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CHAPTER 1

APPLICATIONS OF RANDOMIZED
RESPONSE METHODOLOGY IN
E-COMMERCE

Abstract: Randomized response is a method for intentionally misclassifying or perturbing part of

a data set. This misclassification can be done either in data collection by a respondent following

instructions for misclassification laid out by a researcher, or in a statistical disclosure control setting

by a researcher after the data are collected. Both applications have the aim to protect the privacy of

individuals. In this chapter we review the literature on randomized response, focussing on similarities

and differences between the two applications. In particular we summarize a new approach to take into

account the problem that in the data collection context some respondents do not follow the randomized

response instructions. We end with a section a short discussion of building a classification tree

when the dependent variable is collected with randomized response. Privacy protection is a crucial

objective in e-commerce work and we argue that randomized response methodology can make major

contributions to this objective.
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2 APPLICATIONS OF RANDOMIZED RESPONSE METHODOLOGY IN E-COMMERCE

1.1 INTRODUCTION

Randomized response is a method for intentionally misclassifying or perturbing part of a data set. This

misclassification can either be done by a researcher or by a respondent in a survey or other research

study. The motivation is the same in both cases: Misclassification or data perturbation provide a

convenient mechanism for controlling the amount of information that can be extracted from a data

set. The web age has brought us an avalanche of information about individual behavior related to

e-commerce, ranging from search for information about commodities to shopping and post-purchase

activities. At a result, there has never been a stronger need to apply and develop statistical methods

that enforce individual rights for controlling the dissemination of personal information. This chapter

reviews and discusses the use of randomized response methodology as a means to provide this privacy

protection in the context of two e-commerce problems.

The first problem is collecting e-commerce self-report data on sensitive topics while protecting

the privacy of individuals. For example, in online-surveys individuals may be asked for self-reports

on such sensitive topics as their financial situation (e.g., loans, or income), their personal uses of

male cosmetics or drugs to overcome impotence, their health problems such as urinary incontinence,

or medical prescriptions, but also on such potentially less sensitive issues as shopping expenditures,

and default rates in credit card usage. It is well–known that surveys into topics like these lead to

refusals to answer or untruthful answers. Randomized response has been shown to be the currently

best method of dealing with such sensitive issues (see Lensvelt et al., 2005), and to also work work

well in web-based applications (Lensvelt et al., 2006). Therefore we see much potential for RR in

e-commerce data collection applications.

The second problem that randomized response can address in the context of e-commerce is

statistical disclosure control (SDC). The need for SDC in the area of e-commerce has been re-

viewed recently by Fienberg (2006). Randomized response can be used to misclassify part of

a data source so that the data source can be analyzed by third parties who are not the original

owners of the data source. A special application in this area is in the context of data integra-

tion of multiple databases. Here multiple data bases are linked with the aim to mine the data

while preserving data confidentiality. Privacy-preserving data-mining randomized-response meth-

ods misclassify the parts of the data that are not used for linking the databases (see, for a re-

view, www.csee.umbc.edu/ kunliu1/research/privacyreview.html; see for example Ambia-

nis, Jakobsson and Lipmaa, 2003; Du and Zhan, 2003; Evfimievski, 2002). Related work is reported

by Karr and Fienberg (2005), Fienberg (2005) and Trottini et al. (2004). Although statistical dis-

closure control applications of randomized response are well known and recently further developed

under the name of PRAM (Gouweleeuw, Kooiman, Willenborg and de Wolf, 1998; Kooiman, Wil-
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INTRODUCTION 3

lenborg and Gouweleeuw, 1997), an abbreviation of post- randomization, these methods have not yet

become mainstream.

