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We construct explicit lowest-Landau-level wave functions for the composite-fermion Fermi sea and its low-
energy excitations following a recently developed approach [Pu, Wu, and Jain, Phys. Rev. B 96, 195302 (2017)]
and demonstrate them to be very accurate representations of the Coulomb eigenstates. We further ask how the
Berry phase associated with a closed loop around the Fermi circle, predicted to be 7 in a Dirac composite fermion
theory satisfying particle-hole symmetry [D. T. Son, Phys. Rev. X 5, 031027 (2015)], is affected by Landau-level
mixing. For this purpose, we consider a simple model wherein we determine the variational ground state as
a function of Landau-level mixing within the space spanned by two basis functions: the lowest-Landau-level
projected and the unprojected composite-fermion Fermi sea wave functions. We evaluate Berry phase for a path
around the Fermi circle within this model following a recent prescription, and find that it rotates rapidly as a
function of Landau-level mixing. We also consider the effect of a particle-hole symmetry-breaking three-body
interaction on the Berry phase while confining the Hilbert space to the lowest Landau level. Our study deepens
the connection between the 7w Berry phase and the exact particle-hole symmetry in the lowest Landau level.
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I. INTRODUCTION

At the half-filled lowest Landau level (LL), the system
of strongly correlated electrons undergoes a nonperturbative
transmutation into a compressible Fermi sea of weakly inter-
acting composite fermions (CFs) [1,2]. The question of how the
particle-hole (PH) symmetry of the original electrons confined
to the lowest LL. (LLL) manifests for composite fermions in
zero effective magnetic field has attracted attention in recent
years, primarily inspired by the work of Son [3-5], who has
proposed that a PH symmetric field theory for the CF Fermi sea
(CFFS) can be formulated by treating it as a Fermi sea of Dirac
composite fermions. This is to be contrasted with the Chern-
Simons field theory of Halperin, Lee, and Read [1], which
assumes a Fermi sea of nonrelativistic composite fermions.
Experiments have been suggested to distinguish between these
two formulations [3,6-10], although they appear to produce
consistent predictions for many quantities of interest [11-14].
The possibility of a spontaneous breaking of the PH symmetry
at the half-filled LL has also been considered [15].

In parallel, we have a very precise microscopic theory for
the CFFS state in terms of an explicit wave function [16-21],
constructed by the standard method of composite-fermionizing
[22] the Fermi sea wave function of nonrelativistic electrons
by vortex attachment. This wave function is very close to the
exact Coulomb ground state for all cases studied so far, and,
as a corollary, also satisfies the PH symmetry to an excellent
approximation. That raises the natural question: How does
the microscopic theory dovetail with the debate on the field
theoretical description of the CFFS? A direct path from the
microscopic wave function to an effective field theory confined
to the LLL is at present unavailable, but one can aim to
test certain sharp consequences of the effective field theory
within the microscopic approach. A fundamental prediction of
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Son’s theory is a = Berry phase associated with a closed loop
around the Fermi circle. A justification, albeit not a proof,
for the w phase was given in Refs. [6,23] starting from the
microscopic wave functions of composite fermions. For an
explicit calculation of the Berry phase, it is not immediately
clear how to define the Berry phase for the CFFS, because the
overlap integral between two successive points along the Fermi
circle vanishes due to momentum conservation. Fremling et al.
[19] circumvented the problem by considering a closed path
for a pair of antipodal CF particles, so that the center-of-mass
(c.m.) momentum remains the same for all configurations.
Wang et al. [20] and Geraedts et al. [21] define the Berry
phase through an overlap integral with one of the wave
functions appropriately translated in momentum space through
a projected density operator. They find that the Berry phase
associated with the path of a composite fermion enclosing the
Fermi sea is exactly m provided the wave function satisfies
the PH symmetry exactly [21]. (This was also a necessary
assumption in Ref. [23].) The trial wave function satisfies the
PH symmetry to a high degree but not exactly, and therefore the
Berry phase for the trial wave function is close but not equal to
7, but the Berry phase is exactly 7 if the corresponding exact
Coulomb eigenstates are used instead. Support for = Berry
phase was also offered by the work of Gearedts et al. [24]
who demonstrated an absence of 2k back-scattering for a PH
symmetric disorder.

The objective of this article is twofold. The first is to
generalize the approach of Pu, Wu, and Jain (PWIJ) [25] to
construct a LLL wave function for the CFFS, which is given
in Eq. (24). We further demonstrate that the wave functions
for the ground states provide accurate approximations for the
exact Coulomb eigenstates. An advantage of this wave function
is that it is written as a single Slater determinant and can be
evaluated for large systems.

