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1.  Introduction

‘Magnetic resonance (MR)-only’ radiotherapy refers to a radiotherapy workflow in which patient simulation 
and dose calculation are performed using only MR images. This workflow has been proposed to exploit 
the soft tissue contrast offered by magnetic resonance imaging (MRI) without recurring to inter-modality 
registration and thus reducing possible systematic errors in target definition (Nyholm et  al 2009). Also, 
MR-only radiotherapy offers practical and logistical advantages reducing the overall treatment cost (Devic 
2012), workload (Karlsson et al 2009) and patient exposure to ionising radiation (Schmidt and Payne 2015). 
In addition, MR-only is of interest considering the advent of MR-guided radiotherapy (MRgRT) systems 
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Abstract
To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation 
attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application 
of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within 
minutes. This work aims at assessing whether an existing deep learning network can rapidly generate 
sCT images for accurate MR-based dose calculations in the entire pelvis.

A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) 
cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients’ 
simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional 
dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative 
adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate 
cancer patients. The trained network was tested on the remaining patients to generate sCT images. 
For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. 
Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume 
histogram (DVH) analysis.

The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, 
respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. 
The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, 
respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less 
than  ±2.5% from the corresponding points on CT.

Results suggest that accurate MR-based dose calculation using sCT images generated with a 
cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was 
sufficiently fast for integration in an MR-guided radiotherapy workflow.
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(Lagendijk et al 2014, Low 2017), where it may be exploited to perform online daily replanning based on the 
anatomy acquired before irradiation.

However, dose calculation cannot be performed directly on MR images since no correlation has been 
demonstrated between the nuclear magnetic properties, on which MRI depends, and the electron density, which 
is the property used to model radiation attenuation in humans (Brown et al 2014). Several groups have proposed 
methods to automatically generate the so-called ‘synthetic’ CT (sCT)5 images to enable accurate MR-based dose 
calculation (Owrangi et al 2018).

When focusing on the pelvic area, many methods have been proposed and evaluated for radiotherapy of 
prostate cancer (Edmund and Nyholm 2017, Johnstone et al 2017), showing dose deviations below 2% with 
respect to CT-based dose calculations. Only three contributions investigated the accuracy of MR-based dose 
calculations for locations other than prostate within the pelvic area (Kemppainen et al 2017, Liu et al 2017, Wang 
et al 2018). Moreover, no attention has been specifically dedicated to the time required to generate sCT, which 
should be of the order of minutes to allow daily replanning during MRgRT as, for example, underlined by Raay-
makers et al (2017).

Recently, deep learning-based sCT generation has been presented (Han 2017, Nie et al 2017, Wolterink et al 
2017) enabling sCT generations of a full 3D volume in a minute. Han (2017) employed, for the first time, deep 
learning to generate sCT images using only a generative model, e.g. a U-net. Generative adversarial networks 
(GANs) have been used to synthesise medical images after training in a paired and an unpaired fashion by Nie 
et al (2017) and Wolterink et al (2017), respectively. They both obtained promising results, especially compared 
to networks in which only the generator was adopted (Han 2017). However, in none of these contributions, the 
sCT images were evaluated for dosimetric accuracy, which is the relevant metric for radiotherapy purposes. In 
this sense, we presented a dosimetric evaluation on deep learning-based sCT images for brain patient using a 
dilated convolutional network (Dinkla et al 2018). So far, no study has reported evaluation of dose calculation 
accuracy for deep-learning based sCT in the pelvis.

By interpreting the generation of sCT images as an image-to-image problem, we aim at assessing whether an 
existing deep learning network can generate sCT images that enable accurate MR-based dose calculation using 
a conventional MR sequence in the pelvic area. We used a conditional generative adversarial network (cGAN) 
motivated by the results obtained by Isola et al (2016) who showed how this approach can promptly solve  
numerous image-to-image translation problems (Litjens et al 2017). More specifically, GANs are networks con-
stituted by a generator and a discriminator network. Generator and discriminator are jointly trained, particularly 
aiming at generating realistically looking images by exploiting the capability of the discriminator network to 
discern between real and fake images (Goodfellow et al 2014, Isola et al 2016).

