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Abstract Almost all processes in living organisms occur through specific inter-
actions between biomolecules. Any dysfunction of those interactions can lead to
pathological events. Understanding such interactions is therefore a crucial step in
the investigation of biological systems and a starting point for drug design. In recent
years, experimental studies have been devoted to unravel the principles of
biomolecular interactions; however, due to experimental difficulties in solving the
three-dimensional (3D) structure of biomolecular complexes, the number of
available, high-resolution experimental 3D structures does not fulfill the current
needs. Therefore, complementary computational approaches to model such inter-
actions are necessary to assist experimentalists since a full understanding of how
biomolecules interact (and consequently how they perform their function) only
comes from 3D structures which provide crucial atomic details about binding and
recognition processes. In this chapter we review approaches to predict biomolecular
complexes, introducing the concept of molecular docking, a technique which uses a
combination of geometric, steric and energetics considerations to predict the 3D
structure of a biological complex starting from the individual structures of its
constituent parts. We provide a mini-guide about docking concepts, its potential and
challenges, along with post-docking analysis and a list of related software.
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8.1 Introduction

Biomolecular complexes, such as protein-protein and protein-ligand ones, underlie
almost all biological processes in the cell, such as DNA replication, transcription,
translation, signaling pathways, immune system response, enzyme inhibition. To
implement this wide diversity of (bio)chemical processes, proteins get in touch with
other proteins, nucleic acids, sugars, lipids and various other molecules (Jones and
Thornton 1996; Alberts 1998). The biological function of a protein is defined by its
interactions in the cell. Inappropriate or altered (either inhibited and enhanced)
interactions can lead to disease (Stites 1997; Sugiki et al. 2014). For these reasons,
research aimed at understanding, disrupting or modulating protein-protein inter-
actions (PPIs) is a crucial step in the investigation of almost all biological processes,
ranging from enzyme catalysis and inhibition to signal transduction and gene
expression. Accordingly, PPIs are currently receiving considerable attention as
targets for rational drug design (González-Ruiz and Gohlke 2006; Metz et al. 2012;
Nisius et al. 2012) and as therapeutic agents (Szymkowski 2005; Hwang and Park
2008; Zhou et al. 2013).

In recent years, experimental and theoretical work has been devoted to unravel
the principles of protein-protein interactions (Phizicky and Fields 1995; Jones and
Thornton 1996). The formation of biological complexes is driven by the free energy
of the complex (mostly determined by physicochemical and geometrical interface
properties) and the concentration of the protein components. The association of two
proteins, in fact, relies on an encounter and possible rearrangement of the inter-
acting surfaces, requiring co-localization in time and space. Generally proteins
reside in crowded environments, with many potential binding partners with dif-
ferent surface properties; consequently, during evolution, the interaction surfaces
are believed to have evolved to both optimize interaction efficacy and prevent
undesired interactions (Ofran and Rost 2003).

In this scenario, it is a must to obtain 3D structural information in order to gain a
complete understanding of both the biochemical nature of the process bringing the
components together and to facilitate the design of compounds that might influence
it. The structural characterization of a protein-protein interface includes in particular
the identification of interatomic hydrogen bonds, salt bridges and hydrophobic
interactions, the determination of the interaction surface area and possibly the
identification of bridging water molecules (Northrup and Erickson 1992; Tsai et al.
1999). The combination of all this information defines the nature of the binding site
and of the network of interactions, which makes it possible to pinpoint key residues
and contacts for complex formation.
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Obtaining 3D structures of biological complexes is therefore of supreme signif-
icance for the study of biomolecular interactions and all their possible pharmaceu-
tical and medicinal applications. High-resolution atomic structures are obtained by
X-ray crystallography and nuclear magnetic resonance (NMR), while methods like
Small-Angle X-ray Scattering (SAXS) (Yang 2014; Chaudhuri 2015) or
cryo-Electron Microscopy (cryo-EM) give low-resolution structural data, although
the latter, thanks to recent developments in both detector technology and software, is
now reaching near atomic resolution (Bai et al. 2015) with, for example, the
recent <3 Å high-resolution structure of the ribosome-EF-Tu complex (Fischer et al.
2015). Experimental determination of biomolecules remains, however, difficult,
time-consuming and costly (Chruszcz et al. 2010): with X-ray crystallography,
dynamics and disorder can impede the crystallization, while (solution) NMR suffers
from a size limitation when it comes to studying large macromolecular complexes;
and both methods struggle with membrane-resident and membrane-associated
complexes. For these reasons, there is relatively little structural information available
about biomolecular complexes compared to proteins that exist as single chains or
form permanent oligomers (Schreiber and Fersht 1996). As a result, the number of

Fig. 8.1 Yearly growth of protein structures number in Protein Data Bank (PDB) from 1990.
The PDB was established in 1971, the total number of protein structures grew to 434 in 1990,
reaching 106,650 structures on June 2015. The number of single protein structures is reported in
blue, the number of multiple proteins systems is reported in magenta. Some of the Nobel Prized
awarded for elucidation of structure (and function) of macromolecular systems are reported in the
figure
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solved complexes deposited in the Protein Data Bank (PDB) (Bernstein et al. 1977)
(http://www.rcsb.org/) is still orders of magnitude smaller than that of individual
proteins as shown in Fig. 8.1. Despite this disproportion, the growing number of
available experimental structures for protein-protein complexes over the years has
allowed statistical studies of the properties and physico-chemical forces that regulate
protein-protein interactions (hydrophobicity, hydrogen bonding, electrostatic inter-
actions, van der Waals interactions, and so on). These provide useful information in
the development of computational strategies for structure prediction and character-
ization. Considering the experimental limitations discussed above, computational
structural biology is now routinely considered an integral part of research.

