for the segmentation of multiple small lesions, the DSC 
can become relatively low. 

The main strength of our study is that it allows a direct comparison in performance of 
these methods for multicenter use. To achieve this goal, we have constructed a high quality 
MRI dataset consisting of reference segmentations. A possible limitation could be the 
downsampling of the 3D FLAIR images, since performance of automated methods tends to 
be better at higher resolution. However, downsampling was necessary for a fair comparison 
across all scanners. Furthermore, manual segmentation of 3D FLAIR scans is more time 
consuming than 2D FLAIR scans. Another limitation could be the comparison of binary 
reference segmentations with binary automated segmentations (i.e. thresholding the initial 
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probabilistic output of the automated methods). However, the alternative approach of creating 
probabilistic manual segmentations (e.g. by combining binary manual segmentations of the 
same subject performed by multiple raters into a single probabilistic segmentation) is very 
labor intensive. Moreover, it has limited added value over manual segmentation of a larger 
number of subjects. We have therefore invested in manual segmentations of more subjects 
in combination with determining optimal thresholds of the automated segmentations by 
using the training set. Another possible limitation of our study could be that we did not 
scan the same subject(s) on all six scanners. However, the aim of our study was not to 
assess (and quantify) the source of variation that could be introduced by using different 
MRI-scanners, but to determine the performance across scanners of widely used automated 
WMH segmentation methods in a dataset with different MRI-scanners that reflects general 
practice. A final limitation could be the selection of subjects for the present study. We chose 
to exclude subjects with severe motion artifacts and/or presence of large (sub)cortical brain 
infarcts. However, these brain abnormalities can often be observed in patients with WMH of 
presumed vascular origin and this could potentially lead to a different ranking in performance 
of the methods, as some methods might be more robust for these brain abnormalities.

In conclusion, performance of different methods for WMH segmentation varied markedly 
both within and across scanners. Our findings can serve as a guide for choosing a method 
and also highlight the importance to further improve and evaluate consistency of methods 
in a multicenter setting. Studies planning to segment WMHs from multicenter datasets 
should assess performance of their method of choice using a pilot sample of their data with 
manual segmentations.

MATERIALS AND METHODS

Study population

Subjects with WMHs of presumed vascular origin (as defined by the STRIVE criteria)47 were 
selected from the TRACE-VCI study. This is a multicenter study on subjects with vascular 
cognitive impairment (VCI; n = 860) in the Netherlands and was described earlier.48 In 
short, all patients that presented with cognitive complaints and vascular brain injury on 
MRI (i.e. possible VCI) were eligible to participate. Subjects scanned on six different MRI 
scanners were included. Four scanners were located at the Amsterdam University Medical 
Center (Amsterdam UMC), Amsterdam, the Netherlands (General Electric (GE) Signa 
HDxt 1.5T; GE Signa HDxt 3T; GE Discovery MR750 3T [General Electric Healthcare, 
Milwaukee, Wisconsin, USA] and Philips Ingenuity 3T [Philips Medical Systems, Best, 
the Netherlands]). Two scanners were located at the University Medical Center Utrecht 
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(UMCU), Utrecht, the Netherlands (Philips Achieva 3T and Philips Ingenia 3T [Philips 
Medical Systems, Best, the Netherlands]). For the present study, ten subjects with varying 
WMH lesion load (Fazekas scale 1 to 3)49 were randomly selected per MRI scanner to 
represent the variation in WMH lesion load across the entire cohort. This led to inclusion 
of a total of 60 subjects (38 females, 22 males; age 68 ± 8 years). Compared to the entire 
cohort, there was no significant difference in age in the current study population (Student’s 
t-test; p > 0.05). There was a significant difference in gender (chi-square test; p < 0.05) 
with a relatively higher percentage of females in the current study population compared 
to the entire cohort.48 Subjects with severe motion artifacts and/or presence of large (sub)
cortical brain infarcts (less than 10% of the total cohort) were not considered for the 
present study. From the 60 subjects, we selected a training set of 18 subjects (i.e. three 
subjects per scanner; one randomly selected subject per Fazekas scale for each scanner) 
and a test set of 42 subjects (i.e. seven subjects per scanner). The training set and test set 
showed no significant difference in age (Student’s t test; p > 0.05), gender (chi-square test; 
p > 0.05) or WMH volume (Mann-Whitney U test; p > 0.05). The study was approved 
by the institutional review boards of the Amsterdam UMC and the UMCU (approval 
number 14-083/C). All procedures were in accordance with the ethical standards of the 
responsible committee on human experimentation (institutional and national) and with 
the Helsinki Declaration of 1975, as revised in 2013. All participating subjects provided 
written informed consent.

MR imaging

All subjects were scanned using an MRI protocol that included a 3D T1-weighted and 
fluid-attenuated inversion recovery (FLAIR) sequence.48 The MRI sequence parameters 
are shown in Table 3.5. To make a fair comparison across all MRI scanners, all 3D FLAIR 
scans from subjects who were scanned at the Amsterdam UMC, were resampled in the axial 
plane to better match the 2D FLAIR acquisitions from the UMCU. This was done using a 
linear interpolation tool in MeVisLab (MeVis Medical Solutions AG, Bremen, Germany), 
resulting in 3 mm slices with an in-plane resolution of 0.95–1.21 mm.50

Reference segmentations

WMH reference segmentations were constructed as reference data for training and testing 
the automated WMH segmentation methods and were obtained for all subjects using the 
following procedure. An in-house developed MeVisLab (MeVis Medical Solutions AG, 
Bremen, Germany) tool was used to semi-automatically delineate the contour of WMHs 
on all axial slices.46,51 In short, WMHs were segmented using an iso-contouring technique. 
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Contours were converted into binary segmentation masks by including all voxels having a 
(sub)voxel volume of at least 20% within the contour. This threshold value was chosen by 
visual comparison of images thresholded with values between 0 and 100% (intervals of 5%). 
All reference segmentations were constructed by a single rater (RH). To assess inter-rater 
reliability of the reference segmentations, JMB constructed reference segmentations on 
a subset of twenty subjects by using the same semi-automatic procedure. To assess intra-
rater reliability of the reference segmentations, RH constructed a second segmentation on 
a subset of twenty subjects.

Automated WMH segmentation methods

For the present study, we included methods that were fully-automated and freely available 
for academic research: Cascade, kNN-TTP, Lesion-TOADS, LST-LGA, and LST-LPA. All 
methods were run on FLAIR and 3D T1-weighted MR-images of all subjects to obtain 
WMH segmentations. Default settings were used as much as possible. The training set of 
subjects (n = 18) was used to train and tune each of the methods (i.e. to determine optimal 
thresholds). We did not exclude specific brain regions (such as the brain stem or basal 
ganglia where often higher false positive rates can be observed) from the analyses, since 
the aim of our study was to evaluate methods using their own processing. For a detailed 
overview of the workflow used for each method, see the Supplementary Information.

Statistical analysis

All automated WMH segmentation methods were evaluated on the test set (n = 42; i.e. 7 
subjects per scanner). Several evaluation metrics currently exist to evaluate performance 
of WMH segmentation methods, each with their own advantages and disadvantages (for 
an overview see51). For the present study, we chose frequently used evaluation metrics that 
have been used in recent comparative studies on WMH segmentation.8,46 

Quality assessment. We evaluated all methods qualitatively by visually comparing the 
output of each method with the reference segmentations. Next, we evaluated all methods 
quantitatively by calculating false positive (FP) volumes (in mL) and false negative 
(FN) volumes (in mL) of the WMH segmentations of each method using the reference 
segmentations. 

Performance within scanners. The performance of each method was assessed per scanner by 
measuring: a) the spatial (i.e. voxel-wise) correspondence with the reference segmentations 
by using the DSC; b) the volumetric correspondence with the reference WMH volumes 
by using the ICC (two-way mixed model with absolute agreement after log-transforming 
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WMH volumes because of non-normal distribution); c) the mean differences and mean 
absolute differences between WMH volumes of each method and the reference WMH 
volumes. Because specific methods (Cascade, Lesion-TOADS, LST-LGA, and LST-LPA) 
do not necessarily have to be trained, performance was also determined in secondary 
analyses on all subjects (n = 60) without training of the methods. 

Mean performance across scanners. The mean performance of each method across scanners 
was determined by averaging the mean DSC, ICC and absolute volume differences of each 
scanner.

Variations in performance across scanners. To investigate the variation in performance 
across scanners of each method, we performed the following two analyses: 

a) For each method, we assessed whether the DSC (as an outcome) depended on scanner 
(as a categorical variable with each scanner being compared to all other scanners as 
the reference) using linear regression analysis. This resulted in an unstandardized 
beta coefficient with 95% confidence intervals for each scanner. A significant relation 
between a certain scanner and the DSC (family wise error rate corrected p-value of < 
0.05 using a Bonferroni correction) indicates that the performance (in terms of spatial 
correspondence with the reference segmentation) was biased by the use of that scanner 
(compared to the other scanners). 

b) For each method, we assessed whether the relation between the reference WMH 
volumes (as an outcome) and WMH volumes of the automated WMH segmentation 
method (as a determinant) depended on scanner (as a categorical variable with each 
scanner being compared to all other scanners as the reference) by using linear regression 
analyses. Because of non-normal distribution, WMH volumes of each method and the 
reference WMH volumes were log-transformed. A significant interaction between the 
log transformed WMH volume of a method and a certain scanner (family wise error 
rate corrected p-value of < 0.05), indicates that performance of that method (in terms 
of volumetric correspondence with the reference segmentation) was biased by the use 
of that scanner (compared to the other scanners). 

Performance for different WMH lesion loads. In addition, the MRI scans of all subjects 
were stratified based on the Fazekas scale (Fazekas scale 1 / 2 / 3: n = 17 / n = 18 / n = 7). 
We then assessed whether the performance of each method was dependent on the WMH 
lesion load (i.e. Fazekas scale) using DSC, ICC and mean (absolute) volume differences. In 
addition, Bland-Altman plots were made to compare WMH volume of each method with 
the reference WMH volumes.52 Bland Altman plots provide a graphical representation of 
the amount of variation from the mean when comparing WMH volumes of the WMH 
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segmentation methods and the reference segmentations. In these plots, a narrow width of 
the limits of agreement reflects a small amount of variation between WMH volumes of the 
WMH segmentation methods and the reference segmentations. The difference between 
WMH volumes of the WMH segmentation methods and the reference segmentation 
reflects over- or underestimation of the WMH segmentation methods. Both a change in 
the direction of WMH volume differences (i.e. positive or negative differences) as well as 
the distribution of WMH volume differences (narrow or wide) for different WMH lesion 
loads, can reflect performance of a WMH segmentation method to be dependent on the 
WMH lesion load.

Data availability

The data that support the findings of this study are available from the final author, upon 
reasonable request. 
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SUPPLEMENTARY INFORMATION

MATERIALS AND METHODS

Cascade

Cascade (version 1.1; available via https://github.com/Damangir/Cascade1,2 is an unsu-
pervised method based on a proposed statistical definition of WMH. It uses a single node 
support vector machine (SVM) to preselect tissues that show differences in white matter 
(WM) intensity compared to normal gray and white matter. These changes in WM are 
then tested against a statistical definition of WMH. By applying a threshold (α), a selection 
of WMH is made. A probability map is then generated by applying a morphological 
filter and removing small lesions. Finally, a binary WMH segmentation is generated by 
applying another threshold (based on the lesion p-value). A recent paper on Cascade 
suggest any form of preprocessing can be done as long as all input images for Cascade 
have been registered and corrected for inhomogeneity and initial brain segmentation in 
WM, gray matter (GM) and cerebrospinal fluid (CSF) has been performed.2 To minimize 
differences in preprocessing between other methods (i.e. Lesion-TOADS), we chose to 
use the following preprocessing. Bias correction of both the T1 and FLAIR images was 
performed using SPM12 (default settings). Brain segmentation was performed using 
CAT12 (version r864; http://dbm.neuro.uni-jena.de/cat/). CAT12 is a SPM tool that uses 
voxel-based morphometry to classify GM, WM and CSF. Internal Cascade tools were then 
used to refined the initial brain segmentation of CAT12 using the bias-corrected FLAIR 
image. During refining, intensities of the FLAIR image were used to correct for misclassified 
WMH (e.g. as GM instead of WMH). Next, the refined brain tissue segmentation and bias-
corrected T1 were registered to the original, bias-corrected FLAIR image using Elastix.3 
These three images were then used for WMH segmentation by Cascade. To determine the 
optimal settings, we chose the settings that generated the highest DSC in the training set 
(in the current study: lower threshold = 0.95; upper threshold = 0.975; rest of the settings 
were kept at default). 

kNN-TTP

kNN-TTP is a supervised method based on a k-nearest neighbor algorithm, combined with 
tissue type priors derived from healthy controls to segment WMHs.4 WMHs are segmented 
by comparing each voxel of the labelled training set with new data of the test set. The lesion-
probability map is then converted to a binary WMH segmentation by applying a lesion 
probability threshold. For our study, we used the original T1 and FLAIR images as well as 
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the brain masks (that were acquired as described earlier). kNN-TTP uses its own standard 
preprocessing pipeline (for details see 4). After preprocessing, kNN-TTP extracts eight 
features for kNN classification: FLAIR and T1 signal intensity, MNI-normalized spatial 
coordinates x, y and z, and tissue type probabilities pCSF, pGM and pWM. These features 
are normalized using variance scaling to account for different ranges for different features. 
Next, classification of each voxel was performed by determining the fraction of k-nearest 
neighbors that were labeled as being a lesion in the training set. For our study, k was set to 
40.5 The output of kNN-TTP is a probabilistic lesion map. Finally, a threshold of 0.45 was 
used to obtain a binary WMH segmentation. This threshold was chosen by determining 
the best DSC in the training set using thresholds between 0 and 1 (intervals of 0.05).

Lesion-TOADS

Lesion Topology-preserving Anatomical Segmentation (Lesion-TOADS; version 1.9) is an 
unsupervised method that is available as a plug-in for the MIPAV software (http://mipav.
cit.nih.gov/).6 Lesion-TOADS uses an algorithm for fuzzy classification of image intensities, 
using a combination of topological and statistical atlases. An additional WMH lesion class 
is added to the brain segmentation model, using the same spatial prior as WM. Next, WMH 
and WM are separated by selecting, inside the grouped region, whichever has the higher 
membership value. The distances to certain areas (e.g. distance to ventricles) are used to 
correct for possible false positives. For Lesion-TOADS the following preprocessing was 
performed. First, FLAIR images were registered to T1 using Elastix. Next, bias correction 
was performed using SPM12 (default settings) on both T1 and coregistered FLAIR images. 
Subsequently, a brain mask was obtained using CAT12 (and manually corrected if needed). 
The resulting brain mask was used to skull strip both T1 and coregistered FLAIR images. 
The coregistered, bias corrected and skull-stripped T1 and FLAIR images were then used 
by Lesion-TOADS. For our current study, default settings were used. To compare the WMH 
segmentation of Lesion-TOADS (in 3D T1 space) with the manual segmentations (in FLAIR 
space), the following procedure was performed. First, Elastix was used to perform a rigid 
registration of the 3D T1 to the FLAIR image.3 Next, the resulting translation parameters 
were used to transform the WMH map to FLAIR space. A final threshold of 0.35 was 
applied to obtain a binary WMH map. This threshold was chosen by determining the best 
DSC in the training set using thresholds between 0 and 1 (intervals of 0.05).

LST (LGA and LPA)

LST-LGA is part of the Lesion Segmentation Tool (version 2.0.14), a toolbox that can be 
downloaded and subsequently implemented in SPM12 (www.statisticalmoddeling.de/
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lst/html).7 It segments the T1 image into three main tissue classes (GM, WM and CSF). 
These segmentations are then combined with the coregistered FLAIR intensities in order 
to calculate WMH (‘lesion belief ’ maps). By thresholding these maps with a pre-chosen 
initial threshold (kappa), an initial binary WMH map is obtained, which is subsequently 
grown along voxels that are hyperintense on the FLAIR image. The result is a lesion 
probability map. 

LST-LPA is part of the LST toolbox (version 2.0.14) and consists of a binary classifier in 
the form of a logistic regression model trained on the data of 53 subjects with multiple 
sclerosis with severe lesion patterns (http://www.applied-statistics.de/lst.html). Data were 
obtained at the Department of Neurology, Technische Universität München, Munich, 
Germany. As covariates for this model a similar WMH (‘lesion belief ’) map as for the 
LST-LGA was used as well as a spatial covariate that takes into account voxel specific 
changes in WMH probability. Parameters of this model fit are used to segment WMH in 
new images by providing an estimate for the WMH probability for each voxel. This results 
in a WMH probability map.

No preprocessing was performed, as LST uses internal SPM preprocessing tools. To 
compare the probabilistic WMH segmentation of LST (in 3D T1 space) with the binary 
manual segmentations (in FLAIR space), Elastix was used to perform a rigid registration 
of the 3D T1 to the FLAIR image.3 Next, the WMH probability map was transformed to 
FLAIR space. A final threshold of 0.2 was applied for LST-LGA and 0.3 for LST-LPA to 
obtain a binary WMH map. These thresholds were chosen by determining the best DSC 
in the training set using thresholds between 0 and 1 (intervals of 0.05). For LST-LGA we 
tested different thresholds for kappa that were between 0 and 1 (intervals of 0.05) and 
determined the optimal threshold (0.25) with the highest observed DSC in the training set.
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ABSTRACT 

Cerebral microinfarcts (CMIs) are associated with cognitive impairment and dementia. 
CMIs might affect cognitive performance through disruption of cerebral networks. We 
investigated in memory clinic patients whether cortical CMIs are clustered in specific brain 
regions and if presence of cortical CMIs is associated with reduced white matter (WM) 
connectivity in tracts projecting to these regions.

164 memory clinic patients with vascular brain injury with a mean age of 72 ± 11 years 
(54% male) were included. All underwent 3 tesla MRI, including a diffusion MRI and 
cognitive testing. Cortical CMIs were rated according to established criteria and their spatial 
location was marked. Diffusion imaging-based tractography was used to reconstruct WM 
connections and voxel based analysis (VBA) to assess integrity of WM directly below the 
cortex. WM connectivity and integrity were compared between patients with and without 
cortical CMIs for the whole brain and regions with a high CMI burden.

30 patients (18%) had at least 1 cortical CMI [range 1–46]. More than 70% of the cortical 
CMIs were located in the superior frontal, middle frontal, and pre- and postcentral brain 
regions (covering 16% of the cortical surface). In these high CMI burden regions, presence 
of cortical CMIs was not associated with WM connectivity after correction for conventional 
neuroimaging markers of vascular injury. WM connectivity in the whole brain and WM 
voxels directly underneath the cortical surface did not differ between patients with and 
without cortical CMIs.

Cortical CMIs displayed a strong local clustering in highly interconnected frontal, pre- and 
postcentral brain regions. Nevertheless, WM connections projecting to these regions were 
not disproportionally impaired in patients with compared to patients without cortical CMIs. 
Alternative mechanisms, such as focal disturbances in cortical structure and functioning, 
may better explain CMI associated cognitive impairment.
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INTRODUCTION

Cerebral microinfarcts (CMIs) are small (< 5 mm) ischemic lesions that are increasingly 
recognized as a clinically relevant marker in stroke and dementia.1 Besides post-mortem 
detection at autopsy, CMIs can now also be detected in vivo on MRI as chronic cortical 
CMIs on T1-weighted MRI and acute CMIs on diffusion-weighted MRI.2

Both pathology and MRI studies have found a consistent association between CMI 
presence and cognitive impairment, also after adjustments for the presence of co-occurring 
Alzheimer’s disease3 and conventional neuroimaging markers of vascular injury.4–7 Although 
these findings suggest that CMIs play a causative role in the process of cognitive decline, 
the exact mechanism by which CMIs and cognitive impairment are linked is not yet clear.

Several manifestations of cerebral small vessel disease (SVD), such as white matter hyper-
intensities (WMHs), lacunes, and cerebral microbleeds have been suggested to affect 
cognitive functioning by disruption of the WM network.8–12 It appears that the severity 
and location of these SVD lesions determine their impact on the brain network and 
consequently cognition.12,13 Disruption of WM connectivity may also play a role in the 
relation between cortical CMIs and cognitive impairment. We hypothesized that cortical 
CMIs exert their effect on the brain network by secondary degeneration of connecting 
WM pathways. A small study with cerebral amyloid angiopathy (CAA) patients showed 
that acute subcortical CMIs were indeed associated with changes in the surrounding local 
WM microstructural integrity.14 Whether similar effects on WM connectivity occur in 
relation to chronic cortical CMIs is unknown.

We have previously reported that presence of CMIs in memory clinic patients with vascular 
brain injury is associated with other neuroimaging markers of vascular injury, a diagnosis 
of vascular dementia and reduced performance in multiple cognitive domains.4 In the 
present study we investigated whether cortical CMIs in this cohort predominantly occur 
in specific brain regions and if presence of cortical CMIs is associated with impaired WM 
connectivity in tracts projecting to these regions. 

METHODS

Study population

This study involved patients from the TRACE-VCI cohort of the University Medical Center 
(UMC) Utrecht, an observational prospective cohort study of memory clinic patients with 
vascular brain injury (i.e., possible VCI) recruited between September 2009 and December 
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2013 [details described previously4,15]. Patients were included in the cohort if they presented 
with cognitive complaints at the memory clinic, and had evidence of vascular brain injury 
on MRI, operationalized as: (1) WMHs with a Fazekas scale grade ≥ 2;16 (2) ≥ 1 lacunar or 
non-lacunar infarcts; (3) ≥ 1 cerebral microbleeds; (4) ≥ 1 intracerebral hemorrhage(s) or (5) 
Fazekas scale grade 1 combined with ≥ 2 vascular risk factors.15 In line with proposed VCI 
criteria, patients with possible co-existing neurodegenerative disorders (such as Alzheimer’s 
disease) were included in this study cohort, but patients with primary non-vascular or 
nonneurodegenerative causes of cognitive dysfunction (e.g., brain tumors, depression) 
were excluded.15 All patients (n = 196) underwent a standardized clinical assessment and 
3 tesla brain MRI. Patients were included for the present study if they had complete MRI 
data, including a diffusion weighted scan (n = 177), another 13 patients were excluded 
due to poor quality of the MRI (n = 3) or DTI (n = 9, including 2 network outliers) and 1 
failure to co-register the AAL-template, resulting in a study population of 164.

Ethical approval was provided by the institutional review board of the UMC Utrecht. All 
procedures were in accordance with the ethical standards of the responsible committee 
on human experimentation (institutional and national) and with the Helsinki Declaration 
of 1975, as revised in 2013. Written informed consent was obtained from all participants 
prior to any research related procedures.

Clinical diagnosis of cognitive impairment

Educational level was rated according to the 7-point Verhage scale.17 The Clinical Dementia 
Rating scale (CDR; range: 0–3) was used to assess the severity of cognitive symptoms and 
functional deficits.18 The mini-mental state examination (MMSE) in Dutch was used as a 
global measure of cognitive performance.19

Severity of cognitive impairment was classified at a multidisciplinary consensus meeting. 
No objective cognitive impairment (NOCI) was defined as cognitive complaints, but 
without objective cognitive impairment on neuropsychological testing. Mild cognitive 
impairment (MCI) was defined as complaints or deterioration from prior functioning and 
objective impairment in at least one cognitive domain, but with no or mild impairment of 
activities in daily living. Dementia was defined as deficits in two or more cognitive domains 
at neuropsychological testing and who experienced interference of these deficits in daily 
living. Further etiological diagnoses of dementia were made based on internationally 
established diagnostic criteria (without knowledge of CSF biomarkers) into vascular 
dementia (VaD),20 Alzheimer’s disease (AD),21 or other (i.e., dementia such as Lewy body, 
primary progressive aphasia, cortical basal syndrome, unknown etc.15
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MRI

All patients were scanned on a 3 tesla MRI scanner (Philips Achieva or Philips Ingenia 
[Philips Medical Systems, Best, the Netherlands]). The standardized MRI protocol included 
a 3D T1-weighted sequence (192 slices, voxel size: 1.00 × 1.00 × 1.00 mm, repetition time 
(TR)/echo time (TE): 7.9/4.5 ms); the following transversal 2D sequences (48 slices, voxel 
size: 0.96 × 0.96 × 3.00 mm): T2-weighted turbo spin echo (TSE; TR/TE: 3198/140 ms), 
T2*-weighted (TR/TE: 1653/20 ms), and fluid attenuated inversion recovery (FLAIR; 
TR/TE/inversion time: 11000/125/2800 ms); and diffusion-weighted imaging [DWI; 48 
slices, voxel size: 1.72 × 1.72 × 2.50 mm, TR/TE: 6600/73 ms, 45 gradient directions with 
a b-value of 1,200 s/mm2 and one with a b-value of 0 s/mm2 (3 averages)].