Originally, randomized response was proposed by Warner (1965) as a tool for collecting infor-

mation on sensitive topics. He offered a respondent two complementary questions such as A. I did

use hard drugs last year and B. I did not use hard drugs last year. A randomizing device such as a

dice, with an outcome unknown by the interviewer, indicates to the respondent which question had

to be answered. If, for example for one dice, an outcome of 1, 2, 3 or 4 is linked to answering A and

an outcome of 5 or 6 to answering B, one could view the answer of A as a correct answer and the

answer to B as a misclassified answer, with a misclassification probability of 2/6. Due to the potential

misclassification that a respondent may or may not encounter, respondents may feel safe to answer

the sensitive topic, yet it is possible to estimate the prevalence of the sensitive topic defined in A.

Characteristic for this application of randomized response is that respondents are offered a sensitive

question and the misclassification is carried out by the respondent. However, very early in the

development of randomized response it was noticed that the same methodology could be applied

as a tool for statistical disclosure control (Warner, 1971). I.e., after data are collected the partial

misclassification of the data is carried out by the owner of the data. Thus the owner of the data can

hand over the data to others without risking privacy violations of individuals. The receiving agency

only needs to know about the misclassification key for the sample, so that statistical analyses can be

carried out that take into account the misclassification (compare Chen, 1989).

Randomized response as a tool for data collection and as a tool for statistical disclosure control

are mathematically identical. For example, the data collection application as well as the statistical

disclosure control application use the same equations to obtain univariate estimates and variances.

Yet, as was pointed out by van den Hout and van der Heijden (2002), in practice the procedures differ.

Differences are

A. Randomized response as a data collection tool presupposes the cooperation of respondents

in the sense that they are allowed to follow the rules prescribed by the randomized response

design. There is evidence that some of the respondents do not do this. This problem has to be

handled in the analysis phase. In contrast, randomized response as a SDC tool does not have

this problem.

B. Whereas randomized response as a data collection tool is used mainly to randomize response

variables (the sensitive topics), randomized response as a SDC tool can be used both to

randomize explanatory variables (background characteristics of respondents) as well as to

randomize the response variables of a study. When a single source of data is to be protected by

SDC, it may be most efficient to use SDC to hide the identity of the respondent by misclassifying
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4 APPLICATIONS OF RANDOMIZED RESPONSE METHODOLOGY IN E-COMMERCE

his background characteristics, so that answers to sensitive topics in a questionnaire cannot

be linked directly to individuals. When a data source is released with the aim to integrate it

with other data sources, background characteristics should not be misclassified as these are

necessary for linking but randomized response can be used for misclassifying the response

variable. In applications where distinctions between response and explanatory variables are

important, this may lead to different statistical analyses for both applications.

C. Related to B., randomized response as a data collection tool should use a randomization

scheme that is perceived as protective by respondents, and, at the same time, lead to as much

information as possible. The protective aspect calls for large misclassification probabilities,

whereas the information demand calls for small misclassification probabilities. In randomized

response as a tool for SDC the misclassification probabilities can be chosen in such a way

that the outcome is optimal, without the necessity to take the perceptions of respondents into

account.

In this chapter we give an overview on statistical methods for the analysis of randomized responses.

We discuss bivariate and multivariate methods and discuss recent developments in this field. In section

1.2 and 1.3 of this chapter we give an overview of the literature on randomized response, with an

emphasis on the similarities and differences of the two applications of randomized response. In regard

to the differences, we focus on the statistical analysis issues A and B, introduced above. For issue

C, we refer to van den Hout and Elamir (2006). In section 1.4 we summarize a new development

that takes into account that respondents may not follow the regulations laid out by the randomized

response design. As e-commerce data are used often for data mining purposes and classification

trees are a popular mining tool, in section 1.5 we provide some new results regarding the use of

classification trees in the context of randomized response data.

We note that in this chapter we focus on the methodology for misclassifying categorical data.

Similar ideas are available for perturbing continuous data or mixtures of continuous and discrete data

(see Fox & Tracy, 1986; Chaudhuri & Mukerjee, 1988). Since the same principles apply in these

more general settings, we do not consider different data types explicitly.