©2018 American Physical Society
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Second, we ask how robust the Berry phase is to LL
mixing, which also breaks PH symmetry. (PH symmetry can
meaningfully be defined only within a given LL.) It has been
known since the beginning that some degree of LL mixing,
which is always present in experiments, does not cause any
correction to the fractional quantization of the Hall resistance.
The strength of LL mixing is conveniently measured by a
parameter «, defined as

e? /el

9
ho,

where [ = /Tic/eB is the magnetic length, € is the dielectric
constant of the background material, iw, = hieB/myc is the
cyclotron energy of electron, and m,, is the electron band mass.
Experiments in low density p-doped GaAs samples [26-31],
in AlAs quantum wells [32-35], and, more recently, in ZnO
quantum wells [36] have shown that the fractional quantum
Hall and CFFS states survive at least up to k = 4—8, where LL.
mixing is expected to be substantial. [As discussed in Ref. [37],
the parameter « is given by 2.6/+/B, 14.6/+/B, 16.7/+/B,
and 22.5/+/B in n-doped GaAs, p-doped GaAs, n-doped
Zn0O,and n-doped AlAs, with B measured in Tesla.] As we
will see below, at these « values, LL mixing causes a reduction
in the energy of the CFFS by 8-18%.

A realistic treatment of LL mixing of the CFFS is a non-
trivial task. Inclusion of higher LLs in exact diagonalization
studies severely limits the system sizes that can be studied,
as it leads to an exponential increase in the dimension of the
Hilbert space that is to be diagonalized; see Refs. [41,42]. A
perturbative approach has been developed that simulates weak
LL mixing through modification of the interelectron interaction
to include three-body terms [37,43—45]. A nonperturbative
approach for treating LL mixing is the so-called fixed phase
diffusion Monte Carlo method [46—49]), which aims to obtain
the lowest energy state within the phase sector of a given trial
wave function. The fixed phase method is not appropriate for
our purposes, because we are interested in effects that are
dependent on the change in the phase structure of the wave
function.

We consider here a different model for LL mixing that
allows a phase variation. In this model, we determine the lowest
energy state as a function of k by diagonalizing the Hamilto-
nian in the subspace defined by two linearly independent states:
the LLL projected CFFS and the unprojected CFFS. In other
words, we consider

\Ijﬁ = ,B\IJproj +1 - lg)\ljunproj, 2)

and determine the mixing parameter § that gives the low-
est total energy as a function of «. (Melik-Alaverdian and
Bonesteel [50] had used a similar model to study the effect
of LL mixing for the quasiparticle of the 1/3 state.) This
is not an unreasonable model. The unprojected CFFS wave
function is a reasonably good approximation to the CFFS. Its
pair correlation function displays Friedel oscillations with the
expected 7/ kp period [51,52] and it has a lower interaction
energy than the projected wave function with only a modest
amount of kinetic energy cost, as seen in Table 1. (The
unprojected wave function actually has lower total energy than
the projected wave function for k > 2.7.) A hybridization with

K

ey

TABLE L V& and V"™ are the Coulomb interaction energies
per particle, in units of e?/el, for the projected and the unprojected
CF Fermi seas; these include interaction with the uniform positively
charged background. The symbol i is the kinetic energy per
particle for the unprojected CFES in units of the cyclotron energy
hw,, measured relative to the LLL. The numbers in the first three
rows are from our calculations in the torus geometry, whereas the
last row shows the thermodynamic limits obtained previously from
calculations in the spherical geometry [38—40]. All ground states are
in momentum sector (0,0).

N Ve /el) Vel (e fel) £ (Fig, )
9  —04705+0.0002  —0.5067 £0.0001  0.089 = 0.001
13 —0.4628 £0.0001  —0.5034 +0.0001  0.124 =+ 0.004
25  —0.46244+0.0002  —0.5028 +0.0001  0.121 £ 0.001
37 —0.46594+0.0002  —0.5037 £0.0001  0.103 = 0.002
00 —0.4657 —0.5034 0.103

the unprojected state therefore appears to be a favorable way
for the system to lower its energy for finite k. We shall see
that this model actually produces lower energies than the fixed
phase diffusion Monte Carlo method for a range of parameters.

With the wave function so determined, we evaluate the
Berry phase corresponding to a closed loop around the Fermi
circle following a minor generalization of the prescription of
Wang et al. [20] and Geraedts et al. [21]. The result is shown
in Fig. 1 (details of the calculation are presented later). A
striking feature is the sensitivity of the Berry phase y to the
LL mixing parameter «. The variation in the y as a function
of k becomes more rapid with increasing N. (Note that while
the Berry phases for the projected and the unprojected CFFS
wave functions are individually defined only modulo 27, the
change in the Berry phase during the process of LLL projection
can be fully determined by monitoring the Berry phase as a
continuous function of the mixing parameter § or «.) Our study
demonstrates an intimate connection of the & Berry phase to
exact PH symmetry in the LLL.

Two caveats are in order regarding the conclusions in this
work. First, our treatment of LL mixing is, of necessity,

3 :
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FIG. 1. The Berry phase y as a function of the LL mixing
parameter « for a Fermi sea with N =12, N =24, N = 36 and
N = 10 composite fermions. The first three correspond to a closed
loop of a CF hole, while the last one is for the closed loop of a CF
particle.
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approximate, and it would be important to address the issue
by other approaches for treating the effect of LL mixing.
Second, our conclusions are based on a specific definition
of the Berry phase for a discrete CFFS, namely the one
used in Refs. [20,21]. It is an interesting question whether
an alternative definition would produce a Berry phase that
would display a weaker dependence on «. Ideal would be the
calculation of an observable that is manifestly related to the
Berry phase.