Neuroimaging markers

The following neuroimaging markers were rated according to the STRIVE criteria22 by or 
under supervision of a neuroradiologist, who was blinded to the clinical condition of the 
participants: (1) WMHs on the Fazekas scale;16 (2) Lacunes (presence and number); (3) 
Cerebral microbleeds (presence and number); (4) Medial temporal lobe atrophy (MTA) 
using the Scheltens scale averaged for both hemispheres.23

Brain volume measurements

The following semi-automated workflow was used to obtain brain volumes: (1) automated 
WMH segmentation of 2D FLAIR images using kNN-TTP;24 (2) lesion-filling of 3D T1 
images using SLF toolbox (http://atc.udg.edu/nic/slfToolbox/index.html) for Statistical 
Parametric Mapping 12 (SPM Wellcome Department of Cognitive Neurology, Institute of 
Neurology, Queen Square London) with default settings;25,26 (3) default settings were used 
to obtain probabilistic segmentations for gray matter, WM, and CSF. Total brain volume 
was defined as the sum of the gray and WM volume. Brain volumes were expressed as a 
percentage of the total intracranial volume. 

Rating of cortical CMIs

Cortical CMIs were rated by visual inspection according to previously proposed criteria.2,27 
Cortical CMIs were rated on 3 tesla MRI and were hypointense on T1-weighted imaging, 
hyper- or isointense on FLAIR or T2-weighted imaging and isointense on T2*-weighted 
imaging. Lesions had to be strictly intracortical and ≤ 4 mm in the greatest dimension on 
T1. If the lesions measured substantially larger than 4 mm on T2-weighted imaging or 
within 1 cm proximity of a larger stroke, it was disregarded as the lesion was considered 
part of a larger stroke. The lesion had to be visible in two viewing planes of the brain (e.g., 
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sagittal, transversal, or coronal plane) and distinct from other structures and lesions such 
as arteries, veins, enlarged perivascular spaces and cerebral microbleeds. Rating were 
carried out using MeVisLab (MeVis medical solutions, Bremen, Germany),28 while the 
rater was blinded to the clinical condition of the subjects. There was a good intra-rater 
and interrater (both intra-class correlation coefficient > 0.95) agreement, details regarding 
the intra- and interrater reliability were published previously.4

Cortical CMI spatial mapping

Cortical CMI locations from all patients were registered to Montreal Neurological Institute 
(MNI) space. The automated anatomic labeling (AAL) template29 was used as overlay 
on this sample-averaged CMI map. The number of CMIs within each AAL region was 
determined to assess whether CMIs predominantly occurred in specific brain regions. 
The AAL regions with a relatively high number of CMI were defined as high CMI burden 
regions, other AAL regions were defined as low CMI burden regions. The threshold for 
high vs. low CMI burden regions was arbitrarily set at > 5 CMIs (for a histogram of the 
CMI numbers per AAL region, see Supplementary Figure S4.1). For 3D rendering of 
the spatial distribution of cortical CMIs see Figure 4.1. The volume per AAL region was 
calculated using automated segmentation using CAT12 after registering the AAL template 
to the T1 image in patient space.

Figure 4.1 | 3D representation of the spatial distribution of cortical microinfarcts (CMIs; represented as 

black dots) across the brain in the cohort. The red areas represent the Automated Anatomical Labeling 
(AAL)-atlas regions with a high CMI burden (i.e., the 7 brain regions which contained 75% of all the cortical 
CMIs).
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Diff usion MRI processing and network reconstruction

Diffusion tensor imaging (DTI) scans were preprocessed as previously described12,30 
using ExploreDTI version 4.8.6 (www.exploredti.com) and included subject motion 
correction, unwarping of eddy current and EPI induced distortions and a robust tensor 
estimation (including adjustment of the B-matrix).31–33 Next, whole brain deterministic 
WM tractography was performed using constrained spherical deconvolution (CSD)-
based tractography, which is different from standard tensorbased tractography, as it 
allows reconstruction of crossing fiber pathways.34–36 Reconstruction of fiber tracts was 
performed by using uniformly distributed starting seed samples throughout the brain’s 
WM at every voxel with a fiber orientation distribution (FOD) > 0.1 (indicating WM) at 
a 2 × 2 × 2 mm resolution. Fiber reconstruction was terminated if either a deflection in 
an angle of more than 45 degrees occurred or if a fiber entered a voxel with a FOD of < 
0.1 (indicating no WM). An additional terminating mask was not applied. Brain network 
nodes were defined using the same AAL template as used for the cortical CMI mapping 
described above, consisting of 90 cortical and subcortical gray matter regions. The AAL 
template is a commonly used atlas to define nodes in clinical network studies.8,9,11 The 
atlas has the advantage that the gray matter regions also contain a small portion of WM, 
which allows streamlines that terminate just before the gray-white matter border to be 
included in the network, thereby reducing the chance of false negative connections. Nodes 
were considered to be connected if two end points of a reconstructed fiber bundle lay 
within those nodes, resulting in a 90 × 90 binary connectivity matrix. This matrix was 
then weighted by multiplying each connection by the mean fractional anisotropy (FA) or 
mean diffusivity (MD) of that connection, resulting in two weighted-connectivity matrices 
for each patient. To reduce partial volume effects in WM connections a threshold of FA 
> 0.2 was applied to all the connectivity matrices. See Figure 4.2 (upper part A-D) for a 
graphical representation of this workflow. 

Measures of whole brain and regional WM connectivity

The Brain Connectivity Toolbox (http://www.brainconnectivity-toolbox.net) was used to 
calculate network properties, including nodal degree (i.e., number of WM connections per 
node) and nodal strength (here defined as the mean FA or MD of all WM connections to 
that node).37 For this study we used the following constructs: whole brain WM connectivity 
was assessed by the average FA and MD-weighted nodal strength of all network nodes. 
WM connectivity in high and low CMI burden regions was assessed by the average FA- 
and MD-weighted nodal strength of the high and low CMI burden regions, respectively 
(see Cortical CMI spatial mapping section, for an overview of regions see Figure 4.1).
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Voxel-based WM diff usion analysis

In addition to the network-based connectivity analyses we also performed a WM voxel-
based analysis to assess differences in mean FA and MD. Although we assume that 
secondary degeneration affects the whole axon running from the cortex to the deep WM, 
one may speculate that the WM directly underneath the CMI containing cortical (i.e., 
juxtacortical) surface is primarily affected. As can be seen in Figure 4.2 (lower part) AAL 
regions mainly consist of GM, but also contain a small WM section in close proximity to 
the cortical surface. Therefore, we also calculated the mean FA and MD of the WM voxels 
within each AAL region (using a WM mask with a WM probability threshold of 75). The 
FA and MD was averaged across all AAL regions for the high and low CMI burden regions 
respectively, see Figure 4.2 (lower part E-G) for a graphical representation).

Figure 4.2 | Overview of workfl ow. In the top panel (network-based approach): from a patients’ DTI 
images (A), WM connections are reconstructed using fi ber tractography (B). Next, brain network nodes 
were defi ned using the cortical parcellation using the AAL template (C). Subsequently, the structural brain 
network was reconstructed (D). Weighting of the network was done by multiplying each connection by 
the mean fractional anisotropy (FA) or mean diff usivity (MD). Finally, the mean FA and MD of connections 
towards high and low cortical microinfarcts (CMI) burden regions were compared between patients with 
and without CMIs. In the bottom panel (voxel-based approach), the patient’s DTI image A) is combined with 
the patient’s WM segmentation results (E) and AAL template (F) to assess diff usion properties of the WM 
voxels in the AAL region (i.e. directly underneath the cortex) (G).
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Statistical analysis

Differences in baseline characteristics between patients with and without cortical CMIs 
were analyzed using independent sample t-tests (for continuous normally distributed data), 
χ-square test (for proportions), and Mann-Whitney U-test (for continuous, non-normally 
distributed data). Differences in volume and connectivity strength between brain regions 
that were identified as high and low CMI burden regions were compared using a paired 
sample t-test (regardless of CMI presence). 

The association between the presence of cortical CMIs (predictor) and FA- and MD-weighted 
WM connectivity (outcome) was analyzed using linear regression and included sex and 
age (Model 1) and sex, age and conventional neuroimaging markers (WMH Fazekas scale 
grade 3, presence of lacunar and non-lacunar infarcts) (Model 2) as covariates. Beta values 
are reported with 95% confidence interval (CI) and corresponding t-values and degrees of 
freedom (df). These analyses were carried out separately for whole brain, high and low CMI 
burden regions. Within the group of patients with cortical CMIs, patients with 1 vs. patients 
with multiple cortical CMIs (predictor) were compared on WM connectivity (outcome) 
using an independent t-tests and corresponding df. Using a voxel based approach, the 
association between cortical CMI presence (predictor) and the mean FA and MD of WM 
voxels in close proximity to the cortex (outcome) was analyzed using linear regression, 
adjusted for age and sex. A possible interaction effect between cortical CMI presence and 
clinical diagnosis on WM connectivity was explored in a regression analysis with post hoc 
Helmert contrasts, where each clinical diagnosis (except the first) was compared to the main 
effect of all previous diagnoses. Post-hoc power analysis was carried out using G*Power 
(Heinrich-Heine University, Dusseldorf, Germany).38 All analyses were carried out using 
IBM SPSS statistics (version 22). A p-value of < 0.05 was considered significant, p-values 
were not adjusted for multiple comparisons, as all analyses were planned (not post-hoc). 

Data availability statement

Any data on the VCI cohort used in these analyses that is not published within this article 
is available by request from any qualified investigator.

RESULTS

Baseline characteristics of patients with and without cortical CMIs

The 164 patients had a mean age of 72 (± 11) years and 88 (54%) were male. A total of 134 
cortical CMIs were detected in 30 (18%) of the 164 patients. The number of cortical CMIs 
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per patient ranged between 1 and 46, 14 patients had 1 cortical CMI and 16 patients had 2 
or more cortical CMIs. Baseline characteristics of patients with and without cortical CMIs 
are presented in Table 4.1. We have previously published the detailed cognitive profile of 
patients with cortical CMIs in this specific cohort.4 In short patients with cortical CMIs 
were more often male, had more non-lacunar infarcts and were more often diagnosed with 
vascular dementia (all p < 0.05).

Characteristics of high and low CMI burden regions

The spatial location of the cortical CMIs was highly clustered, as more than 70% (n = 99) 
of all cortical CMIs were located within 7 AAL regions (High CMI burden regions: middle 
frontal and pre- and postcentral regions of both hemispheres and the right superior frontal 
region; Figure 4.1). The other 83 supratentorial brain regions (i.e., low CMI burden region) 

Table 4.1 | Characteristics of patients with and without CMIs

Cortical CMI absent
(N = 134)

Cortical CMI present
(N = 30)

Demographics
Age (years) 72 ± 11 71 ± 11
Sex (males) 67 (50) 21 (70)*

Level of education (7 categories) 5 [4–6] 5 [4–6]

Cognitive performance
MMSE (n = 161) 26 ± 3 25 ± 3
CDR 0.5 [0.5–1] 0.5 [0.5–1]
Clinical diagnosis (n = 154)

NOCI 24 (19) 3 (11)
MCI 49 (39) 7 (25)
Alzheimer’s dementia 48 (38) 13 (46)
Vascular dementia 5 (4) 5 (18)*

Othera 8 (6) 2 (7)

Neuroimaging markers
Total brain volume (% of TIV) 68 ± 4 67 ± 3
Gray matter volume (% of TIV) 36 ± 2 35 ± 2
WMH (Fazekas scale) 2 [1–2] 2 [1–2]
Presence of non-lacunar infarcts 26 (19) 19 (63)¥

Presence of lacunar infarcts 43 (32) 12 (40)
Presence of cerebral microbleeds 46 (35) 10 (35)

CMI, Cortical microinfarct; MMSE, mini-mental state examination; CDR, Clinical dementia rating scale; NOCI, 
No objective cognitive impairment; MCI, Mild cognitive impairment; TIV, total intracranial volume; WMH, 
White matter hyperintensities. 
a Other: includes dementia such as Lewy body, primary progressive aphasia, cortical basal syndrome, un-
known etc. Data presented as mean ± SD, n (percentages) or median [interquartile range]. 
* p < 0.05; ¥ p < 0.0001.
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contained the remaining 37 cortical CMIs. The mean volume of the high CMI burden 
regions was 68 ± 8.5 ml (16% of total cortical GM volume) compared to 349 ± 41 ml of 
the low CMI burden regions. Network analyses showed that the high CMI burden regions 
were more highly connected to the rest of the network than the low CMI burden regions. 
This was reflected in a higher nodal degree (high burden: 27.2 ± 4.1 vs. low burden: 24.0 
± 2.8), higher FA-weighted nodal strength (high burden: 0.300 ± 0.020 vs. low burden: 
0.293 ± 0.016) and higher MD-weighted nodal strength (high burden: 0.940 × 10-3 mm2/s 
± 0.059 vs. low burden: 0.985 × 10-3 mm2/s ± 0.059 all comparisons p < 0.0001).

Association between cortical CMI presence and WM connectivity

The presence of cortical CMIs was not associated with whole brain FA- and MD-weighted 
WM connectivity (Table 4.2). Within the group of patients with cortical CMIs, the number 
of cortical CMIs (cortical CMI = 1 vs. cortical CMI ≥ 2) also was not related to whole brain 
FA- (t(df=28) = 0.71, p = 0.485) or MD-weighted WM connectivity (t(df=28) = 0.05, p = 0.964). 
Regional analyses showed that in the high CMI burden regions, patients with cortical 
CMIs had marginally higher MD-weighted WM connectivity (reflecting greater WM 
disruption), although not statistically significant (p = 0.071) while a similar FA-weighted 

Table 4.2 | Association between cortical CMI presence and whole brain and regional FA- and MD-

weighted WM connectivity in high and low CMI burden regions

Cortical CMI 
absent 

(N = 134)

Cortical CMI 
present 
(N = 30)

Model 1 Model 2

Beta [95% CI] p Beta [95% CI] p

Global WM 
connectivity

FA .294 ± .017 .290 ± .017 -.093 [-.256;.070] .234 -.052 [-.234;.104] .490
MDa .979 ± .057 .993 ± .061 .087 [-.047;.228] .208 .018 [-.108;.138] .795

High cortical CMI 
burden regions

FA .301 ± .020 .296 ± .021 -.109 [-.254;.036] .165 -.059 [-.216;.098] .440
MDa .936 ± .057 .958 ± .066 .136 [-.013;.285] .071 .030 [-.102;.162] .683

Low cortical CMI 
burden regions

FA .294 ± .016 .290 ± .016 -.091 [-.228;.068] .247 -.051 [-.204;.102] .501
MDa .983 ± .058 1.000 ± .063 .082 [-.050;.208] .231 .017 [-.102;.130] .808

CMI, Cerebral microinfarct; FA, Fractional anisotropy-weighted WM connectivity; MD, Mean diff usivity-
weighted WM connectivity. Lower FA and higher MD indicated impaired WM connectivity. a MD values × 
10-3 mm2/s .
Model 1: Covariates age and sex (degrees of freedom = 160).
Model 2: Covariates sex, age, WMH Fazekas grade 3, presence of lacunar and non-lacunar infarct (degrees 
of freedom = 157).
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connectivity was observed (Table 4.2). These associations remained non-significant when 
conventional neuroimaging markers of vascular injury were entered as covariates in the 
model (Model 2; Table 4.2). Within the low CMI burden regions, cortical CMI presence 
was not associated with FA or MD-weighted WM connectivity (Table 4.2). 

Since not all cortical CMIs were located in the high burden regions, a sensitivity analysis 
was performed between patients who had CMIs exclusively in the high burden regions (n 
= 20) and patients without CMIs, which yielded similar results.

A post-hoc power analysis for CMI presence in high CMI burden regions indicated a 
power of 0.24 for FA- and 0.44 for MD-weighted connectivity.

Voxel-based WM analysis

Limiting our analysis to WM voxels in close proximity to the cortex showed similar results, 
i.e., the presence of cortical CMIs was not associated with abnormal mean FA and MD in 
high CMI burden regions [FA: t(df=158) = -1.01, p = 0.314; MD: t(df=158) = 0.753, p = 0.452] or 
in low CMI burden regions [FA: t(df=158) = -0.97, p = 0.336, MD: t(df=158) = 1.28, p = 0.204]. 

Association between clinical diagnosis, WM connectivity and cortical CMI 

presence

Clinical diagnosis (NOCI, MCI, AD, or VaD) was a significant predictor of whole brain 
FA- [F(df=4,152) = 13.9, p = 0.005) and MD-weighted WM connectivity [F(df=4,152) = 10.2, p = 
0.008]. Post-hoc analyses revealed that this effect was driven by the patients with the most 
severe clinical diagnosis, i.e., patients with AD and VaD had abnormal WM connectivity 
compared to the other groups (Figure 4.3). No significant interaction was observed between 
cortical CMI presence and clinical diagnosis on FA- or MD-weighted WM connectivity 
[F(df=4,152) = 0.42, p = 0.783] or MD [F(dfc=4,152) = 0.67, p = 0.700], indicating that the association 
between cortical CMI presence and WM connectivity did not differ across the various 
clinical diagnoses. In a sensitivity analysis of patients without dementia (n = 83) presence 
of cortical CMIs was also not associated with whole brain FA [t(df=79) = 0.43, p = 0.667] or 
MD [t(df=79) = -0.92, p = 0.359). 

DISCUSSION

This study shows that cortical CMIs in memory clinic patients vascular brain injury display 
a strong spatial clustering, as more than 70% of the cortical CMIs were located in frontal, 
precentral, and postcentral brain regions covering only 16% of the cortical surface. These high 
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Figure 4.3 | Box plots of FA-(upper) and MD-(lower) weighted WM connectivity between patients 

with and without cortical CMIs (labels) clinical diagnosis (X-axis). MD values × 10-3 mm2/s. CMI, Cortical 
microinfarct; NOCI, No objective cognitive impairment; MCI, Mild cognitive impairment; AD, Alzheimer’s 
disease; VaD, Vascular dementia.

CMI burden regions proved to be strongly connected with the rest of the network. However, 
we found no evidence that the actual presence of cortical CMIs was related to disruption of 
WM connections to either the high CMI burden regions or within the whole brain.

Cortical CMIs showed a strong predilection for the frontal, precentral, and postcentral 
brain regions. A similar pattern of CMIs has been found in memory clinic patients,6 but also 
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in patients with ischemic stroke,7,39 Alzheimer’s disease40 and even in patients with CAA, 
where vessels are typically affected in the posterior brain regions.41 This preferential lesion 
location is likely to be of etiological significance. A similar predilection for frontal, pre- and 
postcentral brain regions was observed in patients with poststroke cognitive impairment, 
where a thromboembolic origin has been suggested.42 Future research is encouraged to 
further explore the relation between lesion location and the pathophysiological origin of 
cortical CMIs using larger study samples.

We hypothesized that cortical CMIs might affect cognitive performance by disruption of 
cerebral networks. We have previously reported a relationship between cortical CMIs and 
reduced cognitive performance on multiple domains in this same cohort.4 In the current 
study we investigated impaired WM connectivity as possible underlying mechanism. As 
lesion location could be crucial for its effect on the cerebral network,13 regions with high 
and low CMI burden were compared. We established no convincing relationship between 
cortical CMIs and WM connectivity, as the association between cortical CMIs and impaired 
WM connectivity in high CMI burden regions disappeared after correcting for conventional 
neuroimaging markers of vascular injury. These findings were in line with our voxel based 
analysis, showing no local disturbances in the WM directly below the cortical surface of 
high CMI burden regions. Independent of CMI presence, we did find that patients with 
dementia, especially VaD, presented with impaired WM connectivity, which corresponds 
to the known association between network disruption and cognitive deficits.43

Previous studies in patients with SVD found a disruptive effect of SVD MRI- manifestations, 
such as WMHs and lacunes, on WM connectivity.8–10,12,14,44–46 Our study is the first to 
assess the effect of cortical CMIs and did not observe an effect on WM connectivity. This 
contrasting finding could be explained by the fact that these subcortical manifestations of 
SVD have a more direct impact on WM integrity, while cortical CMIs are thought to exert 
their effect indirectly through secondary degeneration. The limited size of the cortical 
CMIs could also account for the lack of association, as for macroscopic cortical infarcts 
the size of the lesion is directly correlated to the extent of the axonal injury.47 Considering 
the average lesion volume of cortical CMIs on 3 tesla MRI is max 0.1 ml, their effect on 
WM connectivity could indeed be modest and not of major clinical relevance.

Since cortical CMIs were not related to WM connectivity, other underlying mechanisms 
should be considered to explain how cortical CMIs affect cognitive impairment. Our earlier 
work showed that the cortical CMIs were mainly associated with deficits in “cortical” 
cognitive domains, including visuoconstruction and language4,6 suggesting that cortical CMIs 
potentially affect cognition by disruption of local cortical processes. This notion is supported 
by a mouse study, that found diminished neural activity and neurovascular coupling in the 
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cortical tissue surrounding the CMI.48 An alternative explanation is that cortical CMIs are 
a marker of more widespread vascular brain damage that affects cognitive performance.1,2 
As cortical CMIs smaller than 1 mm escape detection on 3 tesla MRI, larger visible cortical 
CMIs probably only represent the tips of the iceberg. Moreover, it is important to clarify 
the etiological underpinning of both the detectable as well as these smaller cortical CMIs 
in order to develop therapeutic strategies that counter cognitive decline.

The strength of our study includes the use of high quality imaging and clinical data of 
this memory clinic cohort and the systematic approach in cortical CMI rating. Moreover, 
this study utilized two different DTI approaches to assess the relation with cortical CMIs; 
a network-based analysis and a voxel-based analysis. However, this study also has some 
limitations. Firstly, the sample size of cortical CMI cases in our cohort was small, since MRI 
detectable cortical CMIs occur only in approximately a quarter of memory clinic patients.6 
Based on our post-hoc power analysis for the observed effect sizes in our study, it would be 
recommended to replicate results in a larger cohort. Another possible limitation concerns 
the heterogeneity of the cohort, which includes memory clinic patients with different 
etiologies, severity of cognitive dysfunction and with large variation in cortical CMI burden. 
Although this reflects daily clinical practice, it may have reduced our sensitivity to detect 
abnormalities in WM connectivity due to cortical CMIs.

CONCLUSION

We showed that cortical CMIs in memory clinic patients displayed a strong local clustering 
in frontal and central brain regions, which warrants further investigations into their 
etiology. Nevertheless, the WM connections projecting to these regions were not impaired 
in patients with cortical CMIs. This does not support the hypothesis that cortical CMIs 
affect the brain’s integrity through disturbance of WM connections, although further 
studies, also in larger cohorts with high burden of cortical CMIs, are recommended to 
confirm our observations.
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ABSTRACT 

Mechanisms underlying cognitive impairment in patients with small vessel disease (SVD) 
are still unknown. We hypothesized that cognition is affected by the cumulative effect of 
multiple SVD-related lesions on brain connectivity. We therefore assessed the relationship 
between the total SVD burden on MRI, global brain network efficiency, and cognition in 
memory clinic patients with vascular brain injury.

173 patients from the memory clinic of the University Medical Center Utrecht underwent 
a 3T brain MRI scan (including diffusion MRI sequences) and neuropsychological testing. 
MRI markers for SVD were rated and compiled in a previously developed total SVD score. 
Structural brain networks were reconstructed using fiber tractography followed by graph 
theoretical analysis. The relationship between total SVD burden score, global network 
efficiency and cognition was assessed using multiple linear regression analyses.

Each point increase on the SVD burden score was associated with 0.260 [-0.404 – -0.117] 
SD units decrease of global brain network efficiency (p < 0.001). Global network efficiency 
was associated with in-formation processing speed (standardized B = -0.210, p = 0.004) and 
attention and executive functioning (B = 0.164, p = 0.042), and mediated the relationship 
between SVD burden and information processing speed (p = 0.027) but not with executive 
functioning (p = 0.12).

Global network efficiency is sensitive to the cumulative effect of multiple manifestations 
of SVD on brain connectivity. Global network efficiency may therefore serve as a useful 
marker for functionally relevant SVD-related brain injury in clinical trials.
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INTRODUCTION

Small vessel disease (SVD) is a common cause of cognitive decline and dementia.1 However, 
the mechanisms underlying cognitive impairment in SVD remain largely unknown. A 
proposed mechanism is that SVD-related lesions (such as white matter hyperintensities 
(WMH), lacunes, cerebral microbleeds (CMB), and perivascular spaces (PVS)) affect 
structural brain connectivity and thereby the efficiency of the brain network to process 
information. Due to recently developed techniques, we can now estimate the efficiency 
of the brain network using diffusion MRI and graph theory analyses. Several studies have 
shown that global network efficiency is related to reduced processing speed and executive 
functioning in patients with SVD.2–5 In these studies, associations between network 
efficiency and cognition were found to be stronger than between individual MRI markers 
of SVD and cognition.6 One reason for the strong associations between network efficiency 
and cognition, could be a sensitivity of network efficiency to the cumulative effect of 
multiple types of SVD-related injury on brain connectivity.7 In previous studies a total SVD 
burden score was used to capture these multiple types of SVD-related injury.8–10 To date, the 
association between increasing SVD burden and brain network efficiency has not yet been 
assessed in memory clinic patients. In the current study, we used a previously developed 
total SVD score that combines various well-established MRI markers of SVD8–10 to test the 
relationship between SVD, global network efficiency, and cognition. We expected that with 
increasing SVD burden (i.e. a higher SVD burden score), global network efficiency would 
decrease. Secondly, we hypothesized that global network efficiency mediates the association 
between total SVD score and cognition (i.e. processing speed and executive functioning). 