Since the pioneering work of Janin and Wodak (Wodak and Janin 1978) who
described, more than 30 years ago, the first automated algorithm to predict the 3D
interaction between bovine pancreatic trypsin and its natural inhibitor, the docking
field (with docking defined as the prediction of protein complexes structures
starting from the structures of the free molecules) has advanced considerably
(Schlick et al. 2011). The past decades have seen the emergence of a large variety of
theoretical algorithms designed to predict the structures of protein-protein and
protein-ligand complexes (Smith and Sternberg 2002; Bonvin 2006; Ritchie 2008;
Vajda and Kozakov 2009; Moal et al. 2013a).

8.2 Docking

Molecular docking is a computational modeling technique that aims at predicting
the 3D structure of a complex (bound form) given the structures of the individual
molecules (unbound forms) (Fig. 8.2), hopefully revealing most of the relevant
residue-residue contacts involved in the interaction (Smith and Sternberg 2002). It
offers a tool for fundamental studies of biomolecular interactions and provides a
structural basis for drug design. Docking approaches assume that the native com-
plex is near the global minimum of the energy landscape. In fact, based on the
thermodynamic hypothesis, at fixed temperature and pressure the Gibbs free energy
of the macromolecule-solvent system reaches its global minimum at the native state
of the macromolecule (Ruvinsky and Vakser 2008).

Fig. 8.2 An illustration of protein-protein docking procedure starting from the unbound structures
(A and B), into their final bound form (AB). (PDBcode: 1BRS (Buckle et al. 1994), chains A and B)
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Progress in protein-protein docking performance has been monitored over the years
with the community wide Critical Assessment of PRedicted Interactions (CAPRI)
experiment (Janin et al. 2003; Lensink et al. 2007). Many rounds of blind pre-
dictions have highlighted the increasing accuracy of docking methods, in particular
for some of them that consistently show good performance (Lensink and Wodak
2013; Lensink et al. 2016) (CAPRI results can be found at the url: http://www.ebi.
ac.uk/msd-srv/capri/).

All current docking methods, despite their differences, start from the 3D struc-
tures of the unbound components (whether experimentally determined or compu-
tationally predicted) and incorporate two crucial steps (Halperin et al. 2002; Vajda
and Kozakov 2009):

1. Searching, consisting in the generation of thousands of alternative poses to
sample the conformational landscape;

2. Scoring, consisting in assessing the generated poses using a ‘pseudo-energy’
function in order to rank them and select the native-like solutions.

This separation into two stages is just one way of describing the docking ap-
proach, since sometimes there is no clear separation between these, or they may
incorporate multiple different sub-steps. A fundamental point of any docking
method is to be computationally efficient both in the search step and in its refine-
ment and scoring scheme in order to be able to evaluate a huge number of candidate
solutions and discriminate native-like binding modes from wrong ones in a rea-
sonable computation time.

8.2.1 Step 1: Searching

The search step involves an exhaustive sampling of the conformational space of one
protein with respect to the other, resulting in a six-dimensional search (6D) in the
case of rigid molecules. Almost all docking programs use a similar approach for the
search step: one protein is fixed in space (usually the larger one, named receptor)
and the second (named the ligand) is rotated and translated around the first. Various
methods have been developed that can efficiently cover the entire conformational
space (Vajda and Kozakov 2009) such as:

• Fast Fourier transforms (FFT)-based docking. Despite the huge size of the
conformational space to be sampled, the search can be efficiently performed
through several FFT calculations, as originally introduced by Katchalski-Katzir
et al. (1992). FFT-based methods represent the proteins on a Cartesian grid, with
some degree of inter-protein penetration between the ligand and the receptor
allowed to account for small conformational changes of mainly side-chains. The
shape complementarity is measured using Fourier correlation. Additional terms
can be encoded into measure for example electrostatic and hydrophobic
matching. Adding such terms in the scoring typically requires multiple FFT
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evaluation per pose. Widely used nowadays (Comeau et al. 2007; Pierce et al.
2011; Jiménez-García et al. 2013), such methods efficiently perform an
exhaustive rigid-body search.

• Geometric hashing docking. First developed in the area of computer vision and
implemented in docking by Wolfson and colleagues (Fischer et al. 1992;
Mashiach et al. 2010b), this approach allows efficient searching by dividing the
biomolecular surface into patches and matching them across the interacting
molecules.

• Spherical harmonics-based docking. Pioneered by Ritchie and co-workers
(Ritchie and Kemp 2000; Macindoe et al. 2010), this uses spherical polar
Fourier correlations to accelerate the search, describing the protein shapes as a
combination of spherical harmonic functions and calculating the relative ori-
entations via scalar products of rotated and translated coefficient vectors.