1.2 UNIVARIATE ANALYSIS

This section introduces our notation and gives a short overview of available tools of analysis for

applications of randomized response that are shared by the data collection and SDC approaches.

As an example, consider the following form of the so-called forced classification design (Boruch,

1971). Let the outcome of two dice determine whether the answers will be misclassified. For the
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data collection approach this would mean that if the sum of the outcomes of the two dice is 2, 3 or 4

(probability 1/6), then the respondent is asked to give the answer "yes"; if the sum equals 11 or 12

(probability if 1/12), then the respondent is asked to give the answer "no"; if the sum is in the range

5-10 (probability is 3/4), the respondent is asked to reveal his true status. Let θ1 be the probability of

"yes" for the true status ("no" has probability θ2 = 1− θ1) and let θ∗1 be the probability of "yes" for

the observed (and partly misclassified) status ("no" has probability θ∗2 = 1− θ∗1 ). It follows that

θ∗1 = 1/6 + (3/4)θ1 and

θ∗2 = 1/12 + (3/4)θ2. (1.1)

These equations can be rewritten in terms of conditional misclassification probabilities. Let the

conditional misclassification probabilities be

pij = IP (category i is observed| true category is j), (1.2)

then these probabilities can be collected in a matrix given by

P =


 p11 p12

p21 p22


 =


 11/12 2/12

1/12 10/12


 . (1.3)

If we collect the probabilities θ1 and θ2 in a vector θ, and θ∗1 and θ∗2 in a vector θ∗ we can write

θ∗ = Pθ (1.4)

(compare Chaudhuri and Mukkerjee, 1988; van den Hout and van der Heijden, 2002). Many

randomized response designs can be written in this way, and this formulation in (1.4) can also be

extended to situations where the number of categories is larger than two. Further background and

more complex randomized response designs can be found in Chaudhuri and Mukerjee (1988) and

Fox and Tracy (1986).

1.2.1 Estimation

Estimation of θ∗ and θ is discussed in detail in van den Hout and van der Heijden (2002) and we

summarize their results here. If we want to estimate the probabilities for the true status θ in (1.4), we

plug in the observed proportions p∗ for θ∗, and an estimate for θ is obtained by

θ̂ = P −1p∗. (1.5)

Thus θ̂ is a moment estimator. If the elements of θ̂ are between zero and 1, then θ̂ is also a maximum

likelihood estimator. Note that (1.1) shows that if p∗1 is below chance level, the moment estimator

θ̂1 is negative. In SDC applications this can happen only because of sampling fluctuation. In data
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6 APPLICATIONS OF RANDOMIZED RESPONSE METHODOLOGY IN E-COMMERCE

collection applications this can also happen when respondents do not follow the instructions for the

randomized response design, and we come back to this issue in section 1.4. If a moment estimate is

negative, the maximum likelihood estimate will be on the boundary of the parameter space (i.e., the

estimate is zero). For binary variables, maximum likelihood estimation is trivial as the estimate on

the boundary of zero will place the other estimate on the boundary of one. For variables with more

than two levels, an EM algorithm could be used to find the maximum likelihood estimates (compare

van den Hout and van der Heijden, 2002). In later sections we discuss this boundary problem and

solutions in more detail.

1.3 BIVARIATE ANALYSIS AND EXTENSIONS

Bivariate analyses can be carried out by generalizing equation (1.4). Two types of extensions have

to be taken care of: first, the matrix P in (1.3) has to be adjusted so that it can handle bivariate

problems; second, bivariate problems allow for the definition of restrictive models for θ.

First we consider three types of extensions of equation (1.3). These are

1. the situation that both variables are randomized response variables and can be considered as

misclassified;

2. the situation that the dependent variable is misclassified, a condition we encounter in the data

collection approach of randomized response as well as in applications where multiple data

sources are integrated, and

3. the situation that the explanatory variable is misclassified, a result we encounter in the SDC

approach of a single data source.

