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1 Introduction

The phase space of (quantum) gravity solutions in dimensions larger than four is intricate

and has a rich structure, see e.g. [1, 2] for some reviews on black holes and horizons in

various dimensions. Whereas in asymptotically flat four spacetime dimensions, horizon

topologies are unique to be S2, in five dimensions one can have black holes and black

rings [3], with horizons S3 and S1 × S2 respectively. Also quotient topologies exist, such

as Lens space horizons [4–6]. These objects can be made BPS in supergravity and are

embeddable in string theory where one can provide a microscopic description. In six

dimensions, near horizon geometries have been classified in (1,0) supergravity coupled to

tensor multiplets and hypermultiplets (and no vector multiplets) [7, 8], and there are more

possibilities. The focus of this paper, the case where the hypermultiplets are frozen, only

yields near horizon geometries locally given by either R1,1 × T 4, R1,1 ×K3 or AdS3 × S3.

Some of the objects with a horizon easily follow from uplifts from 5d to 6d. The most

well studied case is of course the 6d BPS black string with horizon S1 × S3 and near

horizon geometry AdS3 × S3, arising from the uplift of a 5d spherical black hole. The

microscopic description in string theory was first given in [9, 10]. One can also uplift a

5d black ring and we will see that it also has horizon S1 × S3 and near horizon geometry

AdS3 × S3. Besides black objects with horizons, there are also smooth horizonless BPS

(microstate-) geometries (see [11–16] for an incomplete list of references), and an interesting

class of 6d BPS pp-wave solutions that we will study in this paper. Many other solutions

can be found by superposing waves on black strings, and one can play with various kinds

of asymptotics.

So far general BPS solutions of (1, 0) supergravity have mainly been studied in the

minimal case [7] and in the case with the gravity multiplet coupled to one or two tensor

multiplets (gauged and ungauged), see e.g. [11–20]. In this paper we generalize this to nT
tensor multiplets, for any nT . One of the new ingredients is the scalars in the tensor multi-

plets which can have nontrivial profiles and that are subject to a 6d attractor mechanism,

as we will see.

Six-dimensional (1, 0) supergravity coupled to matter multiplets arises from the com-

pactification of F-theory on elliptically fibered Calabi-Yau threefolds or from truncations

of type IIB on T 4 or K3. Of particular interest are BPS black string solutions of this

theory, as they yield five-dimensional black holes upon further compactification on a circle.

The F-theory microscopics have been studied in [21–23]. The near horizon geometry leads

to new two-dimensional (0, 4) CFTs that have been recently investigated in [22, 24, 25].

Compactifying F-theory on an elliptically fibered non-singular Calabi-Yau threefold results

in a gravity multiplet, nT = h1,1(B2) − 1 tensor multiplets and nH = h2,1(CY3) + 1 hy-

permultiplets, where h1,1(B2) and h2,1(CY3) are hodge numbers of the base and threefold

respectively [26–28]. For generic elliptic fibrations, one has nV = h1,1(CY3)− h1,1(B2)− 1

vector multiplets and an anomaly cancelation condition. Here we truncate all vectors and

set the corresponding charges to zero. One approach to study F-theory is via its connec-

tion with M-theory: one gets the effective 6d (1, 0) theory by reducing M-theory on the

Calabi-Yau threefold to five dimensions and then lifting it up to six dimensions [29]. To
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do this, one has to take into account one-loop contributions coming from the reduction on

the circle [30]. So in a way six-dimensional solutions are proper F-theory solutions and it

might be interesting to see what we can learn from studying the connection between them

and their five-dimensional counterparts.

More technically, our analysis starts with deriving a general local form for supersym-

metric solutions where we use methods that have been applied before to four-dimensional

theories [31–36], five-dimensional theories [37–40] and minimal six-dimensional supergrav-

ity [7]. The strategy is always the same. Starting from a Killing spinor ε one constructs

bosonic objects quadratic in ε, the so-called bilinears, such as the vector Xµ = ε̄γµε. These

bilinears have certain properties since ε is a Killing spinor. The vector Xµ for instance

turns out to be a Killing vector in all cases. Using these bilinears, the local form of the

solutions can be identified and this can be used to simplify the equations of motion. It

turns out that the resulting equations in minimal N = 2, D = 4 supergravity can actually

be solved completely [32]. In five-dimensional minimal supergravity the solutions fall into

two classes [37]. In the first class, the vector X is null and the solutions are plane-fronted

waves expressed in harmonic functions on R3. In the second class, the vector X is timelike

and the equations of motion can not be solved completely, but the equations are simpli-

fied significantly such that one only has to make an ansatz for the remaining variables.

Solutions of supergravity coupled to an arbitrary number of vector multiplets have similar

properties as in the minimal case [39]. In six-dimensional minimal supergravity the Killing

vector X is always null [7] and as one can expect, based on the five-dimensional analysis,

the equations of motion can not be solved completely in the most general case.

The bosonic field content in the six-dimensional theory consists of the metric, a two-

form with anti-self-dual field strength in the gravity multiplet, and nT two-forms with

self-dual field strength and nT scalars in the tensor multiplets. The constraints that super-

symmetry puts on the field content have already been derived in [41], so like in [7] we will

introduce coordinates and reduce the equations of motion using these local expressions.

Using coordinates (u, v, xm), m = 1, . . . , 4 we find that solutions are not dependent on v

and can be expressed in terms of a u−dependent base manifold B. In general the base

space B exhibits a non-integrable hyper-Kähler structure. Using the form of the solutions

that one gets from requiring one Killing spinor, all the equations can be expressed in terms

of bosonic quantities on B. These equations are not easy to solve in full generality, but it

is still easier to find solutions by substituting an ansatz in these equations than to start

with an ansatz for the complete field content.

The resulting equations will be studied in two cases where the base space becomes

hyper-Kähler. One of those cases arises when the solution is u−independent. In that case

we also take B to be Gibbons-Hawking [42] and it turns out that the solution is completely

determined in terms of 6 + 2nT harmonic functions on R3. This is one of the main new

results of our analysis. When one takes these solutions to be multi-centered Gibbons-

Hawking, requiring the absence of Dirac string-like singularities gives restrictions on the

relative positions of the centers. Just as in the minimal case [43] there is a symplectic group

that sends solutions to solutions preserving regularity, but here the Sp(6) gets enlarged

to Sp(6 + 2nT ). We also construct the macroscopic black string solutions in F-theory

– 2 –
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backgrounds R× S1 ×R4 ×CY3 with a D3-brane wrapped on S1 ×C, where C is a curve

in the base of the Calabi-Yau threefold.

We finish by studying the attractor mechanism [44, 45] in this theory. This has partly

been done in [46, 47] but only the near horizon analysis. Here we derive a flow equation

on the tensor branch for u−independent solutions. We look at simplifying assumptions

needed to understand the attractor values as the optimization of the central charge, and

we apply this to the one-centered Gibbons-Hawking class of solutions that include BPS

black strings. Some of the latter solutions have also been treated in [48].

This paper is organized as follows. In section 2 we describe the field content of (1,0)

supergravity with a gravity multiplet and tensor multiplets, we list the conditions the

existence of a Killing spinor puts on the field content, and we introduce the equations

of motion that are not implied by integrability conditions. In section 3 we introduce

coordinates and reduce the equations of motion to equations in terms of bosonic quantities

on B. Section 4 then solves the resulting equations under certain assumptions. Here we

also discuss how the theory reduces to five dimensions and look at black strings and other

objects with a horizon. We finish this section by looking at examples of pp-waves. Section 5

describes the attractor mechanism for this theory; here we also derive a flow equation for

u−independent solutions. In section 6 we then summarize and give some suggestions for

future work.

Notation. Since we use a lot of different notation in this paper, we give a short overview:

• M,N = 1, . . . , nT where nT is the number of tensor multiplets,

• α, β, . . . = 1, . . . , nT + 1 denote field content in six dimensions,

• µ, ν, . . . = 0, . . . , 5 denote coordinates or the vielbein of the six-dimensional metric,

• i, j, k, l = 1, . . . , 4 first denote part of the vielbein of the six-dimensional space and

from section 3 onwards the vielbein of the base manifold B,

• m,n, . . . = 1, . . . , 4 denote the coordinates of the base manifold B,

• a, b, c, d = 1, . . . , 3 denote either the three two-forms in the almost hyper-Kähler

structure, or part of the vielbein of a Gibbons-Hawking metric,

• I, J, . . . = 0, . . . , nT + 1 denote field content in five dimensions,

• objects with a hat ·̂ live in six dimensions,

• objects with a tilde ·̃ live in the four-dimensional base space,

• ?6 is the hodge star in six dimensions,

• ?4 is the hodge star in the four-dimensional base space.

Note added. During the submission process of this paper, we learned of similar and

independent work [49] that has some overlap with ours.
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2 Setting

We consider six-dimensional (1,0) supergravity coupled to nT tensor multiplets [50–52].

Vector and hypermultiplets can be added to ensure an F-theory embedding, but we will

set them to zero in the solutions we consider in this paper. The idea is to study the

BPS structure of the tensor branch. The bosonic content of the gravity multiplet consists

of a graviton and a two-form with anti-self-dual field strength. Every tensor multiplet

contains a two-form with self-dual field strength and a scalar. We will denote the six-

dimensional two-forms by B̂α, where α = 1, . . . , nT +1. The scalars of the tensor multiplets

parametrize the coset space SO(1, nT )/SO(nT ). A convenient way to describe them is by

an SO(1, nT ) matrix

S =

(
jα
xMα

)
, M = 1, . . . , nT , (2.1)

whose matrix elements satisfy the constraints

jαjβ −
∑
M

xMα x
M
β = Ωαβ ,

jαj
α = 1, (2.2)

xMα j
α = 0,

where Ωαβ = diag(1,−1, . . . ,−1) is used to lower and raise α indices. The field strengths

corresponding to the two-forms are given by Ĝα = dB̂α and their relation to the anti-self-

dual tensor H of the gravity multiplet and the self-dual tensors HM of the tensor multiplets

is given by

Ĝα = jαH − Ωαβ
∑
M

xMβ H
M . (2.3)

In terms of the three-forms Ĝα the self-duality condition can be written as

gαβ ?6 Ĝ
β = −ΩαβĜ

β , (2.4)

where

gαβ = 2jαjβ − Ωαβ (2.5)

is a positive definite metric.

