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Abstract

Fires and herbivores shape tropical vegetation structure, but their effects on the sta-

bility of tree cover in different climates remain elusive. Here, we integrate empirical

and theoretical approaches to determine the effects of climate on fire‐ and herbi-

vore‐driven forest‐savanna shifts. We analyzed time series of remotely sensed tree

cover and fire observations with estimates of herbivore pressure across the tropics

to quantify the fire–tree cover and herbivore–tree cover feedbacks along climatic

gradients. From these empirical results, we developed a spatially explicit, stochastic

fire‐vegetation model that accounts for herbivore pressure. We find emergent alter-

native stable states in tree cover with hysteresis across rainfall conditions. Whereas

the herbivore–tree cover feedback can maintain low tree cover below 1,100 mm

mean annual rainfall, the fire–tree cover feedback can maintain low tree cover at

higher rainfall levels. Interestingly, the rainfall range where fire‐driven alternative

vegetation states can be found depends strongly on rainfall variability. Both higher

seasonal and interannual variability in rainfall increase fire frequency, but only sea-

sonality expands the distribution of fire‐maintained savannas into wetter climates.

The strength of the fire–tree cover feedback depends on the spatial configuration of

tree cover: Landscapes with clustered low tree‐cover areas are more susceptible to

cross a tipping point of fire‐driven forest loss than landscapes with scattered defor-

ested patches. Our study shows how feedbacks involving fire, herbivores, and the

spatial structure of tree cover explain the resilience of tree cover across climates.
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1 | INTRODUCTION

Large‐scale analyses of the frequency distributions of tropical tree

cover indicate that forests and savannas can be alternative stable

states (Hirota, Holmgren, van Nes, & Scheffer, 2011; Staver, Archi-

bald, & Levin, 2011; Xu et al., 2016). Moreover, they show that

savannas become more common with decreasing average rainfall
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(Hirota et al., 2011; Staver et al., 2011), increasing seasonality (Staal,

Dekker, Xu, & van Nes, 2016), and increasing interannual variability

of rainfall (Holmgren, Hirota, van Nes, & Scheffer, 2013). The key to

identify alternative stable states is to understand the positive feed-

backs that may generate them. If positive feedbacks are sufficiently

strong, they can maintain alternative stable states. This implies hys-

teresis: For different initial conditions, the system may end up in dif-

ferent end states under the same environmental conditions.

Alternative stable states are usually separated by tipping points

(sensu Van Nes et al., 2016). Away from tipping points, relatively

large environmental changes may have small effects, but close to tip-

ping points, even small changes in an environmental factor can pro-

duce a shift that is hard to reverse (Scheffer, Carpenter, Foley,

Folke, & Walker, 2001).

Several recent theoretical (e.g., Lasslop, Brovkin, Reick, Bathiany,

& Kloster, 2016; Schertzer, Staver, & Levin, 2015; Staver & Levin,

2012; Van Nes, Hirota, Holmgren, & Scheffer, 2014) and empirical

advances (e.g., D'Onofrio, von Hardenberg, & Baudena, 2018; Dan-

tas, Hirota, Oliveira, & Pausas, 2016; Flores et al., 2017; Hoffmann

et al., 2012; Murphy & Bowman, 2012; Staver et al., 2011; Van Nes

et al., 2018) support the hypothesis that fire‐vegetation feedbacks

provide one of the dominant mechanisms explaining the main pat-

terns of tree‐cover distributions across the tropics. The continuous

grass layers that characterize tropical savannas fuel fires which, in

turn, enhance landscape openness and grass growth by killing trees

or removing their aboveground biomass; on the other hand, closed

forest canopies suppress fires, thereby contributing to maintain a

tree‐dominated closed landscape (Murphy & Bowman, 2012; Van

Nes et al., 2018).

Not only fire, but also herbivory, is an important factor that

affects tree cover, especially in arid savannas (Archibald & Hempson,

2016; Sankaran et al., 2005). Different functional groups of herbi-

vores have different effects on tree cover. Grazers feed on grass,

whereas browsers, as well as mixed feeders (consuming both grasses

and woody plants), may feed on young tree seedlings and saplings

limiting tree cover (Sankaran, Ratnam, & Hanan, 2008). This brows-

ing effect of herbivores introduces a feedback with tree cover analo-

gous to the one with fire: By suppressing tree growth in its juvenile

stages, herbivores may maintain a low‐tree‐cover landscape that sup-

ports more herbivores than a closed canopy landscape (Dantas et al.,

2016; Staver & Bond, 2014). The dominant form of herbivory in the

tropics is livestock herbivory (Hempson, Archibald, & Bond, 2015;

Oesterheld, Sala, & McNaughton, 1992), which includes browsers

and mixed feeders (Robinson et al., 2014). Even in Africa, where

many natural herbivores are still present, livestock are the most

widespread and abundant herbivores (Hempson et al., 2015).

Predicting how feedbacks may change the stability of tropical

forests and savannas in a future with stronger and more frequent cli-

matic extremes (Bathiany, Dakos, Scheffer, & Lenton, 2018; Huang,

Xie, Hu, Huang, & Huang, 2013) is an urgent challenge. To better

understand the emergent effects of feedbacks between fire, herbi-

vores, and tree cover, we need a modeling framework that can well

integrate spatial dynamics (DeAngelis & Yurek, 2017) across rainfall

gradients. Small‐scale theoretical models, including spatially explicit

ones (e.g., Schertzer et al., 2015), have been used to study complex

fire dynamics, but they lack a large‐scale quantification of the com-

plete feedback loop. Meanwhile, large‐scale observation‐based mod-

els, such as global fire‐vegetation models (Hantson et al., 2016), do

not account for the small‐scale dynamics that generate observed

fire‐ and tree‐cover patterns (Pausas & Dantas, 2017). To bridge this

gap, we present a spatially explicit fire model that is parameterized

on time series of remotely sensed tree‐cover and fire observations

from across the tropics. We quantify from these observations the

fire–tree cover feedback loop and determine the effects of rainfall

variability on fire frequencies. Similarly, we quantify the herbivore–
tree cover feedback loop through estimated livestock densities

across the rainfall gradient.