METHODS

Study population

Patients in the current study were recruited from the memory clinic at the University 
Medical Center Utrecht (UMC Utrecht) between September 2009 and December 
2013. This study sample has been described in detail earlier.11 In short, all patients that 
presented with cognitive complaints and vascular brain injury on MRI (i.e. possible 
VCI) were eligible to participate. In order to capture the whole spectrum of possible 
VCI, we defined no threshold for cognitive impairment or specific patterns of vascular 
brain injury. Vascular brain injury was operationalized as:11 either (1) WMH with a 
Fazekas scale grade ≥ 2, (2) Fazekas scale grade 1 combined with two or more vascular 
risk factors (hypertension, hypercholesterolemia, diabetes mellitus, obesity or current 
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smoking) (3) presence of ≥ 1 lacunar infarcts, (4) presence of ≥ 1 non-lacunar infarct (5) 
presence of ≥ 1 cerebral microbleeds or (6) presence of ≥ 1 intracerebral haemorrhage. All 
markers were rated according to the STRIVE criteria.12 Absence or presence of possible 
co-existing neurodegenerative disorders did not play a role in the selection of patients.11 
Patients with a primary etiology other than vascular brain injury or an etiology other than 
neurodegeneration were excluded. All patients underwent a one-day evaluation consisting 
of an interview, a physical and a neurological examination, neuropsychological assessment 
and a brain MRI scan. During the interview and physical examination, information on 
education, smoking, medical history, use of medication, BMI and blood pressure was 
collected. In total, 173 patients were included in the analyses. The study was approved by 
the institutional review board of the UMC Utrecht. All patients provided informed consent 
prior to any research procedures.

MRI data acquisition

All patients underwent a brain MRI scan using a Philips 3T scanner (Achieva, Philips, Best, 
the Netherlands). The standardized MRI protocol included the following transversal 2D 
sequences (48 slices, voxel size: 0.96 × 0.96 × 3.00 mm): T2-weighted (repetition time (TR)/
echo time (TE): 3198/140 ms), T2*-weighted (TR/TE: 1653/20 ms), and fluid-attenuated 
inversion recovery sequence (FLAIR; TR/TE/Inversion time: 11000/125/2800 ms). The 
MRI protocol also included a 3D T1-weighted sequence (192 slices, voxel size: 1.00 × 1.00 
× 1.00 mm, TR/TE: 7.9/4.5 ms), and a diffusion-weighted sequence 48 slices, voxel size: 
1.72 × 1.72 × 2.50 mm, TR/TE: 6600/73 ms, 45 gradient directions with a b-value of 1200 
s/mm2 and one with a b value of 0 s/mm2 (number of signal averages = 3).

Small vessel disease burden on MRI

MRI images were rated for the presence of WMH of presumed vascular origin, lacunes of 
presumed vascular origin, CMB, and basal ganglia PVS by trained and experienced raters 
(RH under supervision of JdB) according to the STRIVE criteria.12 Perivascular and deep 
WMH were rated using the Fazekas scale on the FLAIR sequence.13 Lacunes were defined 
as hypointense areas between 2 and 15 mm on both FLAIR and T1-weighted images with 
a hyperintense rim on FLAIR images. CMB were defined as small, homogenous, round, 
focal areas of hypointense areas on T2*-weighted images. Basal ganglia PVS were defined as 
small linear hyperintensities on T2-weighted images. PVS were rated according to a semi-
quantitative scale ranging from 0 to 4.14 Subsequently, a total SVD score was constructed 
for each patient according to a previously developed scale, see Figure 5.1.8–10 This score 
summarizes the presence or severity of each of four SVD MRI markers: beginning confluent 
to confluent deep WMH (deep WMH Fazekas grade ≥ 2) and/or irregular periventricular 
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WMH extending into the deep white matter (periventricular WMH Fazekas grade 3) (one 
point); presence of lacunes (one point); presence of CMB (one point); and moderate to 
severe PVS in the basal ganglia (grade 2–4 on semi-quantitative scale)14 (one point). Due 
to motion artifacts, CMB and basal ganglia PVS could not be scored for 2 patients. For 
these 2 patients, CMB and basal ganglia PVS were not included in the calculation of the 
total SVD score.

Total brain volume

For all patients, segmentations of grey matter, white matter and cerebrospinal fluid were 
obtained for an earlier study with FreeSurfer version 5.3.0 (http://surfer.nmr.mgh.harvard.
edu/)15 using the 3D T1-weighted sequence. All brain volume segmentations underwent 
a visual quality check and were manually edited if needed. Manual edits consisted of 
correcting for large ventricles, correcting the brain mask and correcting for WMH. 
Total brain volume was defined as the sum of the grey and white matter volumes. To 
normalize total brain volume for variations in head size, total brain volume was adjusted 
for intracranial volume. Normalized total brain volumes were generated from linear 
regression of the residuals.16 

Diff usion MRI processing and tractography

Brain networks were reconstructed as described previously,2,3 using ExploreDTI version 
4.8.6 (http://www.exploredti.com)17 Preprocessing of the data included correction for 
subject motion and eddy current induced geometric distortions followed by robust tensor 
estimation (including adjustment of the B-matrix).18–20 During the motion-distortion 
correction, all scans were rigidly registered to Montreal Neurological Institute space. For 
each patient, whole-brain white matter tractography was performed using constrained 
spherical deconvolution (CSD)-based tractography, which allows for the reconstruction 
of pathways that go through crossing fiber regions.21–24 Fiber tracts were reconstructed by 
starting seed samples uniformly distributed throughout the white matter of the brain at a 
2 mm isotropic resolution. Fiber tracts were terminated when they deflected in an angle 
of > 45° or if they entered a voxel with a fiber orientation distribution threshold of < 0.1. 
Brain network nodes were defined using the automated anatomic labeling (AAL) template,25 
resulting in 90 cortical and subcortical brain regions. Two brain regions were considered 
to be connected if two end points of a reconstructed fiber bundle lay within both regions. 
This resulted in a 90 × 90 binary connectivity matrix. For all patients, each connection 
was multiplied by the mean fractional anisotropy (FA) of that connection which resulted 
in a 90 × 90 weighted connectivity matrix. For a graphical representation, see Figure 5.1.
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Brain network characteristics

Characteristics of the organization of the reconstructed structural brain networks were 
computed using the Brain Connectivity Toolbox.26 First, the degree of the structural brain 
network was calculated on the binary connectivity matrices. Degree is defined as the 
number of connections per node.26 Next global efficiency was computed on the FA-weighted 
connectivity matrices. Global efficiency reflects the ability to rapidly exchange information 
between distributed brain regions.26 Global efficiency was calculated as the inverse of the 
characteristic path length. The characteristic path length quantifies the average number 
of connections between regions along the shortest path. The shorter the path length, the 
higher the efficiency of the network.26 Global network efficiency was transformed into 
standardized z-scores to ease interpretation of the results.

Cognitive testing

All patients underwent standardized neuropsychological testing. The present study focused 
on the domains “information processing speed” and “attention and executive functioning” 
as these are among the most frequently impaired cognitive domains in patients with VCI.27 
Information processing speed was assessed by completion time of the Trail Making Test 
(TMT) A28 and completion time of the Stroop Color Word test I and II,29 and the Digit 
symbol-coding test.30 Attention and executive functioning was assessed by the ratio of 
completion time of the TMT-A and TMT-B,28 and completion time of the Stroop Color 
Word test part III (adjusted for part I and II),29 and two verbal fluency tasks: category 
naming and lexical fluency.31 Z-scores were calculated for each test using the means and 
standard deviations of the present sample and averaged for tests comprising one cognitive 
domain.

Statistical analysis

The relationship between the total SVD score and global brain network efficiency was 
evaluated with multiple linear regression analysis (resulting in unstandardized betas with a 
95% confidence interval and p-values (α = 0.05)). Next, correction for possible confounding 
effects of age, sex, vascular risk factors (hypertension, hypercholesterolemia, diabetes 
mellitus, and current smoking) and normalized total brain volume was performed by adding 
those variables as covariates in the model. Correction was also performed for the degree 
of the network. In a sensitivity analysis, the regression was repeated in patients without a 
clinical diagnosis of Alzheimer’s disease (AD). To verify whether the associations with the 
total SVD burden score were not driven by WMH, the most common SVD marker in our 
cohort, we recalculated SVD-scores without WMH. To check whether the tractography 
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was affected by WMH, we assessed the association between WMH severity and number 
of network connections.

To assess the association between the total SVD score/global network efficiency and 
cognition, multiple linear regression analyses were performed. Correction was performed 
for possible confounding effects of age, sex and education and subsequently for vascular 
risk factors and normalized total brain volume. Correction was performed for normalized 
total brain volume and degree of the structural brain network.

Finally, a mediation analysis was performed using the PROCESS (v2.16.3) macro32 in 
SPSS to test whether the relationship between SVD burden and cognition was mediated 
by global network efficiency. The indirect effect of the mediation was tested with 5000 
bootstrapping samples and 95% confidence interval.

RESULTS

Patient characteristics

Patient characteristics are shown in Table 5.1. 98% of the patients had some degree of 
WMH (Fazekas grade 1 or more), with 58% having moderate to severe WMH (Fazekas 
grade 2–3). Almost all patients (96%) had moderate to severe PVS (PVS score grade 2–4). 
Mean ± SD total brain volume of the patients was 962 ± 108 (normalized for intracranial 
volume 959 ± 96 cm3). As a reference, non-normalized brain volumes in non-demented 
elderly controls have been estimated at 1013 ± 96 cm3, using the same method.33 

Relationship between total SVD score and global network effi  ciency

The analysis between total SVD score and structural brain network measures showed 
that with each point increase in total SVD burden on MRI, there was a decrease in global 
network efficiency (regression coefficient: B [95% CI] = -0.260 [-0.406 – -0.114], p = 
0.001, see Figure 5.2). In other words, there was a dose-response relationship between the 
cumulative effect of SVD markers and global network efficiency. After controlling for age, 
sex, vascular risk factors (hypertension, hypercholesterolemia, diabetes mellitus and current 
smoking) and normalized total brain volume this association remained significant (B = 
-0.239 [-0.390 – -0.089], p = 0.002). The association between total SVD burden and global 
network efficiency was not changed by controlling for degree of the network (B = -0.285 
[-0.366 – -0.204], p < 0.001), indicating that the association with network efficiency was 
not driven by variations in the network density. A sensitivity analysis in patients without a 
diagnosis of AD showed similar results (B = -0.361 [-0.523 – -0.199], p < 0.001). Exclusion 
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Table 5.1 | Patient characteristics

Total SVD score

0
N = 6

1
N = 47

2
N = 65

3
N = 37

4
N = 18

Age in years 64 ± 10 69 ± 10 73 ± 10 76 ± 11 71 ± 12

Female sex, %
Level of educationa

MMSE

33
5 (3–7)
27.5 (25–28)

47
5 (1–7)
26 (7–30)

43
5 (2–7)
27 (17–30)†

49
5 (2–7)
26 (21–30)

39
6 (2–7)
27 (21–30)‡

Vascular risk factors
Hypertension, %
Hypercholesterolemia, %
Diabetes mellitus, %
Current smokers, %

100
100
33
50

96
89
47
32†

89
63
25
9†

95
62
40.5
8

100
78
44
22

Neuroimaging markers
Basal ganglia PVS score
WMH Fazekas scale grade

Periventricular 
Deep

1 (1)

1 (1)
1 (0–1)

2 (2–3)

1 (0–3)
1 (0–3)

2 (1–3)

2 (0–3)
1 (0–3)

3 (2–4)

2 (1–3)
2 (1–3)

3 (2–3)

2.5 (1–3)
2.5 (1–3)

Total SVD score
Presence of lacunes, %
Presence of microbleeds, %
Basal ganglia PVS (grade 
2–4)
Moderate to severe WMH 
(Fazekas: PV = 3 or Deep 
≥ 2)

-
-
-

-

-
-
98

2

32
32
98.5

37

59.5
57
100

84

100
100
100

100

Data are given as mean ± SD, percentages or median (range). MMSE, Mini Mental State Exam; PVS, Perivas-
cular Spaces; WMH, White Matter Hyperintensities; PV, periventricular. a Verhage scale: (1) less than six years 
of primary education, (2) fi nished six years of primary education, (3) six years primary education and less 
than two years of low level secondary education, (4) four years of low level secondary education, (5) four 
years of average level secondary education, (6) fi ve years of high level secondary education, (7) university 
degree.34 b 2 missing. c 1 missing.

Figure 5.2 | Relationship between total SVD score and global network effi  ciency. Boxplots showing the 
relationship between total small vessel disease burden score and global network effi  ciency (z-scores) in 
patients with vascular cognitive impairment.
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of WMH from the total SVD score showed that the association with global efficiency was 
not primarily driven by WMH (B = -0.247 [-0.445 – -0.050], p = 0.014). Because 96% of 
the sample obtained a point for the presence of basal ganglia PVS, we re-calculated the total 
SVD score using a stricter cut-off value (i.e. > 20 PVS, 45% of the sample). The adapted 
total SVD score, however, did not change the association with global network efficiency 
(B = -0.208 [-0.328 – -0.088], p = 0.001).

There was no relationship between number of network connections and WMH severity 
(B = 0.048 [-0.176–0.273], p = 0.671), indicating that WMH severity did not significantly 
affect the tractography results.

Relationship between total SVD score, global network effi  ciency and cognition

The analysis between total SVD score and cognition showed that the total SVD score 
tended to be associated with performance on both information processing speed (B = 
-0.123 [-0.273–0.026], trend p = 0.105) and attention and executive functioning (B = -0.140 
[-0.289–0.008], trend p = 0.064), albeit not significantly (see Figure 5.3). After correction 
for age, sex, education and vascular risk factors the effect remained non-significant 
(information processing speed B = -0.115 [-0.254–0.025], p = 0.106; attention and executive 
functioning: B = -0.119 [-0.273–0.035], p = 0.129). 

As can be seen in Figure 5.4, global efficiency was associated with both information pro-
cessing speed (B = 0.265 [0.115–0.414], p = 0.001) and attention and executive functioning 
(B = 0.171 [0.019–0.324], p = 0.028). After correction for age, sex, education, vascular risk 
factors and normalized total brain volume, this effect remained significant for information 
processing speed (B = 0.223 [0.087–0.359], p = 0.001) and attention and executive 
functioning (B = 0.175 [0.021–0.330], p = 0.027). Lastly, correcting for the degree of the 
structural networks did not change the results (information processing speed: B = 0.320 
[0.082–0.588], p = 0.009; attention and executive functioning: B = 0.298 [0.056–0.539], 
p = 0.016).

Mediation analysis

The association between SVD burden and cognition was similar as reported in a previous 
study.10 Albeit, not significant in our study. This could be due to a lower number of subjects. 
Nevertheless, a valid indirect mediation effect can still be established in the absence of a 
significant total effect as was shown in previous studies.35–37 In the current study, mediation 
analysis showed that global network efficiency mediated the relationship between SVD 
burden and information processing speed (indirect effect B = -0.059 [-0.126 – -0.017], 
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p = 0.027), but not the relationship between SVD burden and attention and executive 
functioning (indirect effect B = -0.035 [-0.089 – -0.005], p = 0.12). 

DISCUSSION

The present study showed a dose-response relationship between the total SVD burden 
on MRI and decreased global network efficiency in memory clinic patients with vascular 
brain injury. Furthermore, global network efficiency mediated the association between 
SVD burden and information processing speed. These findings indicate that the cumulative 
effect of different manifestations of SVD partly affect cognition by disrupting structural 
brain connectivity.

Figure 5.3 | Relationship between total SVD score and cognition. Boxplots showing the relationship 
between total small vessel disease burden score and information processing speed (A) and attention and 
executive functioning (B). Information processing speed and attention and executive functioning are 
shown as z-scores.
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Our results complement earlier studies that assessed the relationship between SVD, 
structural network measures and cognition.4,5,10 Two previous studies found a mediating 
role for global network measures in the relationship between individual SVD markers 
and cognition.4,5 Our results indicate that this mechanistic pathway might be better 
studied by considering the total burden of SVD than by individual markers. The greater 
the SVD burden, the lower the efficiency of the brain network to integrate information 
between remotely connected brain regions. The functional consequences of these 
network impairments seem to primarily involve information processing speed and 
executive functioning.4,5 However, the mediation effect in our study was only significant 
for processing speed. While it is common to only perform mediation analysis in case of 
a significant total effect (as described earlier),38 which in our case would be a significant 
association between total SVD burden and cognition, recent studies have demonstrated 

Figure 5.4 | Relationship between global network effi  ciency and cognition. Scatterplot showing the 
relationship between global network effi  ciency and information processing speed (A) and attention and 
executive functioning (B). Both global network effi  ciency and cognitive performance are shown as z-scores.



SVD burden and structural brain network connectivity

113

Ch
ap

te
r 5

that a valid indirect mediation effect can be established in the absence of a significant total 
effect.35–37 

SVD is a heterogeneous disease that manifests itself in different ways. We expected that 
a total SVD burden score could be better capable of capturing this heterogeneity than 
individual SVD markers. In the present study, we indeed found that the relationship between 
total SVD burden and structural brain connectivity was not driven by one of the common 
individual SVD markers, such as WMH, supporting the cumulative effect of SVD markers 
on the structural brain network. A previous study has shown that SVD markers also have 
a cumulative effect on cognition.10 However, the strength of the association between total 
SVD burden score and cognition in our sample and in the previous study10 were modest, 
and in our case not significant, which can be explained by the smaller sample size.

Measures of global network connectivity quantify more than what is visible on conventional 
MRI. For example, diffusion MRI can also detect subtle changes in the so-called normal 
appearing white matter (NAWM). Diffusion abnormalities in the NAWM, such as decreased 
FA, are very common in patients with SVD and have been associated with SVD-related 
cognitive impairment.39–42 However, whether the diffusion abnormalities in the NAWM 
indeed reflect SVD-related pathology is not known. Alternatively, it may reflect white 
matter damage caused by non-vascular pathologies, such as neurodegeneration and age.7 
In our view, diffusion measures and structural network measures should thus not be seen 
as a specific marker for SVD, but as a sensitive marker that integrates impairments in 
brain connectivity caused by multiple factors that together explain part of the cognitive 
performance in patients with SVD.

This study is the first to assess the association between total SVD burden, global network 
efficiency and cognitive performance in a relatively large sample of patients with different 
degrees of vascular brain injury. High quality, standardized structural MRI data were used 
in combination with detailed cognitive testing. One limitation of the DTI data is that only 
one b-zero image was acquired, which might have confounded the DTI estimates. Also 
regions in which WMH is present, have relatively low FA values.43,44 This may have affected 
the tractography results. However we found no association between WMH severity and 
number of network connections. A possible limitation to this study could be the selection 
of our patients. Since all patients were recruited from the memory clinic and no selection 
was made based on absence or presence of co-existing neurodegenerative disorders, patients 
with mixed diagnoses and mixed pathologies were included in this study sample. As vascular 
brain injury commonly co-occurs with other pathologies, this does reflect clinical practice. 
Moreover, a sensitivity analysis in which all patients with AD were excluded, showed that 
the cumulative effect of SVD markers on global network efficiency was even stronger in 
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this subset of patients. Our sample was selected based on the presence of SVD, which 
explains why almost all patients had some degree of basal ganglia PVS (96%). However, 
recalculating the total SVD score for all patients with a higher cut-off for PVS did not 
change the results. The construction of the total SVD score might be another limitation 
of this study. The score takes neither location nor number of individual SVD marker into 
account. Also, the same weight is assigned to each marker. Future studies should evaluate 
whether the total SVD score can be improved by including such information.

CONCLUSION

Our findings support the hypothesis that global network efficiency is sensitive to the 
cumulative effect of multiple manifestations of SVD on brain connectivity and may 
therefore serve as a useful marker for functionally relevant disease progression in clinical 
trials.
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ABSTRACT 

Brain atrophy in memory clinic patients may be due to Alzheimer’s disease, but can also 
develop as a consequence of cerebral small vessel disease. Cerebral small vessel disease is an 
etiologically heterogeneous construct manifesting itself by different types of vascular brain 
lesions on MRI, such as white matter hyperintensities, lacunes and cerebral microbleeds. 
Whether different types of cerebral small vessel disease, possibly in interplay with co-
occurring Alzheimer’s disease, differentially affect brain atrophy is unknown. In 725 
memory clinic patients (mean age 67 years, 48% female) with cerebral small vessel disease, 
but without large infarcts or hemorrhages, we assessed the relation between lesion type and 
severity and pattern of brain atrophy. We also determined whether CSF amyloid biomarker 
status modified this relationship. Total brain, gray matter and white matter volumes were 
obtained using a semi-automated segmentation pipeline. Brain volumes were compared 
between patients with each lesion type (moderate/severe white matter hyperintensities 
(Fazekas score 2–3; n = 326), lacunes (n = 132), and cerebral microbleeds (n = 321)) and 
a reference group with Fazekas score 1, but no lacunes or microbleeds (n = 197). Stratified 
analyses were performed in CSF amyloid-positive (n = 261) or negative (n = 227) patients 
and we assessed if atrophy in relation to cerebral small vessel disease occurred in specific 
brain regions. Compared to the reference group, patients with moderate/severe white 
matter hyperintensities had a smaller gray matter volume (standardized β [95% confidence 
interval] = -0.07 [-0.14; -0.002]), but total brain and white matter volumes did not differ. 
Patients with cerebral microbleeds or lacunes had no significant brain volume differences 
compared to the reference group. In stratified analyses according to CSF amyloid status, 
significant associations between lesion type and brain volumes were only seen in amyloid-
negative patients: moderate/severe white matter hyperintensities were associated with 
smaller gray matter volume (β = -0.14 [-0.27; -0.01]), and presence of lacunes with smaller 
total brain (β = -0.22 [-0.37; -0.07]) and gray matter volumes (β = -0.22 [-0.37; -0.08]). 
The relation between white matter hyperintensities and brain atrophy was most evident 
in the frontal (cortical) gray matter, again predominantly in amyloid-negative patients. In 
conclusion, different manifestations of cerebral small vessel disease related differentially to 
brain atrophy in memory clinic patients, but mainly in the absence of markers of amyloid 
pathology. The relations of subcortical lesions (white matter hyperintensities and lacunes) 
with “distant atrophy”, in predominantly frontal cortical areas, may reflect secondary 
neurodegeneration mediated through disconnection.
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INTRODUCTION

Brain atrophy is common in memory clinic patients and is related to cognitive decline.1,2 
In light of its functional impact, better understanding of the etiology of brain atrophy 
in these patients is important. An important cause of brain atrophy, and often the first 
to be considered, is (primary) neurodegeneration, due to Alzheimer’s disease or other 
neurodegenerative disorders such as Lewy body or frontotemporal dementia.3,4 Vascular 
brain injury is increasingly recognized as another potential cause of brain atrophy, in 
particular cerebral small vessel disease.5

Cerebral small vessel disease is an etiological heterogeneous construct. The most common 
forms are arteriolosclerosis (or age-related and hypertension-related cerebral small vessel 
diseases) and cerebral amyloid angiopathy.6 Different forms of cerebral small vessel disease 
manifest themselves in different types of vascular brain lesions, which can be seen on 
MRI: white matter hyperintensities of presumed vascular origin (WMHs), lacunes and 
cerebral microbleeds.5

Although the relation between cerebral small vessel disease and brain atrophy has been 
established,7 it remains unclear whether different MRI manifestations of cerebral small 
vessel disease differentially relate to brain atrophy. Previous studies have mostly focused 
on a single lesion type, in particular WMHs, without directly comparing different lesion 
types. Yet different lesion types can reflect different disease processes affecting different 
vessels, in different parts of the brain, potentially with different relationships with gray 
matter degeneration.8 Directly comparing different lesion types in investigating brain 
atrophy in memory clinic patients could therefore give more insight in these underlying 
disease processes.

A substantial proportion of memory clinic patients with cerebral small vessel disease 
will also have Alzheimer’s disease.9,10 However, the possible interplay between vascular 
brain injury and Alzheimer’s pathological processes is not well understood. It has been 
hypothesized that their relation could be additive or synergistic.11 The need for a large 
study that incorporates both processes to explore the etiology of brain atrophy was recently 
stressed.12 We therefore investigated the relation between different cerebral small vessel 
disease lesion types on MRI and brain atrophy (in terms of severity and pattern) in a large 
population of memory clinic patients and determined whether this relation was modified 
by CSF amyloid biomarker status. 
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MATERIALS AND METHODS

Study population

Patients were included from the TRACE-VCI study cohort. The TRACE-VCI study is an 
observational multicenter cohort study on memory clinic patients with vascular brain 
injury on MRI (i.e. possible vascular cognitive impairment; n = 860) in the Netherlands. 
The study design was described earlier.13 In short, the cohort consists of consecutive 
patients attending the memory clinics of the Amsterdam University Medical Center and 
from the two outpatient memory clinics of the University Medical Center Utrecht between 
September 2009 and December 2013 who met the inclusion criteria and had a full work-
up including MRI. Patients were included regardless of severity of their cognitive deficit, 
including patients with no objective cognitive impairment, mild cognitive impairment and 
dementia. There had to be evidence of vascular brain injury on MRI (i.e. possible vascular 
cognitive impairment) which was operationalized as the presence of at least one of the 
following: (1) mild WMHs (Fazekas scale grade 1)14 and the presence of ≥ 2 vascular risk 
factors (hypertension, hypercholesterolemia, diabetes mellitus, obesity, current smoking 
or a reported history of a vascular event other than stroke); (2) moderate/severe WMHs 
(Fazekas scale grade ≥ 2); (3) ≥ 1 lacune(s); (4) ≥ 1 (sub)cortical infarct(s); (5) ≥ 1 cerebral 
microbleed(s) (6) ≥ 1 intracerebral hemorrhage(s). Patients with a primary non-vascular 
and non-neurodegenerative etiology (e.g., brain tumor, hydrocephalus, or excessive alcohol 
consumption) were not included in the cohort. For the current study on cerebral small 
vessel disease, we excluded patients with (sub)cortical infarcts (n = 96) and intracerebral 
hemorrhages (n = 11), since presence of these lesions can substantially affect brain volumes. 
Of the remaining 753 patients, brain volume measurements were available in 725 patients, 
which comprise the current study population (see Supplementary Figure S6.1).