We consider the situation that both variables are binary (but this can be easily generalized to a situation

with two polytomous variables). Thus we can collect the four probabilities referring to the true status

into a vector θ and the four probabilities referring to the observed status into a vector θ∗. In all three

situations we generalize (1.3) and (1.4).

We first generalize (1.3). Let variable A and variable B be two variables that are possibly

misclassified. For variables A and B misclassification probabilities are pA
ij and pB

ij respectively,

defined as in (1.2), and these misclassification probabilities are collected in misclassification matrices

PA for variable A and PB for variable B. Thus variables A and B are misclassified independently.

The joint misclassification probabilities can now be collected in a 4 × 4 transition matrix PAB

that can be constructed using a Kronecker product:

PAB = PA ⊗ PB =


 pA

11PB pA
12PB

pA
21PB pA

22PB


 . (1.6)
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BIVARIATE ANALYSIS AND EXTENSIONS 7

We consider again the three situations 1, 2 and 3. Situation 1, where both variables are misclassified,

yields simply the general form of (1.6). For situations 2 and 3, let variable A be the explanatory

variable and variable B be the response variable. In situation 2, the response variable A will be

misclassified by randomized response. In (1.6) PAB simplifies since PB = I . In situation 3,

the explanatory variable B will be misclassified by randomized response, so PAB simplifies since

PA = I .

If we collect the bivariate probabilities for the true status in a 4-vector θ and the bivariate

probabilities for the observed status in a 4-vector θ∗, then θ and θ∗ are related by

θ∗ = PABθ. (1.7)

Two interesting statistical models for the bivariate probabilities for the true status θ are, first, the

model where variables A and B are dependent and the elements in θ are free, and the model where

variables A and B are independent

θAB
ij = θA

i θB
j . (1.8)

We note that in both situations when the explanatory variable or the response variable is misclassified

by randomized response, (1.8) refers to the situation of no subgroup differences in the probabilities

of the response variable (for example, the prevalence of the sensitive behavior).

1.3.1 Estimation

This section considers the dependence and the independence models. We will discuss two methods

for estimating these models, one by setting up the likelihood and maximizing it, and a second one

that is based on analyzing the observed data directly.

Summarizing the literature, Van den Hout and van der Heijden (2004) describe two ways to find

maximum likelihood estimates for the dependence and independence models, one is through the EM

algorithm and one is by maximizing the likelihood directly. The idea of maximizing the likelihood

directly is that (i) the likelihood is set up in terms of the observed responses and the probabilities for

the observed status θ∗; (ii) for the dependence model we replace θ∗ by PABθ and maximize the

likelihood over θ; and (iii) for the independence model we replace θ∗ by PABθ with elements of θ

equal θAB
ij = θA

i θB
j and maximize the likelihood over θA

i and θB
j ; (iv) by comparing the likelihoods

of the two models a likelihood ratio chi-square test can be carried out testing the null-hypothesis of

independence against the alternative hypothesis of dependence (see also Maddala, 1983).

More conventional methods analyze the counts for the observed status directly - ignoring the fact

that one or more variables are misclassified by randomized response. It may perhaps come as a

surprise that a conventional analysis of the observed counts cross-classifying variables A and B gives
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8 APPLICATIONS OF RANDOMIZED RESPONSE METHODOLOGY IN E-COMMERCE

a correct answer about the cross-classified status of true variables. Thus, if a chi-square test is carried

out testing for independence in the 2x2 table of observed responses, this test provides the correct

answer about independence in the 2x2 table of the (unobserved) true responses. If only one of the

two variables is misclassified, then parameter estimates for θA
i and θB

j can be found using univariate

methods. If both variables are misclassified, the joint probabilities can be found in a slightly more

complicated but similar way (see Fox and Tracy, 1986, p. 52).

