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Abstract The description of wetting phenomena on the continuum scale is a challenging
problem, since intermolecular interactions, like van derWaals forces between liquid and solid,
alter the flow field at the contact line. Recently, these effects were included in the smoothed
particle hydrodynamics method by introducing a contact line force (CLF) on the continuum
scale. This physically based contact line force model is employed here to simulate two-phase
flow in a wide range of wetting dynamics parametrized by capillary number. In particular,
dynamic contact angles at various capillary number values are calculated by CLF model
and compared to measured values. We find that there is significant disagreement between
simulated and measured results, specially at low wetting speeds. It is indeed expected that
most of the driving force is dissipated to overcome strong liquid–solid interactions, which
are not adequately accounted for in the existing CLF model. Therefore, we have extended
that model to account for stick-slip (SSL) behavior of the contact line caused by solid–fluid
interactions. The new SSL model results in dynamic contact angle values that are in good
agreement with experimental data for the full range of wetting dynamics.

Keywords Dynamic contact angle · Contact line force · Two-phase flow · Stick-slip
behavior · Smoothed particle hydrodynamics (SPH)
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CaTp Model parameter (capillary number at transition point)
d Distance between walls/tape in simulation domain, L
d Distance to solid wall, L
E Energy, L2MT−2

fwn Force per unit area acting on fluid–fluid interface, ML−1 T−2

fwns Force per unit line acting at contact line, MT−2

FVOL Force per unit volume, ML−2 T−2

g Gravitational field strength, LT−2

h Smoothing length of kernel function, L
K PI controller parameter
l Domain length, L
L Kernel correction matrix
m Mass, M
n̂ Unit normal vector
p Pressure, ML−1 T−2

r Distance, L
S Shepard correction for kernel function
t Time, T
v Velocity, LT−1

V Volume, L3

W Kernel function, L−3

x Position, L
α Model parameter (fractional viscosity increase at the contact line)
β Dimensionless relation of wall distances
δwn Dirac delta distribution and volume reformulation at fluid–fluid interface,

L−1

δwns Dirac delta distribution and volume reformulation at contact line, L−2

�x Initial particle spacing, L
ζ Multiplicative factor for volume reformulation at contact line
θ Contact angle
κ Curvature, L−1

μ Dynamic viscosity, ML−1 T−1

ν̂ Unit vector
ρ Density, ML−3

σ Surface tension, MT−2

1 Introduction

Wetting phenomena are of great importance to numerous engineering applications like ink
penetration into paper (Aslannejad et al. 2016), water transport in gas diffusion layers of a
fuel cell (Hao and Cheng 2010) or bubble formation processes in a bubble column reactor
(Huber et al. 2016a). Numerical modeling of these processes at the microscale is essential
for understanding and predicting two-phase flow applications.

1.1 Influence of Microscopic Surface Heterogeneity on Two-Phase Flow Dynamics

In various numerical studies, reasonable agreements have been found between experiments
and different pore-scale simulation methods regarding the general flow patterns [cf, pore
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Fig. 1 Different microscopic effects that influence contact line movements, with “w” and “nw” denoting
the wetting and non-wetting fluid phases, respectively. (a) Surface roughness. (b) Chemical heterogeneities
induced by chemical bonding sites. Thermodynamic instability between ordered state (c) and disordered sliding
state (d)

network modeling by Joekar et al. (2009); volume of fluid method by Ferrari et al. (2015)
and smoothed particle hydrodynamics by Kunz et al. (2016b)]. In most simulations, usually
the flow rate is given as the boundary condition. In the work of Kunz et al. (2016b), external
pressure gradients were applied in the simulation and experiments. There, significantly larger
disagreement was found between simulations and experiments for slower drainage processes.
The capillary number, Ca = (μ vcl)/σwn, during drainage experiments was less than 10−4,
with μ, vcl and σwn being the liquid viscosity, contact line velocity, and fluid–fluid surface
tension, respectively. We suppose that the drainage process happened in a stick-slip regime,
where the contact line movement is impeded by microscale interactions between solid and
the two fluid phases. Stick-slip behavior can be understood as irregular movement of the
interface, with a non-constant, oscillating apparent contact angle.