Those methods can evaluate very large numbers of interaction poses in a rela-
tively short time amount, making efficient use of computational resources (CPU
cores), but other algorithms, although less computationally efficient, can reach high
performance as well. HADDOCK (Dominguez et al. 2003) for example uses a
gradient-based search method in Cartesian space (rigid-body energy minimization),
targeting specific patches on the molecular surface deemed favorable by the energy
function used. ATTRACT (Zacharias 2005) pioneered normal-mode analysis into
the searching phase and SwarmDock (Moal and Bates 2010) incorporated it into a
Particle Swarm Optimization meta-heuristic to perform docking while optimizing
conformation, position and orientation simultaneously.

Table 8.1 reports a list of the top-performing docking approaches in CAPRI. For
a more complete compilation of the existing docking programs see the latest CAPRI
assessment, for recent reviews on the topic see (Moreira et al. 2010; Rodrigues and
Bonvin 2014).

8.2.2 Step 2: Scoring

While the goal of sampling is to generate a set of poses, ideally with the highest
number of correct conformations (although non-exhaustive sampling might not
allow to do that), the goal of scoring is to single out the near-native ones within the
pool of models generated. Due to the high complexity of the energetics governing
the interaction, scoring is a critical step in docking: for such a reason, a separate
challenge to test scoring methods has been added to CAPRI (Lensink et al. 2007).

In an ideal scoring process, one or more descriptors of the docking poses allows
to derive a score, which nicely correlates with the model quality (in terms of
similarity to the true solution), thus unambiguously distinguishing correct solutions
from incorrect ones (Fig. 8.3a–c).

However, current scoring functions are far from reaching perfection, although
the CAPRI experiment shows that they are constantly improving (Lensink and
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Wodak 2010, 2013). Traditionally, scoring functions for protein-protein docking
poses rely on two approaches, both of them widely tested in CAPRI blind tests
where they were shown to perform competitively. The first approach uses a linear
combination of energy terms, which can be physics-based and/or empirical, such as
van der Waals, electrostatics and desolvation energies, buried surface area and
terms accounting for shape complementarity (Gray et al. 2003; Cheng et al. 2007;
de Vries et al. 2007; Venkatraman et al. 2009; Gong et al. 2010). Weights used in
the linear combination are usually optimized to distinguish native-like solutions
from non native-like ones.

The second traditional approach is statistics-based or “knowledge-based”, as it
uses properties derived from experimental structures of protein-protein complexes.
Such properties are usually embodied in atom-atom or residue-residue potentials,
derived from the statistical occurrences observed in the analyzed database of
complexes by means of an inverse Boltzmann equation (the higher the population,
the lower the energy) (Moont et al. 1999; Jiang et al. 2002; Lu et al. 2003; Huang
and Zou 2008; Kowalsman and Eisenstein 2009; Khashan et al. 2012).

Table 8.1 List of protein-protein docking algorithms

Program name Searching protocol details Web-server

ATTRACT (Zacharias
2005)

Energy minimization in translational
and rotational space using NMA to
allow conformational changes upon
binding

None

ClusPro (Comeau et al.
2004b)

Rigid-body search via FFT http://cluspro.bu.edu

GRAMM-X
(Tovchigrechko and
Vakser 2006)

Grid-based FFT rigid-body docking http://vakser.compbio.
ku.edu/resources/
gramm/grammx/

HADDOCK (de Vries
et al. 2010)

Rigid-body energy minimization
followed by semi-flexible refinement in
torsion angle space

http://haddocking.org

HEX server (Macindoe
et al. 2010)

Spherical harmonics, polar FFT http://hexserver.loria.fr

PatchDock
(Schneidman-Duhovny
et al. 2005)

Geometric hashing http://bioinfo3d.cs.tau.
ac.il/PatchDock

pyDock (Cheng et al.
2007)

Rigid-body search via FFT http://life.bsc.es/
servlet/pydock/home

RosettaDock (Lyskov
and Gray 2008)

Low-resolution, rigid-body MC search http://antibody.
graylab.jhu.edu/
docking

SwarmDock (Moal and
Bates 2010)

Local docking and particle swarm
optimization of position and
orientation, NMA

http://bmm.
cancerresearchuk.org/
*SwarmDock/

ZDOCK (Chen et al.
2003)

FFT-based rigid-body serach http://zdock.
umassmed.edu

FFT fast Fourier transform, MC Monte Carlo, NMA Normal Mode Analysis
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This approach (Viswanath et al. 2013), like the energy-based one, can also take
advantage of a training process on extended sets of docking poses, to distinguish
correct from incorrect solutions.

The above approaches are, however, not mutually exclusive and in several
scoring functions they are indeed combined into a hybrid approach (Pierce and
Weng 2007; Andrusier et al. 2007; Vreven et al. 2011). Some of these methods also
take advantage of machine learning algorithms in the training process to derive best
coefficients to combine the different scoring terms (Champ and Camacho 2007;
Fink et al. 2011).