The self-duality condition on the three-forms makes it hard to construct a covariant

action functional from which all equations of motion follow. These actions do exist [53, 54],

but one has to introduce auxiliary fields. Another approach is a pseudo-action from which

equations of motion follow that then still have to be supplemented by the self-duality

condition. The bosonic part of the pseudo-action that is relevant for this paper is given

by [52]

S =

∫
M6

1

2
R ?6 1− 1

4
gαβĜ

α ∧ ?6Ĝβ +
1

2
Ωαβdj

α ∧ ?6djβ . (2.6)
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The equations of motion are then equal to

Rµν =
1

4
gαβĜ

α ρλ
µ Ĝβνρλ −

1

24
ĝµνgαβĜ

α
ρλσĜ

β ρλσ − Ωαβ∂µj
α∂νj

β ,

xMα d (?6dj
α) = −xMα jβĜα ∧ ?6Ĝβ ,

d
(
gαβ ?6 Ĝ

β
)

= 0, (2.7)

gαβ ?6 Ĝ
β = −ΩαβĜ

β ,

jαj
α = 1.

Using the self-duality condition, this set of equations is equivalent to

Rµν =
1

4
gαβĜ

α ρλ
µ Ĝβνρλ − Ωαβ∂µj

α∂νj
β ,

xMα d (?6dj
α) = xMα jβĜ

α ∧ Ĝβ ,
dĜα = 0, (2.8)

gαβ ?6 Ĝ
β = −ΩαβĜ

β ,

jαj
α = 1.

Note that the equation of motion for the three-forms becomes the Bianchi identity.

2.1 N = 1 restrictions

The BPS equations for six-dimensional (1,0) supergravity with a gravity multiplet and

tensor multiplets are [41] (
∇µ −

1

8
Hµνργ

νρ

)
ε = 0,(

i

2
TMµ γµ − i

24
HM
µνργ

µνρ

)
ε = 0, (2.9)

where

TMµ ≡ xMα ∂µjα. (2.10)

We will consider geometries with N = 1 supersymmetry. In [41] the restrictions that

the Killing spinor puts on the geometry have been worked out which we will discuss in

this section.

On our geometry we introduce a vielbein ê0, . . . , ê5, the null-forms1

e− =
1√
2

(
−ê0 + ê5

)
,

e+ =
1√
2

(
ê0 + ê5

)
(2.11)

and choose the orientation ε−+1234 = 1. Using the null-vielbein e−, e+, êi, where i =

1, . . . , 4, we can write the metric as

ds26 = 2e−e+ + δij ê
iêj . (2.12)

1We relabeled the vielbein of [41] to make notation easier later on.
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We choose the orientation of the directions perpendicular to the light-cone direction εijkl =

ε−+ijkl (note that [41] uses the opposite orientation).

The Killing spinor can then be used to construct the bilinears of the geometry, which

turn out to be given by e− and

e− ∧ I1, e− ∧ I2, e− ∧ I3, (2.13)

where the two-forms Ia for a ∈ {1, 2, 3} take the form

I1 = −
(
ê1 ∧ ê3 + ê2 ∧ ê4

)
,

I2 = −
(
ê1 ∧ ê2 − ê3 ∧ ê4

)
, (2.14)

I3 = −
(
ê1 ∧ ê4 − ê2 ∧ ê3

)
.

These two-forms are anti-self-dual on the directions perpendicular to the light-cone direc-

tion and satisfy the algebra of the imaginary unit quaternions on a four-manifold with

metric δij ê
iêj :

(Ia)ik

(
Ib
)k
j

= −δabδij + εabc (Ic)ij . (2.15)

Note that the vierbein chosen in (2.14) is special and that the forms Ia might look different

when another vierbein is used.

The conditions that the gravitino Killing spinor equation imposes on the spacetime

geometry can be rewritten as

∇µe−ν =
1

2
Hλ

µνe
−
λ , (2.16)

∇µ
(
e− ∧ Ia

)
νλρ

=
1

2
Hσ

µν

(
e− ∧ Ia

)
σλρ

+
1

2
Hσ

µλ

(
e− ∧ Ia

)
νσρ

+
1

2
Hσ

µρ

(
e− ∧ Ia

)
νλσ

.

(2.17)

Condition (2.16) implies that the vector X dual to e− is a Killing vector. Furthermore,

condition (2.16), the µ = − component of condition (2.17) and the anti-self-duality of H

imply that

H = e+ ∧ de− − 1

16

(
Iakl∇−Ib kl

)
ε c
ab Ic ije

− ∧ êi ∧ êj +
1

6

(
de−

)
−l ε

l
ijkê

i ∧ êj ∧ êk. (2.18)

The µ = + component of condition (2.17) implies that

∇+I
a = 0 , (2.19)

and the µ = i components give further restrictions on the covariant derivatives of Ia.

The tensorini Killing spinor equation implies that the scalars of the tensor multiplets

are invariant under the isometry X [41]. Combining this equation with the self-duality

condition yields that the three-forms of the tensor multiplets take the following form [41]:

HM =
1

2
HM
−ije

− ∧ êi ∧ êj + TMi e− ∧ e+ ∧ êi +
1

6
TMl εl ijkê

i ∧ êj ∧ êk, (2.20)

– 6 –
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where 1
2H

M
−jke

− ∧ êj ∧ êk are self-dual tensors on the directions transverse to the light

cone part.

Notice that ∑
M

xMβ T
M
i = −Ωαβ∂ij

α. (2.21)

From (2.3), (2.18) and (2.20) we then find that

Ĝα = jαe+ ∧ de− + e− ∧ e+ ∧ djα +
1

6

[
jα
(
de−

)
−l + (djα)l

]
εl ijkê

i ∧ êj ∧ êk

−
[

1

8
jα
(
Iakl∇−Ib kl

)
ε c
ab

]
e− ∧ Ic + e− ∧Hα

SD , (2.22)

where

Hα
SD ≡ −

1

2
Ωαβ

∑
M

xMβ H
M
−ij ê

i ∧ êj (2.23)

is a self-dual two-form on the directions transverse to the light cone part. Notice that

jαH
α
SD = 0. Using the Bianchi identity we calculate

LXĜα = iXdĜ
α + diXĜ

α = d
(
jαde− + djα ∧ e−

)
= 0 . (2.24)

Condition (2.17) combined with the anti-self-duality of H and Ia imply that d (e− ∧ Ia) = 0

such that also LX (e− ∧ Ia) = 0 . Hence X generates a symmetry of the full solution.

Summary. Using the vielbein e−, e+, êi the field content takes the form (2.12) and (2.22).

Furthermore, we have the two-forms (2.14) that satisfy the condition (2.19) and the µ = i

components of (2.17). The null-vector X dual to e− is a symmetry of the full solution.

2.2 Equations of motion

From the integrability conditions it follows that if the BPS equations (2.9) and the Bianchi

identity are satisfied, the scalar equations of motion and all but the −− component of the

Einstein equation are obeyed (see appendix A). Hence the set of equations of motion (2.8)

reduces to

R−− =
1

4
gαβĜ

α ρλ
− Ĝβ−ρλ − Ωαβ∂−j

α∂−j
β , (2.25)

dĜα = 0 , (2.26)

gαβ ?6 Ĝ
β = −ΩαβĜ

β , (2.27)

jαj
α = 1 . (2.28)

Note that in the solution of the BPS equations (2.22), the self-duality condition has already

been taken care of.

3 Supersymmetric solutions

In this section we first use the existence of a null Killing vector to introduce coordinates on

the geometry. After this, we rewrite the Bianchi identity and the Einstein equation using

these coordinates.
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3.1 Introduction of coordinates

The existence of a null Killing vector X can be used to introduce coordinates on our

spacetime. We implement this here following similar steps as in [7]. First a hypersurface S
has to be picked that is nowhere tangent to X. One then has to pick a vector Y that satisfies

ĝ(Y,X) = 1 , ĝ(Y, Y ) = 0 , (3.1)

on S. This vector Y needs to be propagated off S by solving LXY = 0. The properties (3.1)

still hold since X is Killing. The vectors X and Y commute, hence they must be tangent to a

four-parameter family of two-dimensional surfaces Σ2(x
m), where m = 1, . . . , 4. The vector

X is a null Killing vector, so should be tangent to affinely parametrized null geodesics.

Define the coordinate v to be this affine parameter along the geodesics and choose another

coordinate u such that u, v are coordinates on the surfaces Σ2. We can then write

X = ∂v ,

Y = H

(
∂u −

1

2
F∂v

)
, (3.2)

for functions2 H and F independent of v. We will assume that (locally) H > 0 since we

can send u → −u if necessary. Using the properties of X and Y it can be shown [7] that

the metric takes the form

ds26 = 2H−1 (du+ β)

(
dv + ω +

1

2
F (du+ β)

)
+Hds24 , (3.3)

where ds24 = hmndx
mdxn is the metric of a base space B and ω, β are one-forms on B [7].

The functions H and F , the one-forms ω and β and the metric hmn only depend on u and

xm (since X is a Killing vector). The one-forms e−, e+ in (2.12) take the form

e− = H−1 (du+ β) ,

e+ = dv + ω +
1

2
FHe−. (3.4)

Notice also that the relation between êi and a vierbein ẽi of B is given by êi = H1/2ẽi

which implies ∂î = H−1/2∂i. From now on, the labels i, j, k, l will refer to the vielbein on

the base space.

Let us define anti-self-dual forms on B by

Ja = H−1Ia. (3.5)

These satisfy the algebra

(Ja)mp

(
Jb
)p

n
= εabc (Jc)mn − δ

abδmn , (3.6)

where the indices m,n, . . . have been raised with hmn. Hence, these two-forms yield an

almost hyper-Kähler structure on B.

2This notation might be a bit confusing since we already used H for the three-form in the gravity

multiplet, but to more easily compare with other literature, we will keep it.
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Following [7] we introduce some more notation. Suppose Φ is a p−form with all its

legs on B, but with coefficients depending on u (denote this by Φ ∈ Λp(B)(u)):

Φ =
1

p!
Φm1...mp(u, x)dxm1 ∧ . . . ∧ dxmp . (3.7)

We then introduce the restricted exterior derivative d̃ by

d̃Φ ≡ 1

(p+ 1)!
(p+ 1)

∂

∂x[n
Φm1...mp]dx

n ∧ dxm1 ∧ . . . ∧ dxmp . (3.8)

We also define the operator D acting on such p−forms as

DΦ = d̃Φ− β ∧ Φ̇ , (3.9)

where Φ̇ is the Lie derivative of Φ with respect to ∂u. Note that

dΦ = DΦ +He− ∧ Φ̇ . (3.10)

Also D obeys the same product rule on wedge products as the exterior derivative and

D2Φ = −Dβ ∧ Φ̇ . (3.11)

Using these operators we can derive that

de− = H−1Dβ + e− ∧
(
H−1DH + β̇

)
,

de+ = Dω +
1

2
FDβ +He− ∧

(
ω̇ +

1

2
F β̇ − 1

2
DF

)
. (3.12)

From these expressions it is straightforward to calculate the spin connection components.

They can be found in appendix B.