Including the effects of fluid–solid interactions in a continuous CFD model in a general
manner is a difficult task, since those interactions depend on local surface properties. For
example, Johnson and Dettre (1964) studied effects of surface roughness (Fig. 1a) on the
wettability of an idealized heterogeneous surface. Also, de Gennes (1985) showed how the
receding contact angle varies with the degree of roughness. Later, de Gennes et al. (2003)
determined the amount of energy necessary when a contact line is displaced across a single
defect on an otherwise smooth surface. In this case, the fluid–fluid interface gets continually
deformed until snap-off happens and the reversible energy, stored in the deformed interface, is
lost as viscous dissipation. Recently, Wang et al. (2015) described how a contact line friction
parameter, derived from the model of de Gennes et al. (2003), can be adjusted to fit wetting
dynamics of a drop on a surface with defined roughness.

Pinning of the contact line can also be apparent on a flat but chemically heterogeneous
surface (Extrand 2002), where discrete chemical bonding sites on the solid surface interact
with the fluid molecules (Fig. 1b).

Yet another mechanism for pinning was proposed by Thompson and Robbins (1990) who
claimed that stick-slip motion is rather caused by thermodynamic instability of the sliding
state (Fig. 1c, d).

1.2 Experimental Data Utilized for Quantitative Comparison with SPH
Simulations

The simulations performed in this work (see Sects. 3, 4.1) are compared with experiments
where water or aqueous glycerol solutions wet untreated PET tape (Blake 1993, 2012; Blake
andShikhmurzaev 2002). In the experiment, a tapewas vertically guided into a 2.5-l glass tank
of rectangular shape. The contact angle was measured when the tape invaded the fluid in the
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Fig. 2 Experimental setup for
measuring dynamic contact
angles for a wide range of
wetting speeds (Reproduced with
permission from Blake and
Shikhmurzaev 2002)

tank. In the glass tank, it passed two rollers and emerged out of the tank again (see Fig. 2).
The setup was described in detail by Blake and Shikhmurzaev (2002). The advantage of
using a tape was the very good observability on the dynamic contact angle during the wetting
process. Blake (2012) found that when pure water was used two very different wetting modes
existed. During fast wetting, the viscous dissipation was dominating, whereas at slowwetting
most of the driving force was needed to overcome strong chemical bonds between the polar
sites of PET and water molecules. Similarly, in earlier experiments, Blake and Shikhmurzaev
(2002), who used aqueous glycerol, found that fluid–solid interactions become the dominant
dissipation source for capillary numbers less than 10−2. The interactions with the wall caused
a stick-slip behavior of the contact line. Such a behavior was already reported in experiments
by Blake (1969). In the study of Blake (1969), glass capillaries were used and stick-slip
behavior was found to appear for Ca < 5 × 10−5.

1.3 Modeling of Contact Line Movement with Different CFD Methods

At present, in microscale simulations of two-phase flow involving partially wetting fluids, a
constant contact angle is usually assigned as boundary condition of the simulation domain
(cf. Ferrari et al. 2015). There have been some efforts to include fluid–wall interactions
in pore-scale multi-phase models in various simulation methods. Sheng and Zhou (1992)
studied the dynamics of immiscible fluid displacement using a finite difference method and
derived a slip boundary condition to capture dynamic contact angles. They found that an
additional friction is necessary to match simulation results with experimental data of two-
phase flow at Ca < 10−3. This additional friction was introduced by a velocity dependence
of the microscopic contact angle on the capillary number. Francois and Shyy (2003) used the
immersedboundarymethod to simulate the impact of a liquid dropon aflat surface surrounded
by a gas and compared a static contact angle model with a dynamic one. It was shown that the
model including the dynamic contact angle predicted a significantly reduced recoiling of the
drop and better agreement with experimental results could be achieved. In their model, the
dynamic contact angle varied linearly, between maximum advancing and minimum receding
values, depending on the contact line velocity vcl. Chen et al. (2009) used the model of
Francois and Shyy (2003) for the dynamic contact angle when simulating the shape and
motion of elongated bubbles in capillary tubes (Taylor flow, see Angeli and Gavriilidis 2008)
with the level set method of Sussman et al. (1998). It was shown that this method can cause
unphysical behavior of the contact line movement. For example, it predicted that the contact
line can move backwards even when the contact line velocity was positive or vice versa.
Also Renardy et al. (2001) compared two methods of implementing a contact angle with the
volume of fluid method (VOF). They found that the so- called three-phase method (Lafaurie
et al. 1994) is free of the unphysical behavior of a backward moving contact line, since the
contact line is driven by a physically based surface stress. Similar to the three-phase approach
in the grid-based VOF method, moving contact lines were implemented in the Lagrangian
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smoothed particle hydrodynamics method (Hu and Adams 2006). The discretization in the
work of Hu and Adams (2006) is mass conservative and showed qualitative agreement with
molecular dynamic simulations of Thompson and Robbins (1989) without the need of special
slip boundary conditions at the contact line. Unlike the formulation in Hu and Adams (2006),
we make use of the continuum surface force model with the SPH discretization of Adami
et al. (2010); hence, it does not conserve the total momentum of the system.

