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Abstract. Self-avoiding walks on the body-centered-cubic (BCC) and 
face-centered-cubic (FCC) lattices are enumerated up to lengths 28 and 24, 
respectively, using the length-doubling method. Analysis of the enumeration 
results yields values for the exponents γ and ν which are in agreement with, but 
less accurate than, those obtained earlier from enumeration results on the simple 
cubic lattice. The non-universal growth constant and amplitudes are accurately 
determined, yielding for the BCC lattice µ = 6 .530 520(20), A = 1.1785(40), and 
D = 1.0864(50), and for the FCC lattice µ = 10.037 075(20), A = 1.1736(24), 
and D = 1.0460(50).
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1. Introduction

The enumeration of self-avoiding walks (SAWs) on regular lattices is a classical combi-
natorial problem in statistical physics, with a long history, see e.g. [1, 2]. Of the three-
dimensional lattices, the simple cubic (SC) lattice has drawn the most effort, starting 
with a paper by Orr [3] from 1947, where the number of SAWs ZN was given for all 
N up to Nmax = 6; these results were obtained by hand. In 1959, Fisher and Sykes 
[4] used a computer to enumerate all SAWs up to Nmax = 9; Sykes and collaborators 
extended this to 11 terms in 1961 [5], 16 terms in 1963 [6], and 19 terms in 1972 [7]. In 
the following decade, Guttmann [8] enumerated SAWs up to Nmax = 20 in 1987, and 
extended this by one step in 1989 [9]. In 1992, MacDonald et al [10] reached Nmax = 23, 
and in 2000 MacDonald et al [11] reached Nmax = 26. In 2007, a combination of the 
lace expansion and the two-step method allowed for the enumeration of SAWs up to 
Nmax = 30 steps [12]. Recently, the length-doubling method [13] was presented which 
allowed enumerations to be extended up to Nmax = 36. To date, this is the record series 
for the SC lattice.

The body-centered-cubic (BCC) and face-centered-cubic (FCC) lattices are in prin-
ciple equally as physically relevant as the SC lattice, but enumeration is hampered by 
the larger lattice coordination numbers, which detriments most enumeration methods 
severely. It is also slightly more cumbersome to write computer programs to perform 
enumerations for these lattices. Consequently, the SC lattice has served as the test-bed 
problem for new enumeration algorithms, and the literature on enumerations for the 
BCC and FCC lattices is far more sparse. For the BCC lattice, ZN was determined up 
to Nmax = 15 in 1972 [7], and to Nmax = 16 in 1989 [9]. The current record of Nmax = 21 
was obtained in 1997 by Butera and Comi [14] as the N → 0 limit of the high temper-
ature series for the susceptibility of the N-vector model. For the FCC lattice, enumera-
tions up to Nmax = 12 were performed in 1967 [15], and the record of Nmax = 14 was 
achieved way back in 1979 [16].
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Enumeration results derive their relevance from the ability to determine critical 
exponents, which, according to renormalization group theory, are believed to be shared 
between SAWs on various lattices and real-life polymers in solution [17]. Two such 
exponents are the entropic exponent γ and the size exponent ν. Given the number ZN of 
SAWs of all lengths up to Nmax and the sum PN of their squared end-to-end distances, 
these two exponents can be extracted using the relations

ZN = AµNNγ−1

(
1 +

a

N∆1
+O

(
1

N

))
; (1)

PN

ZN
= σDN2ν

(
1 +

b

N∆1
+O

(
1

N

))
. (2)

In these expressions, the growth constant µ and the amplitudes A and D are non- 
universal (model-dependent) quantities, while the leading correction-to-scaling expo-
nent is a universal quantity with value ∆1 = 0 .528(8) [18]. Sub-leading corrections-to-
scaling are absorbed into the O(1/N) term. σ is a lattice specific constant to ensure that 
our amplitude ‘D’ is the same as in earlier work. σ corrects for the fact that with our 
definition each step of the walk is of length 

√
2 for the BCC lattice (leading to σ = 2), 

and of length 
√
3 for the FCC lattice (leading to σ = 3). Note that for bipartite lattices, 

of which the SC and BCC lattices are examples, there is an additional alternating ‘anti-
ferromagnetic’ singularity, that is sub-leading but which still must be treated carefully 
as the odd-even oscillations tend to become amplified by series analysis techniques. 
Because of universality, the exponents are clearly more interesting from a physics per-
spective. However, accurate estimates for the growth constant and the amplitudes can 
also be very helpful for many kinds of computer simulations of lattice polymers.