The study was approved by the institutional review boards of the Amsterdam Medical 
Center Amsterdam (approval number 2016.061) and the University Medical Center Utrecht 
(approval number 14-083/C). All procedures were in accordance with the ethical standards 
of the responsible committee on human experimentation (institutional and national) and 
with the Helsinki Declaration of 1975, as revised in 2013. All subjects provided written 
informed consent prior to any research related procedures.

Image acquistion

Patients were scanned on one of six different MRI scanners. Four at the Amsterdam 
University Medical Center, Amsterdam, the Netherlands (General Electric Signa HDxt 
1.5 tesla; General Electric Signa HDxt 3 tesla; General Electric Discovery MR750 3 tesla 



Amyloid modifies relation between SVD lesion type and atrophy

123

Ch
ap

te
r 6

[General Electric Healthcare, Milwaukee, Wisconsin, USA] and Philips Ingenuity 3 tesla 
[Philips Medical Systems, Best, the Netherlands]) and two at the University Medical 
Center Utrecht, Utrecht, the Netherlands (Philips Achieva 3 tesla and Philips Ingenia 3 
tesla [Philips Medical Systems, Best, the Netherlands]). All patients were scanned using an 
MRI protocol that included a 3D T1-weighted, fluid-attenuated inversion recovery (FLAIR) 
and T2*-weighted/susceptibility-weighted imaging sequence13 (for details regarding the 
MRI sequence parameters see Supplementary Material). For the present study, we used 
segmentation tools that were relatively insensitive to interscanner differences (these tools 
are described in the section regarding WMH and brain volume measurements). 

3D FLAIR scans from subjects scanned at the Amsterdam Medical Center, were resampled 
in the axial plane to better match 2D FLAIR scans from the University Medical Center 
Utrecht, using linear interpolation in MeVisLab (MeVis Medical Solutions AG, Bremen, 
Germany) resulting in 3 mm slices with an in-plane resolution of 0.95–1.21 mm.15 

Cerebral small vessel disease lesion types on MRI

Presence of WMHs (using the Fazekas scale14), lacunes and cerebral microbleeds was 
rated on FLAIR and T2*/susceptibility weighted images by or under supervision of a 
neuroradiologist (in training) using the STRIVE criteria.5 

WMH and brain volume measurements

The following semi-automated processing pipeline was used to obtain WMH and 
brain volumes. First, WMHs were automatically segmented using k-nearest neighbor 
classification with tissue type priors.16 All WMH segmentations were checked visually. 
Minimal corrections were performed in < 1% of patients. Presence of WMHs can lead 
to misclassification of various tissue compartments in automated brain segmentation.17,18 
Lesion filling methods have been shown to reduce this misclassification and improve brain 
volume measurements.19,20 Therefore, we performed lesion filling on 3D T1 images using 
the SLF-toolbox (http://atc.udg.edu/nic/slfToolbox/index.html) for Statistical Parametric 
Mapping 12 (SPM Wellcome Department of Cognitive Neurology, Institute of Neurology, 
Queen Square London) with default settings.20,21 Since WMH segmentation was performed 
on 2D FLAIR scans, binary WMH segmentations were transformed using Elastix before 
using it in the SLF toolbox.22 Next, lesion-filled 3D T1 images were automatically segmented 
using the Computational Anatomical Toolbox (CAT12, version r864, http://www.neuro.uni-
jena.de/cat/) for SPM12. This method has been shown to perform well in a previous study 
in the elderly.23 Default settings were used to obtain probabilistic volume segmentations 
for GM, WM and CSF. Quality assessment was performed visually on all segmentations 
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and no manual editing was performed. Next, lacunes, non-lacunar infarcts, intracerebral 
hemorrhages and incidental findings were segmented manually using an in-house 
developed MeVisLab (MeVis Medical Solutions AG, Bremen, Germany)15 tool.24,25 These 
manual segmentations were subsequently used as a mask to correct WMH segmentations, 
GM, WM and CSF volumes. 

Total brain volume (TBV) was defined as the sum of GM and WM volumes (including the 
volume of pathology). Total intracranial volume was determined by summing up TBV and 
CSF volumes. Regional GM, WM and CSF volumes were obtained using the Hammers 
atlas in CAT12, dividing the brain into 68 regions of interest: 32 per hemisphere and 4 
infratentorial regions (http://brain-development.org).26–29 To compensate for variability in 
head size, all brain volumes were normalized using the ‘residual normalization method’.30 
This method uses residuals of a least-square derived linear regression between brain 
volumes and total intracranial volume to calculate normalized brain volumes. Since the 
relation between brain volumes and total intracranial volume is not necessarily sustained 
in the case of pathology, we chose to use the residuals from a subset of patients with no 
objective cognitive impairment to normalize brain volumes. This was also advised in an 
earlier study.30

Cerebrospinal fl uid testing

CSF concentrations of amyloid-β42 (or Aβ42), tau and/or total tau phosphorylated at 
threonine 181 (or p-tau) were measured at a central laboratory for clinics at the Department 
of Clinical Chemistry of the Amsterdam Medical Center.31 Aβ42, total tau, and p-tau were 
measured with commercially available ELISAs (Innotest β-amyloid(1–42), Innotest hTAU-Ag 
and Innotest Phosphotau(181ᵨ), respectively; Innogenetics, Ghent, Belgium) on a routine 
basis.31 Patients were considered CSF amyloid-positive when the level of Aβ42 in CSF was 
less than 640 ng/L.32 For the present study, CSF data was available for 488 patients (67%).

Statistical analysis

All analyses were performed using IBM SPSS version 25 unless specified. Tests were two-
tailed with α set at p < 0.05 and corrected for multiple comparisons using Bonferroni 
correction if needed. In case of missing data, analyses were restricted to patients with 
complete data on all variables required for a particular analysis. All demographic, clinical 
and MRI variables were checked for normality using the Kolmogorov-Smirnov test and 
histogram inspection; WMH volumes were log-transformed. Differences in baseline 
characteristics and occurrence of vascular lesion types between amyloid-positive and 
amyloid-negative patients were analyzed using independent sample t-tests (for continuous 
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normally distributed data), χ-square tests (for proportions) and Mann-Whitney U tests 
(for continuous, non-normally distributed data).

Relationship between lesion type and brain atrophy

The relation between lesion type and brain atrophy was explored with linear regression 
analyses as well as with Bayesian network analyses. TBV, GM and WM volumes (normalized 
for head size) were compared between each lesion type and a reference group with only 
Fazekas score 1 and ≥ 2 vascular risk factors (but no other lesions) using linear regression 
analysis, adjusting for age, gender and scanner effect and additionally for clinical 
diagnosis (no objective cognitive impairment, mild cognitive impairment or dementia) 
and the number of vascular risk factors. We also used log-transformed WMH volume as 
a continuous variable.

Bayesian network analyses (bnlearn R package33; settings described earlier34) were used to 
assess the conditional dependencies between each lesion type, age and gender (potential 
determinants) and brain volumes (outcome). Variables with a deterministic influence on 
the outcome are identified and separated from others with, although showing a correlation 
with the outcome, only an indirect influence when taking the direct determinants into 
account (conditionally independent variables). Networks are produced in which direct 
determinants are connected directly to the outcome, while conditionally independent 
variables are connected only indirectly, via other variables. Normalized brain volumes 
were standardized into z-scores using the mean and standard deviation of the whole study 
sample and corrected for scanner effect. The strength of the connections between direct 
determinants and outcome was assessed by 100 bootstrap replications.24

We also assessed if atrophy in relation to cerebral small vessel disease occurred in specific 
brain regions. Normalized regional brain volumes were standardized into z-scores using 
the mean and standard deviation of the whole study sample and corrected for age, gender 
and scanner effect. Two-sample t-tests were used to compare for each lesion type that 
was significantly associated with brain volumes in the previous analyses, the difference 
in regional brain volumes (Δz-score) in 68 brain regions (correcting for multiple testing 
using Bonferroni correction).

Modifi cation by co-occurring amyloid pathology

To investigate whether the relation between lesion type and brain atrophy was modified 
by co-occurring amyloid pathology, we assessed possible interactions between each lesion 
type and CSF amyloid status in relation to brain atrophy. We also performed post-hoc 
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analyses stratified for CSF amyloid status. Normalized brain volumes were standardized 
in the same manner as described before, but using the mean and standard deviation of 
the CSF subgroup, amyloid-negative or amyloid-positive subgroup depending on the 
specific analysis.

Data availability

The data that support the findings of this study are available from the corresponding 
author, upon reasonable request.

RESULTS

Baseline characteristics

The 725 patients had a mean (± SD) age of 67 (± 8) years and 348 (48%) were female. 
Baseline characteristics are shown in Table 6.1. 176 patients (24%) had no objective cogni-
tive impairment, 175 (24%) had mild cognitive impairment and 374 (52%) had dementia. 
Baseline characteristics of the subgroup of patients with available CSF (n = 488, 67) are 
shown in Supplementary Table S6.1. Patients with available CSF were younger (t = 2.8, p 
< 0.05), less often hypertensive (χ2 = 8.6, p < 0.05), had less often hypercholesterolemia 
(χ2 = 8.7, p < 0.05) and less often obese (χ2 = 4.2, p < 0.05) compared to those without 
available CSF. In the CSF subgroup, amyloid-negative patients were younger (t = -4.6, p < 
0.001) and more often obese (χ2 = 10.2, p < 0.05) than amyloid-positive patients. Clinical 
diagnoses also differed as amyloid-negative patients more often had no objective cogni-
tive impairment (χ2 = 72.3, p < 0.001) and were less often demented (χ2 = 52.9, p < 0.001) 
than amyloid-positive patients.

The occurrence of each lesion type (and the overlap between lesion types) is shown in 
Figure 6.1. 321 patients (44%) had multiple lesion types. Moderate/severe WMHs (Fazekas 
score 2 or 3) were present in 326 patients (45%), lacunes in 132 patients (18%) and cerebral 
microbleeds in 321 patients (44%). The reference group of only Fazekas score 1 and ≥ 2 
vascular risk factors (but no other lesions) consisted of 197 patients (27%). In the CSF 
subgroup, amyloid-positive patients more often had moderate/severe WMHs compared 
to amyloid-negative patients (χ2 = 4.5, p = 0.04). Occurrence of lacunes and cerebral 
microbleeds did not differ between amyloid-negative and amyloid-positive patients (see 
Figure 6.1).

In the entire study population, the mean TBV (normalized for head size, in mL) was 1042 
± 60 mL, mean GM volume 565 ± 44 mL and mean WM volume 477 ± 33 mL. Median 
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WMH volume was 6 mL (range 0.05–166 mL). In the CSF subgroup, amyloid-positive 
patients had a smaller TBV (amyloid-positive: 1035 ± 24 mL; amyloid-negative: 1064 ± 30 
mL; standardized β coefficient [95% CI], adjusted for age, gender and scanner effect: -0.19 
[-0.27; -0.11], p < 0.001) and GM volume (amyloid-positive: 558 ± 20 mL; amyloid-negative: 
585 ± 23 mL; β: -0.26 [-0.33; -0.18], p < 0.001), but similar WM volume (amyloid-positive: 
476 ± 14 mL; amyloid-negative: 479 ± 15 mL; β: -0.01 [-0.09; 0.08], p = 0.86) compared 
to the amyloid-negative patients.

Table 6.1 | Baseline characteristics of the total study population

Number of patients, n total = 725

Demographics
Age, years 67 ± 8
Gender, female 346 (48)
Level of education, Verhage scale35 5 [4–6]

Vascular risk factors
Hypertension 610 (84)
Hypercholesterolemia 304 (42)
Diabetes Mellitus 132 (18)
Current smoker 140 (19)
Obesity, Body Mass Index ≥ 30 149 (21)
History of reported vascular events other than stroke 66 (9)
Number of vascular risk factors 2 [1–3]

Clinical diagnosis
No objective cognitive impairment 176 (24)
Mild cognitive impairment 175 (24)
Dementia 374 (52)

Vascular 21 (3)
Neurodegenerative 329 (45)

Alzheimer’s disease 254 (35)
Frontotemporal disease 23 (3)
Lewy body dementia 17 (2)
Others* 35 (5)

Unknown etiology§ 24 (3)

Data are presented as mean ± standard deviation, number of patients (percentage of total study population) 
or median [interquartile range]. For level of education data was present in 720 patients. For vascular risk 
factors current smoker and obesity data was present in 718 and 713 patients respectively. * Such as Primary 
Progressive Aphasia, Cortical Basal Syndrome and Progressive Supranuclear Palsy. § Dementia of unknown 
origin, further examination needed to state diagnosis.
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WMHs relate to GM atrophy

WMHs in particular, were related to brain atrophy: compared to the reference group 
(Fazekas score 1), patients with moderate/severe WMHs (Fazekas score 2–3) had smaller 
GM volume (standardized β coefficient [95% CI]: -0.07 [-0.14; -0.002], p < 0.05; addi-
tionally adjusted for clinical diagnosis: -0.05 [-0.12; 0.01], p = 0.08), but TBV and WM 
volumes were not significantly affected (Table 6.2). When WMH volume was entered as a 
continuous variable, it was also significantly associated with TBV (-0.16 [-0.22; -0.09], p 
< 0.001; additionally adjusted for clinical diagnosis: -0.09 [-0.15; -0.03, p = 0.003) as well 
as GM volume (-0.24 [-0.30; -0.17], p < 0.001; additionally adjusted for clinical diagnosis: 
-0.17 [-0.22; -0.11, p < 0.001), but WM volume was not significantly affected. Patients 

Figure 6.1 | Occurrence of lesion types. Venn diagram showing the occurrence of lesion types in the entire 
study population (n = 725) as well as in the CSF amyloid-positive (n = 261) and amyloid-negative (n = 227) 
patients in the CSF subgroup. The number of patients with a certain lesion type (alone or in combination 
with another lesion type) is shown, as well as the (color-coded) percentage of the respective patient group. 
The majority of patients only had mild WMHs (Fazekas score of 1) or moderate/severe WMHs (Fazekas 
score 2 or 3) but no other lesions. Multiple lesion types occurred in 321 patients (44%) of the entire study 
population. 71 patients (10%) had multiple lacunes (max: 30). In 719 patients (99%), information regarding 
presence/absence of cerebral microbleeds (CMBs) was present. 171 patients (24%) had multiple cerebral 
microbleeds (CMBs; max: 500). Of the patients with CMBs, 37 patients (12%) had only deep CMBs, 212 
patients (66%) had only lobar CMBs and 70 patients (22%) both had deep and lobar CMBs. In 2 patients, no 
information regarding CMB location was available.
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with lacunes had no significant differences in brain volumes compared to the reference 
group, although a trend with smaller GM volume was observed (-0.08 [-0.17; 0.004], p = 
0.06; additionally adjusted for clinical diagnosis: -0.08 [-0.15; -0.004, p < 0.05). Patients 
with cerebral microbleeds had no significant differences in brain volumes compared to 
the reference group. This was also the case for patients with multiple (≥ 5), lobar (pure 
or any) or deep microbleeds. Adjusting for the number of vascular risk factors did not 
change any of the previous results. There was no significant interaction between clinical 
diagnosis and moderate/severe WMHs, lacunes or microbleeds in relation to TBV, GM 
or WM volume (interaction terms p > 0.05).

The Bayesian network analyses integrating all lesion types confirmed the relation 
between WMHs and GM volume (see Figure 6.2). These analyses showed WMHs directly 
determined GM volume, independent of lacunes and cerebral microbleeds.

Pattern of brain atrophy related to cerebral small vessel disease

Brain atrophy in relation to WMHs occurred in specific brain regions (see Figure 6.3). 
Differences were most evident in frontotemporal cortical regions, but also the postcentral 
gyrus, thalamus and anterior and posterior cingulate gyrus (see Supplementary Table S6.3). 
In the superior parietal gyrus, patients with low WMH burden had smaller GM volumes 
compared to patients with high WMH burden, albeit not significant (see Figure 6.3).

Relation between WMHs and GM atrophy is modifi ed by amyloid status

Analyses in patients with available CSF (n = 488) showed that the relation between lesion 
type and brain atrophy was influenced by co-occurring amyloid pathology (see Table 6.2). 
There was a significant inverse interaction between CSF amyloid status and lesion type in 
relation to brain atrophy (interaction term WMH burden x CSF amyloid status for TBV: 
p = 0.012; GM volume: p = 0.006), lacunes (TBV: p = 0.012; GM volume: p = 0.006) and 
cerebral microbleeds (TBV: p = 0.01; GM volume: p = 0.02)). In amyloid-negative patients, 
moderate/severe WMHs were associated with smaller GM volume (-0.14 [-0.27; -0.01], p < 
0.05) and lacunes with smaller TBV (-0.22 [-0.37; -0.07], p < 0.05) and GM volume (-0.22 
[-0.37; -0.08], p < 0.05) compared to the reference group. By contrast, in amyloid-positive 
patients, none of the small vessel lesion types was associated with brain atrophy (see Table 
6.2). Vice versa, the effect size of the reduction in TBV and GM volume associated with 
a positive compared to negative CSF amyloid status was almost twice as large in patients 
with a low WMH burden relative to patients with a high WMH burden (see Supplementary 
Table S6.2). The same was observed for the relation between the CSF amyloid status and 
TBV and GM volume in the absence versus the presence of lacunes.
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Figure 6.2 | Bayesian networks. Bayesian networks for total brain volume (TBV, panel A), gray matter volume 
(GMV, panel B) and white matter volume (WMV, panel C). Variables that are directly connected to one of 
the cognitive domains are identifi ed as direct determinants. Variables that are connected indirectly to the 
cognitive domains (via other variables) are conditionally independent. As such, this method separates 
determinants with a direct deterministic infl uence on the outcome variable from other determinants that, 
although showing a univariate correlation with the outcome variable, have only an indirect infl uence 
when taking the direct determinants into account. Percentages indicate the confi dence level of the arcs 
towards brain volumes determined by 100 bootstrap replications. These analyses showed WMHs directly 
determined gray matter volume, independent of lacunes and cerebral microbleeds. CMB, presence of 
cerebral microbleed(s); WMH, moderate/severe WMHs (Fazekas score 2 or 3).
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The Bayesian network analyses confirmed the relation between lesion type and brain 
atrophy in amyloid-negative patients (see Supplementary Figure S6.2), with lacunes directly 
determining GM volume. Additionally, WMHs had an indirect effect (via lacunes) on GM 
volume (see Supplementary Figure S6.2).

CSF amyloid status also affected the pattern of brain atrophy related to cerebral small 
vessel disease (see Figure 6.4). In amyloid-negative patients, right mid frontal gyrus, left 
and right thalamus and right precentral gyrus, GM volumes were significantly smaller in 
patients with high WMH burden compared to patients with low WMH burden (Bonferroni-
corrected p < 0.05, see Supplementary Table S6.4). In amyloid-positive patients, only left 
superior temporal gyrus GM volumes were significantly smaller in patients with high WMH 
burden compared to patients with low WMH burden (Bonferroni-corrected p < 0.05, see 
Supplementary Table S6.4). No significant interaction between WMH burden and CSF 
amyloid status was found after correcting for multiple testing (Bonferroni-corrected p > 

Figure 6.3 | Regional brain volume analysis. Eff ect size map showing regional gray matter volume 
diff erences between patients with high versus low white matter hyperintensity (WMH) burden (median 
split on WMH volume) in all patients (n = 725). Diff erences in z-scores (ΔZ) are shown (red: gray matter 
volume smaller in patients with high versus low WMH burden; blue: gray matter volume smaller in patients 
with low versus high WMH burden). Panel A shows that across all patients higher WMH burden was 
associated with smaller gray matter volume. * Bonferroni-corrected p < 0.05.
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Figure 6.4 | Regional brain volume analysis in CSF subgroup. Eff ect size map showing regional gray 
matter volume diff erences between patients with high versus low white matter hyperintensity (WMH) 
burden (median split on WMH volume). A) CSF amyloid-negative patients (n = 273); B) CSF amyloid-positive 
patients (n = 215). Diff erences in z-scores (ΔZ) are shown (red: gray matter volume smaller in patients with 
high versus low WMH burden; blue: gray matter volume smaller in patients with low versus high WMH 
burden). The stratifi ed analyses show that the eff ect is highly dependent on CSF amyloid status. While 
amyloid-positive patients have a lower gray matter volume than amyloid-negative patients, the association 
between high WMH burden and more gray matter atrophy was more pronounced in several brain regions 
for amyloid-negative patients only. * Bonferroni-corrected p < 0.05.
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0.05). Regional brain volume analyses were not performed for patients with and without 
lacunes, due to a lack of power. 

DISCUSSION

This study demonstrates that different manifestations of cerebral small vessel disease 
differentially affect brain atrophy in memory clinic patients, especially in the absence of 
concurrent amyloid pathology. In particular WMHs and lacunes were related to brain 
atrophy. WMH associated brain atrophy was most pronounced in frontal cortical GM 
regions.

Cerebral small vessel disease related brain atrophy

Cerebral small vessel disease burden has previously been shown to be related to brain 
atrophy in memory clinic patients.7 While it is a trend in cerebral small vessel disease 

Table 6.2 | Relationship between lesion type and brain volumes for total study population and stratifi ed 

for CSF amyloid biomarker status

Total brain 
volume

Gray matter 
volume

White matter 
volume

Total study population (n = 725)
Mild WMHs and ≥ 2 VRF 
(reference; n = 197)

- - -

Moderate/severe WMHs (n = 326) -0.02 [-0.10;0.05] -0.07 [-0.14;-0.002]* 0.05 [-0.03;0.13]
Lacunes (n = 132) -0.06 [-0.15;0.03] -0.08 [-0.17;0.004] 0.0001 [-0.10;0.10]
Cerebral microbleeds (n = 321) -0.02 [-0.09;0.06] -0.05 [-0.12;0.03] 0.03 [-0.05;0.11]

CSF amyloid-negative (n = 227)
Mild WMHs and ≥ 2 VRF 
(reference, n = 71)

- - -

Moderate/severe WMHs (n = 88) -0.10 [-0.24;0.04] -0.14 [-0.27;-0.01]* -0.002 [-0.15;0.14]
Lacunes (n = 42) -0.22 [-0.37;-0.07]* -0.22 [-0.37;-0.08]* -0.10 [-0.27;0.07]
Cerebral microbleeds (n = 88) -0.09 [-0.23;0.05] -0.07 [-0.21;0.06] -0.06 [-0.21;0.08]

CSF amyloid-positive (n = 261)
Mild WMHs and ≥ 2 VRF 
(reference; n = 62)

- - -

Moderate/severe WMHs (n = 126) 0.08 [-0.05;0.22] 0.05 [-0.08;0.18] 0.08 [-0.06;0.22]
Lacunes (n = 42) 0.08 [-0.10;0.26] 0.07 [-0.10;0.25] 0.04 [-0.14;0.23]
Cerebral microbleeds (n = 130) 0.12 [-0.02;0.25] 0.10 [-0.03;0.23] 0.08 [-0.06;0.21]

Data are presented as standardized beta coeffi  cients with 95% confi dence intervals after correction for 
age, gender and scanner eff ect. All brain volumes were corrected for variations in head size using the total 
intracranial volume. VRF, vascular risk factors. 
* p < 0.05.
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research to use a cerebral small vessel disease burden score to capture multiple types of 
cerebral small vessel disease related brain injury in a single measure,36 the effects of different 
lesion types are of interest since different lesion types can reflect different underlying 
pathological processes.8,37–40 Previous studies investigating the relation between cerebral 
small vessel disease and brain atrophy have often focused on a single lesion type, without 
directly comparing different lesion types. Most of the research has been done on WMHs,41–46 
and has shown that WMHs were related to brain atrophy. For lacunes, results have been 
conflicting, with most studies finding a relation with brain atrophy,41,47–49 while some 
studies do not.42 We are aware of only one study that investigated the relation between 
cerebral microbleeds and brain atrophy and found no association.46 We now directly 
compared different lesion types in relation to brain atrophy in a large cohort of memory 
clinic patients and indeed observed WMHs and lacunes, but not cerebral microbleeds 
were related to brain atrophy.