In this work, we trained an existing GAN (Isola et al 2016) with paired MRI-CT data to learn the generation of 
sCT images using multi-contrast Dixon reconstructed MR images from conventional multi-echo gradient echo. 
Training was performed on prostate cancer patients’ images only. Finally, sCT images were evaluated for MR-
based dose calculations for patients with prostate, rectal and cervical cancer.

2.  Materials and methods

2.1.  Patient data collection
This study was conducted on a total of 91 patients: 59 prostate, 18 rectal and 14 cervical cancer patients who had 
no hip implants and underwent external beam radiotherapy. Patients simulation was performed using both on 
CT and MRI images acquired between March 2016 and April 2017.

Fifty-nine patients were diagnosed with low, intermediate, high-risk prostate carcinoma stage T1c–T3b. 
Their mean age was 69.6  ±  5.1 years (±1σ; range 59.8–82.9). Three intra-prostatic cylindrical gold fiducial 
markers were inserted in these patients for position verification purposes. Prostate cancer patients underwent 
5-beam 10 MV intensity-modulated radiotherapy (IMRT) with a prescribed dose of 35 × 2.2 Gy to prostate and 
macroscopic tumour and 35 × 2.0 Gy to seminal vesicles.

Eighteen patients, of whom 5/18 = 27.8% female, were diagnosed with intermediate and high-risk rectal 
cancer staged T2–T4. These patients were treated for neoadjuvant therapy with three fractionating regimes: 
short course treatment delivering 5 × 5 Gy (2), and long-course treatment 25 × 2.0 Gy without (14) and with 
(2) an integrated boost on extramesorectal pathological nodes of 25 × 2.4 Gy. All patients in this group were 
irradiated with volumetric modulated arc therapy (VMAT) consisting of two coplanar arcs of 10 MV between 
50° and 310°.

Fourteen patients were diagnosed with low, intermediate, high-risk cervical cancer staged T1–T4. Their 
mean age was 51.4  ±  15.1 years (range 29.1–83.0 years). These patients underwent external beam radiotherapy 
with 10 MV VMAT with a 360° irradiation arc and the following dose schemes: 25 × 1.8 Gy (2), 25 × 2.2 Gy with 

5 In the literature, the sCT images are also called ‘pseudo-CT’ or ‘substitute CT’.
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an integrated boost in the pelvic pathological nodes (3) and 25 × 2.3 Gy with an integrated boost in the common 
iliac and para-aortic region (9).

For all patients with prostate and rectal cancer, 3T MRI (Ingenia MR-RT, v 5.7.1, Philips Healthcare, The 
Netherlands) was acquired within 2.5 h the CT (Brilliance Big Bore, Philips Healthcare, Ohio, USA). For the 
cervical cancer patients, time between imaging protocols was up to one week. All patients were asked to drink 
between 200 and 300 ml of water one hour before the scans and after emptying the bladder (and rectum in the 
case of prostate cancer patients). Patients were positioned using a flat table and knee wedges. CT scans were 
performed with the following imaging parameters: 120 kV, 923 ms exposure time, 121–183 mA tube current, 
512 × 512 in-plane matrix, and 3 mm slice thickness. In-plane resolution was variable depending on the field 
of view (FOV) used, with a typical pixel size of 1 × 1 mm2 and maximum size of 1.2 × 1.2 mm2. In the inferior-
superior direction, the size of the FOV was variable ranging 33–77 cm.

To simulate treatment positioning, patients were marked with at least three skin tattoos at the CT scan-
ner, which were then used to reposition the patient at the MR scanner with the aid of a laser system (Dorado3, 
LAP GmbH Laser Applikationen, Germany). MRI was acquired using anterior and posterior phased array coils 
(dS Torso and Posterior coils, 28 channels, Philips Healthcare, The Netherlands). To avoid compression of the 
patients, two in-house-built bridges supported the anterior coil.

