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Abstract. We show that a system of Hirota bilinear equations introduced by Jimbo and Miwa
defines tau-functions of the modified KP (MKP) hierarchy of evolution equations introduced by
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1. Introduction

The KP hierarchy was introduced by Sato in his seminal paper [15] as the hier-
archy of evolution equations of Lax type

dL

dtn
D Œ.Ln/C; L�; n D 1; 2; : : : ;
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on the pseudo-differential operator L D @C u1@
�1 C u2@

�2 C � � � ; where @ D
@

@t1
and C stands for the differential part. He also introduced the associated wave

functions and the tau-function, and discussed reductions of the KP hierarchy.
His ideas have been subsequently developed by his school in a series of papers,
which were reviewed in [10] and [5].

In the review [10] Jimbo and Miwa also introduced the modified KP hierar-
chy (MKP hierarchy), as a set of bilinear equations on the tau-functions �`, ` 2
Z, see [10], equation .2:4/l;l 0 , each �` being a tau-function of the KP hierarchy.
It was subsequently shown in [11] that these equations arise naturally from the
fermionic formulation of the MKP hierarchy and the boson-fermion correspon-
dence. This implies that the MKP tau-functions .: : : ; �`�1; �`; �`C1; : : :/ are nat-
urally parameterized by the infinite-dimensional flag manifold ([11], Corollary
8.1), in analogy with the famous observation of Sato [15] that tau-functions of
the KP hierarchy are parametrized by the infinite-dimensional Grassmann man-
ifold. Note that the tau-functions of the discrete KP hierarchy, studied in [2], are
precisely those, satisfying the Jimbo–Miwa equations from [10].

On the other hand, Dickey proposed a Lax type formulation of the MKP hi-
erarchy in [6] (see also [7]), which is an extension of the Sato formulation of
KP. The first result of the present paper is the equivalence of Jimbo–Miwa’s tau-
function formulation and Dickey’s Lax type formulation of the MKP hierarchy
(Theorem 3 in Sect. 4), in analogy with the well developed theory of the KP hi-
erarchy (see e.g. [10], [5]). Similar equivalences are established for the discrete
KP hierarchy in [2]. The vertex operator construction of the Lie algebra gl1
provides solutions to the tau-function formulation of the MKP hierarchy [11],
hence to the Lax type formulation of it. Similar solutions have been constructed
in [2] for the discrete KP hierarchy.

In Sect. 5 we give eigenfunction formulations of the MKP hierarchy, closely
related to the work [9]. As a byproduct, we find in Sect. 6 an astonishingly
simple explicit description of all polynomial tau-functions of the KP and the
MKP hierarchies (Theorem 16). Of course, it is a well-known result of Sato
[15] that all Schur polynomials are tau-functions of the KP hierarchy. We show
that, moreover, all polynomial tau-functions of the KP hierarchy can be obtained
from Schur polynomials by certain shifts of arguments.

We discuss in Sect. 7 the reductions of the MKP hierarchy to the modified
n-KdV hierarchies for each integer n � 2, the n D 2 case being the classi-
cal modified KdV hierarchy (cf. [6]). Finally, in Sect. 8 we find all polynomial
tau-functions for the n-KdV hierarchy, and (implicitly) for the modified n-KdV
hierarchy. This was known only for n D 2 [11].

We would like to thank the referee for corrections and suggestions.
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2. The fermionic formulation of MKP

Recall the semi-infinite wedge representation [11], [13]. Consider the infinite
matrix group GL1, consisting of all complex matrices G D .gij /i;j 2Z which
are invertible and all but a finite number of gij � ıij are 0. It acts naturally on
the vector space C

1 D L
j 2ZCej (via the usual formula Eij .ek/ D ıjkei ).

The semi-infinite wedge space F D ƒ
1
2

1
C

1 is the vector space with a
basis consisting of all semi-infinite monomials of the form ei1

^ ei2
^ ei3

^ � � � ,
where i1 > i2 > i3 > � � � and i`C1 D i` � 1 for ` � 0. One defines the
representation R of GL1 on F by

R.G/.ei1
^ ei2

^ ei3
^ � � � / D Gei1

^Gei2
^Gei3

^ � � � ;
and apply linearity and anticommutativity of the wedge product ^.

The corresponding representation r of the Lie algebra gl1 of GL1 can be
described in terms of a Clifford algebra. Define the wedging and contracting
operators  C

j and  �
j .j 2 Z C 1

2
/ on F by

 C
j .ei1

^ ei2
^ � � � / D e�j C 1

2
^ ei1

^ ei2
^ � � � ;

 �
j .ei1

^ ei2
^ � � � /

D
8<
:
0 if j � 1

2
¤ is for all s;

.�1/sC1ei1
^ ei2

^ � � � ^ eis�1
^ eisC1

^ � � � if j D is � 1

2
:

These operators satisfy the relations .i; j 2 Z C 1
2
; �; � D C;�/:

 �
i  

�
j C  

�
j  

�
i D ı�;��ıi;�j ;

hence they generate a Clifford algebra, which we denote byCl . Introduce the
following elements of F .m 2 Z/:

jmi D em ^ em�1 ^ em�2 ^ � � � : (1)

It is clear that F is an irreducibleCl -module such that

 j̇ j0i D 0 for j > 0:

The representation r of gl1 in F , corresponding to the representation R of
GL1, is given by the formula r.Eij / D  C

�iC 1
2

 �
j � 1

2

: Define the charge de-

composition

F D
M
m2Z

F .m/; where charge.jmi/ D m and charge. j̇ / D ˙1:
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The space F .m/ is an irreducible highest weight gl1-module, with highest
weight vector jmi:

r.Eij /jmi D 0 for i < j;
r.Ei i /jmi D 0 .resp. D jmi/ if i > m .resp. if i � m/:

Let
Om D R.GL1/jmi � F .m/

be the GL1-orbit of the highest weight vector jmi.
Theorem 1 ([11], Theorem 5.1). Let I be a non-empty finite subset of Z and let
f D L

m2I fm 2 Lm2I F
.m/ be such that all fm 6D 0. Then f 2 Lm2I Om

if and only if for all k; ` 2 I , such that k � `, one hasX
i2ZC 1

2

 C
i fk ˝  ��if` D 0: (2)

Equation (2) is called the .k � `/-th modified KP hierarchy in the fermionic
picture. The 0-th modified KP is the KP hierarchy. The collection of all such
equations k; ` 2 Z with k � ` is called the (full) MKP hierarchy in the
fermionic picture.

3. The bosonic formulation of MKP

Define the fermionic fields by  ˙.z/ D P
i2ZC 1

2
 i̇ z

�i� 1
2 and the bosonic

field ˛.z/ D P
n2Z ˛nz

�n�1 DW C.z/ �.z/W. Then there exists a unique vec-
tor space isomorphism, called the boson-fermion correspondence, � W F !
B D CŒq; q�1� ˝ CŒt1; t2; : : :� such that �.jmi/ D qm, �˛n�

�1 D @
@tn

,

�˛�n�
�1 D ntn, for n > 0 and �˛0�

�1 D q @
@q

. Moreover, one has

� ˙.z/��1 D q˙1z˙q @
@q exp

�
˙

1X
kD1

tkz
k
�

exp
�

�
1X

kD1

@

@tk

z�k

k

�
: (3)

For fm 2 Om [f0g we write: �.fm/ D �m.t/q
m, where t D .t1; t2; : : :/. Such a

�m is called a tau-function. Under the isomorphism � we can rewrite (2), using
(3), to obtain a Hirota bilinear identity for tau-functions.

The first formulation of the MKP hierarchy: Let Œz� D .z; z2

2
; z3

3
; : : :/, y D

.y1; y2; : : :/, and Res
P

i fiz
i dz D f�1, then

Res zk�`�k.t�Œz�1�/�`.yCŒz�1�/ exp
� 1X

iD1

.ti �yi /z
i
�
dz D 0; k � `: (4)
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The equations (4) first appeared in [10], .2:4/l;l 0 .
Divide (4) by �k.t/�`.y/ and introduce the wave functions wC

m and adjoint
wave function w�

m (m 2 Z/ by

wṁ.t; z/ Dq�1�
�
 ˙.z/fm

�
�.fm/

Dz˙m �m.t � Œz�1�/

�m.t/
e˙t �z :

(5)

Here and thereafter we use the shorthand notation

t � z D
1X

iD1

tiz
i :

Then (4) becomes

ReswC
k
.t; z/w�

` .y; z/ dz D 0; k � `: (6)

4. The Lax type formulation of MKP

We now want to express the wave functions in terms of formal pseudo-differential
operators in @ D @

@t1
. A formal pseudo-differential operator is an expression of

the form
P.t; @/ D

X
j �N

Pj .t/@
j ;

where the Pj .t/ are functions in t , infinitely differentiable in t1. The differential
part of P.t; @/ is PC.t; @/ WD PN

j D0 Pj .t/@
j , and P� WD P � PC. These

operators form an associative algebra with multiplication ı, defined by (k; ` 2
Z)

A.t/@k ı B.t/@` D
1X

iD0

�
k

i

�
@iA.t/

@t i1
B.t/@kC`�i :

The formal adjoint of P.t; @/ is defined by the following formula:�X
j

Pj .t/@
j
�� D

X
j

.�@/j ı Pj .t/:

The residue of P.t; @/ is Res@P.t; @/ WD P�1.t/.
Let

Pṁ .t;˙z/ D �m.t � Œz�1�/

�m.t/
D 1˙ p1̇ .t/z

�1 C p2̇ .t/z
�2 ˙ � � � ; (7)
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so that

wṁ.t; z/ D Pṁ .t;˙z/z˙me˙t �z D Pṁ .t; @/ ı .˙@/˙m.e˙t �z/

D Pṁ .t; @/ ı .˙@/˙m ı exp
�

˙
1X

iD2

ti .˙@/i
�
.e˙t1z/:

(8)

Then (4) is equivalent to

ResPC
k
.t; z/zket �zP�

` .y;�z/z�`e�y�z dz D 0: (9)

The following lemma is crucial. It involves only the first variable t1. When
we use it, the variables t2; t3; : : : are seen as extra parameters.