For small LL mixings, a perturbative approach has been
developed which produces a single LL theory but with three
and higher body interactions that incorporate the effect of
LL mixing and cause a breaking of the PH symmetry. For
completeness, we have also studied how the Berry phase is
modified by the addition of the simplest three-body interaction
term that breaks PH symmetry within the LLL.

The plan of the paper is as follows. In Sec. I we briefly
review the modified LLL projection developed in Ref. [25].
Following this method, we construct the CFFS wave function
in LLL in Sec. III and show its accuracy by comparing to exact
diagonalization. In Sec. IV, we introduce a treatment of LL
mixing by taking superposition of the projected wave functions
and unprojected wave functions. In Sec. V, we evaluate the
Berry phase as a function of the LL mixing parameter « for
several closed paths encircling CFFS. In Sec. VI, we ask how
the Berry phase is modified by the addition of a three-body
interaction that explicitly breaks PH symmetry within the
LLL. Section VII concludes the paper with a discussion of
the implications of our results, and also certain caveats.

II. BRIEF REVIEW OF LLL PROJECTION IN THE
TORUS GEOMETRY

Inaprevious work, PWJ constructed explicit wave functions
in the torus geometry for a large class of fractional quantum
Hall states and their low energy excitations [25]. We describe
this construction briefly before extending it to the CFFS.

A torus is defined by identifying two edges of the parallelo-
gram&; = Ljand &, = L7, where 7 is acomplex number that
specifies the geometry of the torus [53]. We will work in the
symmetric gauge A = (B/2)(y, —x, 0), which corresponds to
a magnetic field B = — BZ. The magnitude B must be chosen
so that an integer number N, = L?Im(7)B/¢y of flux quanta
pass through the system, with a single flux quantum defined as
¢o = hc/e. The single-particle wave functions are chosen to
satisfy the boundary conditions [54,55]:

HLDY(2,2) = €'9(2,2), ((LiT)Y(2,2) = P Y(z,2),
3

where z = x 4+ iy denoted the position of an electron, the
phases ¢ and ¢, define the quasiperiodic boundary conditions,
and #(L) and #(L7) are the magnetic translation operators,
defined as

1) = exp 6T T(E)
= exp” T exp(£0, + £0), @

for translation by vector & = (Re(£), Im(§)). T'(§) is the usual
translation operator. A nontrivial aspect of the construction of
an N-particle wave function is to ensure that it satisfies the

boundary conditions (j = 1,2, --- N):
1(L1)WVz;, 2] = €9 Uz, Zi],
ti(LiT)Wzi, zi] = e Wz, %]

We note that in our convention the magnetic field points in
the negative z direction. (The wave functions for a magnetic
field pointing in the 4z direction can be obtained by complex
conjugation.) The term “counterclockwise” below will refer
to counterclockwise rotation relative to the direction of the
magnetic field.

We write the single particle states in the symmetric gauge
as [55]

®

Vi = £z, ©)

where the subscript i denotes collectively the LL index and the
momentum quantum number. The explicit form for f;(z) [25]
will not be needed below and so is omitted. We further denote
the wave functions of # filled LLs as

22
7z

il
U, =det iz, 3) = eX # xu(fiz)).  (7)
where x,(fi(z;)) is a Slater determinant formed from
fi(z;). The standard unprojected Jain wave functions at v =
n/(2pn £ 1) are then constructed as [22,56,57]

WP — (8)

2pn+1

Here W, is wave function of n filled LLs in an effective
magnetic field corresponding to magnetic flux

N; = Ny —2pN, ®

where Ny is the physical magnetic flux quanta number, and ¥,
is constructed at magnetic flux N ;”:1) = N. It can be shown
that WP gatisfies the correct boundary conditions [25,58].

The next step is to project these wave functions into the
LLL. One way is to carry out the so-called “direct projection”
[58-60] in which one expands the unprojected wave function
in Slater determinant basis functions and retains only the part
that resides fully within the LLL. This method is guaranteed
to produce LLL wave function which satisfies the correct
boundary conditions. However, it limits one to very small
systems because it requires keeping track of all individual
Slater determinant basis functions, the number of which grows
exponentially with system size. We therefore appeal to the
so-called Jain-Kamilla (JK) projection [61,62], which can be
implemented for very large systems. To this end, we first write
the wave function of one filled LL in the Jastrow form:

r>, (10)
j<k

o1 z — N(t —1
Ri(z) = 7 ( 2 _$em T EANG D]
L1 21

ziz—\zl\z Zi — 2k
Wiz 2l =Ne e Ry(Z)[[o( —
1lzi, Zil e~ a7 Ri(Z) ( I

(1)
where Z = Z,N:1 z; 18 the center of mass coordinate, and 6 is

the odd Jacobi theta function [63]

)
) . 1
9(Z|T)= Z e[ﬂ(n+%)2‘rel2ﬂ(n+§)(z+%)' (12)

n=—0o0
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satisfying the properties 6(z 4+ n|t) = (—1)"0(z|t) and 6(z +
mt|t) = (—1)"e~"m2Hmg (7| 1) for integer m and n. (Our
definition of the Jacobi theta function follows the convention
of Mumford [63], which is different from that used in many
other articles in the field of fractional quantum Hall effect.)
The standard JK method then suggests the form WUidl —

2pn+1

2
-z 1?