3.2 Supersymmetry and self-duality

We now derive what the conditions of section 2.1 become in terms of the coordinates we

introduced. The three-forms (2.22) become

Ĝα = e+ ∧ e− ∧
[
jα
(
H−1DH + β̇

)
−Djα

]
+ jαH−1e+ ∧ Dβ

+ e− ∧
[
jαHψ − jα (Dω)− +Hα

SD

]
+ ?4D (jαH) +Hjα ?4 β̇, (3.13)

where (Dω)− ≡ 1
2 (Dω − ?4Dω), ?4 is the Hodge dual on B and

ψ ≡ −1

8
HεabcJ

a
kl∂u

(
Jb kl

)
Jc. (3.14)

The self-duality condition (2.27) implies that

Dβ = ?4Dβ , (3.15)

Hα
SD = ?4H

α
SD . (3.16)
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Using this one can show that (2.19) is satisfied. The remaining constraints are the µ =

i components of (2.17) and they constrain the covariant derivatives of Ja on B. Since

d (e− ∧ Ia) = 0 we find that

d̃Ja = L∂u (β ∧ Ja) . (3.17)

Together with the fact that the Ja satisfy the algebra (3.6) this implies the µ = i compo-

nents of (2.17). From (3.17) we conclude that the almost hyper-Kähler structure of B is

not integrable in general.

3.3 Bianchi identity

We can now substitute expression (3.13) for the three-forms in the Bianchi identity dĜα =

0. Note that this equation is also the equation of motion of the three-forms because of the

self-duality condition. Using (3.12), the Bianchi identity reduces to

d̃
(
jαψ + G+α

)
= L∂u

[
β ∧

(
jαψ + G+α

)
+ ?4D (jαH) +Hjα ?4 β̇

]
, (3.18)

and

D ?4
[
D (jαH) +Hjαβ̇

]
+Dβ ∧ G+α = 0 , (3.19)

where we defined the self-dual two-forms

G+α = H−1
[
jα (Dω)+ +

1

2
jαFDβ +Hα

SD

]
, (3.20)

with (Dω)+ ≡ 1
2 (Dω + ?4Dω).

3.4 Einstein equation

We now consider (2.25). In appendix C we use the spin connection components to calcu-

late that

R−− = ?4D ?4
(
ω̇ +

1

2
F β̇ − 1

2
DF

)
− 2

(
ω̇ +

1

2
F β̇ − 1

2
DF

)m
∂u (βm) (3.21)

+
1

2
H−2

(
Dω +

1

2
FDβ

)2

− 1

2
Hhmn∂2u (Hhmn)− 1

4
∂u (Hhmn) ∂u (Hhmn) ,

where for Φ1,Φ2 ∈ Λ2 (B) (u), Φ1 · Φ2 = 1
2Φ1mnΦmn

2 . From (3.13) we find that

1

4
gαβĜ

α ρλ
− Ĝβ−ρλ =

1

2

[
ψ −H−1 (Dω)−

]2
+

1

2
H−2gαβH

α
SD ·H

β
SD . (3.22)

The scalars do not depend on v so

∂−j
α = H∂uj

α, (3.23)

and the Einstein equation becomes

?4D ?4
(
ω̇ +

1

2
F β̇ − 1

2
DF

)
= 2

(
ω̇ +

1

2
F β̇ − 1

2
DF

)m
∂u (βm) +

1

2
Hhmn∂2u (Hhmn)

+
1

4
∂u (Hhmn) ∂u (Hhmn)− 1

2
H−2

(
Dω +

1

2
FDβ

)2

+
1

2

[
ψ −H−1 (Dω)−

]2
+

1

2
H−2gαβH

α
SD ·H

β
SD (3.24)

− ΩαβH
2∂uj

α∂uj
β .
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3.5 Summary

We derived the general local form of all supersymmetric solutions of six-dimensional (1, 0)

supergravity with a gravity multiplet and nT tensor multiplets. The metric is given by (3.3)

and the three-forms by (3.13). The equations of motion can be reduced to a set of equations

on the base manifold B. The one-form β and two-forms Hα
SD must obey the self-duality

conditions (3.15) and (3.16). The Bianchi identity and Einstein equation reduce to (3.18)

and (3.19), and (3.24) respectively. The base manifold must admit an almost hyper-Kähler

structure with almost complex structures obeying (3.17).

4 Classes of solutions

In this section we will, following [7], consider two cases in which the equations derived in

the previous section reduce considerably. We first focus on so-called non-twisting solutions,

which are solutions in which β = 0. After that we look at u−independent solutions and

consider their reduction to five dimensions. When the base-space of a u−independent

solution is chosen to be Gibbons-Hawking and the symmetry of this metric is extended to

be a symmetry of the whole solution, we show that it can be expressed in 6+2nT harmonic

functions on R3. We then briefly investigate the multi-centered Gibbons-Hawking subclass

of these solutions and look at objects as the black string that have a horizon. We finish

this section with some examples of pp-wave solutions.

4.1 Non-twisting solutions

Non-twisting solutions have β = 0 which highly simplifies the equations. The metric (3.3)

and three-forms (3.13) reduce to

ds26 = 2H−1du

(
dv + ω +

1

2
Fdu

)
+Hds24 , (4.1)

and

Ĝα = −e+ ∧ du ∧ d̃
(
H−1jα

)
+H−1du ∧

[
jαHψ − jα

(
d̃ω
)−

+Hα
SD

]
+ ?4d̃ (jαH) .

(4.2)

The base space B with metric ds24 has to be hyper-Kähler since from (3.17) it follows that

d̃Ja = 0 . (4.3)

The Bianchi identity, (3.18) and (3.19), reduce to

d̃
(
jαψ + G+α

)
= L∂u ?4 d̃ (jαH) , (4.4)

and

∇̃2 (jαH) = 0 , (4.5)

where

G+α = H−1
[
jα
(
d̃ω
)+

+Hα
SD

]
. (4.6)
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Hence the functions jαH are harmonic. The Einstein equation (3.24) reduces to

∇̃i (ω̇)i −
1

2
∇̃2F =

1

2
Hhmn∂2u (Hhmn) +

1

4
∂u (Hhmn) ∂u (Hhmn)− 1

2
H−2

(
d̃ω
)2

(4.7)

+
1

2

[
ψ −H−1

(
d̃ω
)−]2

+
1

2
H−2gαβH

α
SD ·H

β
SD − ΩαβH

2∂uj
α∂uj

β .

In principle one should be able to solve these equations successively. First pick a hyper-

Kähler base space B and pick harmonic functions on this space for jαH. The function H

then follows by using the identity jαj
α = 1. The two-form G+α can be determined by using

its self-duality and (4.4). Then ω can be determined by contracting (4.6) with jα which

then also gives an expression for Hα
SD. Lastly, F can be determined from (4.7).

Solutions that are dependent on u (but not necessarily non-twisting) have been studied

in the case of minimal supergravity or in the case with an extra tensor multiplet [13, 19, 55–

57]. To show that one can still do this with an arbitrary number of tensor multiplets, we

construct an explicit example of a u−dependent solution.

Flat base space. We will extend the non-twisting solution of [7] with flat base space to

a solution with tensor multiplets. As metric on the base space we take

ds24 = dr2 +
1

4
r2
[(
σ1
)2

+
(
σ2
)2

+
(
σ3
)2]

, (4.8)

where σa, a = 1, 2, 3, are either the left-invariant σaR or the right-invariant σaL one-forms on

the three-sphere: dσa = 1
2ηε

a
bcσ

b ∧ σc with η = 1 if σ = σR and η = −1 if σ = σL. We can

then take the vierbein

ẽ4 = dr,

ẽa =
r

2
σa. (4.9)

If we take the hyper-Kähler structure (in Cartesian coordinates) given by

J1 = −
(
dx1 ∧ dx3 + dx2 ∧ dx4

)
,

J2 = −
(
dx1 ∧ dx2 − dx3 ∧ dx4

)
, (4.10)

J3 = −
(
dx1 ∧ dx4 − dx2 ∧ dx3

)
,

we have that ψ = 0. See [37] for the coordinate transformation to express these forms in

terms of σa. Requiring the two-forms (4.10) to be anti-self-dual imposes the orientation

ẽ4 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3. For the simple case that jα and H only depend on u and r, we can write

the harmonic functions

jαH = Pα(u) +
Qα(u)

r2
, (4.11)

where Pα, Qα are arbitrary functions of u that will be fixed by the other equations of

motion. From jαj
α = 1 we find

H =

√
Ωαβ

(
Pα +

Qα

r2

)(
P β +

Qβ

r2

)
. (4.12)
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Notice that (4.4) reduces to

d̃G+α = L∂u ?4 d̃ (jαH) . (4.13)

Using the self-duality of G+α we can write

G+α = Cαb ẽ
4 ∧ ẽb +

1

2
Cαb ε

b
cdẽ

c ∧ ẽd, (4.14)

where we assume that Cαb only depend on u and r (to stay in line with [7]). We can

calculate

d̃G+α =
1

r2

[
(1− η) rCαb +

1

2
r2∂r (Cαb )

]
εbcdẽ

4 ∧ ẽc ∧ ẽd . (4.15)

Substitution in (4.13) yields

1

r2

[
(1− η) rCαb +

1

2
r2∂r (Cαb )

]
εbcdẽ

4 ∧ ẽc ∧ ẽd = L∂u ?4 d̃ (jαH)

= −2
∂uQ

α

r3
ẽ1 ∧ ẽ2 ∧ ẽ3, (4.16)

from which it follows that

∂uQ
α = 0 ,

∂r (Cαb ) = 2(η − 1)
1

r
Cαb . (4.17)

The second equation is solved by

Cαb = Cαb (u)r2(η−1) , (4.18)

for functions Cαb (u). Hence

G+α = Cαb (u)r2(η−1)ẽ4 ∧ ẽb +
1

2
Cαb (u)r2(η−1)εbcdẽ

c ∧ ẽd . (4.19)

Assuming as in [7] that

ω = W (u, r)σ3, (4.20)

we can calculate that(
d̃ω
)+

=

(
2

r2
ηW +

1

r
∂rW

)(
ẽ1 ∧ ẽ2 − ẽ3 ∧ ẽ4

)
. (4.21)

We then find from substitution of (4.11), (4.19) and (4.21) in(
d̃ω
)+

= HjαG+α , (4.22)

that

Cα1 (u) = Cα2 (u) = 0 ,

W = W1(u)r−2η +
1

2
ΩαβC

α
3 (u)

(
P β

2η
r2η +

Qβ

2η − 1
r2η−2

)
, (4.23)
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where W1 is yet another arbitrary function of u. We then find from (4.11), (4.19) and (4.22)

that

Hα
SD = HG+α − jα

(
d̃ω
)+

(4.24)

=

[
HCα3 (u)r2(η−1) − jαCβ3 (u)r2(η−1)Ωβγ

(
P γ(u) +

Qγ(u)

r2

)] (
ẽ1 ∧ ẽ2 − ẽ3 ∧ ẽ4

)
.