Pattern of cerebral small vessel disease related brain atrophy

Previous studies that investigated the pattern of cerebral small vessel disease related brain 
atrophy found a relation between WMHs and predominantly cortical GM atrophy.41,42,45,47–49 
Regarding lacunes, most studies also found a relation with cortical GM atrophy,41,47–49 while 
one study also found an association with subcortical GM atrophy.47 

Only three of the previous studies41,45,49 have specifically investigated the regional pattern 
of cortical GM atrophy. Two of those studies45,49 were done in patients with symptomatic 
lacunes with moderate/severe WMHs, while the other41 used memory clinic patients with 
a history of stroke due to small vessel disease or a lacune on MRI. All three studies found a 
rather global pattern of cortical GM atrophy (frontal, limbic (cingulate), (superior)temporal 
and parietal-occipital regions) in relation to WMHs, with relative sparing of hippocampal 
and medial temporal regions. In the present study, investigating memory clinic patients 
with cerebral small vessel disease, GM atrophy in relation to WMHs was predominantly 
seen in frontotemporal, but not parietal-occipital regions.

Modifi cation by amyloid pathology

The interplay between cerebral small vessel disease and Alzheimer’s pathological processes 
(whether their relation is additive or interactive) has gained increasing attention in the 
past decade.11 While many studies have investigated the interaction between amyloid 
and WMHs in relation to cognition and prognosis, with variable results (for an overview 
see50), brain atrophy as an outcome has hardly been studied.51,52 We now show that there is 
indeed an interaction between WMHs and CSF amyloid status in relation to brain atrophy. 
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WMHs and lacunes were related to atrophy, but primarily in amyloid-negative patients. 
Vice versa, the relation between CSF amyloid status and brain atrophy was much stronger 
in patients with a low burden of WMH or lacunes.

A previous study that assessed the relation of both WMHs and CSF amyloid level to 
brain atrophy in controls and patients with either mild cognitive impairment or a clinical 
diagnosis of early Alzheimer’s disease, observed that these relations differed according to 
disease stage.51 In controls WMH volume and lower amyloid level were independently 
associated with brain atrophy, while in subjects with mild cognitive impairment amyloid 
but not WMH volume was associated with brain atrophy. In patients with early Alzheimer’s 
disease, neither amyloid nor WMH volume was associated with brain atrophy. No 
interaction analysis was performed.

Another previous cross-sectional study that investigated the relation of both WMH volume 
and CSF amyloid level to hippocampal volume in memory clinic patients, found no 
independent effect of WMHs on hippocampal volume, but did find a significant interaction 
between WMHs and abnormal CSF amyloid levels in non-demented individuals.52 The 
interaction was not present when patients with a clinical diagnosis of Alzheimer’s disease 
were included.

Converging evidence thus that both cerebral small vessel disease and Alzheimer’s patho-
logical processes contribute to brain atrophy in memory clinic patients, but for each this 
is most evident in the absence of the other. This could perhaps be explained by a ceiling 
effect, possibly linked to disease stage. Longitudinal studies could give more insight into 
the combined effects of WMHs and amyloid beta on brain atrophy over time and reveal 
the temporality of both disease processes.

‘Distant’ eff ects of cerebral small vessel disease

The exact mechanism by which cerebral small vessel disease contributes to brain atrophy 
is not yet clear. It has been suggested cerebral small vessel disease can lead to secondary 
degeneration: a process in which cortical gray matter atrophy occurs as a result of 
disconnection of white matter tracts.42,44,47,53–55 This ‘disconnection phenomenon’ has been 
demonstrated in patients with cerebral autosomal dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy54 and ischemic stroke.56 The underlying cellular 
mechanisms behind this process are not clear yet: retrograde or anterograde degeneration, 
neuronal apoptosis or a combination of these mechanisms have been hypothesized.57 Our 
results showed primarily subcortical lesions (white matter hyperintensities and lacunes) 
were related with predominantly frontal cortical gray matter atrophy. This ‘distant’ cortical 
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atrophy in relation to these subcortical vascular lesions may indeed reflect secondary 
neurodegeneration through disconnection.

Strengths and limitations

Strengths of our study include the large sample size, and detailed information on brain 
volumes and all cerebral small vessel disease lesion types. Furthermore, CSF was available 
in a substantial subset of patients, allowing us to assess the impact of cerebral small vessel 
disease both in the absence and presence of biomarker evidence of concomitant amyloid 
pathology.

A few limitations need to be addressed. First, selection bias could play a role since patients 
were included at a tertiary memory clinic and not all patients underwent a lumbar puncture. 
Second, all patients in the present study had some degree of vascular brain injury (since 
this was part of the inclusion criteria for the TRACE-VCI study), which could have led to 
an underestimation of the observed effects. However, there was a great variability in the 
burden of vascular brain injury, which should have allowed us to detect relevant effects. 
Fourth, information bias could play a role in the measured brain volumes since we used 
heterogeneous multicenter MRI data. However, we used a high quality, semi-automatic 
segmentation pipeline (including lesion filling) and corrected for scanner effect in our 
analyses. Both amyloid-positive and -negative patients were scanned using the same variety 
of MRI scanners instead of a single (different) scanner for each subgroup and therefore 
the differences found in these patients cannot be explained by a scanner effect. Finally, the 
cross-sectional design of the present study does not allow us to infer causality regarding 
small vessel disease and brain atrophy.

CONCLUSION

In this study, we demonstrate that different manifestations of cerebral small vessel disease 
related differentially to brain atrophy in memory clinic patients. In particular WMHs and 
lacunes were related to brain atrophy, but mainly in the absence of concurrent amyloid 
pathology. WMH associated brain atrophy was most pronounced in frontal cortical GM 
regions. This distant cortical atrophy may reflect neurodegeneration through disconnection. 
Cerebral small vessel disease and Alzheimer’s pathological processes both have effects on 
brain atrophy. For each the effect is most evident in the absence of the other. Our findings 
provide further insight into the contribution of both cerebral small vessel disease and 
Alzheimer’s disease to brain atrophy, which is relevant since their treatment differs.
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SUPPLEMENTARY INFORMATION

METHODS

The MRI sequence parameters were as follows:

• 1.5 tesla GE Signa HDxt: 3D T1-weighted sequence (sagittal, 172 slices, voxel size: 0.98 × 
0.98 × 1.50 mm, repetition time/echo time = 12.3/5.2 ms), 3D FLAIR sequence (sagittal, 
128 slices, voxel size: 1.21 × 1.21 × 1.30 mm, repetition time/echo time/inversion time 
= 6500/117/1987 ms) and 2D T2*-weighted sequence (axial, 48 slices, voxel size: 0.98 
× 0.98 × 3.00 mm, repetition time/echo time = 1000/24 ms).

• 3 tesla GE Signa HDxt: 3D T1-weighted sequence (sagittal, 176 slices, voxel size: 0.94 × 
0.94 × 1.00 mm, repetition time/echo time = 7.8/3.0 ms), 3D FLAIR sequence (sagittal, 
132 slices, voxel size: 0.98 × 0.98 × 1.2 mm, repetition time/echo time/inversion time = 
8000/126/2340 ms) and 2D susceptibility weighted imaging sequence (axial, 48 slices, 
voxel size: 0.49 × 0.49 × 3.00 mm, repetition time/echo time = 31/25 ms).

• 3 tesla GE Discovery MR750: 3D T1-weighted sequence (sagittal, 176 slices, voxel size: 
0.94 × 0.94 × 1.00 mm, repetition time/echo time = 8.2/3.2 ms), 3D FLAIR sequence 
(sagittal, 160 slices, voxel size: 0.98 × 0.98 × 1.2 mm, repetition time/echo time/inversion 
time = 8000/130/2340 ms) and 2D susceptibility weighted imaging sequence (axial, 
44 slices, voxel size: 0.49 × 0.49 × 3.00 mm, repetition time/echo time = 31/25 ms).

• 3 tesla Philips Ingenuity: 3D T1-weighted sequence (sagittal, 180 slices, voxel size: 0.87 × 
0.87 × 1.00 mm, repetition time/echo time = 9.9/4.6 ms), 3D FLAIR sequence (sagittal, 
321 slices, voxel size: 1.04 × 1.04 × 0.56 mm, repetition time/echo time/inversion time = 
4800/279/1650 ms) and 2D susceptibility weighted imaging sequence (axial, 247 slices, 
voxel size: 0.43 × 0.43 × 0.60 mm, repetition time/echo time = 29 × 20 ms). 

• 3 tesla Philips Achieva and Philips Ingenia: 3D T1-weighted sequence (sagittal, 192 
slices, voxel size: 1.00 × 1.00 × 1.00 mm, repetition time/echo time = 7.9/4.5 ms), 2D 
FLAIR sequence (axial, 48 slices, voxel size: 0.96 × 0.95 × 3.00 mm, repetition time/
echo time/inversion time = 11000/125/2800 ms) and 2D T2*-weighted sequence (axial, 
48 slices, voxel size: 0.96 × 0.96 × 3.00 mm, repetition time/echo time = 1653/20 ms).
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Supplementary Figure S6.1 | Flowchart. Flowchart demonstrating reasons for exclusion (presence of non-
lacunar infarct or intracerebral hemorrhage) and ineligibility (incomplete scan protocol, inadequate scan 
quality, technical errors when running the semi-automated segmentation pipeline, insuffi  cient quality of 
the brain segmentation).
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Supplementary Figure S6.2 | Bayesian networks in CSF subgroup. Bayesian networks for total brain 
volume (TBV, panel A and B), gray matter volume (GMV, panel C and D) and white matter volume (WMV, 
panel E and F) after stratifying the CSF subgroup in amyloid-negative and amyloid-positive patients. 
Variables that are directly connected to one of the cognitive domains are identifi ed as direct determinants. 
Percentages indicate the confi dence level of the arcs towards brain volumes determined by 100 bootstrap 
replications. CMB, presence of cerebral microbleeds; WMH, moderate/severe WMHs (Fazekas score 2 or 3).
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Supplementary Table S6.1 | Baseline characteristics of the total study population

Total CSF
N = 488

Amyloid-
negative
N = 227

Amyloid-
positive
N = 261

Demographics
Age, years 67 ± 8 65 ± 8 68 ± 7†

Gender, female 226 (46) 96 (42) 130 (50)
Level of education, Verhage scale35 5 [4–6] 5 [4–6] 5 [4–6]

Vascular risk factors
Hypertension 397 (81) 182 (80) 215 (82)
Hypercholesterolemia 190 (39) 90 (40) 100 (38)
Diabetes Mellitus 74 (15) 40 (18) 34 (13)
Current smoker 95 (20) 51 (23) 44 (17)
Obesity, Body Mass Index ≥ 30 90 (19) 56 (25) 34 (13)*

History of reported vascular events other than stroke 39 (8) 22 (10) 17 (7)
Number of vascular risk factors 2 [1–3] 2 [1–3] 2 [1–2]

Clinical diagnosis
No objective cognitive impairment 118 (24) 95 (42) 23 (9)†

Mild cognitive impairment 112 (23) 52 (23) 60 (23)
Dementia 258 (53) 80 (35) 178 (68)†

Vascular 13 (3) 6 (3) 7 (3)
Neurodegenerative

Alzheimer’s disease 173 (36) 24 (11) 149 (57)
Frontotemporal disease 19 (4) 17 (8) 2 (1)
Lewy body dementia 13 (3) 6 (3) 7 (3)
Others# 23 (5) 17 (8) 6 (2)

Unknown etiology¥ 17 (4) 10 (4) 7 (3)

Data are presented as mean ± standard deviation, number of patients (percentage of total study 
population) or median [interquartile range]. # Such as Primary Progressive Aphasia, Cortical Basal Syndrome 
and Progressive Supranuclear Palsy. ¥ Dementia of unknown origin, further examination needed to state 
diagnosis. * p < 0.05; † p < 0.0001.
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Supplementary Table S6.2 | Relationship between CSF amyloid biomarker status and brain volumes 

stratifi ed for WMH burden (high or low) and stratifi ed for presence/absence lacunes

Total brain volume Gray matter volume White matter volume

CSF subgroup (n = 488)
Amyloid + vs Amyloid - -0.19 [-0.27;-0.11]† -0.26 [-0.33;-0.18]† -0.01 [-0.09;0.08]

High WMH burden (n = 235)
Amyloid + vs Amyloid - -0.14 [-0.26;-0.03]* -0.18 [-0.29;-0.07]* -0.03 [-0.14;0.09]

Low WMH burden (n = 253)
Amyloid + vs Amyloid - -0.23 [-0.35;-0.12]† -0.31 [-0.42;-0.21]† 0.01 [-0.11;0.13]

Presence of lacunes (n = 84)
Amyloid + vs Amyloid - -0.07 [-0.26;0.12] -0.12 [-0.30;0.05] 0.02 [-0.19;0.22]

Absence of lacunes (n = 404)
Amyloid + vs Amyloid - -0.22 [-0.31;-0.13]† -0.28 [-0.36;-0.20]† -0.02 [-0.11;0.07]

This table shows the relation between CSF amyloid biomarker status (amyloid-positive or amyloid-negative) 
and brain volumes. In the fi rst row, the relation in the CSF subgroup is shown, presented as standardized 
beta coeffi  cients with 95% confi dence intervals after correction for age, gender and scanner eff ect. Next, 
analyses are stratifi ed for WMH burden (high or low). Finally, analyses are stratifi ed for presence or absence 
of lacunes. All brain volumes were corrected for variations in head size using the total intracranial volume. 
* p < 0.05; † p < 0.001.



Amyloid modifies relation between SVD lesion type and atrophy

147

Ch
ap

te
r 6

Supplementary Table S6.3 | Regional gray matter volume analysis in entire study population (n = 725)

Left Right

Frontal
Middle frontal gyrus -0.28* -0.31*

Precentral gyrus -0.23 -0.27*

Rectal gyrus -0.31* -0.36*

Orbitofrontal gyrus -0.30* -0.33*

Inferior frontal gyrus -0.33* -0.33*

Superior frontal gyrus -0.15 -0.13

Parietal
Inferior lateral parietal lobe -0.08 0.03
Postcentral gyrus -0.26* -0.20
Superior parietal gyrus 0.19 0.18

Temporal
Hippocampus -0.19 -0.23
Amygdala -0.09 -0.15
Anterior medial temporal lobe -0.15 -0.19
Anterior lateral temporal lobe -0.21 -0.20
Ambient and parahippocampus gyri -0.16 -0.22
Superior temporal gyrus -0.39* -0.32*

Inferior middle temporal gyrus -0.21 -0.29*

Fusiform gyrus -0.24 -0.21
Posterior temporal lobe -0.17 -0.10

Insula and cingulate gyri
Insula -0.05 -0.12
Anterior cingulate gyrus -0.21 -0.27*

Posterior cingulate gyrus -0.29* -0.36*

Occipital
Lateral occipital lobe -0.07 -0.07
Lingual gyrus -0.21 -0.06
Precuneus -0.12 -0.01

Central structures
Caudate nucleus -0.06 -0.07
Accumbent nucleus -0.09 -0.11
Putamen 0.03 0.04
Thalamus -0.46* -0.50*

Pallidum 0.06 0.06

Infratentorial
Cerebellum -0.19 -0.18

Data are presented as standardized z-scores (Δz-score) between patients with high WMH burden and low 
WMH burden, after correction for age, gender and scanner eff ect. * Bonferroni-corrected p-value < 0.05. 
Note: ventricular, corpus callosum and brainstem ROIs were not compared since this analysis focused on 
gray matter regions.
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Supplementary Table S6.4 | Regional gray matter volume analysis, stratifi ed for CSF biomarker amyloid 

status

Amyloid-negative Amyloid-positive

Left Right Left Right

Frontal
Middle frontal gyrus -0.43 -0.47* -0.07 -0.10
Precentral gyrus -0.41 -0.49* -0.16 -0.09
Rectal gyrus -0.31 -0.33 -0.27 -0.28
Orbitofrontal gyrus -0.34 -0.36 -0.21 -0.21
Inferior frontal gyrus -0.35 -0.31 -0.13 -0.18
Superior frontal gyrus -0.32 -0.20 0.02 0.11

Parietal
Inferior lateral parietal lobe 0.07 0.13 0.01 0.19
Postcentral gyrus -0.37 -0.24 -0.11 -0.13
Superior parietal gyrus 0.19 0.25 0.33 0.30

Temporal
Hippocampus -0.14 -0.11 -0.23 -0.25
Amygdala -0.01 -0.04 -0.06 -0.10
Anterior medial temporal lobe -0.07 -0.12 -0.09 -0.10
Anterior lateral temporal lobe -0.13 0.01 -0.18 -0.14
Ambient and parahippocampus gyri -0.08 -0.17 -0.13 -0.13
Superior temporal gyrus -0.13 -0.03 -0.46* -0.35
Inferior middle temporal gyrus -0.08 -0.16 -0.16 -0.20
Fusiform gyrus -0.14 -0.13 -0.22 -0.12
Posterior temporal lobe -0.03 0.10 -0.09 -0.04

Insula and cingulate gyri
Insula 0.17 0.09 -0.09 -0.15
Anterior cingulate gyrus -0.12 -0.19 -0.11 -0.21
Posterior cingulate gyrus -0.32 -0.32 -0.12 -0.25

Occipital
Lateral occipital lobe 0.04 0.04 -0.02 0.01
Lingual gyrus -0.26 -0.12 -0.19 0.01
Precuneus -0.15 -0.06 -0.19 0.05

Central structures
Caudate nucleus 0.15 0.14 -0.06 -0.13
Accumbent nucleus -0.09 -0.14 0.003 -0.04
Putamen 0.22 0.24 0.06 0.04
Thalamus -0.50* -0.49* -0.22 -0.31
Pallidum 0.11 0.14 0.18 0.11

Infratentorial
Cerebellum -0.06 -0.09 -0.14 -0.12

Data are presented as standardized z-scores (Δz-score) between patients with high WMH burden and low 
WMH burden, after correction for age, gender and scanner eff ect. * Bonferroni-corrected p-value < 0.05. 
Note: ventricular, corpus callosum and brainstem ROIs were not compared since this analysis focused on 
gray matter regions.
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ABSTRACT 

To determine whether the pattern of impaired white matter (WM) connectivity differs 
between patients with primarily Alzheimer’s disease (AD) pathology and patients with 
primarily cerebral small vessel disease (SVD) pathology.

We included 38 cognitively healthy controls and 39 memory clinic patients who were 
either amyloid beta (Aβ)+/SVD- (n = 20) or Aβ-/SVD+ (n = 19), based on CSF or PET 
biomarker status and the presence of SVD on MRI. WM networks were reconstructed 
from diffusion MRI data and consisted of 90 (sub)cortical nodes. The fractional anisotropy 
(FA)- and mean diffusivity (MD)-weighted connectivity strength of each network node was 
compared between groups, as well as the FA and MD of long versus short WM connections 
and connections between hub nodes versus other WM connections. 

Aβ-/SVD+ but not Aβ+/SVD- patients had impaired FA-weighted WM connectivity 
compared to controls (false-discovery rate corrected p < 0.05). MD-weighted WM 
connectivity was globally impaired in both patient groups, with Aβ+/SVD- patients showing 
the largest effect sizes (β ≥ 0.40) in medial and parietal-occipital nodes and Aβ-/SVD+ 
patients in frontal nodes. In both patient groups, long WM connections were more severely 
affected than short WM connections and WM connections between hub nodes more 
severely affected than all other connections (group x tract interaction terms all p < 0.07).

The manifestation and spatial pattern of impairments in WM connectivity differ between 
patients with primarily AD pathology and SVD pathology. This suggests that these 
pathologies affect the WM network through partly different mechanisms.



Pattern of impaired WM connectivity in AD versus SVD

153

Ch
ap

te
r 7

INTRODUCTION

Impaired white matter (WM) connectivity is a frequent observation in patients with 
Alzheimer’s disease (AD)1–4 and cerebral small vessel disease (SVD).5–8 Impairments in 
WM connectivity can be detected with diffusion tensor imaging (DTI) and quantified 
by using network theory analysis.9 Studies in patient cohorts have shown that diffusion 
abnormalities in the WM network relate to cognitive impairment and can predict 
conversion to dementia.10–12

The pathological processes leading to impaired WM connectivity in AD and SVD have not 
been fully elucidated. Several mechanisms have been suggested in AD, such as Wallerian 
degeneration,13 damage to oligodendrocytes14 and cerebral hypoperfusion.15 In SVD, vascular 
brain lesions can be seen on MRI, such as white matter hyperintensities (WMHs), lacunes 
and cerebral microbleeds.16 These lesions are pathologically heterogeneous17 and occur within 
the WM, where they have (peri)lesional as well as remote effects on WM connectivity.18

Because AD and SVD pathology often co-occur in the same patient,19 it is difficult to 
determine whether both processes independently affect the WM, or via common pathways. 
Previous studies on WM connectivity in patients with AD/SVD have often included patients 
using clinical diagnoses20,21 rather than biomarker evidence of specific pathologies,22 or 
heterogeneous samples without excluding the presence of AD or SVD pathology. In this 
study, we increased the homogeneity of the study sample by investigating selected patient 
groups with either AD or SVD pathology. Hereby we aimed to identify WM network 
regions that are specifically vulnerable to AD or SVD. 

MATERIALS AND METHODS

Study population

Patients were included from the memory clinic at the University Medical Center Utrecht, 
the Netherlands, between November 2009 and April 2017 as part of the Parelsnoer Institute 
(PSI) Neurodegenerative diseases cohort study.23 All patients underwent a standardized one-
day evaluation including an interview, physical and neurological examination, laboratory 
testing, neuropsychological assessment and a brain MRI scan. Information regarding 
educational level and vascular risk factors (hypertension, hypercholesterolemia, diabetes 
mellitus, current smoking, obesity and clinically manifest non-cerebral atherosclerotic 
disease) was collected. Lumbar puncture was optional for participants in this study. Amyloid 
positron emission tomography (PET) scans were obtained from patients recruited from 
December 2015 as part of a sub-study.24
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For the current study, patients were eligible to be included if amyloid beta (Aβ) CSF and/
or PET data and an adequate diffusion-weighted imaging (DWI) sequence were available. 
This was the case for 65 of 229 (28%) patients, in which CSF data was available in 41 of 
65 (63%) patients and PET data in 27 (42%) patients. All 65 patients were rated for Aβ 
positivity/negativity using CSF or PET as well as SVD positivity/negativity using brain 
MRI. Patients were considered as having either: 1) positive CSF and/or PET Aβ status and 
minimal or absent cerebral SVD on MRI (Aβ+/SVD-) or 2) negative CSF and/or PET Aβ 
status and evidence of cerebral SVD on MRI (Aβ-/SVD+). Cut-off values for CSF Aβ are 
detailed in section 2.2. Criteria for SVD presence and severity are detailed in section 2.4. 
Twenty-one patients met the criteria for Aβ+/SVD- and twenty patients met the criteria 
for Aβ-/SVD+. Two patients were excluded due to inadequate 3D T1 images (n = 1) or 
registration issues (n = 1), leaving 39 patients for the current study (Aβ+/SVD-: n = 20; 
Aβ-/SVD+: n = 19).

In addition, non-demented elderly participants were selected from the Utrecht Diabetic 
Encephalopathy Study 2 (UDES2) to serve as a control group.25 To this end, all participants 
from the control sample of the UDES2 study were eligible, combined with a random 
sample of participants with type 2 diabetes to obtain a non-demented reference group 
with a proportion of diabetes (13%) compatible with the diabetes prevalence in the Dutch 
population for this age group.26 Participants for the UDES2 study were recruited through 
their general practitioners in Utrecht and surrounding areas and underwent a comparable 
one-day evaluation as the patients, including a brain MRI scan with the same scan protocol 
on the same MR scanner as the patient sample. All participants were cognitively healthy, i.e. 
no history of cognitive impairment and a Mini-Mental State Examination (MMSE) score 
≥ 27. No CSF and/or PET data was available for any of the controls. Fifty-two participants 
met the inclusion criteria. DWI- or T1-weighted MR images of two individuals contained 
movement artefacts and could not be used. Participants with moderate/severe WMHs 
(Fazekas scale ≥ 1) and/or multiple lacunes were excluded (n = 10). The two youngest 
controls were also excluded in order to obtain a comparable age distribution as the patient 
groups, leaving 38 participants for the current analyses.