Wetting dynamics have been already studied with the SPH method by Tartakovsky and
Meakin (2005). Unlike directly simulating surface tension, they applied pairwise fluid–fluid
and fluid–solid particle–particle interactions to simulate three-phase contact dynamics. They
found qualitatively good agreement with experimental results for the movement of a drop
confined between parallel walls under the influence of gravity. Nevertheless, the formation
of resolution-dependent films of the wetting fluid on the solid is still a unsolved issue for this
type of surface tension model.

In our work, we use the incompressible SPH (ISPH) method based on the projection
method introduced byCummins andRudman (1999). Comparedwith thewidely usedweakly
compressible SPH (WCSPH)method (a review of thismethod is given byMonaghan (2005)),
ISPH gives more accurate solutions of the pressure field and is therefore more suitable for a
detailed analysis of the mobility of the contact line. Total mass conservation in the system
is achieved using the ISPH algorithm of Hu and Adams (2007) to enforce both the zero-
density-variation condition and the velocity-divergence-free condition at each full time step.
To increase accuracy, kernel corrections (Bonet and Lok 1999) are applied.

Recently, Huber et al. (2016b) introduced a contact line force (CLF) model, which uses a
momentum balance for the three-phase contact line to calculate the unbalanced Young force,
as proposed by de Gennes (1985), Brochard (1989) or Hassanizadeh and Gray (1993). This
force is implemented by a volume reformulation in the vicinity of the contact line to transfer
the force per line into a force per volume for direct applicability in the continuous Navier–
Stokes equations. Since this model is a physically motivated approach on the continuum
scale, no fitting parameters are necessary and the driving force calculated from dynamic
contact angles leads to a dynamic evolution of the system, similar to the three-phase method
of Hu and Adams (2006). It must be noted that in the CLF model, the effect of surface
heterogeneity or roughness of the solid is not included, since interfacial tensions are the only
input parameters.

The goal of this work is to provide an extension of the CLF model of Huber et al. (2016b)
in a way that contact line motion can be simulated satisfactorily also for low capillary num-
bers when stick-slip effect is dominant. The extended SPH model uses an effective upscaled
description of the short-range fluid–solid interactions, represented as a locally increased
viscous dissipation, following the formulation of de Gennes et al. (2003). The employed
macroscopic model of increased local dissipation at the contact line can be deduced from
locally heterogeneous surface energies at the microscale. In Fig. 3, a sketch of an infinites-
imally slow wetting process across a smooth surface with a single obstacle is shown. The
contact line pins to the defect when the fluid interface moves across the surface. Since the
interface gets deformed in the vicinity of the defect (Fig. 3 (t2)), potential energy is stored in
the system. After the snap-off event, this potential energy is dissipated in the fluid close to
the contact line. From an upscaled perspective, it is still possible that the contact line moves
with a constant velocity but the energy or driving pressure gradient, needed to move the
interface, is significantly increased. This approach is a natural choice for the SPH method,
since dynamic contact angles are not given as a boundary condition, in contrast to the VOF
method, but result directly from the equilibrium of the contact line force and the viscous
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Fig. 3 Microscopic view of local energy dissipation at a single obstacle for an infinitesimal slow moving
interface over time. (t1) Relaxed interface just before pinning. (t2) Deformation of interface where contact
line is pinned to the defect. (t3) Interface relaxation after snap-off with local kinetic energy dissipation

dissipation close to the contact line. We perform a quantitative comparison of our model with
data from wetting experiments on a tape, which are introduced in Sect. 1.2.