> R (Z)xal £1(3/92), 7)1 with

5i=T1 9<ﬂ r). (13)

. L,
k(ks£))
The resulting wave function, however, does not preserve the
periodic boundary conditions and thus takes us out of our
original Hilbert space. PWJ overcome this difficulty by noting
that a modified wave function,

ziszlz A
(VT = eZi 4’72]3%17(2))01 (Gi(a/azj’ Zj)‘]jp)’ (14)

2pn+1

satisfies the correct boundary conditions. Here, roughly
speaking, the operators Gi(a /0zj,z;) are obtained from
f,-(a/az_,-,z_,-) by replacing the derivative 9/dz; by 20/9z;
whenever it acts on J ;’ . PWIJ further demonstrated that the
resulting wave functions for the Jain n/(2n + 1) states and
their charged and neutral excitations are very accurate rep-
resentations of the exact Coulomb eigenstates. The principal
advantage of the PWJ construction is that it enables a study on
torus of large systems of composite fermions. Further details
are given in Ref. [25].

III. CONSTRUCTION OF WAVE FUNCTION FOR CF
FERMI SEA

We now construct a LLL wave function for the CFFS.
Following the standard method for composite-fermionization,
the unprojected wave function for the CFFS is given by [16]

W = det[exp(ik, - r,,)]V7, (15)
2
where k’s can assume values:

k =n1b; + nyb, (n; and n, integers) (16)

with

2 2nRe(r) 2
by=\—————=) b=(0—m) A7)
L LiIm(7) LIm(7)
In the case of rectangular torus in which t is purely imaginary,
the k’s are given by

(k)cs k}") = <—2T[nx i 27-[”-\'
Ly Lyt

The Fermi sea wave function takes certain values of k’s
to be occupied. It has been empirically confirmed [19] that
the ground state minimizes ), _ jlki—k ;jI* as prescribed
in Ref. [18]. Equation (15) is seen to satisfy the correct
quasiperiodic boundary conditions because det [exp (ik,, - 7;,)]
is purely periodic.

Now we proceed to LLL projection. The wave function con-
sists of terms containing products of ¢’*” and LLL wave func-

), (n; and n, integers), (18)

2 12
tions. The LLL projection of one such factor e’*"e W f(@)

produces
. 222 a
Pure e i f(2) = Fif (), (19)
£ = o L o= (k28) o 3 (e ko, (20)

where we have used the fact that LLL projection amounts to
bringing Z to the left and making the replacement 7 — 2/%4,
[22,64]. With this we can write

2

PLLYST = det (£, (2) RY(Z) - HQ(ZI' L_,Zj T)
i<j
2
det (ﬁkn (Zm ))

=|Ri|Z+i*) &k
J

12

1’) 2n

i —Zj
[To(* 72

i<j

So far, this equation represents the Direct Projection, which
is not amenable to calculations with large systems. Following
PWIJ. we make the replacement

2

‘L'> — det (Gk,l (Zm)Jm)y

~ i — I
det (Fy, (zm)) H@(L_lf

i<j
(22)
where
Gy, (zm) = eﬁi‘;‘ze’%(k+2/;)e%(/5+k)2612k1232 23)
is obtained by replacing in Eq. (20) the factor eiknl0z, by

€23 The final expression for the projected CFFS wave

function is

2

2
22

Pu¥ =X R 242 Y ks || det (G (z),
2 .

J

(24)

r). (25)

Appendix A contains the proof that this wave function satisfies
the correct boundary conditions. We note that the implemen-
tation of JK projection in Refs. [18,20,21] also makes the ad
hoc replacement of k, by 2k,, and, in that sense, is similar to
our wave function. We have not found a proof that our CFFS
wave function is the same as that in Refs. [18,20,21], although
numerical comparisons suggest that to be the case at least for
the Fermi sea ground state.

Because we have chosen the real axis as our principal axis,
the center of mass momentum sectors (K, K,) are charac-
terized by the eigenvalues of 7., (L/Ny) and tem (LT/N)

knl? - oo
Gkn (Zm ) =e 4 (kn+ 2k )e % (kn~+kn)zm

. 1—[ P Zm + 12k, 1? — 2
L

JojF#m
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[65,66]:

L VoL
tem | — JIW(K)) = ti<—)|‘1’(K))
<N¢> E Ny

= 7N W(K)), 26)
Lt Lt
rc.m.(W)MK» = En (W)I\IJ(K))
— 27 |W(K)). 27)

It can be shown by explicit calculation that WSF satisfies
2

Eq. (27) with K, = )", n,. On the other hand, W¢F does not

satisfy Eq. (26). Rather, it only satisfies “

sy 2l
tem (L/N)WSF = 27 =5 @SF, (28)
2 2

Therefore, it is actually a superposition of c.m. momentum
eigenstate Ky = > nj and K; = ), ni + N. Nevertheless,

we can project \IIEF to the c.m. momentum eigenstate K| =

>, n1 with the préjection operator [25]:

_iTXam L]
Pi=1+e votem o ) (29)
Ny

and to the c.m. momentum eigenstate K; = ) n; + N with
the projection operator:

Py=1- ei”ZN"'”tc.m.(ﬂ) (30)
Ny
To test the accuracy of our CF wave function, we have
compared it with exact Coulomb eigenstates known for small
systems. The comparison of ground-state energies for each
momentum sector K is shown in Fig. 2 for N = 10 particles.
The wave function clearly is very accurate.