For the generation of MR-based sCT images, a dual echo three-dimensional (3D) cartesian radio-frequency 
spoiled gradient-recalled echo sequence was acquired with the following parameters: 1.2/2.5 ms echo times, 
3.9 ms repetition time, 10° flip angle, 552 × 552 × 300 mm3 FOV6, anterior-posterior as the readout direction 
(frequency encoding), 284 × 281 × 120 acquisition matrix, 1.05 × 1.05 × 2.5 mm3 reconstructed voxel, 1083 
Hz/px bandwidth and 2 min 13 s acquisition time. A Dixon reconstruction (Dixon 1984, Eggers et al 2011) was 
performed obtaining in-phase, fat, and water images. This sequence was originally acquired to generate sCT for 
sole prostate patients with a proprietary method called MR for calculating attenuation (MRCAT, Philips Health-
care, The Netherlands) as presented in Tyagi et al (2016) and Maspero et al (2017a). In this work, MRCAT was 
used to automatically identify air regions based on the in-phase, fat and water images to avoid laborious manual 
segmentation during preparation of the training data. Identification of air regions was performed as specified in 
the following section to ensure consistency of air locations between CT and MR images during the training of the 
network.

Delineations of the target volumes and organs at risk (OARs) were performed by radiation oncologists.

2.2.  The network
A cGAN called ‘pix2pix’ consisting of a 256 × 256 U-net generator network and a 70 × 70 PatchGAN 
discriminator architecture was employed as provided in the PyTorch implementation by Isola et al (2016). As a 
proof-of-concept, considering that our main goal is the dosimetric evaluation of sCT images generated with a 
generative adversarial network, we kept the network implementation as similar as possible to what was originally 
presented by Isola and co-workers. Optimisation was performed as in Goodfellow et  al (2014) alternating 
between one gradient descendent step on the discriminator network and one step on the generator network. 
A structured loss function cGAN+λ·L1 with λ = 100 was adopted. As already investigated by Mathieu et al 
(2015) and Isola et al (2016), the use of a loss function constituted by L1 alone leads to reasonable but blurred 
results; on the other hand, cGAN alone will lead to sharp results but introducing artefacts in the images. Isola 
et al (2016) showed that training in an adversarial setting together with an L1 norm generates sharp images with 
a low amount of artefacts. The weights of the network were randomly initialised from a Gaussian distribution 
with mean 0 and standard deviation 0.02. The implementation of pix2pix can be applied to 8-bit grey-scale (1 
channel) or coloured (3 channels) two-dimensional (2D) images. All the patient data underwent pre-processing 
to normalise the MR images and prepare a paired experiment by registering input (MRI) and target data (CT). 
In this work, we hypothesised that maximising the number of input images enriches contextual information per 
subject and facilitates learning of the image-to-image relation between MRI and CT. Therefore, we used all the 
available multi-contrast MR images to generate sCT images: in-phase, fat and water images were coded as colours 
of the images (red, green and blue) and input of the network. A schematic representation of the study is presented 
in figure 1.

2.3.  sCT generation
2.3.1.  Image pre-processing
First, all the CT images were rigidly registered and resampled to MR with Elastix v4.7 (Klein et al 2010). To 
keep the FOV consistent between CT and MRI, images were cropped in the superior-inferior direction to the 
smallest FOV ensuring that training may be conducted in a paired fashion. In the following, we use the term 
CTreg, IP, F and W to refer the cropped images of registered CT, in-phase, water and fat images, respectively. 

6 Expressed in terms of anterior-posterior, right-left and superior-inferior directions.
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Before feeding the images to the cGAN, the voxel intensity of CTreg was clipped within the interval [−1000;1047] 
HU to avoid a too large discretisation step after conversion to 8-bits. Also, MR images were normalised to their 
95% intensity interval over the whole patient. Finally, all the images were converted to 8-bits to conform the 
pix2pix implementation.