2 Model Description

Isothermal flow of immiscible and incompressible Newtonian fluids on the pore scale is
described by the Navier–Stokes equations. With the extensions for surface tension effects
between wetting, non-wetting and solid phase, the Lagrangian formulation of the momentum
balance of a fluid element reads (see, e.g., Huber et al. 2016b):

ρ
Dv
Dt

= −∇ p + μ�v + ρ g + FVOL
wn + FVOL

wns , (1)

where the terms −∇ p and μ�v account for pressure and viscous forces in the system,
respectively. Further, g represents any body force like gravity. FVOL

wn and FVOL
wns are volumetric

forces which represent the locally distributed forces acting at the fluid–fluid interface and the
forces at the solid–fluids contact line. FVOL

wn is given by Brackbill et al. (1992) as:

FVOL
wn = fwn δwn = σwn κwn nwn, (2)

and is called continuous surface force. Here, fwn, δwn, σwn, κwn and nwn are the surface force,
Dirac delta distribution, surface tension coefficient, curvature and the normal vector of the
interface between the two immiscible phases. The normal vector is calculated using the color
(or indicator) function c.

nwn = ∇c

[c] , (3)

where [c] = |cw−cn| is the change in c at the interface. |nwn| is used as volume reformulation
and approximates the Dirac delta distribution δwn, because the condition∫

nwn · dn̂wn = 1 (4)
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Fig. 4 Contact line at the
connection point of the unit
vectors ν̂wn, ν̂ws and ν̂ns where
each vector is located tangential
on the corresponding interface

νwn

νws νns

n phase

s phasecontact line

w phase

is fulfilled. The local curvature of the interface κwn is defined as

κwn = −∇ · n̂wn, (5)

where n̂wn is the normalizednormal vector. Themomentumbalance at a contact line tangential
to the wall, including the volume reformulation, reads:

FVOL
wns = (σns − σws + σwn (ν̂ns · ν̂wn︸ ︷︷ ︸

− cos θD

)) νns δwns, (6)

where ν̂kl is a unit vector tangential to the kl-interface as shown in Fig. 4 and σkl is the surface
tension coefficient between phases k and l. In Eq. (6), δwns is the Dirac delta distribution,
which distributes the contact line force to a volumetric force preserving the integral quantity
of the force. Under equilibrium conditions, the contact line force vanishes, since the dynamic
contact angle θD becomes equal to the static contact angle θS and Eq. (6) reduces to Young’s
equation:

σns = σws + σwn cos (θS). (7)

For incompressible fluids, the continuity equation is given as:

Dρ

Dt
= −ρ (∇ · v) = 0. (8)

In this work, it will be shown that the existing CLF model of Huber et al. (2016b), as given
in Eqs. (1) and (8), is able to find dynamic contact angles that are in good agreement with
experimental observations for wetting, but only at high capillary numbers on homogeneous
surfaces. In such cases, the contact line dynamics are mainly determined by the viscous
dissipation in the liquid. This was also observed by Blake (2012) when comparing thewetting
behavior of water on gelatin-coated and uncoated PET. For low capillary numbers, that model
has to be extended, as explained below.

2.1 Stick-Slip Model: Extended CLF Model Including Fluid–Solid Interactions at
the Contact Line

For low capillary numbers, solid–liquid interactions modify the dynamic contact angle sig-
nificantly such that it cannot be captured with the CLF model. Therefore, an upscaled model
of various molecular solid–liquid interactions (see Fig. 1) is introduced. The main idea is to
account for those microscopic effects at the contact line by modifying the viscous term in
the momentum balance of a fluid element [see Eq. (1)] in the vicinity of the contact line.
The modified force is able to dominate the dynamics at low capillary numbers, as found in
experiments by Blake (1993).