We test whether and how our parameterized model predicts tip-

ping points in tropical tree cover. More specifically, given the poorly

understood effects of intensifications of rainfall variability due to cli-

mate change (Boisier, Ciais, Ducharne, & Guimberteau, 2015; Huang

et al., 2013) and land‐use changes (Staal et al., 2018) on fire dynamics,

we use the model to investigate how increasing rainfall variability may

affect the stability and resilience of tree cover in tropical ecosystems.

2 | MATERIALS AND METHODS

In our description of the model structure and design, we follow the

Overview, Design concepts, and Details (ODD) protocol by Grimm et

al. (2006). According to this protocol, the model description is sepa-

rated into seven parts: “Purpose”, “State variables and scales”, “Pro-
cess overview and schedule”, “Design concepts”, “Initializations and

perturbations”, “Input data”, and “Submodels”.

2.1 | Purpose

The purpose of the model is to study how feedbacks between tree

cover and fire, and between tree cover and herbivory, affect the sta-

bility of tree cover across climatic gradients in tropical and subtropi-

cal South America, Africa, Australia, and Asia, between 15°N and

35°S. To meet that purpose, the model is spatially explicit and

empirically parameterized using remotely sensed data.

2.2 | State variables and scales

The state variable of the model is tree cover T (%). The model is spa-

tially explicit, implemented on a square lattice of 100 × 100 cells

with periodic boundaries (i.e., the lattice boundaries are connected).

In each cell, tree‐cover dynamics are described by a difference equa-

tion. The spatial resolution is the same as that of the remotely

sensed tree‐cover data (250 × 250 m), so the lattice represents a

landscape of 25 × 25 km. Each cell in the lattice contains informa-

tion about tree cover in a given time step of 1 year and whether or

not the cell is burning. Within each time step, a new fire can ignite

in any cell and subsequently spread to any of a burning cell's eight

neighboring cells according to empirically obtained fire probabilities
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(see “Fire probabilities” and “Fire ignition and spread” under “Sub-
models”). Fire spreads within a time step, because fire spread is

assumed to take place on a much faster time scale than growth

(Pueyo, 2007).

2.3 | Process overview and schedule

The model includes an empirical growth term and a fire‐induced loss

term of tree cover. The growth term, G(MAR, T, H), is a function of

mean annual rainfall (MAR), tree cover (T), and herbivore density (H).

The fire‐induced loss term, F(T, R, V), is an empirical function of tree

cover, rainfall in a given year (R), and rainfall variability (V). This gives

the following structure of the model for tree cover in column ele-

ments i and row elements j:

Ti;j tþ 1ð Þ ¼ Ti;j tð Þ þ Gi;j MAR; T;Hð Þ tð Þ � Fi;j T;R;Vð Þ tð Þ (1)

where rainfall variability V is separated into seasonality S and inter-

annual variability I.

2.4 | Design concepts

We focus on modeling feedbacks of tree cover with fire and her-

bivory. Any alternative stable states in tree cover are an emergent

property of the model. The fire component of the model is stochas-

tic in discrete events, whereas the herbivory component is determin-

istic and constant. This reflects the fundamental difference in the

way those two processes exert pressure on tree cover (Archibald &

Hempson, 2016).

2.5 | Initializations and perturbations

Two ways of initializing the model were performed: (a) To validate

the model, we repeated the following analysis 10,000 times: We

selected one random location (250 × 250 m) in the tropics and used

the observed tree cover, mean annual rainfall, and rainfall seasonality

in that location (see “Input data” for details of the data) as initial

conditions homogeneously in the whole lattice and simulated

1,000 years. We used linear regression to evaluate the correspon-

dence between observed tree cover and the model‐predicted stabi-

lized tree cover. (b) To systematically test under which climates the

model generates alternative stable states in tree cover, we set either

homogeneous high tree cover (80%; “forest”) or homogeneous low

tree cover (10%; “savanna”) as initial conditions. Climates that were

considered were all mean annual rainfall levels between 0 and

2,000 mm/year in intervals of 10 mm/year, in each case for all com-

binations of 0–3 standard deviations in rainfall seasonality and 0–3
standard deviations in interannual rainfall variability from the average

(see “Input data”).
We tested the resilience of the tree‐cover states by initializing

the lattice as high tree cover (low tree cover) and by subsequently

setting an increasingly large proportion of cells (up to the entire lat-

tice) to low tree cover (high tree cover). We simulated 1,000 years

and recorded the resulting average tree cover. Two types of spatial

perturbation were tested: clustered perturbations and random per-

turbations. For the clustered perturbations, we imposed the pertur-

bation as a square area of cells; for the random perturbations, the

location of each perturbed cell was randomly assigned across the lat-

tice. We present results for mean annual rainfall levels of [1,300,

1,400, … 1,700] mm/year under average rainfall variability and for

1,700 mm/year for up to three standard deviations of rainfall season-

ality above the average.

We also explored how burned area depends on tree cover and

rainfall conditions, for which we systematically experimented

through a number of runs, each time with constant tree cover [5%,

15%, … 85%], rainfall [100, 200, … 2,000], and seasonality (0–3
standard deviations from the average). In each run, we recorded all

fires and their sizes and determined burned area. Here, we per-

formed runs of 5,000 years instead of 1,000 years to allow for a

more representative picture under conditions where fires are rare.