- 0.440
K5 5 5 4 4 2 4 4 5 5
T-0445 e CF
T = Exact
= | ® Exact |
§-0450 . .
g u u ] n n ] u
w x n [ | n x
4. 0.455 . . . n
:"g n u n
2 - 0.460
c
5 [ ] ®
o [ ] ) [
&5 -0.465 bd = e
[ ] [ ] [ ]
- 0.470 0 2 4 6 8 10
Ki

FIG. 2. Exact (blue squares) and CF (red dots) energy spectra in
momentum sectors K;-K, for N = 10 particles exposed to a flux
Ny = 20. The momentum K is given on the x axis, and K, is
displayed at the top; for each K, K is chosen to match the momentum
of the lowest energy state. For torus geometry, the spectra for K; and
K| + N are identical.

IV. A VARIATIONAL TREATMENT OF LL MIXING

As motivated in the introduction, we define a variational
wave function

[Ws(K)) = BlWproi(K)) + (1 — B)e ™ [Wynproi (K)),
31)

where |W,;(K)) is the normalized LLL projected CF wave
function and |Wyyproj(K)) is the normalized unprojected CF
wave function. The phase 0x = Arg(Wproj (K)|Wunproj (K)) is
introduced to ensure that the phase of the LLL part of the
unprojected wave function is the same as that of the projected
wave function, i.e.,

& = (Wproj (K€% Wyoroi (K)) (32)

is a positive real number. With this definition, a gauge change
for either the projected or the unprojected wave function will
leave the Berry phase invariant.

The value of the real parameter 8 is determined by min-
imization of the total energy. The expectation value of the
kinetic energy per electron (in units of /iw.), as measured
relative to the lowest LL, is given by

1—B)? ;
Exk = 3 ( 3 IB) 8?11”0], (33)
(I =8)+B*+2aB( - B)
where all?pmj = (Wunproj | Hxinetic — 1/2|Wunproj) 18 the kinetic

energy per electron for the unprojected wave function (8 = 0).
Similarly, the interaction energy is given by (in units of e*/€l)

o BT+ (- BPe)™ 42601 — plep™
' (1= B + B2 +20B(1 — B)

. (34

where Sl\irOJ:(\I}proj(K.N V| Wproj (K))’ Sénpmj:(qjunproj (K)|V|
\I'Iunproj(K»» and 8[\;")( = Re[e_leK <\Ilproj(K)|V|‘Ijunproj(K»]-
From these, we can obtain the value of optimal 8 as a function
of x by minimizing ex + key.

We have considered four Fermi sea configurations shown
in Fig. 3, with N = 10, 12, 24, and 36 composite fermions.
(Note that these contain either a CF hole or a CF particle at the
Fermi energy.) The values of sgmmj, 51‘)/“”, el‘l,npmj, 8‘{)1" and o
are given in Table II. Figure 4(a) gives the kinetic energy per
particle as a function of 8, and Fig. 4(b) displays the variational
parameter B that minimizes the total energy as a function of
the LL mixing parameter «. To test the effectiveness of our
method in treating LL. mixing, Fig. 4(c) shows the percentage
reduction in the energy relative to the energy of the fully LLL
projected wave function. The energy reduction is significantly
larger than that found by the fixed phase diffusion Monte
method, shown in Fig. S9 of the Supplemental Material of
Ref. [48].

V. BERRY PHASE IN THE PRESENCE OF LL MIXING

We next proceed to evaluate the Berry phase for the wave
function defined in Eq. (31). With a slight generalization of the
convention used by Gearedts et al. [21] and Wang et al. [20],
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j m.:;:
” ‘"’::'z.::

‘“’.;- (h).:;:.
: w

FIG. 3. This figure depicts the various paths we have considered for four Fermi sea configurations. The CF Fermi sea configurations in
(a)—(g) consist of N = 12 composite fermions, those in (h)—(1) have N = 24 composite fermions, and (m) contains N = 36 composite fermions;
all of these configurations are obtained by creating a CF hole at the Fermi energy of a “symmetric” CF Fermi sea configuration. In all cases, the
quoted value of N excludes the CF hole. The panels (n)—(p) to a CF Fermi sea state with N = 10 composite fermions, including a CF particle
(red dot) outside the Fermi contour. The red crosses connected by dashed green lines indicate the successive positions of the CF hole (particle)

along the closed path.

we define the Berry phase as

y =) ImIn(K + K|p(8K)|K), (35)
K

where |K) denotes the state with a CF hole (a CF particle),
obtained by removing (adding) a composite fermion from (to)
a CFFS, with K being the c.m. momentum of the state. § K is
the change of the c.m. momentum as the CF hole or the CF
particle moves on the Fermi surface by a discrete step. The
insertion of the density operator

PEK) = exp (8K - r;) (36)

was motivated in Refs. [20,21] as a way to calculate overlap
matrix elements between the periodic parts of the two succes-
sive “Bloch” wave functions.