Lemma 2 ([13], Lemma 4.1). Let P.t1; @/ and Q.t1; @/ be two formal pseudo-
differential operators, then

ResP.t1; z/et1zQ.y1;�z/e�y1z dz D Res @P.t1; @/ıQ.t1; @/�ıeu@juDt1�y1
:

Applying the lemma to the bilinear identity (6), while using the expression
(8) for the wave functions, one deduces

P�
k .t; @/

� D PC
k
.t; @/�1; .PC

k
.t; @/ ı @.k�`/ ı PC

`
.t; @/�1/� D 0: (10)

We obtain the Sato–Wilson equation

@PC
k
.t; @/

@tj
D .PC

k
.t; @/ ı @j ı PC

k
.t; @/�1/� ı PC

k
.t; @/ ; (11)

by differentiating (6) by tj , using the first equation of (10) and then applying
Lemma 2 (see e.g. [13], proof of Lemma 4.2) .

Introduce the Lax operator Lk by dressing @ by (the dressing operator) PC
k

:

Lk D Lk.t; @/ D PC
k
.t; @/ ı @ ı PC

k
.t; @/�1: (12)

Differentiate (8) by tj and apply the Sato–Wilson equation (11). This gives the
following linear equation (= linear problem) for the wave function wC

k
(k 2 Z):

Lkw
C
k
.t; z/ D zwC

k
.t; z/;

@wC
k
.t; z/

@tj
D .L

j

k
/CwC

k
.t; z/ (13)

and the adjoint wave function w�
k

:

L�
kw

�
k .t; z/ D zw�

k .t; z/;
@w�

k
.t; z/

@tj
D �.Lj

k
/�Cw�

k .t; z/ : (14)
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From (11) it is easy to deduce the Lax equations onLk (see e.g. [13], Lemma
4.3):

@Lk

@tj
D Œ.L

j

k
/C; Lk�; j D 1; 2; : : : ; (15)

which are the compatibility conditions of the linear problem (13). From (7) we
find that

PC
k
.t; @/ D 1 � @.log �k.t//@

�1 C � � � ;
hence the second equation of (10) for k D `C 1 gives that

PC
`C1

.t; @/ ı @ ı PC
`
.t; @/�1 D .PC

`C1
.t; @/ ı @ ı PC

`
.t; @/�1/C

D @C @.log.�`.t// � @.log.�`C1.t// ;

and hence

PC
`C1

.t; @/@ D .@Cv`.t//ıPC
`
.t; @/; where v`.t/ D @

�
log

�`.t/

�`C1.t/

�
: (16)

This leads to another formulation of MKP, which was suggested by Dickey [6],
[7]:

The second formulation of the MKP hierarchy: Let U D CŒu
.n/
i ; v

.n/
j j i 2

Z�1; j 2 Z; n 2 Z�0� be the algebra of differential polynomials in ui and
vj , where @u.n/

i D u
.nC1/
i , @v.n/

j D v
.nC1/
j . Let L0.@/ D @ C u1.t/@

�1 C
u2.t/@

�2 C � � � 2 U..@�1// be a pseudo-differential operator. Then the MKP
hierarchy is the following system of evolution equations in U .j 2 Z�1, i 2 Z/:

@L0.@/

@tj
D Œ.L0.@/

j /C; L0.@/�;

@vi

@tj
D .LiC1.@/

j /C ı .@C vi / � .@C vi / ı .Li .@/
j /C;

(17)

where Li .@/ and L�i .@/, for i > 0, are defined by

Li .@/ D .@C vi�1/ ı Li�1.@/ ı .@C vi�1/
�1;

L�i .@/ D .@C v�i /
�1 ı L1�i .@/ ı .@C v�i /:

(18)

Theorem 3. The first and the second formulation of MKP are equivalent.

Proof. To prove that the first formulation implies the second, first note that,
using the first formula of (16), one indeed gets that for ` > 0:
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L` D PC
`

ı @ ı .PC
`
/�1 D .@C v`�1/ ı PC

`�1
ı @.PC

`�1
/�1 ı .@C v`�1/

�1

D .@C v`�1/ ı L`�1 ı .@C v`�1/
�1

and

L�` D PC
�`

ı @ ı .PC
�`
/�1 D .@C v�`/

�1 ı PC
1�`

ı @ ı .PC
1�`

/�1 ı .@C v�`/

D .@C v�`/
�1 ı L1�` ı .@C v�`/ :

(19)
Secondly, we show that the second equation of (17) holds. This follows from
the Sato–Wilson equation (11). Indeed,

@PC
`C1

.t; @/

@tj
D �.L`C1.t; @/

j /� ı .@C v`.t// ı PC
`
.t; @/

D @v`.t/

@tj
PC

`
.t; @/ � .@C v`.t// ı .L`.t; @/

j /� ı PC
`
.t; @/ ;

we deduce that
@v`.t/

@tj
D � .L`C1.t; @/

j /� ı .@C v`.t//C .@C v`.t// ı .L`.t; @/
j /�

D � L`C1.t; @/
j ı .@C v`.t//C .L`C1.t; @/

j /C ı .@C v`.t//

C .@C v`.t// ı L`.t; @/
j � .@C v`.t// ı .L`.t; @/

j /C
D .L`C1.t; @/

j /C ı .@C v`.t// � .@C v`.t// ı .L`.t; @/
j /C :

Here we have used that L`C1.t; @/
j ı .@C v`.t// D .@C v`.t// ı L`.t; @/

j .
To prove the converse, we use a result of Shiota [16], the Claim of Sect. 1.2.

He shows that if L0 satisfies the Lax equation (15), then wC
0 .t; z/ is uniquely

determined by the linear problem (13), up to multiplication by elements of the
form 1 C P

i>0 aiz
�i , with ai 2 C or rather P0.t; @/ D 1 C P

i>0wi .t/@
�i

is a unique solution up to multiplication from the right by elements of the form
1CP

i>0 ai@
�i , with ai 2 C, of the equations

L0ıPC
0 .t; @/ D PC

0 .t; @/ı@;
@PC

0 .t; @/

@tj
D PC

0 .t; @/ı@j �.Lj
0/CıPC

0 .t; @/:

Hence, wC
0 .t/ D PC

0 .t; @/e
t �z satisfies (13) and thus is a wave function for L0,

so that w�
0 .t/ D .PC

0 .t; @//
��1e�t �z is the adjoint wave function. For i > 0, let

PC
i D .@C vi�1/ ı .@C vi�2/ ı � � � ı .@C v0/ ı PC

0 ;

PC
�i D .@C v�i /

�1 ı .@C v1�i /
�1 ı � � � ı .@C v�1/

�1 ı PC
0 ;

and construct all other (adjoint) wave functions via

wC
i D .@C vi�1/.w

C
i�1/; w�

i D .@C vi�1/
��1.w�

i�1/;

wC
�i D .@C v�i /

�1.wC
1�i /; w��i D .@C v�i /

�.w�
1�i /:

(20)
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By (17) and (18) these (adjoint) wave functions satisfy the linear problem (13).
In order to show that the bilinear identity holds for the wave functions, we first
prove that

.@jPC
k
.t; @/P��

` .t; @//� D 0 for all k � `; j � 0: (21)

We show this for k � 0 and ` < 0 (all other cases are obvious):

@j ı PC
k
P��

` D @j ı .@C vk�1/ ı � � � ı .@C v0/ ı PC
0 ı .PC

0 /
�1

ı .@C v�1/ ı � � � ı .@C v`/

D @j ı .@C vk�1/ ı .@C vk�2/ ı � � � ı .@C v`/:

Using Lemma 2, we deduce from (21) that

Res
@jwC

k
.s1; t2; t3; : : : ; z/

@s
j
1

w�
` .t1; t2; t3; : : : ; z/ dz D 0:

The second formula of (13) implies that

Res
@j1Cj2C���CjnwC

k
.s1; t2; t3; : : : ; z/

@s
j1

1 @t
j2

2 � � � @tjn
n

w�
` .t1; t2; t3; : : : ; z/ dz D 0:

Using Taylor’s formula we obtain the bilinear identity (6) for the wave function.
The tau-functions �i are then obtained up to a scalar factor by the formula (see
e.g. [13] equation (111), which is a direct consequence of (7)):

@ log �i .t/

@tj
D Res zj

� @
@z

�
X
k>0

z�k�1 @

@tk

�
PC

i .t; z/:

Hence, multiplying (6) by �k.t/�`.y/, we obtain the bilinear identities (4) for the
tau-functions, which is the first formulation of MKP. Thus the two formulations
are equivalent. �

The vj are expressed in terms of the tau-functions via the second formula of
(16). Using (7), we see that

P0̇ .t; @/ D
1X

i;j D0

Si .�D/�0

�0
@�i ; where

1X
iD0

Si .D/z
i D exp

� 1X
kD1

zk

k

@

@tk

�
:

This and the fact that L0 is given by (12), gives that the ui can be calculated by
the following formula

L0.t; @/ D
1X

i;j D0

Si .�D/�0

�0
@1�i�j ı Sj .D/�0

�0
:

Remark 4. Dickey shows that all flows @
@tk

, defined by (17), commute ([6],
Proposition 2.3). Hence (17) is an integrable system of compatible evolution
equations in U .
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Remark 5. The differential algebra U carries an automorphism S (commuting
with @), defined by

S.vj / D vj C1; S.L/ D .@C v/ ı L ı .@C v/�1:

The MKP hierarchy can be understood as the following system of partial differential-
difference equations (j D 1; 2; : : :):8̂̂

<
ˆ̂:
dL

dtj
D Œ.Lj /C; L�;

dv

dtj
D .S.L/j /C ı .@C v/ � .@C v/ ı .Lj /C :

Here L D @C u1@
�1 C u2@

�2 C � � � and v D v0:

5. Eigenfunction formulation of MKP

There is yet another formulation of MKP. It is given in terms of eigenfunctions
and adjoint eigenfunctions of the Lax operators Lk .

Definition 6. Let L D L.t; @/ be a pseudo-differential operator with coeffi-
cients in C.t1; t2; : : :/, where @ D @

@t1
. An element � 2 C.t1; t2; : : :/ is called an

eigenfunction (resp. adjoint eigenfunction) for L if

@�.t/

@tn
D .Ln/C .�.t//

�
resp.