The study was approved by the institutional review boards of the University Medical Center 
Utrecht (approval number 09-211/C). All procedures were in accordance with the ethical 
standards of the responsible committee on human experimentation (institutional and 
national) and with the Helsinki Declaration of 1975, as revised in 2013. All participants 
provided written informed consent prior to any research related procedures.
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Amyloid biomarkers

CSF concentrations of Aβ42 were measured at a central laboratory for clinics at the 
Department of Clinical Chemistry of the Amsterdam University Medical Center in a subset 
of patients using commercially available ELISAs (Innotest β-amyloid(1–42); Innogenetics, 
Ghent, Belgium).23 For the present study, a cut-off value for Aβ42 < 640 ng/L was used to 
define Aβ positivity, based on a previous study.27

Amyloid PET/CT scans were acquired using a Siemens BiographTM 40 mCT scanner 
(Siemens Healthcare, Erlangen, Germany). Patients were injected with a tracer dose of 
approximately 300 MBq ± 20% 18F-florbetaben (NeuraceqTM). The image acquisition 
window extends from 90 to 110 minutes (4 × 5-minute frames) after dose injection. PET 
scans were visually assessed by an experienced nuclear physician for Aβ positivity (yes/no).24

Image acquisition

MRI data were acquired on a Philips 3.0 tesla Achieva scanner (Philips, Best, the 
Netherlands) with a standardized protocol that consisted of a 3D T1-weighted sequence 
(192 slices, voxel size: 1.00 × 1.00 × 1.00 mm, repetition time (TR)/echo time (TE): 7.9/4.5 
ms); a 2D T2-weighted sequence (48 slices, voxel size: 0.96 × 0.96 × 3.00 mm, TR/TE: 
3198/140 ms), a 2D T2*-weighted scan (48 slices, voxel size: 0.99 × 0.99 × 3.00 mm, TR/
TE: 1653/20 ms); a 2D fluid-attenuated inversion recovery (FLAIR) scan (48 slices, voxel 
size 0.96 × 0.95 × 3.00 mm, TR/TE/inversion time: 11000/125/2800 ms) and a diffusion-
weighted sequence (48 slices, voxel size: 2.50 × 2.50 × 2.50 mm, TR/TE: 6600/73 ms, 45 
gradient directions with a b-value of 1200 s/mm2 and one with a b value of 0 s/mm2 (number 
of signal averages = 3)). Of note, one patient was scanned on a Philips 3.0 tesla Ingenia 
scanner (Philips, Best, the Netherlands) using the same scan protocol as described above.

SVD MRI markers and brain volumes

Presence of WMHs (using the Fazekas scale),28 lacunes and cerebral microbleeds was rated 
on FLAIR and T2* weighted images by or under supervision of a neuroradiologist using 
the STRIVE criteria.16 Cerebral SVD on MRI was defined as presence of WMHs (Fazekas 
scale of ≥1) or lacune(s)/cerebral microbleed(s). Since there were very few cases with no 
cerebral SVD on MRI, we also included patients with minimal cerebral SVD on MRI in 
the SVD- group. Minimal SVD on MRI was defined as mild WMHs (Fazekas scale of 1) 
and no or a single lacune/cerebral microbleed. A previously described semi-automated 
workflow (including lesion filling) was performed with Statistical Parametric Mapping 
12 software (SPM Wellcome Department of Cognitive Neurology, Institute of Neurology, 
Queen Square London) to obtain total brain volume and total intracranial volume.29
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Diff usion MRI processing and tractography

Diffusion tensor imaging (DTI) scans were analyzed and processed using ExploreDTI 
version 4.8.6 (www.exploredti.com). Preprocessing included subject motion, eddy current 
and echo-planar imaging distortion correction and a robust tensor estimation using the 
REKINDLE approach (including adjustment of the B-matrix).30 For each patient, whole-
brain WM tractography was performed using constrained spherical deconvolution 
(CSD)-based deterministic fiber tractography.31 This method allows fiber tracking to 
proceed through crossing fiber regions. Reconstruction of fiber tracts was performed by 
using uniformly distributed seed samples throughout the brain’s WM at a 2 mm isotropic 
resolution. Fiber tracts were terminated when they deflected in an angle of > 45º or if 
they entered a voxel with a fiber orientation distribution threshold of < 0.1. Tract length 
thresholds were set between 50 and 500 mm.

Network reconstruction

3D T1 weighted images were segmented using the Computational Anatomy Toolbox 
(CAT12, version r864, http://www.neuro.uni-jena.de/cat/) for Statistical Parametric 
Mapping 12 (SPM Wellcome Department of Cognitive Neurology, Institute of Neurology, 
Queen Square London)). The brain was automatically parcellated in 90 cortical and 
subcortical grey matter regions defined using the automated anatomic labeling (AAL) 
template.32 Each region represented a node in the brain network. Two regions were 
considered to be connected if the end points of the reconstructed fiber bundle lay within 
both regions, resulting in a 90 × 90 binary connectivity matrix. A weighted connectivity 
matrix was then obtained for patients and controls by multiplying each edge by the mean 
fractional anisotropy (FA) or mean diffusivity (MD) of that edge, resulting in two weighted 
connectivity matrices for each patient. A FA threshold of > 0.2 was used on all connectivity 
matrices to minimize errors due to partial volume effects.

WM connectivity

The Brain Connectivity Toolbox (www.brain-connectivity-toolbox.net) was used to 
calculate all network characteristics. To ensure that the number of connections within 
the network was equal between groups, we calculated the density of the network (defined 
as the ratio between the number of edges present and the total number of possible edges 
in a network).

The primary analyses were performed on measures of regional WM connectivity. This 
included the FA- and MD-weighted connectivity strength per node (here defined as the mean 
FA or MD of all WM fibers connected to that node). In addition, we examined the mean 
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FA and MD of two types of WM connections that have been suggested to be particularly 
vulnerable to AD and/or SVD pathology due to a relatively high metabolic demand:4,33,34 
1) ‘relatively long WM connections’ and 2) ‘WM connections between hub nodes’. Relatively 
long WM connections were defined as the 50% connections with the longest tract length 
of all network connections within the study sample (range tract length: 50–250 mm; 
median: 107.5 mm). Short WM connections were defined as the 50% connections with the 
shortest tract length. Network hubs were identified by selecting the top 10 nodes with the 
highest betweenness centrality of all networks from the control sample.35 The betweenness 
centrality is the fraction of shortest paths passing through a given node.36 Thus, nodes with 
a high betweenness centrality are crucial for network integration and are therefore often 
considered to be network ‘hubs’.

Statistical analysis

Statistical analysis was performed in IBM SPSS statistics (version 25). A p-value of < 0.05 
was considered significant. Normality of continuous variables was checked. 

First we determined the pattern of impaired regional WM connectivity in each patient 
group compared to the control group. FA- and MD-weighted mean connectivity strength 
per node was compared between each patient group and controls using linear regression 
analysis, adjusted for age and gender. P-values of nodal comparisons were adjusted for 
multiple testing using false discovery rate (FDR) correction.37 We also determined whether 
certain types of WM connections were more severely affected by comparing the mean FA 
and MD of relatively long versus short connections and connections between hub nodes 
versus other connections between each patient group and controls. We used repeated 
measures ANOVA with group as between-subject factor and type of WM connection 
(relatively long or short; hub or other) as within-subject factor, adjusted for age and 
gender). Possible interactions between group x tract length (short or long) and group x 
connections between hubs (yes or no) were also tested to evaluate whether these type of 
WM connections are particularly affected in AD and/or SVD. 

Finally, we repeated the above-mentioned analyses, but now comparing both patient 
groups with each other.

Data availability statement

The data that support the findings of this study are available from the final author, upon 
reasonable request.
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RESULTS

Study sample characteristics

The characteristics for patient groups and controls are shown in Table 7.1. For both Aβ+/
SVD- and Aβ-/SVD+ patients MMSE scores were significantly lower than controls (p < 0.05, 
adjusted for age, gender and level of education), but MMSE scores did not differ between 
the two patient groups (p = 0.47, adjusted for age, gender and level of education). Both 
patient groups also showed significantly smaller total brain volume compared to controls 
(p < 0.05, adjusted for age and gender) but brain volumes did not differ between Aβ+/
SVD- and Aβ-/SVD+ patients (p = 0.56, adjusted for age and gender).

Table 7.1 | Baseline characteristics of the study population

Aβ+/SVD- 
(n = 20)

Aβ-/SVD+ 
(n = 19)

Controls 
(n = 38)

Demographics
Age, years 70 ± 7 74 ± 8 72 ± 5
Gender, female 10 (50) 6 (32) 16 (42)
Education Level, Verhage scale50 5 [4–6] 5 [4–6] 4 [3–5]
MMSE score 27 [24–28] 27 [24–29] 29 [27–30]

Clinical diagnosis
Subjective cognitive complaints 3 (15) 1 (5) a

Mild cognitive impairment 13 (65) 11 (58) a

Dementia 4 (20) 7 (37) a

MRI markers
WMH, Fazekas score

0 3 (15) 0 19 (50)
1 17 (85) 14 (74) 19 (50)
2 b 4 (21) b

3 b 1 (5) b

Lacunes 1 (5) 6 (32) 7 (18)
Cerebral microbleeds 2 (11) 3 (16) 2 (5)

Brain volumes
Total brain volume, fraction of TIV 0.68 ± 0.03 0.68 ± 0.03 0.71 ± 0.03

Aβ, amyloid-beta; SVD, cerebral small vessel disease; WMH, white matter hyperintensities; TIV, total 
intracranial volume. Presented are baseline characteristics for patients with primarily Alzheimer’s Disease 
pathology (Aβ+/SVD-), patients with primarily cerebral small vessel disease pathology (Aβ-/SVD+), and 
controls. Data are presented as mean ± SD, numbers (percentages) or median [interquartile range]. 
a Controls were cognitively healthy (i.e. no history of cognitive impairment, and a Mini-Mental State 
Examination (MMSE) score ≥ 27). 
b Aβ+/SVD- patients and controls with a Fazekas score > 1 were excluded.



Pattern of impaired WM connectivity in AD versus SVD

159

Ch
ap

te
r 7

Brain network characteristics

Network density did not differ between any of the groups (mean (SD) controls: 0.28 (0.03); 
Aβ+/SVD-: 0.29 (0.04); Aβ-/SVD+: 0.28 (0.04), all p > 0.05). The top ten nodes with the 
highest betweenness centrality in the control group classified as hub nodes were: the left 
and right precuneus, left and right superior parietal gyrus, left and right middle temporal 
pole, left superior temporal gyrus, right superior frontal gyrus, left and right middle 
superior frontal gyrus.

Pattern of impaired WM connectivity in patients versus controls

In Aβ+/SVD- patients, no significant differences in FA-weighted WM connectivity were 
found compared to controls (FDR-corrected p > 0.05; Figure 7.1). By contrast, in Aβ-/
SVD+ patients, FA-weighted WM connectivity of frontal, parietal and occipital nodes was 
lower than in controls (FDR-corrected p < 0.05; Figure 7.1). In both Aβ+/SVD- and Aβ-/
SVD+ patients, MD-weighted WM connectivity of widely distributed nodes was increased 
compared to controls (FDR-corrected p < 0.05; Figure 7.2), indicating global impairments 
in WM connectivity. The severity of impairments, however, showed a slightly different 
pattern in both patient groups: for Aβ+/SVD- patients, largest effect sizes (standardized 

Figure 7.1 | Pattern of impaired regional FA-weighted white matter connectivity. AD, Alzheimer’s disease; 
SVD, cerebral small vessel disease; FA, fractional anisotropy. Presented are reductions in FA-weighted nodal 
strength between patients with primarily AD (Aβ+/SVD-) vs. controls (A-C) and patients with primarily SVD 
(Aβ-/SVD+) vs. controls (D-F). The size and color of the nodes are scaled according to the standardized 
beta-coeffi  cients (β, adjusted for age and gender). Only nodes with a false discovery rate (FDR)-corrected 
p-value < 0.05 are color coded. For AD vs. Controls, none of the eff ect sizes remained signifi cant after FDR 
correction.
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beta coefficient [β] ≥ 0.40, adjusted for age and gender) were seen in nodes with WM 
connections projecting towards medial and parietal-occipital regions, whereas in Aβ-/
SVD+ patients, largest effect sizes were seen in WM connections projecting towards 
frontal regions. 

Relatively long WM connections were more severely affected than short connections. This 
was reflected by a greater decrease in FA of long versus short connections in Aβ-/SVD+ 
patients compared to controls (tract length x group interaction term: p < 0.05) and a trend 
towards a greater decrease in FA in Aβ+/SVD- patients (interaction term: p = 0.07; Table 
7.2, Figure 7.3). When the MD of long and short WM connections was examined, no 
interaction effect was found: in both patient groups, the MD of both long and short WM 
connections was affected relative to controls (all p < 0.05; Table 7.2). In both Aβ+/SVD- and 
Aβ-/SVD+ patients, WM connections between hub nodes were more severely affected than 
other connections, reflected by a greater decrease in FA compared to controls (interaction 
term: p < 0.05; Table 7.2, Figure 7.3). Also, the MD of connections between hub nodes 
showed a greater increase compared to controls than the MD of other WM connections 
(interaction term Aβ-/SVD+: p < 0.05; for Aβ+/SVD-: p = 0.09; Table 7.2, Figure 7.3).

Figure 7.2 | Pattern of impaired regional MD-weighted white matter connectivity. AD, Alzheimer’s 
disease; SVD, cerebral small vessel disease; FA, fractional anisotropy. Presented are increases in MD-
weighted nodal strength between patients with primarily AD (Aβ+/SVD-) vs. controls (A-C) and patients 
with primarily SVD (Aβ-/SVD+) vs. controls (D-F). The size and color of the nodes are scaled according to 
the standardized beta-coeffi  cients (β, adjusted for age and gender). Only nodes with a false discovery rate 
(FDR)-corrected p-value < 0.05 are color coded.
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Table 7.2 | White matter connectivity of diff erent types of network connections in patients with primarily 

AD (Aβ+/SVD-) or SVD (Aβ-/SVD+) pathology and controls

AD SVD Controls

FA
Long connections 0.337 (0.013)  0.323 (0.017)a,c 0.341 (0.015)
Short connections 0.284 (0.008)   0.275 (0.011)a,b,c 0.284 (0.010)

MDd

Long connections  0.949 (0.044)a 0.964 (0.058)a 0.915 (0.034)
Short connections  0.935 (0.035)a 0.952 (0.056)a 0.908 (0.031)

FA
Connections between hub nodes  0.320 (0.018)a,c   0.308 (0.024)a,c 0.333 (0.023)
Other connections 0.311 (0.010)c   0.300 (0.012)a,b,c 0.312 (0.012)

MDd

Connections between hub nodes  0.937 (0.049)a   0.963 (0.074)a,c 0.891 (0.044)
Other connections  0.972 (0.046)a  0.988 (0.065)a,c 0.935 (0.037)

AD, Alzheimer’s disease; SVD, cerebral small vessel disease; Aβ, amyloid-beta; FA, fractional anisotropy; 
MD, mean diff usivity. Presented are mean (SD) FA or MD of relatively long and short connections and 
connections between hub nodes and other connections are shown. a p < 0.05 vs. controls (corrected for 
age and gender). b p < 0.05 vs patients with primarily AD (corrected for age and gender). c p < 0.05 for 
interaction term (group x type of WM connection). d MD values ×10-3 mm2/s.

Figure 7.3 | Impairments in long-range and connections between hub nodes. AD, Alzheimer’s disease; 
SVD, cerebral small vessel disease; FA, fractional anisotropy; MD, mean diff usivity. Presented are mean 
diff erences ± SEM in FA (A, B) and MD (C, D) of relatively short and long connections (A, C) and of connections 
between hub nodes and other connections (B, D) for patients with primarily AD (Aβ+/SVD-) vs. controls 
and patients with primarily SVD (Aβ-/SVD+) vs. controls. Group x tract interaction: * p < 0.05; ** p < 0.001 
(adjusted for age and gender).
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Figure 7.4 | Impaired regional white matter connectivity in patients with primarily SVD versus patients 

with primarily AD. AD, Alzheimer’s disease; SVD, cerebral small vessel disease; FA, fractional anisotropy; 
MD, mean diff usivity. Presented are reductions in FA-weighted (A-C) and increases in MD-weighted (D-F) 
nodal strength in patients with primarily SVD (Aβ-/SVD+) vs. patients with primarily AD (Aβ+/SVD-). The size 
and the color of the nodes are scaled according to the standardized beta-coeffi  cient [β] after correction for 
age and gender. Only nodes with β > 0.15 are shown in color. None of the eff ect sizes remained signifi cant 
after FDR correction. 

Figure 7.5 | Impaired regional white matter connectivity in patients with primarily AD versus patients 

with primarily SVD. AD, Alzheimer’s disease; SVD, cerebral small vessel disease; FA, fractional anisotropy; 
MD, mean diff usivity. Presented are reductions in FA (A-C) and increases in MD (D-F)-weighted nodal 
strength between patients with primarily AD (Aβ+/SVD-) vs. patients with primarily SVD (Aβ-/SVD+). The 
size and the color of the nodes are scaled according to the standardized beta-coeffi  cient [β] after correction 
for age and gender. Only nodes with β > 0.15 are shown in color. None of the eff ect sizes remained 
signifi cant after FDR correction.
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Direct comparison of WM connectivity between AD and SVD-related pathology

Compared to Aβ+/SVD- patients, Aβ-/SVD+ patients showed greater impairments in 
FA-weighted WM connectivity across the whole brain, and greater frontal impairments 
in MD-weighted WM connectivity (Figure 7.4; although none of the differences in 
connectivity between patient groups survived FDR correction). On the other hand, Aβ+/
SVD- patients showed greater impairments in limbic and striatal MD-weighted WM 
connectivity compared to Aβ-/SVD+ patients (Figure 7.5; although none of the differences 
in connectivity between patient groups survived FDR correction). Regarding different 
types of WM connections, there were no significant interaction effects between patient 
group and type of WM connection (Table 7.2).

DISCUSSION

The present study demonstrates that both AD and SVD are associated with widespread 
impairments in WM connectivity, but differences exist in the manifestation and spatial 
distribution of the diffusion abnormalities across the WM network. Patients with primarily 
SVD pathology (Aβ-/SVD+) but not patients with primarily AD pathology (Aβ+/SVD-) 
had impaired FA-weighted WM connectivity compared to controls. Both patient groups 
had impaired MD-weighted WM connectivity, with largest impairments seen for Aβ+/
SVD- patients in parietal-occipital regions and for Aβ-/SVD+ patients in frontal regions. 
In both patient groups, relatively long WM connections were more severely affected than 
short WM connections, and WM connections between hub nodes were more severely 
affected than all other WM connections.

This study extends current knowledge from previous studies regarding impairments in 
WM connectivity in patients with AD and SVD in a memory clinic setting by investigating 
highly selected patient samples. Where previous studies often included patients using 
clinical diagnoses (rather than biomarker evidence of specific pathologies22) or investigated 
heterogeneous samples without excluding the presence of AD or SVD pathology, our 
approach was to strive for homogeneity of the study sample by investigating patients 
with either biomarker-confirmed AD or SVD pathology. While it can be argued that 
this selection procedure might lead to less generalizable results, we should emphasize 
that our specific intention was to give more insight in the underlying pathophysiological 
mechanisms of each pathology. We found widespread impairments in WM connectivity in 
both patient groups, which is in line with previous studies.1,3,5–7 However, we also found a 
difference in the spatial pattern of impaired WM connectivity between both patient groups. 
Aβ-/SVD+ patients showed greater impairments in FA-weighted WM connectivity across 
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the whole brain, and greater frontal impairments in MD-weighted WM connectivity than 
Aβ+/SVD- patients. Although none of the differences survived correction for multiple 
testing, the effect sizes showed the same magnitude and direction as those seen in the 
comparison to cognitive healthy controls. This could suggest a lack of power to detect 
significant differences when comparing both patient groups with each other. All in all, 
our results suggest that both pathologies affect the WM network through partly different 
mechanisms (e.g. ischemia, hypoperfusion, inflammation, amyloid-induced toxicity), 
possibly with a different initial target (e.g. Aβ deposition in association cortices in AD38 
compared to chronic ischemia of the deep WM in SVD39) and/or a different propagation 
throughout the brain. Another explanation could be overlapping mechanisms (e.g. blood 
brain-barrier dysfunction18,40) but with a different regional distribution. For instance, 
regional differences in blood brain-barrier dysfunction have been shown for various 
neurodegenerative pathologies.40 Since the present study could not infer causality, future 
longitudinal studies are needed to further identify the underlying mechanisms of WM 
impairments in patients with AD and SVD. 

We also found that relatively long WM connections were more severely affected than short 
WM connections and WM connections between hub nodes were more severely affected 
than all other WM connections in both patient groups. This is in line with previous 
studies.1,4,10,33,34,41 Why these types of connections are predominantly affected is not clear and 
various theories have been suggested. For instance, the vulnerability of connections between 
hub nodes could be due a relatively higher metabolic demand resulting from a longer fiber 
length and/or a high level of activity, making hub nodes more vulnerable to changes in 
metabolic processes and/or cerebral perfusion. For SVD the vulnerability of connections 
between hub regions might also be explained in part by the location of SVD lesions in the 
brain, which often overlaps with the location of hub nodes.10 In turn, the occurrence of 
SVD lesions might depend on vulnerability of certain brain regions to specific pathological 
processes such as ischemia or cerebral hypoperfusion.42 In AD an overlap exists between hub 
nodes and regions with higher Aβ deposition.43 Several hypotheses have been postulated 
to explain this overlap: firstly, high metabolism in hub nodes could lead to deposition of 
Aβ and subsequent disconnection of hub nodes (‘Aβ-cascade hypothesis’).44 Secondly, Aβ 
deposition could result from an exhausted compensatory activity of hub nodes in response 
to an initially local network failure (‘cascading network failure theory’).45 Alternatively, 
other factors could drive both Aβ deposition and impairments in WM connectivity. Future 
longitudinal studies might help resolve this issue by clarifying the temporal evolution of 
impairments in WM connectivity by investigating whether WM connections between hub 
nodes are preferentially affected or occur secondary to impairments in other (peripheral) 
WM connections.46 
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We also found differences in the manifestation of the diffusion abnormalities. Reductions 
in anisotropy (i.e. FA) in WM connections were primarily seen in patients with Aβ-/
SVD+ but not Aβ+/SVD- patients, while increased WM diffusion (i.e. MD) was found in 
both patient groups. Interpreting differences in diffusion tensor profiles remains a topic 
of debate.47 Despite the wide use of DTI to investigate impaired WM connectivity, little is 
known about the mechanisms underlying diffusion changes in AD and SVD. A decrease in 
FA and an increase in MD are often thought to result from microstructural WM damage, 
for instance axonal degeneration, a loss of myelin, disruption of the blood-brain barrier or 
other processes. Recent studies have suggested new models and measures that could be more 
sensitive to certain microstructural processes, such as free water imaging48 and diffusion 
kurtosis imaging.49 Integrating these new models in network based analyses could further 
improve our understanding of the mechanisms leading to impaired WM connectivity. 

A strength of the present study is the high quality multi-modal MRI that was collected in 
a well-described population of memory clinic patients, in which we aimed to increase the 
homogeneity of the study sample by investigating selected patient groups with predominant 
AD or SVD-related pathology. Limitations concern the cross-sectional design, which does 
not allow us to infer causality. Also, the sample sizes are rather small, which could have 
led to an underestimation of the effects found. Another issue is the lack of CSF/PET data 
in the control group, therefore the presence of AD pathology could not be ruled out. In 
patients with primarily AD pathology, no definite diagnosis of AD22 could be made due 
to missing data on tau-pathology in 45% of Aβ+/SVD- patients. Finally, the presence of 
SVD could not completely be ruled out in Aβ+/SVD- patients and controls, since absence 
of any marker of SVD on MRI was rare in the study cohort from which we sampled.

CONCLUSION

This study shows that memory clinic patients with primarily SVD pathology have a different 
pattern of impaired WM connectivity than patients with primarily AD pathology. Our 
findings suggest that these pathologies affect the WM network through partly different 
mechanisms. Future longitudinal studies should further identify these mechanisms, which 
is highly relevant since it may ultimately support development of treatment.
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This thesis focuses on changes in the gray and the white matter of the brain that extend 
beyond the visible lesions in patients with cerebral small vessel disease (SVD). As visible 
SVD lesions on conventional structural MRI do not fully capture the burden of SVD-related 
brain injury (representing only the tip of the iceberg), effects of SVD in the brain’s gray and 
white matter beyond these visible lesions have gained increasing attention. In this thesis, 
I used different techniques to look at the effects of SVD beyond the visible lesions in both 
the gray and white matter of the brain in memory clinic patients and how these effects 
relate to different SVD lesion types as well as co-occurring Alzheimer’s disease pathology. 
The main findings of this thesis are summarized in Box 8.1. 

Box 8.1 | Main fi ndings of this thesis 

Chapter 2 and 3: when measuring brain and white matter hyperintensity (WMH) volumes in a multi-
center dataset, performance of automated segmentation methods varies markedly. Yet, techniques 
are available that perform robustly across diff erent datasets.  
Chapter 4: although cortical cerebral microinfarcts (CMIs) cluster in highly interconnected brain 
regions, white matter (WM) connections projecting to these regions do not seem to be disproportion-
ally aff ected in patients with CMIs.
Chapter 5: the cumulative eff ect of multiple SVD lesions is refl ected in WM connectivity and relates 
to cognitive functioning.
Chapter 6: WMHs and lacunes but not cerebral microbleeds relate to brain atrophy and mainly in the 
absence of markers of amyloid-beta (amyloid-β) pathology.
Chapter 7: the occurrence and spatial pattern of impairments in WM connectivity diff er between 
patients with primarily amyloid-β and SVD pathology.

 SVD-related brain changes: what’s in the name and how to measure them?