2.6 | Input data

We used climatic and satellite data to parameterize the model and

to initialize the simulation runs. Tree‐cover data were extracted from

the MODIS VCF Collection 5 dataset for the years 2001–2010
(DiMiceli et al., 2011) at 250‐m resolution. Monthly rainfall data

were downloaded from the Climate Research Unit's (CRU) monthly

dataset at 0.5° resolution (Mitchell & Jones, 2005). We used the per-

iod 1961–2001 (Hirota et al., 2011) to obtain mean annual rainfall

(MAR in mm/year), rainfall seasonality, and interannual rainfall vari-

ability. As measure of seasonality, we used Markham's Seasonality

Index (MSI; Markham, 1970), which ranges from 0% to 100%. The

index quantifies how evenly rainfall is distributed across the months

in the year and thus captures both the severity and duration of dry

(wet) periods in wet (dry) regions. As measure of interannual variabil-

ity, we used the percentage of severely dry or wet years; a severely

dry year is defined as <−1.5σ and a severely wet year as ≥1.5σ from

the mean annual rainfall (Holmgren et al., 2013). We obtained fire

frequencies from the standard MODIS burned area product MCD45

Collection 5 (Roy, Boschetti, Justice, & Ju, 2008) for the years

2002–2010 which records for each cell on 500‐m resolution whether

it had burned in a given year. We took estimated densities of live-

stock as measured in tropical livestock units (TLU/km2) from the

Gridded Livestock of the World dataset (Robinson et al., 2014). We

excluded all croplands, artificial surfaces, water, and bare ground, as

defined as categories [11–30, 190–230] in the ESA 2009 Globcover

dataset at 300‐m resolution. We resampled all datasets to 250 m

and took a regularly spaced sample with a distance of 0.1°

(c. 10 km), which resulted in a dataset of c. 270,000 locations.

2.7 | Submodels

2.7.1 | Fire probabilities

In this submodel, we aimed to realistically capture the response of

fire to changes in tree cover and rainfall conditions. Whether a
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tropical location burns in a given year depends on the presence of

an initial ignition source—whether natural or anthropogenic—and

the flammability of the respective location. We assumed that the

presence of an initial ignition source is independent of tree cover

and rainfall. However, whether an ignition causes a cell to burn and

whether this fire spreads to neighboring cells does depend on tree

cover and rainfall. Together, fire ignition rate and the probabilities of

its spread generate emergent fire frequencies that can be calibrated

on remotely sensed fire data. Because the model is designed such

that a cell can burn only once each year, to parameterize it we took

the empirical probabilities of a location burning per year. We orga-

nized the empirical fire probabilities in bins of tree cover (bin width

2%) and annual rainfall (bin width 100 mm/year). The fire probability‐
tree cover relation probF (T) (per year) follows a double Hill function

(Van Nes et al., 2018):

probF Tð Þ ¼ p1
Tp3

Tp3 þ p2p3
p4p5

p4p5 þ Tp5
(2)

The fire probability‐rainfall relation is hump‐shaped (Dantas et al.,

2016). We fitted a scaled logistic regression and Gaussian function

to the fire‐rainfall relation probF (R) and found that the Gaussian was

the most parsimonious one (as determined by the lowest value for

the Akaike information criterion):

probF Rð Þ ¼ exp� R�p6ð Þ2= 2p27ð Þ (3)

We combined the effects of tree cover (T; %) and annual rainfall

(R; mm/year) into one equation for fire probability probF (T, R) (per

year):

probF T;Rð Þ ¼ p1
Tp3

Tp3 þ p2p3
p4p5

p4p5 þ Tp5
exp� R�p6ð Þ2= 2p27ð Þ (4)

We also explored how the empirical parameters in Equation 4

depend on rainfall variability V; we separately assessed the

effects of seasonality S and interannual rainfall variability I in this

equation.

We determined which parameter in Equation 4 is most sensitive

to an increase in seasonality S in the following way. First, we estab-

lished two subdatasets, one with all data points with average values

of MSI (between 33rd and 67th percentiles, which are MSI values of

37% and 57%) and one with all data points one standard deviation

above the average (between 67th and 97th percentiles, which are

MSI values of 57% and 82%). We then separately fitted each of the

parameters in the fire function on each of these datasets while

keeping the remainder of the fire function intact. We compared the

AIC values of the fits for the average and high MSI values. The

parameter with largest absolute ΔAIC best explains the difference in

fire frequency between average and high MSI. We found that this

parameter is p7, which describes the width of the Gaussian function

of rainfall. We used the two estimates of p7, for average and high

MSI, to obtain a coefficient of variation of this parameter, CVS, that

captures the response of fire probability to deviations in seasonality

(S) from its average (MSI in the range 37%–57%, or simply 47%); p7

is replaced by p7 CVS
S
47:

probF T;R; Sð Þ ¼ p1
Tp3

Tp3 þ p2p3
p4p5

p4p5 þ Tp5
exp� R�p6ð Þ2=ð2ðp7 CVS

S
47Þ2Þ (5)

We similarly explored the effects of interannual rainfall variability

on fire probability. Both the standard deviation and coefficient of

variation (CV) of annual rainfall were poor measures to detect general

patterns in response to interannual variability because both are con-

founded by annual rainfall. However, we found that the percentage of

severely dry or wet years affected fire probability consistently, where

a severely dry year is defined as <−1.5σ and a severely wet year as

≥1.5σ from the mean annual rainfall. As average interannual variabil-

ity, we took a frequency of 5%–6% of either severely dry or wet years

(30th–81st percentiles) and as one standard deviation higher than

average we took 7%–8% (81st–99th percentiles). Here, we found that

fitting the parameter that scales the fire function, p1, gave a greater

improvement in the fit than p7. Thus, analogous to those for seasonal-

ity, we used the two estimates for the effects of interannual variabil-

ity to obtain a coefficient of variation of p1, CVI, that captures the

response of fire probability to deviations in interannual rainfall vari-

ability from its average (a frequency of severely dry/wet years (FSY)

of 5%–6%, or simply 6%); p1 is replaced by p1CVI
FSY
6 :

probF T;R; Ið Þ ¼ p1CVI
FSY
6

Tp3

Tp3 þ p2p3
p4p5

p4p5 þ Tp5
exp� R�p6ð Þ2= 2p27ð Þ (6)

