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Chapter 1

Infroduction

Surely one of the first questions in any given talk on the theory of one-dimensional
systems, that is asked by both un-initiated physicists and laymen alike, boils down
to: How is it reasonable to think of a material as strictly one-dimensional, when we live in a
three-dimensional world and the constituent atoms of the material have a finite size as well?
We would thus like to address this question first, before then discussing the many
reasons for studying one-dimensional model systems and the rich history of the
field.

Probably the simplest quantum mechanical model system known to (hopefully) ev-
ery physicist, is that of the particle in a box. A single particle, say an electron, that is
confined to a boxed volume, is described by a wave function |¢), which is a solution
of the Schrodinger equation

RN
2m 2m 2m

+Vny2) | ), (11)

Ely) =

where V(x, 1, z) represents a potential that vanishes inside the box and becomes in-
finitely large (V = +o0) outside the box. The solutions of this Schrodinger equation
are simple sine and cosine functions of the argument k,a with « € {x,y,z}. The
wave numbers k, = n(7/L,) count the number of complete waves n that fit into
each extent L, of the box. The three differential equations in are not coupled
and we can therefore examine the solutions in each direction « separately. The en-
ergy associated with the wave function of wave number k, is

212 2422
B, =K _n (12)
2m 2mL2
where we highlight that E, is inverse proportional to the length L2. We show the
wave functions |¢,,), that correspond to the four lowest energies E,,, in figure
It is easy to see that the energy gaps between the states grow quickly as n increases,
namely as n2. However, here we are only interested in the energy gap AE between



2 1 Infroduction

n2m2h?
En= 22
A
[1pa)
[i3)
[1h2)
AE
) 1)
< 7 >

Figure 1.1: Depiction of the low energy solutions |i,) to the Schrodinger equation describ-
ing a particle in a one-dimensional infinite potential well. The position of the
wave functions in z-direction indicates their corresponding energy E,,.

the ground state |ip1) and the state directly above it, |i,). If we imagine our box to be
the size of an atom, which is typically L4 = 1 Angstrom = 10~10 m, then this energy
gap amounts to
2.2
AE =T L 100ev, (13)
2meL%
where m, denotes the mass of the electron. By contrast, the thermal energy at room
temperature is Eg, = kT ~ 2.7 x 1072eV. So, unless randomly hit by an x-ray
photon, an electron will not transition from the ground state to an excited state - cer-
tainly not for the duration of a typical experiment - and will thus remain completely
unaware of these states. What constitutes a dimension, namely a degree of freedom,
simply does not exist for that particular electron. In a chain of atoms, the only de-
gree of freedom then left to the electron, is the "choice" between the quantum states
corresponding to the different wave numbers k, along the direction of the chain. For
all intents and purposes, the world of the electron is one-dimensional.

So now that we have established that it is reasonable to treat a system as one-di-
mensional in certain circumstances, let us consider a few materials where such cir-
cumstances are realized.

A straightforward example would be artificial ultra-thin quantum wires, in which the
electrons become confined to a region of just a few nanometers in the directions or-
thogonal to the wire. These regions are created in a typical hetero-structure, where



a layer of GaAs is sandwiched between two thick layers of AlGaAs. Such a hetero
structure is host to a two-dimensional electron gas (2DEG) inside the GaAs layer.
By framing the structure with a perpendicular layer of AlGaAs, the electron gas be-
comes stricly confined to the GaAs layer in every direction. A tungsten gate that
is placed on top of the hetero structure subsequently brings about a potential that
traps the electrons in a thin region at the edges of the GaAs layer. Using this ap-
proach, Yacoby et al. [1} 2] were able to create a quantum wire with dimensions
10 ym x 25nm x 25nm and level separation AE > 20meV. Measurements of the
conductance in these systems reveals the characteristic features of a one-dimensio-
nal system [3].

A second example of one-dimensional physics emerging in a two-dimensional sys-
tem, is in fractional quantum Hall systems, where the excitations at the edge are
described by one-dimensional theories [4].

A class of superconducting organic crystals, known as Bechgaard salts, is also ade-
quately described by a one-dimensional theory, due to their strong anisotropy [5].
Certainly the material with the most potential applications in our list of one-dimen-
sional materials are carbon nanotubes [6]. Due to their immense strength and stiff-
ness, they are used to increase the structural rigidity of objects ranging from the
tips of atomic force microscopes to airplanes. Some even see them as the material
that could one day realize a space elevator. Most important for our sake though,
is the fact that these nanotubes can have diameters of less than 1 nm, while at the
same time macroscopic lengths of up to half a meter have been achieved [7], making
them a somewhat ideal one-dimensional system. Scanning tunneling microscopy of
metallic carbon nanotubes indeed reveals the power law tunneling density of states
that is so characteristic for one-dimensional systems [8]].

By themselves, these materials warrant a theoretical interest in one-dimensional sys-
tems, yet the driving force for theoretical efforts in the field lies elsewhere.

When in 1995 a group of experimentalists achieved the first Bose-Einstein conden-
sate (BEC) using a gas of Rubidium atoms at a temperature of T = 1.7 x 10~7 K [9],
it showcased the enormous potential of such ultracold atomic gases to realize new
states of matter.

Three years later, several theorists suggested the use of interfering laser beams to
construct an optical lattice in which to place a gas of ultracold atoms. The ac Stark
effect arising from the alternating electric field of the laser light induces a dipole
moment in the atoms and the interaction between said dipole moment and the field
confines the atoms to the valleys of the optical lattice. The atoms still retain the
ability to tunnel between neighboring valleys of the lattice though. By extending
the depth of the valley, the wave functions of the atoms become more localized,
resulting in an increased repulsive interaction between atoms in the same valley.
The ratio between interaction strength and tunneling amplitude U/ ] is hence easily
controlled through the parameters of the lasers. Building on an idea by Feynman
[10], Jaksch et al. [11, 12] proposed this experimental setup for a simulation of the
quantum phase transition between a BEC and the Mott-insulating phase of the two-
dimensional Bose-Hubbard model, characterized by the parameters U and J.
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This precise experiment was performed in 2002 by Greiner et al. [13], where they
were able to clearly identify said phase transition. The experiment marks the first
application of ultracold atomic gases in optical lattices for the simulation of the be-
havior of strongly correlated many-body quantum systems, for which a rigorous
theoretical study is not possible.

Since then, the experiments have become more and more refined. Every parameter
of the simulated models can be precisely tuned, and extended to values that cannot
be reached in regular materials, for example through the use of Feshbach resonances
[14,[15]. Fermionic model systems have since also been realized, most notably Fermi-
Hubbard models, of which the two-dimensional version is of particular importance
for the study of high-T, superconductivity, and the one-dimensional one serves as
an important benchmark, as we shall see later [16-21]. In the meantime, quantum
gas microscopes now allow the manipulation and tracking of invidual atoms, which
offers the opportunity to create custom quantum states and to observe their time evo-
lution in detail [22] 23]. Another exceptional feature of ultracold atomic gas exper-
iments is their strong isolation from the environment, which makes the simulation
of closed quantum systems possible. Most important - in the context of this thesis -
is the ability of these experiments to rapidly adjust the parameters of the simulated
systems, usually on time scales smaller than the typical time scales of the model sys-
tems. This allows for the implementation of sudden and time-dependent quantum
quench protocols, the non-equilibrium dynamics in response to both of which we
discuss in the thesis on hand.

Even though originally motivated by theoretical work, the power to simulate strongly
correlated many-body models in a plethora of conditions, that is offered by these
ultracold atom experiments, now stimulates theorists to look into previously unex-
plored aspects of such models, particularly their non-equilibrium behavior. A good
example of this stimulus is the famous quantum Newton’s cradle experiment by Ki-
noshita et al. [24] (see Fig. . In it, two clouds of Rubidium atoms in a one-dimen-
sional harmonic trapping potential were shown not to relax to a thermal equilibrium.
This result sparked a large body of theoretical work on the equilibration and ther-
malization behavior of one-dimensional systems at or close to integrability [25| 26].

The current interest in one-dimensional many-body systems may be incentivized
by these exciting new experimental possibilities, but the fascination of theorists with
one-dimensional systems predates the experiments by several decades.

The reasons for this fascination are manifold: The dominant role of interactions and
quantum fluctuations in these systems brings about a host of new and exotic phe-
nomena. Likewise, the Fermi liquid picture, in which quasi-particle excitations of
an interacting system are essentially free electrons with mass corrections, becomes
inadequate and needs to be replaced with the Luttinger liquid picture. The physics
of one-dimensional systems is thus arguably not less interesting than the physics of
their higher-dimensional counterparts.

And while many-body problems are inherently difficult to study in 1D, 2D, and 3D,-
thus the need for quantum simulators - the restrictions, that arise from operating in
a single dimension, give rise to several powerful tools that allow us to do just that.
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Figure 1.2: Depiction of the classical (a) and the quantum (b) Newton’s cradle. Reprinted
from [24]] with permission from Springer Nature.
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The first of these dates back to 1931, when Hans Bethe, while on a train ride to
Rome, conceived of the Bethe ansatz, with which he was able to find the exact eigen-
values and eigenstates of the Heisenberg spin chain [27, 28]. Later, it was realized
that the Heisenberg chain belongs to a class of models, known as integrable models,
for which the many-body scattering matrix satisfies the Yang-Baxter equation [29].
Based on this insight, additional Bethe ansatz approaches were developed, which
grant access to the exact eigenvalue spectrum of integrable systems [30].

Arguably the most important of these exactly solvable models is the Fermi-Hubbard
chain [31]]. It is straightforward to generate with ultracold atoms and serves as an
ideal benchmark for experimental and theoretical work alike.

Better yet, our available tools are not limited to integrable models. In 1950, Shinichiro
Tomonoga devised a model, that described the low-energy excitation of one-dimen-
sional interacting fermionic theories in terms of free bosons [32]. Due to subsequent
contributions by Joaquin Luttinger [33], this model is now known as Tomonaga-
Luttinger model. The bosonization of fermionic theories then culminated in the
1980s, when Duncan Haldane put forward a universal description of one-dimen-
sional fermionic quantum liquids as bosonic density fluctuations with renormalized
parameters [34H36]. This Luttinger liquid description captures the exotic physical
phenomena of 1D materials, such as spin-charge separation [17], where the electrons
in the material separate into two or three independent particles, one of which carries
the electron’s charge, one its spin and one its orbital degree of freedom.
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The Luttinger liquid theory is also an example of a conformal field theory (CFT).
Several other important physical systems can also be described by CFTs and are thus
amenable to the powerful toolset that exists for such theories in one spatial dimen-
sion [37, 38].

There are furthermore multiple numerical means by which to tackle one-dimensio-
nal many-body problems. Following the introduction of the Numerical Renormal-
ization Group by Wilson [39] and the Density Matrix Renormalization Group by
White [40], a whole slew of algorithms was developed that allow for the calculation
of eigenstates, operator expectation values and correlation functions, often to ma-
chine precision, and last but not least the simulation of the time evolution of quan-
tum states.

By now, we have hopefully convinced the reader that the new possibilities for exper-
imental verification and the copious computational tools at hand, are ample reason
to study previously unexplored facettes of one-dimensional many-body systems.
The particular facette studied in the work at hand, is the non-equilibrium dynamics,
which in our case are generated by sudden and time-dependent quantum quenches.
Such non-equilibrium dynamics are a particularly difficult problem, because the
time evolution of the initial many-body quantum state, which is governed by the
post-quench Hamiltonian, is highly non-trivial. On top of that, applying an operator
to this many-body quantum state in order to calculate its expectation values, typi-
cally creates an intricate set of excitations. [41] 42]

Throughout the thesis, we furthermore contrast the results that we have obtained
using exact numerical methods for two microscopic models, namely the Heisenberg
and Fermi-Hubbard chains, with results derived from the Luttinger liquid theory,
which, in equilibrium, describes the universal behavior of the two models.

In the second part of the thesis, we reduce the dimensionality even further and em-
ploy complementary numerical and analytical tools to examine the unusual non-
equilibrium behavior of a ring-shaped quantum impurity hosting interacting spin-
less fermions.

Outline

The thesis is structured as follows:

e Chapter 2 gives a brief overview of serveral numerical methods that we have
employed throughout our work. It also introduces the XXZ Heisenberg chain
and subsequently the Tomonaga-Luttinger model as its low-energy descrip-
tion.

e In Chapter 3, we calculate the local density of states (LDOS) of the Fermi-
Hubbard chain in the Mott-insulating phase. We then examine the Fourier
transform of the LDOS for features corresponding to spin-charge separation.

e Chapter 4 is devoted to the study of time-dependent interaction quenches in
the XXZ Heisenberg chain. We analyze the effect of the finite quench duration



on the light cone of correlation spreading and scrutinize the applicability of
Luttinger liquid theory for systems out of equilibrium.

o In Chapter 5, we investigate the extended lifetimes of transient oscillations of
the local currents in an interacting ring-shaped quantum impurity. We probe
the system in a variety of different limits to gain an understanding of the mech-
anisms that prevent the local currents from relaxing to the non-equilibrium
steady state.

The thesis concludes with a summary of our results in English and Dutch and a
discussion of open questions and future work.

Notation Unless otherwise specified, we employ natural units, in which 7 = kg =
¢ = 1. As notation for the elementary charge we use e and we use ¢ for the base of
the natural logarithm.
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Chapter 2

Overview of Methods

In this chapter, we give a brief introduction to a selection of methods and
models that we have used in our work or that we have compared our results
to on more than one occasion!. It is targeted at the reader who is not yet fa-
miliar with these topics and not eager to consult a separate dedicated book
in order to understand the terminology or the origin of models, that have
been used in the subsequent chapters. Readers with a working knowledge
of the topics should feel free to skip this chapter. In Sec. we present two
widely used algorithms for the diagonalization of sparse matrices. Sec.2.2]
introduces the singular value decomposition, a powerful tool in matrix ap-
proximation. In Sec.[23] we give a short introduction to the Density Matrix
Renormalization Group. We discuss the truncation scheme and the infinite
and finite lattice algorithms. We further explain the approach that we have
used for the time evolution of quantum states. The last section gives a motiva-
tion for the use of the Tomonaga Luttinger model as a low-energy description
of the XXZ Heisenberg spin chain in equilibrium.

2.1 Exact Diagonalization of Sparse Matrices

Dealing with strongly correlated systems on a lattice means, numerically speaking,
dealing with extremely large Hilbert spaces and in turn extremely large matrices.
Non-interacting theories can usually be mapped onto effective single particle mod-
els, for which the Hilbert space grows linearly as a function of the lattice size. For
the study of strongly correlated systems, on the other hand, we need to take into
account the full many-body Hilbert space and this vector space grows exponentially
with the lattice size. As an example, the Hilbert space H of a chain of interacting,
spinless fermions amounts to

H=Hi19H, ® ---®@H, 2.1)

ISome of the material presented in this chapter has previously been part of: Benedikt Matthias Scho-
nauer, Nonlinear quantum transport in nanoscopic interacting ring structures, Master’s thesis KIT, (2015)
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where H; are the local Hilbert spaces, which each comprise the basis vectors |0); and
|1);. As such, it has dimension Dy = 2F, where L is the length of the chain in terms
of lattice sites. The situation is even worse for systems with a larger local basis, such
as fermions with spin. Numerical methods such as the Numerical Renormalization
Group (NRG) and Density Matrix Renormalization Group (DMRG)? make a study
of these systems feasible by constructing the Hilbert space iteratively and projecting
onto subspaces most likely to contain a set of target states in the process. Neverthe-
less, these methods still leave us with matrices usually too large to be diagonalized
in their entirety. In most cases, we are only interested in the smallest eigenstates of
a given Hamiltonian and thus require a method that can obtain these states for large
matrices. In the following, we will discuss two particular algorithms employed in
our work, that retrieve the extremal eigenvalues of a (hermitian) matrix.

2.1.1 Krylov Subspaces

In most cases, our aim will be to find the ground state of a Hamiltonian H. This is
equivalent to finding a vector v such that the Rayleigh quotient

(v|Alo)
(v]o)
assumes its minimum value A, where A is the matrix representation of the Hamil-

tonian H. We now iteratively introduce a sequence of orthonormal vectors g, and
the corresponding projection matrix Q, = [q1, ..., 4. It is obvious that

(v]Q AQu|v)
(0|QiQnlv)

will eventually converge to Anin for n — dim(A). The objective is to find g, such
that this convergence becomes rapid and we only need to diagonalize a matrix T =
QI AQ, with dim(T) < dim(A). For this, we consider the gradient of the Rayleigh
quotient which reads

r(v) = [0) #0, 22)

l0) #0, (2.3)

m,; = min

Vr(v) = <<UTU>> (A|v> —r(U)|v>) . (24)

Once, through diagonalization of QZAQn, we determine a vector v, corresponding
to m, with Vr(v,) = 0, then v, is an eigenvector of A with eigenvalue A = m,,.
If Vr(vg) # 0, then the vector pointing in the direction that results in the largest
decrease of r(v,) is given by —Vr(v,,). For example, if we pick an arbitrary vector
|g1), which is not already an eigenvector of A, then we know that m, < mj if

_ (2 _ {n|Alg1)
'”’2><<q1q1>><A'q1> i) "’”)' 29)

2There are many related methods collectively referred to as Matrix Product State methods, for the sub-
spaces that they project onto.
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To ensure rapid convergence, it is thus instructive to add |g,+1) = A|gx) in the next
consecutive subspace, in which to diagonalize A. The problem of finding extremal
eigenvalues therefore translates to constructing orthonormal bases in Krylov sub-
spaces [67]. A Krylov subspace KZ(A) is defined by the matrix A and the starting
vector v as

K3 (A) = span {U, Av, sz,...,A”_lv} . (2.6)

One typically uses a random starting vector v to construct the Krylov subspace,
but a good initial guess for the starting vector significantly increases the calculation
speed. The advantage of Krylov subspace methods for eigenvalue problems is that
they only involve matrix-vector products, which are computationally less costly than
matrix-matrix products. For sparse matrices of known structure, this computational
cost can be reduced even further through implicit matrix-vector products.

2.1.2 Lanczos Tridiagonalization

The Lanczos algorithm [68]] is a simple, iterative method to generate extremal eigen-
values and corresponding eigenstates of sparse, hermitian matrices A € C'*!. The
algorithm creates a sequence of Krylov subspaces, in which the original matrix A is
related to a tridiagonal matrix T via a unitary similarity. The eigenvalues of this tridi-
agonal matrix T rapidly converge on the extremal eigenvalues of A, which includes
the smallest eigenvalue, which in turn corresponds to the ground state [67) [69].

Lanczos tridiagonalization builds up a Krylov subspace K! (A) via a recurring ap-
plication of A to an initial vector v. A subsequent Gram-Schmidt orthonormalization
scheme generates a basis of this subspace and produces the entries of the triadiago-
nal matrix T.

Algorithm (Lanczos)

(i) Starting with an arbitrary initial vector v = |v1) and B; = 0, generate a new
vector |g,41) from the current vector v, by multiplying A with v,. Subtract

Bnvy—1 from g1,
|qn+1) = Alvn) — Bnlvn-1), 2.7)
to ensure g,,41 is orthogonal to all vectors v, with m < n.
(ii) Determine «,, as the matrix element of A for v, as
= (Gus1lon) = (onl Alo) 28)

The diagonal element T, of the tridiagonal matrix T, approximating A, is
given by ;.
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(iii) Calculate q; +1 - the part of g,,,1 orthogonal to vy, as
|q;1+l> = |qnt1) — an|on) - (2.9)

(iv) Calculate the norm of g/, e

:Bn-i-l =/ <fi:1+1|‘7;+1> . (2.10)

The norm B, will be the off-diagonal element T}, ,.1 = Tj41,. Normalize
q;.,1 and add it as the new orthonormal basis vector of the expanded Krylov

subspace KI1(A) as

!/
On1) = Zfﬁ : (2.11)

If B,,+1 becomes smaller than a chosen cutoff, stop the algorithm at this point.
Otherwise continue with (v).

(v) Increment the index n = n + 1 and include |v,) into the projection matrix V;, =
{v1,v2,...,v,}. Then repeat the steps (i)-(iv).

As mentioned, the coefficients a; and f; form a tridiagonal matrix

o1 ‘[32 0
B2 ar :
T=|: (2.12)
: Kp—1 ,Bn
0o ... ... Bn  an

where dim(T) < dim(A). It can be efficiently diagonalized using algorithms for
tridiagonal matrix diagonalization. The orthonormal projection matrix V;, relates T
to A via

A~V, TV} (2.13)
In the original basis, the eigenvectors |A) of T are hence given by

A) =2 [o1) (wilA). (2.14)

The Lanczos tridiagonalization is a fast and robust algorithm for the calculation of
extremal eigenvalues and their respective eigenvectors even of large, sparse and her-
mitian matrices. Typically, fewer than 100 cycles are sufficient to calculate the small-
est eigenvalue of a matrix up to almost machine precision.
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Matrix functions In addition to replicating the extremal spectrum of A, the tridi-
agonal matrix T, generated by Lanczos tridiagonalization, is also a very good ap-
proximation of A as a whole, albeit with much smaller dimensions. Lanczos tridi-
agonalization is therefore also a useful tool for the calculation of matrix functions
via

f(A) ~ Vuf(T)V, (2.15)

which results in a significant speed increase in the calculation of matrix functions.
The matrix function that we will be most interested in calculating is the matrix expo-
nential of the Hamiltonian, which is used for the time evolution of an initial quantum
state after a quantum quench. This matrix exponential is well approximated by

e M~y e ITAL YT (2.16)

where the time step size At does not affect the quality of the approximation.

2.1.3 Davidson Eigenvalue Solver

The Davidson algorithm is an alternative method to obtain a target sector of the spec-
trum of a hermitian and diagonally dominant matrix A, where diagonally dominant
means A ~ D = diag(A). The algorithm allows for the calculation of a particular
eigenvalue and typically converges more quickly than the Lanczos algorithm. It is
on the other hand computationally more costly than Lanczos, as it requires the cal-
culation of matrix-matrix products. This also indicates that the Davidson algorithm
does not technically construct a Krylov subspace.

Algorithm (Davidson) For the calculation of the j-th eigenvalue of A, one starts
with a suitably large subspace spanned by i > j orthonormal basis vectors and the
corresponding projection matrix

Vi={v}, Vi={ovy,...,v}. (2.17)
(i) Project the matrix A onto the n-th subspace V;, to obtain a smaller matrix

A, =VIAV,. (2.18)
(if) Solve the eigenvalue problem
A,la) = Aa), (2.19)
and express the eigenvalues

ja) = 3 [oi) (vila) , (2.20)

in terms of the full original basis.
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(iii) Calculate the residual vector
|r) = (A —A) |a), (2.21)

and stop if ||r||2 < ¢, where ¢ is a previously chosen cutoff. Approximate the
matrix A with its diagonal part D to compute the correction vector |6vy,). The
correction vector is the solution to

(D — A1) |6v,) = —]r). (2.22)
(iv) Orthogonalize the correction vector against the current basis V;, via
60!) = [11 — v, vT } 160,) - (2.23)

(v) Normalize |§v),) to obtain the new orthonormal basis vector

[005)

|On 1) = —t— .
VAT

(vi) Increment the index n = n + 1 and expand the basis V,, = {v1,v2,...,0,-1}
with the new basis vector |v,,). Continue by repeating steps (i)-(vi).

(2.24)

The Davidson eigenvalue solver does not suffer from the loss of orthogonality that
plagues the Lanzcos algorithm. Said loss of orthogonality can lead to artificial copies
of converged eigenstates. The Davidson algorithm is therefore often preferred over
the faster Lanczos algorithm for the computation of excited states [[70].

2.2 Singular Value Decomposition

The fundamental ingredient of the density matrix renormalization group and matrix
product state based methods in general is the singular value decomposition (SVD),
which is sometimes also referred to as Schmidt-decomposition in the literature. Ma-
trix decompositions are specific factorizations of a single matrix into a product of
matrices. These matrices typically have shapes or properties particular to the matrix
decomposition. In the LU-decomposition, for example, a matrix is factorized into the
product of a lower triangular matrix L and an upper triangular matrix U. The SVD
in turn factorizes a matrix into a product of one diagonal and two unitary matrices.

Theorem (Singular Value Decomposition) For any matrix A € C™*" with m >
n, there exist unitary matrices U € C"*™ and V € C"*" such that

B y L 0\ (Vv
A=ULV _(u1 u2)<0 ) () (2.25)
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with
¥, = diag (01,09,...,0¢) € R™, (2.26)

and
¥, = diag (0,...,0) € RO—)x(1=r) (2.27)
where ¥ < n is the rank of the matrix A. The diagonal elements of X; satisfy
oG > 0p > --- > 0y > 0 and are referred to as singular values of A. The vectors

u; and v; forming U = (uy,...,uy) and V = (vq,...,vy) are called the left and
right singular vectors. For a selection of proofs of the theorem we refer the reader to
(67,169, 71, 72].

At this point, it is instructive to introduce the Frobenius norm as a measure of dis-
tance on the space of matrices. The Frobenius norm is defined as

m n 2
Z Z a;j| = 4/trace (A*A) , (2.28)
i=1j=1

analogous to the Euclidean norm ||v||; = \/Y¥,, |vx|? for vector spaces. By employing
the SVD one immediately finds that

IAllF =

AtA =vzutuzvt = v2vt, (2.29)
AAT = uzvtvsu® = uz?u’. (2.30)

The singular values of A are evidently the square roots of the eigenvalues of matrices
p1 = ATA and p, = AA' and the matrices U and V contain the corresponding
eigenbasis. We can also use this result for the Frobenius norm of A and find

|AllF = \/trace (A*A) = \/trace (V22V+) = \/trace (22) , (2.31)

The Frobenius norm of A is simply given by the square root of the sum over the
squared singular values of A. This insight is fundamentally important for the ap-
proximation of the matrix A by a matrix B of smaller rank rg < 74, which, as we will
see, lies at the heart of the density matrix renormalization group.

Theorem (Eckart-Young-Mirsky) (73) Ifrp < r4 = rank(A) and

B
Ay =Y oruv], (2.32)
i=1
then
YA 2
min A Blr= A~ Ayllr= Y |of*. 233)
rank(B)=rp i—rg+1
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The matrix B with rank rg < r4, which is the closest approximation to the matrix A,
is thus given by A;.

The SVD does not only see use in matrix product state methods for many body quan-
tum mechanics problems but has a wide range of diverse applications. It is included
in a number of numerical algorithms for linear algebra problems. It is heavily used
in signal and image processing as well as numerical weather prediction. It is also
an important tool for big data problems such as the movie suggestion process of the
online movie streaming service Netflix.