Lastly, the Einstein equation (4.7) reduces to

∇̃i (ω̇)i −
1

2
∇̃2F = 2H∂2u (H) + ∂u (H) ∂u (H)− 1

2
H−2

((
d̃ω
)+)2

− 1

2
H−2ΩαβH

α
SD ·H

β
SD − ΩαβH

2∂uj
α∂uj

β . (4.25)

Using (4.11), (4.12), (4.20), (4.23) and (4.24), and assuming that F = F(u, r) we derive

that

∂r
(
r3∂rF

)
= −2ΩαβṖ

αṖ βr3−4Ωαβ

(
Pαr3 +Qαr

)
∂2uP

β+2ΩαβC
α
3 (u)Cβ3 (u)r4η−1. (4.26)

Integration of this equation yields

F = C5(u)− 1

2
C4(u)

1

r2
− 1

2
Ωαβ

(
Pα∂2uP

β +
1

2
ṖαṖ β

)
r2

+
1

4η (2η − 1)
ΩαβC

α
3 (u)Cβ3 (u)r4η−2 − 2ΩαβQ

α∂2uP
β log(r), (4.27)

for arbitrary functions C4 and C5. This construction can easily be extended to other

hyper-Kähler base spaces.

4.2 u-independent solutions

A second class of solutions in which the general equations simplify considerably is the class

that does not depend on u. We can see this as introducing an extra symmetry of the

solution. In particular we get an extra Killing vector ∂u, which is spacelike when F > 0

and timelike when F < 0. The three-forms reduce to

Ĝα =−He+∧e−∧d̃
(
H−1jα

)
+jαH−1e+∧d̃β+e−∧

[
−jα

(
d̃ω
)−

+Hα
SD

]
+?4d̃(jαH) .

(4.28)

The base space has to be hyper-Kähler since from (3.17)

d̃Ja = 0 , (4.29)

and β has self-dual curvature:

d̃β = ?4d̃β . (4.30)

The Bianchi identity, (3.18) and (3.19), and Einstein equation (3.24) reduce to respectively

d̃G+α = 0 , (4.31)

d̃ ?4 d̃ (jαH) = −d̃β ∧ G+α , (4.32)

∇̃2F = ΩαβG+α · G+β , (4.33)
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where

G+α = H−1
[
jα
(
d̃ω
)+

+
1

2
jαF d̃β +Hα

SD

]
, (4.34)

and we have used that

ΩαβG+α ·G+β =H−2
[(
d̃ω
)+

+
1

2
F d̃β

]
·
[(
d̃ω
)+

+
1

2
F d̃β

]
−H−2gαβHα

SD ·H
β
SD . (4.35)

When the Killing vector ∂u is spacelike, the u−direction can be compactified on a circle

and we can reduce the solution to five dimensions. This will be done in the next section.

In section 4.4 we then take the base space B to be Gibbons-Hawking [42] which has yet

another Killing vector. Assuming that this symmetry extends to the whole solution, we

solve the equations of motion completely.

4.3 Reduction to five dimensions

When one considers a u−independent solution with F positive such that ∂u is a spacelike

Killing vector, one can compactify this direction on a circle and do a Kaluza-Klein reduction

to obtain a five-dimensional solution. The six-dimensional metric reduces to the five-

dimensional metric ds25, a Kaluza-Klein vector A0 and a scalar X0. The three-forms Ĝα

reduce to three-forms Gα and two-forms Fα that are related to each other since the Ĝα obey

a self-duality condition. The scalars jα reduce to scalars Xα. Reducing the six-dimensional

theory to five-dimensions thus results in five-dimensional supergravity coupled to nT + 1

vector multiplets. We can express the six-dimensional data in terms of five-dimensional

data by [29]

ds26 = r2
(
du+A0

)2
+ r−2/3ds25 ,

Ĝα = Gα − Fα ∧
(
du+A0

)
, (4.36)

jα = r−2/3Xα , (4.37)

r−4/3 = X0 ,

where

ds25 = −f2 (dv + ω)2 + f−1ds24 ,

Gα = dBα +Aα ∧ F 0 , (4.38)

for a function f and two-forms Bα. The scalars XI , I ∈ {0, 1, . . . , nT + 1}, are the

so-called very special coordinates. These are nT + 2 real coordinates that describe an

nT +2−dimensional manifold in which the scalar manifold is given by the hypersurface [58]

N ≡ 1

3!
CIJKX

IXJXK = 1 , (4.39)

where CIJK is a constant symmetric tensor and N is the so-called cubic potential. The

potential N in terms of six-dimensional data is given by [29]

N = ΩαβX
0XαXβ . (4.40)
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It is straightforward to derive that

ds25 = −
(
FH2

)−2/3
(dv + ω)2 +

(
FH2

)1/3
ds24 ,

X0 =
(
FH−1

)−2/3
,

Xα =
(
FH−1

)1/3
jα , (4.41)

F 0 = d̃
[
β + F−1 (dv + ω)

]
,

Fα = d̃
[
H−1jα (dv + ω)

]
−H−1

[
jα
(
d̃ω
)+

+
1

2
jαF d̃β +Hα

SD

]
.

Note that the field strengths can be written as

F I = d̃
[
XIf (dv + ω)

]
+ ΘI , (4.42)

where

Θ0 = d̃β , Θα = −Gα , (4.43)

are self-dual tensors. Also (4.31) implies that the two-forms ΘI are closed. Using

XI ≡
1

6
CIJKX

JXK , (4.44)

we find that

XIΘ
I = −2

3
f
(
d̃ω
)+

. (4.45)

Furthermore, we find that (4.32) reduces to

∇̃2
(
f−1Xα

)
=

1

6
CαJKΘJ ·ΘK , (4.46)

and that the Einstein equation (4.33) reduces to

∇̃2
(
f−1X0

)
=

1

6
C0JKΘJ ·ΘK . (4.47)

This implies that we find ourselves exactly in the timelike class of five-dimensional solutions

of [39, 59]. Thus every solution of five-dimensional supergravity coupled to an arbitrary

number of vector multiplets in the timelike class that has a cubic potential of the form

N =
1

3!
CIJKX

IXJXK = ΩαβX
0XαXβ , (4.48)

can be uplifted to six dimensions. An interesting remark is that classical M−theory

solutions do not have cubic potentials of this form. To lift them up, one also has to take

into account the one-loop contributions coming from the reduction on the circle [29, 30].

Minimal five-dimensional supergravity. After the reduction we always end up with

at least one vector multiplet in five dimensions. However, one can truncate the reduction of

minimal supergravity in six dimensions to minimal five-dimensional supergravity [7]. We

get minimal supergravity when we set the three-forms of the tensor multiplets HM = 0

for M = 1, . . . , nT and furthermore set jα = 0 for α = 2, . . . , nT + 1 and j1 = 1. The
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only three-form that is non-zero is Ĝ1. We can truncate the reduced theory to minimal

supergravity by getting rid of the scalars, which can be done by setting F = H such that

X0 = X1 = 1. Consistency of (4.32) and (4.33) then enforces d̃β = −G+1 or

d̃β = −2

3
H−1

(
d̃ω
)+

. (4.49)

This implies that

F ≡ F 0 = F 1 = d̃
[
β + F−1 (dv + ω)

]
. (4.50)

Introducing G+ ≡ f
(
d̃ω
)+

, we find that

d̃G+ = 0 (4.51)

and that (4.47) reduces to

∇̃2
(
f−1

)
=

4

9
G+ ·G+. (4.52)

This means that we find ourselves in the timelike class of minimal five-dimensional super-

gravity [37].3

The null class of minimal five-dimensional supergravity arises from reducing non-

twisting solutions of minimal six-dimensional supergravity that have a Gibbons-Hawking

base space [7].

4.4 Gibbons-Hawking base space

We now consider u−independent solutions with a Gibbons-Hawking base space [42]. This is

the most general hyper-Kähler four-manifold admitting a Killing vector field ∂ψ,4 preserving

the three complex structures [60]. It has the metric

ds24 = H−12 (dψ + χadx
a)2 +H2δabdx

adxb, (4.53)

where a = 1, 2, 3, χa and H2 are independent of ψ and

∇2H2 = 0,

~∇× ~χ = ~∇H2. (4.54)

We take ∇ with respect to three-dimensional flat space.

We now obtain all solutions in the case the symmetry ∂ψ of the base space is extended

to a symmetry of the full solution. This was done in [37] for minimal five-dimensional

supergravity, in [7] for minimal six-dimensional supergravity and in [59] for five-dimensional

supergravity coupled to an arbitrary number of vector multiplets, so we will be quite

brief here.

3They use a different normalization of the field strength: Fhere = 2√
3
Fthere.

4Notice that this ψ is not related to the ψ in terms of the complex structures. We can safely do this

since from (3.14) we see that ψ = 0 for this class of solutions.
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We can choose the vierbein

ẽ4 = H
−1/2
2 (dψ + χadx

a) ,

ẽa = H
1/2
2 dxa. (4.55)

Anti-self-duality of the complex structure forms implies that the volume form is given by

ẽ4 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3. We can decompose the one-forms

β = β0 (dψ + χadx
a) + βadx

a,

ω = ω0 (dψ + χadx
a) + ωadx

a, (4.56)

where β0, βa, ω0 and ωa are functions on R3. Solving (4.30) results in

β0 = H−12 H3 , ~∇× ~β = −~∇H3 , (4.57)

with H3 an arbitrary harmonic function on R3. The two-form G+α is self-dual so it has to

be of the form

G+α = −1

2
Cαb ẽ

4 ∧ ẽb − 1

4
Cαb ε

b
cdẽ

c ∧ ẽd, (4.58)

and solving (4.31) results in
~Cα = 2~∇

(
H−12 Hα

4

)
, (4.59)

with Hα
4 arbitrary harmonic functions on R3. Using this result one can solve (4.32), which

results in

jαH = Hα
1 −H−12 H3H

α
4 , (4.60)

where Hα
1 are arbitrary harmonic functions on R3. Using jαj

α = 1 we find

H =

√
Ωαβ

(
Hα

1 −H
−1
2 H3Hα

4

) (
Hβ

1 −H
−1
2 H3H

β
4

)
. (4.61)

With the solution of G+α, (4.33) can be solved and yields

F = −H5 +H−12 ΩαβH
α
4H

β
4 , (4.62)

with H5 an arbitrary harmonic function on R3. Now, using that

jαG+α = −jα∇b
(
H−12 Hα

4

)
ẽ4 ∧ ẽb − 1

2
jα∇b

(
H−12 Hα

4

)
εbcdẽ

c ∧ ẽd ,

= H−1
(
d̃ω
)+

+
1

2
FH−1d̃β , (4.63)

we get an equation for ω:

H2
~∇ω0 − ω0

~∇H2 − ~∇× ~ω = 2Ωαβ (Hα
1H2 −H3H

α
4 ) ~∇

(
H−12 Hβ

4

)
+
(
H5H2 − ΩαβH

α
4H

β
4

)
~∇
(
H−12 H3

)
. (4.64)

Taking the divergence of this equation yields an integrability equation that can be solved

for ω0:

ω0 = H6 −H−22 H3ΩαβH
α
4H

β
4 +H−12 ΩαβH

α
1H

β
4 +

1

2
H−12 H3H5, (4.65)
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with H6 an arbitrary harmonic function on R3. Substitution of this in (4.64) gives an

equation that determines ~ω up to a gradient (and this can be eliminated by shifting v):

~∇× ~ω = Ωαβ

(
Hα

4
~∇Hβ

1 −H
α
1
~∇Hβ

4

)
+H2

~∇H6 −H6
~∇H2 +

1

2
H3

~∇H5 −
1

2
H5

~∇H3.