2.7.2 | Fire ignition and spread

The probability of a cell catching fire “spontaneously” (i.e., excluding

fire spread from a neighboring cell) in a given year is the product of

probF and ignition rate pign (per year). We simulated in our lattice the

emergent fire frequencies for different ignition rates and tree‐cover
values. We calculated the ignition rate that best fitted (least squared

residuals) the empirical fire‐tree cover relation for the rainfall level at

which fire spread is at its maximum (p6), because this is when igni-

tion rate is most limiting for fire occurrence. We used this fitted igni-

tion rate throughout our simulations. We performed the simulations

assuming that fire spreads more easily than it ignites, which is rea-

sonable for the dry‐season fires that dominate the tropics (Archibald,

Staver, & Levin, 2012). Because the parameter that scales the fire

probability function is p1, fire probability for cell i, j in case any of its

eight neighbors is burning was set to probF/p1. For rainfall, at peak

fire frequency, this yielded a very high goodness of fit of fire fre-

quency as a function of tree cover with R2 = 0.95.

2.7.3 | Fire‐induced tree‐cover loss

In case a cell burns during a certain time step, its tree cover is

reduced by a tree‐cover‐dependent loss function. This loss of tree

cover after a fire was determined for each burnt cell in our dataset

by subtracting tree cover in the year after a burn from tree cover in

the year before the burn. For each tree‐cover value T, we took the

observed median per‐capita fire‐induced tree‐cover loss and we sub-

sequently fitted a third‐degree polynomial to these medians. Thus,
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fire‐induced tree‐cover loss becomes as follows (which does not

allow for negative loss of tree cover):

Fi;j Tð Þ tð Þ ¼
max 0; a3T3

i;jðtÞ þ a2T2
i;jðtÞ þ a1Ti;jðtÞ þ a0

� �
Ti;jðtÞ if Ti;j burns

0 if Ti;j does not burn

(

(7)

where a0, a1, a2, and a3 are empirically obtained constants. We

tested whether the results were caused by other factors than fire by

repeating our analysis on unburned locations and did not find similar

patterns (median tree‐cover loss over a 2‐year period was generally

0; see Supporting Information Figures S1 and S2).

2.7.4 | Tree‐cover growth

Growth of tree cover in each cell (Ti, j in %) is modeled as logistic

growth (Waring, Newman, & Bell, 1981) with growth rate r (per year)

with herbivore control H(MAR, T) (per year) toward carrying capacity

K(MAR) (%):

Gi;j MAR; T;Hð Þ ¼ max 0; r � HðMAR; TÞð Þ Ti;jðtÞ 1� Ti;jðtÞ
KðMARÞ

� �
(8)

Because maximum tree cover depends on MAR (Hirota et al.,

2011; Sankaran et al., 2005), we estimated for bins of MAR (of

width 100 mm/year) the carrying capacity of tree cover as the 99th

percentile of tree cover. We fitted a Hill function to these results,

which yielded the empirical carrying capacity K(MAR):

K MARð Þ ¼ Kmax
MARn

hnMAR þMARn (9)

where Kmax (%) is the maximum tree‐cover value in the data; hMAR

(mm/year) represents the value of MAR at which half the maximum

carrying capacity is reached; and n (−) is an exponent.

We calculated the tree‐cover growth rate r (per year) using time

series of annual tree‐cover data to determine for each burnt cell, the

growth rate after a fire has occurred (n = 60,724 burns with subse-

quent unburned tree‐cover recovery) (Flores et al., 2017) where we

assumed logistic growth toward carrying capacity K(MAR) (Waring et

al., 1981). We thus obtained a location‐specific growth rate, but

although the tree‐cover product that we use has already been success-

fully used to compute postfire recovery (Flores et al., 2017), it contains

considerable uncertainties, resulting in high variation in estimates of

growth rates. Therefore, we took the median growth rate in the data-

set as growth rate r (per year) in the logistic growth function.

2.7.5 | Herbivory

Livestock densities (Robinson et al., 2014), measured in tropical live-

stock units (TLU/km2), can be considered as proxies for total herbi-

vore pressure on tree juveniles. This is important, because global

estimates of wild herbivore densities are lacking. Indeed, analysis of

livestock densities and wild browser density estimates in Africa show

a similar pattern across rainfall levels as livestock densities do

(Hempson et al., 2015). Herbivore pressure H (per year) is modeled

as a control on growth rate and is the product of a loss coefficient

mH (%−1 TLU−1 km2) and herbivore density densH (TLU/km2), which

depends on MAR and tree cover:

H MAR; Tð Þ ¼ mH densH MAR; Tð Þ (10)

where herbivore density densH as a function of MAR and tree cover

has the same structure as that for fire probability (see “Fire probabil-

ities”):

densH MAR; Tð Þ ¼ l1
Tl3

Tl3 þ l2
l3

l4
l5

l4
l5 þ Tl5

e� MAR�lð Þ2= 2l27ð Þ (11)

mH represents the effect of one tropical livestock unit (TLU/km2) on

tree‐cover growth rate. Data on this are lacking, but we used the

estimated relation between dry matter consumption of herbivores,

DMCH, and that of fire, DMCF, in Africa (Archibald & Hempson,

2016) as a proxy:

DMCH

DMCF
¼ exp0:84�0:00050 MAR (12)

Here, we assume that the ratio between dry matter consumed

by herbivores and dry matter consumed by fire (Equation 12) is

equivalent to the ratio between the effects of herbivores and fire on

young trees, that is, that DMCH
DMCF

¼ mH �densH
probF �mortF;mean

. This yields the follow-

ing equation for mH at given MAR, mH,MAR:

mH;MAR ¼ exp0:84�0:00050 MAR �probF;MAR � lossF;mean

densH;MAR
(13)

To be on the conservative side, we took the ratio at the rainfall

level at which herbivore density is at its peak (710 mm/year), so

mH = mH,710.