It is important to mention that, as now generally accepted, a native structure is
not an isolated event in the global energy landscape and thus native-like models are
expected to form “funnels”, i.e. clusters of similar low energy solutions. The
clustering is often done based on RMSD comparisons between models, but can also
efficiently be performed based on the fraction of common contact as introduced by
Rodrigues et al. (2012). On these bases, some scoring methods try to characterize
funnel-like energy structures on the global energy landscape (Kozakov et al. 2008;
London and Schueler-Furman 2008; Moal and Bates 2010; Torchala et al. 2013),
also using the concept of transient complex (Qin and Zhou 2013), while others,
after scoring, perform a clustering of models in an ensemble of low-energy con-
formations and select the top ones based on the cluster population (Comeau et al.
2004a). The above approaches implicitly use the concept of consensus, i.e. simi-
larity within an ensemble of docking models. More recently, a “pure” consensus
method, CONSRANK, based on the frequency of inter-residue contacts in an
ensemble of docking solutions, has been proposed for the ranking of docking
solutions. Blind testing in CAPRI Round 30 showed it to perform competitively
with classical energy- and knowledge-based approaches.

Other approaches to the scoring include methods using evolutionary information
(Tress et al. 2005; Andreani et al. 2013; Xue et al. 2014) and methods using
experimental information on the complex, when available (de Vries et al. 2007;
Gajda et al. 2010; Moreira et al. 2015). For recent reviews on the topic see (Moal
et al. 2013a, b).

JFig. 8.3 a Scheme of an ideal scoring process: the score strongly correlates with the distance of
the model from the native structure (same color scheme of b and c). b, d Actin-DNase I complex
[PDB ID: 1ATN (Kabsch et al. 1990)]: surface representation of the receptor (actin, light blue)
with sphere representation of the center of mass of the ligand (DNase I, teal) interface (b) and
intermolecular contact map generated by COCOMAPS server (Vangone et al. 2011) (d). c, e An
ensemble of 185 predicted docking poses for 1ATN: surface representation of the receptor (light
blue) with sphere representation of the centre of mass of the model ligand interface (green: correct;
red: incorrect; orange: intermediate c and ‘consensus map’ (e)
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8.2.3 Data-Driven Docking

Although important progresses in the searching and scoring procedures have been
achieved, one of the most useful approaches to improve the quality of the docking
simulations is the use of biological information about the interaction regions of the
complex when available. As clearly inferable from the latest CAPRI assessment
reports (Lensink and Wodak 2013), information (experimentally or computationally
derived) on regions and residues involved in the interaction is one of the key points
for the improvement of a docking simulation. Many docking programs offer the
possibility to integrate data, for example as a scoring bias or as a filter to select
solutions at the end, to exclude from the search regions not involved in the inter-
action or to drive the docking towards the areas known to be involved.

HADDOCK, one of the top performing docking program in the last
CAPRI rounds (Lensink and Wodak 2013; Lensink et al. 2016), is the pioneer of
data (or information)-driven docking and, in contrast to other docking methods that
usually incorporate data at some stage of the protocol, HADDOCK is the only
program that uses such data throughout the entire protocol (see Sect. 8.3.1).
In HADDOCK the data (experimental and/or predicted) are incorporated into the
calculation as an additional restraint energy term, as distance [i.e. mutagenesis,
nuclear Overhauser effect, chemical cross-links, electron paramagnetic resonance
distances, or even co-evolution-derived distances (Hopf et al. 2014)], orientation
[e.g. NMR residual dipolar coupling (van Dijk et al. 2005), pseudo-contact shifts
(Schmitz and Bonvin 2011)] or relaxation anisotropy (van Dijk et al. 2006)
restraints (Schmitz et al. 2012) or even recently shape information [e.g. cryo-EM
data (van Zundert et al. 2015)]. HADDOCK implements the concept of highly
ambiguous distance restraints to incorporate information which define patches of
interacting residues but no specific pairwise interactions between them (like in the
case of NMR chemical shift perturbations).

Most traditionally successful methods in CAPRI also offer the possibility to
integrate data into the protocol: FFT-based approaches [ClusPro (Comeau et al.
2004b), GRAMM-X (Tovchigrechko and Vakser 2006), pyDock (Cheng et al.
2007), ZDOCK (Chen et al. 2003) and HEX (Macindoe et al. 2010)] use data to
bias the score toward models that satisfy it, or as a filter at the end. Thus,
SwarmDock (Moal and Bates 2010) uses the data to pre-orientate the molecules
such as the identified or predicted interfaces face each other while PatchDock
(Schneidman-Duhovny et al. 2005) allows the definition of interacting or
non-interacting regions, and also the setting of distance constraints. The
RosettaDock (Lyskov and Gray 2008) program includes data as distance-filters to
bias the Monte Carlo search whereas the most recent version of ATTRACT now
also supports ambiguous distance restraints and allows docking using Cryo-EM
density maps (de Vries and Zacharias 2012). Finally, ZDOCK (Chen et al. 2003)
includes specific knowledge-based scoring functions in the protocol.

The quality of models coming out of data-driven docking approaches will
depend on the quality of the data used. The most common experiments that give
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information about interface residues involved in the binding are mutagenesis, NMR
chemical shift perturbation and cross-saturation and hydrogen/deuterium exchange,
while techniques such as nuclear Overhauser effect in NMR and cross-link
experiments in mass spectromety provide distance information. This experimental
information can be complemented or even replaced by bioinformatics predictions.
These are mostly based on the study of sequence/structure conservation of key
residues, co-evolution principles allowing to derive residue pairs in predicted
proximity, propensity of residues to be surface-exposed, or the combination of such
information as consensus and partner-specific methods (Neuvirth et al. 2004; de
Vries et al. 2006; Porollo and Meller 2006; Negi et al. 2007; Qin and Zhou 2007;
Ashkenazy et al. 2010; Ahmad and Mizuguchi 2011; de Vries and Bonvin 2011;
Zhang et al. 2011; Zellner et al. 2012; Xue et al. 2014). However, the predictions
have to be analyzed critically and combined with experimental information when
available.