Before training, we tried to remove the impact of mismatch of air pockets location, e.g. in the rectum and 
bowel loops and enforce that air pockets were consistently located between CTreg and MRI. For this purpose, air 
cavities were filled in CTreg and bulk-assigned (−1000 HU) as located in MR images using an automatic method 
previously described by Maspero et al (2017b). Without this pre-processing step, the generated sCT images may 
be characterised by inconsistent depiction of air between MR and sCT images, as reported in the supplementary 
material (stacks.iop.org/PMB/63/185001/mmedia). Manual inspection was performed to verify correct assign-
ment of the air on CT. In the following, we use the term CTair to refer to these datasets. The generation of CTair 
has been introduced after noticing that the location of air when training directly on CTreg was not consistent with 
MR images.

2.3.2.  Training of the network
Training of the cGAN in a paired fashion was performed in the transverse plane randomly selecting 32 prostate 
cancer patients (training set). The network was trained for 200 epochs on a Tesla P100 (NVIDIA, California, 
USA) graphical processing unit (GPU) with batch size of one. Data augmentation was applied during training by 
flipping the images left and right and randomly cropping input and corresponding output images.

To verify the impact of enforcing the consistency of the air location between CT and MRI during training, we 
repeated training using CTreg as a target of the network.

2.3.3.  Image generation
The sCT generation was performed by applying the trained generator model and stacking all generated 2D 
transverse planes for each patient not used during training. This patient group is considered as the ‘test’ set. The 
3D volumes were further post-processed using DCMTK (http://dicom.offis.de/dcmtk.php.en) to create files that 
conform to the DICOM standard, usable in a treatment planning system.

Figure 1.  Schematic of the study. (1) After the acquisition of CT and MR images, CT images were registered to MRI. CT and MR 
images were cropped in the inferior-superior direction to uniform the FOV. Image normalisation was also performed. (2) The 
2D conditional generative adversarial network (cGAN) ‘pix2pix’ was trained on 32 prostate patients and applied (feed-forward 
evaluation) to the remaining 59 patients. For training and evaluation of the results, the location of air on MR was copied generating 
CTair to enforce consistency in the location of air pockets. The input of the cGAN was a coloured image using the three channels red, 
green and blue to accommodate in-phase, fat and water MR images, respectively. (3) The transverse plane was used for generation 
resulting in a volumetric sCT image after stacking the planes. (4) Dose planning and (5) image and dose evaluation were finally 
performed.

Phys. Med. Biol. 63 (2018) 185001 (11pp)
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Also, sCT generation for the prostate cancer patients in the test set (27 patients) was performed applying the 
generator trained using CTreg to evaluate the impact of enforcing the consistency of the air location during train-
ing. In the following, we use the term sCTNoAir to refer to this dataset.

2.4.  Evaluation
The performance of the network was evaluated reporting the time needed to train the cGAN and to infer the 
generator on a GPU and a central processing unit (CPU) framework (quad-core Intel Xeon 3.4 GHz).

2.4.1.  Image comparison
Image evaluation was performed in the test set by calculating the mean absolute error (MAE) and mean error 
(ME) on sCT with respect to CTreg (CTreg minus sCT) in the intersection of the body contours. The body contours 
were automatically calculated by thresholding CTreg and sCT images at  −500 HU.

In addition, MAE and ME were also calculated for the prostate patients in the test set (27) between sCTNoAir 
and CTreg.

2.4.2.  Dose comparison
Thirty patients (ten for each tumour type) were randomly selected from the test set to undergo dose comparison. 
For these patients, clinical plans were recalculated (QA modality) on sCT images in Monaco (v 5.11.02, Elekta 
AB, Sweden) using the Montecarlo photon algorithm on a grid of 3 × 3 × 3 mm3 with 3% statistical uncertainty 
for VMAT plans (rectum and cervix) and 1% for IMRT plans (prostate).