What exactly does one mean when talking about SVD-related brain changes and in 
particular those that occur beyond the visible SVD lesions? And how should these 
changes be measured? In the present thesis, I used two of the most obvious measures to 
systematically describe the changes that have occurred in the brain’s gray and white matter 
in memory clinic patients and refer to these changes as ‘effects beyond visible SVD lesions’. 
First, I used brain volumes (obtained with structural brain MRI) and compared them with 
the total intracranial volume to estimate (both the pattern and severity of) brain atrophy 
(i.e. a lower brain volume that is not related to a specific macroscopic focal injury such 
as trauma or infarction).1 Second, I used brain network connectivity measures (obtained 
with diffusion based tensor imaging or DTI)2 to look at changes that have occurred in the 
white matter (i.e. white matter connectivity). I used these measures since they are very 
sensitive to SVD-related processes and are more closely related to the functional impact 
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of SVD. Also, they can give more insight in possible underlying disease mechanisms in 
SVD, as will be discussed below. 

In chapter 6 I focused on the severity and pattern of brain atrophy in memory clinic patients 
and we showed that different SVD lesions are differentially related to brain atrophy. In 
particular WMHs and lacunes were related to brain atrophy. WMHs associated atrophy 
was most pronounced in frontal cortical gray matter regions. This suggests a ´distant´ 
effect of WMHs reflecting neurodegeneration through disconnection. 

These findings have two important implications. First, the traditional concept of brain 
atrophy as a marker of neurodegenerative diseases (such as Alzheimer’s disease) should be 
reconsidered, as brain atrophy in memory clinic patients with manifestations of SVD on 
MRI (e.g. WMHs) could also be secondary due to SVD. Second, it stresses the importance 
of including measures of more global effects instead of focusing on the visible lesions when 
investigating SVD-related brain changes.

Challenges in unravelling what causes SVD-related brain changes

Although it is clear that SVD is related to brain atrophy and impaired white matter 
connectivity, the question remains what processes actually underly these changes. It has 
been shown that the pathological changes underlying atrophy are heterogeneous and not 
necessarily indicative of neuronal loss.3-5 Possible mechanisms suggested in SVD include 
secondary degeneration caused by the disruption of white matter fibers projecting towards 
cortical gray matter,6 or direct trophic changes in the cortical gray matter due to cortical 
cerebral microinfarcts.7 Unravelling which mechanisms underlie brain atrophy in SVD 
is difficult, since often co-occurring pathology is present (such as Alzheimer’s disease) 
which can also result in brain atrophy. The findings from chapter 6 suggest that secondary 
degeneration can indeed occur in memory clinic patients with SVD. Future longitudinal 
studies should try to clarify the temporal relation between the visible SVD lesions and 
brain atrophy, in order to confirm that secondary degeneration underlies brain atrophy 
in SVD. 

What exactly underlies impairments in white matter connectivity is also unknown, as 
abnormal measures of FA and MD are assumed to indicate axonal loss and/or demyelina-
tion,8 but have also been related to other forms of tissue injury (e.g. increased extracel-
lular fluid)9 as well as non-disease related variations in tissue structure.10-12 A recent study 
compared histopathologic measures and DTI measures in patients with cerebral amyloid 
angiopathy (CAA), a common form of SVD, with elderly controls.13 This study found that 
the major component underlying CAA-related alterations in DTI measures was overall 
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tissue loss (and in particular axonal loss and demyelination), suggesting that FA and MD 
reflect rather specific underlying microstructural changes in patients with CAA. As such, 
future studies should focus on investigating the underlying histopathology of white matter 
changes (measured with DTI) in memory clinic patients, as this is informative for inferring 
disease specific mechanisms using (longitudinal) DTI.

The interplay between SVD and Alzheimer’s disease

An important challenge regarding SVD-related brain changes is the issue of mixed etiologies. 
It can be difficult to determine whether brain changes are in fact due to SVD or due to 
co-occurring pathology such as Alzheimer’s disease. Most previous studies investigating 
SVD-related brain changes that have reported co-occurring Alzheimer’s disease, used 
clinical criteria14 rather than biomarker evidence of amyloid-β and tau pathologies.15 This 
thesis systematically describes changes in both the gray and white matter of the brain in 
memory clinic patients with both SVD and co-occurring Alzheimer’s disease pathology. 

In chapte r 6, we stratified patients with SVD lesions in those with and without evidence of 
co-occurring amyloid-β pathology in the cerebrospinal fluid. In this way, we could show 
that certain SVD lesions related differentially to brain atrophy, but mainly in the absence 
of co-occurring amyloid-β pathology. Vice versa, the relation between the presence of co-
occurring amyloid-β pathology and brain atrophy was much stronger in patients with a 
low SVD burden. Apparently, both pathological processes contribute to brain atrophy, but 
for each this is most evident in the absence of the other. This could perhaps be explained 
by a ceiling effect of both diseases, possibly linked to disease stage. These results stress the 
importance to measure and correct for the possible confounding effect of co-occurring 
Alzheimer’s disease pathology when investigating SVD-related brain changes. 

The possible confounding effect of co-occurring pathological processes such as Alzheimer’s 
disease can also be tackled by using highly specific patient samples from a relatively 
young age group (i.e. before the manifestation of co-occurring pathology), for instance 
in patients with genetic forms of SVD, such as CADASIL16 (or in the case of Alzheimer’s 
disease, autosomal dominant Alzheimer’s disease).17 Although several of such cohorts 
exist, the majority of patients in clinical care (e.g. memory clinics) have mixed pathologies. 
Furthermore, disease mechanisms causing SVD-related brain changes could differ from 
CADASIL patients, limiting the external validity. In chapter 7, we aimed to increase the 
homogeneity of the memory clinic patient sample by investigating selected patient groups 
with either a biomarker supported diagnosis of Alzheimer’s disease or SVD pathology. We 
showed that the occurrence and spatial pattern of impairments in WM connectivity differ 
between patients with primarily Alzheimer’s disease and SVD pathology, suggesting that 
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these pathologies affect the WM network through partly different mechanisms. Identifying 
these mechanisms in future studies is highly relevant since it may ultimately support 
development of treatment. 

Functional impact of SVD-related brain changes

Nowadays, there is extensive literature regarding the functional impact of SVD-related 
brain changes.18 While in the beginning, focus has been on cognitive decline, it has become 
clear that SVD also effects gait and balance,19 and can lead to apathy,20 depression20,21 and 
extrapyramidal symptoms.22 Part of these manifestations can be explained by strategic 
visible SVD lesions (e.g. a sudden cognitive deficit due to a infarct in the thalamus).23 
The field of voxel-based lesion-symptom mapping (VLSM), that investigates the relation 
between lesion location and symptoms/function, has given great insight into certain 
‘vulnerable’ areas in patients with SVD.24 Also, the functional impact depends on the total 
visible lesion burden (which can be taken together in a total SVD burden score, as was 
done in chapter 5).25 However, there is growing evidence that effects of SVD that occur 
beyond the visible lesions, even though they are more subtle, also account for clinical 
symptoms. For instance, impairments in WM connectivity in the ‘normal appearing white 
matter’ relate to cognitive decline and dementia in patients with SVD, independently 
from visible SVD lesions.26 Brain atrophy also independently relates to clinical status and 
disease progression.27 These relations illustrate that if brain atrophy and impaired WM 
connectivity could be prevented, this could help to slow down the clinical manifestations 
of SVD. Furthermore, the functional impact of SVD-related brain changes underline the 
need to look at SVD as a global rather than a focal brain disease.

Implications for clinical practice

This thesis shows that focal SVD lesions relate to more global changes in the brain’s gray 
and white matter. Furthermore, we show that the relation between SVD lesion load (when 
taking different SVD lesions together) and cognitive functioning in memory clinic patients 
is mediated by impairments in WM connectivity. Although the measures used to capture 
the effects of SVD beyond the visible lesions on conventional MRI are not specific for 
SVD, they are very sensitive to SVD -related processes and provide additional insight in 
the functional impact of SVD. In the near future, they could potentially be used to measure 
disease progression, which would help determine the prognosis of patients with SVD. Also, 
these measures could be beneficial in etiological research as well as be used as an outcome 
in future clinical trials. Unfortunately, the use of these measures in the clinical setting is 
still limited. My perspective on the future use of these measures in a memory clinic is the 
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following: a structural MRI is performed in every patient and includes diffusion tensor 
imaging (DTI). The physician receives a detailed MRI report containing brain volume 
and lesion volume measurements as well as several connectivity measures, compared to 
the mean value and standard deviation of a reference population. In this way, SVD lesion 
load can be evaluated in relation to changes that have occurred in both the gray and 
white matter of the brain. A physician can estimate whether the amount and pattern of 
lesional, but also more global, SVD-related brain changes are likely to explain the clinical 
symptoms sufficiently. Since mixed pathology often occurs in memory clinic patients, a 
panel of biomarkers for various neurodegenerative diseases such as Alzheimer’s disease 
and synucleopathies (e.g. dementia with Lewy bodies) is also determined to evaluate the 
presence of co-occurring pathology. Furthermore, this report is combined with VLSM 
results, showing a patient specific vulnerability map for several clinical symptoms in SVD. 
In this way, physicians are given more tools to help explain patients and their caregivers 
where their clinical symptoms originate and what can be expected in the (near) future. 

Directions for future research

Several challenges remain in unravelling the pathophysiology of SVD and developing 
SVD-specific treatment. Knowing that SVD can have effects beyond visible lesions on 
conventional structural MRI and that these effects can have a considerable functional 
impact, this thesis and recent literature provide leads for future studies.  

First, most studies on SVD-related brain changes have been cross-sectional. Longitudinal 
research is important to elucidate the sequence of events that lead to SVD-related brain 
changes. Up to now, endothelial dysfunction (including blood-brain barrier dysfunction), 
impaired vasoreactivity, increased intracranial vascular pulsatility, (chronic) ischemia, 
demyelination and inflammation are some of the most important mechanisms proposed 
to underlie SVD-related brain changes.28,29 However, the order of these events is yet to be 
determined and should the focus of ongoing research (for an example see the ongoing 
study SVDs@target; https://www.svds-at-target.eu/). 

Second, how SVD-related brain changes behave over time is not yet clear. Recent studies 
have shown that visible SVD lesions might regress, remain stable, expand or develop into 
other lesions.30,31 One of these studies found a difference in lesion progression between 
patients with mild WMHs and patients with severe WMHs, implying a difference in 
etiology of mild versus severe SVD.31 The temporal dynamics of more global effects of 
SVD, how this relates to differences in progression of visible SVD lesions as well as the 
clinical consequences, should be investigated in future longitudinal studies.
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Third, an important knowledge gap that remains and potentially hinders longitudinal and 
especially multicenter studies, is the reproducibility of measurements of SVD-related brain 
changes. A recent review identified several aspects that influence the reproducibility and 
provides recommendations regarding MRI acquisition and data processing.32 Another 
important initiative is the harmonization of MRI methods to study SVD, such as the 
HARNESS initiative.33 Such advancements are highly needed to help implement measures 
of SVD-related brain changes as a biomarker in future clinical trials.

Fourth, when investigating SVD-related brain changes, it is vital to combine visible SVD 
lesions with measurements of more global effects of SVD, instead of focusing on the visible 
lesions alone. This probably requires statistically more complex models that can deal with 
complex interactions (for a recent example see34). Furthermore, co-occurring pathology 
such as Alzheimer’s disease should be measured and taken into account, to ensure that 
changes that occur in the brain are in fact due to SVD. This might also help to further 
unravel the complex interplay between SVD and Alzheimer’s disease. 

Fifth, focus should shift towards a younger study population (i.e. an earlier disease stage). 
Many of the previous studies have been performed in memory clinic patients, stroke clinic 
patients or elderly communities. By studying patients who exhibit manifestations of SVD 
on a young age, possibly representing a certain vulnerability for the effects of SVD, and in 
which other pathology (such as Alzheimer’s disease pathology) has not occurred, changes 
and underlying mechanisms could be studied that are involved in the origin of SVD. An 
example of such a population is a hereditary form of SVD such as CADASIL, in which 
patients can even be studied in a presymptomatic disease stage. Also, less variety in patient 
selection (e.g. solely symptomatic lacunar infarcts) can help to compare results from studies. 

Finally, and most importantly, biomarkers for specific disease mechanisms in SVD are 
needed. There have been some promising developments recently. An example is the 
development of a perfusion-based periventricular small vessel region of interest, marking 
a region with homogeneously reduced cerebral blood flow that is particularly susceptible 
to progressive ischemic injury in elderly subjects.35 

Conclusion

SVD has effects in the brain’s gray and white matter that extend well beyond the visible 
lesions on conventional structural MRI. These effects can better explain the impact of SVD 
on cognition than the visible SVD lesions. Effects beyond the visible SVD lesions seem to 
differ depending on the SVD lesion type, as these effects were shown to relate to WMHs 
and lacunes, but not other manifestations of SVD (suggesting different underlying disease 
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mechanisms). The pattern of SVD-related changes in the white matter seems different as 
compared to what is seen in Alzheimer’s disease, suggesting partially different underlying 
disease mechanisms. This thesis suggests that the effects of SVD and Alzheimer’s disease 
on brain atrophy are additive, which could be explained by a ceiling effect of both diseases, 
possibly linked to disease stage. Measuring and reporting more global effects of SVD 
should become part of clinical care in order to help to explain patients and their caregivers 
the functional impact of SVD. Understanding which mechanisms underly effects of SVD 
beyond the visible lesions should be the focus of future studies, since it is vital to understand 
the pathophysiology of SVD to help develop new treatments.
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SUMMARY 

Cerebral small vessel disease (SVD) is an umbrella term describing heterogeneous 
pathological processes that affect the smallest vessels of the brain, including the perforating 
arterioles, capillaries, and venules. SVD is a major cause of cognitive decline, dementia and 
stroke. Various SVD lesions can be detected using conventional structural brain MRI and 
include white matter hyperintensities (WMHs), lacunes, cerebral microbleeds, recent small 
subcortical infarcts and perivascular spaces. These different lesion types can reflect different 
disease processes affecting different vessels, in different parts of the brain. However, visible 
SVD lesions do not seem to fully capture the total burden of SVD-related brain changes. 
In addition, previous studies have suggested that SVD-related changes occur beyond these 
visible lesions in the brain’s gray and white matter. These ‘effects of SVD beyond the visible 
lesions’ provide a new framework to look at the impact of SVD. These effects can be used 
to better understand the functional impact of SVD than visible SVD lesions alone, as 
they have been shown to relate to cognitive decline and dementia. However, there are still 
some open questions regarding the effects of SVD beyond the visible lesions. For instance, 
are these effects similar for different types and manifestations of SVD? Do these effects 
also occur in patients with cortical cerebral microinfarcts (a relatively new MRI marker 
of SVD)? Do these effects have specific patterns? Is there an interplay with Alzheimer’s 
disease, a common co-morbidity of SVD? 

• The overarching aim of the work described in this thesis was to examine changes 
in the gray and white matter of the brain that extend beyond the visible lesions 
in patients with SVD.

Until now, changes in the gray and white matter of the brain that extend beyond the 
visible lesions have not been systematically investigated in memory clinic patients with 
SVD, often with co-occurring Alzheimer’s disease pathology. In this thesis, we used two 
different techniques to measure changes in both the gray and white matter of the brain 
in memory clinic patients. First, we used brain volumes (obtained with structural brain 
MRI) and compared them with the total intracranial volume to estimate brain atrophy. 
Second, we used brain network connectivity measures (obtained with diffusion based 
tensor imaging or DTI) to look at changes that have occurred in the white matter (i.e. 
white matter connectivity). We investigated in memory clinic patients with SVD, some 
with co-occurring Alzheimer’s disease pathology: the severity and pattern of changes in 
both the gray and white matter of the brain, how these changes relate to visible SVD lesions 
and whether this differed between lesion types, the impact of these changes on cognition, 
and the interplay with co-occurring Alzheimer’s disease pathology.
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The first part of this thesis deals with some of the technical challenges regarding automated 
brain and lesion segmentation in a multicenter dataset (part 1). The second part of this 
thesis looks at the effects of SVD beyond the visible lesions and the interplay with co-
occurring Alzheimer’s disease (part 2).

Part 1: Challenges when measuring SVD-related brain changes

Measurements of SVD-related changes on MRI can be obtained using various qualitative 
and (semi)quantitative techniques, where the quantitative techniques in particular depend 
on brain segmentation. Several automated segmentation methods have been developed to 
measure the volume of the SVD lesion of interest, such as WMHs. These measurements 
can be influenced by several factors, such as the burden of pathology, including presence 
of SVD lesions, motion artifacts, and technical issues (e.g. field strength or MRI scan 
protocol). Dealing with technical issues is of great importance when pooling multicenter 
brain MRI data, which has become a trend in various research fields (e.g. age-related brain 
diseases such as SVD). In part 1 of this thesis, we performed two studies in which we 
compared the performance of several automated segmentation methods for WMH and 
brain volumes to support segmentation in a multicenter setting. 

In chapter 2, we looked at the performance of three widely used automated methods 
for brain volume measurements (SPM, Freesurfer and FSL) across different MRI field 
strengths. We assessed robustness (i.e. whether measured volumes on scans with different 
acquisition techniques in the same subjects were similar) of these three methods using ten 
subjects with ageing related brain changes, but without a known primary cerebral disease. 
These subjects were scanned on 1.5 Tesla and 3 Tesla MRI on the same day. As a frame of 
reference, we also looked at accuracy (i.e., whether measured volumes correspond with 
expert-defined reference volumes) of the three methods by comparing their brain volume 
measurements of 20 additional functionally independent elderly subjects with manually 
segmented brain volume measurements. Brain volumes and total intracranial volumes could 
be measured quite robustly in scans acquired at different field strengths, but performance 
of the methods varied depending on which volume was assessed (e.g. total brain volume 
or total intracranial volume). The same was seen for accuracy. These findings illustrate 
that selecting an appropriate method for automated brain segmentation in a multicenter 
dataset depends on the volume of interest.

In chapter 3, we evaluated the performance of five freely available and fully-automated 
WMH segmentation methods (Cascade, kNN-TTP, Lesion-TOADS, LST-LGA and LST-
LPA), using sixty subjects with WMHs from the TRACE-VCI study (a multicenter study 
on subjects with vascular cognitive impairment that were scanned using six different MRI 
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scanner vendors). We compared automated WMH segmentations with manual WMH 
segmentations as a reference and looked at performance of each method both within and 
across the different MRI scanners. We found the best performance, both within and across 
scanners, for kNN-TTP, followed by LST-LPA and LST-LGA, with worse performance for 
Lesion-TOADS and Cascade. These findings can serve as a guide for choosing a method for 
automated WMH segmentation in a multicenter dataset. It also highlights the importance 
to further improve and evaluate consistency of automated WMH segmentation methods 
in a multicenter setting in future studies. 

Part 2: Eff ects of SVD beyond the visible lesions and the interplay with 

Alzheimer’s disease

The relation between visible SVD lesions and changes in the brain occurring beyond 
these lesions

Different SVD lesion types (such as WMHs and lacunes) can reflect different disease 
processes affecting different vessels, in different parts of the brain. As such, the different 
lesion types and distributions can be used to study the effects of different types of SVD 
in the brain. Effects of SVD beyond the visible lesions have been shown for several SVD 
lesion types (e.g. WMHs, lacunes). However, previous studies have often focused on a 
single lesion type (such as WMHs). Also, for some lesion types (such as cortical cerebral 
microinfarcts or CMIs) it is unknown whether more global effects occur in the brain. 
Furthermore, it has become a trend in SVD research to use a SVD burden score to capture 
multiple types of vascular brain injury in a single measure. The rationale behind this 
“lumping” is creating a single measure of vascular brain injury that relies on more than 
just a single SVD lesion, is easy to use and could serve as a surrogate endpoint in clinical 
research. Therefore, in part 2 of this thesis, we looked at the relation between visible SVD 
lesions and effects of SVD beyond these lesions in both the gray and the white matter of 
the brain (using either measures of brain volumes or white matter connectivity). We also 
investigated possible effects of SVD on white matter connectivity in patients with CMIs. 
Finally, we also looked at the impact of SVD on white matter connectivity and cognition 
by using a SVD burden score. 

In chapter 4, we investigated the spatial distribution of cortical CMIs in 164 memory 
clinic patients with vascular brain injury on MRI. More than 70% of the cortical CMIs 
were located in the superior frontal, middle frontal, and pre- and postcentral brain regions 
(covering 16% of the cortical surface). We then looked at the relation between presence of 
cortical CMIs in these regions and WM connectivity in the entire brain as well as directly 
underneath the cortical surface. WM connectivity did not differ between patients with 
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and without cortical CMIs. In the high CMI burden regions, presence of cortical CMIs 
was not associated with WM connectivity after correction for visible SVD lesions such 
as WMHs. So despite the fact that cortical CMIs displayed a strong local clustering in 
highly interconnected brain regions, WM connections projecting to these regions were 
not disproportionally impaired in patients with CMIs compared to those without cortical 
CMIs. This suggests that alternative mechanisms, such as focal disturbances in cortical 
structure and functioning, may better explain CMI associated cognitive impairment instead 
of SVD-related effects beyond the visible lesions.

In chapter 5, we investigated the impact of effects of SVD beyond visible lesions on the 
brain’s white matter. We used a SVD burden score to capture multiple types of vascular brain 
injury in a single measure and looked at the relation between the SVD burden score, WM 
connectivity (by measuring the global network efficiency) and cognition in 173 memory 
clinic patients with vascular brain injury on MRI. Each increase in the SVD burden score 
was associated with a decrease in global network efficiency, which in turn was related to 
worse cognitive performance (information processing speed and attention and executive 
functioning). Global network efficiency also mediated the relation between the SVD 
burden score and information processing speed. This shows that network metrics such as 
global network efficiency are sensitive to the cumulative effect of multiple manifestations 
of SVD on WM connectivity. Furthermore, it demonstrates the impact of SVD-related 
brain changes beyond visible lesions on cognition in memory clinic patients.

In chapter 6, we investigated the relation between visible SVD lesions and brain atrophy 
and assessed whether these relations differ between lesion types (such as WMHs, lacunes 
and cerebral microbleeds) in 725 memory clinic patients with vascular brain injury on 
MRI. We compared brain volumes (total brain volume, gray matter volume and white 
matter volume) between patients with each lesion type (moderate/severe WMHs, lacunes 
and cerebral microbleeds) and a reference group (mild WMHs but no lacunes or cerebral 
microbleeds). Different SVD lesions related differentially to brain atrophy as only patients 
with moderate/severe WMHs had a smaller gray matter volume compared to the reference 
group. Patients with cerebral microbleeds or lacunes had no significant brain volume 
differences compared to the reference group. Furthermore, the relation between WMHs 
and brain atrophy was most evident in the frontal (cortical) gray matter. This may reflect 
secondary neurodegeneration through disconnection of WM fibers projecting towards 
frontal brain regions. In other words, brain atrophy, which is often considered to be a 
manifestation of a neurodegenerative disease (such as Alzheimer’s disease), can also be 
secondary to (manifestations of) SVD. 
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The interplay between SVD and co-occurring Alzheimer’s disease pathology

When investigating SVD-related brain changes, it is important to consider common co-
occurring pathologic processes that can also lead to changes in the gray and white matter, 
such as Alzheimer’s disease. SVD and Alzheimer’s disease pathology often co-occur in 
memory clinic patients. Therefore, in part 2 of this thesis we also investigated the interplay 
between SVD and Alzheimer’s disease on changes in the gray and white matter beyond 
visible SVD lesions. 

In chapter 6, we also looked at the relation between different SVD lesions and brain atrophy 
after stratifying patients in those with and without evidence of co-occurring amyloid-β 
pathology in the cerebrospinal fluid (CSF). Significant associations between SVD lesion 
type and brain volumes were only seen in patients without CSF evidence of co-occurring 
amyloid-β pathology: those with moderate/severe WMHs had smaller gray matter volumes 
and those with lacunes had smaller total brain and gray matter volumes. Thus, certain 
SVD lesion types related differentially to brain atrophy, but mainly in the absence of 
co-occurring amyloid-β patholog y. Vice versa, the relation between the presence of co-
occurring amyloid-β pathology and brain atrophy was much stronger in patients with a 
low SVD burden. Apparently, both pathological processes contribute to brain atrophy, but 
for each this is most evident in the absence of the other, which could perhaps be explained 
by a ceiling effect of each disease, possibly linked to disease stage. All in all, it stresses the 
importance to measure and correct for the possible confounding effect of co-occurring 
Alzheimer’s disease pathology when investigating SVD-related brain changes.

Because it is difficult to examine which brain changes are actually due to SVD and which 
are due to co-occurring pathologies such as Alzheimer’s disease, we chose a different 
approach in chapter 7. We aimed to increase the homogeneity of a memory clinic patient 
sample by investigating selected patient groups with either Alzheimer’s disease or SVD 
pathology based on CSF or PET-scan biomarker status and the presence of SVD on MRI. 
We compared fractional anisotropy (FA)- and mean diffusivity (MD)-weighted connectivity 
strength of the WM network between patients that were amyloid-β (Aβ) positive/SVD 
negative with patients that were Aβ negative/SVD positive and compared both patient 
group with control subjects. The occurrence and spatial pattern of impairments in WM 
connectivity differed between patients with primarily Alzheimer’s disease and SVD 
pathology. Patients with primarily SVD pathology showed both impaired FA- and MD-
weighted WM connectivity compared to controls (predominantly in frontal brain regions), 
while patients with primarily Alzheimer’s disease pathology only showed impaired MD-
weighted connectivity (predominantly in medial and parietal-occipital brain regions). We 
also assessed which type of WM connections were more severely affected, and found that 
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in both patient groups, relatively long WM connections and WM connections between 
so called ‘hub’ regions were more severely affected than all other WM connections. These 
findings suggest that these pathologies affect the WM network through partly different 
mechanisms. Which mechanisms this could be and how they are linked should be the 
focus of future studies.