We note that Refs. [20,21] used the LLL projected density
operator given by

PriLpk)

2
= exp (—%(k + 212)) exp(izi(k 4 k)/2)T; (ikI*)
— e kPr/A4 > nGkl?). (37)

For the projected CFFS, the Berry phase is independent
of whether one uses the projected or the unprojected
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TABLE 1I. The values of various quantities needed to de-
termine the lowest energy states as a function of « for the
Fermi surface configurations studied in this work. The en-
ergy s“‘,‘i" :Re[e‘ieK(\I/pmj(K )V Wunproj (K))] is quoted in units
of ¢?/el. The quantities &) = (Wyi(K)|V|Wpi(K)), €)™ =
(Wanproj (KO V [Wynproi (K)) are given in units of e?/el. We define
o= <\Imej(K)|e_i9K “Ijunproj(K))~

N=12 N =24 N =36 N =10
gl 0.142 0.129 0.107 0.144
gl —0.4597 —0.4612 —0.4653 —0.4623
gy —0.5022 —0.5023 —0.5034 —0.5032
gmix —0314 —0212 —0.178 —0.303
« 0.473 0.27 0.22 0.537

density operator, because then (K + §K|p(6K)|K) and (K +
SK| P11 p(8K)|K) have the same phase (although their mod-
uli are in general different). The definition of the Berry phase
with the unprojected density operator is natural for situations
when the CFFS is not confined to the LLL.

The evolution of the Berry phases as a function of «
is shown in Fig. 1 for four CFFSs with N = 12, N = 24,
N =36, and N = 10. The Berry phase increases with k when
moving a CF hole around, while decreases with « when
moving a CF particle around. The magnitude of change is
seen to be strongly dependent on LL mixing. Furthermore,
the dependence becomes stronger with increasing the number
of steps along the Fermi-surface contour, hence also correlated
with the system size N.

To gain insight into this result, we ask how the Berry phase
changes as we vary the wave function continuously from the
unprojected to the projected CFFS, i.e., as the parameter §
changes from O to 1. Figure 5 gives the phase variation. (The
Berry phase is shown as a function of the kinetic energy rather
than g, where hiw, = 0 corresponds to 8 = 1 and the last point
to B = 0.) This suggests that the total change in the Berry phase
is given by

Sy = yunproj _ yproj — i(% — 1)71, (38)

where + holds for moving a CF hole, — holds for moving a CF
particle, and Ny.ps is the number of discrete steps in the chosen
closed path around the Fermi circle. To test this conjecture, we
calculate the Berry phase for a number of other paths, shown
in Fig. 3. (Notice that all our steps are in the counterclockwise
direction.) The results are summarized in Table III. The fact
that 8y in Eq. (38) is proportional to Ngeps €xplains the rapid
variation of the Berry phase as a function of «.

The Berry phase for the LLL wave function is consistent
with the relation given in Refs. [20,21]:

H Nﬁe S
. <Tp T 1) mod 27, (39)

The Berry phase for the unprojected wave function is seen to be

7 Ngieps mod 27t if moving a CF hole,

7/unproj —
0 if moving a CF particle.

Q0.7
0.6
0.5
0.4

0 2 4 6 8 10

FIG. 4. (a) The dependence of kinetic energy per particle €x as a
function of g for N =12, N =24, N =36,and N = 10. At 8 =1
the CFFS fully projected into LLL, so the kinetic energy is zero, while
at 8 = Owehaveex ~ 0.17iw,. (b) The dependence of 8 as a function
of LL mixing parameterx for N = 12, N = 24, N = 36,and N = 10.
(c) The percentage gain in energy, % AE, as a function of LL mixing
parameter k for N = 12, N =24, N = 36, and N = 10. The energy
gain by LL mixing is on the same order as or larger than that found
by an earlier diffusion Monte Carlo study [48].

Both yP™ and y""P™ are defined only modulo 27, in contrast
to the difference, which can be fully determined by tracking
the change continuously as a function of 8.

Insight into the Berry phase y""P™ for the unprojected wave
function can be gained in the following fashion. The Berry
phase for a closed loop of a hole around a (nonrelativistic)
electron Fermi sea is given precisely by yfreeelectron — N
mod 2. It arises from the electron exchange statistics: when
a hole moves around a closed loop, it scrambles the ordering
of the electrons along the path, which produces precisely the
phase factor (—1)™wr, Because the additional Jastrow factors
in Eq. (35) appear as |Jastrow|?, they do not produce any
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— N=12
6 .
...... N=24
4 ane aunett
E \m\mmmm N=1 0
> W \',\|\|\t\t
2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Kinetic energy per electron (hw,)

FIG. 5. The dependence of Berry phase as a function of kinetic
energy per electron for N =12, N =24, N =36, and N =10
around the paths in Figs. 3(a), 3(h) 3(m), and 3(n). The plotfor N = 10
has been translated by 4 relative to Fig. 1 to be fitted in the figure.
The Berry phase rotates by approximately 3w for N = 12, 5z for
N =24, 7m for N = 36, and —7x for N = 10 as the wave function
is continuously projected. The Berry phase increases with kinetic
energy when moving a CF hole around, while decreases with kinetic
energy when moving a CF particle around.

additional phases. (Certain results for an inversion symmetric
CFFS are derived in Appendix B.) There is thus no “intrinsic”
Berry phase, i.e., the Berry phase apart from the exchange
contribution, for the electron Fermi sea or for the unprojected
CFFS.