Before planning, the sCT images were rigidly registered, resampled and linearly interpolated to the planning 
CT using the inverse transformation of the registration that was previously found between planning CT and MR 
images. The delineations used on the planning CT were also adopted for sCT except for the body contour, which 
was recalculated.

In almost all cervical cancer patients, except the two without integrated boost, the FOV acquired during MRI 
was insufficient to include all OARs and calculate the plan on the patient. This was expected considering that MRI 
in the clinical settings is used for delineation of the sole primary tumour, while the plans may also include a boost 
to nodes in the common iliac and para-aortic regions. We, therefore, performed dose recalculation for the two 
patients that had comparable FOV in the inferior-superior direction, and for the remaining eight patients a new 
plan on the sCT was calculated prescribing 25 × 1.8 Gy to the PTV, excluding pathological nodes. The obtained 
plan was then recalculated on CT images.

Dose distributions were analysed through dose differences (CT−sCT
DPresc

) and gamma analysis at 3%, 3 mm and 
2%, 2 mm (Low 2010) within dose threshold regions of 90%, 50%, and 10% prescription dose and in the body 
contour intersection after a 15 mm cropping to exclude dose build-up. Analysis of dose-volume histogram 
(DVH) points was performed to verify target (CTV, PTV) dose coverage and adherence to OARs constraints 
considering the differences between dose points (D98, D50, D2, V95, V75) on the CT and sCT plans for CTV, PTV 
and rectum for prostate patients or bladder for rectal and cervical cancer patients. Note that DVH on sCT images 
were calculated on structures that were propagated after rigid registration; therefore, the DVH analysis does not 
take into account inter-scan differences of the structures.

Figure 2.  CT (left), sCTNoAir (middle, left) sCT (middle, right) and IP (right) for an exemplary patient treated for prostate cancer 
(top and central rows). The images on the top and bottom rows present a corresponding transverse plane, while in the bottom a 
corresponding coronal plane.

Phys. Med. Biol. 63 (2018) 185001 (11pp)
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Figure 3.  Doses calculated on CTreg (left) and sCT (middle) in the transverse plane corresponding to the isocentre for one prostate 
cancer patient. (Right) The dose difference (CTreg-sCT) is presented as the percentage of the prescribed dose (77 Gy) for the 
corresponding plane.

3.  Results

3.1.  Performance of the network
In total, 3495 transverse planes were used for training, which required about 11 h on the GPU (200 epochs). 
After cropping the FOV on CT and MR images, each patient was trained using a volume of about 109 transverse 
planes on average over the training set. After training, inferring the generator network to obtain sCT images was 
performed in 5.6 s per patient on GPU and four times longer (21 s) on CPU. Figure 2 presents the transverse (top) 
and coronal (center) planes of CTreg (left), sCT (middle) and IP (right) for an exemplary prostate patient. It can 
be noticed that the different rectal filling between CTreg and IP is consistent to filling in the sCT image. In the 
supplementary material, corresponding figures for exemplary rectal and cervical cancer patients are reported.

3.2.  Image comparison
Table 1 reports the statistics of the image comparison in terms of MAE and ME in the patient test set between 
CTreg/CTair and sCT and sCTNoAir. Over the entire test set (59), the MAE and ME were, on average, 61  ±  9 and 
2  ±  8 HU. It can be noticed that the MAE and ME are comparable among patients with different tumour location 
and the MAE decreases when comparing sCT to CTair. This demonstrates that CTair is more similar to sCT than 

CTreg, which justifies its use during the training of the network in a paired fashion.
When considering MEA and ME of the network trained with and withour enforcing air consistency, we 

observe that the metrics are comparable in the two scenarios, but the ME slightly decreases without enforced air 
location consistency. This result may be explained by the fact that the size of air pockets is much smaller than the 
entire body contour. In this sense, voxelwise differences to the air location are not expected to greatly impact the 
reported MAE and ME. Nevertheless, if we consider figure 2, we can observe that air is filled with soft tissue in 
case training was performed without enforcing air consistency.