In conclusion, SVD has effects in the brain’s gray and white matter that extend well beyond 
the visible lesions on conventional structural MRI. These effects can better explain the 
impact of SVD on cognition than the visible SVD lesions. We have shown that effects 
beyond the visible SVD lesions seem to differ depending on the SVD lesion type, as these 
effects were shown to relate to WMHs and lacunes, but not other manifestations of SVD 
(suggesting different underlying disease mechanisms). The pattern of SVD-related changes 
in the white matter seems different as compared to what is seen in Alzheimer’s disease, 
suggesting partially different underlying disease mechanisms. The work described in 
this thesis suggests that the effects of SVD and Alzheimer’s disease on brain atrophy are 
additive, which could be explained by a ceiling effect of both diseases, possibly linked to 
disease stage. Measuring and reporting more global effects of SVD should become part of 
clinical care in order to help to explain patients and their caregivers the functional impact of 
SVD. Understanding which mechanisms underlie effects of SVD beyond the visible lesions 
should be the focus of future studies, since it is vital to understand the pathophysiology of 
SVD to help develop new treatments. 
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Ziekten van de kleine bloedvaten in de hersenen, in het Engels cerebral small vessel disease 
(SVD) genoemd, komen veel voor. SVD is een van de belangrijkste oorzaken van een 
beroerte, dat wil zeggen een herseninfarct of een hersenbloeding. Daarnaast is SVD óók een 
belangrijke oorzaak van dementie, waarbij het hogere verstandelijke vermogen (cognitie) 
achteruit gaat. Ondanks dat SVD veel voorkomt en ernstige gevolgen kan hebben, zijn er 
tot op heden geen behandelmogelijkheden die specifiek gericht zijn op de ziekteprocessen 
die de kleine bloedvaten in de hersenen beschadigen. 

Met behulp van een MRI-scan kan hersenschade als gevolg van SVD in kaart worden gebracht. 
Voorbeelden van zichtbare schade als gevolg van SVD op een normale hersenscan zijn witte 
stof afwijkingen, kleine infarcten (lacunes) en hele kleine bloedingen (microbloedingen). In 
Figuur 1 zijn voorbeelden van enkele vormen van zichtbare schade weergegeven.

Figuur 1 | Voorbeelden van zichtbare schade ten gevolge van SVD op een normale hersenscan. De gele 
pijlen geven witte stof afwijkingen (A), kleine infarcten ofwel lacunes (B) en hele kleine bloedingen ofwel 
microbloedingen (C) aan. 

Deze zichtbare afwijkingen kunnen door verschillende ziekteprocessen ontstaan en kun-
nen op verschillende locaties in de hersenen worden gezien. Zichtbare hersenschade als 
gevolg van SVD hangt samen met dementie, maar de relatie wisselt per persoon. Het lijkt 
erop dat SVD meer doet op de hersenen dan wat we met het blote oog kunnen zien op 
een normale hersenscan. Deze ‘onzichtbare’ hersenschade als gevolg van SVD kunnen we 
meten met geavanceerde technieken. Onzichtbare hersenschade als gevolg van SVD kan 
zowel in de grijze stof als in de witte stof van de hersenen optreden. De grijze stof bestaat 
uit hersencellen die informatie verwerken, terwijl de witte stof bestaat uit vezelbanen die 
delen van de hersenen met elkaar verbinden en zo voor communicatie tussen de hersencel-
len zorgen. De witte stof wordt ook wel vaak het ‘hersennetwerk’ genoemd. Een voorbeeld 
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van onzichtbare hersenschade ten gevolge van SVD zijn afwijkingen in de witte stof die 
gevonden kunnen worden in de directe (op een MRI-scan normaal uitziende) omgeving 
van witte stof afwijkingen (zogenaamde perilesionele effecten van SVD). Een ander voorbeeld 
is het krimpen van de grijze stof van de buitenste laag van de hersenen (hersenschors) in 
gebieden die ver weg liggen van een nieuw herseninfarct, waarschijnlijk doordat de ver-
bindingen tussen het infarct en de hersenschors beschadigd raken (zogenaamde effecten 
van SVD op afstand). De gedachte is dat deze schade op afstand waarschijnlijk secundair 
ontstaat aan de zichtbare hersenschade. Ook kan er meer globale schade, deels onafhan-
kelijk van de zichtbare hersenschade, optreden (zogenaamde globale effecten van SVD).  

Het detecteren van onzichtbare hersenschade ten gevolge van SVD biedt de mogelijkheid 
om op een andere manier naar het ziekteproces SVD te kijken. Zo kunnen we de functionele 
impact van SVD mogelijk beter begrijpen dan op basis van alleen de zichtbare hersen-
schade. De klachten waarmee patiënten zich presenteren op een geheugenpolikliniek zijn 
namelijk vaak veel uitgebreider/ernstiger dan op basis van de zichtbare hersenschade op 
de MRI-scan te verwachten zou zijn. 

Er zijn nog wel de nodige vragen die beantwoord moeten worden om de onzichtbare 
hersenschade als gevolg van SVD beter te begrijpen. Bijvoorbeeld: gaan alle vormen van 
SVD gepaard met onzichtbare hersenschade (dus zowel witte stof afwijkingen als kleine 
bloedingen)? Treedt onzichtbare hersenschade ook op bij patiënten met kleine hersenin-
farcten in de hersenschors (zogenaamde corticale cerebrale micro-infarcten, een relatief 
recent ontdekte manifestatie van SVD die op een MRI-scan gezien kan worden)? Is er een 
specifiek patroon van deze onzichtbare hersenschade te herkennen? Is er een wisselwerking 
met bijkomende ziektes zoals de ziekte van Alzheimer?  

Het overkoepelende doel van dit proefschrift was om veranderingen in de grijze en de witte 
stof van de hersenen die niet op normale hersenscans zichtbaar zijn bij patiënten met SVD 
te onderzoeken. 

In dit proefschrift heb ik twee verschillende technieken gebruikt om veranderingen in de 
grijze stof en de witte stof van de hersenen zeer gevoelig te meten. Allereerst gebruiken we 
MRI-scans waarmee met behulp van geautomatiseerde methoden hersenvolumes gemeten 
kunnen worden. Door deze volumes te vergelijken met de totale inhoud van de schedel 
kan een schatting worden gemaakt in welke mate er sprake is van verlies van hersenweefsel 
oftewel hersenkrimp (‘hersenatrofie’). Anderzijds gebruiken we diffusie tensor imaging 
(DTI), een geavanceerde MRI-techniek om schade te meten aan de witte stof verbindingen, 
ook wel het hersennetwerk genoemd. Hiermee kun je bepalen of er sprake is van een 
‘gestoorde hersenconnectiviteit’. 
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De studies in het eerste deel van mijn proefschrift onderzochten enkele technische uit-
dagingen die komen kijken bij het meten van hersenvolumes en zichtbare hersenschade. 
In het tweede deel van het proefschrift onderzochten we de relatie tussen zichtbare en 
onzichtbare hersenschade ten gevolge van SVD en de impact hiervan op het cognitief 
functioneren. Ook keken we naar de wisselwerking tussen SVD en de ziekte van Alzheimer, 
aangezien deze ziekten vaak samen voorkomen bij patiënten op een geheugenpolikliniek.

Deel 1: uitdagingen bij het meten van SVD-gerelateerde veranderingen in de 

hersenen

Er bestaan verschillende technieken om SVD-gerelateerde veranderingen in de hersenen 
te meten. Dit kan zowel kwalitatief als (semi)kwantitatief. Kwantitatieve technieken maken 
over het algemeen gebruik van hersensegmentatie: het onderverdelen (segmenteren) van een 
MRI-scan van de hersenen in de verschillende onderdelen van de hersenen (zoals witte stof 
en grijze stof en witte stof afwijkingen). Er bestaan verschillende automatische methoden 
om hersenvolumes te meten. Die metingen kunnen beïnvloed worden door verschillende 
factoren, waaronder de mate van hersenschade, bewegingsartefacten en technische variatie 
(zoals het gebruik van verschillende MRI-scanners, met een andere magnetische veldsterkte 
of een ander scanprotocol). Het kunnen omgaan met variatie in technische factoren is erg 
belangrijk als MRI-data uit meerdere centra worden gecombineerd. Dit is de laatste jaren 
een trend geworden in verschillende onderzoeksgebieden, waaronder onderzoek naar SVD. 
In het eerste deel van mijn proefschrift onderzochten we hoe verschillende automatische 
segmentatiemethoden voor het meten van hersenvolumes en witte stof afwijkingen 
presteren onder verschillende technische omstandigheden, om zo het combineren van 
MRI-data uit meerdere centra of van verschillende scanners te ondersteunen. 

In hoofdstuk 2 hebben we de prestatie vergeleken van drie veelgebruikte automatische 
methoden voor hersensegmentatie (SPM, Freesurfer en FSL). Tien personen van oudere 
leeftijd, zonder een bekende primaire hersenaandoening, werden op dezelfde dag twee 
keer gescand: eenmaal met een MRI-scanner met een veldsterkte van 1,5 Tesla en een-
maal met een MRI-scanner met een veldsterkte van 3 Tesla. We gebruikten vervolgens 
de automatische methoden om de MRI-scans van beide veldsterkten te segmenteren en 
volumes te meten van de totale schedel, de hersenen als geheel, alsook van onderdelen 
van de hersenen. Vervolgens keken we hoe robuust de methoden waren, dat wil zeggen 
of de volumes van dezelfde persoon zoals gemeten door de automatisch methode voor de 
twee scans hetzelfde waren. We keken daarnaast hoe accuraat de methoden waren, dat wil 
zeggen of de volumes van dezelfde persoon zoals gemeten door de automatische methode 
overeenkwamen met de volumes zoals die door een expert waren gedefinieerd door de 
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MRI-scan met de hand te segmenteren. We vonden in deze studie dat hersenvolumes en 
schedelvolumes robuust konden worden gemeten ondanks het gebruik van scans vervaar-
digd op een verschillende veldsterkte, maar er waren aanzienlijke verschillen tussen de 
methoden afhankelijk van welk deel van de hersenen werd bekeken (bijvoorbeeld totaal 
hersenvolume of schedelvolume). Hetzelfde vonden we voor de accuratesse. Deze studie 
geeft inzicht in welke methode het beste gekozen kan worden afhankelijk van welk volume 
gemeten moet worden bij hersensegmentatie van gecombineerde MRI-data vanuit meerdere 
centra of van verschillende scanners. Zo kan het beste FSL worden gebruikt als een totaal 
hersenvolume of schedelvolume moet worden gemeten, terwijl SPM beter kan worden 
gebruikt als onderscheid moet worden gemaakt tussen grijze stof en witte stof volumes.

In hoofdstuk 3 hebben we vijf vrij beschikbare en volledig automatische methoden voor 
segmentatie van witte stof afwijkingen vergeleken (Cascade, kNN-TTP, Lesion-TOADS, 
LST-LGA en LST-LPA). We gebruikten hiervoor scans van zestig patiënten met witte 
stof afwijkingen uit de TRACE-VCI studie, een grote multicenter studie bij patiënten 
met cognitieve klachten en zichtbare schade op de MRI-scan van de hersenen. In deze 
studie werden zes verschillende MRI-scanners gebruikt. We vergeleken de volumes van 
de witte stof afwijkingen zoals gemeten door de automatische methoden met de volumes 
zoals die door een expert waren gedefinieerd door de witte stof afwijkingen met de hand 
te segmenteren. De methoden werden per scanner en over de gehele groep vergeleken. 
We zagen dat kNN-TTP het beste presteerde, gevolgd door LST-LPA en LST-LGA en dat 
Lesion-TOADS en Cascade het slechtst presteerden. Deze studie kan fungeren als een 
leidraad bij het kiezen van een methode voor automatische segmentatie van witte stof 
afwijkingen in een gecombineerde dataset van verschillende scanners. Op basis van de 
resultaten van deze studie besloten we kNN-TTP te gebruiken voor de analyse van onze 
eigen gecombineerde dataset in de studies in het tweede deel van mijn proefschrift. De 
studie laat ook zien hoe belangrijk het is om dit soort methoden verder te ontwikkelen en 
te evalueren hoe consistent ze zijn in gecombineerde datasets.

Deel 2: Onzichtbare hersenschade ten gevolge van SVD

In het tweede deel van mijn proefschrift hebben we gekeken naar de relatie tussen zichtbare 
en onzichtbare schade in zowel de grijze stof als de witte stof van de hersenen. We keken 
daarbij naar verschillende vormen van zichtbare schade op een normale hersenscan, zoals 
witte stofafwijkingen, lacunes en hele kleine bloedingen. Daarnaast gebruikten we geavan-
ceerde technieken om onzichtbare hersenschade, niet met het blote oog op een normale 
hersenscan te zien, te meten, zoals hersenkrimp of een gestoorde hersenconnectiviteit. 
Daarnaast onderzochten we de impact op cognitie van zowel zichtbare als onzichtbare 
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hersenschade als gevolg van SVD, in de vorm van een gestoorde connectiviteit in de 
witte stof. 

Corticale cerebrale micro-infarcten, ofwel hele kleine infarcten in de hersenschors, zijn een 
relatief nieuwe vorm van zichtbare schade als gevolg van SVD op een normale hersenscan. 
Het voorkomen van zulke kleine infarcten hangt samen met dementie. Echter, het is nog 
onduidelijk of al die kleine infarcten samen tot problemen in het hersennetwerk leiden. 
In hoofdstuk 4 onderzochten we daarom waar corticale cerebrale micro-infarcten in de 
hersenen voorkomen en of er een relatie was met een verstoring van het hersennetwerk. 
We onderzochten dit bij 164 patiënten die zich op een geheugenpolikliniek presenteerden 
en zichtbare vaatschade hadden op de MRI-scan van de hersenen. We zagen dat meer dan 
70% van de micro-infarcten zich bevonden in slechts enkele, meer naar voren gelegen 
(frontale) hersengebieden. Dit suggereert dat deze gebieden een bepaalde kwetsbaarheid 
hebben voor het ontstaan van deze kleine infarcten. Hoe en waarom deze kleine infarcten 
vooral in deze gebieden ontstaan is nog niet duidelijk en zal in de toekomst verder moeten 
worden onderzocht. We vonden geen verschillen in de connectiviteit in de witte stof tussen 
patiënten met en zonder corticale cerebrale micro-infarcten, zelfs niet in gebieden waar 
zich de meeste corticale cerebrale micro-infarcten bevonden. Dus ondanks dat corticale 
cerebrale micro-infarcten zich lijken te concentreren in hersengebieden die sterk onder-
ling met elkaar verbonden zijn, zijn de witte stof banen die deze verbindingen vormen 
niet meer aangedaan bij patiënten met corticale cerebrale micro-infarcten dan patiënten 
zonder deze micro-infarcten. Dit suggereert dat andere mechanismen, zoals lokale ver-
storingen in de hersenschors, mogelijk een betere verklaring vormen voor de cognitieve 
klachten die patiënten met corticale cerebrale micro-infarcten hebben dan (onzichtbare) 
schade aan de witte stof. Het kan, mede gezien de andere resultaten in mijn proefschrift, 
ook de vraag oproepen of deze kleine infarcten wel een uiting zijn van SVD of juist vaker 
van andere bijkomende ziekteprocessen en/of risicofactoren.

In hoofdstuk 5 keken we naar de functionele impact van onzichtbare hersenschade ten 
gevolge van SVD in de witte stof. We gebruikten een SVD somscore als maat voor de 
ernst van de zichtbare hersenschade ten gevolge van SVD. Het gebruik van een dergelijke 
score, waarbij meerdere vormen van zichtbare schade ten gevolge van SVD op een MRI 
in één maat worden gecombineerd, is een trend geworden in onderzoek naar SVD. Het 
idee hierachter is dat deze score een breed spectrum van aandoeningen representeert die 
de kleine bloedvaten in de hersenen aandoen. Daarnaast is zo’n score makkelijk te gebrui-
ken, bijvoorbeeld als een uitkomstmaat in onderzoek bij patiënten. We keken vervolgens 
naar de relatie tussen de SVD somscore, de connectiviteit in de witte stof, en cognitie bij 
173 patiënten die zich presenteerden op een geheugenpolikliniek en waarbij vaatschade 
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zichtbaar was op de normale MRI-scan van de hersenen. Elke punt toename van de SVD 
somscore was geassocieerd met afname in de connectiviteit in de witte stof. Een afname 
in de connectiviteit was weer gerelateerd aan een slechtere cognitie, in het bijzonder op 
de gebieden ‘informatie verwerkingssnelheid’ en ‘aandacht en executief functioneren’. De 
verstoorde connectiviteit medieerde zelfs de relatie tussen de SVD somscore en de infor-
matie verwerkingssnelheid, wat betekent dat het effect van de hersenschade bij SVD op 
cognitie zich manifesteert via verstoringen in het hersennetwerk. Met deze studie tonen 
we aan dat er een duidelijke relatie is tussen zowel zichtbare en onzichtbare hersenschade 
als gevolg van SVD en cognitie. Ook laat het zien dat maten van verstoringen van het 
hersennetwerk gevoelig zijn voor het cumulatieve effect van schade als gevolg van SVD 
op de connectiviteit van de witte stof. Dit soort maten zou daarom goed gebruikt kunnen 
worden om de ziekteprogressie van SVD te volgen of als uitkomstmaat in onderzoek naar 
de behandeling van SVD.

In hoofdstuk 6 onderzochten we de relatie tussen zichtbare hersenschade en hersenkrimp. 
We keken daarbij of die relatie anders was voor verschillende vormen van zichtbare schade 
op een normale hersenscan, zoals witte stof afwijkingen, lacunes en hele kleine bloedingen. 
Als die relatie verschilt voor verschillende vormen van hersenschade, zou dat kunnen wijzen 
op andere onderliggende ziekteprocessen. We gebruikten in deze studie 725 patiënten die 
zich presenteerden op een geheugenpolikliniek en waarbij er zichtbare schade was op de 
normale hersenscan. We vergeleken totaal hersenvolume, grijze stof volume en witte stof 
volume tussen patiënten met een bepaalde vorm van zichtbare hersenschade, zoals matig/
ernstige witte stof afwijkingen, lacunes en kleine bloedingen, en een referentiegroep met 
milde witte stof afwijkingen maar geen lacunes of kleine bloedingen. Witte stof afwijkingen 
en lacunes waren gerelateerd aan hersenkrimp, in het bijzonder van de grijze stof. Voor 
witte stof afwijkingen werd de meest uitgesproken krimp gezien in de hersenschors van 
meer naar voren gelegen (frontale) hersengebieden. Daarmee suggereert deze studie dat 
krimp van de hersenschors mogelijk ontstaat doordat witte stof banen die naar de (fron-
tale) hersengebieden lopen beschadigd raken. Dit wordt ook wel secundaire degeneratie 
genoemd, in tegenstelling tot primaire degeneratie van de hersenschors zoals bij de ziekte 
van Alzheimer, waarbij de schade direct in de hersenschors optreedt. Hersenkrimp wordt 
nu nog vaak gezien als een manifestatie van een neurodegeneratieve ziekte zoals de ziekte 
van Alzheimer. Als hersenkrimp inderdaad ook secundair kan zijn aan (manifestaties van) 
SVD, biedt dit mogelijkheden om hersenkrimp te gebruiken om de ziekteprogressie van 
SVD te volgen of als uitkomstmaat in onderzoek naar de behandeling van SVD. 
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De wisselwerking tussen SVD en de ziekte van Alzheimer

Bij het onderzoeken van SVD-gerelateerde veranderingen in de hersenen is het belangrijk 
om andere ziekteprocessen die tot soortgelijke veranderingen kunnen leiden in ogenschouw 
te nemen, zoals de ziekte van Alzheimer. SVD en de ziekte van Alzheimer komen vaak 
samen voor bij patiënten die zich presenteren op een geheugenpolikliniek. Dat was ook 
zo in de patiënten die meededen aan ons onderzoek. Daarom hebben we in het tweede 
deel van mijn proefschrift ook gekeken naar de wisselwerking tussen SVD en de ziekte 
van Alzheimer als het gaat om veranderingen in de grijze stof en de witte stof die niet met 
het blote oog zichtbaar zijn.

In hoofdstuk 6 keken we ook hoe de relatie tussen zichtbare hersenschade als gevolg van 
SVD en hersenkrimp beïnvloed werd door bijkomende ziekte van Alzheimer. We zagen 
vooral een relatie tussen zichtbare vaatschade als gevolg van SVD en hersenkrimp bij 
patiënten zonder bijkomende ziekte van Alzheimer. Andersom was de relatie tussen de 
ziekte van Alzheimer en hersenkrimp veel sterker bij patiënten die weinig zichtbare schade 
ten gevolge van SVD op de normale hersenscan hadden. Blijkbaar dragen beide ziekten 
bij aan hersenkrimp, maar voor zowel SVD als de ziekte van Alzheimer is dit het meest 
uitgesproken in de afwezigheid van de ander. Dit kan wellicht verklaard worden doordat er 
een bepaald plafond zit aan de mate van hersenkrimp die kan optreden, waarbij de bijdrage 
van eventueel bijkomende ziekteprocessen beperkt is als deze limiet reeds is overschreden. 
Mogelijk is dit ook gerelateerd aan het stadium van ziekte waarin een patiënt zich bevindt. 
Al met al laat deze studie zien hoe belangrijk het is om aanwezigheid van andere ziekte-
processen, zoals de ziekte van Alzheimer, te meten en zo nodig hiervoor te corrigeren als 
SVD-gerelateerde veranderingen in de hersenen worden onderzocht.

Omdat SVD en de ziekte van Alzheimer vaak samen voorkomen en kunnen leiden tot 
soortgelijke veranderingen in de hersenen, is het lastig te onderzoeken welke verande-
ringen in de hersenen daadwerkelijk het gevolg zijn van SVD en welke door bijkomende 
ziekteprocessen, zoals de ziekte van Alzheimer. Daarom kozen we in hoofdstuk 7 voor 
een andere aanpak. We wilden de homogeniteit van onze groep patiënten vergroten door 
alleen te kijken naar patiënten met ofwel de ziekte van Alzheimer ofwel SVD. We ver-
geleken de connectiviteit in de witte stof tussen patiënten met de ziekte van Alzheimer, 
patiënten met SVD en gezonde controles. Ten opzichte van gezonde controles hadden 
patiënten met SVD afwijkende witte stof connectiviteit in de meer naar voren gelegen 
(frontale) hersengebieden. Daarentegen hadden patiënten met de ziekte van Alzheimer 
een abnormale witte stof connectiviteit ten opzichte van de gezonde controles in de cen-
trale en meer naar achter gelegen (pariëto-occipitale) hersengebieden. We vonden ook dat 
zowel bij patiënten met SVD als bij patiënten met de ziekte van Alzheimer relatief langere 
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witte stof banen en witte stof banen die onderdeel uitmaken van de kern van het hersen-
netwerk, zogenaamde knooppunten of ‘hubs’, ernstiger waren aangedaan dan alle andere 
witte stof banen. Deze bevindingen suggereren dat SVD en de ziekte van Alzheimer deels 
via andere mechanismen de witte stof beschadigen. Welke mechanismen dat zijn en hoe 
deze invloed hebben op elkaar moet in toekomstige studies verder onderzocht worden. 
Dit is belangrijk omdat een beter begrip van deze mechanismen uiteindelijk kan helpen 
in het ontwikkelen van nieuwe behandelingen voor SVD.

Conclusie

In dit proefschrift hebben we laten zien dat patiënten met SVD meer hersenschade hebben 
dan in eerste instantie zichtbaar is op een normale MRI-scan, namelijk hersenkrimp en 
een verstoring van het hersennetwerk. Deze ‘onzichtbare’ schade kan de impact die SVD 
heeft op het functioneren van patiënten beter verklaren dan alleen de zichtbare schade. Het 
nauwkeurig meten en rapporteren van de totale hoeveelheid hersenschade ten gevolge van 
SVD kan van toegevoegde waarde zijn op een geheugenpolikliniek, omdat het patiënten 
en hun omgeving kan helpen om beter te begrijpen wat voor impact SVD heeft op hun 
functioneren. Dit geldt zeker wanneer een normale hersenscan weinig tot geen zichtbare 
schade laat zien en er twijfel kan bestaan over de mogelijke oorzaken van de klachten. 
Welke ziekteprocessen precies leiden tot zowel zichtbare als onzichtbare hersenschade 
ten gevolge van SVD moet verder onderzocht worden. Als we namelijk beter begrijpen 
hoe SVD ontstaat, kan dit uiteindelijk leiden tot de ontwikkeling van nieuwe behandeling.
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“Every day you may make progress. Every step may be fruitful. Yet there will stretch 
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Ik wil iedereen ontzettend bedanken die mij heeft vergezeld tijdens deze klim en die heeft 
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