@�.t/

@tn
D � .Ln/

�
C .�.t//

�
; n D 1; 2; : : : :

(22)

Example 7. Let L D L.t; @/ be a pseudo-differential operator and wC.t; z/
(resp. w�.t; z/) satisfy

@wC.t; z/
@tj

D .Lj /CwC.t; z/;
�

resp.
@w�.t; z/
@tj

D �.Lj /�Cw�.t; z/
�
;

cf. (13) and (14). Then for each f .z/ 2 C..z�1// the functions

q˙
f .t/ D Resf .z/w˙.t; z/ dz; (23)

are eigenfunctions (taking C) and adjoint eigenfunctions (taking �) for L. In
particular if L D @, then

q˙
f .t/ D Resf .z/e˙t �z dz;

are its (adjoint) eigenfunctions.

These (adjoint) eigenfunctions were used by Matveev and Salle [14] to construct
new solutions of the KP equation from old ones. In fact we will prove later the
following:
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Proposition 8. If �.t/ is a tau-function, satisfying (4) for k D `, and L D
PC ı @ ı .PC/�1 is the corresponding Lax operator, where PC is given by
(7), then �˙.t/�.t/ is again a tau-function, provided that �˙.t/ is an (adjoint)
eigenfunction for L.

We will show (see also [9]) that �.t/ and �˙.t/�.t/ satisfy the 1st modified
KP hierarchy (4) for k � ` D 1. The converse of this statement also holds,
namely we have:

Proposition 9. Let �k.t/ and �kC1.t/ be KP tau-functions that satisfy (4) for
k � ` D 1. Then their ratio �k.t/ D �kC1.t/

�k.t/
is an eigenfunction for Lk D

PC
k
@PC�1

k
and 1

�k.t/
is an adjoint eigenfunction for LkC1 D PC

kC1
@PC�1

kC1
,

where PC
m is given by (7).

Proof. The tau-function formulation of the 1st MKP hierarchy, i.e., (4) for k �
` D 1 is equivalent to (see e.g. [12], Theorem 2.3 (c), for l D 1).

Res z�1�k.t�Œz�1�/�kC1.yCŒz�1�/ exp
� 1X

iD1

.ti �yi /z
i
�
dz D �kC1.t/�k.y/:

(24)
Divide equation (24) by �kC1.t/�k.y/, to obtain:

Res�k.t/
�1wC

k
.t; z/�k.y/w

�
kC1.y; z/ dz D 1: (25)

Differentiate this equation by tn and then multiply by �k.t/, to obtain

Res
�

� @�k.t/

@tn
�k.t/

�1wC
k
.t; z/C �

Ln
k

�
C .w

C
k
.t; z//

�
�k.y/w

�
kC1.y; z/ dz

D 0:

Using Lemma 2, (7), (8) and the fact that

w�
kC1.y; z/ D 1

�k.y/
.�@/�1 ı �k.y/.P

C
k
.y; @//��1e�P

i yi zi

;

we obtain�
� @�k.t/

@tn
�k.t/

�1PC
k
.t/ ı PC

k
.t/�1 ı �k.t/@

�1 C .Ln
k/C ı PC

k
.t/ ı PC

k
.t/�1 ı �k.t/@

�1
�

�
D 0:

Taking the residue of this expression (i.e., the coefficient of @�1) gives equation
(22). The second formula can be also obtained from (25) in almost the same way,
but now one has to differentiate this equation by y1 and continue in a similar
manner. �
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One also has:

Proposition 10. Let �k.t/ be as in the previous Proposition and let wC
k
.t; z/ D

PC
k
.t; z/zket �z and w�

kC1
.t; z/ D P�

kC1
.t;�z/z�k�1e�t �z be the (adjoint)

wave function, corresponding to �k and �kC1, i.e., given by (7) and (8) sat-
isfying (6) for ` D k C 1. Then

PC
kC1

.t; @/ ı @ D �k.t/@ ı 1

�k

.t/PC
k
.t; @/ (26)

and
LkC1 D �k.t/@ ı 1

�k.t/
Lk ı �k.t/@

�1 ı 1

�k.t/
: (27)

Proof. If we divide equation (24) by �k.t/�kC1.y/, we obtain

ReswC
k
.t; z/�k.y/w

�
kC1.y; z/ dz D �k.t/

1

�k.y/
: (28)

which is equivalent to (6). Using Lemma 2 and (10), we deduce that

PC
k
.t; @/ ı @�1 ı PC

kC1
.t; @/�1 D �k.t/@

�1 ı 1

�k.t/
;

which gives (26). Then (27) follows from (12). �

The converse also holds:

Proposition 11. Let �C.t/ be an eigenfunction and ��.t/ be an adjoint eigen-
function for the Lax operator L D P@P�1, i.e., L satisfies (15), where P is a
dressing operator, satisfying the Sato–Wilson equation (11), then

Q D �C.t/@ ı 1

�C.t/P and R D 1

��.t/@
�1 ı ��.t/P

also satisfy (11) and both

Q ı @ ıQ�1 and R ı @ ıR�1

are Lax operators.

For a proof of this proposition, see pages 499 and 500 of [9].

Proof of Proposition 8. We will only consider the case of eigenfunctions. The
proof for adjoint eigenfunctions is similar. Use the previous Proposition, then

ResQet �z.P �/�1ey�z dz D �C.t/@t1
ı 1

�C.t/ResPet �z.P �/�1e�y�z dz D 0:
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Hence the wave function Qet �z and the adjoint wave function .P �/�1e�y�z
satisfy the 1st modified KP hierarchy, (6) for k D `C 1. Therefore, Pet �z and
.Q�/�1e�y�z satisfy (25), i.e.,

ResPet �zQ��1ey�z dz D �C.t/
�C.y/ :

Let � be the tau-function which corresponds to P and �1 be the tau-function that
corresponds to Q, then

Res z�1�.t�Œz�1�/�1.yCŒz�1�/ exp
� 1X

iD1

.ti �yi /z
i
�
dz D �.t/�C.t/ �1.y/

�C.y/ ;

which must be equation (24). Thus �1.t/ D �C.t/�.t/. �

Define

�C
k
.t/ D �k.t/

�
resp. ��

k .t/ D 1

��k�1

�
for k � 0;

which are eigenfunctions for Lk (resp. adjoint eigenfunctions for L�k). Then
by Proposition 9,

�C
k
.t/ D 1

��
�k�1

.t/
D �kC1.t/

�k.t/
; (29)

and (by (16) and Proposition 9)

@C vk.t/ D

8̂̂
<
ˆ̂:
@ � @.log�C

k
.t// D �C

k
.t/@ ı 1

�C
k
.t/

for k � 0;

@C @.log��
�k�1

.t// D 1

��
�k�1

.t/
@ ı ��

�k�1
.t/ for k < 0;

(30)
and

w˙
kC1.t; z/ D ˙.�C

k
.t/˙1@˙1 ı �C

k
.t/�1/w˙

k .t; z/;

w˙
�k�1.t; z/ D ˙.��

k .t/
�1@�1 ı ��

k .t/
˙1/w˙

�k.t; z/:
(31)

It is clear that the first and the second formulation of MKP imply the following.

The third formulation of the MKP hierarchy: Let W D CŒu
.n/
i ; �j̇

.n/ j i 2
Z�1; j; n 2 Z�0� be the algebra of differential polynomials in ui and �j̇ ,

where @u.n/
i D u

.nC1/
i , @�j̇

.n/ D �j̇

.nC1/
. Let L0.@/ D @ C u1.t/@

�1 C



248 V.G. Kac and J.W. van de Leur

u2.t/@
�2 � � � 2 W..@�1// be a pseudo-differential operator. Then the MKP hi-

erarchy is the following system of evolution equations in W :

@L0.@/

@tj
D Œ.L0.@/

j /C; L0.@/�;
@�C

i

@tj
D .Li .@/

j /C.�C
i /;

@��
i

@tj
D �.L�i .@/

j /�C.��
i /

(32)

for j 2 Z�1 and i 2 Z�0, where the Li and L�i , for i > 0, are defined by

Li D �C
i�1@ ı 1

�C
i�1

Li�1 ı �C
i�1@

�1 ı 1

�C
i�1

;

L�i D 1

��
i�1

@�1 ı ��
i�1L1�i ı 1

��
i�1

@ ı ��
i�1:

Theorem 12. All three formulations of the MKP are equivalent.

Proof. Assume the third formulation of MKP holds. Define for i � 0 the func-
tion vi D �@ log�C

i and v�i�1 D @ log��
i . Then

wC
iC1.t; z/ D �C

i .t/@ ı 1

�C
i .t/

.wC
i .t; z// D .@C vi .t//.w

C
i .t; z//

is a wave function for LiC1 D .@ C vi .t//Li .@ C vi .t//
�1. One finds similar

wave functions and relations between these wave functions if i < 0. Hence,
the same proof as the proof of Theorem 3 gives the second equation of (17).
Equation (18) is obvious. �

Now, for i > 0, the tau-function is equal to (by (29))

�˙i D �i̇�1�˙.i�1/ D �i̇�1�i̇�2�˙.i�2/ D � � � D �i̇�1�i̇�2 � � ��0̇ �0 ; (33)

and the (adjoint) wave functionw˙̇
i .t; z/ D M˙i .t; @/.w0̇ .t; z//, whereM0 D

1 and by (31) and (30):

M˙i .t; @/ D .˙@C v˙.i� 1
2

� 1
2

// ıM˙.i�1/.t; @/

D ˙�i̇�1@ ı 1

�i̇�1

M˙.i�1/.t; @/

D �i̇�1@ ı 1

�i̇�1

�i̇�2@ ı 1

�i̇�2

M˙.i�2/.t; @/

D � � �

D .˙1/i�i̇�1@ ı �i̇�2

�i̇�1

@ ı �i̇�3

�i̇�2

@ ı � � � ı �0̇

�1̇

@ ı 1

�0̇

(34)
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is an i -th order differential operator. Using the connection between the wave
function and adjoint wave function we have,wC

�i .t; z/ D M ��1�i .t; @/.wC
0 .t; z//

and using the relation between the wave function and the Lax operator (12), we
find

Li D Mi ı L0 ıM�1
i and L�i D .M ��i /

�1 ı L0 ıM ��i : (35)