3.3.  Dose comparison
An example of dose calculated on CTreg and sCT along with their difference is presented in figure 3 for the same 
prostate patient shown in figure 2. On average (table 2), it was observed that sCT images result in a higher dose 
to the target of about 0.1–0.3%. In the worst case, the mean dose difference was 1.6%. The average gamma pass 
rates using the 3%, 3 mm and 2%, 2 mm criteria were  >97 and 91%, respectively, for all volumes of interests 

considered.
As part of the supplementary material, the dose difference of each individual patient in the high dose region 

(D> 90%) is presented for all thirty patients included in the dose comparison.

Table 1.  Statistics of the image comparison between patients in the test set with prostate, rectal and cervical cancer in terms of mean 
absolute error (MAE) and mean error (ME) between CTreg or CTair and sCT (and sCTNoAir) over the intersection of the body contours. The 
values are reported in terms of average (±1σ) and range [min; max] and expressed in Hounsfield Units [HU].

Tumour location Number of patients Data MAE [HU] ME [HU]

CTreg−sCT 65  ±  10 [50;97] 1  ±  6 [−12;15]

Prostate 27 CTair−sCT 60  ±  6 [48;71] −3  ±  5 [−18;8]

CTreg−sCTNoAir 65  ±  9 [51;95] −2  ±  10 [−21;13]

Rectum 18 CTreg−sCT 56  ±  5 [48;67] 2  ±  9 [−16;23]

Cervix 14 CTreg−sCT 59  ±  6 [50;69] 4  ±  10 [−16;22]

Phys. Med. Biol. 63 (2018) 185001 (11pp)
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Figure 4 presents the boxplot of the DVH point difference (CT–sCT) for targets (PTV, CTV) and OARs show-
ing that all the DVH points on sCT-derived plans were within  ±2.5% with respect to the corresponding points 
on CT-derived plans.

4.  Discussion

Here, we demonstrated that deep learning enabled fast generation of sCT images facilitating accurate MR-based 
dose calculation for irradiation of patients with cancer in the pelvic area. In particular, we showed that training a 
cGAN on prostate cancer patients results in MR-based dose calculation within an average dose difference of 0.5% 
compared to CT-based calculations (CT–sCT). Although the network was trained on prostate cancer patients, sCT 
images generation in rectal and cervical cancer patients resulted in accurate dose calculations (see the supplementary 
material). This is of particular interest, considering that the network seems to accurately solve image-to-image 
translation problems also for female patients that were not included in the training set. However, for the cervical 
patients, the FOV coverage is insufficient to recalculate clinical plans. This means that for this patient group the MR 
sequence should be revised (i.e. extension of the FOV) and newly evaluated before clinical use. Also, by enforcing 
consistency of air location during training, we demonstrated that the network was able to depict internal air in 
location consistent to MRI. Please note that a ‘correct’ depiction of internal air is not crucial in the scope of standard 
radiotherapy, given its limited size and the fact that it may be differently located at each fraction. However, it may 
become of larger interests when considering MRgRT, given the additional dose at tissue interfaces (Raaijmakers et al 
2008) and considering the scenario of hypofractionated treatments (Benjamin et al 2017).

The dosimetric evaluation performed in this work has been restricted to the pelvic area. The sCT generation 
method here adopted, however, could be applied also to different anatomical locations after proper training of 
the network. This makes the approach generic.

Within this work, for the first time, sCT generated with a deep learning technique underwent dosimetric 
evaluation in the pelvic region. In general, the dose differences obtained in this study are in line with previously 
published studies on prostate cancer patients, which reported dose differences within 1% (Korhonen et al 2014, 
Dowling et al 2015, Kim et al 2015, Siversson et al 2015, Prior et al 2016, Tyagi et al 2016, Maspero et al 2017a, 

Table 2.  Statistics of the 10/27 prostate, 10/18 rectal and 10/14 cervical cancer patients among the test set. Mean dose difference relative 
to the prescribed dose and gamma pass rate among the average dose difference calculated on a threshold of 10%, 50%, and 90% of the 
prescribed dose and the intersection of the body contour between CT and sCT images (Body). The values are reported in terms of average 
(±1σ) and range [min; max].