2.3 Density Matrix Renormalization Group

2.3.1 Numerical Renormalization Group

The Numerical Renormalization Group (NRG) can be regarded as the ancestor of the
Density Matrix Renormalization Group and other Matrix Product State methods. It
pioneered the idea of constructing the many-body Hilbert space and the matrices of
the operators acting in it in an iterative process, whereby subspaces of the Hilbert
space, that were deemed unlikely to contribute to the ground state, are already pro-
jected out, before increasing the size of the Hilbert space again in the next iteration
step. The criterion by which subspaces are chosen to be kept or rejected is their en-
ergy expectation value. In a typical iteration step, only a fraction 1/D; of the eigen-
basis - the one with the lowest energy - is kept, where D; is the size of the local basis
of the system. This way, the retained many-body Hilbert space stays approximately
the same size in each iteration step, allowing for the study of lattice sizes that ap-
proach the thermodynamic limit. This method was conceived by Kenneth G. Wilson
[39] and successfully used to study the Kondo problem. It typically excels at comput-
ing the ground state as well as equilibrium properties of quantum impurity systems,
due to the separation of energy scales that often occurs in such systems. When such
a separation of energy scales is not present in the system, the truncation criterion of
NRG fails to select the suitable subspaces of the Hilbert space. A straightforward ex-
ample of this is the translation invariant, non-interacting tight-binding chain, where
the single particle eigenstates are known to be

| (%)) o sin <”me> n=1,...,L. (2.34)

Here, the low energy eigenstates of a smaller system have little overlap with the
ground state of a larger system and thus do not form a suitable subspace to be kept
when increasing the system size. This mismatch is illustrated in figure[2.1} To specif-
ically identify subspaces of states that feature heavily in the ground state of larger
systems, infinite lattice DMRG creates a clone system B of the current system A and

then computes the ground state |zp6”B> of the combined system A + B. After con-

structing the density matrix pA*F = |94 *B) (y# 78| and tracing out the clone sys-

tem, the subspace of states with sufficiently large eigenvalues in the resulting re-
duced density matrix p4 = trg p*8, is the subspace of H4 that should be kept.
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0000000000

Figure 2.1: Schematic representation of the ground states \lpA'B ) of two smaller non-

interacting tight-binding blocks (red), and the ground state |l/JA+B ) of a su-
perblock comprising the two (black). It becomes obvious that the ground states
of the smaller blocks are not a suitable basis in which to describe the ground state
of the superblock. Inspired by [[74].

The prominence of the reduced density matrix in the selection criterion originally
motivated the name Density Matrix Renormalization Group, while the Renormalization
Group moniker highlights that inspiration was drawn from NRG, as the method itself
is not a renormalization group.

2.3.2 Truncation Scheme

As mentioned, the aim in DMRG is to project out subspaces of the Hilbert space H 4
such that the (ground state) wave function in the remaining Hilbert space is as good
an approximation of the original wave function as possible. This is equivalent to a
minimization of

[1w0) =148, - (235)

where |§) is the projection of |¢y) onto the retained subspace S. In order to identify
the relevant basis vectors of the system A, that have finite overlap with the wave
function |¢g) in the combined Hilbert space H4 ® Hp, it is convenient to express
|to) as a bipartite quantum state and hence as a matrix

DA DB
o) = Zzal,u/* ®IF), (2.36)

i=1j=1

where D4 is the size of the Hilbert space H4 of A and Dy the size of the Hilbert
space Hp of B and the overlap with the basis vector |/#!) of system A is given by

(I o) = 2 ajj . (2.37)
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In this matrix formulation of |¢y), the measure that one wishes to minimize becomes

[10) = 145)]) .. (238)

where the index F denotes the Frobenius norm, which we have introduced in section
It can then be argued in mathematically rigorous fashion that the truncation
scheme of DMRG coincides with the optimal method to minimize this particular
norm.

DMRG and SVD

If the wave function |) is given in the form of a matrix, as is the case in equation
(2.36), then it is possible to perform a SVD to arrive at

Dy Dpg Da Dg Dy

o) =L Yl el =LY Y [WaZgVh| I ellf),  @39)

i=1j=1 i=1j=1ap=1

where Dy = min{Dy4, Dg}. The singular matrix ¥, is diagonal and the singular
values satisfy Xpy = 05 > 0.

The Eckart-Young-Mirsky-Theorem states that the single best approximation of |¢)
by a matrix of smaller rank r = Dg < Dy is given by

Dy Dg Ds
) =LY, Y [UnZeVh] 1) @ 1F), (2.40)

i=1j=1a,p=1

and the subspace of 7 4 that contains |yg ) is

Sa =span{uy, ..., ur}, (2.41)
with
Dy
{Jua)} = YUt (242)
i=1

The original selection rule of keeping the subspace spanned by the vectors in H 4,
that correspond to the D largest eigenvalues of the reduced density matrix p? =
trg o418, is equivalent to keeping the subspace spanned by the left singular vectors
corresponding to the Dgs largest singular values. To show this, we express the den-
sity matrix pA*P as

B = o) (wo| = uzviveTut = uz?ut, (2.43)

where VTV = 1 implicitly traces out the (clone) system B. Since U and V are unitary
transformations and X2 is diagonal, we establish that diag(X) = [diag(p4)]'/? and
that both approaches select the same subspace S4.
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DMRG and Entanglement

As part of the DMRG algorithm, one calculates the ground state |¢g) of a composite
system of A + B. The particles in the subsystems then share information and can no
longer be described independently from particles in the other subsystem. They have
become entangled. This bipartite entanglement is also encoded in the wavefunction
o) and the reduced density matrix p4 = trg pA*P in turn describes a mixed quan-
tum state. In the absence of entanglement, p” could also describe a pure quantum
state and there would be a basis in which p# contains only a single finite matrix
element. The entanglement between particles in systems A and B imposes that p*
contains multiple nonzero eigenvalues. A measure for the entanglement is given by
the Von Neumann entanglement entropy

S(p?) = —tr (pA logpA) = —tr (pB long) = 5(pB). (2.44)

The larger the entanglement entropy, the larger the amount of nonzero eigenvalues
of both p# and pB. This implies that the subspace S4 needs to be chosen larger
as well in order to maintain a good approximation of |¢p). An arbitrary quantum
state with large bipartite entanglement necissitates subspaces of unmanageable di-
mensions. Yet DMRG is saved by the fact that the low-energy eigenstates of gapped
Hamiltonians with local interactions® obey an area law for the entanglement entropy
[159]. This means that the bipartite entanglement grows proportional to the surface
between the systems A and B, which in one dimension usually includes only one or
few links. The amount of non-negligible eigenstates of p*! is therefore comparatively
small. Sometime after the introduction of DMRG, it was also found that states obey-
ing an area law for the entanglement entropy can be represented as tensor network
states [43H45]. This has given rise to a plethora of numerical methods that directly
work with tensor network states [46 75} [76] and DMRG has since been identified as
a tool to create and optimize matrix product states[47].

2.3.3 DMRG algorithm
Infinite lattice DMRG

The infinite lattice algorithm is used in our DMRG implementation to expand the
system up to the desired final size and to give an initial guess of suitable truncated
Hilbert spaces. It is most useful for translation invariant systems, where small sys-
tems already contain all relevant interaction terms. In each iteration step, the algo-
rithm adds a number of new system sites and then applies the DMRG truncation
scheme to keep the dimension of the Hilbert space contained.

(i) Create an initial system A; with n; lattice sites and corresponding Hilbert space

HAi:H1®H2®"'®Hni. (2.45)

3Most physically interesting one-dimensional model systems fortunately fall into this category



20 2 Overview of Methods

Figure 2.2: Schematic representation of the steps of the infinite lattice algorithm in our im-
plementation of the DMRG

The initial size n; should be chosen small enough that the Hamiltonian Hy, in
H 4, can still be diagonalized exactly.

(if) Add a new lattice site to the system A.

(iii) Create a clone system B from A. Form a compound block A + B with Hilbert
space

Harp=Ha OH QH; @ Ha,, (2.46)

and create the Hamiltonian H 4 p in this Hilbert space.

(iv) Diagonalize H 4 p to find the ground state |1,L764+B ). Perform a SVD for |1,L764+B )

to determine the optimal truncated subspaces 3 and 3. Project the Hamilto-
nian H,4 g and necessary local operators onto the subspaces Hﬁ and Hj. Save
the resulting Hamiltonians H3, H§ and operators to the disk.



2.3 Density Matrix Renormalization Group 21

(v) Add one new lattice site each to A with Hi and B with "H‘g .

(vi) Form a compound block A + B with Hilbert space
Harp=HoOH @H; @ HE, (2.47)
and create the Hamiltonian H,4 p in this Hilbert space.

(vii) Diagonalize Hy4 p to find the ground state |1,L764+B ). Perform a SVD for |1,L764+B )
to determine the optimal truncated subspaces H$ and H3. Project the Hamilto-
nian H | p and necessary local operators onto the subspaces H$ and H§. Save
the resulting Hamiltonians H, H§ and operators to the disk. Continue with
step (v).

Once the compound system A + B has reached the desired system size, the infinite

lattice algorithm is halted. The truncated Hamiltonians H3 and H§ for left and right

systems of different size are then used as the starting point for the subsequent finite

lattice algorithm. An illustration of the infinite lattice algorithm is shown in figure
2.3

Finite lattice DMRG

The finite lattice algorithm improves upon the subspaces selected by the infinite lat-
tice algorithm through a sweeping process, in which complete local Hilbert spaces
‘H; are reintroduced again. By repeatedly reintroducing previously discarded sub-
spaces of the Hilbert space and then truncating again, the chosen subspace of the
Hilbert space converges on the optimal subspace. In terms of matrix product states,
the finite lattice algorithm can be formulated as a variational wavefunction optimiza-
tion [48] [76].

(i) Retrieve from the disk the Hamiltonians H f{ and Hg and local operators for the

system sizesny = L/2—1andnp =L/2 - 1.

(i) Add one new lattice site each to A with ’Hf‘ and B with ’H‘g . Then form a
compound block A + B with Hilbert space

Harp=HEOH @H; @ H3, (2.48)
and create the Hamiltonian H,4 p in this Hilbert space.

(iii) Diagonalize H 4 p to find the ground state |1/J64+B ). Perform a SVD for |1[J64+B )
to determine the optimal truncated subspaces Hi and H‘g. Project the Hamil-
tonian H 4, g and the necessary local operators onto the subspaces 1§ and H5.
Replace the previously stored truncated Hamiltonians HS, ng and local oper-
ators for system sizes 74 + 1 and np + 1 with the newly determined ones.

(iv) Setng = L/2 and np = L/2 — 2 and read the corresponding truncated Hamil-
tonians and operators from the disk. Then repeat steps (ii) and (iii).
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Figure 2.3: Schematic representation of the steps of the finite lattice algorithm in our imple-
mentation of the DMRG

(v) Continue increasing the size of A and decreasing the size of B until ng = n;.
Then reverse the sweeping direction, expanding B and reducing A.

After a few sweeps, the calculated ground state energy should have converged on
the actual ground state energy. The wave function |§ ) is now a good approximation
of the actual ground state wave function and can be used to calculate ground state
expectation values.

(O)o = (¥5|01yF), (2.49)

where the operators O have to be added beforehand to the list of operators that
are projected onto the truncated Hilbert spaces during the infinite and finite lattice
algorithms.

2.3.4 Time evolution

For the work presented in this thesis, we have studied the dynamics of many-body
systems after quenches. In this context, it is necessary to track the evolution of the
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wave function [¢) governed by a Hamiltonian of which [¢p) not an eigenstate. In
general, this evolution will involve states that are not included in the truncated sub-
spaces determined by the DMRG algorithm. We therefore modify the algorithm to
ensure that each state visited by the time evolution is part of the truncated Hilbert
space. After each diagonalization of H 4 p in the infinite and finite lattice algorithm,
we perform a time evolution

[ (nAt)) = e M p(t = 0)), (2.50)

where the matrix exponential is computed via (2.16). We determine each basis vector
|I;) for which

1’lf )
Yo [(Lile A o) | £ 0, (2.51)
n=0
or
Vlf ) )
Yo {110 e )| £ 0, (2.52)
n=0

where 1 denotes the final time step. We then create a superposition

1
i) = | [wo) + 22 1) ) (2.53)

where N is a normalization factor. The SVD is performed for |¢;) instead of |¢) and
the truncated subspace is thus guaranteed to include each relevant state for the time
evolution. Many other DMRG implementations employ a Suzuki-Trotter decompo-
sition [75H77] for the time evolution, particularly if they are using tensor networks
to represent the wave functions.
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2.4 Tomonaga Luttinger model

Before we discuss our own work on the non-equilibrium dynamics of low-dimensional,
strongly correlated systems in the subsequent chapters, we would like to use this
section to introduce one of the studied model systems and utilize it to illustrate the
extent to which working in 1D is different from 2D or 3D. In this, we will closely fol-
low the introductions by Giamarchi [8]] as well as Bruus and Flensberg [49] and en-
courage the reader who wants to get a deeper insight into one-dimensional physics
to delve into the book by Giamarchi. Arguably one of the most simple and most
extensively studied 1D model systems is the XXZ Heisenberg chain. It was origi-
nally devised to describe the relevant physics of a chain of atoms featuring half-filled
outer s-shells, where the spins of the electrons occupying the s-shell are coupled by
an anisotropic exchange interaction to the electron spins in the s-shells of the atoms
closest by [50H52]]. Formulated in terms of a Hamiltonian the model reads

Hxxz =] ) SiSt1+8/S; +ASiST 4, (2.54)
i

where the spin operators are S{ are expressed in terms of Pauli matrices c* as S} =
01 /2, ] establishes the overall energy scale, and A determines the anisotropy of the
exchange interaction. As becomes clear in the limit A/] — oo, the XXZ chain can be
seen as a generalization of the famous Ising chain, the ubiquitous testbed of statistical
physics. As such it is also a popular model on which to study quantum phase transi-
tions. The model is quantum critical and thus gapless for |A|/] < 1. For |A|/] > 1it
becomes gapped and favors ferromagnetic ordering of the spinsif A/] < —1 or anti-
ferromagnetic ordering if A/] > 1. A special trait of the XXZ Heisenberg chain, and
indeed the first characteristically 1D trait to be mentioned here, is that it is exactly
solvable by means of Bethe ansatz [53]. In fact, the isotropic form of the XXZ chain,
ie A/] =1, is the model that Hans Bethe originally solved this way [27], hence the
name Bethe ansatz. For the purposes of this section, it useful to recast the Hamilto-
nian (2.54) of the XXZ chain into a different form. For this we introduce operators

ot :% (o +io) (2.55)
o :% (ox —io?) (2.56)

which respectively raise or lower the spin in z-direction on the lattice site i. In this
form, the spin operators bear resemblance to fermionic creation and annihilation
operators, in that ¢~| |) = 0 and ¢"| 1) = 0. The spin operators and fermion
operators are indeed linked through the Jordan-Wigner transformation. The Jordan-
Wigner transformation reads

ot —e L6t (2.57)

i i
: +
— ity i_icle;
o7 =eTThi<i ke, (2.58)

o7 =2cfc; —1, (2.59)
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where c! creates a spinless fermion and ¢; annihilates a spinless fermion on lattice
site i. The so-called "string’ ~ exp(&int);; c}rc]-) ensures that the spin operators
satisfy the bosonic commutation relations

|:O'i, (7]~+:| = (51] ’ (260)

while the fermionic operators obey anticommutation relations

{ci, c}} = 6. (2.61)

Due to this string, the Jordan-Wigner transformation is a tool that is almost exclu-
sively used in 1D, as it introduces long-range interactions even in highly local mod-
els in higher dimensions. When applied to the XXZ chain, we obtain

1

1 1
H :]ZE (c:rci_l —l—h.c.) +A (c:rcl- — 2> (c;r_lcl-_l — 2) (2.62)
1
1 1
=) —t (c;rcl-_l —|—h.c.) +V <c:-rci - 2) <C?_1Ci_1 - 2) ,
i

where for the second term we have introduced a canonical transformation ¢; —
(—1)fc]-, which shifts the momenta from k € [0,27t/a] to k € [—m/a, 7/a], where
a is the lattice spacing. In the noninteracting limit V' = A = 0, this Hamiltonian is
easily diagonalized by a Fourier transformation

1

o —ikj
cj = fzcke ", (2.63)
L%

resulting in

H= Y e(k)cic, (2.64)

with the dispersion relation
e(k) = —2tcos(k). (2.65)

The ground state of this Hamiltonian is a filled Fermi sea, where each state with mo-
mentum |k| < kr and e(k) < 0is occupied by a spinless fermion. As is evident from
figure the excited states with low energies feature additional fermions and/or
holes close to the Fermi points kr. For the purpose of describing the system at low
energies? it thus makes sense to focus on the states in the vicinity of £kr. This is

“Even on the hottest day ever recorded in the Netherlands (Tni. ~ 308K) the low energy assumption
was still very much appropriate considering that the energy scale f is typically ~ 1eV while kg TN, ~
2.7 x 1072 eV.



26 2 Overview of Methods

Figure 2.4: Depiction of the dispersion relation E (k) o cos(k) of the tight-binding chain - or
equivalently the XX Heisenberg chain - and the filled Fermi sea corresponding
to its ground state at half-filling. Linearizing the model at the Fermi points k =

+kp results in a model that contains two particle species, left-movers (x = —)
and right-movers (x = —). The ground state is now given by a Dirac sea that
extends to E = —oo.

under the assumption that the spectrum of the system is gapless, which for the XXZ
chain is true for |A|/] < 1. A closer look at figures 2.4/ and [2.5| reveals that the dis-
persion relation close to +kr is well approximated by a straight line with the slope
given by the Fermi velocity

o = aks(k)‘ (2.66)

k=kp
For a linear dispersion relation, particle-hole excitations of momentum g, where a
particle is excited from momentum state |k| < kr to momentum state |k + q| > kr
and leaves behind a hole at state k, become indistinguishable excitations with a well-
defined energy-momentum relation E(q) = vpq. We illustrate this in figure[2.5] The
linear character of the low energy excitation spectrum of gapless one-dimensional
systems is captured by the Tomonaga Luttinger model. Its Hamiltonian reads

Hrp = Z Z UF [(ak—kp)cllkc,x,k} , (2.67)
x=% k=—oco
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Figure 2.5: For a linear dispersion, the particle hole excitations of equal momentum q also
have the same excitation energy E(q) = vgq, irrespective of the initial momen-
tum k of the particle.

where we have introduced two species of fermions, the so-called left-movers (x = —)
and right-movers (x = +) and extended the momenta to k £ o to establish that the
particle-hole excitations become completely independent of the initial momentum k
of the particle. A filled Fermi sea is consequently replaced by a filled Dirac sea, where
each state —co < k < kr is occupied by a fermion. In figure 2.4 we show a schematic
representation of the ground state of the original model and the ground state of the
Tomonaga Luttinger (TL) model. The introduction of an infinite number of occupied
states (ak — kr) < 0 brings about the risk of infinities in the expectation values of
certain operators, particularly the density operator p(q). We will thus subsequently
make use of normal ordering. In a normal ordered product : ABCD :, all creation
operators are located to the left of the annihilation operators of the respective the
vacuum state |0). If the normal ordered product contains only two operators A and
B, it is equivalent to substracting the vacuum expectation value from the regular
product of the operators as in

: AB := AB — (0|ABJ0). (2.68)
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In this normal ordering, the operator p(g), that creates a density fluctation in the
form of a superposition of particle-hole excitations with momentum g, becomes

1.
Lk Cok+qCak q#0

(2.69)
Lk (C:c,kca,k - <0|C:¢/kca,k|0>> =Ny g=0

Lo (q) =

As we have seen before, these density fluctuations are well-defined excitations and
can form an alternative basis with g as a good quantum number. The advantage
of changing to this particular basis becomes clear when we examine the interaction
term, which so far we have neglected, in momentum space. It reads

1
Hine = o= Y V(q)ehoch_ocvck, (2.70)
2L S 97K —q

where V(q) is the momentum dependent interaction strength. When we express it
in terms of the density fluctation operators, we arrive at

1
Hint = 57 ). V(@)ea(9)ow (—4), (2.71)

q.u,0

where we note that in momentum space p*(q) = p(—¢), as the particle density p(x)
is always real. We recognize that the interaction Hj,;, which had been a quartic
operator before, becomes quadratic in the new basis. A translation-invariant Hamil-
tonian with exclusively quadratic interactions is in principle always diagonalizable
[54], whereas we still lack a general way of diagonalizing Hamiltonians that feature
quartic terms. The question is now whether this reduction of the interaction from a
quartic to a quadratic operator in the density fluctuation basis has come at the cost
of a quartic kinetic term of the Hamiltonian, in which case no simplification would
have been achieved. The density fluations contain pairs of fermionic operators and
thus have the characteristics of bosonic operators. We now have to show that they
also obey bosonic commutation relations. For this, we express the density fluctua-
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tions in terms of the original fermionic operators and find

t / t t
[pzx(‘ﬁl Pu (q )} = [Ca,k+qca,kr Ca,k/fqlck’] (2.72)
kK
+ t t +
= (Ctx,k+qct>é/k Co ' —g' Cak — Co ' —g' Cak’ Ctx,k+qctx/k>
kK
+ t
= (Ca,k+q [5k,k/—q’ — Ca,k/fq/coc,k]czx,k’
kK

%

+ t
7C1x,k’7q’ [5k’,k+q - sz,k+qca,k’]czx,k)

= ; (C:c,k’wfq’ca,k/ - Cl,k’—q’ Coc/k’fq)
:; (: C;,k'+q—q’ca,k/ D Cl,kuqfcrx,k’fq :)

+0 ({0l€t g€ 10) = Olel o yrCar—q10) )
= ((0letjo-g g Cape10) = (Olel o _yCar—q10) )

=0gq 1 ((01ch gocuprl0) = 01t ycai410))
k/

The result of the commutator is indeed equal to that of a bosonic operator, up to a
normalization factor. Regarding the density fluctuation operators p'(g) and p(gq) as
bosonic creation and annihilation operators is therefore justified. More formally, we
introduce the bosonic operators

by = 5@ Y 0(aq)pk(q), 2.73)

by = LZIZI ;9(wq)pa(q),

where 0(x) is the Heaviside function and we require g # 0. To find an expression
for the kinetic part Hy, of the Hamiltonian in terms of the bosonic operators, we
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compute the commutator®

2
T y |:Z)F (k — kp)c+kc+k,c+ o qc+k/} (2.74)

(] 2t &

t t
ZUF (k — k) (C+,k[5k,k’—q = gCr e
I

t t
— C+,k’fq[5k’,k — C+,kc+,k’]c+,k)

/ t t
ZUF k kp (C+,kc+,k’5k,k’—q - C+,k’—qc+,k5k’,k)
k K

2n
L| ZUF (k—kg) (C+kc+k+q +k qCJrk)

=— qubq.

Up to a prefactor vrg, the result of this commutator is identical to the commutator of
the bosonic number operator with the bosonic annihilation operator

[bfbg, bg] = —by, (2.75)
indicating that we can also express Hry, as
o
Hry = Y vlqlbib, + F 2 N2. (2.76)
q#0

Equation (2.76) is an exceptional result. That the interaction expressed in terms of
density fluctuation is quadratic, is not all that surprising, but that the kinetic term
remains quadratic in this basis of density fluctuations as well makes the Tomonaga
Luttinger model as a low energy description of a multitude of 1D model systems
extremely useful and is a unique feature of 1D physics. To discuss the bosonic repre-
sentation of the full interacting Hamiltonian, it is useful to introduce field operators

p(x) = — (Ny +N_) f Z e~ lal/2—igx (b* b ) 2.77)
L 4701
o) = (N —N) X4 7 \‘i| el (b b ,) . @78)
470 Iql

The commutator of these field operators is

lim lim {4)(3{1),9(3(2)] = igsign(xz —-x1), (2.79)

7—0 L—0c0

5We only present the calculation of the commutator for right-movers. The commutator for left-movers
follows along the same lines.
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Figure 2.6: Low energy scattering processes on top of a filled Fermi (Dirac) sea in 1D can
only invole momenta q ~ 0 and q ~ +2kp. In 2D, low energy scattering
processes can involve any momentum g that maps one momentum state k =
(ky, ky) on the circle, which represents the Fermi surface, to another momentum

state k' = (k% ky) on this circle.

revealing that the field 6(x;) is not yet the conjugate momentum to the field ¢(x;).
It turns out that

{fP(xl),ax@(xz)} = ind(xy — x1), (2.80)

such that we can define the actual conjugate momentum to the field ¢(x;) as
1
I(x) = —Eaxe(x). (2.81)

In terms of the fields ¢(x) and I'l(x), the Tomonaga Luttinger model manifests itself
as a simple quadratic field theory, which reads

Hyp = %/dxvp [(nl‘[(x))z + (axcp(x)>2] . (2.82)

Next, we will discuss the limitations that being in one dimension imposes in possi-
ble interactions between fermions in the system. From figure[2.4)it becomes apparent
that excitations of energy E(g) ~ 0 can only occur for momenta g ~ 0 and g ~ +2kr.
This is because the Fermi surface in 1D consists of only two points k = =k, whereas
in higher dimensions the Fermi surface contains a vast amount of points that can
take part in a scattering process with E(7) =~ 0, as illustrated in figure Consid-
ering that most interaction processes will occur for 4 ~ 0 and that the interaction
strength V() is smooth in the vicinity of g = 0, we can fix V(q) = V(0). With this in
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Figure 2.7: Schematic representation of the interaction g4, which couples left moving densi-
ties to left moving densities and right moving densities to right moving densities.

The particles are drawn at larger distances from the Fermi surface to increase vis-
ibility.

Figure 2.8: Schematic representation of the interaction g», which couples left moving densi-
ties to right moving densities and vice versa. The particles are drawn at larger
distances from the Fermi surface to increase visibility.
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mind, our interaction term (2.71) can be approximated by

1nt Z V ( 9]) (2-83)

g0

=) 8 (p+(q)p+(—q) +p-(7)o-(~q))
q

+82 (P+(0)p-(—q) + p— (D)o (=) , (2.84)

where g4 denotes the part of the interaction V' (0), that couples density fluctuations
of the same fermion species and g is the part of the interaction, that couples den-
sity fluctuations of opposite fermion species. A sketch of the interaction g4 for left-
movers and right-movers is shown in fig. albeit with particles located far from
the Fermi surface to enhance visibility. In the same manner, we illustrate the interac-
tion go, which couples left-moving and right-moving density fluctuations in fig.
Expressed in terms of the field operators the interaction g4 reads

T Lpa@n(—) = 57 [@x9 ()P + (711 P (2.85)
and the interaction g, becomes
82 (p+(Dp-(=0)) = ;31537 [@x9(x))? = (A7) (286)

Adding the interaction term in this form to Hry, yields

= o [ ax 0P + @) 1 287)

with
2 2
. 84 82

= - - 2.88

o= or (1 2710F> <27‘cvp) ! (288)
and

82
K — HZW—WF . (2.89)
1+ 27wF + 27TUF
Equations (2.87) to (2.89) are the central result of this section. They reflect, that in one

dimension, the low energy properties of a system of interacting spinless fermions
are universally described by a noninteracting bosonic theory. The quasiparticle exci-
tations of this theory are not dressed fermions, as in the Fermi liquid theory, which
describes interacting fermion systems in higher dimensions, but density fluctuations
with a rescaled velocity ¢ # vr. This picture is referred to as Luttinger liquid. The
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microscopic details of the original model are encoded in the values ¢ and K, which
are called the Luttinger parameters. For fermions with spin, the calculations become
more tedious, which is why we will not present them here but refer the reader to
the book by Giamarchi and the review article by Schoeller and von Delft [8][78]. The
essential result is the appearance of a second species of density fluctuations, namely
a spin-density fluctuation. The rescaled velocity v; of this spinon excitation is in gen-
eral different from the rescaled velocity v, of the holon, the quasiparticle excitation of
the charge density fluctations. This leads to the famous phenomenon of spin-charge
separation that we will touch upon in the following chapter.
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Chapter 3

Observation of spin-charge
separation via the LDOS

In this chapter, we numerically calculate the local density of states (LDOS) of
a one-dimensional Mott insulator with open boundaries, which is modelled
microscopically by a (extended) Hubbard chain at half filling. In the Fourier
transform of the LDOS we identify several dispersing features corresponding
to propagating charge and spin degrees of freedom, thus providing a visuali-
sation of the spin-charge separation in the system.