VI. BERRY PHASE UNDER PH-SYMMETRY-BREAKING
PERTURBATIONS

In this section, we probe the sensitivity of the Berry Phase
to PH-symmetry breaking. We add to the Coulomb potential a
weak three-body interaction, which breaks the PH symmetry of
the exact energy eigenstates. We then use the perturbed ground
states to perform the Berry phase calculation.

We know that, in the absence of LL mixing, the projected
CFFS has almost perfect overlap with the exact eigenstates.
This means that we can replace the various states along
the path under consideration by the corresponding lowest
energy eigenstates [21]. We may now probe the PH-symmetry
dependence of the Berry phase y by weakly perturbing the
exact sates away from the PH-symmetric point.

We introduce the Hamiltonian

H = (1 - x)HC()ulomb + XH3B, (40)

where Hig = V33|\Df=)3)(\1123=)3| is the three-body interaction
that penalizes the three-body wave function \1123:)3 in the
angular momentum three channel. We choose Vg such that
the gap in the K = (N /2, N/2) sectors are equal for Hsg and
Hcoulomb, if the latter is projected onto LL. n = 1 instead of n =
0. Note that both Hcoyiomp and Hig produce incompressible
states in the 2nd LL. If we send x — 1, we will reach the
Pfaffian state (or one of its excitations), but for small x the
CFFS state should be only mildly perturbed.

We consider here the paths in Figs. 3(a) and 3(n), corre-
sponding to N = 12 and N = 10 particles. We define o as a
measure of the PH symmetry:

_ 1 _ 2
o= ;uw( K)ICIW(K))?, 1)

where C performs the PH-conjugation, K are the momenta of
the configurations along the path, and Nk is the number of
such momenta. The value o = 1 corresponds to perfect PH
symmetry. The relation between o and x is shown in Fig. 6(a)
for the two paths depicted in Figs. 3(a) and 3(n). Figure 6(b)
gives the variation of the Berry phase y as a function of o, and
Fig. 6(c) as a function of Vsg. The behavior of y as a function
of o is well approximated by

y=m—1037r+/1—-0, N =10, 42)
y=rn+4+0457v/1 -0, N =12. 43)

Even though the PH symmetry is being broken in a spe-
cific manner in this model, our calculation demonstrates a

TABLE III. The Berry phases for projected and unprojected wave functions, P and y"™, for the paths shown in Fig. 3. These Berry
phases are defined modulo 2. In contrast, the difference §y is fully determined by monitoring the phase as the wave function is continuously
projected into the LLL. N is the number of composite fermions and Nips is the number of steps for the closed path in Fig. 3.

P}

N Path in Fig. 3 Neps ™ mod 2 (2 4 1) mod 2 Neps mod 2 by N

12 (a) 8 0.9 1 0 0 3.1 3
(), (©), (@), (& 7 0.4 0.5 1 1 26 25

®) 6 0 0 0 0 2 2

® 6 -0.1 0 0 0 21 )

24 (h) 12 -09 1 0 0 5.1 5
@), (k) 11 0.4 0.5 1 1 4.6 45

G, D 10 —0.1 0 0 0 4.1 4

36 (m) 16 0.9 1 0 0 7.1 7

10 (n) 16 1.1 1 0 0 ~71 7
(0), (p) 15 0.6 0.5 0 1 —66 6.5
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1.0 PH-Symmetry vs Three-body

(a)
o 0.5 N
-- N=10
— N=12 1
080 0.5 1.0
X
1.25_ Berry Phase vs PH-symmetry
(b)
g /—’
? 1.00‘ === N=10
— N=12
0-7P60 0.95 0.90

1.50

FIG. 6. Variation in the Berry Phase y for the CF Fermi sea for
the PH-perturbed Hamiltonian H = (1 — x)Hcouomp + X H3p, Where
x sets the strength of the three-body interaction H3g. Panel (a) shows
the parameter o as a function of x, where o is so defined (see text) that
its deviation from unity is a measure of the degree of PH-symmetry
breaking. Panels (b) and (c) depict the change in the Bery phase y as
a function of ¢ and x.

connection between  Berry phase and exact PH symmetry.
We find that y varies very rapidly with o for small 1 — o.

VII. CONCLUSIONS

‘We have extended the construction of PWJ [25] to obtain
LLL projected wave functions for the CFFS and its excitations
in the torus geometry. Explicit comparison shows that these
are accurate representations of the exact Coulomb eigenstates.