In this paper, we used the length-doubling method [13] to calculate ZN and PN up 
to Nmax = 28 and 24, on the BCC and FCC lattices, respectively. These lattices can be 
easily realized as subsets of the SC lattice: the collection of sites in which x, y and z are 
either all even or all odd forms a BCC lattice, and the collection of sites (x, y, z) con-
strained to even values of x+ y + z forms a FCC lattice. We then analyzed these series 
to obtain estimates for the exponents γ and ν, the growth constant µ, and the ampl-
itudes A and D. Our results for the two exponents γ and ν agree with the most accu-
rate values reported in the literature which are obtained on the SC lattice, reinforcing 
the credibility of the literature values. Our results for the growth constant µ and the 
amplitudes A and D for the BCC and FCC lattices are the most accurate to date.

The manuscript is organized as follows. First, in section 2 we present a short out-
line of the length-doubling method, and present the enumeration data. In section 3 we 
describe the analysis method we use, before summarizing our results and giving a brief 
conclusion in section 4.

2. Length-doubling method

We first present an intuitive description of the length-doubling method; a more formal 
description can be found in [13]. In the length-doubling method, the number Z2N of 
SAWs with a length of 2N steps, with the middle rooted in the origin, is obtained from 
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the walks of length N, with one end rooted in the origin, and the number ZN(S) of 
times that a subset S of sites is visited by such a walk of length N. The lowest-order 
estimate for Z2N is the number of combinations of two SAWs of length N, i.e. Z2

N. This 
estimate is too large since it includes pairs of SAWs which overlap. The first correc-
tion to Z2N is the lowest-order estimate for the number of pairs of overlapping SAWs, 
which can be obtained from the number ZN({s}) of SAWs of length N which pass 
through a single site s. The first correction is then to subtract ZN({s})2, summed over 
all sites s. This first correction is too large, as it includes pairs of SAWs twice, if they 
intersect twice. The second correction corrects for this over-subtraction, by adding the 
numbers ZN({s, t})2 corresponding to SAWs that pass through the pair of sites {s, t}. 
Continuing this process with groups of three sites, etc the number Z2N of SAWs of 
length 2N can then be obtained by the length-doubling formula

Z2N = Z2
N +

∑

S ̸=∅

(−1)|S|Z2
N(S), (3)

where |S| denotes the number of sites in S.
The usefulness of this formula lies in the fact that the numbers ZN(S) can be 

obtained relatively efficiently:

 • Generate each SAW of length N.
 • Generate for each SAW each of the 2N subsets S of lattice sites, and increment 

the counter for each specific subset. Multiple counters for the same subset S must 
be avoided; this can be achieved by sorting the sites within each subset in an 
unambiguous way.

 • Finally, compute the sum of the squares of these counters, with a positive and 
negative sign for subsets with an even and odd number of sites, respectively, as 
in equation (3).

As there are ZN walks of length N, each visiting 2N subsets of sites, the computa-
tional complexity is O(2NZN) ∼ (2µ)N times some polynomial in N which depends on 
implementation details. This compares favorably to generating all Z2N ∼ µ2N  walks 
of length 2N, provided µ > 2. This is the case on the SC lattice, with µ = 4.684, and 
even more so for the BCC and FCC lattices, as we will show. The length-doubling 
method can also compute the squared end-to-end distance, summed over all SAW 
configurations; for details we refer to [13]. Details on the efficient implementation of 
this algorithm are presented in [19].

We note that the length-doubling method could be extended to the calculation of 
other observables, in particular the mean-squared radius of gyration and the mean-
squared distance from a monomer to its endpoints. These observables are of interest 
because they give an alternative means of estimating the critical exponent ν, and the 
ratios of the observables give universal amplitude ratios. Implementing the calculations 
of these observables would increase the complexity of the computer code, and was not 
done here, but would be a worthwhile extension for future work.