This chapter is organised as follows: In Sec. 5.2l we present the microscopic
models to be analysed and discuss the basic setup. In Sec.[3.3|we give a brief
summary of the numerical method we employ to calculate the single-particle
Green function. Our results for the LDOS of the Mott insulators with open
boundary conditions are discussed in Sec. In Sec.[3.5| we study the effect
of a boundary potential on the LDOS, in particular we analyse the properties
of the boundary bound state existing for sufficiently strong boundary poten-
tials. In Sec.[B.6lwe summarise our results.

3.1 Introduction

One-dimensional systems remain a fascinating field in condensed-matter physics
since they constitute prime examples for the breakdown of Fermi-liquid theory, which
has to be replaced by the Luttinger-liquid paradigm [8]. Arguably the most dra-
matic consequence of this is the absence of electron-like quasiparticles, manifesting
itself in the separation of spin and charge degrees of freedom visible for example
in angle-resolved photoemission [55] 180, 81], transport [82H84], scanning tunneling
spectroscopy [85] or resonant inelastic X-ray scattering [86] experiments as well as
analytical [87H90] and numerical studies of several one-dimensional models [91-
100].

The spectral properties of one-dimensional electron systems have been intensively
investigated in the past. These works considered the gapless Luttinger liquid [8}
79, [101H105], gapped systems like Mott insulators or charge-density wave states,
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[107, 108} [154] Luttinger liquids with impurities [109-117], corrections to the Lut-
tinger model due to non-linear dispersions [118][119] or the momentum dependence
of the two-particle interaction [155], as well as additional phonon degrees of free-
dom [121H125]. These investigations uncovered universal power-law behaviour at
low energies as well as deviations thereof, spin-charge separation visible in the prop-
agation modes, and signatures of these features in various experimental probes. Re-
cently the measurement of the local density of states (LDOS) has also been discussed
in the context of ultra-cold atomic gases [126].

In this article we consider another situation, namely the microscopic study of
the boundary effects on one-dimensional Mott insulators. Specifically we numeri-
cally study the LDOS of one-dimensional Hubbard models with open, ie, hard-wall,
boundary conditions, where the system is at half filling and thus in its Mott phase.
A previous field-theoretical analysis [129} [156] has shown that the Fourier transform
of the LDOS[157] exhibits clear signatures of propagating spin and charge degrees
of freedom, thus providing a way to detect spin-charge separation. Furthermore, an
additional boundary potential may lead to the formation of a boundary bound state,
which manifests itself as a non-dispersing feature in the LDOS. The aim of our work
is to calculate the Fourier transform of the LDOS directly in the microscopic lattice
model using a multi-target [144} [179] variant of the density matrix renormalisation
group (DMRG) method [40] employing an expansion in Chebyshev polynomials.
We find our numerical results to be fully consistent with the analytical predictions
both qualitatively, ie, concerning the number of dispersion modes and their basic
properties, as well as quantitatively with respect to the numerical values of the ef-
fective parameters like the Mott gap and spin and charge velocities as compared
to the exact results obtained from the Bethe ansatz [31]. Thus our work provides a
microscopic calculation of the Fourier transform of the LDOS in a gapped, strongly
correlated electron system, showing spin-charge separation as well as the formation
of a boundary bound state.

3.2 Model

In this work we analyse the LDOS of the one-dimensional Hubbard model [31] at
half filling. The Hamiltonian is given by

L-2

H=-—1t 2 (C}.’U.C]u'_l,g— + C;.-&-l,O'C]‘,U') (31)
0,j=0

L-1 1 1
+U;) nm—i ”]A*E ,
]:

where ¢; and c;-r » denote the annihilation and creation operators for electrons with
spin ¢ =1, | at lattice site j and n;, = C]J-rlocjlg the corresponding density operators.
The parameters t and U > 0 describe the hopping and repulsive on-site interaction
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respectively. Furthermore we consider a chain with L sites and open boundary con-
ditions. Since the system is assumed to be at half filling, the Fermi momentum is
given by kp = 7t/2.

As is well known, [8} [31] in the Hubbard model at half filling, ie, when there are L
electrons in the system, the repulsive interaction opens a gap in the charge sector and
the system becomes a Mott insulator. Using bosonisation the low-energy behaviour
of the system is described by the massive Thirring model;[132] the LDOS of which
in the presence of boundaries has been analysed in Refs. [129,[156]. The main objec-
tive of our article is the comparison of the LDOS of the Hubbard model with
the field-theoretical results obtained in the Thirring model. Hereby the effective pa-
rameters in the field theory, ie, the mass gap and velocities, can be obtained from
the exact Bethe-ansatz solution of the Hubbard model. This allows us to choose the
microscopic parameters such that the expected features of the Fourier transformed
LDOS can be easily resolved in the numerical results.

In addition to the standard Hubbard model (3.1) we also consider its extension
including a nearest-neighbour interaction V, ie, the Hamiltonian is given by[133]

L2

Hot = H+V Y (nj - 1) <nj+1 - 1) (3.2)
j=0

where n; = n;4 +n; | is the total electron density. The low-energy regime of the ex-
tended Hubbard model is still described [132] by the massive Thirring model.
However, since is no longer integrable, the explicit relation between the mi-
croscopic parameters ¢, U and V and the field-theory ones is not known. Thus the
investigation of the phase diagram of the extended Hubbard model at half filling had
to be performed by numerical means.[134H138] Using these results we choose the mi-
croscopic parameters such that the system is well inside the Mott-insulating phase
with an energy gap A ~ O(t) so that we are able to clearly resolve the interesting
features in our numerical results.

3.3 Green function

In order to determine the LDOS we calculate the retarded Green function in fre-
quency space using an expansion of the occurring resolvent in Chebyshev poly-
nomials [144]. An alternative numerical approach consists in the expansion of the
Lehmann representation of the spectral function in Chebyshev polynomials, the ker-
nel polynomial method (KPM), see Refs. [139H142]. In contrast we specifically eval-
uate the complete (real and imaginary part) Green functions

GR(w,x) = G (w,x) — G (w, x) (3.3)
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with
1
GM(w,x) = (Yolcje R T clo[¥o), (3.4)
_ 1
G (wx) = (Yol, N T —— ¢jo¥o). (3.5)

Here [¥) denotes the ground state of the system with energy Ey. Note that since we
are interested in the LDOS we have already taken the electron creation and annihila-
tion operators to be at the same site x = jag with ag denoting the lattice spacing. Fur-
thermore, since the systems we consider possess spin-rotation invariance we have
suppressed the formal spin dependence of the Green functions.

In Egs. and we have included the convergence factor 7, which in the
continuum limit should be taken as # — 0T. In the numerical evaluations it has to
be larger than the finite level splitting brought about by the finite system size. At the
same time 7 has to be smaller than any physically relevant energy scale in order to
resolve the relevant features of the spectrum. To attain a small value of 7 we employ
a Chebyshev polynomial expansion approach for the resolvents in and (3.5).
More details on this approach can be found in Refs. [143] [144].

The applied Chebyshev expansion is based on the representation of the functions

1

+ —
frwz) = -— (3.6)
in terms of Chebyshev polynomials
fHwz) =Y af(@)Tu(z), -1<z<1 (3.7)
n=0
The expansion coefficients are given by
2 1 Tu(z) 1
+ _ n
(@) = ey S A Tz (3.8)
20,0

n 7
(fw)rtl (1 + Vw? ¥ ‘Z}Zzl) 1—w=2
where a;f (w) = & (w +i7) is a function of the artificial broadening 5 which would
theoretically allow arbitrarily small . The Chebyshev polynomials T (z) are defined
by their recursion relation

TO(Z) =1, (3.9)
Ti(z) =z, (3.10)
Tyi1(z) = 22T, (2) — Ty1(2z), n>2, 3.11)
and fulfil
1 dz -
/71 Vi Tn(2)Ti(2) = 5 0nm(1 + dnp) (3.12)



3.3 Green function 39

as well as

Ton(z) = 2Ty (2)* — To(2), (3.13)
T2n71(z) =2T, 4 (Z) T (Z) -T (Z) (3'14)

In order to apply the expansion (3.7), which is only valid for |z| < 1, to the resolvents
appearing in the Green functions, we first have to rescale the energies. To this end
we run initial DMRG calculations to determine the ground-state energy Ej as well as
the smallest and the largest energies of the system with L & 1 electrons. This allows
us to find the scaling factor a and shift b such that the operator

a(H—Ep) —b (3.15)

has a spectrum between —1 and 1 in the sectors with L &= 1 particles. Then the Green
function (3.4) can be expressed as

(w,x) =a Z wf[a(w +in) —b] u)! (x), (3.16)

where the Chebyshev moments
i (x) = (Yolejo Tula(H — Eo) — b] ¢} ,[¥o) (3.17)

(recall x = jap) can be evaluated recursively via

p () = (Yoleo (x)| @) (3.18)
with the recursion relations
@) = ci(x)[¥o), (3.19)
@) = [a(H — Eo) — b]|®7), (3.20)
@, 1) = 2[a(H — Eo) — b]|®;)) — | ) (3.21)

Similarly, for the Green function we obtain the expansion
(w, x —aZa a(w +in) + b] uy, (x), (3.22)

where
H (x) = (Yolcl, Tula(H — Eo) — ]Cj,a|‘1’0>- (3.23)

In the numerical evaluatlons the sums appearing in and are truncated
at N/2. The moments y; are calculated iteratively from usmg DMRG.
During the DMRG finite-lattice sweeps we determine each state |d> ), \CDN /2)
and include it into a modified density matrix. By performing a smgular—value de-

composition of this modified density matrix we ensure that all the states |®7 ), ... ., | D5 N/2)

are part of the Hilbert space after the DMRG truncation. The moments for n =
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N/2+1,...,N are then obtained employing and as 5, = 2(dF|dF) -
(@5 |®y) and pg,, g = 2(®,,_y|Pyy) = (Pp @)

Finally, we note that the Chebyshev moments y;- are typically strongly oscillating
with respect to the index n. Therefore, the final results oscillate slightly when chang-
ing the value of N. On the other hand, we find small oscillating parts in the spectral
function if we choose N too small. Both effects can be avoided by implementing
a smoothing window for the last Ns moments. Throughout this article we use a
cos?-filter for the last Ng = N /5 moments. This way one can obtain a good approxi-
mation for the spectral function using a smaller number of moments N. Previously it
was observed[144] that the number of required Chebyshev moments sufficient to ap-
proximate the Green function is inversely proportional to the width of the spectrum
a and the desired artificial broadening 7, ie, N ~ (a;)~!. Throughout this work we
use N > 1000 Chebyshev moments for the series expansion of the Green function.
Furthermore,  is chosen such that the resulting curves become smooth and artificial
features are suppressed (see Fig.[3.2]for an example).

We note that while the Chebyshev expansion is efficient in getting the complete
frequency range of the Green function, a correction vector based method[135)] [145-
148 [183] would enable a better frequency resolution. However, in contrast to impu-
rity problems, where one can increase the energy resolution via energy dependent
discretisation schemes,[143, [148] here one can increase the inherent discretisation
only by increasing the system size. In addition to solving the LDOS for all lattice
sites one would have to perform a run for each desired frequency.

3.4 LDOS

The LDOS is obtained from the retarded Green function in the usual way. As
was noted by Kivelson et al.[157] in the study of Luttinger liquids with boundaries,
it is useful to consider the Fourier transform of the LDOS, as physical properties like
the dispersions of propagating quasiparticles can be more easily identified. Since we
consider a finite chain of length L we analyse

1 [ 2 & .
N(w Q) =—— mg Im GR(w, x) sin[Q(j +1)], (3.24)

where the momenta Q take the values Q = 7tk/(L+1),k =1,..., L. We note that the
LDOS is directly related to the tunneling current measured in scanning tunneling mi-
croscopy experiments, thus its Fourier transform is experimentally accessible.
In the following we focus on the LDOS for positive energies; the LDOS for negative
energies can be analysed analogously.

The LDOS of the low-energy effective field theory of the Hubbard models
and has been analysedl in Refs. [129, [156]. In the field-theoretical description

IWe note that the Refs. [129)156] consider the case of a charge-density wave state where the gap appears
in the spin sector. The results for the Mott insulator considered in our article are obtained by simply
interchanging spin and charge sectors in Refs. [156].
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the momentum regimes Q ~ 0 and Q ~ +2kp = 77 are treated separately. For small
momenta Q =~ 0 the main features of the Fourier transform are a strong diver-
gence at Q = 0 as well as a propagating excitation in the gapped charge sector above
the Mott gap. In contrast, the behaviour at momenta Q ~ 2kg shows a divergence at
Q = 2kg, a propagating excitation in the charge sector as well as a linearly dispersing
excitation in the gapless spin sector. Furthermore there exists a critical momentum
above which a second linearly dispersing mode becomes visible. In addition, it was
shown that certain boundary conditions lead to the formation of boundary bound
states which manifest themselves as non-propagating features in the LDOS.

The main aim of our article is the calculation of the Fourier transform of the
LDOS in the microscopic models and and its comparison to the field-
theoretical predictions.[129] [156] We start with the standard Hubbard chain be-
fore considering the extended version (3.2). In Sec. B.5|we then analyse the effect of
additional boundary potentials which give rise to the existence of boundary bound
states.

3.4.1 Standard Hubbard model

We first consider the Fourier transform of the LDOS in the standard Hubbard
model (B.I). The results in the vicinity of Q = 0 and Q = 2kg = 7 are shown in
Figs.[3.1]and [3.3| respectively, where we have chosen a repulsive interaction of U =
4.5t corresponding to the dimensionless Hubbard parameter u = U/ (4t) = 1.125
and L = 90 lattice sites. Throughout our article we use the hopping parameter t = 1
as our unit of energy.

Asis well known, the Hubbard model is exactly solvable by Bethe ansatz. [31]
In particular, the velocities of the spin and charge excitations vs and v, as well as the
Mott gap A can be determined analytically; the results in the thermodynamic limit
read

A= _“2”‘*2/000%0%' (3.25)
2

YT T T o) \/” -1+ 54,1(“)\/1 —G11(u), (3.26)
o1 (2

o l<2u) (3.27)
b ()

. © dw w™J,(w)
Ennl) =2 [ (328)

where J,(z) and I,(z) denote the Bessel functions and modified Bessel functions
of the first kind respectively. Our chosen parameters for the microscopic system
correspond to v > vs.

In Fig. 3.1 we plot N(w, Q) in the vicinity of small momenta Q ~ 0. The LDOS is
dominated by a strong peak at Q = 7r/91. For this the spectral weight inside the gap
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N(w,Q)
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LDOS: Q= 0,n=0.2

Energy w/A

Figure 3.1: Fourier transform of the LDOS N(w, Q) for interaction u = U/4 = 1.125

(recall t = 1), L = 90 lattice sites, broadening 1 = 0.2 and momenta Q =
7t/91,2m/91,...,187/91 (from bottom to top). The curves are constant Q-
scans that have been offset along the y-axis by a constant with respect to one
another. N(w, Q) is dominated by a strong peak at Q = 11/91 ~ 0 which is
only partially displayed in the figure in order to improve visibility for the other
cuts (see also Fig.[3.2). We clearly observe the Mott gap A as well as a dispersing
feature indicated by the arrow. This feature corresponds to propagating charge
excitations, it follows the dispersion relation E.(Q) given in with v, =~

2.67 obtained from (3.26)).

is a result of the finite broadening # as shown in Fig. Thus all features appear at
energies w > A, clearly showing that the system is in a gapped phase. The observed
energy gap A agrees perfectly with the value A(u = 1.125) ~ 0.83 obtained from the
Bethe ansatz in the thermodynamic limit. This suggests that the length of our
chain is long enough to avoid significant finite-size effects in our results.

The Fourier transform of the LDOS for small momenta is dominated by a global
maximum at Q = 71/91 =~ 0. This peak is attributed to a spin-density wave pinned
at the boundary;, it is also well visible in the field-theoretical results.[129,[156] At low
energies above the energy gap we further observe a dispersing feature indicated by
the arrow. This again agrees well with the results from the field theory that predict a
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Figure 3.2: LDOS N(w, Q) at Q = /91 and for different broadenings n. All other pa-
rameters are as in Fig. We observe that the jump at w = A becomes sharper
for y — 0, however, artificial oscillations due to the Gibbs phenomenon increase.
Inset: Integrated spectral weight inside the gap as a function of the broadening

1.

gapped, dispersing charge excitation with dispersion relation

2
Ec(q) = 1/ (U;q) + A2, (3.29)

where g = Q and v, is the velocity of the charge excitations. The Bethe-ansatz so-
lution gives the value v.(u = 1.125) ~ 2.67, which is in excellent agreement
with the velocity observed in the plot. The physical origin of this dispersing feature
is the decay of the electronic excitation into gapped charge and gapless spin excita-
tions. In the process giving rise to the external momentum g is taken by the
charge excitation propagating through the system and eventually getting reflected at
the boundary, while the spin excitation does not propagate and thus possesses zero
momentum. The appearance of v./2 in originates from the fact that the charge
excitation has to propagate to the boundary and back, thus covering the distance 2x.

In addition, in Fig. 3.1l we observe a second feature at higher energy w = A; ~
2.4 A. This feature seemingly follows the dispersion relation albeit with the
gap value replaced by A,. While the first dispersing feature can be identified with
the propagation of a single excitation in the massive charge sector of the field the-
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LDOS: Q =~ 2kp, n =0.2
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Figure 3.3: N(w, 2kr — q) for momenta in the vicinity of Q = 2kr = m with q =
2kr — Q = m/91,27t/91,...,197t/L (from top to bottom). All other param-
eters are as in Fig. The curves are constant g-scans that have been offset
along the y-axis by a constant with respect to one another. We observe two dis-
persing features (indicated by the arrows) at E.(q) and Es(q) originating from
propagating charge and spin excitations respectively.

ory, this second feature cannot be accounted for in the field theory. In particular,
higher-order processes containing more than one excitation in the charge sector are
found to be strongly suppressed and do not possess any non-trivial features. Thus
we conclude that the field theory cannot explain the dispersing feature observed in
Fig. at w ~ 2.4A. Furthermore, the field theory makes predictions about the
power-law decay of N(w, Q) at Q = 0 which, however, cannot be resolved in our
numerical data. For the observation of such features we would require a significantly
higher resolution, both in energy and momentum. This can in turn only be achieved
by turning to a significantly larger system size and a higher amount of calculated
Chebyshev moments.

We now turn our attention to momenta in the vicinity of Q = 2kg = 7. We
first note that features in this momentum regime originate from umklapp processes
coupling left- and right-moving modes which are absent in translationally invariant
systems and thus constitute a particularly clean way to investigate the boundary
effects. In Fig. we again observe the existence of the Mott gap as well as two
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Figure 3.4: Contour plot of the LDOS N(w, Q) for the parameters of Fig. The dom-
inant, white peak at Q =~ 0 is due to the spin-density wave pinned at the
boundary. The solid and dashed lines indicate the holon dispersion around
Q = 0and Q = 2kr respectively, the dashed-dotted line represents the spinon
dispersion around Q = 2kg. The parameters A, v, and vs used in the plot
were obtained from the Bethe ansatz for the bulk system (3.25)—(3.27), ie, there
is no free fitting parameter.

dispersing features at Ec(q) as defined in (3.29) and

Es(q) = % 1A, (3.30)
both indicated by the arrows. The spin velocity observed in the plot is in excellent
agreement with the Bethe-ansatz result giving vs (1 = 1.125) ~ 1.14. While the
feature adhering to is again due to a propagating charge excitation, the feature
following (3.30) originates from the propagation of spin excitations with the charge
excitation possessing zero momentum. Furthermore, we note that in contrast to the
field-theoretical prediction we observe only one linearly dispersing mode. In order
to understand this we recall that the two linearly dispersing modes are energetically
separated by[129, [156] A[1 — /1 — (vs/vc)?| ~ 0.1A =~ 0.08, where in the last step
we have put in the parameters used in Fig. Assuming that we need about four
points to clearly distinguish the two maxima, we were to require an energy resolu-
tion of Aw ~ 0.02. On the other hand, our resolution in energy is limited by finite-
size effects to about ~ 271/L, implying that for the treatable system sizes the two
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LDOS: Q= 0,n=0.2

N(w,Q)
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Figure 3.5: N(w, Q) for an extended Hubbard model with interaction U = 8, V = 3,
L =88, 7 = 0.2 and momenta Q = 7t/89,2m7/89,...,177/89 (from bottom
to top). The results are qualitatively similar to the ones for the standard Hub-
bard model shown in Fig. ie, we observe a Mott gap A, a dispersing feature
following (indicated by the arrow) and another one at higher energies.

linearly dispersing features cannot be separated. However, in order to resolve the
peak splitting, running a correction vector based approach for large systems would
be the method of choice.

To summarise our results, in Fig. we show a contour plot of the LDOS. For
comparison we plot the holon dispersion (3.29) around Q = 0 and Q = 2kg as well
as the spinon dispersion around Q = 2kf, for which we used the parameters
A, v. and vs obtained from the Bethe ansatz for the bulk system. In particular, we
stress that there is no fitting parameter. In conclusion, our results are in very good
agreement with the features of the LDOS predicted by the field-theoretical investi-
gations.

3.4.2 Extended Hubbard model at half-filling

We have performed the analysis presented in the previous section for the extended
Hubbard model at half-filling and L = 88 lattice sites. Since the extended Hub-
bard model is not integrable, there exist no analytical results for the parameters A, v,
and vs. Still, the field theory is expected to qualitatively describe the behaviour of the
system in the low-energy limit. We note in passing that the next-nearest-neighbour
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Figure 3.6: N(w, 2kr — q) for an extended Hubbard model in the vicinity of Q = 2kr with
q =2kr—Q = 7/89,21/89,...,217/89 (from top to bottom). All other
parameters are as in Fig. Similar to the standard Hubbard model, at low
energies we observe two dispersing features at and respectively.

interaction V can be used to tune the prefactor[150] g1, = U — 2V of the marginal
operator perturbing the spin sector of the field theory, hence in principle allowing a
systematic study of its effects. However, qualitative features, like the dispersions on
which we focus here, will not be affected by the presence of the marginal operator,
thus we will not analyse the dependence on V.

The LDOS for momenta in the vicinity of Q = 0 and Q = 2kr is shown in Figs.
and [3.6|respectively. In both plots we have renormalised the energy scale by the gap
A =~ 2.1 obtained from the data at Q ~ 0. At low energies the dispersing features are
qualitatively identical to the ones seen for the standard Hubbard model, namely a
propagating charge mode for Q ~ 0 and both a propagating charge and spin mode
around Q = 2kg. The only difference is that the charge and spin velocities take the
values v. ~ 1.8A ~ 3.8 and vs ~ 0.35A ~ 0.7 respectively, which were determined
by comparison with the quasiparticle dispersions and (3.30). The energy gap
A and charge velocity v, for the two different momentum regimes agree well. We
thus conclude that the low-energy sector is well described by the field theory. Fur-
thermore, for small momenta we again observe a second charge mode which now
seems to have the gap Ay >~ 1.5A.
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Figure 3.7: N(w, Q) for interaction u = 1.125, boundary potential y = —2, L = 90 lattice
sites and broadening 1 = 0.4. Besides the peak at Q = 0 and the dispersing
modes at w > A we observe a non-dispersing feature inside the energy gap at
w = Epps = A/2 which originates from the boundary bound state.

3.5 Effect of a boundary potential

Having analysed the LDOS in the presence of open boundary conditions, we now
turn to the investigation of the effect of a boundary chemical potential. Specifically
we consider the Hubbard model (3.) with a boundary potential at site j = 0,

Hyp =H+p) nj—gp- (3.31)
o

Using bosonisation such a boundary potential is translated into non-trivial bound-
ary conditions for the bosonic degrees of freedom. In particular, certain bound-
ary conditions give rise to the existence of boundary bound states in the gapped
charge sector[151H153] which manifest themselves[129, [156] in the LDOS as non-
propagating features inside the Mott gap. The spectrum of the Hubbard chain with
boundary potential has been investigated by Bediirftig and Frahm[127] using
the Bethe-ansatz solution. In particular it was found that a boundary bound state
corresponding to a charge bound at the first site exists for 4 < —1. For even smaller
boundary potentials, p < —2u — /1 + 4u?, two electrons in a spin singlet get bound
to the surface.

The Fourier transform of the LDOS in the presence of a boundary chemical poten-
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Figure 3.8: LDOS at the boundary, N(w,x = 0), for various values of y and broadening
n = 0.1. All other parameters are as in Fig. In the absence of a boundary
potential (thick line) there is barely any spectral weight inside the energy gap.
For y < —1 the spectral density inside the gap grows continuously but its max-
imum is still located above the gap. For y < —1.4 the maximum is located inside
the Mott gap, providing a clear manifestation of the boundary bound state. Inset:
Position Ejgyx of the maximum of N(w,x = 0) as a function of the boundary
potential y. We observe that a potential y < —1.27 is needed for Eyay < A.

tial is shown in Fig. Besides the peak at Q = 0 due to the pinned charge-density
wave and several dispersing modes above the Mott gap, we observe a clear, non-
dispersing maximum inside the gap at w = Epps = A/2, which is a manifestation of
the boundary bound state in the LDOS. In the following we analyse this contribution
in more detail by considering the LDOS N(w,x) = —1/7tIm GR(w, x) close to the
boundary.