8.3 The Challenges of Docking: Flexibility and Binding
Affinity

8.3.1 Changes upon Binding: The Flexible Docking
Challenge

Although docking programs have improved their performance over the years
according to CAPRI, predicting the structure of biomolecular complexes remains a
difficult problem with, at the moment, two major challenges: the identification of
correct solutions within a pool of models (scoring) and the treatment of proteins
with substantial conformational change upon binding (flexibility).

Proteins are not rigid, and during the association process they usually undergo
conformational changes that include both backbone and side-chains movements
(Betts and Sternberg 1999). As a result, the conformation of the proteins within the
complex/bound form might be different from the one they have in the free form.
Therefore, incorporating flexibility in docking algorithms is necessary to predict the
native associations and reach high accuracy of the solutions. In the cases where
structural changes occurring upon binding are minimal, the difference between
bound and free forms can be neglected so the rigid body docking is sufficient.
A major problem here is that, in general, one can not know a priori if conforma-
tional changes will take place or not, nor their extent. Properly dealing with flex-
ibility in docking is therefore one of the main challenges in the field (Smith et al.
2005a; Bonvin 2006; Lensink et al. 2007).

A major problem of incorporating flexibility in docking, compared to performing
rigid-body docking only, is the considerable increase in the number of degrees of
freedom and, consequently, in the search space. This also often goes together with a
higher rate of false-positive solutions, since all might be refined to some local
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energy minimum, which thus complicates the identification of correct solutions
(Andrusier et al. 2008).

Flexibility can be introduced at several levels:

• Implicitly. Implicit flexibility can be incorporated by soft-docking, by smoothing
the protein surface or allowing some degrees of interpenetration or overlap of
atoms (Palma et al. 2000; Heifetz and Eisenstein 2003) [although one of the
drawbacks of such an approach is that severe steric clashes can be introduced
(Smith et al. 2005b)], or with cross-docking by performing rigid-body docking
of ensembles of conformations, taken for example from NMR structures or MD
simulations or any other conformational sampling method (de Groot et al.
1997). Depending on the implementation this can lead to a significant increase
in computing time. It has, on the other hand, the advantage that rather large
conformational changes can be pre-sampled in that way.

• Explicitly. In the past few years, flexibility has been explicitly introduced into
the docking process by allowing side-chains and/or backbone to move. The
docking programs allowing side-chain flexibility (Fernández-Recio et al. 2003;
Zacharias 2005; de Vries et al. 2007; Lyskov and Gray 2008; de Vries et al.
2010) use different approaches, like Monte Carlo (MC) optimization of the
ligand (ICM-DISCO) (Fernández-Recio et al. 2003), sampling the known
populated rotamers of the side-chains followed by energy minimization steps
(ATTRACT) (Zacharias 2005), using MD simulated annealing for refinement of
both receptor and ligand side-chains (HADDOCK) (de Vries et al. 2010), or
repacking and optimization of side-chains in a MC search (RosettaDock)
(Lyskov and Gray 2008).

In contrast with side-chains flexibility, which is easier to model, backbone
flexibility is currently one of the main challenges in docking.

In addition to conformational changes upon binding, some programs have been
developed to tackle the challenge of large domain motions, such as the flexible
multi-domain docking approach proposed by Karaca and Bonvin (Karaca and
Bonvin 2011) that can describe large domain motion-type conformational changes.
The proper treatment of flexibility in protein-protein docking and also for peptide
docking (see Sect. 8.4) remains an active area of research. In small-molecule
docking (like protein-ligand docking), in which flexibility plays a major role, the
problem is more tractable, but no less challenging (Brooijmans and Kuntz 2003;
Erickson et al. 2004).

8.3.2 The ‘Perfect’ Scoring Function and the Binding
Affinity Problem

Scoring approaches typically attempt to fish the most likely model of a complex
from a set of poses but are not designed to predict how strongly the proteins bind,
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i.e. their free energy of binding DGbinding, or whether they bind at all [as showed by
cross-docking simulations (Sacquin-Mora et al. 2008; Wass et al. 2011a, b, Martin
and Lavery 2012)]. That is because scoring (ranking) and binding affinity prediction
(DG) are two different things. The DGbinding, or Gibbs free energy of the complex
can be determined by measuring the dissociation constant as:

DG ¼ RT lnKd

where R is the gas constant, T is the temperature and Kd is the dissociation constant.
It reflects the natural inclination of molecules entities to associate and is a key
thermodynamic quantity for understanding recognition and association phenomena,
and possible dysfunctions thereof.