We calculated the mean densities of the various species (in

heads and TLU/km2) of each species in the livestock dataset (Robin-

son et al., 2014).

The dataset was assembled using ArcGIS, and subsequent analy-

ses were carried out in MATLAB. All simulations were performed in

GRIND for MATLAB. All parameters and their values are given in

Table 1.

3 | RESULTS

Our parameterized model (Figures 1 and 2; Table 1) generates alter-

native stable states in tree cover with accompanying hysteresis

against changing rainfall conditions (Figure 3, Supporting Information

Figure S7). The underlying mechanisms are the feedback loops

between tree cover and herbivory, and between tree cover and fire.

At low tree‐cover and rainfall levels, herbivory is the main mecha-

nism that can maintain low tree cover, with herbivore density peak-

ing at ~10% tree cover and 700 mm/year rainfall (Figure 1e,f). The

feedback between tree cover and herbivory can maintain low tree

cover up until 1,100 mm/year rainfall (Supporting Information Fig-

ure S8), a result that is robust against a wide range of parameter val-

ues in the herbivory‐controlled growth term (Supporting Information
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Figure S9). At intermediate rainfall levels, fire is the main mechanism

that can maintain low tree cover. Fire probability peaks at low tree

cover (around 10%–20%; Figure 1a) and at intermediate rainfall

(around 1,100 mm/year; Figure 1b) across continents (Supporting

Information Figure S3). Tree‐cover loss by fire in such environments

is around 20% of the originally present tree cover (Figure 1c; see

Supporting Information Figure S1 for continental differences). Recov-

ery from fire is then generally too slow to reach a closed canopy at

the observed fire probabilities. When the model is initialized at

observed climatic and tree‐cover conditions, low tree cover often

persists up to about 1,700 mm/year (Figure 3a). At high tree cover,

fire probability is always low (Figure 2), which keeps it stable in the

absence of further perturbations. The model predictions of stabilized

tree cover correspond well with observed tree cover distributions,

with R2 = 0.79 for a linear regression.

Increasing seasonality of rainfall increases the width of the bell‐
shaped response of fire frequency to rainfall (Figure 1b) with 32%

for one standard deviation of seasonality (Figure 2). This means that

fire frequency peaks at a wider range of mean rainfall levels, imply-

ing a qualitative change in the relation between fire and rainfall.

Increasing interannual variability of rainfall increases the height of

the peak fire frequency with about 5% for one standard deviation of

the frequency of severely dry or wet years (Supporting Information

Figure S5; Table 1). Thus, despite a quantitative change, the relation

between fire and rainfall remains the same with interannual variabil-

ity. We find that this difference between seasonality and interannual

TABLE 1 The parameters and variables with their descriptions and values, and corresponding figure or reference

Symbol Description Value Unit Source

a0 Constant in polynomial for fire‐induced tree cover loss −0.27 – Figure 1c

a1 Coefficient of first‐degree term in polynomial for fire‐induced tree cover

loss

0.037 %−1 Figure 1c

a2 Coefficient of second‐degree term in polynomial for fire‐induced tree

cover loss

−9.1 × 10−4 %−2 Figure 1c

a3 Coefficient of second‐degree term in polynomial for fire‐induced tree

cover loss

−7.2 × 10−6 %−3 Figure 1c

CVI Coefficient of variation of p1 for interannual rainfall variability 0.052 – Not shown

CVS Coefficient of variation of p7 for rainfall seasonality 0.32 – Figure 2

densH Livestock density as proxy for total herbivore pressure [0–l1] TLU/km2 Figure 1e–f

hMAR Half‐saturation constant where carrying capacity is half its maximum 520 mm/year Figure 1d

Kmax Maximum carrying capacity of tree cover 85 % Figure 1d

l1 Maximum livestock density 16 TLU/km2 Figure 1e–f

l2 Tree cover where livestock density rises sharpest 2.3 % Figure 1e

l3 Exponent in Hill function for rise in livestock density 3.6 – Figure 1e

l4 Tree cover where livestock density declines sharpest 21 % Figure 1e

l5 Exponent in Hill function for decline in livestock density 3.2 – Figure 1e

l6 Rainfall at which livestock density peaks 710 mm/year Figure 1f

l7 Standard deviation of Gaussian function of rainfall for livestock density 220 mm/year Figure 1f

mH Herbivore‐induced loss coefficient 8.0 × 10−3 %−1 TLU−1 km2 Archibald and Hempson

(2016)

n Exponent in Hill function for carrying capacity 2.7 – Figure 1d

p1 Maximum probability of catching fire upon ignition 0.31 per year Figures 1a–b and 2

p2 Tree cover where fire probability rises sharpest 1.6 % Figures 1a and 2

p3 Exponent in Hill function for rise in fire probability 1.7 – Figures 1a and 2

p4 Tree cover where fire probability declines sharpest 37 % Figures 1a and 2

p5 Exponent in Hill function for decline in fire probability 4.7 – Figures 1a and 2

p6 Rainfall at which fire probability peaks 1,100 mm/year Figures 1b and 2

p7 Standard deviation in Gaussian function of rainfall for fire probability 380 mm/year Figures 1b and 2

pign Probability of fire ignition in each cell 1.2 × 10−4 per year Supporting Information

Figure S6

R Rainfall [0–2,000] mm/year N.A.

r Growth rate of tree cover 0.016 per year Not shown

T Tree cover [0–Kmax] % N.A.

t Time [0–1,000] year N.A.
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variability is reflected in how they affect the stability of tree cover

in fire‐prone areas: Interannual variability does not increase forest‐
savanna hysteresis, whereas seasonality does (Supporting Informa-

tion Figure S7). Seasonality strongly increases the range of rainfall

conditions where fire frequency is high: When seasonality is two

standard deviations above its average, the low tree‐cover state per-

sists up to about 2,000 mm/year (Supporting Information Figure S7).