First we analyse the LDOS at the boundary site, N(w, x = 0), which is shown in
Fig.[3.8/for several values of the boundary potential y using an artificial broadening
7 = 0.1. One can clearly see that the maximum of the LDOS is shifted towards lower
energies for decreasing y. For 4 < —1 we find a considerable spectral density inside
the Mott gap A; for p S —1.27 the maximum of the LDOS is located inside the energy
gap as well. From this we deduce that for y < —1.27 there exists a clear boundary
bound state contribution to the LDOS. We attribute the deviation to the critical value
u = —1 obtained from the Bethe ansatz[127] to the finite system-size as well as the
artificial broadening # introduced in our numerical calculations. This is supported
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Figure 3.9: Maximum of N(w,x = 0) as a function of the artificial broadening n for
u = 1.125 and L = 90. Extrapolating to n = 0 (indicated by lines) we find
that that the energy of the maximum lies within the Mott gap for p < —1.15.
Inset: Electron density ng at the boundary showing very good agreement with
the Bethe-ansatz result.[127] The dotted vertical lines indicate the positions

i = —2u — /1 + 4u? at which two electrons get bound to the boundary.

by the dependence of the energy of the maximum in the LDOS on the broadening
presented in Fig. (3.9, which shows that the energy of the maximum indeed decreases
with decreasing 7. Extrapolating the results to # = 0 and keeping in mind the finite
system size as well as the fact that for y — —1~ the contributions from the boundary
bound state and the standard continuum at w > A start to significantly overlap, we
conclude that our results are consistent with the Bethe-ansatz solution. This is fur-
ther supported by the electron density at the boundary shown in the inset of Fig.

Finally we consider the space dependence of the LDOS when going away from
the boundary. As is shown in Fig. lowering the boundary potential leads to an
increase of the LDOS at the boundary, consistent with the formation of a boundary
bound state localised at j = 0. However, the system size and energy resolution is
not sufficient to unveil an exponential space dependence of the LDOS as predicted

by the field-theory analysis,[129}156] ie, N(w, x) o exp[—2x/A2 — E, /v].
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Figure 3.10: Maximal value of the LDOS, N(w = Eyax, jao), as a function of the distance
to the boundary for u = 1.125, y = 0.1 and L = 90. For decreasing y we
observe that the spectral weight gets more and more localised at the boundary.

3.6 Conclusion

In this work we have performed a numerical study of the LDOS of one-dimensional
Mott insulators with an open boundary. As microscopic realisations of the Mott in-
sulator we have studied the (extended) Hubbard model at half filling. The results
for the Fourier transform of the LDOS revealed the existence of the Mott gap as well
as several gapped and gapless dispersing modes. These qualitative features were
in perfect agreement with the results of field-theoretical calculations[129, [156] of the
LDOS in the Mott insulator. Furthermore, we extracted quantitative values for the
gap and velocities, which, in the case of the integrable Hubbard chain, were found
to be in excellent agreement with the exact results.[31]] Besides open boundary con-
ditions we have also considered the effect of a boundary potential. For sufficiently
strong potentials this results in the formation of a boundary bound state, which man-
ifests itself in the LDOS as a non-dispersing feature inside the Mott gap. In summary,
our results show that spin-charge separation and the formation of boundary bound
states can be clearly observed in the Fourier transform of the LDOS amenable to nu-
merical simulations or scanning tunneling spectroscopy experiments even for rather
short systems.
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Chapter 4

Finite-time Quenches in the
XXZ Heisenberg Chain

In this chapter, we discuss the modification to the light cone of correlation
spreading in the XXZ Heisenberg chain after interaction quenches of finite
duration T in comparison to sudden quenches.! For this, we perform the
time evolution of the XXZ chain for short and intermediate times after the
quench using time-dependent DMRG and compute the equal-time spin-spin
correlation functions.

The chapter is organized as follows: In Sec.[£.2] we introduce the microscopic
model, our numerical method and the details of the quench protocol. Sec.[4.3]
discusses previous analytic results for the correlation functions after a quench
in the Tomonaga-Luttinger model. In Sec.[4.4] we present our numerical re-
sults for the correlation functions and contrast them with the analytic expres-
sions for the Tomonaga-Luttinger model.

4.1 Introduction

In the past twenty years the control of experimentalists over ultracold atomic sys-
tems in optical lattices has reached a degree, at which the realization of sudden
quantum quench protocols has become feasible [18| 22} 23, [160]. In such a quench
protocol, a quantum system is prepared in an initial state, often the ground state of
an initial Hamiltonian H, while the time evolution for all times t > 0 is is carried out
under another Hamiltonian H, for which the initial quantum state is not an eigen-
state [161]]. The overlaps between the initial quantum state and the eigenstates of H
are, in general, rather non-trivial, which in turn causes a complex transient behavior
of observables in response to the quench.

The aforementioned exciting new experimental possibilities have lead to a large
body of theoretical work on the quench dynamics in a variety of systems, partic-

! Additional results, beyond the ones presented in this chapter, can be found in: B. Schoenauer and D.
Schuricht, Finite-time quantum quenches in the XXZ Heisenberg chain, arXiv:1905:02678
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ularly one-dimensional systems, where multiple powerful numerical and analytical
tools are available as benchmark [56-58, [162H164].

In this work, we address the quench dynamics of the XXZ Heisenberg chain [27, 28].
It represents the most simple model of interacting spins and has been realized ex-
perimentally with ultracold atomic gases in optical lattices [59] and circular Rydberg
atoms [60]. Previous theoretical work on the non-equilibrium dynamics of the XXZ
Heisenberg chain has mostly focused on the properties of the non-equilibrium sta-
tionary state at long times after the quench. [61} 162} [165H167]. By virtue of the inte-
grability of the XXZ Heisenberg chain, it is assumed that the expectation values in its
stationary state after a quench can be calculated from a generalized Gibbs ensemble
as opposed to the thermal Gibbs ensemble.

Unlike the majority of previous work, which has mainly employed sudden quantum
quench protocols [161} [165] [170], we here consider more general quenches of finite
duration 7, during which the interaction in the system is modified. Alongside the
finite quench duration T appears an additional energy scale ~ 77! in the system,
which is directly related to the quench protocol and therefore tunable. As such, it
can be chosen to be of similar size as other energy scales of the system, including the
band width, excitation gaps or relaxation rates. The interplay of the additional en-
ergy scale with the established ones may then bring about emergent quantum states
beyond the ones accessible through sudden quench protocols.

In the only previous analysis of finite time quenches in interacting microscopic mod-
els, Pollmann et al. [168] simulated a linear ramp of the anisotropic interaction of the
XXZ Heisenberg chain and compared the resulting values for system heating and
spin fluctuations to results from a linear quench of the Tomonaga-Luttinger model.
They found the Tomonaga-Luttinger model to give an adequate prediction of said
observables even in this non-equilibrium situation.

Subsequently, Chudzinski and Schuricht [169] considered several different finite time
quench protocols of a Tomonaga-Luttinger and were able to obtain analytic solutions
to the resulting differential equations. Their analysis finds a finite delay in the light
cone of correlation spreading through the system as response to the finite duration
of the quenches.

In this work, we study the same finite time quench protocols for interaction quenches
of the XXZ Heisenberg chain in the critical regime. We then contrast our results for
the position of the light cone front of correlation spreading with the correlation func-
tions for the Tomonaga-Luttinger model after a quench.

4.2 Model and Setup

The Hamiltonian of the XXZ Heisenberg chain reads

1

H(t) =] | Y SISt 1 +S!SY | +A(t)SiSi 4| (4.1)
i
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where Sf denotes the spin operators in direction j on lattice site i. The time-dependent
exchange anisotropy A can be mapped via a Jordan-Wigner transformation onto a
nearest neighbor interaction between spinless fermions, hence the name interaction
quench.

The equilibrium properties of the model are well known [27, 36]. For |A| < 1, the
system is quantum critical, whereas for |A| > 1 the ground state is antiferromagnet-
ically ordered and the excitation energies are gapped.

A way to prepare the system in a non-equilibrium state is by means of a quantum
quench. In a typical interaction quench, the system is prepared at t = 0 in the ground
state of the Hamiltonian Hp with initial anisotropy A;, typically A; = 0. Subse-
quently, the anisotropy is suddenly switched and the time evolution is performed
with a Hamiltonian featuring a different anisotropy Ay # A;. In the quench protocol
that we study here, the change in the anisotropy is not sudden but continuous and
extends over a finite duration 7. In particular, we numerically simulate two types of
continuous switching, a linear and an exponential ramp, both of which have been
previously studied analytically for the Tomonaga Luttinger model (TLM) in [169].
The linear quench is implemented as

AL t<T
A(t)={ N (4.2)

and the exponential quench as

A {exp(log(Z)t/T) — 1] t<t

At) =
() A t>T

(4.3)

In the following, we present a numerical study of the quench dynamics and com-
pare our results to analytical expressions for the correlation functions of the TLM
as well as previous numerical results for sudden quenches in the XXZ Heisenberg
chain [170].

For our numerical study, we employ a time-dependent density-matrix renormaliza-
tion group (tDMRG) algorithm. Unlike many other tDMRG algorithms, we use a
Krylov subspace method [179] to calculate to full matrix exponential of the Hamil-
tonian for the time evolution giving us the possibility to choose time steps of ar-
bitrary size At while the Hamiltonian is time-independent. In a first DMRG step,
we have calculated the ground state of a chain of length L = 80 sites with periodic
boundary conditions. A calculation of the ground state energy density for A = 0
finds Eg/(JL) = —0.318378704, which constitutes a deviation from the exact value
Eo/(JL) = —1/m by AEg/(JL) = 7 - 10~° indicating that finite size effects are suffi-
ciently small at this system size.

Starting from the ground state, we perform the first part of time evolution over
the quench duration T where we choose a small step size At ~ Jt/80. For this
particular time evolution, we use time-independent snapshots of the Hamiltonian
H(t; <t < tiy1) ~ H(t;). Additional calculations with smaller step sizes have been
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performed finding identical results, thus confirming that the chosen step size is suffi-
ciently small to capture the details of the ramping function. Alternatively, one could
employ a Magnus expansion [171] of the time-dependent Hamiltonian, in which
case larger step sizes would be feasible. For the second part of the time evolution
after the quench, we use a larger constant step size JAt < 1. An important aspect
of a global quantum quench is the linear growth of the entanglement entropy in re-
sponse to it. We therefore dynamically adjust the number of kept states per block
1400 < Neut < 14000 in each DMRG step to ensure that the maximum amount of
discarded entanglement entropy does not exceed 6Smax = 1074, The large number
of kept states is also necessitated by the criticality of the system, due to which the
entanglement entropy grows as a logarithm of the system size L.

Within the tdDMRG algorithm, we measure the time-dependent expectation values
of the equal-time transverse and longitudinal correlation functions of the spin oper-
ators at a distance £. The transverse two-point function reads

X(p)gx 1 - _
Ci(e,t) = (SFBS5.0) = (<sf<t>si+4<t>> +(5; <t>sf+g<t>>) . 44
and the longitudinal two-point function is

Ci(t,t) = (SH(B)SE (1)) - (4.5)

We chose the lattice sites on which we measure the spin operators to be centered
around the middle of the chain, i.e. i = L/2 —¢/2, to maximize the time during
which the two-point functions are unaffected by excitations entering through the
periodic boundary.

4.3 Correlation functions for the Tomonaga-Luttinger
Model

In the low-energy regime, gapped one-dimensional fermionic systems can be mapped
onto a field theory of the form

Hr =2 [ dx [ ()24 (x) = y- (00229 (3)] (4.6)

+ [ dxdr’ [galx = K)oz (0)p= () + ol — K)o (1)p= ()]

where ¢+ denote chiral fermion fields moving in either right (+) or left (—) direction,
p+ the chiral fermion densities, and the parameters v, go(x — x’) and g4(x — x’) are
specific to the microscopic model system. For the equilibrium, it is well known that
this Hamiltonian can be diagonalized by introducing bosonic operators that create
or annihilate collective excitations in the system [32,[36]. The effective bosonic theory
then reads

Hyp = %/dx K (axe(x))2 . % (E)xq)(x))z] , 4.7)
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Figure 4.1: Time-dependent delay Ax(t) of the light-cone front of correlation spreading after
an interaction quench of finite duration |t = 1 in the Tomonaga Luttinger
model. We show the delay for a linear quench (red) and an exponential quench
(blue) protocol. Inset: Interaction strength $»(q = 0) of the Tomonaga Luttinger
model, which describes the low energy regime of the XXZ Heisenberg chain, as
a function of the anisotropy A. The blue line indicates the actual value $(0) as
the solution to the set of equation (8)-(11). The dashed red line shows §»(0), if
we impose Galilean invariance $>(q) = §a(q). In this case, the value of $»(0) is

given by [{L.12).

where ¢ denotes a canonical boson field and 6 its dual field. The details of the orig-
inal system are now encoded in the Luttinger parameters @ and K. The connection
between the free boson theory and the interacting fermionic theory is made via

¢

where we have replaced g24(q9)/(2mvp) — §24(0), since the momentum depen-
dence of the interaction in equilibrium is known to be irrelevant in the RG sense.
The XXZ Heisenberg chain can also be mapped onto a fermionic lattice model con-
ntaining spinless fermions with nearest neighbor interaction by means of a Jordan-
Wigner transformation. As such, it is likewise described by a free boson theory with
a specific set of Luttinger parameters. The XXZ Heisenberg chain can furthermore
be solved exactly by Bethe ansatz and analytical expression for the Luttinger param-

(4.8)
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eters are known. These expressions read

_ A2
5= TV1=A" (4.10)
2 arccos A
k=21 ! 4.11)

© 2 7 —arccosA’

Through equations[4.9/and [4.11]we can determine the parameters §,(0) and g4(0) of
the fermionic field theory that corresponds to our microscopic system at each point in
time. The analytical results for the quench dynamics after finite-time quenches in the
TLM by Chudzinski and Schuricht depend on Galilean invariance, ie $>(0) = 4(0).
In the inset of figure we plot the interaction strength ¢, as a function of the
anisotropy of the XXZ chain with and without the assumption of Galilean invariance.
We find that for A < 0.8, Galilean invariance is realized to a good approximation in
the XXZ chain and a comparison of our numerical results and the analytical results
for a Galilean invariant TLM should be feasible. The time-dependent interaction
strength ¢, of the TLM corresponding to this specific XXZ chain is then given by

B 3712 — 87 arccos A(t) + 4 arccos? A(t
() = 27(12) ®) (4.12)

4.3.1 Correlation functions for a Tomonaga-Luttinger Model
after a Quench

Previous work by Cazalilla [63] has looked into the two-point functions of a Tomonaga-
Luttinger model after a sudden interaction quench A = 0 — A # 0. In the thermo-
dynamic limit the two-point function reduces to

N]

2 2 ~\2 77
x(zﬁ(tz;” ) (4.13)

. R v
<1/Ja(x,t>0)lpa(0,t>0)>:m 2

where a denotes the lattice spacing, Ry the order of magnitude of the range of inter-
actions and <y encodes the details of the Bogoliubov transformation. Similarly, the
density-density correlator reads

_1
47

1+72 B 72 B ,),2
|x|2 2|x—20t%2 2|x + 20t|?

(Jelxt > 0)Jalx,t > 0)) =

] . (4.14)

In terms of spin operators, the two-point functions for the XXZ Heisenberg chain
become [170]
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} (4.16)
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where analytical expressions for the coefficients A*, A* and B* are thus far only
known in equilibrium [172].

The spin-spin correlation functions reflect the light cone picture put forward by Cal-
abrese and Cardy [173]. The quench excites quasi-particles, which are quantum en-
tangled if they are excited within a distance r < ¢ from each other, where ¢ is the
correlation length of the system. These quasi-particles propagate semi-classically
through the system at a speed v and induce correlations between two points x; and
x;j at time f if |x; — x;| = 20t. This constitutes a light cone of correlation spreading
in spacetime. Said light cones have been observed in numerical simulations of the
Bose-Hubbard model [64] and experimentally in ultracold atomic gases [65].

For quenches of finite duration, we expect the excitation of quasi-particles to occur
continuously during the quench in contrast to a sudden quench, where all excita-
tions take place at t = 0. Furthermore, the renormalized velocity 7 of the instante-
nous system at time ¢ < 7 is in general smaller than the the renormalized velocity of
the post-quench system. The maximum velocity that quasi-particles can propagate
at is thus smaller, if they are excited early in the quench and only matches that of
quasi-particles from a sudden quench, if they are excited late in the quench. In that
case they are delayed by At ~ T as compared to excitations from a sudden quench.
This mismatch of velocities will result in a deformed light cone during the finite du-
ration quench, t < 7, and a delay of the light cone front after the quench, for t > 7.
We thus expect the spin-spin correlation function to acquire the shape

1 1
(i)

. (417)

<Slz(t)siz+g(f)> ~B? {187T[2<2

1 02— (28t)?

z (_1)£
4 (20t)2 02

02

7

A*
Vi

where Ax describes the delay of the light cone front due to the finite quench duration.
Chudzinski and Schuricht recently obtained an expression for this delay Ax in the
Galilean invariant Tomonaga-Luttinger model [169]. For this model, they were also
able to analytically determine the time-dependent Bogoliubov coefficients u,(t) and
v (t) for a set of common quench protocols. For the delay of the light cone front,
they identified

4K
Ax = =
: Z’FT<1—I<2>

which holds for arbitrary quench protocols but is limited to quench durations
10
UFfc

1 02 — (20t — Ax)?
(20t — Ax)? iz

(SH(DSE(D) = (-1)

82(q,7) — i/OTdtgz(q,t)] , (4.18)

T< ~ 7T, (4.19)
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In figure we plot the light-cone delay Ax as a function of time for a linear and
an exponential quench, A(t = 0) = 0 — A(t = 7) = 0.2, of duration JT = 1.0. We
observe that an exponential quench leads to a increased delay Ax as compared to the
linear quench.

4.4 Numerical Results for Quenches inside the
Critical Regime

We have quenched the XXZ chain from the initial non-interacting model, A(t = 0) =
0, to one of two final interaction strengths, A(t) = 0.2 or A(t) = 0.5. From the in-
set of figure we see that Galilean invarince is approximately satisfied for both
these final values. For the quench durations, we have chosen JT = 0.2, JT = 1.0 and
JT = 4.0 > 7. A first set of calculations was performed using T = 0 to compare our
approach to previous results for sudden quenches obtained with iTEBD [170].

In figure we plot the time-dependent correlation functions C¢(¢, t) and C;(,t)
at distance ¢ = 10 for the two respective quench protocols and four quench dura-
tions with A(t) = 0.2. In fig. (a), we plot the transverse correlation function
(S7(0t)Sf, ,(ot)) for a linear quench and the corresponding theoretical predictions
from the Tomonaga Luttinger model (4.17). We fit the value A* = 0.140 £ 0.005
solely for the sudden quench (7 = 0).

We find that the onset of correlations for &t > ¢/2 is clearly visible in all our numer-
ical results. Using the fitted value A* from the sudden quench for the correlation
functions of the Tomonaga-Luttinger model after a linear ramp, we find our
numerical results for the correlation function to be in good agreement with the pre-
dictions for T < 71 with regard to the delay of the light cone front Ax and to still
agree reasonably well for T > 7r. Our results for the sudden quench are furthermore
in excellent agreement with previous results from iTEBD.

In fig. (b), we display the transverse correlation function C;(10,t) for the XXZ
chain and for the Tomonaga-Luttinger model after an exponential quench. Again
using the previously fitted value of A* we once more find very good agreement be-
tween our tDMRG results and the analytic expression for the correlation function
for the TL model. Our results also reflect the increased delay of the light cone front
compared to a linear quench as shown in fig.

Fig. (c), shows the longitudinal correlation function (S7 (t)S7, ,,(5t)) after a lin-
ear ramp. For the quench durations /T = 0, JT = 0.2, and JT = 1.0, we find that the
inflection point of the correlation function is reasonably well situated at the position
of the light cone front. For [t = 4.0 this is clearly not the case, indicating that the
relation for the delay of the light cone is indeed no longer valid for Jt > .

In fig. (d), we plot the tDMRG data for transverse correlation function C¢(10, )
in response to a linear ramp to A(t) = 0.5 and the corresponding correlators for
the TL model. For the sudden quench, we fit a value A* = 0.129 £ 0.002 and use
this value for the correlation functions of the TL model describing the quenches of
finite duration. Once again we observe very good agreement between the correla-
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tions functions for the quenches of duration Jt < 1.0. For JT = 4.0 on the other hand
the agreement is not quite as good.

In figure we plot the rescaled transverse correlation function C;(4,t) at dis-
tances ¢ = 2,4,...,16, where the rescaled time has shifted by the delay Ax of the
fastest quasi-particle excitations. For a sudden quench, where Ax = 0, these rescaled
correlation functions collapse upon each other. For finite duration quenches, we
observe a less well established collapse with larger deviations for shorter distances
¢ < 10. At short distances correlations are induced by quasi-particles propagating
at velocities v < ¥, before correlations can be induced by quasi-particles excitations
propagating with velocity v = 9. At larger distances the quasi-particles propagating
at smaller velocities are overtaken by the quasi-particles propagating at v = 9. We
observe that at large distances, the correlation functions indeed collapse on the ana-
lytical result of the TL model, which is shown as the dashed black line.

Figure displays contour plots of the transverse and longitudinal correlation

functions of the XXZ chain after linear quenches of duration JT = 1 and Jt = 4. The
dashed white line indicates the position of the light cone front as expected after a
sudden quench. The solid white line marks the position one would expect for the
respective finite duration quench based on the analytical results for the TL model. In
fig. (a), we observe that the dashed white line, representing the sudden quench
light cone position, is significantly ahead of the minimum of the rescaled transverse
correlation function (S} (6)S?, ,(3t)) x 012 In fig. we have seen as well that
for { = 10 and Jt = 1, the TL model correlation functions agreed well with the re-
sults for the microscopic model.
In fig. (a), we find the distance between the solid white line, indicating the posi-
tion of the light cone front and the minimum of our numerical data to be consistent
with our previous findings for £ = 10. For the longitudinal correlation function after
a linear quench of duration JT = 1, shown in fig 4.4|(b), we again find the numerical
results for the XXZ chain and the analytical result for the TL model to match well.
This is shown in detail for ¢ = 10 in fig. (c). Fig. (c) depicts the contour plot
of the transverse correlation function for a linear quench of duration T = 4. We no-
tice that the estimated delay Ax is for the most part larger than the effective delay we
observe in the numerical results for the XXZ chain. The relation thus appears
indeed not to be valid for quenches of duration JT > 7. This situation is even more
clearly noticable in fig. (d), where we plot the longitudinal correlation function
for quench duration JT = 4. The maximum and thus the inflection point consistently
occurs before a light cone x = (25t — Ax) would connect two points at the respective
distances /.

4.5 Conclusion

In this work, we have studied the time evolution of the XXZ Heisenberg chain for
interaction quenches of finite duration 7. The finite duration quenches were per-
formed in the critical regime, starting at A(+ = 0) = 0 and increasing the anisotropy
either linearly or exponentially up to a final value, 1 > A(t = ) > 0. We used a
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Figure 4.2: Equal time spin-spin correlation functions at distance { = 10 for quenches of

various durations T. We show both linear and exponential quench protocols.
(a) Transverse correlation function for a sudden quench (black) and three linear
quenches of duration Jt = 0.2, Jt = 1 and JT = 4 with A(t) = 0.2. As
dashed lines, we plot the the correlation functions for the Tomonaga-Luttinger
model after a quench with the predictions for the light cone front delay Ax from
([@18). (b) Transverse correlation function for a sudden quench (black) and three
exponential quenches of duration |t = 0.2, [T = 1 and Jt = 4 with A(t) =
0.2. For the correlation functions of the TL (dashed lines), we use the same fitted
value A* as in (a).(c) Longitudinal correlation function for a sudden quench
(black) and three linear quenches of duration [T = 0.2, JT = 1land |t = 4 with
A(T) = 0.2. As dashed lines we plot, the expected position of the light cone front.
(d) Transverse correlation function for a sudden quench (black) and three linear
quenches of duration Jt = 0.2, JT = land JT = 4 with A(t) = 0.5. As dashed
lines, we again plot the the correlation functions for the Tomonaga-Luttinger
model with the predictions for the light cone front delay Ax from @
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Figure 4.3: Rescaled transverse correlation function for a linear quench of duration JT =1
and a final anisotropy A(t) = 0.2 for various distances ¢. Unlike the sudden
quench situation, the correlation do not all collapse on a single curve especially at
shorter distances {. This is because correlations are induced at shorter distances
by quasi-particles moving at smaller velocities before the sites are connected by
quasi-particles propagating at velocity @. The dashed black line indicates the
correlation function for the Tomonaga Luttinger model given by at ¢ = 16.
At larger distances, we observe a good agreement between our numerical results
and the correlation function for the TL model after a quench.

time-dependent density matrix renormalization algorithm to calculate the transverse
and longitudinal equal-time spin-spin correlation functions at a distance ¢. Our re-
sults show a light-cone like feature consistent with the quasi-particle picture put for-
ward by Calabrese and Cardy [173]. Unlike the light cone resulting from a sudden
quench, the light cone front after finite-time quenches features a delay Ax. We have
compared this delay with analytical results for the light cone front delay calculated
for the Tomonaga Luttinger model [169], which is known to describe the low-energy
equilibrium properties of the XXZ Heisenberg model. We find good agreement be-
tween the delay in numerical results for the XXZ chain and the results for the TL
model at short and intermediate quench durations. For longer quench durations, we
see that the TL model predictions become less accurate. We conclude that, despite
the non-equilibrium nature of the quantum quench, the Tomonaga-Luttinger model
can still adequately describe certain behavior of this particular microscopic model.
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Figure 4.4: Time-dependent transverse and longitudinal correlation functions direction af-
ter two linear ramps of duration Jt = 1 and JT = 4 with A(t = 0) =0 —
A(t = T) = 0.2. The dashed white lines indicate the light cone position after a
sudden quench as has been observed by Collura et al. [170]. The solid white lines
highlights the expected light-cone front after a linear quench of respective dura-
tion T. (a) Rescaled transverse correlation function for [t = 1. (b) Longitudinal
correlation function for |t = 1. (c) Rescaled transverse correlation function for
JT = 4. (d) Longitudinal correlation function for |t = 4.
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Chapter 5

Long-lived circulating currents
in strongly correlated
Nanorings

In this chapter, we study the time evolving currents flowing in an interacting,
ring-shaped nanostructure after a bias voltage has been switched on. The
source-to-drain current exhibits the expected relaxation towards its quasi-
static equilibrium value at a rate I'y reflecting the lead-induced broadening
of the ring states. In contrast, the current circulating within the ring decays
with a different rate I', which is a rapidly decaying function of the interaction
strength and thus can take values orders of magnitude below I'y. This implies
the existence of a regime in which the nanostructure is far from equilibrium
even though the transmitted current is already stationary.

The chapter is organized as follows: First, in Sec.[5.2] we introduce the model
of the nanostructure. Subsequently, we present our tDMRG and perturba-
tion theory results in Sec.[5.3and Sec.5.4] respectively. Lastly, we discuss a
Schrieffer-Wolff transformation of the model system in Sec.[5.5 and experi-
mental setups to observe the long-lived ring transients in Sec.