We illustrate with an example taken from van den Hout and van der Heijden (2004), where a

randomized response design is used that employs red and black cards. In Table 1.1. (a) two variables

are cross-classified that were collected in as study on compliance with social benefit regulations (Van

Gils, et al. 2001). The variable G denotes gender. The observed red/black answers to the RR

Table 1.1. (a) Classification by Gender (G) and RR Answer (F ∗) and (b) estimated

classification by Gender (G) and True Answer (F )

(a)

F ∗

G red black total

male 218 500 718

female 152 438 590

total 370 938 1308

(b)

F

G yes no total

male 124.00 594.00 718

female 56.67 533.33 590

total 180.67 1127.33 1308

question are denoted by F ∗. The question is whether or not the respondents earned money by doing

some odd jobs without informing the office that provides their social benefit. This is a sensitive

question since not informing the office is against regulations. Let the binary variable F denote the

not-observed yes/no answers that we will call the true answers.

First we use the conventional method. Applying the χ2-test to the observed values in Table 1.1.

(a) yields X2 = 3.377 with 1 degree of freedom and p-value 0.066. When we choose significance

level α = 0.05, the data do not support rejecting the null hypothesis.
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We now show that maximizing the likelihood taking the misclassification into account leads to

the same value of X2. Let n∗ = (n∗11, n
∗
12, n

∗
21, n

∗
22)

t denote the observed frequencies in Table 1.1.

(a). We first construct PGF . Since gender (G) is not misclassified, we obtain

PGF =




8/10 2/10 0 0

2/10 8/10 0 0

0 0 8/10 2/10

0 0 2/10 8/10




. (1.9)

This matrix is used to estimate frequencies n = (n̂11, n̂12, n̂21, n̂22)
t in the classification by G and

F by

n = P −1
GF n∗, (1.10)

see Table 1.1. (b). (We note that all counts are positive, so the moment estimate is equal to the

maximum likelihood estimate in this case. If one or more of the counts would have been negative,

we would have to maximize the likelihood equation through the EM algorithm or directly.) Next,

we estimate the expected frequencies in this table, denoted by m̂ = m̂11, m̂12, m̂21, m̂22, under the

model of independence by m̂ij = n̂i+n̂+j/N . Since we want to fit the model of independence, we

compute the fitted frequencies under this model, denoted by m̂∗, by

m̂∗ = PGF m̂ (1.11)

and compare them with the observed n∗. Again we get X2 = 3.377. Thus, this example illustrates

that prevalence estimates can be obtained either from Table 1.1. (a) by applying univariate estimation

methods for males and females separately, or directly from Table 1.1. (b).

1.3.2 Extensions to multivariate analyses

The approach to maximize the likelihood directly, presented in the former paragraph, is also useful

in other situations. Basically the framework can be summarized by the following steps:

1. setting up the likelihood in terms of the observed responses and the probabilities for the

observed status θ∗;

2. replacing the probabilities for observed status θ∗ by the product Pθ, and

3. defining a (restrictive) model for θ.

For step 3, many models can be chosen and thus the framework is very powerful. We give a few

examples from the literature. Van den Hout and van der Heijden (2004) generalize the results for

the dependence and the independence model to loglinear models in general. In this situation, the

P -matrix accommodates possibly more than two variables. Böckenholt and van der Heijden (2004,
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10 APPLICATIONS OF RANDOMIZED RESPONSE METHODOLOGY IN E-COMMERCE

2007) and Fox (2005) use this framework to estimate the Rasch model (Rasch, 1980) designed for

measuring individual differences with items that form a psychometric test.

An early application of this approach can be found in Maddala (1983) for logistic regression in

the data collection approach of randomized response. Here the response variable is misclassified and

the framework can be applied in a straightforward way (compare also Scheers and Dayton, 1988;

Lensvelt et al., 2006). Van den Hout, van der Heijden and Gilchrist (2007) also apply the model to

multivariate logistic regression models where the response variables are all misclassified by using the

data collection approach of randomized response. On the other hand, Van den Hout and Kooiman

(2005) generalize the linear regression model to the situation where one of the explanatory variables

is misclassified using randomized response. This latter class of models may be more useful in the

SDC approach of a single data source.