The direct results of the length-doubling method, applied to SAWs on the BCC and 
FCC lattices, are presented in tables 1 and 2, respectively. The BCC results for N ! 26 
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and FCC results for N ! 22 were obtained and verified by two independent computer 
programs: SAWdoubler 2.0, available from www.staff.science.uu.nl/∼bisse101/SAW/, 
and Raoul Schram’s program. The BCC results presented for the largest problems 
N = 27, 28 were obtained by SAWdoubler 2.0 only, and the FCC results for N = 23, 24 
were obtained by Raoul Schram’s program only. Thus the largest two problem instances 
for each lattice were not independently verified since these require a very large amount 
of computer time and memory. Still, based on our analysis we believe that the given 
values are correct.

3. Analysis

We now proceed to analyze our series in order to extract estimates for various param-
eters. In addition to the expressions for ZN and PN/ZN in equations (1) and (2), we also 
have

PN = σADµNN2ν+γ−1

(
1 +

c

N∆1
+O

(
1

N

))
. (4)

As discussed earlier, we expect the critical exponents γ and ν and the leading correc-
tion-to-scaling exponent ∆1 to be the same for self-avoiding walks on the SC, BCC, 
and FCC lattices. The amplitudes A and D are non-universal quantities, i.e. they are 
lattice dependent, while σ = 2 for the BCC lattice and σ = 3 for the FCC lattice. In the 
analysis below, we include a subscript to indicate the appropriate lattice.

The BCC lattice is bipartite, which introduces an additional competing correction 
which has a factor of (−1)N, so causing odd-even oscillations. We reduce the influence 
of this additional sub-leading correction by treating the sequences for even and odd N 
separately. See section 3.3 for further details.

We now describe the method of analysis we used, which involved two stages: extrap-
olation of the series via a recently introduced method involving differential approxi-
mants [20], and then direct fitting of the extended series with the asymptotic forms in 
equations (1), (2) and (4). We then discuss in more detail some aspects of the analysis, 
and report our final estimates in table 5.

3.1. Extrapolation

The method of differential approximants, described in [21], is perhaps the most power-
ful general-purpose method for the analysis of series arising from lattice models in sta-
tistical mechanics. The basic idea is to approximate the unknown generating function 
F by the solution of an ordinary differential equation with polynomial coefficients. In 
particular if we know r coefficients f0, f1, · · · , fr−1 of our generating function F, then 
we can determine polynomials Qi(z) and P (z) which satisfy the following Kth order 
differential equation order by order:

K∑

i=0

Qi(z)

(
z
d

dz

)i

F (z) = P (z). (5)
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The function determined by the resulting differential equation is our approximant. 
The power of the method derives from the fact that such ordinary differential equa-
tions accommodate the kinds of critical behavior that are typically seen for models of 
interest.

Differential approximants are extremely effective at extracting information about crit-
ical exponents from the long series that have been obtained for two-dimensional lattice 
models, such as self-avoiding polygons [22] or walks [23] on the square lattice. However, 
differential approximants have been far less successful for the shorter series available for 
three-dimensional models such as SAWs on the simple cubic lattice [12, 13]. For short 
series, it seems that corrections-to-scaling due to confluent corrections are too strong at 
the orders that can be reached to be able to reliably determine critical exponents. (In fact, 
it is extremely easy to be misled by apparent convergence, while in fact estimates have 
not settled down to their asymptotic values.) The method that has proved most reliable 
is direct fitting of the asymptotic form [12], which we describe in the next section.

However, we can do better than the usual method of performing direct fits of the 
original series, and adopt a promising new approach recently invented by Guttmann 
[20], which is a hybrid of the differential approximant and direct fitting techniques. 
The underlying idea is to exploit the fact that differential approximants can be used to 
extrapolate series with high accuracy even in circumstances when the resulting estimates 

Table 1. Enumeration results for the number of three-dimensional self-avoiding 
walks ZN and the sum of their squared end-to-end distances PN on the BCC lattice.