In the polynomial case, using the boson-fermion correspondence � , it is not
difficult to find these (adjoint) eigenfunctions. We know from the results of [11]
that if ��1.�nq

n/ D fn 2 On, then ��1.�nC1q
nC1/ D w ^ fn for some

w D P
i aiei 2 C

1. We have

fnC1 D w ^ fn D
�X

i

aiei

�
^ fn D

X
i

ai 
C
�iC 1

2

.fn/

D Res
X

i

aiz
�i C.z/.fn/ dz;

since this holds for fn D jni and fnC1 D jnC 1i. Thus if we define �C
n .t/ D

Res
P

i aiz
�iwC

n .t; z/ dz, then by (5) we find that

�nC1q
nC1 D �

�
Res

X
i

aiz
�i C.z/.fn/ dz

�

D Res
X

i

aiz
�i� C.z/��1 dz �nq

n

D Res
X

i

aiz
�iwC

n .t; z/ dz �nq
nC1

D �C
n �nq

nC1 ;

(36)

hence

�nC1 D �C
n �n; where �C

n D Res
X

i

aiz
�iwC

n .t; z/ dz: (37)

Since fn�1 D P
i bi 

�
iC 1

2

.fn/, with bi 2 C, we find in a similar way

��n�1 D ��
n ��n; where ��

n .t/ D Res
X

i

biz
iw��n.t; z/ dz : (38)

Thus we have the following:

Lemma 13. In the polynomial setting every (adjoint) eigenfunction is of the
form (23).
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Observe that since �1̇ D Res f .z/w˙̇
1 .z/ dz for some f .z/, we find that

if we define q0̇ D �0̇ and q1̇ D Resf .z/w0̇ .z/ dz, which are both (adjoint)
eigenfunctions of L0, then using (31) we deduce that

�1̇ D Resf .z/w˙̇
1.z/ dz

D ˙ Resf .z/�0̇ @
�w0̇ .z/

�C
0

�
dz

D ˙ q0̇ @
�q1̇

q0̇

�

D ˙
�
@.q1̇ / � q1̇

q0̇

@.q0̇ /
�
:

Thus

�˙2 D �0̇ �1̇ �0 D ˙q0̇

�
@.q1̇ / � q1̇

q0̇

@.q0̇ /
�
�0 D ˙ det

�
q0̇ q1̇

@.q0̇ / @.q1̇ /

�
�0:

Note that we can remove the possible minus sign in front of the determinant. If
�2 is a tau-function, then a multiple of �2 is also a tau-function. From now on
we will always do so, i.e., forget about the sign of the tau-function.

Using formula (34), we deduce that

M˙1 D ˙�0̇ @ ı 1

�0̇

and

M˙2 D �1̇ @ ı �0̇

�1̇

@ ı 1

�0̇

D 1

q0̇

�
q0̇ @.q1̇ / � q1̇ @.q0̇ /

�
@ ı .q0̇ /

2

q0̇ @.q1̇ / � qC
1 @.q0̇ /

@ ı 1

q0̇

D
�

det
�
q0̇ q1̇

@.q0̇ / @.q1̇ /

���1

det

 
q0̇ q1̇ 1

@.q0̇ / @.q1̇ / @

@2.q0̇ / @
2.q1̇ / @

2

!
:

Continuing in this way, see e.g. Theorem 5.1 of [9] for more details, it is possible
to expressM˙i in terms of certain (adjoint) eigenfunctions q˙

k
.t/ of the operator

L0, i.e., if
�˙

k D Resfk.z/w
˙
˙k dz;

for some fk.z/ 2 CŒz; z�1�, then we define

q˙
k D Resfk.z/w0̇ dz:
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These q˙
k
.t/ are (adjoint) eigenfunctions for L0.@/ by (23). We have the fol-

lowing formulas:

�˙i D W˙i�0 and w˙̇
i D M˙i .w0̇ / and wC

�i D .M ��i /
�1.wC

0 /;

(39)
where M˙i D .˙1/iW˙i .@/=W˙i , and

W˙i .@/ D det

0
BB@

q0̇ � � � qi̇�1 1

@.q0̇ / � � � @.qi̇�1/ @
:::

: : :
:::

:::

@i .q0̇ / � � � @i .qi̇�1/ @
i

1
CCA and

W˙i D det

0
BB@

q0̇ � � � qi̇�1

@.q0̇ / � � � @.qi̇�1/
:::

: : :
:::

@i�1.q0̇ / � � � @i�1.qi̇�1/

1
CCA

(40)

are Wronskian determinants. The determinants W˙i .@/ are computed by ex-
panding along the last column, putting the cofactors to the left of the @j ’s.

Let us prove the formulas of (39). If �˙i D W˙i�0, then

�˙i˙1 D �i̇ �˙i

D Res fi .z/w
˙̇

i dz W˙i�0

D Res fi .z/M˙i .w0̇ / dz W˙i�0

D Res fi .z/W˙i .@/.w0̇ / dz �0

D W˙i .@/.Resfi .z/w0̇ dz/�0

D W˙i .@/.qi̇ /�0

D W˙.iC1/�0:

Thus

�i̇ D W˙.iC1/

W˙i
;

and using this, we find that

w˙
˙.iC1/ D ˙�i̇ @ ı 1

�i̇

.w˙̇
i /

D .˙1/iC1W˙.iC1/

W˙i
@ ı W˙i

W˙.iC1/

ıM˙i .w0̇ /

D .˙1/iC1W˙.iC1/

W˙i
@ ı W˙i

W˙.iC1/

�W˙i .@/.w0̇ /

W˙i

�
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D .˙1/iC1W˙.iC1/.@/.w0̇ /

W˙.iC1/

D M˙.iC1/.w0̇ /:

The next to the last equality follows from Crum’s Identity for Wronskian deter-
minants (which is in fact the Desnanot–Jacobi identity for Wronskians, see [4],
Sect. 3):

W˙.iC1/@ ıW˙i .@/ � @.W˙.iC1//W˙i .@/ D W˙iW˙.iC1/.@/: (41)

Thus wC
�i D .M ��i /

�1.wC
0 /. Now by (35) we find that

Li D Mi ı L0 ıM�1
i D Wi .@/=Wi ı L0 ı .Wi .@/=Wi /

�1 ;

L�i D M ��1�i ı L0 ıM ��i D .W�i .@/=W�i /
��1 ı L0 ı .W�i .@/=W�i /

� :
(42)

Remark 14. Let i � 0 and let fi D ��1.�i .t/q
i /. Then fi 2 Oi , which means

that

fi D vi ^ vi�1 ^ � � � ^ v2 ^ v1 ^ f0; where vj D
X

s

asj es; f0 2 O0;

(43)
and the eigenfunctions of Lj are of the form

�C
j .t/ D ReswC

j .t; z/
X

i

ai;j C1z
�i dz:

Hence, this eigenfunction is determined by wC
j .t; z/ and by vj C1. Define

qC
j .t/ D ReswC

0 .t; z/
X

i

ai;j C1z
�i dz:

Since Mi is of the form (34), �C
0 .t/ D qC

0 .t/ is in the kernel of Mi . However,
if we reorder the vj ’s in (43) we get the same element up to a sign. This gives
different eigenfunctions �C

j and different Lj for j D 1; 2; : : : ; i � 1, but Mi

is the same and Li is the same. Hence we can put every vj in (43) just before
f0, which means that the new f1 D vj ^ f0, thus we get a new eigenfunction
�C

0 which is now equal to qC
j .t/. Moreover, if fi 6D 0, then qC

j .t/ 6D 0. Thus
qC

0 .t/; q
C
1 .t/; : : : ; q

C
i�1.t/ are non-zero eigenfunctions for L0 which are all in

the kernel ofMi , and clearly must be linearly independent otherwise the element
fi would be 0. Similarly

f�i D v�i .v1�i .� � � .v�2.v�1.f0/ � � � ////;
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where vj D P
i bij 

�
iC 1

2

. Then

��
j �1.t/ D Resw�

1�j .t; z/
X

i

bi;�j z
i dz;

and
q�

j �1.t/ D Resw�
0 .t; z/

X
i

bi;�j z
i dz;

and all q�
j .t/ for 0 � j < i are in the kernel of M�i .

The fourth formulation of the MKP hierarchy: Let V D CŒu
.n/
i ; qj̇

.n/ j i 2
Z�1; j; n 2 Z�0� be the algebra of differential polynomials in ui and qj̇ . Let
L0 D @C u1.t/@

�1 C � � � 2 V..@�1// be a pseudo-differential operator. Then
the MKP hierarchy is the following system of evolution equations in V :

@L0.@/

@tj
D Œ.L0.@/

j /C; L0.@/�;
@qC

i

@tj
D .L0.@/

j /C.qC
i /;

@q�
i

@tj
D �.L0.@/

j /�C.q�
i /:

(44)

Now we are able to prove the following:

Theorem 15. In the polynomial setting, all four formulations of MKP are equiv-
alent.

Proof. It suffices to establish the equivalence between the third and fourth for-
mulation. To obtain the fourth formulation from the third, we use the fact that if
�i̇ .t/ is given, then by Lemma 13 this (adjoint) eigenfunction for L˙i is equal
to

�i̇ .t/ D Resf ˙.z/w˙̇
i .z/ dz for some f .z/ 2 C..z�1//:

Then we define the qi̇ .t/ of the fourth formulation by

qi̇ .t/ D Resf ˙.z/w0̇ .z/ dz for the same f .z/ 2 C..z�1//;

which now is an (adjoint) eigenfunction for L0. This qi̇ .t/ for i � 0 is (by
Remark 14) in the kernel of M˙j (defined in (34)) for j � i , and since it is
an (adjoint) eigenfunction for L0, it satisfies the second (third) formula of (44).
Hence this establishes the fourth formulation of MKP.