The stability of low tree cover depends on whether or not fire‐
spread probability is sufficiently high to allow for percolating fires,

which appears to be largely determined by tree cover. Indeed, such

fires would not propagate indefinitely (or during the whole fire sea-

son). They could be constrained by other landscape features (Hant-

son et al., 2017; Pueyo et al., 2010), unrelated to tree cover.

However, we would expect noticeable increases in fire probability

below the critical threshold at which trees impede percolation. We

find high burned area in savannas up to c. 40% tree cover, indicating

that such covers are clearly below the threshold (Supporting Infor-

mation Figures S10 and S11). Under average seasonality, this is the

case for rainfall ranges between c. 500 and 1,600 mm/year, which is

the same range where fire‐maintained low tree cover is predicted

(Figures 3, Supporting Information Figure S7). With increasing sea-

sonality, rainfall ceased to be a limiting factor (either too high or too

low) and fire regimes became independent of mean annual rainfall

levels (Supporting Information Figures S11 and S12). For tree cover

above c. 40%, we do not find an increase in burned area with sea-

sonality, indicating that fires cannot percolate forests even with large

increases in seasonality (Supporting Information Figures S10 and

S12).

We find nonlinear responses of both high and low tree cover to

spatial perturbations: For relatively small clustered perturbations, the

system recovers fully, but when a critical size is exceeded, a transi-

tion to the alternative state may occur. Figure 4 shows the results

for perturbations to the high tree‐cover state (see Supporting Infor-

mation Figure S13 for similar results for the low tree‐cover state).

Beyond a critical perturbation size, the probability that fire ignites

anywhere within that area can become so high that the perturbed

cells no longer recover and the remaining high tree‐cover cells are

lost as well. Whether recovery occurs depends positively on average

rainfall (Figure 4a). At average seasonality and 1,700 mm/year, tree

cover recovers fully even after the largest possible perturbation (i.e.,

full loss of high tree cover); at 1,600 mm/year, it also generally grows

back after 1,000 years; at 1,500 mm/year, recovery starts to depend

on the size of the perturbation: With 30%–70% of the cells removed

of their closed tree cover, the resulting landscape after 1,000 years

consists of patches of both high and low tree cover. Above 70%

removal, no high tree‐cover cells are present after 1,000 years, so a

tipping point has been crossed. A similar response is observed when

seasonality is increased. Whereas the high tree cover state is fully

resilient at 1,700 mm/year at average seasonality, tipping points may

be crossed at higher seasonality: High tree‐cover recovery does not

always occur, and the critical perturbation level decreases with sea-

sonality. For a range of perturbation sizes, high and low tree cover

coexist after 1,000 years (Figure 4c).

There are differences in resilience to randomly distributed per-

turbations and clustered perturbations. After a run of 1,000 years,

the response of the high tree‐cover state to perturbations is more

gradual in the clustered case than in the random case. In response

to random perturbations, there is a clear threshold in the perturba-

tion size above which a full loss of high tree cover occurs, but below

which recovery rapidly occurs (Figure 4b,d). In response to clustered

perturbations, we find a range of perturbation sizes after which both

high and low tree‐cover patches remain present even after 1,000

simulated years; after 5,000 years, however, the remaining patches

with high tree cover will have disappeared (Supporting Information

Figure S14).

4 | DISCUSSION

We quantified the full feedback between fire and tree cover and

showed that it may generate alternative stable states of tree cover

across rainfall levels in the tropics. Assessing the strength of the

fire–tree cover feedback globally finally integrates pieces of evi-

dence, ranging in scale from field studies (e.g., Dantas, Batalha, &

Pausas, 2013) to pantropical remote sensing analyses (e.g., Hirota et

al., 2011; Staver et al., 2011; Xu et al., 2016), that forests and savan-

nas can be alternative stable states separated by tipping points.

Although forests and savannas are defined by structure and species

composition (Ratnam et al., 2011; Veldman, 2016), tree cover is a

key aspect in their self‐stabilizing dynamics.

We found an important effect of rainfall variability on fire‐driven
alternative stable states. It is known that in wet areas on the one

hand, occasional dry periods enhance fire‐prone conditions; in dry

areas on the other hand, occasional wet periods stimulate fuel build‐
up for fires in dry periods (Archibald, Nickless, Govender, Scholes, &

Lehsten, 2010; Archibald, Roy, van Wilgen, & Scholes, 2009; Bucini,

Beckage, & Gross, 2017; Van der Werf, Randerson, Giglio, Gobron,

& Dolman, 2008). However, we found that seasonal and interannual

rainfall variability affect fire regimes in different ways with contrast-

ing implications for forest‐savanna stability. While a previous empiri-

cal analysis showed that tree cover in the wet tropics decreases

with higher seasonality and interannual rainfall variability (Holmgren

et al., 2013), our results suggest that it is mostly the intraannual sea-

sonality that decreases forest resilience by promoting the savanna‐
stabilizing fire feedback.