(4.66)

From the definition of G+α we then find that

Hα
SD = −Dα

b ẽ
4 ∧ ẽb − 1

2
Dα
b ε
b
cdẽ

c ∧ ẽd, (4.67)

where
~Dα ≡ H~∇

(
H−12 Hα

4

)
− jαHjβ ~∇

(
H−12 Hβ

4

)
. (4.68)

We now consider the so-called multi-centered Gibbons-Hawking subclass of these so-

lutions. We introduce the notation

H ≡ (Hα
1 , H2, H3, H

α
4 , H5, H6),

ΓA ≡ (µαA,mA, qA, p
α
A, nA, jA), (4.69)

Γ∞ ≡ (µα∞,m∞, q∞, p
α
∞, n∞, j∞),

where A = 1, . . . , N and all the components of the vectors ΓA and Γ∞ are constants. We

then take the harmonic functions of the form

H = Γ∞ +
∑
A

ΓA
|~x− ~xA|

. (4.70)

Although every set of centers ~xA describes a solution, there will typically be Dirac string-

like singularities. Imposing the absence of these singularities gives a constraint on the

relative positions, see [34, 61, 62]. This arises from requiring ~ω to be globally defined,

which implies that d2~ω = 0. If we define the symplectic product 〈〉 working on vectors of

the form v = (vα1 , v2, v3, v
α
4 , v5, v6) via

〈v, w〉 = Ωαβv
α
4w

β
1 − Ωαβv

α
1w

β
4 + v2w6 − v6w2 +

1

2
(v3w5 − v5w3) , (4.71)

we can rewrite (4.66) as

?3 d~ω = 〈H, dH〉. (4.72)

Taking d?3 on both sides leads to∑
B 6=A

〈ΓA,ΓB〉
|~xA − ~xB|

= 〈Γ∞,ΓA〉, A = 1, . . . , N. (4.73)

These are usually referred to as “Bubble equations” since they control the size of the

two-cycles or bubbles in the Gibbons-Hawking base space [63].

Let Sp (6 + 2nT ,R) denote the symplectic group that preserves the symplectic

product 〈〉. A linear combination of harmonic functions is still harmonic, hence send-

ing H→ gH with g ∈ Sp (6 + 2nT ,R) sends a solution to a solution, preserving regularity.

This symplectic group was earlier noticed for minimal supergravity in [43].
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Summary. The most general u−independent solution with a Gibbons-Hawking base

space whose Killing vector field extends to a symmetry of the full solution is determined

by 6 + 2nT harmonic functions Hα
1 , H2, H3, H

α
4 , H5 and H6 on R3. Its metric is given by

ds26 = 2H−1 (du+ β)

(
dv + ω +

1

2
F (du+ β)

)
+Hds24,

ds24 = H−12 (dψ + χadx
a)2 +H2δabdx

adxb, (4.74)

where

~∇× ~χ = ~∇H2,

H =

√
Ωαβ

(
Hα

1 −H
−1
2 H3Hα

4

) (
Hβ

1 −H
−1
2 H3H

β
4

)
, (4.75)

F = −H5 +H−12 ΩαβH
α
4H

β
4 .

The one-forms are decomposed as

β = β0 (dψ + χadx
a) + βadx

a,

ω = ω0 (dψ + χadx
a) + ωadx

a, (4.76)

with the coefficients β0, βa, ω0 and ωa given by

β0 =H−12 H3,

~∇×~β=−~∇H3 ,

ω0 =H6−H−22 H3ΩαβH
α
4H

β
4 +H−12 ΩαβH

α
1H

β
4 +

1

2
H−12 H3H5 ,

~∇×~ω= Ωαβ

(
Hα

4
~∇Hβ

1 −H
α
1
~∇Hβ

4

)
+H2

~∇H6−H6
~∇H2+

1

2
H3

~∇H5−
1

2
H5

~∇H3 . (4.77)

The three-forms are equal to

Ĝα =−He+∧e−∧d̃
(
H−1jα

)
+jαH−1e+∧d̃β+e−∧

[
−jα

(
d̃ω
)−

+Hα
SD

]
+?4d̃(jαH) ,

(4.78)

where

e− = H−1 (du+ β) ,

e+ = dv + ω +
1

2
FHe−, (4.79)

Hα
SD = −Dα

b (dψ + χadx
a) ∧ dxb − 1

2
H2D

α
b ε
b
cddx

c ∧ dxd,

~Dα = H~∇
(
H−12 Hα

4

)
− jαHjβ ~∇

(
H−12 Hβ

4

)
.

Lastly, the scalars are given by

jα =
Hα

1 −H
−1
2 H3H

α
4

H
. (4.80)

When the harmonic functions are taken of the form (4.70), one has to impose the bubble

equations (4.73) in order to avoid Dirac string-like singularities.
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4.5 Black strings and other objects with a horizon

In [8] it is shown that in supergravity coupled to tensor multiplets, near horizon geometries

of black objects are locally either R1,1 × T 4, R1,1 ×K3 or AdS3 × S3. In this section we

will consider some examples of the latter local geometry which can correspond to a black

string or the uplift of a black ring or black lens.

Black string. When taking a solution of section 4.4, compactifying the u−direction on

a circle, taking the harmonic functions of the form (4.70) with only one center ~x1 = 0 and

requiring the metric to asymptote to R×S1×R4/Zm, we find a generalization of the single

black string solution in [43]. Perhaps the most interesting case is m = 1, which at infinity

corresponds to a black string wrapped around a circle times a flat 5d Minkowski spacetime.

For m 6= 1 one gets ALE spaces.

The string is wound around the u−direction and becomes a black hole after reduction

on the u−circle. In appendix D we derive that to get the right asymptotics for the metric,

we need

Γ∞ =

(
µα∞, 0, 0, 0,−1,

1

2

q

m
− 1

m
Ωαβµ

α
∞p

β

)
, (4.81)

with

Ωαβµ
α
∞µ

β
∞ = 1. (4.82)

Using spherical coordinates r, θ, φ for the R3 part, the metric of the solution is then

given by

ds26 = 2

(
1 + 2

Ωαβµ
α
∞Q̃

β

4
√

2r
+

ΩαβQ̃
αQ̃β

32r2

)−1/2
du′

×
[
dv +

Jψ
8r

(dψ +m cos(θ)dφ) +
1

2

(
1 +

Q

4r

)
du′
]

(4.83)

+

(
1 + 2

Ωαβµ
α
∞Q̃

β

4
√

2r
+

ΩαβQ̃
αQ̃β

32r2

)1/2 [ r
m

(dψ +m cos(θ)dφ)2 +
m

r
dr2 +mrdΩ2

2

]
,

where we defined u′ = u+ q
mψ. To make this transformation well-defined, we have to impose

4πq

lm
∈ Z, (4.84)

where l is the length of the u−circle. We also defined

Q̃α ≡ 4
√

2

(
µα − 1

m
qpα
)
,

Q ≡ 4

(
−n+

1

m
Ωαβp

αpβ
)
, (4.85)

Jψ ≡ 8

(
j − 1

m2
qΩαβp

αpβ +
1

m

(
Ωαβµ

αpβ +
1

2
qn

))
.
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The near horizon geometry of this solution is a direct product of an extremal BTZ black

hole and a round S3/Zm. The entropy of the black string is given by

S =
A

4G
(6)
N

= 2π

√
1

2
mQΩαβQ̃αQ̃β − J2

ψ, (4.86)

where we used conventions in which G
(6)
N = lπ

4 .

These black holes can be embedded in F-theory and we consider the case m = 1 for

simplicity. We take an F-theory background R × S1 × R4 × CY3, where CY3 is a smooth

elliptically fibered Calabi-Yau three-fold π : CY3 → B2. The solution corresponds to a

D3-brane wrapped on S1×C, where C ⊂ B2 is a curve. We have the set of vertical divisors

Dα ≡ π−1
(
Db
α

)
, where Db

α are divisors of B2 that are chosen such that

Ωαβ =

∫
B2

ωα ∧ ωβ (4.87)

for ωα the two-form classes Poincare dual to Dα. We can then write C = qαωα for the form

Poincare dual to the curve C. The strings that one gets after compactification on CY3 carry

n units of momentum along the circle. There is also an SO(4) ≡ SU(2)L×SU(2)R symmetry

from rotations in the R4 plane transverse to the D3-brane. The entropy corresponding to

a single string to leading order in the large charge limit is given by [22]

S = 2π

√
1

2
nΩαβqαqβ − J2, (4.88)

where J is the eigenvalue corresponding to the U(1)L ⊂ SU(2)L symmetry in the convention

that it is half-integer valued. The microscopic formula (4.88) is only valid in the limit where

n is much larger than the other charges. Comparison with (4.86) leads to the identification

Q = n, Q̃α = qα and Jψ = J which explains the normalizations in (4.85).

One can also construct black string solutions with a Taub-NUT base space and asymp-

totics R×S1×S1×R3. Although the full solution will be very different from (4.83), the near

horizon geometry will be the same. We can then compare (4.86) for m 6= 1 with the leading

order contribution of the entropy calculated in the microscopic setting corresponding to the

Taub-NUT solution. This setting is an F-theory background R× S1 × TNm ×CY3, where

TNm is a Taub-NUT spacetime with NUT charge m. The D3-brane is still wrapped on

S1×C and given n units of momentum along the circle after compactification on CY3. The

Taub-NUT breaks the SO(4) symmetry to U(1)L/Zm×SU(2)R. In [64] the entropy for this

setting is calculated in the dual picture that one gets starting from type IIB, T-dualizing

along the NUT-circle and then lifting it to M-theory. The M-theory picture is then given

by an M5-brane wrapped around S1 ×
(
mB2 + Ĉ

)
, where Ĉ = π−1(C). The entropy is

calculated using the MSW formula [65] and is to leading order equal to

S = 2π

√
1

2
mnΩαβqαqβ − J2, (4.89)

where J is the eigenvalue corresponding to the U(1)L/Zm symmetry along the NUT-circle.