Assume the fourth formulation holds. Define �˙̇
n D .�1/n W˙n˙1

W˙n
; to-

gether with L0 they form the data of the third formulation. Since qi̇ is an (ad-
joint) eigenfunction of L0, then by Lemma 13 there exist functions f ˙

i .z/ 2
C..z�1//, such that

qi̇ .t/ D Resf ˙
i .z/w0̇ .t; z/ dz: (45)
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Let �0 be the tau-function for L0. Since q0̇ D �0̇ is an (adjoint) eigenfunction
of L0, by Proposition 8, the tau-functions for L˙ are

�˙1 D W˙1�0 D �0̇ �0:

The corresponding (adjoint) wave functions are (by Propositions 10 and 11)

wC
1 .t; z/ D M1.w

C
0 .t; z// D �C

0 .t/@ ı 1

�C
0 .t/

.wC
0 .t; z//;

w��1.t; z/ D M�1.w
�
0 .t; z// D ���

0 .t/@ ı 1

�C
0 .t/

.w�
0 .t; z//;

(46)

where M˙1 is given by (39). The corresponding Lax operator L˙1 is defined
by (42), which is the same as L˙1 in the third formulation, because of (46). Let

�1̇ .t/ D Resf1̇ .z/w˙̇
1.t; z/ dz

D ˙Resf1̇ .z/
W˙1.@/.w0̇ .t; z//

W˙1

D ˙W˙1.@/.q1̇ .t//

W˙1

D ˙W˙2

W˙1
;

where f1̇ .z/ is given by (45), which are non-zero by Remark 14. Now, �1̇ .t/

is an (adjoint) eigenfunction for L˙1, hence the second equation of (32) holds
for L˙1 and �1̇ . Thus (by (39)) we obtain that the tau-functions for L˙2 are
equal to

�˙2 D W˙2�0 D W˙2

W˙1
W˙1�0 D ˙�1̇ �˙1:

The corresponding (adjoint) wave functions are given by (39) and (40), and we
have

wC
2 .t; z/ D M2.w

C
0 .t; z// D W2.@/.w

C
0 .t; z//

W2
:

By Crum’s identity (41) we find that

wC
2 .t; z/ D W2

W1
@ ı W1

W2

�W1.@/.w
C
0 .t; z//

W1

�
D �C

1 .t/@ ı 1

�C
1 .t/

ıM1.w
C
0 .t; z//

D �C
1 .t/@ ı 1

�C
1 .t/

.wC
1 .t; z//;

w��2.t; z/ D M�2.w
�
0 .t; z// D ���

1 .t/@ ı 1

��
1 .t/

.w��1.t; z//:

(47)
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The corresponding Lax operator L˙2 is defined by (42), which is the same as
the one in the third formulation, because of (47). Let

�2̇ .t/ D Res f2̇ .z/w˙̇
2.t; z/ dz D Resf2̇ .z/

W˙2.@/.w0̇ .t; z//

W˙2
dz D W˙3

W˙2
;

where again f2̇ .z/ is given by (45). This is again an (adjoint) eigenfunction for
L˙2 and hence the second equation of (32) holds for L˙2 and �2̇ . Continuing
along these lines gives the third formulation and hence we have proved that all
four formulations are equivalent. �

6. Polynomial solutions of MKP

We are now going to construct polynomial tau-functions for MKP. We assume
that f0 D j0i which means that �0.t/ D 1, w˙.t; z/ D e˙t �z and L0 D @.
We construct a L0 D @ eigenfunction by the procedure described in Example 7
at the beginning of Sect. 5. Since f1 D w ^ f0 D w ^ j0i and the vacuum is
given by (1), such a w can be chosen of the form w D P1

j D0 aj ej C1, thus the
corresponding eigenfunction qC.t/ D �1.t/ is of the form (see Example 7)

qC.t/ D Res
1X

j D0

aj z
�j �1et �z dz:

A similar construction is possible for the adjoint eigenfunction, in fact we have
that all (adjoint) eigenfunctions are of the form

qi̇ .t/ D Res f ˙
i .z/e˙t �z dz for some f ˙

i .z/ D
1X

j D0

aj̇ iz
�j �1: (48)

Since �0 D 1 and �n D Wn�0 (see (39)), the corresponding tau-function is equal
to �n D Wn, for n 2 Z, the Wronskian determinant of the (adjoint) eigenfunc-
tions. Now using the elementary Schur polynomials, which are defined by

et �z D
1X

j D0

sj .t/z
j ; (49)

we find (see (48)) that

qi̇ .t/ D Resf ˙
i .z/e˙t �z dz D

1X
j D0

aj̇ isj .˙t/:
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One obtains polynomial tau-functions by taking f ˙
i .z/ D PM ˙

i

j D0 aj̇ iz
�j �1. To

simplify notation we shall sometimes drop the superscripts ˙. Without loss of
generality we may assume that aMi ;i D 1, then

qi̇ .t/ D sMi
.˙t/C

Mi �1X
j D0

aj isj .˙t/:

One can find recursively constants ci D .c1i ; c2i ; : : : ; cMi i /, such that

qi̇ .t/ D sMi
.˙t/C

Mi �1X
j D0

aj isj .˙t/ D sMi
.˙.t C ci //: (50)

Indeed, since, sMi
.tCci / D PMi

j D0 sj .ci /sMi �j .t/;which follows immediately
from (49), one has to solve equations of the form sj .ci / D aMi �j;i and this
can be done recursively since sj .ci / D cj i C pj .c1i ; : : : ; cj �1;i /, where pj is
some polynomial. First, determine c1;i , which is determined by aMi �1;i , then
c2;i , which is determined by aMi �2;i and c1i , then c3i , which is determined by
aMi �3;i , c1i and c2i , etc. In fact there is an explicit formula for these constants.
Since

1C
MiX

j D1

aMi �j;iz
j D

MX
j D0

sj .ci /z
j ;

which is equal to the first Mi C 1 terms of exp.
PMi

j D1 cj iz
j /, the logarithm of

this gives that

MiX
`D1

c`iz
`i C higher order terms D log

�
1C

MiX
kD1

aMi �k;iz
k
�
:

Hence

cki D �
X

m1C2m2C���CkmkDk

m1�0;m2�0;:::;mk�0

kY
j D1

.�aMi �j;i /
mj

mj
:

Since �0 D 1 and �˙n D W˙n�0, we have (see (40) and (50)) that

�˙n.t/ D W.q0̇ .t/; q1̇ .t/; : : : ; qṅ�1.t//

D W.s
M ˙

0

.˙t C c0̇ /; sM ˙
1

.˙t C c1̇ /; : : : ; sM ˙
n�1

.˙t C cṅ�1//;

(51)
whereW. � / stands for the Wronskian determinant of those (adjoint) eigenfunc-
tions, satisfies the KP hierarchy. This shows that every function of the form
(51) is a polynomial tau-function. Moreover, one has the following remarkable
theorem:
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Theorem 16. (a) All polynomial tau-functions of the KP hierarchy are, up to a
constant factor, of the form

��1;�2;:::;�k
.t I c1; c2; : : : ; ck/

D det .s�i Cj �i .t1 C c1i ; t2 C c2i ; t3 C c3i ; : : ://1�i;j �k;
(52)

where � D .�1; �2; : : : ; �k/ is a partition and ci D .c1i ; c2i ; : : :/ 2 C
�i Ck�i

are arbitrary.
(b) All polynomial tau-functions of the MKP hierarchy are the sequences

.: : : ; �n; �nC1; : : :/, where each �n is, up to a constant factor, of the form
(52), and �nC1 is obtained from �n, up to a constant factor, in one of the
following three possible ways:

	 ��;�1;�2;:::;�k
.t I d; c1; c2; : : : ; ck/, with � � �1;

	 ��1�1;�2�1;:::;�i �1;�;�iC1;:::;�k
.t I c1; c2; : : : ; ci ; d; ciC1; : : : ; ck/, for i D

1; 2; : : : ; k, with �i > � � �iC1;
	 ��1�1;�2�1;:::;�k�1.t I c1; c2; : : : ; ck/.

Here d D .d1; d2; : : :/ is a set of constants connected to the part � of the
partition, that appears in �nC1, in the first two cases. In the third case one
has to delete �j � 1’s and the corresponding cj ’s, whenever �j � 1 is equal
to 0.

Proof. (a) First reorder the functions in (51) such that M0 > M1 > M2 >

� � � > Mk�1, which leaves the tau-function unchanged up to a sign. If one writes
out (51), (cf. (40)), where qC

i is an elementary Schur function sMi
, using that

@`sMi

@t`
1

D sMi �`, it is immediate to check that the the Wronskian matrix of (51)

is the transposed of the matrix in:

�k.t/ D det.sMi�1Cj �k.t1 C c1i ; t2 C c2i ; t3 C c3i ; : : ://ij : (53)

Now, �n.t/ is the image under the map � in B of the following element of F .0/

(cf. (50), where we remove the upper index +, to simplify notation):

�
eM0C1�k C

M0X
j D1

aj �1;0ej �k

�
^ � � �

^
�
eMk�1C1�k C

Mk�1X
j D1

aj �1;k�1ej �k

�
^ e�k ^ e�k�1 ^ � � �

D R
�
I C

k�1X
`D0

MX̀
j D1

aj �1;`Ej �k;M`C1�k

�
� .eM0C1�k ^ � � � ^ eMk�1C1�k ^ e�k ^ e�k�1 ^ � � � /:
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Recall that (see [11])

�.eM0C1�k^eM1C1�k^� � �^eMk�1C1�k^e�k^e�k�1^e�k�2^� � � / D s�.t/;

where
s�.t/ D det.s�i Cj �i .t//1�i;j �k

is the Schur polynomial, corresponding to the partition � D .�1; �2; : : : ; �k/,
with �i D Mi�1 C i � k. Thus (53) lies in �R.U /��1 � s�.t/, where R is the
representation of GL1 in F (see Sect. 2), so that �R��1 is the correspond-
ing representation in B , and U is the subgroup of GL1, consisting of upper
triangular matrices with 1’s on the diagonal.