5.1 Introduction

Isolated quantum systems, such as small molecules, feature a discrete set of energy
levels. When brought to contact with two electrodes, a nano-junction can form and
a current begins to flow. At weak coupling, the associated level broadening, Iy, is
still small as compared to the typical energy spacing, AE, of the isolated system. One
might perhaps suspect that these energies by themselves set the only relevant time
scales. But in fact an prominent exception is known, the Kondo phenomenon [174],
which occurs in a situation where AE is dominated by a strong on-site repulsion
between the charge carriers. This suppresses charge fluctuations but allows for
quantum-fluctuations of the spin, leading to an emergent energy scale, the Kondo
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temperature Tk, which is parametrically small compared to the native scales I'y and
AE.

In this work, we report another example of an emergent energy scale, I’; it mani-
fests in the relaxation of circulating currents in mesoscopic nanostructures. Like the
Kondo temperature, the new scale is a many-body phenomenon, originating from
interactions between particles on the nanostructure. However, the manifestation of
the new relaxation rate I requires the nanostructure to be brought out of equilibrium.

A sketch of the model system that exhibits the novel scale I' is displayed in Fig.
Originally, similar ring-shaped devices served as a toy-models to study the interplay
of interaction and interference [175| [176] and to explain quantum-interference ef-
fects in transport through functionalised graphene ribbons [177]. The ring geometry
supports stationary circulating (“orbital”) currents that can exceed the source-drain
(“transport”) current by orders of magnitude at Fermi-energies situated close to a
Fano-resonance.

Strong circulating currents in ring-shaped devices, Fig. generically arise as
transients after a voltage quench. They then carry an oscillating amplitude with
a frequency resembling the lowest lying excitation gap of the nanostructure. We
here report results from time-dependent density matrix renomalisation group (td-
DMRG) [66)], 158 [178] [179] simulations showing that in situations where the inter-
action U is the dominating native scale of the nanoring, these oscillations can be
very pronounced and very long-lived. They exhibit a lifetime I'"! that exceeds the
transients in transport currents, I'y’ !, by orders of magnitude if the repulsive inter-
action U becomes strong. The computational finding is complemented with pertur-
bative arguments that explain this effect and clarify the relevant physical processes.
In essence, the strong suppression of I' is due to a mirror symmetry of the nanor-
ing which in turn leads to a cancellation of the leading-order processes and yields
[ ~ U~° at strong interactions. Possible experimental signatures of the effect pro-
posed here are discussed.

5.2 Nanostructure

The model associated with Fig.[5.1]is represented by the Hamiltonian H = H, + H; +
H describing the ring, the leads and their mutual coupling, respectively. The ring
Hamiltonian is given by

ni+n;
H=—-] Z (d;-fd]' +d}-d,‘) +U Z (Ylﬂ’lj - 5 ]> +eTny, (5.1)
(i) (i)

with operators d;.r and d; creating/annihilating spinless fermions at site j and n; =

d}rd]« denoting the corresponding density. The first term describes hopping of the
fermions between nearest neighbours, while the second represents the repulsive
nearest-neighbour interaction. The last term is an external potential at the top site
which breaks the symmetry between the upper and lower path through the ring.
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Figure 5.1: Schematic representation of the nanostructure. The ring (red and green dots)
is coupled by J. to left and right leads (blue dots). Spinless fermions can hop
within the ring and leads with amplitude ], the top site (site 2) on the ring is
subject to the potential e, and inside the ring a nearest-neighbour interaction
U is present.

The lead Hamiltonian reads

H=-] Z Z (C;)t,n-l,-]clx,}’l + C;,nctx,}’l-'rl)/ 5.2)
a=LRn>0

where ¢}, and ¢, create and annihilate a spinless fermion at site 7 in the lead

a=L,R. For simplicity we assume the hopping parameter | in the ring and lead
to be equal. Finally, the coupling between both subsystems is facilitated by

He= —J. (d{cm +of o + dicro + cfmd4) (5.3)

coupling the outer sites on the ring to the first sites of the leads.

In the following we analyse the non-equilibrium currents in the nanostructure by
three different methods: (i) tdDMRG simulations, (ii) a reduced density-operator
transport theory (RDTT) [180}[181], and (iii) mapping to an effective two-state nanos-
tructure [182].

5.3 tdDMRG simulations

First, we study the time evolution after a voltage quench using the tdDMRG algo-
rithm [[183H189]]. Specically we use the time evolution scheme outlined in Refs. [179]
189] 190] performing the evaluation of the time evolution via matrix exponentials
within the framework of Krylov spaces. At times ¢t < 0 the system is prepared in the
ground state of the model with an additional charge excess induced by a stationary
gating with V/2(¥; ny,; — Y nr ;). Att = 0 the gate is switched off, so the electrodes
begin to discharge and currents start to flow through the system. We simulate the
time evolution with finite leads which are long enough to be able to study the tran-
sient regime all the way into the quasi-stationary, non-equilibrium limit. Finite-size
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Figure 5.2: Time evolution of the transmitted and ring currents, (I;)(t) and (I,)(t), evalu-
ated using tdDMRG on the links 1 — 2 and 1 — 3 in Fig. The recurrence
time Tree = L/ (20p) ~ 44 is indicated by the black arrow. While the transmit-
ted current quickly relaxes to a stationary value, the ring currents show persis-
tent oscillations with frequencies wy,, over the accessible times. The simulation
parametersare L =96, U = 4], er =]/2, ], = [/2and eV = 04].

effects will interfere only at times exceeding the recurrence time Tree=L/(20F), at
which the electrons reach the boundary of the leads. (For details of the quenching
protocol see Ref. [189].) Here L denotes the total number of sites, ie, the length of
the leads is given by (L —4)/2 ~ L/2, and vp = 2] is the Fermi velocity of the lead
electrons.

During the time evolution we determine the expectation values of the local cur-
rents I; < Im(cfc;_1) and I; o Im(d}d,) flowing in the leads and the impurity, respec-
tively, where | and k are neighbouring sites. The local current densities after quench-
ing are displayed in Fig. The transport (“transmitted”) current I; initially fluctu-
ates in response to the quench for times Iyt < 3, where we use I’y = 27tp(ef) J? with
the density of states in the leads p(eg) = 1/(27]) as our time unit. After this tran-
sient the transmitted current appears to have reached a largely time-independent
steady state in line with predictions from non-equilibrium Green function formal-
ism for the transient currents through interacting regions [191} [192].

In contrast, for the local currents in the ring I we observe a drastically different be-
haviour. Although some transient features decay quickly, the ring currents oscillate
with a distinct frequency w for long times. In fact, for sufficiently strong Coulomb
repulsions U we do not observe a significant reduction of the oscillation amplitude
within the observation times accessible to our simulations.
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Figure 5.3: Spectrum of the uncoupled ring H, relative to the ground-state energy Ey. The
ground state |2, g) is a CDW state with N = 2 particles, for U > ] the first
excited state |2,e) is also a CDW state with two particles. The corresponding
particle densities are shown for U = 2]. The observed oscillation frequencies of
the ring currents match the energy difference ¢ (U ) between these two states. The
higher excited states are obtained by adding or removing particles, with A(U)
denoting the corresponding energies.

The frequency of the oscillations can be understood based on the spectrum [[190]
of the uncoupled ring H; shown in Fig. We find that the frequency w extracted
from the tdDMRG simulations matches the energy gap between the two lowest-lying
states on the ring. These two states can be identified as charge-density wave (CDW)
states with N = 2 particles on the ring, one being the ground state |2, g) and the
other the first excited state |2, e). Thus we confirm what one would have expected,
namely that the ring current originates from the initial state being a superposition of
these two states.

The decay rate I' of the ring currents is very rapidly decreasing with the interaction
strength U, see Fig. exhibiting a wide regime with I' < I'yg. To understand the
origin of this regime, we proceed with the RDTT analysis.

5.4 RDTT analysis.

The RDTT [180, [181] method aims at determining the time evolution of the reduced
density matrix of the nanostructure, pns(t) = trjp(t), where the trace is taken over
the lead degrees of freedom in the density matrix p(t) of the full system. The time
evolution of pns(t) can be cast in the form pns(t) = —iLnspns(t), with the effective
Liouvillian Lns governing the relaxation of the nanostructure. Since the ring current
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Figure 5.4: Decay rate I of the ring current extracted from tdDMRG simulations. For
U/eT = 1 the decay rate appears to be exponentially suppressed in U, resulting
in very small decay rates at large interaction values. For U >> e the decay is
consistent with T ~ U~ predicted using an effective two-level system (5.5), as
is indicated by the dashed line. All other parameters as in Fig.

originates from the superposition of the two CDW states |2, g) and |2, e), its decay is
related to the decay of the off-diagonal elements pg, and p,¢ of pns. In order to deter-
mine the corresponding decay rate, we have calculated [190] the effective Liouvillian
to first order in the bare coupling rate I'g, where the perturbative regime is given by
I'y < T with the temperature T.

The obtained results for the decay rate I' of the ring current are shown in Fig.[5.5(a).
The results are qualitatively similar to the ones obtained via tdDMRG shown in
Fig. [5.4|in the sense that the rate is strongly suppressed at large U. The quantita-
tive differences between the RDTT and tdDMRG results reflect the fact that both
methods operate in different parameter regimes.

Furthermore, the RDTT allows us to identify [190] the relaxation processes con-
tributing to the decay rate, which are visualised in Fig.[5.5(b). The dominant pro-
cesses are shown in sketches (1) and (2), which involve the tunneling of a particle off
or onto the ring, while the sub-leading processes are shown in sketches (3) and (4).
All processes are constraint by energetics: (1) and (2) only contribute in the regions
(i) and (ii) in Fig. a), (3) only in regions (i) and (iii), and (4) is relevant in the re-
gions (i)-(iv). We stress that in region (v) no relaxation processes in order I'y exist.
Thus at sufficiently large interaction strengths U the rate I" essentially drops to zero
(to order I'3), explaining the very slow decay of the ring current.
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Figure 5.5: (a) Decay rate T obtained from RDTT for the temperature T = 10Ty. Inset:
In U-V-parameter space we identify five distinct regions labeled (i) to (v), in
which T takes strongly different values. The dashed lines indicate cuts shown
in the main figure. (b) Relaxation processes contributing to the rate T', which
result in the distinct regions (i)—(v). Red and green dots represent initial and
final configurations, respectively, A = A(U) denotes the energy required to add
or remove a particle (see Fig.[5.3), while ¢ ~ et is the energy gap between the
two CDW states.

5.5 Schrieffer-Wolff tfransformation.

Finally we focus on the regime of strong interactions, U/max(er, J) — oo, where
we can derive the analytic dependence ' ~ U~ consistent with our computational
results, Fig. As can be seen from the spectrum of the bare ring (Fig. [5.3), in
this limit the two CDW states |2,¢) and |2,¢) will be well separated by an energy
splitting A(U) ~ U from the higher excited states. It is thus instructive to construct
an effective two-level system containing only these states, where the couplings to
the higher excited states are treated using a Schrieffer—Wolff transformation [182]
in fourth order in the couplings | and J.. Going to this order in the expansion is
necessary since all off-diagonal matrix elements exactly cancel in second order due
to the mirror symmetry of the isolated ring structure [190].

The resulting two-level system can be written in the form of an electronic Kondo
model, with the localised spin identified with the CDW states as | ) = |2,¢) and
|1) = |2, ¢) and the corresponding spin operator denoted by S. An effective reservoir
electronic degree of freedom can be formed via cyes 1| = (cL+cr)/ /2 from the leads
of the original model; the effective spin operator formed from the first sites
(n = 0) is denoted by Sres. With this notation the effective model reads [190]

Hsw = 2 ekc:es,kacres,ka + hS* + flees
v (5.4)
11 (S + S5t ) + 158y
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where the first term is the energy of the electronic reservoir, the second and third
are effective magnetic fields & ~ ey and i = O(U™*) < h acting on the two-
level system and spin of the electron reservoir. The fourth and fifth term represent a
Kondo coupling between the two, with the coupling being strongly anisotropic with
Jz =~ 10]2]3/113 and ]| = O(UﬁS), and thus [] | < [Jz| < e, J.

Due to the formation of the effective reservoir electron spin from the leads L,R the
bias voltage V enters the effective Kondo model in the form of a transverse field in
the reservoir, ie, as V /2 Y o/ Cres ko Ty Cres ko' With T being the x-component of the
Pauli matrices. Finally, the ring current corresponds to oscillations between the two
CDW states and thus is related to the localised spin via I, ~ SY. Performing a suitable
spin rotation in the electronic reservoir we calculated [190] the corresponding relax-
ation rate using standard perturbation theory in the Kondo system [180 [193) [194]
with the result

2 2

F =" (leg 4+ V] + ler — V| + 2fer]) + Z&

16 8

We stress that in the considered regime of strong interactions this rate is vanishingly

small, T ~ J2V ~ J4J4V /U®, in accordance with our finding of long-lived oscilla-

tions in the ring current. In particular, the predicted behaviour I' ~ U~ is consistent

with our tdDMRG simulations shown in Fig. We note that the result is ap-

plicable deep in region (v) of Fig.[5.5(a), where we found that processes of order I’y

vanish. Finally we note that the effective model will show the Kondo effect,

however, the relevant energy scale Tx will be much smaller than the energy scales

we consider here, in particular Tgx < er. Thus the equilibrium Kondo effect is not
observable in our setup.

V. (5.5)

5.6 Experimental verification.

We see a possible experimental realisation of the ring-shaped model system, Fig.
in molecules such as porphyrines or phthalocyanines. Single molecule conductance
measurements have indeed been performed at these systems [195H197] so the possi-
bility for bias-ramping has also been demonstrated already. As an observable indi-
cating the slow decay of the ring currents we propose to measure the photons that
are emitted when these currents decay via coupling to the radiation field. In this
context we note that single-molecule electroluminscence measurements have been
performed [[198] [199] already and thus are indeed experimentally feasible. An alter-
native realisation of our ring-shaped model may be provided by quantum dot ar-
rays [200], which in particular offer a high level of control of the couplings and allow
to enter the regime of strong interactions essential for the long-lived ring currents.

5.7 Conclusion.

We have studied the relaxation of transport processes in an interacting ring-shaped
nanostructure. Owing to a mirror symmetry of the Hamiltonian, the system sup-
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ports oscillating ring currents long after the transmitted current has died out, with
the ratio I' /Ty of the respective relaxation rates being strongly suppressed by the
interactions. Our work provides a striking example for an untypical situation in
thermodynamic relaxation processes: Two observable currents approach their equi-
librium values on timescales that are parametrically separated with rates differing
by orders of magnitude. In addition, our system provides new insight into the field
of quantum devices as we show that internal oscillations can be longer-lived than
observed in currents through the system.






75

Chapter 6

Appendix to “Long-lived
circulating currents in
correlated Nanorings”

6.1 Exact diagonalization of the decoupled ring
impurity

Spectrum and particle densities We have performed an exact numerical diago-
nalization of the Hamiltonian matrix H;(U, e, ]) of the ring impurity in the absence
of the leads. In figure 2 we plot the relative spectrum (E — Ey) for the for eigen-
states with the lowest energy. The energy of these states is shown as a function of
the interaction strength U and a gate potential e = [/2. The ground state features
half-filling of the ring (n = 2) and is indicated by the red line. The other eigenstate
in the spectrum with half-filling is shown as the blue line. The state marked by the
orange line features only a single electron in the ring while the state indicated by the
magenta line has three electrons in the ring. For interaction U/eT > 1 we observe an
increasing energy separation between the two eigenstates at half-filling and the rest
of the spectrum. When comparing the frequency of the observed oscillations of the
local currents in the ring with the relative spectrum of the ring, we find an excellent
agreement of the frequencies with the energy gap between the ground state |2, g)
and the second eigenstate at half-filling |2, e). The frequencies that we have obtained
from the fit of a cosine function to the data of the ring current are displayed as black
dots in figure 2. We show the local electron density on the ring sites for the four
low energy eigenstates in figure 2. We find that the two eigenstates at half-filling
exhibit characteristics of charge density waves. The ground state has a significantly
increased electron density on site 1 and 4 of the ring, while the excited state fea-
tures an increased density on sites 2 and 3. The other two states have a more evenly
distributed electron density. We will therefore refor to the states |2, g) and |2,¢) as
charge density wave (CDW) states from now on.
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Figure 6.1: Parameter ranges U /et and J./ ] in which our employed methods are applica-
ble. For the DMRG time evolutions we require a coupling ]/ ] between leads
and impurity which is large enough to allow relaxation to the nonequilibrium
steady state within the maximum simulation time L/ (2vp). The coupling J./]
also needs to be larger than the typical level splitting 27| /L. The range of
interaction strengths for our DMRG method is restricted by the limitations of
our fitting procedure. For large enough interaction strength the fitting error ex-
ceeds the value of the fitted decay rate. The perturbation theory (more precisely
reduced density-operator transport theory) is perturbative in pgJ?/ T and there-
fore requires small ./ ] < 1 to be valid. The Schrieffer-Wolff transformation is
perturbative in J2J%/UP. 1t is thus only valid in the regime U > | ~ eT.
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Figure 6.2: Relative, low-energy spectrum of the bare ring impurity as a function of the
interaction strength U/ | in the repulsive regime U > 0. The red line indicates
the ground state energy Eo. The blue line shows the energy of the excited charge
density wave (CDW) state. et = ] /2 denotes the applied gate potential. The
points indicate the values obtained within DMRG calculations for the oscillation
frequency of the local currents inside the ring impurity.
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Figure 6.3: Local electron density on the four lattice sites in the ring for U/] = 2 and
er/] = 0.5. (a) Density for |2,g). (b) Density for |2,e). We find the character-
istics of charge density waves for (a) and (b). (c) Density for |1,¢). (d) Density

for 3, ).
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Time evolution of an initial superposition We have performed DMRG calcula-
tions of the time-dependent reduced density matrix of the ring impurity. We find
finite occupation probabilities for both CDW states at time t = 0. With increasing
bias voltage, the occupation probability of the excited CDW state tends to grow as
well. We have used these occupation probabilities from the DMRG to construct an
initial pure state

[y0) = VN (Vpesl2 8) £ vPeel2,0)) 6.

where /N is a normalization factor, pg, refers to the ground state occupation prob-
ability and pee to the occupation probability of the excited CDW state. Using exact
diagonalization we then perform the time evolution of this initial state in the bare
ring impurity as

[9(t)) = exp(—iH:t)|yo) , (62)

and calculate the expectation values (I,) and (I}) of the local currents in the ring.
The results of this calculation are in good agreement with our DMRG results in both
amplitude and frequency.

6.2 DMRG

DMRG implementation For our numerical calculation of the time evolution of
the complete system including ring impurity and leads we have employed a typ-
ical finite lattice Density Matrix Renormalization Group (DMRG) algorithm. We
keep a maximum of Nq,t = 2800 states per block and set the maximum amount
of discarded entanglement entropy to §Smax = 1077 in each DMRG step. We use a
Krylov subspace method to calculate the matrix exponential, allowing us to chose
larger time steps up to At of order one. Each state that is reached through applica-
tion of the matrix exponential onto the initial state |¢p) is included into the density
matrix from which we determine the subspace of the Hilbert that we project onto
in each DMRG step. At each time step we measure the observables of interest as
(p(t)|O|yp(t)) where the operator O has also been projected onto the retained sub-
space of the Hilbert space.

Quench protocol At time t = 0 we prepare the system in the ground state of

1%
H(t=0)=H+ > Y onpi—Y ngi |, (6.3)
i i

and perform the time evolution using H(t > 0) = H. We simulate time evolution
up t < L/2vf, where L is the length of the chain (usually L > 72) and vr = 2] is the
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Figure 6.4: Time dependent currents calculated within DMRG. The red line denotes the
transport (“transmitted”) current I;. Blue dots mark the upper link current
I, and green dots the lower link current I;. (a): U/] = 0.1, ex/] = 0.5,
eV/] =04, (b): U/] =05,er/] =05 eV/] =04, (c): U/] = 10,
er/] =05,eV/]=04,(d):U/] =20,er/] =05,eV/] = 0.4. The solid
black lines indicate a fit function f(Tot) o< exp(T't).

Fermi velocity of the fermions in the leads. During the time evolution we measure
the expectation value of the local currents in the leads as

I = —2¢] (cjcz-,l - h.c.) ) (6.4)

and on specific bonds 1 — 2 and 1 — 3 in the ring (see Fig. 1 in the main paper) as
o= —ef (dgdl ~ h.c.) ) 6.5)
I =—ef (d;dl - h.c.) . (6.6)

For the majority of our calculations we have used a set of default parameters, namely
L=72er=]/2,Jc=]/2and V =04]/e.

Detailed discussion of the DMRG time evolution results In figure [6.4 we plot
the time-dependent expectation values of the operators I, I, and I} using our de-
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fault parameters and interaction strengths U/] € {0.1,0.5,1.0,2.0}. We begin by
discussing the results for weak interaction U/] = 0.1 shown in figure (a). For
the transmitted current (I;)(#) we observe significant initial oscillations inside the
typical transient regime I'gt < 1 that appear to have decayed for Iyt > 1 while a
weak periodic oscillation remains even for large times. This periodic oscillation is
not physical but a known finite size effect with a frequency w = V. For the local cur-
rents in the ring we first verify that I, + I} = I; as a consistency check of our results.
For times 'yt < 1 we find the oscillations of (L) (t) and (I}) (t) small when compared
to the oscillations of (I;)(t). The finite size effect with w = V for the the local currents
in the ring on the other hand is large when compared to the transmitted current. We
also indicate ((Iy) — (I))/2 as a dashed black line in fig. This observable corre-
sponds to a ring current in clockwise direction. For interaction strength U/] = 0.5,
shown in fig. (b), we solely observe quantitative differences for (I;)(t). While
the initial transient features remain largely unchanged, the steady state current for
Tot > 1is reduced. For ({I,) — (I)) /2 we observe what seems to be an initial os-
cillatory feature that is not due to finite size effect for I'yt < 4. Due to the small
window 1 < T'gt < 4 a fit does not yield reliable results for frequency and decay
rate. For U/] = 1 the steady state value of the transmitted current experiences yet
another significant reduction, whereas the transient features remain of similar size as
for U/] = 0.1. We stil observe that the transient features of the transmitted current
have largely decayed by I'gt = 1. For the ring currents we find a qualitatively differ-
ent behavior. The ring current exhibits periodic oscillations with a distinct frequency
and a visible decay rate I' which is an order of magnitude smaller than I'y. For the
directional ring current ((Iy) — (I})) /2 there is even a window in which the direc-
tion of the current has changed. By increasing the interaction strength to U/] = 2
we find yet another decrease of the steady state trnamsitted current. In the transient
regime 'yt < 1 we now also observe an additional sign change of the transmitted
current. We also no longer see the oscillations due to the finite system size. The os-
cillations of the local currents in the ring I;, and I} become even more pronounced
and feature a periodic change of direction. Through a fit we find that the decay rate
of these oscillations is an order of magnitude smaller than in the case U/] = 1 and
now amounts to I'/T’y = 1/100. There is a clear separation of scales between the
typical decay rate I'y which holds for the transmitted current and the decay rate I' of
the local currents in the ring impurity. Calculations for stronger interaction U/] > 2
show a continuation of this trend.

Fitting procedure for the computation of '  To determine the oscillation frequency
€ and decay rate I' we fit a function

f(t) =aexp(—Tt)cos(et+b) +¢c, (6.7)

to our DMRG data for the local currents where I, ¢, a, b and c are fitting parameters.
The fit is performed for I'y < t < L/2vr. This fitting procedure only yields reliable
results for 0.5 < U/] < 5. For weak interaction U/] < 0.5 the decay time is too
short to observe the amount of sine waves necessary to reliably determine the decay
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Figure 6.5: Decay rate of the oscillating ring current obtained within DMRG calculations
for several values of eT on a log-linear (a) and a log-log scale (b). We find that
for U =~ € the decay rate appears to be exponential in U whereas for U > et the
decay rate exhibits an algebraic behavior. We plot a power law f(U) o« U~° in
(b) for comparison.

rate. For very strong interaction the decay rate becomes so small that it does not lead
to a visible reduction in oscillation amplitude for ¢t < L/2vr. As a result, the fitting
error associated with decay rate becomes larger than the decay rate itself. These
limitation of the fitting procedure limit the application of our DMRG method as a
tool to determine the decay rate I' to a parameter range 0.5 < U/] < 5 as indicated

in figure

6.2.1 DMRG calculations for the decay rate I'

We have performed a set of DMRG calculations to study the behavior of the decay
rate I as a function of U/] for a range of specifically chosen parameters U, e and
V. The results of these calculations are shown in figures (a) and (b). Due to the
aforementioned limitations of our fitting procedure it is not possible to quantify I
for 0.5 < U/] < 5. In the vicinity of U/er ~ 1 a comparison of the log-linear
and log-log plots indicates a small region of exponential suppression. For stronger
interactions U/er > 1 we observe a power law behavior of the decay rates as a
function of U/]. The fit of a power law to the data indicates a smaller exponent for
smaller values of e7. In the case of e = 0.5 we are safely in the regime U /et >> 1 for
U/] > 4. In this regime one could consider the data comparable to results obtained
in the limit U /e — oco. The fit of a power law finds an exponent « = 6.0 = 0.4 in
this case.
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6.3 Perturbation theory in the limit of small
hybridization

For our computation of the decay rate I', which is associated with the oscillation of
the local currents in the ring, we make use of the reduced density-operator trans-
port theory (RDTT). We mainly follow Schoeller, Eur. Phys. J. Special Topics 168,
179 (2009). The RDTT approach is exact in the Hilbert space H, of the impurity
and perturbative in the hybridization between impurity and reservoirs. It may be
applied if the associated perturbative scale Ty = 27rpgJ? satisfies Ty < T, where T
denotes the system temperature. The RDTT determines the time-dependent reduced
density-matrix pns(t) of an impurity by calculating corrections to the Liouvillian L
of the impurity caused by tunneling processes between impurity and leads. The Li-
ouvillian can be understood as a superoperator that corresponds to the action of the
commutator between the Hamiltonian H and a second operator A € H,

LA=[HA]_. (6.8)

The von Neumann equation, which governs the time-evolution of the density matrix
0, can be written in terms of the Liouvillian as

o) = =i [Hp(H)] = —iLp(t), (6.9)

and is in turn solved by

o(t) = exp [~iL(t — to)] p(to) (6.10)

A Laplace transform and a subsequent trace over the reservoir degrees of freedom
of solution (b.10) yields the expression

Bns(E) =t /: dt exp [i(E — L) (t — to)] plto)

i
=tr E— L~ Lne— Ly Pans(tO) , (6.11)

where L,s denotes the original Liouvillian of the impurity and L; the Liouvillian
of the reservoirs, i.e., the total Liouvillian is decomposed as L = Lj + Lps + Ly.
Expression can conveniently be expanded in powers of Ly, the contribution
to the Liouvillian containing the coupling between the impurity and the reservoirs.
The resulting series expansion for pns reads

1 1
ons(E) =1 —lLy...Ly—m— to) . 12
pns(E) lztrlE Lo lvEDL Lnsplpns( 0) (6.12)

In the limit ]2 < T we can set up a perturbation theory in Ly. The effective Liouvil-
lian L of the impurity then obtains perturbative corrections X (E) that are functions
of the Laplace variable E. It reads

Leg(E) = Lns + Z(E).. (6.13)
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The transient features of the reduced density matrix pns(t) are encoded in non-zero
poles of

i

_—. (6.14)
E — Legt(E)

To obtain these poles we solve for the complex roots of
z — Legt(2) . (6.15)

The Laplace variables z,, that are roots of equation (6.15), have a real part that corre-
sponds to an oscillation frequency ¢ of the associated transient feature and an imag-
inary part denoting its decay rate I'. Our aim is to compute the particular I' of the
transient features whose frequency coincide with the frequency ¢ of the oscillation of
the currents in the ring shaped impurity.