Accurately predicting binding free energies with a general scoring function,
while a very ambitious goal, would revolutionize the efficiency of docking meth-
ods. Different methods aimed at predicting binding affinity in protein complexes
have been proposed throughout the years, taking into account different structural
and energetic features of the complex and varying greatly in terms of accuracy and
computational cost. Based on the initial observation of Chothia and Janin (1975) in
the 1970s and described by Horton and Lewis (1992) in 1992, the buried surface
area (BSA), i.e. the surface that is buried upon complex formation, has been the first
descriptor to be related to the binding affinity. Since then, many methods have been
proposed. Exact methods such as free energy perturbation and thermodynamics
integration can be very accurate, but due to their computational costs their appli-
cation is extremely limited (mostly to low throughput studies and mainly for small
drug binding or mutations). Methods based on empirical functions (empirical, force
field-based potentials, statistical potentials, scoring functions used in docking) are
much faster (Jiang et al. 2002; Ma et al. 2002; Zhang et al. 2005; Audie and
Scarlata 2007; Su et al. 2009; Bai et al. 2011; Qin et al. 2011; Moal and Bates 2012;
Tian et al. 2012; Luo et al. 2014; Kastritis et al. 2014). However, even if some have
been very successful on small training sets (Horton and Lewis 1992; Audie and
Scarlata 2007), most published models still fail to systematically predict the binding
affinity (Kastritis and Bonvin 2010, 2013a, b) for large datasets or discriminate
between binders from non-binders (Sacquin-Mora et al. 2008; Fleishman et al.
2011). Usually, factors such as conformational changes occurring upon binding,
allosteric regulation, solvent and co-factor effects, which may contribute to the
binding strength, are neglected, which entails their main weaknesses. Using a large
binding affinity benchmark consisting of 144 complexes (Kastritis et al. 2011)
[updated version of the benchmark now available in (Vreven et al., 2015)], Kastritis
et al. (2014) demonstrated that non-interacting surface properties like percentages
of charged and polar residues do also contribute to binding affinity. These rather
surprising finding were corroborated in a recent study by Cazal et al. in which this
contribution from the non-interaction surface was reproduced (Marillet et al. 2015).
New advances were made by Vangone and Bonvin (Vangone and Bonvin 2015;
Xue et al. 2016) who recently showed that the network of contacts made at the
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interface in a protein-protein complex is a better structural descriptor of the binding
affinity then the BSA.

8.4 Protein-Peptide Docking

In eukaryotes more than 40% of the interactions are estimated to be mediated by
peptides, for example in signal transduction, protein degradation, transcription
regulation and immune response (Petsalaki and Russell 2008). Due to their
involvement in many biological pathways, peptide interactions are implicated in
many diseases and in cancer (Petsalaki and Russell 2008; Naider and Anglister
2009), making them of high interest in the development of new therapeutics and for
drug design (Vaara 2009). Indeed, alongside small-molecule inhibitors, peptides are
large enough to competitively inhibit protein-protein interactions and can mimic
protein binding domains. However, the experimental structure determination of
protein-peptide recognition remains a challenging task also in this case, mainly due
of two factors: peptides are highly flexible and they usually show transient inter-
actions with the substrate. From a structural point of view, peptides are short chains
ranging from 5 to 30 amino acids, often lacking a well-defined fold in their free
form. They might not necessarily be independent molecules, but can appear as
disordered regions of proteins (for example at termini), and they can show multi-
plicity in their interaction, as for example in the case of the tumor suppressor p53
(Russell and Gibson 2008).

Complementary computational prediction methods like docking are therefore
urgently required to model those systems, as also reflected by the recent addition of
protein-peptides cases in CAPRI. Peptides’ peculiar characteristics represent,
however, a unique challenge for computational predictions. Conventional
protein-protein docking struggles with the high flexibility of peptides while
ligand-docking protocols have only been successfully applied to short peptide, due
to the significant higher number of peptide rotatable bonds than in drug-like small
molecules (Hetényi and van der Spoel 2002; Sousa et al. 2006; Rubinstein and Niv
2009; London et al. 2013). Over the last years a number of new algorithms or ad
hoc adaptations have been developed with the aim of modelling protein-peptide
complexes (Petsalaki et al. 2009; Antes 2010; Raveh et al. 2010; Ben-Shimon and
Eisenstein 2010; Raveh et al. 2011; Donsky and Wolfson 2011; Dagliyan et al.
2011; Trellet et al. 2013; Verschueren et al. 2013; Lavi et al. 2013; Ben-Shimon
and Niv 2015; Kurcinski et al. 2015). Similarly to protein-protein docking, there are
two main steps: (i) identification of the binding site on the protein surface (which
might include the use of experimental or bioinformatics data when available; see
also Chap. 10) and (ii) docking and refinement of the peptide into the binding site.

Several high-resolution approaches have been successfully applied to unbound
protein-peptide datasets. FlexPepDock (Raveh et al. 2010, 2011), the first generic
algorithm released to model protein-peptide complexes, uses fragment-based
sampling for the generations of different peptide backbone conformations, and then
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allows full flexibility of the peptide and to the protein side chains within a defined
docking site. HADDOCK (Trellet et al. 2013) overcomes the problem of the
indetermination of the peptide free structure by using as input an ensemble of three
different conformation of the peptide: alpha-helix, polyproline-II and extended.
Taken together, these conformations cover about 80% of the observed
protein-peptide structures in the PDB (Diella et al. 2008). This is followed by
flexible refinement step in which more flexibility is given to the peptide. This
protocol mimics the conformational selection mechanism/induced fit recognition
mechanism (Weikl and Deuster 2009; Hammes et al. 2009; Csermely et al. 2010;
Changeux and Edelstein 2011). Lately Blaszczyk and co-workers implemented
CABS-dock, an ab initio protein-peptide modelling approach (Kurcinski et al.
2015) that performs the search for the binding site and docking (giving flexibility)
simultaneously using a coarse grained representation of the system. Additional
ab initio algorithms or tools aimed to predict candidate sites of interaction on the
protein surface (Trabuco et al. 2012) have been implemented lately to overcome the
lack of information on the peptide binding site (Ben-Shimon and Niv 2015). which
is, in addition to the high flexibility of peptides, the main challenge to overcome in
protein-peptide docking.