N ZN PN

1 8  24 
2 56  384 
3 392  4 248 
4 2 648  40 704 
5 17 960  358 008 
6 120 056  2 987 232 
7 804 824  23 999 880 
8 5 351 720  187 661 376 
9 35 652 680  1 436 494 872 
10 236 291 096  10 816 140 768 
11 1 568 049 560  80 339 567 112 
12 10 368 669 992  590 168 152 512 
13 68 626 647 608  4 294 543 350 696 
14 453 032 542 040  31 003 097 851 872 
15 2 992 783 648 424  222 268 142 153 784 
16 19 731 335 857 592  1 583 984 756 900 544 
17 130 161 040 083 608  11 228 345 566 400 136 
18 857 282 278 813 256  79 223 666 339 548 320 
19 5 648 892 048 530 888  556 634 161 952 309 400 
20 37 175 039 569 217 672  3 896 382 415 388 139 840 
21 244 738 250 638 121 768  27 181 650 674 871 447 672 
22 1 609 522 963 822 562 936  189 042 890 267 974 827 744 
23 10 588 362 063 533 857 304  1 311 064 323 033 684 408 072 
24 69 595 035 470 413 829 144  9 069 398 712 299 296 227 648 
25 457 555 628 726 692 288 712  62 590 336 418 536 387 660 248 
26 3 005 966 051 800 541 943 464  431 019 462 253 450 273 360 416 
27 19 752 610 526 081 274 414 584  2 962 188 249 772 759 155 770 280 
28 129 713 248 317 927 812 262 200  20 319 964 852 485 237 389 626 176 
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for critical exponents are not particularly accurate, or even when the asymptotic behav-
ior is non-standard such as being of stretched exponential form. The extrapolations 
can be extremely useful in cases where corrections-to-scaling are large, as the few extra 
terms they provide may be the only evidence of a clear trend from the direct fits.

We have 28 exact terms for the BCC series, and 24 exact terms for the FCC series. 
We used second order inhomogeneous approximants to extrapolate the series for ZN, 
PN, and PN/ZN , where we allowed the multiplying polynomials to differ by degree at 
most 3. In each case we calculated trimmed mean values, eliminating the outlying top 
and bottom 10% of estimates, with the standard deviation of the remaining extrapo-
lated coefficients providing a proxy for the confidence interval. Note that this is an 
assumption, and relies on the extrapolation procedure working well for our problem. In 
practice, this approach of inferring the confidence interval from the spread of estimates 
appears to be quite reliable in the cases for which it has been tested. We have also 
confirmed the reliability of the extrapolations by using the method to ‘predict’ known 
coefficients from truncated series. We report our extended series in tables 3 and 4.

3.2. Direct fits

We then fitted sequences of consecutive terms of the extrapolated series for ZN and 
PN/ZN to the asymptotic forms given in equations (1) and (2), respectively. We found 
that fits of PN/ZN were superior to fits of PN for estimates of ν and the parameter D, 
and hence we do not report fits of PN here.

Table 2. Enumeration results for the number of three-dimensional self-avoiding 
walks ZN and the sum of their squared end-to-end distances PN on the FCC lattice.

N ZN PN

1 12  24 
2 132  576 
3 1 404  9 816 
4 14 700  144 288 
5 152 532  1 951 560 
6 1 573 716  25 021 536 
7 16 172 148  309 080 808 
8 165 697 044  3 714 659 040 
9 1 693 773 924  43 714 781 448 
10 17 281 929 564  505 948 384 608 
11 176 064 704 412  5 777 220 825 912 
12 1 791 455 071 068  65 234 797 723 584 
13 18 208 650 297 396  729 724 191 726 408 
14 184 907 370 618 612  8 097 639 351 530 304 
15 1 876 240 018 679 868  89 239 258 469 121 912 
16 19 024 942 249 966 812  977 545 487 795 069 952 
17 192 794 447 005 403 916  10 651 662 728 070 257 016 
18 1 952 681 556 794 601 732  115 520 552 778 504 791 136 
19 19 767 824 914 170 222 996  1 247 619 751 507 795 906 248 
20 200 031 316 330 580 106 948  13 423 705 093 594 869 393 216 
21 2 023 330 401 919 804 218 996  143 942 374 595 787 212 970 696 
22 20 458 835 772 261 851 432 748  1 538 749 219 442 520 114 999 744 
23 206 801 586 042 610 941 719 148  16 403 200 314 230 418 676 555 512 
24 2 089 765 228 215 904 826 153 292  174 411 223 302 510 038 302 309 440 
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To convert the fitting problem to a linear equation, we took the logarithm of the 
coefficients, which from equations (1) and (2) we expect to have the following asymp-
totic forms:

logZN = N logµ+ (γ − 1) logN + logA+
a

N∆1
+O

(
1

N

)
; (6)

log
PN

ZN
= 2ν logN + log σD +

b

N∆1
+O

(
1

N

)
. (7)

We used the linear fitting routine ‘lm’ in the statistical programming language R to 
perform the fits.