Tumour location Volume of interest

Dose difference  
CT−sCT

DPrescr
 [%]

Pass rate  

γ3%,3 mm [%]

Pass rate  

γ2%,2 mm [%]

D> 10% −0.1 ± 0.1 98.1 ± 1.2 95.0 ± 2.3

[−0.3;0.2] [96.3;99.4] [91.4;97.8]

D> 50% −0.1 ± 0.2 99.4 ± 0.6 97.4 ± 1.6

Prostate [−0.4;0.5] [98.1;100] [93.8;99.7]

(10 patients) D> 90% −0.3 ± 0.4 99.7 ± 0.2 97.6 ± 2.3

[−1.1;0.4] [99.3;100] [91.8;99.9]

Body 0.0 ± 0.1 98.8 ± 0.7 96.8 ± 2.1

[−0.2;0.1] [97.5;99.6] [93.2;98.9]

D> 10% −0.2 ± 0.2 97.1 ± 1.1 91.6 ± 3.3

D> 50% −0.3 ± 0.3 98.5 ± 1.1 93.2 ± 3.6

Rectum [−0.8;0.0] [96.0;99.7] [86.5;97.7]

(10 patients) D> 90% −0.3 ± 0.5 98.5 ± 2.1 92.0 ± 6.6

[−1.0;0.6] [93.2;99.9] [77.9;98.2]

Body −0.2 ± 0.1 97.6 ± 1.2 94.0 ± 3.0

[−0.4;  −  0.1] [95.7;98.8] [88.7;96.8]

D> 10% −0.1 ± 0.3 97.1 ± 1.7 92.9 ± 3.7

[−0.6;0.2] [93.8;98.7] [84.3;96.1]

D> 50% −0.2 ± 0.5 99.6 ± 1.9 94.5 ± 4.6

Cervix [−1.5;0.4] [94.0;100] [83.1;98.6]

(10 patients) D> 90% −0.1 ± 0.7 98.5 ± 3.1 90.6 ± 6.8

[−1.6;1.0] [89.9;99.9] [72.3;96.3]

Body −0.1 ± 0.3 97.7 ± 1.7 93.6 ± 4.0

[−0.9;0.2] [94.3;99.4] [86.6;98.1]

Phys. Med. Biol. 63 (2018) 185001 (11pp)



8

M Maspero et al

Persson et al 2017), and to other studies in the pelvic area (Kemppainen et al 2017, Liu et al 2017, Wang et al 
2018). Dose deviations should be interpreted in the context of the clinically acceptable uncertainty in radia-
tion therapy. When considering the complete radiotherapy pathway, including uncertainties in beam calibration, 
relative dosimetry, dose calculations, and dose delivery, the International Commission on Radiation Protection 
estimated an uncertainty of 5% in a clinical set-up (ICRP 2000, Thwaites 2013). The dosimetric deviation of an 
MR-based dose calculation (assuming CT to be the ground truth) of less than 0.5% only makes up for a small 
fraction of the total uncertainty (Persson et al 2017).

In this study, a conventional multi-gradient echo sequence was employed as already used by Tyagi et al (2016), 
Maspero et al (2017a) and Kemppainen et al (2017). This is the first time that multi-contrast MR images acquired 
with a single sequence have been used as input of a deep learning network for sCT generation. Previous work 
showed that multi-contrast images from different sequences, e.g. Dixon and ultra-short echo time could be used 
for generating images for attenuation correction for MR-PET (Leynes et al 2018). It is still unclear whether the 
use of multi-contrast images effectively increase the quality sCT generation or facilitate the training of the net-
work. Future investigations may clarify this aspect, however, based on our findings, we believe that the use of deep 
learning makes specialised MR sequences, e.g. ultra-short echo time for direct bone visualisation, obsolete. This 
may lower the requirements for MR sequences used for sCT generation as well as the acquisition time. Of course, 
a high geometric fidelity, e.g. by means of high bandwidth, of the sequence is still required as adopted in this 
work. In particular, for the sCT generation method here proposed, evaluation of geometric accuracy, especially 
in the case these sCT images may be used for position verification purposes is still required.