Using the idea of local energy dissipation by viscous forces in the liquid after snap-off
at a sparse defect (de Gennes et al. 2003), the existing model is extended by introducing
a variable viscosity μSSL in the vicinity of the contact line to account for stick-slip (SSL)
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Fig. 5 Plot of the dimensionless viscosities of the stick-slip model (SSL) for α = 5 and CaTp = 10−2 given
in normal (a) and logarithmic (b) scale. For comparison, the unaltered viscosity of the CLF model of Huber
et al. (2016b) is plotted in the red dash-dotted line

behavior. This viscosity replaces the viscosity parameter in Eq. (1), for interactions with the
solid phase. It is assumed to be a decreasing function of capillary number:

μSSL = μ
(
1 + α (1/2)(Ca/CaTp)

)
, with Ca = μ |vcl|

σwn
, (9)

where vcl is the contact line velocity. Hereby, the viscosity function μSSL is used in the
same volume where the force at the contact line is distributed. This model introduces two
parameters α and CaTp for the fluid–solid interactions. In Eq. (9), α is a parameter for the
maximum fractional increase in viscosity at the contact line with respect to the bulk viscosity.
CaTp regulates the transition between the slow and fast wetting regimes. For larger values of
CaTp, stick-slip behavior is apparent in faster wetting regimes.

In Fig. 5, the dimensionless viscosity μ̂SSL = μSSL/μ is plotted as a function of the
capillary number with chosen values α = 5 and CaTp = 10−2. The plot is given in normal
and logarithmic scales to highlight the behavior at low capillary numbers. Additionally, the
capillary number at the transition point CaTp between the two different wetting modes is
marked by a dashed line. CaTp is defined as the capillary number of the wetting process,
where the viscosity increase at the contact line is exactly half of the maximum increase. We
provide explanation on how to choose the values of CaTp and α in Sect. 4.1. A qualitative
discussion on the effect of the Ca-dependent viscosity increase on the energy dissipation is
given in “Appendix A”.

2.2 Implementation in SPH

We chose the Lagrangian SPH method because of its mesh-free nature and the straightfor-
ward treatment of interface movement. SPH is an interpolation method where properties
are evaluated at certain interpolation points to approximate a continuous field. These points,
which represent a certain volume, are called particles. In SPH, the interpolation formula for
any quantity A of a particle i at the position ri is an approximation to an integral interpolant
of the form:

A(ri ) =
∫

A(r′)W (r − r′, h) dr′ ≈
Ni∑
j

m j A j

ρ j
Wi j , (10)

where m j and ρ j are the mass and the density of a neighboring particle j , respectively. Wi j

is the short form of W (ri − r j , h) which is the kernel function evaluated for the distance
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between particles i and j and a smoothing length h, which we set to 2.1 times the initial
particle spacing �x for the presented simulations in this work. For the choice of h in 2D
simulations of two-phase flow,we refer to Szewc et al. (2012). The upper bound of summation
Ni is the number of neighboring particles of the center particle i (including particle i itself)
for which a positive value of the kernel function exists;Wi j > 0. To simplify the notation, Ni

is omitted in the following equations. We use the incompressible SPH method, introduced
by Cummins and Rudman (1999). As kernel function, we take the C2 spline function of
Wendland (1995) for 2D systems:

W (r, h) = 7

4πh2

{
(1 − q

2 )4 (2q + 1) if q < 2

0 else
, (11)

where q = |r|/h. A detailed introduction to the SPH theory can be found, for example, in
the review of Monaghan (2011).

2.2.1 SPH Formulation for Multi-phase Flow

To overcome deficiencies of the particle distribution at open boundaries ,and for a more
accurate calculation of unit vectors normal to the interface close to the contact line, we use

the “corrected gradient of the corrected kernel”
∼∇ i

∼
Wi j as introduced by Bonet and Lok

(1999) for all computed field variables. The corrected kernel is defined as:

∼
Wi j= Wi j∑

j V jWi j
= Wi j

Si
, (12)

with
∼
Wi j=

∼
W (ri j , h) = ∼

W (ri −r j , h), ri j = |ri −r j |. Vj = m j/ρ j is the volume of particle
j with m j and ρ j being its mass and density, respectively. Si is called the Shepard function.
The gradient of this corrected kernel becomes:

∇ ∼
Wi j= ∇

(
Wi j

Si

)
= ∇Wi j − Wi j ∇Si

Si

Si
, (13)

with ∇Si = ∑
j V j∇Wi j . To ensure that the gradient of any linear velocity field is exactly

evaluated, the following condition must be fulfilled:

∑
j

V j∇
∼
Wi j ⊗x j = I, (14)

with x j and I being the position of particle j and the identity matrix, respectively. Thus, the
corrected gradient of the corrected kernel reads:

∼∇ ∼
Wi j= Li∇

∼
Wi j , (15)

with

Li =
⎛
⎝∑

j

V j∇
∼
Wi j ⊗x j

⎞
⎠

−1

. (16)
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We use the SPH discretization for multi-phase flow with particle-averaged spatial derivatives
(Hu and Adams 2006). Density is computed by

ρi = mi

∑
j

Wi j . (17)

In this work, wall ghost particles (Morris et al. 1997) are used to achieve a no-slip boundary
condition at the solid wall. The force per unit mass due to viscosity is then formulated as:

(
μ

ρ
�v

)
i
= 1

mi

Ni,fluid∑
j

μ̄i j

(
V 2
i + V 2

j

) vi j
ri j

∂
∼
Wi j

∂ri j

+ 1

mi

Ni,solid∑
j

μSSL,i

(
V 2
i + V 2

j

) βi jvi
ri j

∂
∼
Wi j

∂ri j

(18)

with vi j = vi − v j and

μ̄i j = 2μiμ j

μi + μ j
. (19)

Here, μi is the dynamic viscosity of particle i and μSSL was defined in Eq. 9. The indices
fluid and solid denote an exclusive summation over neighboring fluid or solid particles. If the
stick-slip model is not applied, the viscosity of particle i simplifies to μSSL,i = μi which is
then identical to the original form defined by Morris et al. (1997). According to Morris et al.
(1997), the factor βi j in Eq. 18 is given as:

βi j = 1 + d j

di
, (20)

where di and d j are the distance of particle i and j in the direction normal to the solid–fluid
interface. The force per unit mass due to the pressure field gradient reads:

−
(
1

ρ
∇ p

)
i
= − 1

mi

∑
j

p̄i j
(
V 2
i + V 2

j

) ∼∇ i
∼
Wi j , (21)

with

p̄i j = ρi p j + ρ j pi
ρi + ρ j

(22)

We use the formulation of Adami et al. (2010) for the computation of the normal vectors at
the fluid–fluid interface for the computation of the continuous surface force (Eq. 2):

nwn,i = 1

|∇c| Vi
∑
j

c̄i j
(
V 2
i + V 2

j

) ∼∇ i
∼
Wi j . (23)

with

c̄i j = ρ j

ρi + ρ j
cii + ρi

ρi + ρ j
cij , (24)

where

ckl =
{
1, if the phases of particles k and l are different

0, if the phases of particles k and l are the same.
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The curvature in our SPH model is computed as:

κwn,i = −
∑
j

m j

ρ j

(
n̂wn, j − n̂wn,i

) · ∼∇ i
∼
Wi j (25)

From this, the surface force is given as a volumetric force:

FVOL
wn,i = σwn κwn,i nwn,i (26)

The volume reformulation of the contact line force (Eq. 6) is computed by

δwns,i = −ζ d̂ j ·
∑
j

(
δ′
wns, j − δ′

wns,i

) ∼∇ i
∼
Wi j , (27)

where

δ′
wns, j =

{
δ′
wns,i , if j ∈ Ni,fluid

0, if j ∈ Ni,solid
(28)

and

δ′
wns,i = νns,i · nwn,i (29)

with

νns,i = |di |2ni − (di · ni )di . (30)

In Eq. 27, d̂ j is the normalized distance vector pointing toward the closest solid phase
boundary. In the work of Huber et al. (2016b), the factor ζ is set as 2, because the volume
reformulation is only evaluated in the fluid domain and it is assumed that all forces present at
the contact line are exerted to the fluid phase. Contrary to the formulation of the CLF model
(Huber et al. 2016b), a summation, weighted by the volume reformulation term δwns, is used
for a more homogeneous calculation of the contact angle at the contact line.