1.4 NONCOMPLIANCE IN DATA COLLECTION APPROACH

Since in the SDC approach of randomized response the misclassification process is computerized,

we know the misclassification probabilities collected in P . This is not necessarily true in the data

collection approach of randomized response, where people may not follow the rules indicated by

the randomized response design. If this problem is present in the data but ignored in the analysis,

prevalence estimates are biased downwards with the possible consequence that one or more elements

of θ̂ fall on the boundary of the parameter space.

Recently, Böckenholt and van der Heijden (2007) and Cruyff et al. (2007) tackled this problem

by defining models for multivariate randomized response data that allow for a specific form of

noncompliance of respondents. This specific form of noncompliance is that a respondent either

follows the rules indicated by the randomized response design or answers negatively to every sensitive

question. Let λ be the probability to follow the rules of the randomized response design. Then

θ∗ = λPθ + (1− λ)v, (1.12)

where v is the D-dimensional vector (0, . . . , 0, 1)t. Clearly, if the model specified for θ has as many

parameters as θ has elements, then (1.12) is not identified (see Cruyff et al (2007), for an illustration).

Therefore restrictive models are needed for θ in order to arrive at an identified model. Böckenholt

and van der Heijden (2007) use the Rasch model, a restrictive latent variable model well-known in

psychometrics. Cruyff at al. (2007) use constrained loglinear models.

Interestingly, as was noted by Cruyff et al. (2007), the model can also be rewritten as

θ∗ = Qθ (1.13)
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NONCOMPLIANCE IN DATA COLLECTION APPROACH 11

where the transition matrix Q has elements

qij =





(λ)pij for i 6= D, j ∈ {1, . . . , D}

(λ)pij + (1− λ) for i = D, j ∈ {1, . . . , D}
(1.14)

This shows that the framework that we presented in section 3, using θ∗, P and θ, can now be replaced

by the following steps using θ∗, Q and θ:

1. setting up the likelihood in terms of the observed responses and the probabilities for the

observed status θ∗;

2. replacing the probabilities for observed status θ∗ by the product Qθ, and

3. defining a (restrictive) model for θ.

Even though the form of noncompliance that a respondent is allowed to exhibit is limited in

comparison to the types of noncompliance one can theoretically envisage, our experience with

these models is that in practical situations, models based on (1.12) fit the data rather well. More

sophisticated models for noncompliance (i.e., involving the matrix Q) can be found in Böckenholt,

Barlas and van der Heijden (2007), where also more sophisticated psychometric models for θ can be

found. The models defined in Bockenholt and van der Heijden (2007) also allow for covariates, both

for the parameter λ as well as for the latent variable.

In the framework just presented, estimates of θ yield unbiased estimates of prevalence of the

sensitive behavior for those respondents that answer the sensitive questions following the rules laid

out by the randomized response design. Univariate estimates for a variable are obtained by adding

up elements in θ over the other variables. An example from Böckenholt and van der Heijden (2007)

is shown in Table 1.2.. In a survey on social benefit fraud six randomized response questions were

posed to the respondents concerning violation of health regulation and work regulations. The table

illustrates the importance of taking into account that some respondents do not follow the rules dictated

by the randomized response design. The estimated probability of not following the design is 17 %

for the work items and 13 % for the health items. When these percentages are taken into account

the prevalence for the work items, for example, increases from .030 and .110 to .074 and .159,

respectively.