The microscopic formula (4.89) is also only valid under certain conditions. Besides the
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Cardy limit in which n has to be much larger than the other charges, we also have that

qα � mcα, where cα comes from the expansion of the first Chern class of the base space:

c1(B2) = cαωα. The latter condition is needed to make the divisor mB2 + Ĉ very ample.

Comparing (4.86) with (4.89) we find that m has to be an integer and that we can identify

Q = n, Q̃α = qα and Jψ = J in the limits where (4.89) is valid. To fully compare this

microscopic setting with a macroscopic solution, we of course have to construct the solution

with Taub-NUT base space B, but we will leave this for future work [66].

Uplift black ring. A five-dimensional black ring solution [3, 59, 67] is asymptotically

flat, has a regular horizon with topology S1 × S2 and near horizon geometry AdS3 × S2.

We will show that the 6d uplift has horizon S1×S3 and near horizon geometry AdS3×S3,

and is thus consistent with the classification we stated at the beginning of this section.

A more general discussion of uplifts of black rings in connection to supertubes was given

in [68]. Essentially, our discussion below is a particular and simple case of theirs, so we

will be rather brief here and only focus on the near horizon geometry.

To be specific, we take the black ring solution from [67] written in certain coordinates

v, r, ψ′, φ′, θ and χ and in which the near horizon limit is taken by redefining r = εLr̃/R,

v = ṽ/ε (where L and R are certain constants) and sending ε → 0. In this limit, the

metric becomes

ds25 = 2dṽdr̃ +
4L

q
r̃dṽdψ′ + L2dψ′2 +

q2

4

(
dθ2 + sin2(θ)dχ2

)
, (4.90)

where q is another constant. In the same limit, the vector field (in the conventions of

section 4.3) is given by

A =
1

2q

[
3Q− q2

] C1

r
dr − q

2
cos(θ)dχ, (4.91)

where Q, C1 are other constants and where we have added the exact form

1

2q

(
3Q− 3q2

)
dψ′ +

q

2
dφ′ +

q

2
dψ′ (4.92)

to the expression in [67]. From section 4.3 we see that the metric of the six-dimensional

uplift of a solution in the timelike class of minimal five-dimensional supergravity is given by

ds26 = (du+A)2 + ds25 . (4.93)

Redefining du = − q
2du

′ − 1
2q

[
3Q− q2

]
C1
r dr (this can be done in the full solution), the

metric becomes

ds26 =
q2

4

(
du′ + cos(θ)dχ

)2
+ 2dṽdr̃+

4L

q
r̃dṽdψ′+L2dψ′2 +

q2

4

(
dθ2 + sin2(θ)dχ2

)
. (4.94)

The u′, θ and χ part form the round metric on S3, where we need 0 ≤ u′ < 4π to make it

regular. The near horizon geometry of the uplift of the black ring is thus AdS3 × S3.
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Black lens. In minimal five-dimensional supergravity one also has solutions that have

a horizon with lens space topology L(m, 1) = S3/Zm and are asymptotically flat [4, 6].

In section 4.3 is described how such solutions can be uplifted to six dimensions. They

will fall in the class with a Gibbons-Hawking base space and have harmonic functions of

the form (4.70) with m centers. Their near horizon geometry will locally be given by

AdS3 × S3/Zm and their asymptotics will be R × S1 × R4. Note that solutions with the

same near horizon geometry but different asymptotics are given by the previously described

black string with asymptotics R × S1 × R4/Zm and by a black string with a Taub-NUT

space as base space which will have asymptotics R× S1 × S1 × R3.

4.6 pp-waves

A pp-wave is characterised by the existence of a covariant constant null vector field. This

vector field is necessarily a Killing vector field. Requiring the null Killing vector field ∂v of

the general solution to be covariantly constant implies that

d
[
H−1 (du+ β)

]
= 0, (4.95)

which is equivalent to Dβ = 0 and H−1 (DH) = −β̇.

A first class of pp-waves is given by non-twisting solutions of section 4.1 with H =

H(u). It follows from the construction of the coordinates in section 3.1 that in this case

we may choose H = 1 by redefining u in (3.2), such that the solution becomes

ds26 = 2du

(
dv + ω +

1

2
Fdu

)
+ ds24,

Ĝα = −e+ ∧ du ∧ d̃jα + du ∧
[
jαψ − jα

(
d̃ω
)−

+Hα
SD

]
+ ?4d̃j

α. (4.96)

The flat base space solution derived in section 4.1 is an example of a pp-wave when we

take the functions Pα and Qα such that PαP
α = 1, PαQ

α = 0 and QαQ
α = 0. This is

only possible when Qα = 0. Even with all these extra conditions, the tensor branch of

the theory provides a generalization of the solution in [7] since in general the scalars are

still u−dependent and the two-forms Hα
SD are non-vanishing. To simplify a bit more we

choose η = 1, W1 = 0 and take C3 such that ΩαβC
α
3 P

β = 2. Transforming to Cartesian

coordinates (see [37]) we find that

ω =
1

4
ΩαβC

α
3 P

βr2σ3R = x1dx2 − x2dx1 + x3dx4 − x4dx3. (4.97)

For this solution also
(
d̃ω
)−

= 0. Performing now the coordinate transformation

x1 = sin(u)y1 − cos(u)y2,

x2 = cos(u)y1 + sin(u)y2, (4.98)

x3 = cos(u)y3 + sin(u)y4,

x4 = − sin(u)y3 + cos(u)y4,
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we obtain the plane wave solution

ds26 = 2dudv + (F − δmnymyn) du2 + δmndy
mdyn,

Ĝα = (Cα3 − 2Pα) du ∧
[
dy1 ∧ dy2 + dy3 ∧ dy4

]
, (4.99)

jα = Pα(u).

A second class of pp-waves are the solutions in which Ĝα vanish. A subset of these

solutions is given by the vacuum solutions in which also the (physical) scalars vanish.

From (3.13) we find that Ĝα = 0 is equivalent to

H−1DH = −β̇,
Dβ = 0,

Djα = 0, (4.100)

Hψ = (Dω)− ,

Hα
SD = 0.

The first and second conditions define a pp-wave. The set of equations (4.100) will be hard

to solve without extra assumptions. Of course, one can again look at the subclasses of

non-twisting and u−independent solutions. As an example of a non-twisting solution that

falls in this class, we can take (4.99) with Cα3 = 2Pα. In this case the solution simplifies to

ds26 = 2dudv +

(
C5(u)− 1

2
C4(u)

1

r2
+

1

4
ΩαβṖ

αṖ βr2
)
du2 + δmndy

mdyn,

Ĝα = 0, (4.101)

jα = Pα(u),

where we still have the condition PαP
α = 1.

One last example we consider is not a proper pp-wave, but it is a black string with

traveling waves that carry momentum along the string [69, 70]. This solution falls into the

non-twisting class with flat base space (section 4.1). Taking W1 = Cα3 = C5 = 0 and Pα

and Qα constant such that ΩαβP
αP β = 1, we find the solution

ds26 = 2H−1du

(
dv − 1

4
C4(u)

1

r2
du

)
+Hds24 ,

Ĝα = −dv ∧ du ∧ d̃
(
H−1jα

)
+ ?4d̃ (jαH) , (4.102)

jαH = Pα +
Qα

r2
.

In the limit r → ∞ this solution is the same as (4.101) with C5 = Ṗα = 0, but note that

the full solution is very different, mainly because we now have non-vanishing three-forms to

support the black string and also the scalars depend on the base space instead of on u. For

a further discussion of this kind of geometry, see e.g. the original references [69, 70]. The

horizon of these solutions become singular however, as discussed e.g. in [71–73]. Perhaps a

more interesting class of solutions are the traveling wave deformations of smooth horizonless

solutions, such as discussed e.g. in [56]. It could be interesting to extend the analysis of [56]

to the present setup where more tensor multiplets are present.
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5 Attractor mechanism

In this section we study the attractor mechanism [44, 45] in six-dimensional (1, 0) super-

gravity coupled to tensor multiplets. We first repeat the near horizon analysis [46, 47] to

show that the scalars near the horizon can be expressed in terms of the charges of the

black object. After that we derive a “flow” equation for u−independent solutions which in

certain simplifying cases explains this attractor mechanism from the full geometry perspec-

tive. Our version of the attractor flow is consistent with the five-dimensional flow equation

in [74]. A general proof of the attractor mechanism for single, charged, static, flat p−brane

solutions in d dimensions is given in [48]. Some of the solutions we consider will also be of

this type, but not all of them.

5.1 Near horizon analysis

We consider the near horizon geometries of black objects which are locally AdS3×S3 (so we

consider one of the three possible cases). In [8] it is shown that in this geometry the tensor

multiplet scalars jα are constants and the tensors HM of the tensor multiplets vanish.

Integrating over the spherical part of the solution (e.g. in (4.83) this part is parametrized

by ψ, φ and θ) implies that the charges that correspond to Ĝα = jαH are equal to

Q̃α = jαk. (5.1)

Using jαj
α = 1, we find that

k =

√
ΩαβQ̃αQ̃β (5.2)

and

jα =
Q̃α√

ΩβγQ̃βQ̃γ
. (5.3)

Hence in the near horizon geometry the scalars take a value completely expressed in terms

of the charges related to the three-forms.

5.2 Flow equation

It would be nice to be able to see the scalar values arise from the flow of a central charge as

one usual can (e.g. [74]). We will derive this “flow” equation for u−independent solutions.

The general flow is complicated, but we consider a class of solutions where it simplifies.