− cos θD,i =
∑
j

m j/ρ j δwns, j d̂ j · n̂wn, j

m j/ρ j δwns, j
, (31)

where θD,i , d̂ j and n̂wn, j are the dynamic contact angle, the normalized distance vector
pointing toward the closest solid phase boundary and the interface unit normal vector pointing
toward the non-wetting phase, respectively. Thus, the local contact line force is computed
by:

FVOL
wns,i = σwn(cos θS − cos θD,i ) ν̂ns,i δwns,i (32)

A second modification to the CLF model used by Huber et al. (2016b) was a boundary
condition for FVOL

wn,i (see Eq. (2)). It was experienced that the computation of the interface
curvature κi is quite error-prone close to a solid phase. Due to numerical artifacts, as a
consequence of missing support of neighboring particles at the boundary, the curvature κi is
likely to change its sign at the boundary. Therefore, the boundary condition for FVOL

wn was
chosen to be:

FVOL
wn ||di |=0 = 0. (33)
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This condition is enforced by multiplying the original continuous surface force
∼
F
VOL

wn,i with a
transition function Si

FVOL
wn,i =∼

F
VOL

wn,i Bi , (34)

with

Bi = b1,i − b2,i
s1,i + b2,i

(35)

b1,i =
Ni,fluid∑

j

m j/ρ j
∂ W

∂ri j
(36)

b2,i =
Ni,solid∑

j

m j/ρ j
∂ W

∂ri j
, (37)

where ∂ W
∂ri j

is the kernel derivative. The indices fluid and solid denote an exclusive summation
over neighboring fluid or solid particles, respectively.

Since the SPH scheme used in this work differs from the scheme of Hu and Adams (2006),
we present simulations of a Taylor–Green vortex in “Appendix B” to show the good accuracy
and convergence of our scheme. A detailed introduction into the treatment of open boundaries
is given in the work of Kunz et al. (2016a).

2.3 Stick-Slip Model in SPH

A modification to the model is needed for the local assignment of viscosity, which is not
constant, when the stick-slip model is employed (see Eq. 9). Therefore, the local capillary
number of particle i at the contact line including the contact line velocity is determined by:

Cai = μi |vcl,i |
σwn

, (38)

with:

vcl,i =
∑

j V jδwns, jv j∑
j V jδwns, j

, (39)

where δwns, j is the volume reformulation term of a neighboring particle j for the contact line
force. A detailed description of the computation of the volume reformulation term δwns is
given by Huber et al. (2016b). The computed capillary number for particle i (Eq. 38) then is
used for the calculation of the stick-slip viscosity of particle i :

μSSL,i =
{

μi

(
1 + α (1/2)(Cai /CaTp)

)
, if δwns,i > 0

μi , if δwns,i = 0
(40)

According to Eq. (40), a viscosity increase is applied only in the vicinity of the contact line,
where the force at the contact line from the CLF model is present.
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3 Application of the CLF Model for Two-Phase Flow Simulations

3.1 Evaluation of the Volume Reformulation Term of the CLF Model

Huber et al. (2016b) showed for the CLF model that the error in the computed equilibrium
contact angles for sessile drops was below 5% in the partially wetting regimes between
30◦ < θE < 140◦. A sketch of the initial phase configuration for all simulations is given
in Fig. 6. Besides the capability, needed to capture correct equilibrium contact angles, a
fundamental requirement of the CLF model is the volume reformulation term δwns at the
contact line which must satisfy the following condition:∫

δwns dr = 1. (41)

The validity of this condition has to be shown. The validation was done with the same set
of simulations of sessile drops as employed by Huber et al. (2016b) for the verification of
equilibrium contact angles. The resolution for the two-phase simulations was set to 200×100
particles. The error in meeting restriction (41) for a wide range of equilibrium contact angles
is shown in Fig. 7. With an error of less than ± 1% for 30◦ < θE < 150◦, the CLF model is
well suited to simulate dynamic contact angles in this work.