Properties of the Liouville space In order to represent the Liouvillians Lps and
Ly as well as other superoperators G as matrices we introduce a new vector space £
that we refer to as Liouville space. Objects that act as matrices in the Hilbert space
H: of the impurity can be thought of as vectors in this Liouville space £. The most
relevant example of such an object is the reduced density matrix pns of the impurity.
Each matrix element (pns);; = |i)(j| of pns corresponds to a basis vector |m) of the
Liouville space £. We will subsequently denote vectors in H; as |i) and vectors in £
as |j). To represent each element of an operator O € H; as a basis vector of L, the
size of the vector space £ has to be chosen such that dim(£) = dim(H,)?.

Definition of the superoperators The coupling Liovilliain Ly, which can be inter-
preted as the interaction vertex of the perturbation theory, induces charge fluctua-
tions on the impurity. It has the form

Ly =GP o, (6.16)
where Gf ! denotes the superoperator acting on the impurity and : ]f ' : the normal
ordered field superoperator acting on the reservoirs. The reservoir field superoper-

ator is defined by its action on operators A acting in the reservoir Hilbert space and
reads

A =
IfAz{ a Z:J_r , (6.17)

where 1 = 7, v, w is a collection of indices classifying the field operator c; such that

+
_ Chw M=+
c] = { oo == (6.18)
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Similarly we define 1 = —#,v,w. The action of the impurity vertex superoperator
on this specific eigenvector is given by
di1A =+
PaA— 1 p
GA= { —oPAdy p=— (6.19)

The index p, that appears in the definition of both superoperators, determines whether
the respective field operator acts on the second operator A from the left (p = +) or
from the right (p = —). It can be interpreted as indicating the position of the field
operator on the Keldysh contour and is thus sometimes referred to as Keldysh index.
The operator ¢? accounts for fermionic sign factors. It returns a negative sign if

1) = Gy fm) = li)(j], (620)

such that

mod | | Y dia;|iy — Y dldlj) | 2| =1. (6.21)
i i

Reservoir contractions We perform the trace tr; over the lead degrees of free-
dom by contracting pairs of reservoir field superoperators in our series expansion
of pns(E). We denote these contractions

/ /

1 = (R Deas (622)
where (... )eq. indicates that we assume the semi-infinite reservoirs to be in thermal
equilibrium. The contractions are thus proportional to the equilibrium distribution
function f(w) at temperature T. We can simplify the subsequent calculations by
separating the distribution function f(w) into a symmetric and an antisymmetric
contribution. The reservoir contraction then reads

/

V0 =61mp' Y + 611i, (6.23)
with the symmetric contribution

1

and the antisymmetric contribution

Y1 = Po (f (w) = i) , (6.25)

where py is the density of states in the reservoir. It is possible to absorb the Keldysh
index appearing in the contraction (6.23) by introducing the vertices

G =) G}, (6.26)
p==*

G =) pGl. (6.27)
p==
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Definition of the perturbative corrections The leading order correction (V) (E)
to the effective impurity Liouvillian L.g, which derives from charge fluctuations, has
the form

/ dor Y Y6 L Gl 629)

ot LT Ywr+E+mm

As with the reservoir contractions we can separate ~W(E)in a symmetric and an
antisymmetric term,

SW(E) = % + Za(E), (6.29)

where ;s does not depend on the Laplace variable E. When using the redefined
vertices G; and G; we can write X, as

D 1 N
T = G/ d G- 6.30
’ ZPOV§1 'Jop W1w1+E+771F41_Lns ! (6.30)
*lzpo Z Glé
Vi

where we have integrated over all reservoir frequencies w; ranging from the lower
to the upper reservoir band edge D. The symmetric contribution s turns out to be
entirely imaginary. It thus adds only to the decay rate of transient features but not
to their oscillation frequency. The antisymmetric contribution %, (E) is a function of
the Laplace variable. It reads

0 18) D tanh (ﬂ)
s.(E) =0 / d G e 6.31
(5 2 ]; 1/%1 -D ! wy+ E4+mp — 112}) (w1 (631

E 4 — D .
=00 2 Z <_ — ) — og( > G1|ZJ) ZJj|G1,
j=1vi.m

where ¢(x) = dxlog(T'(x)) is the Digamma function and |v;) are the eigenvectors
of the initial impurity Liouvillian Lns associated with the eigenvalues A; of Lns. The
imaginary part of £,(E), which is the part contributing to the decay rate, takes a
more simple, intuitive form. It reads

E - -
Im (Zu( ) PO Z Z tanh <W> G1|Z)]')(Uj|GT . (6.32)

j=1vi.m

In the basis spanned by the eigenvectors |I) of the impurity Hamiltonian H; the
initial impurity Liouvillian Lys is diagonal as well and one can easily establish a one-
to-one correspondence between an eigenvector [v;) of Lns and a matrix element of
Ons in this eigenbasis through

;) =[1)(m|, (6.33)



86 6 Appendix to “Long-lived circulating currents in correlated Nanorings”

with the associated eigenvalue
Aj =E; — En, (6.34)

where A; is the energy difference between the two eigenstates |/) and [m) of the
Hamiltonian H,. There are two eigenvalues A, + of the impurity Liovilliain Ly that
correspond to the energy difference between the two charge density wave eigen-
states |¢) and |e). We denote the eigenvector that corresponds to the positive eigen-
value ¢t as

lve) = 12,€)(2,8]. (6.35)
The action of the impurity vertex superoperators on this eigenvector is given by

G |ve) =d1[2,¢)(2,g|, (6.36)
Gy |ve) == (=1)]2,¢)(2,gld1, (6.37)

where d; creates or annihilates a particle on lattice sites x = 1 or x = 4 of the impu-
rity.

Perturbative diagonalization of Lgg(E) While Ly is diagonal in the eigenbasis
of H;, the corrections %s and X,(E) are not. Due to the large size of the Liou-
ville space, dim(£) = 256, an analytical diagonalization of the effective Liouvillian
Leg(E) = Lns + X + X, (E) is not feasible. To determine the eigenvalues of Lqg(E) we
therefore treat X5 + X, (E) as perturbations to the initial Liouvillian Lns and calculate
the leading order corrections to its eigenvalues A;. This approximation is reasonable

because ||Zs + 2, (E)|| < J? < e =~ Aj. The eigenvalue corresponding to [v;) is then
given by

Ae(E) = (velLo[ve) + [ (ve[Zsloe) + (velZa(B)oe) | (6.38)

The particle number symmetry of the impurity Hamiltonian ([H;, yin j] = 0) guar-
antees that (2,e|d1|2,e) = 0 = (2,g|d1]2, ). We therefore find
(ve| Gy G1 |ve) =0, (6.39)
(ve| Gy G oe) = 0. (6.40)

Using (6.39) and (6.40) the perturbation theory corrections from the symmetric con-
tribution ¢ reduce to

(0elZoloe) = Y- ~iZpo(vel (G + Gy 1G] — Gy llee) (6.41)

Vi,
LTT LTt I
= Z —1*P0(UE|GTG;_|UE) +i-po(ve| Gy Gj |0e)
Vi, 2 2

= —2mipy]? = —iTy.
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We see that the symmetric contribution from the leading order tunneling processes
between reservoirs and impurity causes a decay rate I' equal to the typical decay rate
I'y of transient features. However, this contribution does not yet factor in the fermion
distribution function f(w) in the reservoirs, meaning that each tunneling process is
treated equally. The information about the distribution function is encoded in the
antisymmetric correction X, (E).

Matrix elements of the antisymmetric contribution ,(E) The evaluation of the
antisymmetric corrections is more involved as the contribution from each interme-
diate eigenstate |v;) of the Liouvillian Lys is individually weighted by ¢[1/2 —i(E £
V —Aj)/(2nT)]. First, we identify the intermediate states |v;) that feature in the
finite contributions

(06| Ga o)) (0| Giloe) =(o| |G + G | [oj) (o] [ GF +G7 | [ee) (642)
=(0e| Gy [0) (v)1G1 [0e) + (0] Gy [07) (051G [0e) # 0.

The impurity vertex superoperator Gli either creates or annihilates a fermion on the

impurity. Finite contributions thus only involve eigenstates [v;) which satisfy [v;) =

|m)(2,g| or |vj) = [2,€)(m| such that Y4 nm) € {1,3}. One finds in total N = 8

eigenstates in the Hilbert space H, with particle number n = 1 or n = 3, implying
Np < 16 finite matrix elements. A quantitative study of the matrix elements (Gf) je

reveals large contributions |(vj|Gf[|v£) |2 ~ JZ for two eigenstates |v;) € L. The two
particular eigenstates are
lv7) =12,e)(1, 8], (6.43)
[03) =13,8) (2.8l (6:44)

where |1, ¢) and |3, g) are the two low-energy eigenstates of the impurity Hamilto-
nian that do not exhibit a charge density wave character and for which the energy,
Ei1 = (1,g|H:|1, ) < (3,8|Hr|3,g) = Es, is plotted in figure 2. The matrix elements
read

(0e| Gy vy ) (07 |Gy [ve) ~ -2, (6.45)
(06 Gy [03) (03 1G] o) = +J2, (6.46)
where we note that the difference in Keldysh index p = =+ of the vertex superopera-
tors Gf causes the opposite sign of the matrix elements. An analysis of the remaining

matrix elements reveals a third matrix element that gives a sizable contribution to the
self energy. Here, the intermediate state is

o) = 118} gl (6.47)
and the matrix element evaluates to
I
80"
The contribution from this matrix element becomes particularly relevant in the vicin-
ity of U = et due to the analytic structure of its associated weight function.

(ve| Gy o) (07 |G [0e) =~ + (6.48)
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Figure 6.6: Weight function f;"(e*,V) for two values of the interaction strength, (a)
U/er = 09 and (b) U/er = 1.2. The orange line indicates f(v) =
—mtanh[e — A+ v/(2T)]/4 and the green line f(v) = —mtanh[e — A —
v/(2T)]/4. When U/er = 1 and v = 0 the weight function changes sign
and leads to complete a cancellation of the symmetric and antisymmetric cor-
rections. The weight function fi"(e*, V) becomes finite if v < |e — A|. (a):
(e—A) =0.11, (b): (e — A) = —0.23.

Weight function The weight function f(w) contains the information about the
fermionic distribution function n(w) in the leads, which details the probability for
an eigenstate of the lead Hmailtonian H) with energy w to be occupied by a fermion.
Our aim is to determine the decay rate I which directly corresponds to the imaginary
part of the the eigenvalue A of the effective Liouvillian that satisfies

e —Ae(e") =0. (6.49)

The imaginary part of A. originates entirely from the imaginary part of the self-
energy X (w) correction, which for the asymmetric correction ¥, (w) stems from the
weight function fjjE (w). The imaginary part of the weight function evaluated at the

eigenvalue ¢* has the simple form

X .TT e +m % —Aj
fi(e") = —in ;itanh (ZT , (6.50)
m
We know that e* ~ E, — E;. We can thus also express the weigth function as
" 7T Eg_Eg_Aj—i_T]l%
fi(e") = —is ;7;1 tanh ( 5T . (6.51)

The eigenvalues A; that correspond to the three largest matrix elements read
Af =E1 —Eg=A, (6.52)
Ay =E3—Eg=E3—E,+E, —Eg~¢e+A, (6.53)
Al =Ee—E1 =E,—E¢+E¢ —Ey ~e—A, (6.54)
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It is easy to see that, depending on the eigenvalue A;, either the dependence on Eg or
E. is removed from the argument of the weight function. To simplify the expression
we introduce v = |V /2|. The weight function then reads

fi(e") = ~iZ o [tanh (W) + tanh (T)] . (655)

In the limit T < {], U, ¢, D} we can approximate the weight function as
* 7T . .
fi(e") = —i=00 {mgn(s —Aj+0) +sign(e— A — U)} . (6.56)

When evaluating this approximation for the three relevant eigenvalues Aji one finds

fif (€)= =i po [sign(e — A +0) +sign(e — A —0)] (6.57)

_ zgpo (e — U) (1 +sgle—A— v)) +O(U —er) (sg(e —A+0)— 1)]

) =— zgpo :_sign(—A +0) + sign(—A — v)} (6.58)
= zgpo sign(o—4) 1],

frien) =— zgpo :sign(A +0) + sign(A — v)] (6.59)
= —iZpo [1+sign(A—0)|,

where we note that e, A > 0.

Decay channels

The three matrix elements (ve|G; [07) (07 |G] [ve), (0| G |03 ) (v5 |G |ve) and
(0e| G |o7) (v \G;r |ve) correspond to four different decay channels that cause the
decoherence of a state of the form |i) = «|2,g) + B|2,e). A schematic of these decay
channels is shown in figure We now turn to the discussion of the decay channels
and why they become suppressed for specific sets of parameters U, eT and V.

(0e|Gy |07 ) (97 |G |ve):  An electron is ejected from the ring impurity, which has
initially been in the ground state |2,g). Due to the particle hole symmetry of the
repulsive nearest neighbor interaction U, this requires the energy A(U). Said en-
ergy needs to be supplied by the increase of chemical potential energy y, which the
electron gains by entering the metallic lead. The process is thus only possible if
u = —V/2 < —A(U). Here, we have assumed that the electron can only enter the
lead to which a negative chemical potential —V /2 ) ny was applied. The condition
is reflected by the weigth function f; (¢*), which evaluates to zero if v surpasses A.
Then the imaginary part of the asymmetric correction X,(w) does not compensate
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the constant imaginary part of the symmetric correction X for this decay channel. A
sketch of the decay process is shown figure|6.8| (1), where red in indicates the initial
and green the final configuration of the decay process.

(0e| G |03 ) (vF \G;r |ve):  An electron tunnels onto the ring impurity, which has ini-
tially been in the excited charge density wave state |2,e). The additional electron
increases the interaction energy on the ring impurity by A(U). This energy has to be
supplied by the additional electron. The process is thus only possible if the chemical
potential in the lead that the electron originates from satisfies y = V /2 > A(U). As
with the previous matrix element, f;" (¢*) vanishes once v > A such that the constant
negative imaginary part of the symmetric correction X is not compensated. We dis-
play a sketch of this decay channel in figure [6.8[(2).

The decay channels (v¢|G; |o7)(v7 |G |ve) and (ve| Gy [v3 ) (03 |G |ve) are closely
related - one involves the ground state while the other one involves the excited state
- and are thus respectively allowed or suppressed in the same parameter regimes.

(0e|G{ |01) (v] |G |ve):  Anelectron tunnels out of the ring impurity, which has ini-
tially been in the excited charge density wave state |2, ¢). Depending on the interac-
tion strength U, this tunneling process is energetically favorable or unfavorable. For
U < et the one particle state |1, ) is lower in energy than |2,¢). Since the electron
can carry this excess energy it can tunnel into either lead aslongas u = V /2 <e—A.
Having two effective decay channels, one for each lead, increases the decay rate as
can be seen in sector (i) and (iii) of figure The weight function reflects this as
f{ (¢") = —impy, which adds to the imaginary part of the symmetric correction
Y o« —impg instead of compensating for it. A schematic of this process is shown
in figure 6.8 (3) and (4). For U > e the state |1, g) becomes higher in energy than
|2,e). For an electron to tunnel out of the ring additional energy is now required.
This energy needs to be provided by the increase in chemical potential energy y that
the electron gains by entering the lead. The tunneling process is thus only possible
if y = =V /2 < —(A — ¢). We sketch this process in figure[6.8| (4).

For U > er and v < A — ¢ each decay channel becomes suppressed and we find
Im [(c")| = ~Im [2,] . (6.60)

The first order corrections to the imaginary part of the transient feature with oscilla-
tion frequency €* therefore vanish entirely.

Discussion of the phase diagram  In figure[6.7we plot the decay rate I'/Tj of the
eigenvalue A¢(e*) as a function of the ratios U/er and V/(2e7). We identify five
different sectors of these ratios in which the decay rate I' take different values due
to the presence or absence of the previously outlined decay channels respectively.
In sector (i) we find the presence of the decay channels (1), (2), (3) and (4). The
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Figure 6.7: (1) Perturbation theory results for the decay rate T = Im[A¢(e*)] of the tran-
sient feature with oscillation frequency € as a function of the interaction strength
U /et and bias voltage V / (2eT) in units of To. We observe five distinct sec-
tors [(i) — (v)] in which the decay rate assumes different values. These sectors
are characterized by their available decay channels. In sector (i) the decay rate
T' exceeds T due to the presence of an unconventional decay channel, see fig.
(3). For V/(2er) < A we find the dominant decay channels suppressed,
leading to a decrease of the decay rate I' by an order of magnitude compared to
To. In sector (v) each decay channel is suppressed leading to an effective decay
rate I'/To — 0. (b) shows the decay rate I' /T’y as a function of U /e for three
distinct values of the bias voltage V. The chosen parameters are indicated by the
blue, red and green dashed lines in (a).

decay channel (3) does not exist for many of the typical quantum dot systems. Its
presence leads to a decay rate I' that exceeds the typical level broadening I'g. By
increasing the bias voltage V one crosses from sector (i) into sector (ii) where the
decay channel (3) becomes suppressed as there is no remaining unoccupied state
with energy w = e + (e — A) available in the left lead . In sector (ii) we find I' = T.
By increasing the interaction strength U /et sufficiently one passes from sector (ii)
into sector (iv). The increase in interaction strength causes an increased energy gap
A(U). As soon as A(U) > V /2 both the decay channels (1) and (2) simultaneously
become suppressed. This leads to a significant reduction of the decay rate by almost
two orders of magnitude such that I' < I'y/80. For U/er < 1 the reduction of the
bias voltage facilitates a crossover from sector (iv) into sector (iii). In this sector,
the decay channel (3) is no longer suppressed leading to small increase of AI' ~
I'0/80. For U/er > 1and V/(2er) < (A —¢) every decay channel is suppressed
as is shown in sector (v). The corresponding decay rate becomes I'/Ty — 0. For
a finite decay rate, higher order perturbation theory corrections would be required.
However, these corrections can induce no more than a decay rate I' « '} < T.
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#
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Figure 6.8: Dominant decay channels in the first order perturbation theory. The red circles

indicate the initial configuration and the green circles mark the final configu-
ration of the process. (1): Decay channel associated with the matrix element
(0e|Gy |07 ) (vy |Gy |ve). An electron tunnels from the impurity into a lead,
causing a transition from the ground state |2, ) to the excited state |1,g). (2):
Decay channel associated with the matrix element (ve|G{" |03 ) (v3 |G{ |ve). An
electron tunnels from a lead onto the impurity, causing a transition from the
excited state |2,e) into the excited state |3,g). (3): First decay channel asso-
ciated with the matrix element (ve|GY o) (0] |GF |ve) for U/er < 1. An
electron tunnels from the impurity into the lead with positive chemical potential
u = +V /2, causing a transition from the excited state |2, e) to the excited state
|1,¢) which releases the energy € — A. (4): Second decay channel associated
with the matrix element (ve|G{" |0 ) (07 |G [ve). An electron tunnels from the
impurity into the lead with negative chemical potential y = —V /2, causing a
transition from the excited state |2,e) to the excited state |1,g) which releases
the energy e — A for U/er < 1 and requires the energy A — e for U/er > 1.
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Figure 6.9: Roots z* of z — Log(z) = 0. (a),(b): U/er = 0.1 and (c),(d): U/er = 1.1.
We find that the imaginary part Im(z*) of the majority of roots z* is of order
O(Ty). In addition we find four roots with an imaginary part orders of magni-
tude smaller than T. In (b) and (d) we zoom in on these four roots. We find that
the imaginary part of three poles is two orders of magnitude smaller than Iy for
U/er = 0.1 and five orders of magnitude smaller for U/er = 1.1. The root
with imaginary part I' = 0 is associated with the stationary state.

Eigenvalue spectrum of the effective Liouvillian The disappearance of the decay
rate I for an eigenvalue A(z) of the effective Liouvillian with finite real part is unique
to the eigenvalues £¢e* — iI'. In figure 6.9 we display the real and imaginary part of
each root of

z—Aj(z) =0, (6.61)
where A;(z) are the eigenvalues of the effective Liouvillian. We find that the imagi-
nary part of all but four roots is of order O(Iy). This means that almost all transient
features decay on the expected time scale. In figure[6.9|(d) we zoom in on the four
extraordinary roots. We see that their imaginary part is Im(z) ~ I'j/100000. This
indicates a clear separation of scales between the decay rate of these four roots and
each other root. Such a separation of scales in the solutions to (6.61) is sometimes
referred to as dissipative phase transition. The four roots that feature a small imagi-
nary part belong to |2, ¢) (2, ¢| with root z = 0 —i0", |2,¢)(2, e| with root z = 0 — Ty,
12,e)(2,g| withroot z = ¢ — i, and |2, g) (2, e| with root z = —¢ — iT".
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Figure 6.10: (a) Matrix element ()¢ . of the ring current operator coupling to the transient
feature of the reduced density matrix pns(E) with oscillation frequency e. (b)
Real and imaginary part of the matrix element ()., of the transmitted current
operator coupling to the transient feature of the reduced density matrix pns(E)
with oscillation frequency e.

6.3.1 Inverse transformation to realtime

The effective reduced density matrix matrix of the impurity in Laplace space pns(E)
is given by

ﬁns(E) = mpm(to) ’ (6.62)

where each pole of the resolvent

1

has an imaginary partI'; < 0. We can therefore replace the inverse Laplace transform
by a Fourier transform and close the integration contour in the lower half-plane such
that

B 1 +oo je—1E(t—to)
Pns(t) = o™ ;/_oo dE m@j)(vﬂpns(fo) (6.64)

=0(t—tg) Zexp(i)\jt — l"jt)|v]-)(vj| Pns(to) -
]

Each pole of (6.62) corresponds to a transient feature with frequency A; and decay
rate I';.
]
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6.3.2 Coupling of the current operators to the pole A,

Ring current The operator I measuring the local current in the ring reads

=11, (6.65)
I, = —i [ny, H] i (d{dz - dgdl) , (6.66)
I = —i[ns, H] i (d{d3 -~ dgdl) . (6.67)

with
(L) (1) = Tes | Lpns(8)] - (6.68)

After a transformation of the current operator and the reduced density matrix pns to
the basis of the eigenstates of Hamiltonian, this becomes

d(H)

(L)) =Y (n] (uw*) Prsn(H)[1), (6.69)

n=1 —_——

where pns () denotes the time-dependent reduced density matrix expressed in the
basis given by the eigenstates of the Hamiltonian. We are mainly interested in the
matrix element of I, that couples to the matrix element |v;) = |2,¢)(2, g| of the re-
duced density matrix

(Ihose.(£) = 2(2,8] (T )ge

In figure (a) we plot the absolute value of the coupling of the current operator
to the off-diagonal matrix element |e)(g| of the reduced density matrix. We find
that after an initial increase with interaction strength, the coupling decreases with
interaction strength. In the entire range of values for the interaction strength that
we have studied, the matrix element (I;) ¢ exceed every other matrix element of the
current operator L.

2,¢9) (2,e|) [exp(i)xgt—rt)|2,e> 2, g|} 2,¢).  (6.70)

Transmitted current We determine the extent to which the operator I;, measuring
the transmitted current, couples to the matrix elements |2,¢) (2, g| and |2, g)(2, e| of
the reduced density matrix ps(E) directly from the perturbation theory. The expec-
tation value of the transmitted current in Laplace space is given by

1

(I)(E) = trnsZIt(E)mpns(to) , (6.71)
where
D 1 o
Eh(E) = [ den IR e e e el U
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The modified vertex superoperator is defined as

LA -
(I)V A = { U*pAIt Z: T, (6.73)

where the operator I; acts in the Hilbert space H, of the ring as
L=d —d;. (6.74)
The part of the transmitted current that acquires the small decay rate I' is given by

d(H)
(I)eg = Y (n[Z1(Ae)[ve)|m), (6.75)

n

where the vectors |1) form a basis of the Hilbert space of the ring. In figure (b)
we plot the real and imaginary part of (It).¢ as a function of U/e7. We find that the
real part of (I;). is small but features a reasonance at U = e7. We thus find that
only a small part of the transmitted current I; decays with the decay rate I while the
majority relaxes with the decay rate I'y.