In general, lowering requirements for the quality of MR sequence used for sCT generation may be of par
ticular interest for MRgRT. For example, investigating the use of accelerated MR imaging techniques (Brix et al 
2014, Feng et al 2014, Hollingsworth 2015) to speed up the acquisition time may facilitate an MR-based dose 

Figure 4.  Boxplots of targets (CTV, PTV) and OARs DVH parameter differences between dose on CT and sCT (CT–sCT) for the 
prostate (top), rectal (middle) and cervical (bottom) cancer patients. The values refer to the whole course of fractionated treatment 
and are rescaled to the prescribed dose (left) or the total volume of the specific structure (right).

Phys. Med. Biol. 63 (2018) 185001 (11pp)
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calculation also for locations affected by high tissue mobility, which is a currently unmet need of MR-only radio-
therapy (Owrangi et al 2018).

In this study, we enforced consistency of patient anatomy during training by performing rigid registrations 
and assigning air locations from MRI to CT. As an alternative approach, non-rigid registrations could have been 
adopted. However, we decided to avoid this approach since it would have introduced additional geometrical 
uncertainties, due to registration errors (Thor et al 2011, 2013), that we preferred not to introduce in this study. 
Also, non-rigid registration could have masked possible image deformation that are inherent in MR images 
(Fransson et al 2001, Wang et al 2004, Walker et al 2014). Future studies are advocated to clarify this aspect. Also, it 
is of interest to investigate the use of GANs in an unpaired fashion (Zhu et al 2017) since it may eliminate the need 
of a perfectly aligned dataset in the training phase as shown by Wolterink et al (2017) for brain cancer patients. 
Training in an unpaired fashion may be of particular interest since it may avoid the need of minimising inter-scan 
differences by copying air pockets from sCT to CT. Moreover, a 2.5D or 3D network could also be investigated to 
solve the discontinuities observed in the inferior-superior direction after stacking the transverse planes.

The sCT generation was performed in less than 6 s for a single patient volume. The computation time can 
be affected by many factors, e.g. the type of GPU adopted, the matrix and FOV size. When compared to existing 
methods, the sCT images presented in our work are generated faster even when compared to other deep-learning 
based methods (Han 2017, Wolterink et al 2017, Dinkla et al 2018). This can facilitate daily sCT generation for 
application where time constraints are crucial, e.g. in MRgRT (Lagendijk et al 2014). A limitation of the cur
rent study is that MR-based dose calculations were assessed in the absence of magnetic field. For MRgRT, dose 
calculations require particular attention due to the presence of a magnetic field affecting the dose distribution, 
especially near air cavities (Raaijmakers et al 2008). Given the promising results, a future study will investigate 
whether MR-based dose calculation on sCT obtained from the same network can be considered accurate also in 
the presence of magnetic fields. Also, before clinical usage in a complete MR-only workflow, the sCT generation 
method still needs to be thoroughly tested for accuracy in position verification. Moreover, a safe clinical imple-
mentation may also require designing quality assurance methods to validate the sCT images in the absence of the 
‘gold standard’ offered by CT.

5.  Conclusion

To conclude, this study shows, for the first time, that sCT images generated with a deep learning approach 
employing a cGAN and multi-contrast MR images acquired with a single acquisition facilitated accurate dose 
calculations in prostate cancer patients. It was further shown that without retraining the network, the cGAN 
could generate sCT images in the pelvic region for accurate dose calculations for rectal and cervical cancer 
patients. A particularly attractive feature of our method is its speed as it allows sCT generation within 6 s on a 

GPU and within 21 s on a CPU. This could be of particular benefit for MRgRT applications.
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