In all of the fits, we biased the exponent ∆1 of the leading correction-to-scaling 
term, performing the fits for three different choices of ∆1 = 0.520, 0.528, 0.536 which 
correspond to the best Monte Carlo estimate of ∆1 = 0 .528(8). We approximated the 
next-to-leading correction-to-scaling term with a term of order 1/N , which we expect to 
behave as an effective term which takes into account three competing corrections with 
exponents −2∆1,−1,−∆2 ≈ −1. For logZN, we fitted logA, log µ, γ, the amplitude a, 
and the amplitude of the 1/N  effective term. For log(PN/ZN), we fitted logD, ν, the 

Table 3. Extrapolated coefficients of the various BCC series obtained from 
differential approximants. The confidence intervals are the standard deviations of 
the central 80% of estimates.

N ZN PN PN/ZN

29 8.519 843 781 50(70) × 1023 1.391 489 520 51(11) × 1026 163.323 360 851(42)
30 5.592 866 9767(12) × 1024 9.513 461 0227(17) × 1026 170.099 897 96(10)
31 3.672 098 7764(23) × 1025 6.494 430 1898(72) × 1027 176.858 809 53(40)
32 2.409 790 7972(39) × 1026 4.427 231 8727(75) × 1028 183.718 514 86(77)
33 1.581 658 3535(44) × 1027 3.014 025 691(25) × 1029 190.561 1070(19)
34 1.037 661 297(10) × 1028 2.0493 782 03(42) × 1030 197.499 7221(33)
35 6.808 628 821(74) × 1028 1.391 831 542(69) × 1031 204.421 7013(47)
36 4.465 743 83(26) × 1029 9.442 164 66(95) × 1031 211.435 420(11)
37 2.929 428 561(97) × 1030 6.398 8380(13) × 1032 218.432 947(13)
38 1.920 9657(36) × 1031 4.332 1295(17) × 1033 225.518 346(32)

Table 4. Extrapolated coefficients of the various FCC series obtained from 
differential approximants. The confidence intervals are the standard deviations of 
the central 80% of estimates.

N ZN PN PN/ZN

25 2.111 165 270 9103(46) × 1025 1.850 104 492 114 73(82) × 1027 87.634 280 348 06(26)
26 2.132 245 848 773(38) × 1026 1.958 277 810 1818(72) × 1028 91.841 089 1195(22)
27 2.153 033 629 72(17) × 1027 2.068 615 279 889(35) × 1029 96.079 097 491(11)
28 2.173 552 5326(10) × 1028 2.181 101 876 19(13) × 1030 100.347 327 420(41)
29 2.193 824 0975(32) × 1029 2.295 724 275 39(38) × 1031 104.644 865 52(13)
30 2.213 867 7922(93) × 1030 2.412 470 697 49(92) × 1032 108.970 856 72(37)
31 2.233 701 285(63) × 1031 2.531 330 7684(21) × 1033 113.324 498 76(98)
32 2.253 340 58(14) × 1032 2.652 295 3987(45) × 1034 117.705 0374(24)
33 2.272 8013(51) × 1033 2.775 356 6769(86) × 1035 122.111 7622(56)
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amplitude b, and the amplitude of the 1/N  term. For the BCC lattice, we minimized 
the impact of the odd-even oscillations by fitting even and odd subsequences sepa-
rately. We included the extrapolated coefficients in our fits, repeating the calculation 
for the central estimates and for values which are one standard deviation above and 
below them.

This procedure gave us up to nine estimates for each sequence of coefficients (from 
the three choices of ∆1, and the three choices of extrapolated coefficient values). For the 
central parameter estimates we used the case where ∆1 = 0.528 (the central value) in 
combination with the central value of the extrapolated coefficients. We also calculated 
the maximum and minimum parameter estimates over the remaining 8 cases.

Our criterion for truncation of the extrapolated series was as follows. We performed 
fits using the additional terms from the ZN series, and truncated the series at the point 
where the additional spread due to the range of extrapolated coefficients meant that 
they were no help in determining the trend in figures 1, 3 and 4. We truncated the 
extrapolated PN series at the same point. For the BCC lattice, we found that five of 
the extrapolated coefficients gave a spread which was only moderately greater than the 
spread arising from varying ∆1, effectively extending the series to 33 terms. For the 
FCC lattice, we found we could use three additional coefficients, extending the series 
to 27 terms. Further extrapolated coefficients resulted in increasingly divergent fits.