We will next show that the dimension of the space of all polynomials of the
form (53) is �1

2
k.k�1/CPk�1

iD0 Mi , or in terms of the corresponding partition
�, it is j�j D �1 C�2 C � � � C�k . To show this, we first calculate the degrees of
freedom of such a solution. Since it is difficult to determine this in terms of the
degrees of freedom of the constants cij , we calculate this for the constants aj`

which appear in (50), or rather in fi .z/ D z�Mi �1 CPMi �1
j D0 aj iz

�j �1. Note
that, the corresponding tau-function does not change if we use Gauss elimina-
tion, i.e., if we add a multiple of the function fi .z/ to the function fj .z/. With
this we can eliminate with fi .z/ the constant aMi ;j in fj .z/ for all j < i . This
eliminates all dependence in the constants aj` and no more constants can be set
to zero. Hence, the degrees of freedom that remain are �k D Mk�1 for fk�1.z/,
�k�1 D Mk�2 � 1 for fk�1.z/, : : :, �1 D M0 � kC 1 for f0. If we add this all
up, we obtain j�j D �1

2
k.k � 1/CPk�1

iD0 Mi , the desired result.
Now recall that the set of all polynomial tau-functions of the KP hierarchy

is the orbit O0 of C1 2 B under the representation �R��1 of the group GL1.
Let P be the stabilizer of the line C1, let W be the subgroup of permutations
of basis vectors of C1 and let W0 be its subgroup, consisting of permutations,
permuting vectors with non-positive indices between themselves. Then one has
the Bruhat decomposition:

GL1 D
[

w2W=W0

UwP .disjoint union/:

Applying this to C1, we obtain that the projectivised orbit PO0 is a disjoint
union of Schubert cells Cw D Uw � 1, w 2 W=W0. It is well known (see, e.g.
[11]) that each w � 1 is a Schur polynomial s� for some partition � D �.w/, and
the corresponding Schubert cell C� D U � s�.w/ is an affine algebraic variety
isomorphic to C

j�j.
On the other hand, by the previous discussion, we have constructed an in-

jective polynomial map from the space C
j�j to the Schubert cell C�. But, by

Nagata’s lemma, if an affine variety X is embedded in an irreducible affine va-
riety Y of the same dimension, then either X D Y , or the complement Z of X
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in Y is a closed subvariety of Y of codimension 1. Since in our situation Y is
an affine space, there exists a polynomial F on Y , whose set of zeros is Z. But
then the restriction of F to X is a non-constant invertible polynomial function
on X , which in our situation is an affine space as well. This is a contradiction.

(b) By part (a), every �n must be of the form (52). Since we can shift the in-
dex n of �n, we may assume, without loss of generality, that n D k and that
�k.t/ D ��1;�2;:::;�k

.t I c1; c2; : : : ; ck/. Since (51) and (52) give the same tau-
function, we find that

�k.t/ D W.s�1Ck�1.t C c1/; s�2Ck�2.t C c2/; : : : ; s�k
.t C ck//:

Using the relation between MKP tau-functions and the infinite flag manifold, as
used in [11] and [9], see also Remark 14, we have

��1.�k/ D wk ^ wk�1 ^ � � � ^ w1 ^ j0i
and

��1.�kC1/ D wkC1 ^ wk ^ wk�1 ^ � � � ^ w1 ^ j0i;
hence the non-zero polynomial tau-function �kC1.t/ must be the Wronskian
determinant of the same functions, but now with one eigenfunction of L D @

added. Such an eigenfunction is of the form (50), thus

�kC1.t/ D W.sM .tCd/; s�1Ck�1.tCc1/; s�2Ck�2.tCc2/; : : : ; s�k
.tCck//:

Moreover, we may assume that M 6D �i C k � i , otherwise we can use Gauss
elimination to get a smallerM . Now reorderM; �1 Ck�1; �2 Ck�2; : : : ; �k

to a decreasing order. If M > �1 C k � 1, then the Wronskian determinant is
equal to the first possibility, where � D M � k. If �i C k � i > M > �iC1 C
k � i � 1 or �k > M 6D 0, we get the second possibility with � D M C i � k.
And finally, when M D 0, we obtain the last possibility. �

7. Reduction of MKP to n-MKdV

Let n be an integer, n � 2. The n-th Gelfand–Dickey hierarchy, or n-KdV, de-
scribes the group orbit in a projective representation of the loop group of SLn.
This is not a subgroup of Gl1, one has to take a bigger group, containing it, as,
e.g. in [11]. Then the representation R of GL1 extends to a projective repre-
sentation, denoted by OR, of this bigger group. An element of the loop group
of SLn commutes with the operator qn (in the space B), which means that
�kCn.t/ D �k.t/ and hence vkCn.t/ D vk.t/ and P˙

nCk
.t; @/ D P˙

k
.t; @/.

This gives that LkCn D Lk and that

.Ln
k/� D .PC

k
ı @n ı PC�1

k
/� D .PC

nCk
ı @n ı PC�1

k
/� D 0 ;
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which means thatLn
k

is a differential operator. Using the Sato–Wilson equations

(11), we deduce that @P
C
k

@tjn
D 0, for j D 1; 2; : : : , and hence, since Lk D

PC
k

ı @n ı PC�1
k

, that also @Lk

@tjn
D 0. The corresponding tau-function then

satisfies @�k

@tjn
D aj �k for some constants aj , and hence is of the form

�k.t/ D Tk.t/ exp
� 1X

j D1

aj tjn

�
; where

@Tk.t/

@tjn
D 0 for j D 1; 2; : : : : (54)

Differentiating (6) by tjn and using that @P
C
k

@tjn
D 0, we obtain the following.

The first formulation of the n-MKdV:

Res zjnCk�`�k.t � Œz�1�/�`.y C Œz�1�/ exp
� 1X

iD1

.ti � yi /z
i
�
dz D 0; (55)

for all 0 � k; ` � n � 1 and j � 0 , provided that jnC k � ` � 0.

Let � D exp 2�i
n

. One can reformulate (55) to one identity for each pair k and `
as in [8], equation (8):

z�1
nX

aD1

.�az/k�`C1Cın�k.t � Œ.�az/�1�/�`.y C Œ.�az/�1�/ exp
� 1X

iD1

.ti � yi /.�
az/i

�

has no negative powers of z, for 0 � k; ` � n � 1, and ı D 0 if k � ` � 0 and
D 1 if k � ` < 0.

The fact PC
n D PC

0 and that Ln
0 is a differential operator, gives that L0 is

the n-th root of a differential operator [6], [7]

L0 D @n C wn�2.t/@
n�2 C � � � C w1.t/@C w0.t/

D Ln
0 D PC

n .t/ ı @n ı PC
0 .t/

�1

D .@C vn�1.t// ı .@C vn�2.t// ı � � � ı .@C v0.t//P
C
0 .t/P

C
0 .t/

�1

D .@C vn�1.t// ı .@C vn�2.t// ı � � � ı .@C v0.t//:

The explicit form (16) of the vj .t/ expressed in terms of the tau-functions (54),
gives that

v0.t/C v1.t/C � � � C vn�1.t/ D 0; and that
@vk.t/

@tjn
D 0; for all j D 1; 2; : : : :

Note that by (18):

Lj WD Ln
j
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D .@C vj �1.t// ı .@C vj �2.t// ı � � �
ı .@C v0.t// ı .@C vn�1.t// ı .@C vn�2.t// ı � � � ı .@C vj .t//;

which is a Darboux transformation of L0, i.e., a cyclic permutation of the fac-
tors @C vj of L0.

Since nowLi D L
1
n

i is only expressed in the vj , the second set of equations
of (17), which now have the form

@vi

@tj
D .L

j
n

iC1/C ı .@C vi /� .@C vi / ı .L
j
n

i /C; where LnCi D Li ; (56)

imply the first ones, the Lax equations, of (17).
We can reformulate the equations (56) by one compact formula (see e.g.

[17]). Let
L D diag .L0;L1; : : : ;Ln�1/ (57)

and

M D

0
BBBB@

0 � � � � � � 0 @C vn�1.t/

@C v0.t/ 0 0

0 @C v1.t/ 0
:::

:::
: : :

: : :
: : :

:::

0 � � � 0 @C vn�2.t/ 0

1
CCCCA : (58)

Then L D Mn; and the equation (56) is exactly the .i C 2/ mod n-th row of
the equation

@M

@tj
D Œ.L

j
n /C;M �; j D 1; 2; : : : : (59)

Hence we obtain:

The second formulation of the n-MKdV: Let Un D CŒv
.m/
i j i D 0; 1; 2; : : : ;

n � 1; m 2 Z�0�=.v0 C v1 C � � � C vn�1/ be the quotient of the algebra of
differential polynomials in vj by the differential ideal, generated by v0 C v1 C
� � � C vn�1. Then the n-MKdV hierarchy is the system of evolution equations
(59) in Un, where L and M are given by (57) and (58).

Example. For n D 2, we get the modified KdV equation in v D v0 D �v1.
Indeed:

L0 D @2 C u0 D .@ � v/ ı .@C v/ D @2 C @v

@t1
� v2;

L1 D @2 C u1 D .@C v/ ı .@ � v/ D @2 � @v

@t1
� v2;
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and
@v

@tj
D .L

j
2

1 /C ı .@C v/ � .@C v/ ı .L
j
2

0 /C; j D 1; 3; 5; : : : :

For j D 3 this gives the classical modified KdV equation:

@v

@t3
D �3

2
v2 @v

@t1
C @3v

@t31
:

8. Polynomial solutions of n-KdV and n-MKdV

We can use the ideas of Sect. 6 to obtain polynomial tau-functions of n-MKdV.
We will first construct a polynomial tau-function for the n-KdV hierarchy. Let
	 be a permutation of 1; 2; : : : ; n, such that 	.i/ D ji , and choose n formal
power series

fi .z/ D zji �1 C
1X

kDji

akiz
k; i D 1; 2; : : : ; n:

Choose non-negative integers m1; m2; : : : ; mn, such that at least one mi D 0

and one mi non-zero (all mi D 0 would lead to the trivial solution �0 D 1). We
construct L0 D @ eigenfunctions from these data. For ` D 1; 2; : : : ; mi , define

q`;i .t/ D Resz�`nfi .z/e
t �z dz D s`n�ji

.t/C
X
k�ji

akis`n�k�1.t/

D s`n�ji
.t C ci /;

(60)

for certain constants ci D .c1i ; c2i ; : : :/. Then �0.t/ is the Wronskian determi-
nant of all functions

s`n�ji
.t C ci /; for 1 � i � n; 1 � ` � mi and `n � ji � 0 :

This determinant clearly becomes zero after differentiating by tpn since differ-
entiating the function s`n�ji

.t C ci / by tpn gives s.`�p/n�ji
.t C ci /, which is

either zero if .` � p/n � ji < 0 or it already appears as an eigenfunction in the
Wronskian determinant. Hence �0.t/ is an n-KdV tau-function.