6.4 Schrieffer-Wolff transformation and perturbation
theory

6.4.1 Schrieffer-Wolff transformation of the impurity system

In the limit U/eT — oo the low-energy sector of the spectrum of the uncoupled ring
impurity features only the two charge density wave eigenstates |2, ¢) and |2, ¢). From
figure 2 it becomes obvious that for U/ ] > 1 the energy gap € between the two CDW
eigenstates becomes small compared to the energy separation between the CDW
states and the remainder of the spectrum. It is then intuitive to construct an effective
low-energy Hamiltonian in the subspace of the Hilbert space H,, which is spanned
by the two CDW eigenstates. In the limit U/er — oo and U/] — oo the CDW
eigenstates take the form of simple product states |2,g) = [1)|0)|0)|1) = |1001) and
|2,e) = [0)|1)|1)|0) = |0110). We define the operator that projects onto this low-
energy subspace as

— |1001)(1001| + [0110)(0110] . (6.76)

The Hamiltonian of the full system can be separated into a contribution that is diag-
onal in this new basis

n;+n;
Hy=erny+ Y U (nin]- - 5 f) , (6.77)
)
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and a contribution that connects the subspace spanned by the CDW eigenstates with
the rest of the Hilbert space, which reads

V= —]J Z (djd] +h.C.> —Jc (d{CL/O +dZCR,O +h.C.) . (6.78)
(i,f)

The second contribution can be regarded as a small perturbation. We then perform
a Schrieffer-Wolff transformation to project onto the subspace spanned by the CDW
states and to virtually include transitions to states orthogonal to the CDW eigen-
states. We follow the work by Bravyi, DiVincenzo and Loss [Ann. Phys. 326, 2793
(2011)] to expand the general expression for a transformation of the Hamiltonian

Hege = Pyexp(S)(Ho + V) exp(—S) Py, (6.79)

where exp(S) is a unitary operator, into a power series up to fourth order in the
perturbation V = V4 + V4 reading

HY) = HyPy + PV P, + %Po [ﬁ(vo ), Vod] P (6.80)
= 3P0 ([Voar [£(Va), 1£(Va), £(Voa) ] P
+ 2P ([Voas £ILVoa), [£Vea), Vall) P
+ 57P0 (1£0Voa), [£(Voa), [£(Voa), Vel ) Po

where V4 denotes the part of the perturbation V that facilitates transitions between
the low-energy Hilbert and the complementary Hilbert space and Vg denotes the
part of the perturbation that only connects states exclusively inside either subspace.
We use the shorthand

c(x) = $XD (6.81)

to denote the inverse energy difference between two states |i) and |j) that are con-
nected through the operator X. After evaluation of the commutators we arrive at the
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expression for the effective Hamiltonian H e(?f)' It reads
4 1
Hyg) = HoPo+ 5P [£(Voa) Vo = Voa £(Vod) | Po (652
1

~ 5P | Voa(LVa)*£(Voa) = L(L(L(Voa)Va) Va) Vea | Py

1
+ 57 20 [(£(Voa))* Vo = 3L (Voa)2Voal (Vo)

+3L(Vod) Vod £ (Voa)* — VodC(Vod)g] Py

1
+ EPO |:Vod <‘C‘C(Vod)zvod - 2‘C'C(Vod)vod‘c(vod) + ‘Cvod‘c(vod)z)

- L <£(Vod)zvgd + Z*C(Vod)vod'c(vod)vod - Vod'C(Vod)zvod):| POI

where the first two lines include all contributions up to second order in the pertur-
bation V' and lines three through six contain the contributions up to fourth order.

Second order correction Evaluating the diagonal contribution Hy for the two
CDW eigenstates yields the effective Hamiltonian in zeroth order as

er 0
Hyg —H0P0—< A ) (6.8)

where from now on we treat the two CDW states like pseudo-spins defined as

0110) = < (1) ) =1 (6.84)
0 _
1001) _< . ) =1). (6.85)

The leading order corrections to the effective Hamiltonian are of second order in the
perturbation V. The corrections encompass two consecutive tunneling processes,
either tunneling within the ring impurity leading to corrections « ]2, or tunneling
between the ring and the leads and back yielding corrections o J2. In the follwing
we show the calculation of each correction term featured in

1
HE) = HoPo+ 5P [ £(Voa) Voa = Voa L (Voa) | Po- (6.86)
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The first leading order correction term gives

—Vod £(Voa) Po (6.87)
4%@(@@+ﬂ@+@@+ﬂ@+ﬂ@+£@+ﬂ@+ﬂmﬁ)

+ JVoa £ (d{CL,O + dICR’O + C]t,odl + C£’0d4) Py

1 1
:_F<u+ didydidy + @m@@+ T@m@@+a£@@m\mm>

U-+e

1
- J? u+ ———didydidy + ﬁ@@@+u+wﬂ@£@+aﬂ@@m\mm>

_]2

1 1 1 1
didsdidy + —didydids + ———didsdidy + —didydids
— €T u —E&T u

11
- 0110)

_]2

10110)

/\/\/\
c
N~~~ N~~~

<

L Bdudidy + Sdididids + —didididy + S didudids
—E&T u —E&T u

u

Sl

f]2

(CL odrdicro + ckodadicr, o) |0110>]

_]2

=—7J°

d d3d4d1+—i%d§d§d4d1- ! d§d§d4d1-£5d§d§d4d1>1oo1>
T

U+e

2
— | |1001
U+ST+U> | )

-1
—F<u_wﬂﬂ@@ f@@@+

LI d*d4d3d24- d*d4d3d2>o110>

2 2
— 11
U€T+U> |0110)

1— 1-—
( nL,O) 2‘[( nR,O) |1001> 4 nL/O?:InR/O()ll(») ,

where 11, o and nr o is the electron density on the site of the lead closest to the impu-
rity for the left and the right lead respectively. The second term of the leading order
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correction yields

L(Vod) VoaPo (6.88)

-1 - -1 —1
= (ud;d4d§d1 + md§d1d§d4 + ﬁdgazlcgd4 + Md§d4d§d1> 11001)

~1 ~1 ~1
+ 2 <u — d*d2d2d1 + d1d3d;d4 + mdf[dzd;zu + ud{d3d§d1> |1001)

—d+d3d dy + T d4d2d+d3 + d4d3d+d2 + d*d2d4d3> |0110)

/_\/\

-1 -1 -1
d§d4d1d2 + ﬁdgdlcz{azg + gTd;dld{dz + ud§d4d1d3> |0110)

u— u—

+J2

(CL od1diero + cf pdadier, 0) |0110>]

+J2

-1
= <d2d3d4d1 tuT d2d§d4d1 d§d§d4d1 B

2 2

2

~2) 11001
+] (U+£T+U>| )

1
+J? (udld;rdsdz -

Md;d;dml) 11001)

-1 —1
md{didgdz + Ud{dldy:lz +

-2 -2
2
+7 (u_gT + 1 ) 0110)

1-— 1-—
. (_( ) —l;( 1nR0) 11001) — M0 EnR,o|0110>> ‘

-1

Assuming that the mean electron density in both leads combined is ny, x +nrx = 1,
the two correction terms are identical. The effective Hamiltonian in leading order

then reads
1 ya _ z
(2+%) (2-%)

(6.89)

2 2
2 2P P

i 2
2
HEY = |ep - 2 20 ) TR Ty

eff — U—er U U
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Figure 6.11: Schematic representation of the correction terms connecting |1001) and |0110)
in second order in the perturbation V. There are two sets of two processes with
the same amplitude that corresponds to processes which are mirror images of
one another in the axis through sites 2 and 3. These processes are of opposite
sign and we thus find pairwise cancellation of the off-diagonal correction terms.

We see that the effective energy gap &(2) between the ground state | |.) and the excited
state | 1) is reduced as compared to the bare energy gap e by the perturbative
corrections. In leading order we furthermore find no off-diagonal terms and as it
turns out not in any higher order (J?)" of perturbations V which feature only in-
ring hopping terms ~ Jdid j- Since the hopping between ring and leads alone cannot
facilitate a pseudo-spin flip, one finds that they are not possible in leading order.

Mirror symmetry We attribute the lack of the off-diagonal, pseudo-spin flip terms
to a symmetry of the nanostructure associated with the mirror symmetry in the axis
through lattice sites 2 and 3 or equivalently an exchange of lattice sites 1 <> 4. The
operator M corresponding to this symmetry reads

A4:1+(ﬂ—dD(@—dQ (6.90)

1
=3 [_ (did{dm + d{didm) + (d4d1d{d1 + d1d4d1di)} vdidy +did, .

The symmetry operator satisfies

M|1001) = —[1001) = —| |) (6.91)
M]0110) = +|0110) = +| 1), (6.92)



102 6 Appendix to “Long-lived circulating currents in correlated Nanorings”

as well as
M2=1, (6.93)
and
[Hy,M] =0. (6.94)

The CDW eigenstates of the Hamiltonian for U/] — oo are also eigenstates of the
symmetry operator M with eigenvalues m = =£1. Since M commutes with the
Hamiltonian H; of the uncoupled impurity for arbitrary U/], the in-ring hopping
terms of H; cannot couple the different eigenstates of M. For the Hamiltonian H,
which couples the ring to the leads, we instead find [H., M| # 0. As a consequence

we have [(Hc + Hy)?, M} # 0, indicating that off-diagonal, pseudo-spin flip terms

can occur in higher orders of the perturbation. We illustrate the connection between
the mirror symmetry and the absence of off-diagonal terms in leading order in figure
Each process connecting | |) and | 1) has a mirror image with opposite sign
leading to pairwise cancellation of all terms.

Fourth order correction In order to obtain finite off-diagonal terms in the effective
Hamiltonian one needs to include the fourth order corrections. Here we show an
example calculation of one such correction term. All other fourth order correction
terms follow accordingly.

Voa (LV4)?L(V,4)|1001) (6.95)

Voa(£VaPL |~ (4 + s+ dlt + A3 )

e (et ot + chodh) | 1001

_ 2
=Voa(LVy) Uter

(s + dfda ) + _U] (s + b )

-]
+7 (c{’odl + cfwd‘;)] 11001)

]C]e)2 (M + cf pdadidy + of gdrdidy + dZCR,OdEdz;)

=VoaLVy U+

—i—% (C{’Odldgdzl + dZCR,OdgdAL + dICL’ngth + C}L{,Od4d;d1)
JJe
(U+ep)U

JJe
uz2

(Ahdact oy + didach oda )

+ (d§d4c{,0d1 + d§d1c£/0d4)1 |1001)
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The contributions that feature the underlined term in equation combine into

PyVoqLVy4 (uf;)zd{c{pd;dl 11001) (6.96)
)2
:P —_—
0 (U + ET)3 %

x (e oehdldadep odidy + chodadiedfer ol

+ didyef gdvdier odidy + didych gdadicr odbdy

+ didact pevdfer o + dfdach gdadier odidr ) [1001)
2

=i [(ZnL,o —2c§,0cL,0) 10110) + (nL,O +c§/0cm) |1oo1>] .

We find that the pseudo-spins on the impurity couple to a second spin-like degree of
freedom in the leads which can be associated with the symmetric and antisymmetric
modes in the leads. We define the annihilation operator for an electron with pseudo-
spin ¢ in the leads as

ct _\}E (CL,O + CR,()) (6.97)
| —\2 (cm — ch0> . (6.98)

We use this pseudo-spin notation for the lead degrees of freedom and collect the
different correction terms up to fourth order in the perturbation. The corrections
read

Vod (LV4)?L(Vea)[1001) (6.99)

3 1 1 3
27212 [ = - — didct
Ak <u3 T U rer) Ul +er)? (u+gT)3> tdieier

1 1
2 212 t +

Y - ! + 2 T didjcct
W WP (U+er)  UU+er)?  (Uer)d | ALY
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—L(L(L(Vod)Va)Va) Voa|1001) (6.100)

3 1 1 3
-2 212 _ 2 d‘i'd +
I ((U— er)? " U(U—er)> UX(U-—er) U3> [

1 1 T +
<u3 + M) didiCTCT

+2J2J2

Ty i ! + 2 1 didcct
W " W2(U+er)  UU+er)?  (UAep)d )

Voa (LV4)2L(V,4)|0110) (6.101)

3 1 1 3
=2 272 | 2 B - ) )

1 1
272 T t
+2] ]C ( I3 + (l[— €T>3> deTCTCT

Y ! + 2 I dldyclc
W WU —er)  UU—er)? (U—er)d) T

—L(L(L (Vo) Va) V) Voa|0110) (6.102)

(3 1 13

U\ (U ter)? T UUter)?2 UR(U+er)? U
+ +

XdeT%CT

1 1
2712 t T

Ty ! + 2 1t dldycle
W WP(U—er)  U(U—er)?  (U—ep)d ) T

First, we identify the off-diagonal terms which couple [1001) = | |) and |0110) =
| ). Now, unlike the leading order corrections, the off-diagonal terms are finite and
cause a simultaneous pseudo-spin-flip on the impurity and in the leads. We can thus
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express the off-diagonal terms as

-1y

WP(U+er) UA(U-—er) <U(u+sT>2 - u(u_gT)z> (6.103)

_ s 3
(U+er)d (U—e7)

3
=2 3 B : - P S*SE 4+ SYStes ) -
J°Je ,,;i (uz(u Tpe) UU+pe)? U+ pe) ( fes T s)

dldscie,

We find that the off-diagonal terms describe a spin-spin interaction in the x and y
direction with an amplitude ], (U, e7). The diagonal correction terms are

1 1 . 1 z
_2] ]C ( (U—|-8T)> <21—S> <2l—|—5res>

(6.104)
%1 + S§e5>
s
-5

The diagonal correction terms contain three different couplings. A spin-spin interac-
tion in the z-direction with amplitude ], (U, e7), a correction to the effective magnetic
field on the impurity and a small effective magnetic field 1*(U, ¢;) on the sites of the
leads next to the impurity. The corrections expressed in the pseudo-spin notation are

1 2 1 1 .

2 < U?(U +e7) * U(U + et)? + (u_|_8T)3> <21_5 ) <
1 1 1 .

—2J%J? <ug +(U_ET)3> <21+s ) (

2 1 2 1 1 .
—2J%J2 ( + Uz(U —er) + U(U —er)? + (u—sT)3> <21+S )

N =

N =

5 1 2 5
. w $°S%,, (6105
+2]°J¢ p;i <u3 + U2(U + per) + U(U + per)? + (U+P5T>3> res ( )

5 1 2 ’
_ 12712 e e
] ]C p;:tp <u3 + UZ(U+ p&‘T) + U(U+ pgT)z + (U+ pET)3> (Sres S )
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In the last step we collect the correction terms arising from lines three through five

of (6.83). These read

1
5220 | (£(Vad)) Voa = BL(Voa)2VoaL (Vod) + 3L (Vo) Voa £ (Vaa)? = VoL (Voa)* | Po

(6.106)

|y g (N SR
I (U+per)®  U>(U+per) U(U + per)?

2p 2 1 1 z
ML <U2(u+p87) " U(U+P€T)2>] 5

1
= {Po {vod (£L(Vaa)Voa = 2LL(Vaa) Voa £(Voa) + Lvodﬁ(vod)Z)} R (6107)

2
+PO [_[' (5(Vod)2V§d +2 (’C(Vod)vod> - Vod'c(vod)zvod>] PO

|y J* 8 14 N 14
N p:ipB (U+ per)®  U>(U+per) U(U + per)?

N J2J? 2 N 14 N 14 =
P \Wrper) " W2(U+per)  UU+per)?)|

Adding the correction terms up to fourth order in the perturbation V to the Hamil-
tonian describing the lead degrees of freedom we arrive at the effective low-energy
(4)
fl

Hamiltonian H off which reads

HY (U, e1)S% + (U, 1) S + (U, £1)S7S% + [1 (U, e7) (S*SE + S¥Stas)

(6.108)
Vv
+Y ercf ok + 0(—t)§ Y o ke,
ko ko0’

where h(U,er) constitutes an effective magnetic field on the impurity and incor-
porates all terms coupling to 5* ® 1,, h(U,e7) denotes the terms proprotional to
1; ® Sies, and [, (U, er) and J, (U, er) feature all terms coupling the impurity spin
and the lead spins in the z-direction or x-y-direction respectively. This effective
model is reminiscent of the anisotropic single-channel Kondo model with anisotropic
coupling between lead spins and impurity spin in the z-direction and the x-y-plane
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as well as a magnetic field hi(e7) ~ O(er) on the impurity. In our effective model the
spin degrees of freedom do not correspond to physical spins. Instead, we identify
pseudo-spins | |) = |g) and | 1) = |e) on the impurity. For vanishing bias voltage,
V = 0, we can identify | |) with the antisymmetric and | 1) with symmetric modes
in the leads. The operators creating these modes read

ol + ki) (6.109)

For finite bias voltage, V # 0, the term
14

5 L ChoTooCha s (6.110)

k0,0’

leads to a hybridization of these two modes, which means they are no longer eigen-
states of the lead Hamiltonian. The conserved quantum number becomes the lead
index « = L, R instead. The linear dependance between lead index a and pseudo-
spin index ¢ in the leads proves to be responsible for differing properties, e.g. decay
rates, of our effective model as compared to the anisotropic Kondo model.

6.4.2 Schrieffer-Wolff transformation of the ring current operator

To determine how the ring current operator I couples to to the matrix elements
of the reduced impurity density matrix pns we perform a second Schrieffer-Wolff
transformation up to leading order in J?/U. From this we obtain an effective ring
current operator Iy acting in the subspace Py. The operators measuring the local
currents in the ring were previously defined as

L=I—1I, (6.111)
I, = —i [ny, H] = ie] (d{d2 - d;dl) ) 6.112)
I, = —i [n3, H] = ie] (d{d3 -~ dgdl) : (6.113)

The Schrieffer-Wolff has been performed in the same fashion as the transformation
for the effective Hamiltonian. The resulting effective ring current operator reads

Legt = Poexp(S) (Iu — L) exp(—S)Py ~ Py (1 + E(Vod)> (ln— 1) (1 - E(Vod)) Py

(6.114)

2 1 1

2

== sv.
] <U+U—ST+U+€T>

We immediately see that (Iog)s; = (Ieff)I’T o« J2/U and (Legt) || = (Legt)1r = O.
The effective current operator thus couples exclusively to the off-diagonal matrix
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elements p4 | and p| + of the reduced impurity density matrix pns of the effective low-
energy model. The transient decay rate of the ring current is therefore determined
by the decay rate of these two particular matrix elements.

6.4.3 Limitations on the viability of the effective low-energy
model

As a consistency check of the effective model Hg‘f) up to order U~* we perform a se-
ries expansion of the perturbative corrections in U~" around U/] — co. The results
of this series expansion for the amplitudes of the spin-spin interaction terms read

5 1 2 2

ey 5 6.115
= =2]7J; p;i WG WU+ per) T UU per? T WU+ per)? (6419
10 -
~ PO (U,
3

_ _pp p _ P _ P 6.116
Ji = -2 p;i U2(U +per)  U(U+per)?  (U+ per) (6.116)

~04+0 (U_S) .

When expanding the expression for |, up to fourth order in the inverse interaction
strength U~! we encounter an inconsistency of our Schrieffer-Wolff transformation
as || vanishes up to this order. We can therefore not assume with certainty that the
spin-spin interaction ], in the effective model is finite.

6.4.4 Perturbation theory for the effective model in the limit
T—0

In our effective model the hybridization between the impurity and the leads satisfies

VTo xxmax(J,, 1) « O(J*J2/U?), (6.117)

which is small in the limit U > max(], €) even in the case of a chosen bare coupling
Joe = O(J). In the limit U/e > 1 we can thus perform a perturbation theory calcu-
lation for the effective low-energy model whilst employing the same values for the
bare model parameters J, J. as in our initial DMRG calculations. This way we can
compare the results from both methods for the decay rate of the off-diagonal matrix
elements p4| and p| 4+ and thus the decay rate of the transient ring current in the
strong interaction limit. In contrast to the earlier perturbation theory calculation, we
no longer study charge fluctuations on the impurity but pseudo-spin fluctuations
instead. This requires a few modifications to the procedure outlined in the previous
section on the perturbation theory. The coupling Liovilliain Ly now features two
field superoperators for the leads and the impurity, instead of just one. It reads

Ly = GhP* iyl e, (6.118)



6.4 Schrieffer-Wolff fransformation and perturbation theory 109

where

didr A p1=+
P1P2 o _ 142 1
Glzl 2A fsplpz { Adyd, . . (6.119)

The field superoperators for the leads remain unchanged

pa_) A p=+
hA{ Ay p=—— (6.120)

As a consequence, the first order corrections to the Liouvillian now contain two reser-
/
voir contractions 'yfﬁ which in turn requires integration over two reservoir frequen-

cies wq and wy. The perturbative correction reads

1
Z(l) E) = GPle GP3P4 P1P4 PzPa. 6.121
(E) W};m 1;4 12 Eo ¥ g — Le 34 T4 723 ( )

It is again possible to separate the corrections into a symmetric and an antisymmetric
part. In the zero temperature limit the two contributions read

oo p(w1)p(ws) |1+ sign (wq) sign (wa) | _
ZS(E) = % Z 2 GlZ/ dwydw; E { ( ) <L )} Gﬂ/
Vi1 Va2 - t w1+ w2 +p + 2p2 — Lns
(6.122)

1 L p(wr)p(ws)sign (w2) <
S (E)= —= G / dwidw Gy -
o(E) z,/%w;z 12 ) B oy T wop £ a2 — L

(6.123)

First we discuss the integrals over the reservoir frequencies wi and wy. For this we
introduce the density of states

o(w) = 2000 (a) - |D|) . (6.124)
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The integral in the symmetric part of the self-energy correction evaluates to

//tmmymmeHWMMMM> (6.125)
—o0 J—c0 4 Z+ wi + ws

) -0 0 deond 1
= widwy ————
fo ./—D ./—D ! 2Z+601 + wy

D Dd p 1
wiadwy) ——
+/0 /O ! zz+w1+w2

=03 {22 logz + (z —2D)log(z — 2D)
+2(z—D)log(z— D) —2(z+ D)log(z+ D)
+(z+2D)log(z + 2D)}

:p(z) [Zzlogz +(z—2D) <i7T+logD +log2 — ZZD>

z
+(z+2D) <logD +log2 + 2D)

—2(z+ D) <logD+ g)

+2(—z+ D) (in +1logD — 123)

~03 |2zlog <2DZ> —22—1’772]
—1) —irt|z|

2z
2
=00 ZZlog( D

Similarly, the integral in the antisymmetric self-energy correction gives
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_/oo /°° dwrdw; plwi)p(ws) sign(wa) (6.126)
o) oo 2 Z+wi+wy

:_/D 2deoy /DP%dwz_/o _ Pjdws

J-D 0 z+wi+wy J-DzZ+ w1+ wy
D

= —203 {/_D dwq [— log(wy + z) + log(w1 +z — D)}

+ /_l; dew |~ log(wi +2) + log(ws +2 +D)| }

=20} :2(2 —D)log(z— D) —2(z+ D)log(z+ D)

—(z—2D)log(z —2D) + (z +2D) log(z + 2D)}

~ 203 |2(z— D) <i7T+logD é)

~2(z + D) <logD + IZ))

+(z+2D) (in—i—logD—i—logZ— 273)

, z
—(z—2D) <z7‘[+logD+log2— 2D>

~ — 203 (ir{z +4D log2> .

Next, we discuss the superoperators acting in the Liouville space of the impurity. We
follow the notation introduced in Schoeller and Reininghaus [Phys. Rev. B 80, 045117
(2009)]. First we define the Liouville superoperators that act as the spin operators
S = (58%,5Y,5%) on the impurity. These Liouville superoperators are

L* = (L*, 1%, 1%7), (6.127)
where the sign p = + indicates the order of the operators as
LTA=SA , L A=-AS. (6.128)

A matrix representation of these superoperators in the basis | 11), | 1)), | T}), | 1)
reads

000 % 0 0 0 —% I 0 0 o
ex_[00 3 00 4y O 0 5 0| 4z |O =3 0 0
0 3 0 0]’ 0 —5 0 0]’ 0o 0 4+ 0]’
J 000 £ 0 0 0 o 0o 0 -1

(6.129)
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00 310 0 0 0 —% I 0 0 o
1 i 1
pxo_ [0 00 )y O 0 5 0 = |0 -3 0 0
1000 0 -5 0 0 00 % 0
0+ 0o 50 0 0 0o 0 o0 -1
(6.130)

From these superoperators we can construct a basis of superoperators sufficient
to describe the spin-spin interaction processes between impurity and lead pseudo-
spins. We further introduce the 'scalar’ superoperators

3
L? = 21 +LT- L7, (6.131)

1
L= J1+2L%7L7,
th=rt4172,

as well as the vector superoperators

Ll = % (y _ L —2iL* x y) ) (6.132)
2= (L7 +L),
P= (L -1 +2L <L)

Due to the anisotropy of the interactions we need to introduce a third set of super-
operators, which reads

L4 = 12+ %+ [(L“ + iL+y) L2 4 L+ (L—x + iL—y)} ) (6.133)
L5 = 12 +il% F [(L+x + iL”) L 241" (L‘X + iL—V)} )

18 =L i% {(L” +iL3y) (Ll" +iL1y> + (L3x - iL3V> (le - iLly)] .

In terms of these basis superoperators the bare Liouvillian is given as
Lns = h(U,e7)L", (6.134)
where h(U, e7) is the effective magnetic field on the impurity and L" represents the

action of [S%, e] on the impurity. The effective Liouvillian for the impurity in first
order perturbation theory reads

Letf(E) = Lns + 2 (E). (6.135)
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The first order, energy-dependent self-energy corrections are

SW(E) =03 Y Giz |2(E + p12 — Lns) (log

Vi
V2,12

1) Gyy (6.136)

Z(E + H12 — Lns)
V1M

D
] Goi
V2,12

+p8 Y Gio | ~8Dlog2 — 27i(E + p2 — Lns) | Gy
V1,1
V2,12

+ 0 Y G {—lﬂ’EﬂLle Lns

where j112 = 1711 + 77212 and

— +]L g 1(72L2x + TU]UZLzyg + ]ZT(710’2L2 171 = _772 = +

_]L L72171L2x + T0'20'1L y - ]ZTUZU'1L2Z 171 = _172 - —

as well as

) 0 [ (L ) e (LY 1) |+ Ly (L2 03) =+
G = ,
—J T (le_'_LBx) +Tz (L1y+L3y) — T <L12+L32) mn=—
(6.138)
where 771 = —17; and we have introduced 7§ = 17 , and ™ = 17 , for abbre-
viation. It is then straightforward to calculate the self energy corrections that are

proportional to simple products G12G51 and G12Gs1. The two different products of
superoperators evaluate to

2@12\0 v;|Gsi (6.139)
:%LC + %L‘ + (L L) + %(Lf + L + T (L~ L) + ]z—g(LC —1h,
and
G12Gs1 = Y G2 v)) (vj| Gy = fzi L"— ];Lh + 213 — J21%, (6.140)
j

To calculate terms involving G f(#12)G and Gf(y12)G a rotation to a different basis
is necessary.
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6.4.5 Modifications to the perturbation theory for spin
fluctuations due to the linear dependence between
pseudo-spin and lead index

From eq. we see that the magnetic field /1(U, eT), experienced by the pseudo-

spins on the lead sites closest to the impurity, is small up to order O(U~*), ie h* <

h,V and we can thus neglect it. It is then more useful to express the Hamiltonian in

the basis of the lead index « € {L, R} eigenstates, which corresponds to a rotation
Yy

X Y z
o, = Tayay Tres — —Tagays Ty, — Tajay D the leads. In terms of the rotated

operators, ¢, x = 1/v/2(c 1k £ ¢t k), the effective Hamiltonian reads

4
HY =hs® + Z €KCE o Cha + Z of o To (6.141)
ku k o0’
I
L Y S i+ Y eyt (S5 + S ().
kK’ k, k/
w0’ w0’

In this rotated basis the part of the Hamiltonian acting exclusively on the leads is
diagonal so the reservoir contractions reduce to simple fermionic distribution func-
tions. After rotation the vertex superoperators read

= ]Lsz 0(10(2 + ]LLzy( )+ ]ZLZZ D(lﬂtz 171 = _;72 = +
G2 = 2 ” 2 , (6.142)
]LL 0(2061 + ]LL j( )+ ]ZL 062011 171 = 7172 - —
and
I B T e B L R R M e R N
G2 =
— /L ((le + L3) 72 — (LY + L%rZ) + (L2 + DP9 = —#m
(6.143)
where we have introduced 7 = T4, ,4, and T = T4, , and have dropped the factor

1/2 resulting from the substitution S, — Taja, for convenience. We reintroduce
the factor in the final result. The first set of self-energy corrections that are affected
by the linear dependance between pseudo-spin index and lead index involve terms
proportional to G11oG57 and Guqu . The first term reads

G_lz‘ulzcij = Z Z Z “1“2 ﬂézﬂq L% (771V,X1 + ’72Va2) L% (6.144)

a1,02 M=—12 Lk=x,y,z

7
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In the following we evaluate the cases | = k and | # k separately. For each example

calculation we set 771 = —1j, = + without loss of generality. For I = k we find
Giop12Gs1 =J7 2 To{m Tapay (Val Va2> L2 2 (6.145)
06],0(2:1,2
I=xy,z
!
:]12 Z Tﬂlélﬂéz lelX] |:Slgn(lel)(1 - 50‘1“2)} L2 LZZ
wq,0p=1,2
I=x,y,z
=]tV Y [mgn Va)th T, +s1gn(V1)T12T21} 1% =o,
I=x,y,z

and for [ # k we obtain

GG =l ¥, L ThwThe [sign(Ve) (1= duw) | L% (6.146)
1#k  waq,00=12
Lk=xy,z

=NV E [sign(Vz)Téllez +sign(V1)Tll2T§1} L%k
1#k
l,k:fc,y,z

=(J.J.) VL*.