Despite the recent progresses, this is a field that still is its infancy with further
development and extensive evaluation required, for example in CAPRI challenges.
For further information please check (London et al. 2013; Trellet et al. 2015).

8.5 Post-docking: Interface Prediction
from Docking Results and Use of Docking-Derived
Contacts for Clustering and Ranking

It is now over ten years since Fernandez-Recio et al. (2004) proposed to predict
residues at the protein-protein interface from results of docking simulations
(Fig. 8.4a). They analyzed the rigid-body docking energy landscape in several
training sets, in search of protein recognition areas, showing that the energy profile
for the ensemble of found docked poses can be used to determine accurately
interaction sites on protein surfaces. In particular, they defined a normalized
interface propensity (NIP) parameter, which represents the tendency of a given
residue to be located at the interface, based on the buried surface area in docking
poses from rigid docking simulations. Based on the NIP definition, more recently
Fernadez-Recio and Grosdidier derived a method for hot-spot residues prediction,
achieving up to 80% positive predictive value (Grosdidier and Fernández-Recio
2008).

In 2010, based on their experience as assessors in the CAPRI experiment,
Lensink and Wodak confirmed the potential of docking techniques for the pre-
diction of protein interfaces (Lensink et al. 2014). By analyzing docking models
submitted in CAPRI by 76 participants for 46 interfaces in 20 targets, they found

8 Prediction of Biomolecular Complexes 279



that the best performing groups were able to predict residues at the interface with
precision and sensitivity levels around 60% for the majority of the analyzed cases,
thus reaching a performance competitive with the most successful
non-docking based methods in the field. The main finding of this analysis was thus
that, apparently, models ranked highly by docking procedures are more enriched in
correct interfaces than in correct complexes. In fact, prediction of correct interfaces
is also contributed by incorrect (according to the CAPRI assessment) models, which
were found to feature one quarter of correct interfaces (with precision and sensi-
tivity above 50%), contributing to 70% of the overall correct interface predictions.

de Vries and Bsonvin also showed that, after improving the performance of
docking predictions with HADDOCK by a consensus monomer-based interface
prediction, the interface prediction itself could be further improved by
post-prediction based on top-scored docking results (de Vries and Bonvin 2011).
Following these findings, Weng and colleagues recently developed RCF (residue
contact frequency), another method to predict interface residues from models
generated by docking algorithms (Hwang et al. 2014) (Fig. 8.4a). They used RCF
to predict the binding interfaces of proteins that bind to multiple partners, finding
that it correctly predicts interface residues unique for the respective binding part-
ners. They also showed that the combination of RCF with monomer-based interface
prediction methods, through a support vector machine, improved performance
compared to both separated approaches. RCF was also used by the Weng’s group to

Fig. 8.4 Scheme of the use of docking results for: a predicting residues at the interface, and for:
b models clustering and c ranking. Figure adapted from Oliva et al. (2013)
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analyze their docking results in the CAPRI rounds 20–26, where selection of final
models for submission was in fact guided by RCF (Vreven et al. 2013).

Besides the identification of residues likely involved in the interface from results
of docking simulations, specific inter-residue contacts observed in docking poses
have been recently used to guide their clustering, analysis and ranking. As the
native structure of a complex is not expected to be an isolated position in the energy
landscape, docking experiments often incorporate one clustering step in their pro-
tocols, which is classically based on time-consuming (live memory, RAM) and
size-dependent RMSD measures (Janin 2010). In this context, Bonvin and col-
leagues proposed the use of the fraction of common contacts (FCC) within models
as a similarity description to base their clustering on (Rodrigues et al. 2012)
(Fig. 8.4b). They showed that FCC is an efficient measure of the structure similarity
for protein complexes, greatly reducing the computation time while generating
clusters of similar quality with the state-of-the art RMSD-based methods. Further, it
is particularly suited for flexible docking approaches, multicomponent assemblies
and heterogeneous systems like protein-DNA complexes.

Oliva and colleagues proposed instead to analyse an ensemble of protein-protein
docking models, by deriving a consensus based on the conservation within them of
the inter-residue contacts (Vangone et al. 2012). Such a consensus can also be
visualized as a “consensus contact map”, i.e. an intermolecular contact map where
the conservation of contacts is reported on a gray scale (see an example in Fig. 8.3e,
compared to the intermolecular contact map of the corresponding crystal structure,
Fig. 8.3d). Analysis of prediction sets of docking models for seven CAPRI targets
showed that a significant fraction of native contacts was included within the con-
tacts with highest conservation rate, even in the cases where only a small percentage
of solutions were correct. This suggests that incorrect models can contribute to the
correct prediction not only of residues, but also of specific inter-residue contacts at
the complexes interface. A natural extension of this approach was the development
of CONSRANK (CONSensus-RANKing) (Oliva et al. 2013; Vangone et al. 2013),
a consensus method for the scoring of docking models, which ranks models based
on their ability to match the most conserved contacts in the ensemble they belong to
(Fig. 8.4c).