Whereas in relatively wet savannas, low tree cover can be

explained by frequent fires, and in drier savannas, tree cover is often

below carrying capacity (Sankaran et al., 2005). In drier savannas,

herbivory of young tree seedlings and saplings can suppress tree

cover (Staver & Bond, 2014), creating a herbivory–vegetation feed-

back comparable to the fire–vegetation feedback (Dantas et al.,

2016; Van Langevelde et al., 2003). To account for herbivory, we

included livestock densities as a proxy of global herbivore densities

(Archibald & Hempson, 2016; Hempson et al., 2015; Robinson et al.,

2014). These estimates suggest that herbivores could greatly sup-

press tree cover up to 1,100 mm/year rainfall even in the absence of

fire.
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There are similarities and differences between the herbivore–tree
cover feedback and fire–tree cover feedback. Both herbivores and

fires are more abundant in open landscapes with lower tree cover,

and they both have negative effects on tree cover that contribute to

maintaining these open landscapes. Indeed, both fires and herbivores

show a steep increase in abundance below a critical tree cover (Fig-

ure 1a,e). It is this shape that allows for the existence of alternative

stable states under a range of assumed growth and loss curves for

tree cover (Kitzberger, Aráoz, Gowda, Mermoz, & Morales, 2012;

Van Nes et al., 2018; also see Supporting Information Figure S9).

This parallel structure of the two feedbacks is worth highlighting,

but it is important to also recognize their differences. Herbivores are

more selective in their effect on tree cover than fire. This selectivity

is probably reflected in the herbivore–tree cover feedback acting at

lower rainfall levels because herbivores are unable to control fast

plant growth with a higher proportion of unpalatable tissue at higher

rainfall levels. Fires, in contrast, can exert a bottom‐up control on

tree cover at higher rainfall levels. Also, whereas the fire–tree cover

feedback responds strongly to rainfall seasonality, mammalian her-

bivory is relatively insensitive to seasonality (Archibald & Hempson,

2016). Interestingly, field experimental evidence shows that in dry

environments, interannual pulses of rainfall may allow windows of

opportunity for trees to escape herbivory and increase tree cover

(Holmgren, Lopez, Gutierrez, & Squeo, 2006; Holmgren et al., 2013;

Sitters, Holmgren, Stoorvogel, & López, 2012). The contrasting

response of the herbivore–tree cover feedback to seasonal vs. inter-

annual rainfall variability may be explained by the predictability of

the rainfall events. Trees can escape herbivore control when their

growth as a response to the rainfall pulse is faster than the herbi-

vore response to the increase in primary productivity (Scheffer, van

(a) (b)

(c)

(e) (f)

(d)

F IGURE 1 Parameterizations of the
model as functions of tree cover and
rainfall across the tropics. (a) Mean fire
probability (per year) as a function of tree
cover (%). (b) Mean fire probability (per
year) as a function of rainfall in the fire
year (mm/year). (c) Median fire‐induced
per‐capita tree cover loss (per fire) as a
function of tree cover (%). (d) Carrying
capacity for tree cover (%) as a function of
mean annual rainfall (mm/year). (e)
Livestock density (tropical livestock units/
km2; TLU/km2) as a function of tree cover
(%). (f) Livestock density (TLU/km2) as a
function of mean annual rainfall. Livestock
density is used as a proxy for herbivore
pressure on tree cover
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Nes, Holmgren, & Hughes, 2008). This critical rate for trees to

escape top‐down control may be more likely to occur during an

unpredictable interannual rainfall pulse. The fire and herbivore feed-

backs with tree cover also interact. The fact that both fires and

browsing negatively affect tree cover creates a synergy between

both feedbacks (Van Langevelde et al., 2003). However, fires and

grazing also interact via grass biomass. Grasses act as both fuel for

fires and food for grazers, making them competitors for the same

resource (Bond & Keeley, 2005). Thus, grazing and fire can impede

one another, such that grazing may result in woody encroachment

through fire suppression (Roques, O'Connor, & Watkinson, 2001).

Anthropogenic or natural disturbances may locally alter tree

cover and thereby fire probability. Moreover, the size of a spatial

disturbance may affect subsequent recovery (Van de Leemput,

Dakos, Scheffer, & van Nes, 2018). We therefore performed pertur-

bation experiments in which our simulated high tree cover (and low

tree cover) landscapes are subject to perturbations of varying size.

To this end, we differentiated between clustered perturbations, in

which a “deforestation” (and “afforestation”) of a single square area

is imposed, and randomly distributed perturbations. We showed that

both types of perturbation to the high tree cover state (low tree

cover state) may cross a tipping point (sensu Van Nes et al., 2016),

meaning that the entire lattice undergoes a transition. However, the

transition in response to a clustered perturbation takes longer than

to a random perturbation, whereas the clustered perturbation

requires a smaller critical size. From this follows that the question to

which type of perturbation the ecosystem is most resilient becomes

a matter of time scale: Although a tipping point is more easily

crossed when the perturbation is more clustered, it is also slower,

which may provide more opportunity to respond and conserve the

system. In either case, whether or not such a tipping point can be

crossed depends on the average rainfall and its seasonality. Still, it

should be noted that the mechanism of disturbance itself plays an

important role, too. For example, deforestation by humans is often

accompanied by fires (Aragão et al., 2008), whereas a natural distur-

bance such as a hurricane may not. Also, we assume that tree cover

is tightly linked to grass cover, which is not necessarily true, for

instance in case of selective logging (Veldman, Mostacedo, Peña‐
Claros, & Putz, 2009).

We found that the effect of fire on tree cover clearly differs

between savannas and forests. In savannas with tree cover between

20% and 60%, a single fire typically clears about 20% of the tree

cover that is present. When tree cover is above 60%, however, the

effect of fire is much higher. We found that the per‐capita loss of

tree cover in these landscapes lies around 60% or three times as

high as in savannas. These numbers agree with mortality rates

(a)

(c) (d)

(b)