This term, proportional to the bias voltage V, does not appear in the perturbation
theory of the regular anisotropic Kondo model. The correction term still satisfies
Trs(L?*) = 0 such that Trs(Leg) = 0, a necessary requirement for the validity of the
perturbation theory. Similarly for Giopi1n Gii we find

GupaGor =ik ), ) T,ilaz Zﬁm [s1gn(val)(1 _(5“1“2)} 2! (L1k+L3k)
1#k  wq,00=1,2
Lk=xy,z

(6.147)
=11V Z {sign(Vz)Télrﬁ + sign(Vl)TllZTé‘l} % (le + L3k)

Lk=xy,z

= (J.J.) VL*>,

which satisfies Trs(L3*) = 0 as well. Next we discuss the correction terms propor-
tional to G12|E + p12 — Lns|Gs1. We know that Ty < & which means that the pertur-
bative corrections to the roots of the unperturbed Liovillian Lys are small. We can
thus safely assume A% = Leg(A%L) ~ £h. As such we evaluate the correction terms
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proportional to G2 |E + pi12 — Lns|Gs1 for E ~ £h and obtain

G_12|h + Vlz - LnS’GQT :]l]k E Tl)léllszlJI(czﬂtl LZI ’h - LIIS + ’71V061 + 172VD(2 L
aq,00=1,2
Lk=xy,z

(6.148)
§(|h+w+|h V)L + ]Hh\Lé
+] (2|5h|+|(5h+V|+|(5h V|)< LC)

i L (22| + 20+ V] 2 - V) (17 - 1)

UZ (loh+vi—lon—vl) (1t +1%)

mz (l2h+v]—l2n—v]) (14 +12)
Iz (|5h+V| + |oh — V|) (L +Lh)
(

IZ (|2h+V|+|2h V|) Lc— Lh)

where 6h = h — hy and we verify that Trs(L%) = Trs(L3) = Trs(L%) = 0. Lastly
we discuss the correction term that involves the logarithm of the Liouvillian Lys. We
abbreviate z = E + p1p — Lps and approximate E = +h. The correction term then
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evaluates to

Graozlog | 5 2|6 (6.149)
]ihl %l L
+f4i(<h+v>1 2V (- v) o 2<hgv>)m

ZL (5h1 og | 22| 4 (21) log %) (L”—LC>

+]Z§ ((5h+v)bg z((shD+V) G-V Z(rShD—V) ) (164 1)
L2 ((Zh—i—V)lo 2BV | () g [ ) (1~ 1)
n ]ZiL <(5h+V) lo 2(‘5hg V)1 (6h— V) log 2(‘5’“D_ V) ) (L4,+Li)
L (Qhw)log 20+ _ ) 022 V) ) (12 413)
+Z¢ (((5h+v)lo w + (6h— V) log Wg”) (- 1)
H} ((2h+V)log @ +(2h—V)log W) (r-1°)

With all the self-energy terms evaluated we can determine the eigenvalues of the ef-
fective Liouvillian Leg (E). To obtain an analytical result for the roots £h we perform
the diagonalization of L. perturbatively as well. In first order

WY = (1] [Legg ()] 1)) = =(I1 |Ler(=R)[ 11), (6.150)
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we find
h=ho+ % 2 (]ih + ]§5h) + ]Zihlog % (6.151)
A (<h+v>10g 20V v 10g <h>)
e (((Sh—i— V)tog |2V (o v tog | 22T )

_itp2 _ _ i _
z4]l<\h+V|+\h V|+2|h|) 1212(|5h+V|+|<5h V|)],

where 6h = h — hy ~ 0 and hy denotes the root of the bare Liouvillian L,s. The
imaginary part of the root /1, which corresponds to its transient decay rate, reads

~ _.7 2 — —_— .7 2 —_—
Im(h) ~ 116] (|h—|—V|+|h V|+2|h|) 18]Z (|(5h—|—V|—|—|(5h V|)
(6.152)

We see that for V' — 0 the imaginary part of & is essentially given by the terms pro-
portional to J2. For V = 0 we thus find a power law decrease of the decay rate
with U™* and « > 8. For finite bias voltage and U — oo the terms proportional to
2 become dominant and we observe a power law decrease of the decay rate with
U P and B = 6. In figure we plot our numerical results for the decay rates
Im(A%L) with A} = +h. We find that for V = 0 the decay rates obey a power law,
Im(A%)(U) o< U8, the same as the spin-flip interaction J? (U). For finite bias volt-
age we observe a different power law, Im(A%)(U) « U™, a behavior shared by
J2(U). Our numerical findings support our perturbative result for the decay rates
(6.152). The perturbation theory for the effective model finds that I' — 0 for U — oo
and supports our findings from DMRG calculations and perturbation theory in the
limit of small coupling which see very long life times T > Iy ! of the ring current
oscillations.

6.5 Estimates for the experimental observation of the
current oscillation

In the presence of a periodically oscillating current density j(x, t) = j(x)e’ one finds
an associated periodic electromagnetic potential

Ho [ .. s elklx=x 3.1
A(x,w:e):H/](x)|X_xl‘dx, (6.153)
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where the wavenumber k = ¢/fic is directly proportional to the oscillation frequency
and pg denotes the magnetic vacuum permeability. Next, we perform a multipole
expansion in the radiation zone d < 27/k < r, where d denotes the radius of the
nano-ring, and r is the distance from the nanostructure. The first term in the mul-
tipole expansion is proportional to the electric dipole moment. The electric dipole
moment reads

p:/xp(x)d3x:q/x5(|x\—d)d3x50, (6.154)

which is zero, due to an equally distributed charge density at radius d.

Magnetic dipole moment The first non-vanishing contribution to the multipole
expansion derives from the magnetic dipole moment, which is given by

1 Ird?

Im| = f/x xj(x) dPx = 12 (6.155)

2 2
where [ is the amplitude of the oscillating ring current. In the following we choose
I <1072 x Je/h, which is approximately the amplitude of the oscillating ring cur-
rent for system parameters U/] = 4.0, e7r/] = 0.5, J./] = 05and eV /] = 04, as
can be seen in figure The magnetic dipole contribution to the electromagnetic
potential at distance  reads

ikug, e 1
AP)|=—-"—m|— [ 1- — 1
[A(r)| = -~ |m|— ol I (6.156)
and the resulting magnetic and electric fields are given by
k2|m| eikr
H(r)| = — 157
H| =S (615)
_ Zokz‘m‘ eikr
EM = = (6.158)

where Zy = 1/(goc) ~ 377 Q) denotes the impedance of the vacuum. The total
power radiated by the electric and magnetic fields, that derive from the magnetic
dipole moment, is consequently given by

P = 2mr?|E(r)||H(r)| (6.159)
_ Zok*|mJ?
12

For an experimental observation, one would require that the power P, radiated by
the fields, integrated over the duration of the oscillation lifetime I'"! exceeds the
energy necessary to emit a photon with the energy E = ¢, indicative of the ring
current oscillation. This requirement can be expressed as

hP !

T > (6.160)
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In the following, we will express parameters in dimensionless multiples of the Ryd-
berg energy in the case of energies, ie ¢ — € X Ry and multiples of the Bohr radius ag
in the case of length scales. In the chosen units, the requirement reads

1P
Te Ry2

4 2
_m 1 N 8nRyap 4 Ry Rye ) 4 4
“BTeRy? @ () 1O I g ) A
B (1072)2]211483 Ry5a5
N 24T B

The requirement for the parameters of an experimental realization of our model sys-
tem then reads

(6.161)

> 24 %1018, (6.162)

J2d4e3
r

Our calculations have been performed with | and e1 chosen to be of the same order
of magnitude, such that ey < D =~ 2]. In graphene the corresponding parameters are
known tobe ] = 0.22Ry and d = 2.84 a9. An optimistic guess for a set of parameters,
which could collectively be achieved in an experiment, is d ~ 104y, ] ~ Ry and
I'/] ~ 1019 for a chosen coupling J. < J. Using these parameters, we find

(J = 12(d ~ 10/} (e ~ 1)°

=10" « 24 x10'8, 6.163
(T~ 10 10) A (6.163)

which leads us to believe that it is unlikely to find a system, in which the oscilla-
tion can be experimentally observed through the energy radiated by the dipole field
alone. Increases in radius d will most likely result in decreased energy scales | and e.

Electric quadrupole moment The sub-leading contribution to the multipole ex-
pansion of the electromagnetic potential is given by the terms proportional to the
electric quadrupole moment. The quadrupole moment tensor is defined as

Qup= / d3x (3xaxr3 - ﬂélx,lg) o(x) = q/ By (Bxaxﬁ - T254x,;3) 5(r—d). (6.164)

The power radiated by the electric and magnetic fields, which originate from the
electric quadrupole moment, reads

¢ Z()k

14407'[ (6.165)

where the absolute value square of the quadrupole tensor yields

3
Y |Qupl = S7d*. (6.166)
wp
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Our requirement for the parameters of the experimental setup thus becomes

5244 5.5
e _ 1 eqd (Ry ”") L1 (6.167)

Te 120 T S

When we use the same estimates for the system parameters as in the case of the

dipole fields, we find

(e~ 1)°(g ~2)*(d ~10)*
(T ~ 10-10)

=4x10% <12x10", (6.168)

which is of comparable order of magnitude, meaning that it is realistic to have a pho-
ton of energy E = ¢ emitted by the quadrupole fields in a significant fraction of the
measurements. The energy radiated by the dipole and quadrupole fields combined
thus appears sufficient for a possible detection in an experiment.
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Chapter 7

Summary and Outlook

In this dissertation, we have looked into various aspects - mainly the non-equilibrium
dynamics - of different model systems, all of which belong to the category of strongly
correlated, low-dimensional, many-body quantum systems. In the following, we
would like to summarize our research and address open questions that arise from it.

Summary

In chapter 3, we have studied the effect of an open boundary on the spectral prop-
erties of microscopic models, which realize one-dimensional Mott insulators, in or-
der to complement previous field theoretical work [108]. Specifically, we have cal-
culated the local density of states (LDOS) and its Fourier transform for the one-
dimensional Fermi-Hubbard chain and an extension featuring next-nearest neigh-
bor interaction. The low-energy properties of both these models are described by
the massive Thirring theory and because the regular Hubbard model is exactly solv-
able by Bethe ansatz [31], we have been able to compare our numerical findings to
the field theory ones, both qualitatively and quantitatively. We also studied the ef-
fect of a chemical potential at the boundary on the LDOS of the Hubbard chain. To
obtain these local densities of states, we applied a density matrix renormalization
group algorithm, within which we calculated the local retarded Green function in
frequency space using an expansion of the occuring resolvent in terms of Chebyshev
polynomials. This approach allowed us to reduce the artificial broadening necessary
for the numerical study of finite systems. Our numerical results for the LDOS repro-
duce the Mott gap and its width is found to be in excellent agreement with the Bethe
ansatz result for the Hubbard model. In the Fourier transform of the LDOS, we de-
tect several gapped and gapless dispersing modes with distinct velocities matching
the analytical results for the distinctive spinon and holon velocities that cause spin-
charge separation. Our observations are in excellent agreement with the results from
field theory at low energies. On top of that, we find additional dispersing modes at
higher energies. For sufficiently large boundary chemical potentials, we also recog-
nize boundary bound states, which manifest themselves as non-dispersing features
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in the LDOS. We conclude that spin-charge separation can be observed in the Fourier
transform of the LDOS and thus directly measured using scanning tunneling spec-
troscopy.

In the work presented in chapter 4, we have examined the extent to which the non-
equilibrium dynamics of a strongly correlated one-dimensional system differ, if the
non-equilibrium situation is brought about by a quench of finite duration instead of
a sudden quench. In such a setup, the inverse quench duration 7! appears as an
additional characteristic energy scale of the system. As model system we we have
chosen the critical XXZ Heisenberg chain. In equilibrium, the low-energy description
of the XXZ chain is given by the Tomonaga-Luttinger model. We have performed the
time evolution of the XXZ chain for short and intermediate times after the quench
using time-dependent DMRG and have computed the equal-time spin-spin correla-
tion functions. For sudden quenches, our results support the observation by Collura
et al. [170] that the dynamics of the correlation functions are captured by the Tomon-
aga Luttinger model to a relatively good degree even in non-equilibrium. For finite
duration quenches, our results show that the light cone picture for correlation func-
tions after a quantum quench, which was proposed by Calabrese and Cardy [173],
remains applicable. The light-cone front after finite duration quenches exhibits a
non-zero delay when compared to sudden quenches, This delay derives from a con-
tinous excitation of quasi-particles at the respective instanteous velocities during the
quench. The extent of the light-cone front delay, that we observe in our numerical
results, agrees well with previous analytical calculations for the Galilean invariant
Tomonaga-Luttinger model[169].

Chapter 5 contains our work on the non-equilibrium dynamics in interacting, asym-
metric, ring-shaped nanostructures containing spinless fermions and coupled to me-
tallic leads. These models have been previously proposed to study the quantum-in-
terference effects in functionalized graphene ribbons [177]. Here, we have studied
the transient currents flowing in the nanostructure after a bias voltage quench. Our
calculations have shown that the source-to-drain current relaxes to its steady state
with a decay rate I'g equal to energy level broadening induced by the leads. The
local currents circulating in the impurity, on the other hand, continue to oscillate
with a distinct frequency w well beyond the time scale T’y !, rather exhibiting a decay
rate I' that quickly decreases with increasing interaction strength. Exact diagonaliza-
tion calculations of the impurity Hamiltonian have revealed that the oscillation fre-
quency w corresponds to the energy gap between two charge density wave (CDW)
states inside the impurity. In the limit of small impurity-lead hybridization I'y, we
have found that the decay rate I' becomes small due to an increased suppression of
decay channels with growing interaction strength. As a result of a mirror symmetry
of the impurity, the effective low-energy theory for the two CDW states exhibits an
anisotropic Kondo-like coupling between the impurity and the leads, which is also
strongly diminished for increasing interaction strength. Our calculations for this ef-
fective model have identified that the decay rate I of the oscillating currents falls off
as a power law of the interaction strength, which is consistent with the numerical
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results. On the basis of these calculations, we have concluded that the two observ-
able currents in the system approach their equilibrium values on time scales that
are parametrically separated with rates differing by orders of magnitude. Finite in-
teractions can thus produce a situation, in which the transport currrent appears to
have relaxed to the steady states, while the local currents still remain in the transient
regime.

Outlook

In chapter 4, we have demonstrated that the transverse correlation functions of the
XXZ Heisenberg chain continue to be adequately described by a Tomonaga-Luttinger
model, even after a quantum quench. This is surprising, given the extensive amount
of energy deposited in the system by the quench and the fact that even in equilib-
rium, the Tomonaga-Luttinger model describes only the low-energy behavior of the
microscopic model.

In our setup, both the initial microscopic system and the microscopic system after
the quench have been quantum critical and would thus be individually described by
a Tomonaga-Luttinger model in equilibrium. In the discussed case, the only quali-
tative difference between the response of the system to either a sudden quench or a
finite duration quench, for t >> 7, appears to be the non-zero delay of the light-cone
front.

It remains an unexplored question, whether the two types of quenches lead to funda-
mentally different situations, if the quench takes the system across a quantum phase
transition. In such a case, a finite duration quench would excite both massless and
massive quasi-particles, whereas excitations due to a sudden quench should be lim-
ited to a single type.

More fundamentally, the extent to which Luttinger liquid theory is applicable, if ei-
ther the initial system or the final system features an excitation gap, remains an issue
to be studied.

Lastly, we note that the non-equilibrium benchmarks of Luttinger liquid theory have
so far been limited to the XXZ Heisenberg chain. Yet, it cannot be ruled out that
for other microscopic models in the Luttinger Liquid universality class, certain pro-
cesses, which are known to be irrelvant in equilibrium, can become marginal or even
relevant in non-equilibrium.

Our analysis of the local currents inside interacting ring-shaped nanostructures, pre-
sented in chapter 5, was originally motivated by Density Functional Theory studies
of transport currents in impurity doped graphene nanoribbons. Now that the pe-
culiar transient behavior of the local currents in a single nanoring with impurity is
sufficiently understood, the logical next step would be to examine the properties of
lattices of such nanostructures.

To make direct contact with graphene nanoribbons though, one first needs to ac-
quire an understanding of the impurity doped hexagonal nanostructure, for which
the important mirror symmetry left <+ right is broken. Early computations of the
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time-dependent currents in such a system reveal similar transient features as seen
for the quadratic ring, but also display significant differences, particularly in the
time-dependent transport current. Given the richness of the physics of the quadratic
ring system, we expect a multitude of surprising results from a detailed study of the
hexagonal ring.
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Chapter 8

Nederlandse samenvatting

De dimensionaliteit van kwantummechanische veeldeeltjessystemen is van cruciaal
belang voor het bepalen van hun eigenschappen. In drie dimensies zijn gemiddelde
veldentheorieén of semiklassieke methoden vaak voldoende om dit soort systemen
te bestuderen en leiden kwantumfluctuaties alleen tot kleine correcties. In lagere
dimensies zijn de effecten van kwantumfluctuaties groter, zodat deze fluctuaties lei-
den tot nieuwe exotische fenomenen en gemiddelde veldentheorieén ontoereikend
worden. In één dimensie, bijvoorbeeld, werkt het Fermivloeistofbeeld van excitaties
van quasideeltjes die zich gedragen als vrije elektronen met een gecorrigeerde massa
niet meer. Het Fermivloeistofbeeld wordt in dit geval vervangen door het Luttinger-
vloeistofbeeld, waarin excitaties van quasideeltjes lijken op dichtheidsgolven.

Naast interessante nieuwe natuurkunde maakt de beperking tot lagere dimensies
ook een breed scala aan krachtige analytische en numerieke methoden mogelijk.
Met deze methoden is het mogelijk om deze systemen te bestuderen met een hoge
nauwkeurigheid en in het geval van integreerbare system zelfs op exacte wijze [8].
In dit proefschrift hebben we gekeken naar verschillende aspecten - vooral de niet-
evenwichtsdynamica - van verschillende modelsystemen, welke allemaal behoren
tot de categorie sterk interagerende, één- of nuldimensionale, kwantummechanische
veeldeeltjessystemen. We zullen nu het onderzoek in dit proefschrift samenvatten.

In Hoofdstuk 3 hebben we de effecten bestudeerd van een open rand op de spectrale
eigenschappen van microscopische modellen die ééndimensionale Mott-isolatoren
verwezenlijken. Het doel van dit onderzoek was om recent veldtheoretisch werk
aan te vullen [108]. Om specifieker te zijn, hebben we de lokale toestandsdicht-
heid (LDOS) berekend, alsmede haar Fouriertransformatie, voor de ééndimensio-
nale Fermi-Hubbardketting en een uitbreiding met interacties tussen buren alsmede
tussen buren van buren. De laag-energetische eigenschappen van deze beide mo-
dellen worden beschreven door de massieve Thirringtheorie. Doordat het reguliere
Hubbardmodel exact oplosbaar is met behulp van de Bethe ansatz [31], hebben we
onze numerieke resultaten zowel op kwantitatieve als op kwalitatieve wijze kunnen
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vergelijken met de veldtheoretische resultaten. Daarnaast hebben we het effect van
een chemische potentiaal op de rand op de LDOS van de Hubbardketting bestu-
deerd. Om de lokale dichtheidstoestanden te verkrijgen, hebben we een zogenaamd
dichtheidsmatrix renormalizatiegroep (DMRG) algoritme gebruikt. Hiermee heb-
ben we de lokale geretardeerde Greense functie in de frequentieruimte berekend,
gebruik makend van een expansie van de bijbehorende resolvente in termen van
Chebyshev polynomen. Deze aanpak heeft ons in staat gesteld om de kunstmatige
verbreding te verminderen, hetgeen noodzakelijk is voor een numerieke studie van
eindige systemen. Onze numerieke resultaten voor de LDOS reproduceren de Mott
bandkloof. Daarnaast is de gevonden breedte van de bandkloof in uitstekende over-
eenstemming met het resultaat van de Bethe ansatz toegepast op het Hubbardmo-
del. In de Fouriertransformatie van de LDOS hebben we verschillende gekloofde en
ongekloofde toestanden gevonden. De dispersies van deze toestanden hebben ver-
schillende snelheden, die overeenkomen met de analytische resultaten voor de zoge-
naamde spinon- en holonsnelheden die voor spin-ladingscheiding zorgen, wanneer
ze niet gelijk zijn. Onze waarnemingen komen uitstekend overeen met de resultaten
van veldtheoretische berekeningen op lage energieén. We vinden bovendien extra
toestanden met een dispersie op hogere energieén. Voor voldoende grote chemische
potentialen op de rand herkennen we ook gebonden randtoestanden die zichzelf
manifesteren als dispersieloze kenmerken in de LDOS. We concluderen dat spin-
ladingscheiding geobserveerd kan worden in de Fouriertransformatie van de LDOS
en dus gemeten kan worden door gebruik te maken van zogenaamde scannende
tunnelspectroscopie.

In het werk dat we presenteren in Hoofdstuk 4 hebben we gekeken naar de niet-
evenwichtsdynamica van een sterk-interagerend ééndimensionaal syteem. In het
bijzonder hebben we gekeken naar het verschil tussen het totstand komen van een
niet-evenwichtssituatie door een zogenaamde plotselinge ‘quench” met een onein-
dig korte duur en een quench met een eindige duur. In een dergelijke situatie speelt
de inverse quench-duur 7~! de rol van een nieuwe energieschaal in het systeem.
Als modelsysteem hebben we de kritische XXZ-Heisenbergketen gekozen. In even-
wicht wordt de laag-energetische beschrijving van de XXZ-ketting gegeven door het
Tomonaga-Luttingermodel, welke het meest fundamentele model van de Luttinger-
vloeistof is. We hebben de tijdsevolutie van de XXZ-keten uitgerekend voor korte en
tussenliggende tijden na de quench. Hiervoor hebben we gebruik gemaakt van tijds-
afhankelijke DMRG en hebben we ook de gelijktijdige spin-spin correlatiefuncties
berekend. Voor plotselinge quenches bevestigen onze resulaten de waarnemingen
van Collura et al. [170]. De dynamica van de correlatiefuncties blijkt relatief goed
te worden beschreven door het Tomonoga-Luttingermodel, zelfs als er nog geen
evenwicht tot stand gekomen is. Voor quenches met een eindige duur laten onze
resulaten zien dat het lichtkegelbeeld voor correlatiefuncties na een quench, voorge-
steld door Calabrese and Cardy [173], toepasbaar blijft. Het front van de lichtkegel
na een quench van eindige duur laat een eindige vertraging zien vergeleken met
de plotselinge quenches. Deze vertraging is het resultaat van het continu exciteren
van quasideeltjes op de bijbehorende instantane snelheden gedurende de quench.
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De omvang van de vertraging van het front van de lichtkegel die we observeren in
onze numerieke simulaties komt goed overeen met analytische berekeningen aan
een Tomonaga-Luttingermodel met Galileaanse invariantie [169].

Hoofdstuk 5 bevat ons werk aan de niet-evenwichtsdynamica van interagerende,
asymmetrische, ringvormige nanostructuren, die spinloze fermionen bevatten en
gekoppeld zijn aan metaalachtige contacten. Dit soort modellen is recentelijk voor-
gesteld om de kwantuminterferentie-effecten in gefunctionaliseerde grafeenlinten te
bestuderen [177]. Hier hebben we de kortstondige stromen bestudeerd die in de
nanostructuur lopen na een quench in het biasvoltage. Onze berekeningen laten
zien dat de stroom die van de bron naar de afvoer loopt, relaxeert naar een even-
wichtstoestand met een vervalsnelheid I'y die gelijk is aan de verbreding van de
energieniveaus door de contacten. Aan de andere kant circuleert de stroom in de
onzuiverheid met een frequentie w, op tijdsschalen lang na I'; 1. De correspon-
derende vervalsnelheid I' blijkt snel af te nemen als de interactiesterkte toeneemt.
Exacte diagonalisatie van de Hamiltoniaan van de onzuiverheid heeft onthuld dat
de oscillatiefrequentie w correspondeert met de energiekloof tussen twee toestan-
den van ladingsdichtheidsgolven (CDW) in de onzuiverheid. In de limiet van een
kleine hybridisatie I'y tussen de onzuiverheid en de contacten vinden we dat de
vervalsnelheid I' klein wordt door een toenemende onderdrukking van de verval-
kanalen als de interactiesterkte groeit. Ten gevolge van de spiegelsymmetrie van
de onzuiverheid bevat de laag-energetische theorie voor de twee CDW-toestanden
een anisotrope Kondo-achtige koppeling tussen de onzuiverheid en de contacten,
welke ook sterk afneemt voor toenemende interactiesterktes. Onze berekeningen
aan dit effectieve model hebben laten zien dat de vervalsnelheid I' van de oscille-
rende stromen afneemt als een macht van de interactiesterkte, hetgeen consistent is
met de numerieke resultaten. Gebaseerd op deze berekeningen hebben we gecon-
cludeerd dat de twee observeerbare stromen in het systeem hun evenwichtswaardes
bereiken op tijdsschalen die parametrisch gescheiden zijn met vervalsnelheden die
ordes van grootte verschillen. Eindige interacties kunnen dus een situatie teweeg-
brengen waarin het lijkt alsof de transportstroom al naar de evenwichtstoestand is
gerelaxeerd, terwijl de lokale stromen zich nog in het overgangsgebied bevinden.
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