We obtain �1 by adding the eigenfunction s.m1C1/n�j1
.t C c1/ to the

Wronskian determinant. We obtain �2 by adding this function and also
s.m2C1/n�j2

.tCc2/. For �3 we add besides these two also s.m3C1/n�j3
.tCc3/,

etc. For �n we add the functions

s.m1C1/n�j1
.t C c1/; s.m2C1/n�j2

.t C c2/; : : : ; s.mnC1/n�jn
.t C cn/:

This however gives no new tau-function: it is straightforward to check, but rather
tedious, that �n is a scalar multiple of �0. In fact the theorem, that we shall prove
later on in this section, then implies that this construction gives all possible
polynomial tau-functions for n-MKdV.
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Example 17. Let us inspect the case n D 2. In this case either m1 D 0 or
m2 D 0 and 	 is the identity or the transposition .12/. This gives two possible
solutions, viz

�0.t/ D sk;k�1;:::;2;1.t C c/ and �1.t/ D skC1;k;k�1;:::;2;1.t C c/;

or
�0.t/ D sk;k�1;:::;2;1.t C c/ and �1.t/ D sk�1;k�2;:::;2;1.t C c/;

where c D .c1; c2; : : :/, which are all polynomial tau-functions of the KdV and
the modified KdV hierarchies. This is a result of [11], Theorem 9.1 (b). Note
that these tau-functions are independent of the even times t2k .

For general n to describe all tau-functions that satisfy the n-MKdV hierar-
chy in terms of a formula like (52) is rather complicated. Not only are there
special partitions � connected to the case of n-KdV. But also instead of arbi-
trary constants ci D .c1i ; c2i ; : : :/ connected to part �i of the partition �, there
are certain restrictions. This time there are series of constants that depend on
the shifted parts �i � i C 1, but then calculated modulo n. Hence, there are n of
such series ci D .c1i ; c2i ; : : : / of which at most n�1 appear in the tau-function.
Here and thereafter Ns stands for remainder of the division of s by n.

We claim that the Wronskian determinant

W.s�1Ck�1.t C c
�1
/; s�2Ck�2.t C c

�2�1
/; : : : ; s�k

.t C c
�k�kC1

//; (61)

is a polynomial tau-function of the n-KdV if and only if the set of shifted parts

V� D f�1; �2 � 1; �3 � 2; : : : ; �k � k C 1;�k;�k � 1;�k � 2; : : :g
satisfies the condition that

if j 2 V�; then also j � n 2 V�:

This condition reflects the condition that if the eigenfunction q`;i .t/, defined
in (60) appears in the Wronskian determinant, then also q`�n;i .t/, if it is non-
zero, must appear in this determinant as well. Or stated differently, if
s�i Ck�i .t C c

�i �iC1
/ appears in the Wronskian determinant of (61), then ei-

ther
@s�i Ck�i .tCc

�i �iC1
/

@tn
D 0 or s�i Ck�i�n.t C c

�i �iC1
/ also appears in this

determinant as well. This leads us to the following notion.

Definition 18. A partition � is called n-periodic if the corresponding infinite
sequence V� is mapped to itself when subtracting n from each term.

Theorem 19. All polynomial tau-functions of the n-KdV hierarchy are, up to a
constant factor, of the form

�n
�1;�2;:::;�k

.t I c
�1
; c

�2�1
; : : : ; c

�k�kC1
/

D det.s�i Cj �i .t1 C c
1;�i �iC1

; t2 C c
2;�i �iC1

; : : ://1�i;j �k;
(62)
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where � D .�1; �2; : : : ; �k/ is an n-periodic partition. Here the ci D .c1i ; c2i ; : : : /

for i D 1; 2; : : : ; n (where at most n � 1 of such i ’s appear) are arbitrary
constants.

Before we give the proof, let us make calculations in an explicit example. Let
n D 4 and � D .6; 3; 2; 1/. Then

V� D f6; 2; 0;�2;�4;�5;�6; : : :g;
hence � is 4-periodic, and the corresponding tau-function is

�4
.6;3;2;1/.t I c2; c2; c4; c2/ DW.s9.t C c2/; s5.t C c2/; s3.t C c2/; s1.t C c2//

D

ˇ̌̌
ˇ̌̌
ˇ
s6.t C c2/ s7.t C c2/ s8.t C c2/ s9.t C c2/

s2.t C c2/ s3.t C c2/ s4.t C c2/ s5.t C c2/

s0.t C c4/ s1.t C c4/ s2.t C c4/ s3.t C c4/

0 0 s0.t C c2/ s1.t C c2/

ˇ̌̌
ˇ̌̌
ˇ ;
(63)

which depends on two series of constants, viz. c6 D c2 and c0 D c4. The 6 and
0 are the elements of the following set

U
.4/

�
D f6; 2; 0;�2gnf2;�2;�4;�6g D f6; 0g;

which are all the elements j of V� where one removes all elements j � 4.
Now

s9.t C c2/ D s9.t/C
8X

j D0

a9�j;2sj .t/ and f6.z/ D z�10 C
8X

j D0

a9�j;2z
�j �1;

s5.t C c2/ D s5.t/C
4X

j D0

a5�j;2sj .t/; f2.z/ D z�6 C
4X

j D0

a5�j;2z
�j �1;

s3.t C c4/ D s3.t/C
2X

j D0

a3�j;4sj .t/; f0.z/ D z�4 C
2X

j D0

a3�j;4z
�j �1;

s1.t C c2/ D s1.t/C a1;2s0.t/; f�2.z/ D z�2 C a1;2z
�1;

where ak;j D sk.cj /. And as in the proof of Theorem 16 we can eliminate
the coefficients of z�2, in f0.z/, f2.z/ and f6.z/, and the coefficient of z�4

in f2.z/ and f6.z/ and the coefficient of z�6 in f6.z/, leaving a freedom of
9 � 3 D 6 D �1 in f6.z/ and similarly a freedom of 3 � 1 D 2 D �3 in f0.z/.
Hence the dimension of the space of polynomials (63) is

8 D 6C 2 D �1 C �3 D
X

�i 2ƒ.4/.�/

�i ;
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where
ƒ.4/.6; 3; 2; 1/ D f�1; �3g D f6; 2g:

Let us next investigate the element s.6;3;2;1/.t/ the corresponding element under
��1 is

��1.s.6;3;2;1/.t//

D e6 ^ e2 ^ e0 ^ e�2 ^ e�4 ^ e�5 ^ � � �
D t�1u2 ^ u2 ^ tu4 ^ tu2 ^ t2u4 ^ t2u3 ^ t2u2 ^ t2u1 ^ t3u4 ^ � � � :

Here we make the identification t�kuj D e4kCj and tkeij DP
s2ZE4.s�k/Ci;4sCj

as in [11], equation (9.1)–(9.2). And this is up to some infinite reordering “equal
to”

OR.t1e11 C t�2e22 C t1e33 C e44/.t u4 ^ t u3 ^ t u2 ^ t u1 ^ t2u4 ^ � � � /
D OR.t1e11 C t�2e22 C t1e33 C e44/j0i:

We now reconstruct our � from the element t1e11 C t�2e22 C t1e33 C e44. For
this we invert the process above. We first calculate the corresponding infinite
wedge product and need to find the place of e6 D t�1u2 D t�2e22tu2 and
e0 D tu4 D e44tu4 in this product. It is the place 0 and the place �2, which
gives the elements �1 D 6 � 0 and �3 D 0 � .�2/ D 2 of � .

We now want to use some of the above features of the example in the fol-
lowing proof:

Proof of Theorem 19. First observe that (61) is equal to (62).
As in the proof of Theorem 16, we can calculate the degrees of freedom of

the constants in a similar way. Let � D .�1; : : : ; �k/ be a partition. As before,

s�i Ck�i .t C c
�i �iC1

/ D s�i Ck�i .t/C
�i Ck�i�1X

j D0

a
�i Ck�i�j;�i �iC1

sj .t/

D Resf�i �iC1.z/e
t �z dz;

for a
j;�i �iC1

D sj .c�i �iC1
/, and

f�i �iC1.z/ D z�.�i �iC1/�k C
�i Ck�i�1X

j D0

a
j;�i �iC1

z�.�i Ck�i/Cj �1:

Note that f�i �iC1�n.z/ also appears as some znf�j �j C1.z/, for some j > i

and it has the form

f�i �iC1�n.z/

D .znf�i �iC1.z//�
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D z�.�i �iC1/�k�n C
�i Ck�i�1�nX

j D0

a
j;�i �iC1

z�.�i Ck�i/Cj Cn�1 :

Hence, proceeding in a similar way as in the proof of Theorem 16, we can
use f�i �iC1.z/ to eliminate the constant a

�`��i Ci�`�1;�`�`C1
, in front of

z�.�i �iC1/�k in f�`�`C1.z/ for all ` < i . Note that we cannot eliminate more
constants. Hence we have �k degrees of freedom for f�k�kC1.z/, �k�1 for
f�k�1�kC2.z/, �k�2 for f�k�2�kC3.z/; : : : ; �1 for f�1

.z/. This is similar to
the KP case, except that some of the f�i �iC1.z/ are related, as described above.
Hence we have to find those f�i �iC1.z/ with the highest possible index that are
not related to the one with a higher index. These are all the fj .z/’s, with j from
the following set:

U
.n/

�
D f�1; �2 �1; : : : ; �k �kC1gnf�1 �n; �2 �nC1; : : : ; �k �n�kC1g:

If j 2 U�, then j D �i � i C 1 for some i and fj .z/ D f�i �iC1.z/ has �i

degrees of freedom. Hence, defining

ƒ.n/.�/ D f�i j �i � i C 1 2 U .n/

�
g;

the freedom of choosing constants (or the dimension of this subspace of poly-
nomials) is equal to X

�i 2ƒ.n/.�/

�i :

As before, the tau-function (62) is the image under � in B of the following
element of F .0/:

�
e�1

C
�1Ck�1X

j D1

a
j �1;�1

e�1�j

�
^
�
e�2�1 C

�2Ck�2X
j D1

a
j �1;�2�1

e�2�1�j

�
^ � � �

^
�
e�k�kC1 C

�kX
j D1

a
j �1;�k�kC1

e�k�kC1�j

�
^ e�k ^ e�k�1 ^ � � � ;