Estimating θ also allows for studying the probabilities that relate to the number of sensitive

characteristics that are displayed (i.e., for three items this can be zero, one, two or three). This is

illustrated in Table 1.3.. Here we find that - corrected for the respondents that do not follow the

randomized response design - 71 percent of the respondents follows both the work as well as health

regulations.
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12 APPLICATIONS OF RANDOMIZED RESPONSE METHODOLOGY IN E-COMMERCE

Table 1.2. Non–Compliance Estimates and 95% Bootstrap Confidence Intervals

Domain Items No Bias Correction Bias Correction

Health 1 .002 (.000, .015) .033 (.010, .050)

2 .014 (.000, .034) .053 (.033, .075)

3 .048 (.027, .070) .083 (.055, .112)

4 .085 (.063, .107) .130 (.087, .159)

Work 1 .030 (.009, .052) .074 (.050, .096)

2 .110 (.086, .133) .159 (.104, .190)

Table 1.3. Estimated Compliance Percentages for Health and Work Domains

Counts Work Total

Health 0 1 2

0 71 7 3 81

1 7 2 1 11

2 3 1 1 5

3 1 1 1 2

4 0 0 0 1

Total 82 11 6 100

1.5 CLASSIFICATION TREES

Frequently, e-commerce data are analyzed with exploratory data mining tools such as classification

trees. We now discuss classification trees in the context of randomized response data. To our

knowledge, this methodology has not yet been considered in this context.

Classification trees provide a breakdown of a population in sub-populations. In our situation,

where the response variable is a sensitive characteristic, the aim is to find sub-populations that differ

as much as possible in terms of their prevalence in the sensitive behavior. A typical result could be

this: let there be an overall prevalence of .20; if the explanatory variables (in this context also called
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splitting variables) are age and gender, the first split is between males and females (with a respective

prevalence of .25 and .11, say); and a second split is only found for the males, namely males younger

than 22 years with a prevalence of .18 and males older then 22 years with a prevalence of .28.

We discuss two applications of randomized response when the response variable is randomized,

and when the explanatory variables are randomized. We first note that the estimation problem of a

classification tree differs from the estimation problems discussed thus far because for classification

trees there is no overall likelihood that is to be maximized, but instead a subproblem has to be solved

for each separate split in the classification tree. That is, if we consider the example above, the first

sub-problem is determining the splitting variable used for the first split. Specifically, we need to

determine whether there is a split on gender or a split on age. Then, once the first split is determined,

for every node separately (here: males separately and females separately) again a split has to be

determined.

One possible criterion to determine the splitting variable is the chi-square test. If the p-value

associated with the chi-square for gender is smaller than the p-value of the chi-square for age, then

the variable gender will be used for the first split. Thus, the correct tree can be found as follows when

the dependent variable is a randomized response variable by:

1. determining the classification tree on the observed (i.e. randomized) responses;

2. transforming the prevalence estimates found for each subpopulation using equation (1.5).

We now present an informal proof that this approach leads to the correct classification tree when

the dependent variable is randomized. For this result to hold, it is only necessary to show that the

order of the splitting variables for the observed data is identical to the order of the splitting variables

for the true data. In order to show this, we use the results from estimation section 1.3.1 for bivariate

problems. There we illustrated that there is a one-to-one correspondence between, on the one hand,

a chi-square test on the frequencies in an observed 2x2 table where one variable is measured with

randomized response and the other variable has two subgroups, and, on the other hand a chi-square

test on the frequencies in the corresponding true 2x2 table. It follows immediately that, if the choice

between splitting variables in a classification tree is made using the highest possible value of the

chi-square test, then the order of chi-squares for the different splitting variables derived for the

observed table is identical to the order of chi-squares for the different splitting variables derived for

the observed table, which concludes the proof.

Table (1.4.) provides an illustration. On the left of this table we find the true answers and on the

right the observed (i.e. randomized) answers. At the top we find frequencies for the 2× 2× 2 table

of Gender by Age by Answer on the sensitive question. In this 2×2×2 table the question is whether

the first splitting variable will be Gender or Age. For the true answers the chi-square for gender is
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5.694 and the chi-square for age is 1.007, showing that the gender chi-square is 5.694/1.007 = 5.656

times as large. For the observed answers the chi-square for gender is 1.137 and the chi-square for age

is .201, showing that the gender chi-square is also (1.137/.201 =) 5.656 times as large. This illustrates

that the relative order of p-values for different splitting variables in the true table will be identical to

the relative order of p-values for different splitting variables in the observed table.