F IGURE 2 Observations and fits of the effects of rainfall on fire probabilities across the tropics. (a) Observed and (b) fitted mean fire
probability (per year) as a function of annual rainfall (mm/year) and tree cover (%) for average rainfall seasonality. (c) Observed and (d) fitted
mean fire probability (per year) as a function of annual rainfall (mm/year) and tree cover (%) for rainfall seasonality one standard deviation
above average. The greatest improvement in fitting the data in (c) was obtained by adjusting the standard deviation of the Gaussian function
of rainfall (also see Figure 1b, Methods), meaning that primarily the range of annual rainfall levels at which fire probability is high expands with
rainfall seasonality. See Supporting Information Figure S4 for an extrapolation of these fits to higher levels of seasonality
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observed in the field (Hoffmann et al., 2009). Closed tree canopies

are generally dominated by forest‐tree species (Ratnam et al., 2011),

which, as opposed to those in savannas, have not evolved in condi-

tions with regular fires (Keeley, Pausas, Rundel, Bond, & Bradstock,

2011). Apart from differences between ecosystem types, there are

differences among continents in ecosystem structure (Xu et al.,

2018) and in fire ecology (Lehmann et al., 2014). For example, fire

frequency is relatively high in Africa (Giglio, Randerson, & van der

Werf, 2013; Van Nes et al., 2018), although that may be counter-

acted by relatively low fire intensity (Dantas & Pausas, 2013) and

relatively high recovery from disturbances in that continent (Sch-

walm et al., 2017).

Our model resembles an early spatial forest‐fire model including

fuel build‐up and fires spreading through the lattice (Bak, Chen, &

Tang, 1990; Drossel & Schwabl, 1992). This model was further

developed afterward by including weather‐dependent fires and grad-

ual fuel succession (Pueyo, 2007; Pueyo et al., 2010). We added sev-

eral novelties to this line of work, including empirically derived tree‐
cover‐dependent fire probabilities and tree‐cover‐dependent fire‐in-
duced losses of tree cover. These improvements to the model were

parameterized based on remotely sensed data. Although our parame-

terized model can help to understand the tropical fire–vegetation
feedback and its emergent effects such as bimodalities in tree cover

(Accatino & De Michele, 2016; D'Odorico, Laio, & Ridolfi, 2006; De

Michele & Accatino, 2014; Van Nes et al., 2018), a number of rele-

vant factors remain to be explored in future work. Continental dif-

ferences in fire dynamics (Hantson et al., 2017; Lehmann et al.,

2014) should be further disentangled to make the model more suit-

able for localized predictions. It could then be used to explore the

joint effects of climatic and land‐use changes on fire dynamics. We

have shown that with increasing rainfall variability, fire sizes may

increase and forests may lose their stability. Small increases in fire‐
spread probability may indeed cause sudden increases in fire size

and burned area (Archibald et al., 2012; Pueyo et al., 2010). How-

ever, in recent years, fires have become smaller due to land‐use
changes (Andela et al., 2017; Hantson, Pueyo, & Chuvieco, 2015),

partly because humans alter the connectivity of the landscape

(Andela et al., 2017) or actively suppress fire (Durigan & Ratter,

2016). Given that the configuration of fire‐prone areas determines

whether or not the landscape tips toward a closed canopy or

remains open, the effects of land‐use changes could be highly non-

linear.

Our spatial model provides a framework in which these and

other nonlinearities, caused by interactions among for instance rain-

fall conditions, land use (Andela et al., 2017), herbivory (Archibald &

Hempson, 2016), and CO2 fertilization (Higgins & Scheiter, 2012),

could be studied. Because the model represents the scale of remote

sensing data (250 m), it bridges a gap between observations and the-

ory and therefore occupies a promising niche that could stimulate

new insights in tropical fire‐vegetation dynamics (see also Hébert‐
Dufresne et al., 2018). On the observational side, the work on remo-

tely sensed tropical tree cover indicating alternative stable states has

so far been mostly based on static patterns instead of dynamic ones

(Hirota et al., 2011; Holmgren et al., 2013; Staal et al., 2016; Staver

(a) (b) (c)

F IGURE 3 Densities of simulated tree cover (%) against (a) mean annual rainfall (mm/year), (b) rainfall seasonality (%) and (c) observed tree
cover (%). All plots show results of 10,000 simulations in which the model was initialized with one randomly selected location with the
observed tree cover, mean annual rainfall, and rainfall seasonality. Simulations were performed for 1,000 years. Roughly between 500 and
1,700 mm/year, rainfall (see a) and between 20% and 80% seasonality (see b), a tree cover state below carrying capacity is predicted to be
possible. The histograms in (c) show multimodal patterns of both observed and simulated tree cover, which indicate alternative stable states.
The low density of tree cover values just below 10% in the simulated results is explained by the absence of effect of fire below this value (see
Figure 1c)
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et al., 2011; e.g., Bucini et al., 2017; but see Wuyts, Champneys, &

House, 2017), which hampers the inference of temporal dynamics.

On the theoretical side, models have considered spatial interactions

between trees and fire (e.g., Accatino & De Michele, 2016; Archibald

et al., 2012; Bacelar, Calabrese, & Hernández‐García, 2014; Beckage,
Gross, & Platt, 2011; Favier, Chave, Fabing, Schwartz, & Dubois,

2004; Hébert‐Dufresne et al., 2018; Hochberg, Menaut, & Gignoux,

1994; Menaut, Gignoux, Prado, & Clobert, 1990; Schertzer et al.,

2015; Wuyts et al., 2017), and nonspatial models have aimed to cap-

ture tree‐cover patterns at the spatial scale of remote sensing data

(e.g., Accatino & De Michele, 2013; Staal, Dekker, Hirota, & van Nes,

2015; Staver & Levin, 2012; Van Nes et al., 2014, 2018). However,

these lack the remote sensing‐based full quantification of the fire–
tree cover feedback and its spatial implementation that we do pro-

vide. It is important to account for spatial fire dynamics, because

such dynamics are essential for reflecting how fires affect the future

probabilities and distribution of fires, which may be critical for the

relative stability of forests and savannas (Archibald et al., 2012; Dur-

rett & Levin, 1994; Pueyo, 2007; Schertzer et al., 2015). Ultimately,

understanding these cross‐scale complex dynamics is necessary for

predicting how the structure of tropical landscapes, with implications

for carbon storage and local livelihoods, may change in the future.
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