To derive the flow equation, we need two ingredients: the Bianchi identity and supersym-

metry. The part of the three-forms with three legs on the base space is generally what

corresponds to the charges, hence we will derive an equation for the scalars and Ĝαijk (note

however, that in the near horizon geometry of the uplift of the black ring, the three-sphere

is given by the u−circle fibered over an S2 in the base space). Using supersymmetry and

u−independence (4.28), but not specifying the part Ĝαijk we can write

Ĝα = −He+ ∧ e− ∧ d̃
(
H−1jα

)
+ jαH−1e+ ∧ d̃β + e− ∧

[
−jα

(
d̃ω
)−

+Hα
SD

]
+

1

6
Ĝαijkẽ

i ∧ ẽj ∧ ẽk. (5.4)
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We now first consider the Bianchi identity and after that use the tensorini equation to

finish the derivation of the flow equation. Since we are only interested in Ĝαijk we will, after

applying the exterior derivative on (5.4), only consider the part with four legs on B:

dĜα → jαH−1de+ ∧ d̃β + de− ∧
[
−jα

(
d̃ω
)−

+Hα
SD

]
+ d

(
1

6
Ĝαijkẽ

i ∧ ẽj ∧ ẽk
)
. (5.5)

Calculating the last term in (5.5) yields

d
(
Ĝαijkẽ

i ∧ ẽj ∧ ẽk
)

= ∇̃l
(
Ĝαijk

)
ẽl ∧ ẽi ∧ ẽj ∧ ẽk. (5.6)

Using that

de− → H−1d̃β , de+ → d̃ω +
1

2
F d̃β , (5.7)

we can finish the calculation of (5.5):

dĜα → jαH−1
(
d̃ω +

1

2
F d̃β

)
∧ d̃β +H−1d̃β ∧

[
−jα

(
d̃ω
)−

+Hα
SD

]
+d

(
1

6
Ĝαijkẽ

i ∧ ẽj ∧ ẽk
)

= H−1
[
jα
(
d̃ω
)+

+
1

2
jαF d̃β +Hα

SD

]
∧ d̃β + d

(
1

6
Ĝαijkẽ

i ∧ ẽj ∧ ẽk
)
. (5.8)

With (5.6) this can be rewritten as

dĜα →
[

1

4

(
G+α

)
li

(
d̃β
)
jk

+
1

6
∇̃l
(
Ĝαijk

)]
ẽl ∧ ẽi ∧ ẽj ∧ ẽk. (5.9)

The Bianchi identity implies that

1

6
∇̃l
(
Ĝαijk

)
εlijk = −1

4

(
G+α

)
li

(
d̃β
)
jk
εlijk. (5.10)

From supersymmetry (4.28) it follows that

Ĝαijk = d̃ (jαH)l ε
l
ijk (5.11)

such that

∂l (j
α) ΩαβĜ

β
ijkε

lijk = −6Hgαβ∂l (j
α) ∂l

(
jβ
)
. (5.12)

Combining this with (5.10) results in

1

6
∇̃l
(

Ωαβj
αĜβijk

)
εlijk = −Hgαβ∂l (jα) ∂l

(
jβ
)
− jαG+α · d̃β. (5.13)

This is the flow equation for u−independent solutions. In principle one can also do this

derivation for the most general solution, but the resulting equation does not put a strong

contraint on a flow. Even for the most general u−independent solution the meaning

of (5.13) is not very clear. However, when also either d̃β or jαG+α vanish, the right-hand

side of (5.13) is non-positive since gαβ is positive definite. This implies a monotonicity
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property of the quantity 1
6Ωαβj

αĜβijkε
lijk. When one derives the flow equation for the

most general solution there might be other special cases in which the equation implies a

monotonicity property of a quantity. One can also derive an equation for other components

of Ĝα and examine what this equation would imply for black ring solutions. As a check, we

show in appendix E that when one performs a Kaluza-Klein reduction along the u−circle

(section 4.3), the flow equation (5.13) reduces to the five-dimensional flow equation derived

in [74].

If we let V ⊂ B we can define the charges

Q̃α =
1

12
√

2π2

∫
∂V
dS Ĝαijknlε

lijk , (5.14)

where n is a unit vector perpendicular to ∂V and pointing outward. The quantity (5.14)

is for the black string solution in (4.83) equal to the charge defined in (4.85). We can also

introduce the central charge

Z(V ) ≡ 1

12
√

2π2

∫
∂V
dS Ωαβj

αĜβijknlε
lijk, (5.15)

which, in case the scalars are independent of the region ∂V , reduces to

Z(V ) = jαQ̃
α. (5.16)

This is the central charge that follows from the supersymmetry algebra [75]. When we

have regions V2 ⊂ V1, we can use (5.13) to show that

Z(V1)− Z(V2) =
1

2
√

2π2

∫
d4x
√
h

(
−Hgαβ∂l (jα) ∂l

(
jβ
)
− 1

2
jαG+α · d̃β

)
. (5.17)

In case either jαG+α or d̃β vanishes, the central charge is monotonically decreasing as

we move outwards. If this is not the case, the flow equation does not provide a strong

constraint on the flow.

5.3 One-centered Gibbons-Hawking

When we take a general solution of section 4.4 with harmonic functions of the form (4.70)

and one center, we actually have a clear radial direction such that a natural choice of

subspaces V ⊂ B is r ≤ r0. For the general case

Z(r0) =
1

12
√

2π2

∫
∂V
dS Ωαβj

αĜβijknlε
lijk = Ωαβj

αQ̃β (5.18)

and from (5.17) we find that when either jαG+α or d̃β vanishes

∂rZ(r) =
1

2
√

2π2
∂r

∫
d4x
√
h
[
−Hgαβ∂l (jα) ∂l

(
jβ
)]

= −4
√

2r2H2Hgαβ∂r (jα) ∂r
(
jβ
)
, (5.19)
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which is non-positive. Notice that we can write this as

r∂rZ = −4
√

2r3H2H
2ε, (5.20)

where

ε = ĝrrgαβ∂r (jα) ∂r

(
jβ
)

(5.21)

is the energy density of the scalar fields. Note that near the horizon HH2 ∼ 1
r2

which

implies that the proper distance to the horizon blows up. Together with a finite area of

the horizon, this implies that ε = 0 because otherwise the energy of the scalar fields would

diverge. Hence from (5.20) we find that at the horizon we get

r∂rZ = 0, (5.22)

which is the spacetime form of the attractor formula.

For the most general solution with harmonic functions of the form (4.70), the

charge (5.14) reduces in the near horizon limit r → 0 to

Q̃α → 4
√

2

(
µα − 1

m
qpα
)
. (5.23)

In the same limit

jα →
µα − 1

mqp
α√

Ωβγ

(
µβ − 1

mqp
β
) (
µγ − 1

mqp
γ
) =

Q̃α√
ΩβγQ̃βQ̃γ

(5.24)

which is indeed the value we found in (5.3). This is also true for the cases where the flow

is more complicated.

6 Outlook

We derived and analyzed the general local form of supersymmetric solutions of (1, 0) su-

pergravity coupled to tensor multiplets, and studied examples of BPS black strings and

pp-waves with non-trivial scalar profiles. There are many interesting extensions and gener-

alizations, such as the study of bound states of black strings, and the construction of new

microstate geometries and their dual CFT states. It would also be interesting to repeat

the general analysis to the case with hypermultiplets and vector multiplets.

We solved the equations of motion completely in certain simplifying cases and studied

the attractor flow for u−independent solutions. Something that might be interesting as

well is to see if there are also attractor mechanisms for the hyperscalars. For maximally

supersymmetric solutions this is certainly the case [8], but it is not so clear when the

solutions have less Killing spinors.

While we have studied to some extent the embedding in type IIB and in F-theory,

it would be nice to study better the microscopic analysis of the black string solutions in

F-theory. In particular, the near horizon geometry of black strings leads to new dual (0,4)

CFTs that are yet to be constructed and analyzed. For the case of minimal supergravity,

corresponding to F-theory compactified on a CY3 with base space P2, this was done in [22],

see also [21] for earlier work, and [23–25] for more recent work.
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A Integrability conditions

In this appendix we derive which equations of motion are implied by the integrability

conditions of the theory. Denote the scalar equations of motion by (Ej)M = 0, the three-

form equations of motion by
(
EĜ

)µν
α

= ∇̂λ
(
gαβĜ

β λµν
)

= 0 and the Einstein equation

by Eµν = 0. Contracting the integrability of the gravitino Killing spinor equation with

γν yields5

γν [Dµ,Dν ]ε = Eµνγ
νε+

1

8
jα
(
EĜ

)
α ρσ

ĝµνγ
νρσε− 1

4
jα
(
EĜ

)
α µν

γνε = 0. (A.1)

Assuming the three-form equations of motion it follows that

Eµνγ
νε = 0. (A.2)

In the null-basis γ+ε = 0, thus we observe that (A.2) implies that

Eµ+ = Eµ1 = Eµ2 = Eµ3 = Eµ4 = 0. (A.3)

Hence, only the E−− component is not determined by the integrability conditions.

The integrability of the tensorini Killing spinor equation contracted with γµ and ex-

pressed in the equations of motion yields6

γµ
[
Dµ, TMν γν − 1

12
HM
νρσγ

νρσ

]
ε = (Ej)M ε+

1

2
xMα

(
EĜ

)α
µν
γµνε = 0. (A.4)

Assuming the three-form equations of motion, it follows that (A.4) is equivalent to the

scalar equations of motion.

5This condition is derived in the PhD thesis of Mehmet Akyol (Kings college).
6This condition is derived in the PhD thesis of Mehmet Akyol (Kings college), although there the wrong

scalar equation of motion is used.
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B Spin connection

In this section, the components i, j, . . . will refer to the part of the six-dimensional vielbein

êi, unless they are components of base space objects ω̃ and ẽi. Using metric compatibility,

so anti-symmetry of the connection

ω̂ij = −ω̂ji,
ω̂+i = −ω̂i+,
ω̂−i = −ω̂i−, (B.1)

ω̂++ = 0,

ω̂−− = 0,

ω̂+− = −ω̂−+,

and vanishing torsion, a straightforward calculation yields that the spin connection is

given by

ω̂+
i =

1

2

(
Dω+

1

2
FDβ

)
ij

êj− 1

2
∂u (Hhmn) ẽmi ẽ

n
j ê
j

−H
(
ω̇+

1

2
F β̇− 1

2
DF

)
i

e−− 1

2

(
H−1DH+β̇

)
i
e+,

ω̂−i =
1

2
H−1 (Dβ)ij ê

j− 1

2

(
H−1DH+β̇

)
i
e−,

ω̂+
+ =−1

2

(
H−1DH+β̇

)
i
êi, (B.2)

ω̂−−=
1

2

(
H−1DH+β̇

)
i
êi,

ω̂i j = ω̃i j+
1

2
H−1 (DH)j ê

i− 1

2
H−1 (DH)i δjkê

k+
1

2
H1/2

(
β∧ ˙̃ei

)
kj
êk+

1

2
H1/2

(
β∧ ˙̃ek

)i
j
êk

+
1

2
H1/2

(
β∧ ˙̃ej

)i
k
êk− 1

2
H−1 (Dβ)i j e

+− 1

2

(
Dω+

1

2
FDβ

)i
j

e−−H
(
∂uẽ

[i
m

)
ẽmj] e

−.

C R−− component of the Ricci tensor

In this section, the components i, j, . . . will at first refer to the part of the six-dimensional

vielbein êi, unless they are components of base space objects ω̃ and ẽi or indicated as ĩ.