Table 1.4. (a) Gender by Age by True Answer and (b) Gender by Age by Randomized

Answer. . Pearson chi-square for marginal gender table in (a) is 5.694 and in (b) 1.137;

Pearson chi-square for marginal age table in (a) is 1.007 and in (b) .201

(a)

2x2x2 answer

yes no total

male,young 2 100 102

male, old 5 60 65

female, young 5 30 35

female, old 2 15 17

total 14 205 219

gender answer

yes no total

male 7 160 167

female 7 45 52

total 14 205 219

age answer

yes no total

young 7 130 137

old 7 75 82

total 14 205 219

(b)

2x2x2 answer

yes no total

male, young 18.5 83.5 102

male, old 14.6 50.4 65

female, young 9.6 25.4 35

female, old 4.3 12.7 17

total 47.0 172.0 219

gender answer

yes no total

male 33.1 133.9 167

female 13.9 38.1 52

total 47.0 172.0 219

age answer

yes no total

young 28.1 108.9 137

old 18.9 63.1 82

total 14 205 219
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This result holds when the response variable is a randomized variable. However, when the

explanatory variables are randomized response, the results are more complicated. One of the reasons

is that some of the explanatory variables are not necessarily randomized, and as a result the chi-square

tests using these explanatory variables will have more power than the explanatory variables that are

randomized. Therefore, in this situation it seems preferable to transform first the observed proportions

p∗ into p using p = P −1p∗, and then to construct a classification tree on the elements of p.

1.6 DISCUSSION

Privacy protection is a crucial objective for both data collection and statistical analyses in e-commerce

work (Fienberg, 2006). The randomized response methodology can make major contributions to this

objective. As we have shown in this chapter, much statistical machinery is already available to

address directly problems of privacy protection in analyses of publicly available databases, and

"privacy-preserving statistical databases", where the data are altered prior to delivery for data mining.

Moreover, randomized response methods can also be beneficially employed for collecting information

about sensitive topics in e-commerce. Although some arguments could be raised against the use of

randomized response for data collection purposes, there are counterarguments that support the use of

this methodology as we show below:

1. It could be questioned whether the randomized response method is toot difficult to be under-

stood by respondents , especially when it is used in an internet survey. Yet, we have good

experience with this data collection method, see Lensvelt et al. (2006) for the instruction

that we offer respondents to explain randomized response to them, and also see our website

www.randomizedresponse.nl. It took considerable fine-tuning to arrive at these instructions

and we believe that they can be used beneficially as a starting point for anyone who want to

apply randomized response. In general, we emphasize that any randomized response instruc-

tions should be tested carefully using cognitive survey lab methods (see Boeije and Lensvelt,

2002, for an example).

2. Related to this, it could be questioned whether respondents are willing to follow randomized

response instructions. However, recent developments described in this chapter allow taking

care of respondents who do not follow the instructions, making the randomized response

methodology more suited to real life applications.

3. A drawback of randomized response is that it reduces the power in statistical analyses. Clearly,

misclassification has the effect that associations between variables in the populations are harder
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to detect. Yet, we believe that, because web–based data collection is becoming increasingly

cheaper, this is not a serious drawback for the effective application of randomized response.

In conclusion, the randomized response framework has much to offer to protect the privacy rights

of individuals both during and after the collection of data. Although the framework scores high

on usability and transparency criteria, much work remains to be done to make this methodology a

mainstream and routine component of statistical work. The practical importance and urgency of this

work cannot be underestimated, especially in view of the mounting tensions between confidentiality

and the ever increasing e-commerce data availability.
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