(64)
which is equal to

R
�
I C

kX
iD1

�i Ck�iX
j D1

a
j �1;�i �iC1

E�i �iC1�j;�i �iC1

�

� .e�1
^ e�2�1 ^ � � � ^ e�k�kC1 ^ e�k ^ e�k�1 ^ � � � /;

where

�.e�1
^ e�2�1 ^ � � � ^ e�k�kC1 ^ e�k ^ e�k�1 ^ � � � / D s�.t/:
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We can rewrite (64) as follows:

R
�
I C

X
p2U

.n/

�

X
0�s< kCp

n

pCk�sn�1X
j D1

aj �1;pEp�j �sn;p�sn

�

� .e�1
^ e�2�1 ^ � � � ^ e�k�kC1 ^ e�k ^ e�k�1 ^ � � � /:

Note that replacing the upper bound p C k � sn � 1 of j by p C k � 1 does
not change the element. We can also drop the lower bound of s because this will
give a matrix element that acts as zero on every vector of the wedge product
��1.s�.t//. We can also drop the upper bound of s. Indeed, if we do that, the
new element transforms the element e` for ` � �k into an element of the form
v` D e` C P

�1�i<` biei . We can then use the vj for j < ` to eliminate all
the coefficients of bi (we have to do this procedure infinitely many times). In
this way we get that (64) is equal to

OR
�
I C

X
p2U

.n/

�

pCk�1X
j D1

aj �1;p

X
s2Z

Ep�j Csn;pCsn

�

� .e�1
^ e�2�1 ^ � � � ^ e�k�kC1 ^ e�k ^ e�k�1 ^ � � � /:

Now we relate the above element of the completed GL1 to an element of
the loop group SLn.CŒt; t

�1�/ by making the identification t�kuj D eknCj and
tkeij D P

s2ZE.s�k/nCi;snCj as in [11], equation (9.1)–(9.2). Let

U D fA.t/ 2 SLn.CŒt �/ j A.0/ is upper triangular with 1’s on the diagonalg:
Then, under the above identification we have

I C
X

p2U
.n/

�

pCk�1X
j D1

aj �1;p

X
s2Z

Ep�j Csn;pCsn 2 U:

Let T D fPn
iD1 t

ki ei i j ki 2 Z;
Pn

iD1 ki D 0g � SLn.CŒt; t
�1/g.

Fix w D Pn
iD1 t

ki ei i 2 T . We want to find the partition that corresponds
to OR.w/j0i, i.e., to find � such that �. OR.w/j0i/ D s�.t/. In fact, if � D
.�1; �2; : : :/, we want to find its parts �i that are in ƒ.n/.�/. We will denote
these elements by O�1; O�2; : : : ; O�p. Now, OR.w/j0i is a semi-infinite wedge prod-
uct of the elements tki Cjui D e�.ki Cj /nCi , for j > 0 and all 1 � i � n.
We have to order these e` in a decreasing order in this wedge product, from
which we then can determine the corresponding partition �. For this, first re-
order the elements ki to the decreasing order without interchanging ki ’s, if they
are the same. Then p is the same as the number of ki ’s which are smaller than
the maximum of this set. Let 	 be the permutation that assigns to i the number
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j if kj is in the i -th place in the decreasing order. The corresponding ƒ.n/.�/

has p elements O�i , which we put in decreasing order: O�1 � O�2 � � � � � O�p.
The part �1, which is always an element of ƒn.�/, corresponds to the place of
tk�.n/C1u�.n/ D e�k�.n/nC�.n/�n in the semi-infinite wedge product, which is
always on the 0-th place. Hence

O�1 D �1 D �k�.n/nC 	.n/ � n
and �2 D �k�.n/nC 	.n/ � 2nC 1, since it corresponds to tk�.n/C2u�.n/ D
e�k�.n/nC�.n/�2n, then �3 D �k�.n/n C 	.n/ � 3n C 2 and we continue
as long as k�.n/ C 1, k�.n/ C 2; : : : is smaller than k�.n�1/. To determine
O�2 of ƒ.n/.�/, is already a bit more complicated. One has to consider two
cases. It is �k�.n�1/�k�.n/C2, if k�.n�1/ D k�.n/ or if k�.n�1/ > k�.n/ and
	.n � 1/ < 	.n/. Then the element tk�.n�1/C1u�.n�1/, which is equal to
e�k�.n�1/nC�.n�1/�n is in the (�k�.n�1/ C k�.n/ � 1)-th place in the semi-
infinite wedge product. Hence O�2 D �k�.n�1/.n � 1/ � k�.n/ C 	.n � 1/ �
.n � 1/. However, if k�.n�1/ > k�.n/ and 	.n � 1/ > 	.n/, then O�2 D
�k�.n�1/�k�.n/C1 and this corresponds to the same element e�k�.n�1/nC�.n�1/�n,
hence O�2 D �k�.n�1/.n� 1/� k�.n/ C 	.n � 1/� .n� 1/� 1. The extra �1
at the end comes from the inversion of 	 between the elements n � 1 and n,
viz. in this case 	.n � 1/ > 	.n/. The number of inversions will turn out to be
important, so let us introduce some notation. Let

Jj D jfi > j j 	.i/ < 	.j /gj;
then

O�2 D �k�.n�1/.n � 1/ � k�.n/ C 	.n � 1/ � .n � 1/ � Jn�1:

For the next one we have O�3 D �2k�.n�2/�k�.n�1/�k�.n/
C 2 � Jn�2 and the

corresponding element is tk�.n�2/C1u�.n�2/ D e�k�.n�2/nC�.n�2/�n, which
gives

O�3 D �k�.n�2/.n � 2/ � k�.n�1/ � k�.n/ C 	.n � 2/ � .n � 2/ � Jn�2:

Continuing in this way we find

O�j D � k�.n�j C1/.n � j C 1/ � k�.n�j C2/ � � � � � k�.n�1/ � k�.n/

C 	.n � j C 1/ � .n � j C i/ � Jn�j C1;
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where the last one is O�p. The dimension of this space is O�1 C O�2 C � � � C O�p,
which is equal to

nX
j Dn�pC1

.n � p � 2j C 1/k�.j / C 	.j / � j � Jj : (65)

Since
P

i ki D 0, we can add a multiple of this sum, thus equation (65) is equal
to

p

n�pX
iD1

k�.i/ C
nX

j Dn�pC1

.n � 2j C 1/k�.j / C 	.j / � j � Jj : (66)

Now, k�.1/ D k�.2/ D � � � D k�.n�p/, hence

p

n�pX
iD1

k�.i/ D p.n � p/k�.1/ D
n�pX
iD1

.n � 2i C 1/k�.i/:

Thus (66) is equal to

nX
iD1

.n � 2i C 1/k�.i/ �
nX

j Dn�pC1

j � 	.j /C Jj : (67)

Note that 	.1/ < 	.2/ < � � � < 	.n� p/ and j � 	.j /C Jj are the number of
inversions between j and all elements i with i < j , thus

nX
j Dn�pC1

j � 	.j /C Jj D number of inversions of 	;

hence, the dimension of the space which corresponds to w is

X
�i 2ƒ.n/.�/

�i D
nX

iD1

.n � 2i C 1/k�.i/ � .number of inversions of 	/: (68)

We now have to prove that this is indeed the right dimension to obtain all
possible polynomial tau-functions. Recall that the set of all polynomial tau-
functions of the n-KdV hierarchy is the orbit On

0 of C1 2 B under the projective
representation OR of the group SLn.CŒt; t

�1�/. Let P D SLn.CŒt �/. Then one has
the Bruhat decomposition:

SLn.CŒt; t
�1�/ D

[
w2T

UwP .disjoint union/:

Applying this to C1, we obtain that the projectivization of the orbit On
0 is a dis-

joint union of Schubert cells Cw D Uw � 1, for all possible w D diag.tk1 ; : : : ; tkn/
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2 T . Now, UwP D ww�1UwP , hence elements of U that w conjugates to
elements in P get absorbed in P , and the elements tceij 2 U that get mapped
under conjugation by w to elements tdeij with d < 0 give the cell. Hence we
have to count the possible values of c such that c�ki Ckj < 0. This is straight-
forward, for i < j it is jki � kj j if ki > kj and 0 otherwise. For j < i we find
jki � kj j � 1 if ki > kj and 0 otherwise. Hence, we obtain as dimension the
sum of all values jki � kj j for 1 � i < j � n, where we have to subtract 1 if
ki > kj . We find that the dimension of this Schubert cell is

X
1�i<j �n

�
jki � kj j �

�
1 if ki > kj ;

0; otherwise.

�

Now ordering the ki ’s in decreasing order (where 	 is the permutation as be-
fore), we can remove the absolute value and obtain that the dimension is equal
to X

1�i<j �n

�
k�.i/ � k�.j / �

�
1 if 	.i/ > 	.j /;
0; otherwise.

�

In this sum k�.i/ appears n � 1 times, with n � i plus signs and i � 1 minus
signs, hence we obtain that the dimension of the Schubert cell Cw is equal to

nX
iD1

.n � 2i C 1/k�.i/ � .number of inversions of 	/ D
X

�i 2ƒ.n/.�/

�i ;

which is the dimension of the space of polynomials of the form (62). The same
algebro-geometric argument as in the KP case completes the proof of the theo-
rem. �

Example 20. For n D 3 we have the following possible polynomial tau-functions
of the 3-KdV hierarchy. Let k; ` D 0; 1; 2; : : :, then we find two series (see (62)):

�3
kC2`;kC2`�2;:::;`C2;`;`;`�1;`�1;:::;1;1.t I c; c; : : : ; c; c; c; c; c; : : : ; c; c/

and

�3
kC2`C1;kC2`�1;:::;`C3;`C1;`;`;`�1;`�1;:::;1;1

.t I c; c; : : : ; c; c; c; c; c; c; : : : ; c; c/:
We have at most two series of constants that appear, viz. c D .c1; c2; c3; : : :/

and c D .c1; c2; c3; : : :/, and c is coupled to the parts of the partition which are
not underlined and c to all underlined parts of the partition. In both cases the
tau-functions are independent of all times t3k .
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