We would like to calculate the −− component of the Ricci tensor:

R−− = R+
−+− +Ri −i−. (C.1)

We calculate the curvature two-form via the spin-connection:

Ri − = dω̂i − + ω̂i j ∧ ω̂
j
− + ω̂i − ∧ ω̂−−,

R+
− = dω̂+

− + ω̂+
i ∧ ω̂

i
−, (C.2)
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where we will only keep the Ri −j− and R+
−+− components. A straightforward (but

lengthy) calculation yields

R+
−= 0,

Ri−→

{
H∂u

[
1

2

(
Dω+

1

2
FDβ

)i
j

− 1

2
∂u (Hhmn) ẽmiẽnj

]

+

[
1

2

(
Dω+

1

2
FDβ

)i
k

− 1

2
∂u (Hhmn) ẽmiẽnk

][
1

2
Ḣδkj +H

(
∂uẽ

k
o

)
ẽoj

]

+
1

2
H−1

(
∂j̃H

)(
ω̇+

1

2
F β̇− 1

2
DF

)ĩ
+∇̃j̃

[(
ω̇+

1

2
F β̇− 1

2
DF

)ĩ]

−∂u

[
H

(
ω̇+

1

2
F β̇− 1

2
DF

)i]
βj−

3

2
H

(
ω̇+

1

2
F β̇− 1

2
DF

)i(
H−1DH+β̇

)
j

− 1

2
H
(
H−1DH+β̇

)i(
ω̇+

1

2
F β̇− 1

2
DF

)
j

+H

(
ω̇+

1

2
F β̇− 1

2
DF

)k [1

2
H−1 (DH)k δ

i
j−

1

2
H−1 (DH)i δkj+

1

2
H1/2

(
β∧ ˙̃ei

)
jk

+
1

2
H1/2

(
β∧ ˙̃ej

)i
k
+

1

2
H1/2

(
β∧ ˙̃ek

)i
j

]
−

[
1

2

(
Dω+

1

2
FDβ

)i
k

+H
(
∂ue

[i
m

)
emk]

]

×

[
1

2

(
Dω+

1

2
FDβ

)k
j

− 1

2
∂u (Hhmn) ẽmkẽnj

]}
êj∧e−. (C.3)

Taking the Ri −i− components, summing over i and rewriting everything in components

with respect to the vielbein ẽi yields

R−− = ?4D ?4
(
ω̇ +

1

2
F β̇ − 1

2
DF

)
− 2

(
ω̇ +

1

2
F β̇ − 1

2
DF

)m
∂u (βm)

+
1

4
H−2

(
Dω +

1

2
FDβ

)
ik

(
Dω +

1

2
FDβ

)ik
(C.4)

− 1

2
Hhmn∂2u (Hhmn)− 1

4
∂u (Hhmn) ∂u (Hhmn) .

D Single string solution

Taking a single string at the origin, we still have to determine the one-forms ~χ, ~β and ~ω.

Solving the equations for ~χ, ~β and ~ω, and assuming the Bubble equations, we find that

χadx
a = m cos(θ)dφ,

βadx
a = −q cos(θ)dφ, (D.1)

ωadx
a = 0.
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D.1 Asymptotics

Taking a single string, we require the metric to asymptote to R×S1
u×R4/Zm. This implies

that m∞ = 0, the functions H,F → 1 and the one-forms ω, β → 0. The limit

lim
r→∞

F = −n∞ +
r

m
Ωαβp

α
∞p

β
∞ + 2

1

m
Ωαβp

α
∞p

β = 1 (D.2)

implies that pα∞ = 0 and n∞ = −1. The limit of the one-form β → 0 implies that q∞ = 0

such that β → q
mdψ. This can be absorbed by the coordinate redefinition du→ du− q

mdψ.

For the single string, u is periodic, hence we need that

4πq

lm
∈ Z, (D.3)

where l is the length of the circle, for this to be well-defined. The limit

lim
r→∞

H =
√

Ωαβµα∞µ
α
∞ = 1 (D.4)

then implies that

Ωαβµ
α
∞µ

β
∞ = 1. (D.5)

Lastly, the limit of the one-form ω → 0 implies that

lim
r→0

ω0 = j∞ +
1

m
Ωαβµ

α
∞p

β − 1

2

q

m
= 0 (D.6)

such that

j∞ =
1

2

q

m
− 1

m
Ωαβµ

α
∞p

β . (D.7)

Hence, to get the correct asymptotics, we need

Γ∞ =

(
µα∞, 0, 0, 0,−1,

1

2

q

m
− 1

m
Ωαβµ

α
∞p

β

)
(D.8)

subject to (D.5). With these values for Γ∞, the Bubble equations are automatically satis-

fied.

E Reduction of the flow equation to five dimensions

We show that when compactifying along the u−circle (as done in section 4.3), the flow

equation (5.13) reduces to the flow equation derived in [74], which in our conventions is

given by7

∇̃l
(
f−1GIJXIEJl

)
= f−1GIJ∂lXI∂lXJ − 1

4
CIJKX

IΘJ ·ΘK , (E.1)

where

GIJ =

[
−1

2
∂XI∂XJ logN

]
|N=1 =

9

2
XIXJ −

1

2
CIJKX

K (E.2)

7In their conventions XI ≡ 1
2
CIJKX

JXK and α · β = αmnβ
mn.
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and EIl = F Ilv = f−1∂l
(
fXI

)
. Some useful identities that follow from XIX

I = 1 are:

GIJXJ =
3

2
XI ,

∂lXI = −2

3
GIJ∂lXJ . (E.3)

From the cubic potential (4.40) one finds

Gαβ = r−4/3gαβ ,

G0β = 0, (E.4)

G00 =
1

2
r8/3.

Let’s now reduce the terms in the flow equation (5.13) one by one. We start with the

left-hand side:
1

6
∇̃l
(

Ωαβj
αĜβijk

)
εlijk. (E.5)

Note that the base space in the five- and six-dimensional space has the same metric ds24, so

the covariant derivative does not change. The vierbein êi is related to a vierbein ei of the

5d spatial part via êi = r−1/3ei and ei = f−1/2ẽi. Applying the self-duality condition (2.27)

to the ansatz for the three-forms (4.36) relates Gα to the two-forms Fα. In particular when

we express

Gα =
1

2
Gαij ẽ

i ∧ ẽj ∧ (dv + ω) +
1

6
Gαijkẽ

i ∧ ẽj ∧ ẽk, (E.6)

we find that

Gαijk = −f−1r−4/3gαβΩβγE
γ
l ε
l
ijk. (E.7)

Hence

Ĝαijk = Gαijk = −f−1r−4/3
(
2jαjγ − δαγ

)
Eγl ε

l
ijk. (E.8)

We then derive that

1

6
∇̃l
(

Ωαβj
αĜβijk

)
εlijk = −∇̃l

(
f−1r−4/3Ωαβj

αEβl

)
. (E.9)

Inserting the ansatz for the scalars (4.37) and applying the product rule gives

1

6
∇̃l
(

Ωαβj
αĜβijk

)
εlijk =−r−2/3∇̃l

(
f−1r−4/3ΩαβX

αEβl

)
−f−1r−4/3ΩαβX

αEβl ∂
l
(
r−2/3

)
.

(E.10)

Using (E.4) we then calculate that

∇̃l
(
f−1GIJXIEJl

)
=

1

2
∇̃l
(
f−1r4/3E0

l

)
+ ∇̃l

(
f−1r−4/3ΩαβX

αEβl

)
(E.11)

and combining (E.4) with the definition of Eβl and ∂lr = −3
4r

7/3∂lX
0, the second term of

the right-hand side in (E.10) can be calculated:

f−1r−4/3ΩαβX
αEβl ∂

l
(
r−2/3

)
= −1

2
r−2/3f−1G00∂l

(
X0
)
∂l
(
X0
)
− 2

3
f−2r−5/3∂l (f) ∂l (r) .

(E.12)
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Substitution of (E.11) and (E.12) in (E.10) yields

1

6
∇̃l
(

Ωαβj
αĜβijk

)
εlijk =−r−2/3∇̃l

(
f−1GIJXIEJl

)
+

1

2
r−2/3∇̃l

(
f−1r4/3E0

l

)
+

1

2
r−2/3f−1G00∂l

(
X0
)
∂l
(
X0
)
+

2

3
f−2r−5/3∂l (f)∂l (r) . (E.13)

Let us then reduce the first term of the right-hand side of the flow equation (5.13).

Inserting the ansatz for the scalars (4.37), applying the product rule and using (E.4) yields

Hgαβ∂l (j
α) ∂l

(
jβ
)

= HGαβ∂l (Xα) ∂l
(
Xβ
)

+ 2Hr2/3GαβXβ∂l (X
α) ∂l

(
r−2/3

)
+

4

9
Hr−2∂l (r) ∂

l (r) . (E.14)

Using that H = r−2/3f−1,

GαβXβ∂l (X
α) =

2

3
r−1∂lr (E.15)

and

HG00∂l
(
X0
)
∂l
(
X0
)

=
8

9
Hr−2∂l (r) ∂

l (r) , (E.16)

we find that

Hgαβ∂l (j
α) ∂l

(
jβ
)

= r−2/3f−1Gαβ∂l (Xα) ∂l
(
Xβ
)
− 1

2
r−2/3f−1G00∂l

(
X0
)
∂l
(
X0
)
.

(E.17)

Lastly, we reduce the second term of the right-hand side of the flow equation (5.13).

Using (4.40) and (4.43) we can expand

− 1

4
CIJKX

IΘJ ·ΘK = −1

2
Ωαβr

−4/3G+α · G+β + r2/3jαd̃β · G+α. (E.18)

For the first term at the right-hand side of (E.18) we use the reduced Einstein equa-

tion (4.47):
1

3
ΩαβG+α · G+β = ∇̃2

(
f−1X0

)
= −2

3
∇̃l
(
f−1G00E0

l

)
, (E.19)

where the second equality follows using (E.3) and the definition of E0
l . Inserting G00 and

using again the definition of E0
l we find that

−1

2
Ωαβr

−4/3G+α ·G+β = r−4/3∇̃l
(
f−1G00E0

l

)
=

1

2
∇̃l
(
f−1r4/3E0

l

)
+

1

2
f−1∂l

(
X0
)
∂l
(
r4/3

)
+

1

2
f−2X0∂l (f)∂l

(
r4/3

)
=

1

2
∇̃l
(
f−1r4/3E0

l

)
−f−1G00∂l

(
X0
)
∂l
(
X0
)

+
2

3
r1/3f−2X0∂l (f)∂l (r) . (E.20)

Substitution of (E.20) in (E.18) yields

−jαd̃β · G+α = −r−2/3
[
−1

4
CIJKX

IΘJ ·ΘK − 1

2
∇̃l
(
f−1r4/3E0

l

)
+ f−1G00∂l

(
X0
)
∂l
(
X0
)
− 2

3
f−2r−1∂l (f) ∂l (r)

]
. (E.21)
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Substitution of (E.13), (E.17) and (E.21) in (5.13) yields

∇̃l
(
f−1GIJXIEJl

)
= f−1GIJ∂l

(
XI
)
∂l
(
XJ
)
− 1

4
CIJKX

IΘJ ·ΘK . (E.22)

This is the five-dimensional flow equation.
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