For each of the parameter estimates, we plotted them against the expected rela-
tive magnitude of the first neglected correction-to-scaling term. This should result in 
approximately linear convergence as we approach the N → ∞ limit which corresponds 
to approaching the y-axis from the right in the following figures. In equations (6) and 
(7) we expect that the next term, which is not included in the fits, is O(N−1−∆1); given 
that ∆1 ≈ 0.5, we take the neglected term to be O(N−3/2). The value of N that is used 
in the plot is the maximum value of N in the sequence of fitted coefficients, which we 
denote Nmax in the plots.

We plot our fitted values in figures 1–8. For ease of interpretation we converted esti-
mates of log µ, logA, and logD to estimates of µ, A, and D. We note that the param-
eter estimates arising from the odd subsequence of the BCC series for ZN benefited 
dramatically from the extrapolated sequence. Examining estimates for γ in figure 1, 
µbcc in figure 3, and Abcc in figure 5 we see in each case that the trend of the odd sub-
sequence would be dramatically different were it not for the three additional odd terms 
in the extrapolated sequence. In other cases the additional coefficients are useful, and 
certainly make the trend for the estimates clearer, but they are not as crucial.

Our final parameter estimates are plotted on the y-axes.

3.3. Further details

We now briefly discuss two further aspects of the analysis.
Firstly, the influence of the anti-ferromagnetic singularity, which is observed for 

bipartite lattices such as the BCC lattice, can be discerned from the series. As dis-
cussed in more detail in [12], in the asymptotic expression for ZN the leading contrib-
ution of the anti-ferromagnetic singularity is of the form const.µN(−1)NNα−2, where α 
is the critical exponent associated with self-avoiding polygons. We have performed an 
analysis of the ZN series for the BCC lattice via first order inhomogeneous differential 
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approximants. We found a strong signal of a singularity at z = −1/µbcc; the resulting 
estimate of µbcc is less accurate than that coming from our direct fits and we do not 
report it here. The associated exponent of the singularity of the generating function, 
which corresponds to 1− α, is in the vicinity of 0.76–0.78, where this range repre-
sents the spread of differential approximant estimates and should not be regarded as 
a confidence interval. This is consistent with a value of α in the range of 0.22–0.24, 
which may be compared with the expected value of α = 0.237 2090(12) obtained from 
the hyperscaling relation dν = 2− α, with ν = 0.587 597 00(40) [18]. One could extract 
further information from the series for ZN and PN, such as the amplitudes of the anti-
ferromagnetic terms, but we choose not to do so here because to be able to perform the 
fits we would need to bias the value of α, and even then the resulting estimates would 
be quite inaccurate.

Figure 1. Variation of fitted value of γ with Nmax. The line of best fit to the final 
six values is shown for the FCC lattice and to the final three values for the BCC 
lattice, separately for the odd and even values. Our final estimate is plotted on 
the y-axis.

Figure 2. Variation of fitted value of ν with Nmax. The line of best fit to the final 
six values is shown for the FCC lattice and to the final three values for the BCC 
lattice, separately for the odd and even values. Our final estimate is plotted on 
the y-axis.



Exact enumeration of self-avoiding walks on BCC and FCC lattices

11https://doi.org/10.1088/1742-5468/aa819f

J. S
tat. M

ech. (2017) 083208

Figure 3. Variation of fitted value of µbcc with Nmax. The line of best fit to the 
final three values is shown, separately for the odd and even values. Our final 
estimate is plotted on the y-axis.

Figure 4. Variation of fitted value of µfcc with Nmax. The line of best fit to the final 
six values is shown. Our final estimate is plotted on the y-axis.

Figure 5. Variation of fitted value of Dbcc with Nmax. The line of best fit to the 
final three values is shown, separately for the odd and even values. Our final 
estimate is plotted on the y-axis.
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Figure 6. Variation of fitted value of Afcc with Nmax. The line of best fit to the 
final six values is shown. Our final estimate is plotted on the y-axis.

Figure 7. Variation of fitted value of Dbcc with Nmax. The line of best fit to the 
final three values is shown, separately for the odd and even values. Our final 
estimate is plotted on the y-axis.