We have considered a model for LL mixing in which the
projected CFFS can hybridize with the unprojected CFFS.
The resulting wave function indicates a substantial lowering
of energy at finite x. Within this model, the Berry phase of
the CFFS is found to vary rapidly with LL mixing, illustrating
an intimate connection between the m Berry phase and PH
symmetry in the LLL. We stress that this conclusion relies on
using the prescription of Geraedts et al. [21] for defining the

Berry phase, and we do not rule out the possibility that an
alternative definition of the Berry phase would make it more
robust to LL mixing.

One may ask whether our conclusions would carry over to
a more realistic model for incorporating LL. mixing. Another
treatment of LL mixing is through the fixed phase diffusion
Monte Carlo method, which, as mentioned in the introduction,
does not allow the phase of the wave function to change and
may thus not be appropriate for the question of the Berry phase.
However, because our method produces lower energies than
the fixed phase diffusion Monte Carlo method, we believe it
is likely that LL mixing does cause a change in the phase of
the CFFS wave function. With this in mind, our work shows,
at minimum, that there exists an energetically favorable CFFS
wave function that, when hybridized with the LLL projected
CFFS, will produce a rapid variation of the Berry phase with
LL mixing. The sensitivity of Berry phase to LL-mixing is
also tested in a second method by adding a weak three-body
interaction. We show the Berry phase varies with the PH-
breaking degree.
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APPENDIX A: BOUNDARY CONDITIONS FOR THE CF
FERMI SEA WAVE FUNCTION IN EQ. (24)

It is straightforward to confirm the boundary conditions on
the real axis:

ti(Ll)PLLL‘I’fF = PLLLLII%CF- (A1)

For the other direction, we get

Tm(L1T)Gk (Zm) — ei27m1'[e—i71(1:+1)(N—1)
Zm+i2kn 2=z
—i2 J
< [Te™ = Gl (A2)
Jrj#m
and

. i zrtiZknl®—zm
Tu(LiT)Gy, (z) = e TG ). (A3)
These relationships imply
—2w A DHN=1) Y 2 Nz
Tm(th)det (Gk,,(Zm)) =e SRR )6 e
—4ni? )
X eT Zj k/ det (Gk” (Zm ))s (A4)

On the other hand, periodic boundary condition requires

2

T.(Lit)| Ry Z+1[22k1 det(Gk,,(Zm))

J
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2
_ efinZN(zLZ%+T) R| z +i? ij det (Gk,,(Zm))-

J

(AS)
With
2
T Lio)| Ri| Z i) k| | = Prrta T )
J
(A6)
this is equivalent to
T (Ly7)det (Gy, (zm)) = 2T T(N=1) —iE i Y2
4l ik

xe L det (Gkn(zm)). (A7)

Equations (A4) and (A7) are identical, proving that the wave
function in Eq. (24) satisfies the correct periodic boundary
conditions in the Lt direction as well.

APPENDIX B: BERRY PHASE FOR AN INVERSION
SYMMETRIC SYSTEM

We show below that the overlap (K + §K|5(8K)|K) for
each step is real, on condition that the ground state is
inversion symmetric (e.g., all paths shown in Fig. 3) and
¢1 =0, ¢, = 0. We further show that the Berry phase for
the unprojected wave function is trivial, i.e., 0 mod 2, if the
path is also inversion symmetric (e.g., Figs. 3(a), 3(h) 3(m),
and 3(n)).

We set the origin of the momentum coordinate system at the
the inversion symmetry center of the CF Fermi sea ground state
(i.e., the state without the additional CF hole or CF particle).
Consider a path in which a CF hole (particle) is moved from
K to K,. These two states are labeled as |K ;) and |K,). The

inner product can be written explicitly as

(K2 |p(Ky — K1)|Ky)
= /d2r1 e der[det(Kz)\l-’%]*

x p(K, — K )| det(K)W7]. (B1)

Here det(K) represents the determinant of plane waves corre-
sponding to the occupied momenta of | K'). Another segment of
the path is the inversion-symmetric partner from K| = — K to
/2 = — K, on the condition that ¢; = 0, ¢, =0, \1112 is even
under inversion. With transformation of integration variables
ri —> —ri,i=12---N, we get
(K2|p(K> — K1)IKy) = (K3|p(Ky — K)IKY). (B2)

On the other hand, for the unprojected wave functions, we have

P(K,— Ky) = p(K, — K'Y, (B3)

and
det(K') = (=1)" det(K )", (B4)
det(K,) = (—1)" det(K»)*, (BS)

where m can be an odd or even integer depending on the
ordering of the momenta. With these results, we get

(K2l (K> — K1)IK 1) = (K3 p(Ky — KK
(B6)

Equations (B2) and (B6) together tell us that (K,|p(K, —
K)|K;) = (K7|p(K, — K)|K1)*, which means it must be
real, i.e., the phase of overlap can only be 0 or # mod 2n for
unprojected wave functions. Furthermore, since Eq. (B2) tells
us the 7 phase must come in pairs for an inversion symmetric
path, the Berry phase for the unprojected wave function must
be 0 mod 27 for such paths.
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