8.5.1 Web Tools for the Post-docking Processing

As discussed previously (Sect. 8.2.2), a scoring/filtering step is normally included
in a docking procedure. However, to date no program can provide a single docking
solution with a high enough confidence to be correct. Docking programs instead
generally provide the user with an ensemble of models, corresponding to a subset
(usually refined) of the solutions they generated in the conformational sampling
step, which possibly contain native-like models. These models have thus to be
analyzed to attempt to single out the correct ones. Some tools have been specifically
devoted to the post-docking processing, i.e. the analysis, scoring and ranking of
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models representing the output of docking programs. Several of these
post-processing tools are publicly available as web servers and are listed in
Table 8.2, together with the corresponding URLs. The scoring approaches they
mainly rely on, reflecting the ones described above (Sect. 8.2.2), are also reported
in Table 8.2.

Table 8.2 List of available web servers for the post-docking processing

Server name Algorithm Analyses URL

CCharPPI (Moal
et al. 2015)

Energy/knowledge-based 109 parameters including
FireDock, PyDock,
RosettaDock, SIPPER &
ZRANK scores

http://life.bsc.
es/pid/
ccharppi/

CONSRANK
(Chermak et al.
2014)

Consensus-based Contacts analysis and
visualization; re-scoring

https://www.
molnac.unisa.
it/BioTools/
consrank/

DOCKRANK
(Xue et al. 2014)

Evolution-based Prediction of the interface;
re-scoring

http://einstein.
cs.iastate.edu/
DockRank/

FastContact
(Champ and
Camacho 2007)

Energy/knowledge-based Energy minimization;
prediction of residue contact
free energies; re-scoring

http://structure.
pitt.edu/
servers/
fastcontact/

FiberDock
(Mashiach et al.
2010a, 2008)

Energy/knowledge-based Flexible refinement;
re-scoring

http://
bioinfo3d.cs.
tau.ac.il/
FiberDock/
http://
bioinfo3d.cs.
tau.ac.il/
FireDock/

FILTREST3D
(Gajda et al.
2010)

User-defined restraints
from experimental data

Re-scoring http://
filtrest3d.
genesilico.pl/
filtrest3d/

FunHunt
(London and
Schueler-Furman
2008)

Energy-based Characterization of local
energy landscape

http://funhunt.
furmanlab.cs.
huji.ac.il/

PROCOS (Fink
et al. 2011)

Energy/knowledge-based Re-scoring http://
compdiag.uni-
regensburg.de/
procos/
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8.6 Concluding Remarks

In view of the growing interest in protein-protein interactions for pharmaceutical
and medical applications, and the persistent disproportion between experimental
structures available for single proteins and multiple protein systems, the relevance
of molecular docking as the method of choice for modelling the structure of
protein-protein complexes is set to increase.

In the last 15 years, the CAPRI blind assessment has shown that docking
techniques can be successfully applied to a variety of cases, with biological
information on the interface, when available, further improving results, by driving
the search of allowed configurations and helping in filtering out incorrect solutions.
At the same time, the development of web servers characterized by a user-friendly
interface, for performing both docking predictions and post-docking analyses, is in
fact making the use of this technique accessible also to a non-specialized audience.

That notwithstanding, to further extend its confident applicability to critical
cases, protein-protein docking needs to face a number of challenges in the near
future. First of all, the flexibility of the two interacting proteins has to be more
confidently coped with, possibly by exploring novel approaches to the sampling of
the conformational space. In this regard, it is remarkable that, in the latest
CAPRI rounds, scorer groups have been shown to achieve overall a better pre-
diction performance than predictor groups. In other words, the same groups typi-
cally recognized more correct solutions from ensembles of models obtained by a
variety of techniques, rather than from their own generated models ensemble. This
suggests that the bottleneck in a docking procedure still resides in an efficient
sampling of the conformational space and that application of different docking
strategies to the target system could help overcoming the issue—a kind of con-
sensus docking strategy using various approaches. Other challenges that need to be
addressed include a reliable identification of native-like models, with possibly an
estimation of the binding affinity of the complex. In addition, when one of the
interacting partners is a peptide, docking protocols have to deal with further
challenges, such as the high flexibility and the undefined folding of peptides.

Finally, the prediction of the 3D structure of a biomolecular complex, which is
fundamental for understanding biological processes, can also help in advancement
of related fields. Indeed, it is becoming increasingly clear that results of docking
simulations can also be used as an intermediate step for other applications, such as
the interface prediction itself, which can be very valuable for experimentalists to
guide their work (e.g. to target mutagenesis to interesting regions on the surface of a
protein). Further, three-dimensional structural information can also be useful to
identify pair on interacting proteins/peptide motifs with the final goal to predict the
full network of protein-protein interactions governing the cells (Zhang et al. 2012;
Chen et al. 2015).
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