Figure 8. Variation of fitted value of Dfcc with Nmax. The line of best fit to the 
final six values is shown. Our final estimate is plotted on the y-axis.
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Secondly, we have performed one additional analysis of the ZN series for the BCC lat-
tice, using the method of Zinn-Justin [24], together with the enhancement described by 
Butera and Comi [25] (starting at Equation (23) of that paper) which involves perform-
ing an additional extrapolation. We found that this enhanced method is significantly 
better than the original method of Zinn–Justin, and is quite powerful in obtaining esti-
mates of µbcc. The resulting estimates are consistent with those from the direct fitting 
procedure, and of roughly comparable accuracy; we find that µbcc is in the vicinity of 
6.530 525− 6.530 535. Note that we did not attempt to combine the enhanced Zinn-
Justin method with the differential approximant extrapolation procedure, which would 
have reduced the spread somewhat.

4. Summary and conclusion

We give our estimates for γ and ν in table 5, where we also include estimates coming 
from the literature. We observe that our estimates are consistent with the literature 
values, but that the recent Monte Carlo estimates of γ and ν, using the pivot algo-
rithm, are far more accurate than the estimates from series. The estimates coming 
from our enumerations on the BCC and FCC lattices are not quite as precise as the 
estimates coming from the SC lattice only, but the fact that they are coming from two 

Table 5. Summary of our parameter estimates for γ and ν, with comparison to 
values from the literature. Except where noted, the series estimates for γ and ν 
from the literature come from the simple cubic lattice.

Sourcea γ ν

This work 1.156 50(50) 0.587 85(40)
[26] MC (2017) 1.156 953 00(95)
[18] MC (2016) 0.587 597 00(40)
[27] CB (2016) 1.1588(25) 0.5877(12)
[13] Series N ! 36 (2011) 1.156 98(34) 0.587 72(17)
[28] MC (2010) 0.587 597(7)
[12]b Series N ! 30 (2007) 1.1569(6) 0.587 74(22)
[29] MC (2004) 1.1573(2)
[30] MC (2001) 0.5874(2)
[11] Series N ! 26 (2000) 1.1585 0.5875
[31] MC (1998) 1.1575(6)
[32] FT d = 3 (1998) 1.1596(20) 0.5882(11)
[32] FT ε bc (1998) 1.1571(30) 0.5878(11)
[14] Series N ! 21 (1997) 1.161(2) 0.592(2)
[14] Series N ! 21, biased (1997) 1.1594(8) 0.5878(6)
[14] BCC series N ! 21 (1997) 1.1612(8) 0.591(2)
[14] BCC series N ! 21, biased (1997) 1.1582(8) 0.5879(6)
[33] MCRG (1997) 0.587 56(5)
[34] MC (1995) 0.5877(6)
[10] Series N ! 23 (1992) 1.161 93(10)
[9] Series N ! 21 (1989) 1.161(2) 0.592(3)
a Abbreviations: MC ≡ Monte Carlo, CB ≡ conformal bootstrap, FT ≡ field theory, 
MCRG ≡ Monte Carlo renormalization group.
b Using equations (74) and (75) with 0.516 ! ∆1 ! 0.54.
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independent sources, with different systematic errors, makes these new estimates more 
robust.

In addition, our estimates of the non-universal quantities for the BCC lattice are 
Abcc = 1.1785(40), Dbcc = 1 .0864(50), and µbcc = 6 .530 520(20), which should be com-
pared with earlier estimates of 6.5304(13) [9] from 1989, and unbiased and biased esti-
mates respectively of 6.530 36(9) and 6.530 48(12) [14] from 1997. Our estimates of the 
non-universal quantities for the FCC lattice are Afcc = 1.1736(24), Dfcc = 1 .0460(50), 
and µfcc = 10.037 075(20), which should be compared with earlier estimates of 10.036 55 
[16] from 1979, and 10.0364(6) [8] from 1987 (where these estimates come from different 
analyses of the same N ! 14 term series).

In conclusion, the length-doubling algorithm has resulted in significant extensions 
of the BCC and FCC series. The application of a recently invented series analysis tech-
nique [20], which combines series extrapolation from differential approximants with 
direct fitting of the extrapolated series, has given excellent estimates of the various 
critical parameters. In particular, estimates of the growth constants for the BCC and 
FCC lattices are far more accurate than the previous literature values.
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