3.2 Comparison of the Dynamic Contact Angles Computed by CLF Model with
Experimental Data

In this section, the CLF model of Huber et al. (2016b) is employed to calculate dynamic
contact angles for a wide range of capillary numbers in a system similar to experiments of
Blake and Shikhmurzaev (2002) shown in Fig. 2. We only consider the piece of tape in Fig. 2
that enters the liquid. The system we are modeling is shown in Fig. 8. The tape is modeled as
rigid plate moving downward. The non-wetting fluid represents the air, and the wetting fluid
is the solution in Fig. 2. The length of the system is chosen to be l = 3 d , where d is the domain
width, in order to satisfy a parallel flow profile at the open boundaries. The resolution for all

Fig. 6 Sketch of the initial
configuration of the liquid
droplets on a solid wall
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Fig. 8 Simulation setup to
capture dynamic contact angles in
a wide range of wetting dynamics d
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Table 1 Fluid properties used for dynamic wetting simulations

% (glyc) μ (mPas) σla (N/m) θ0 (◦) ρ (kg/m3) d (mm)

0 1 0.0728 82.0 1000 1

59 10 0.0653 64.5 1150 10

86 104 0.0658 65.0 1224 10

simulations was set to 300 × 100 particles. A resolution study for one case is shown at the
end of this section. As in experiments of Blake and Shikhmurzaev (2002) and Blake (2012),
three different solutions were used in different experiments. Properties of the solutions used
in various simulations are given in Table 1. These are either purewater (as used in experiments
of Blake and Shikhmurzaev (2002)) or a mix of water and glycerol (as used in experiments of
Blake (2012)). In that table, also the domainwidth d is given. For computational convenience,
the non-wetting phase was assigned to have exactly the same properties as the wetting phase
in each simulation. In general, SPH can be used to simulate liquid–air systems with the SPH
scheme of Adami et al. (2010). The only reason we have chosen the same fluid properties was
the significantly increased spurious currents for a liquid–air system, which had an adverse
influence on the computation of the contact line velocity (Eq. 39). Of course, the phases were
assumed to be immiscible with an interfacial tension given in Table 1. To avoid that a fluid
is driven out of the simulation domain by the moving plates, a variable pressure difference
�pex was imposed between the open boundaries at top and bottom. This allowed us to keep
the fluid–fluid interface in the middle of the domain and the initial phase fractions constant.
Thus, the applied pressure difference �pex was changed in every time step according to the
following pressure proportional–integral (PI) control formula:
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Table 2 PI controller parameters
used in the simulations

% (glyc) Kp Ki Kf �pex,min �pex,max

0 800 20 13.7 − 400 100

59 800 10 5.6 − 430 10

86 1000 30 5.6 − 4200 100

�pex = Kp v̄in︸ ︷︷ ︸
=P

+ Ki

∫ t

0
v̄in dt

︸ ︷︷ ︸
=I

+ Kf︸︷︷︸
=F

. (42)

The calculated value of �pex was limited to stay within lower and upper bounds�pex,min

and �pex,max. According to the bounds of �pex, the integral term I is adjusted if necessary:

I =
{

�pex,max − P − F , if �pex > �pex,max

�pex,min − P − F , if �pex < �pex,min
(43)

The corresponding controller parameter values are given in Table 2.
The applicability and robustness of such a pressure control have been shown by Kunz

et al. (2016a).
The dynamic wetting behavior of the CLF model was studied and compared with the

experimental data of Blake and Shikhmurzaev (2002) and Blake (2012) over a wide range of
viscosity values. In Fig. 9, the comparison between CLF simulations and the experimental
data is presented. The results are given in linear scale (left column) and logarithmic scale (right
column). In logarithmic scale, the discrepancy between simulation results and experimental
data for slow dynamics is highlighted, where in the linear scale the linear behavior for fast
dynamics is more apparent. The results for 59 and 86% aqueous glycerol solutions are also
compared to a semiempirical model of Shikhmurzaev (1997) which takes information of the
contact line speed and the flow field in the vicinity of the contact line into account. The model
parameters are the same as used by Blake and Shikhmurzaev (2002) which have been fitted
once for the whole series of aqueous glycerol solutions.

The CLF simulations of all three fluid systems have some properties in common:

1. All CLF simulations reproduce the equilibrium contact angle very well
Ca = 0).

2. The computed dynamic contact angles show an almost linear dependency on the contact
line velocity (or Ca) in the investigated range (see linear plots of Fig. 9).

3. The results for 59 and 86% aqueous glycerol solutions match the results of the semiem-
pirical model of Shikhmurzaev (1997) quite good. Since the flow field at the contact line
is resolved in the SPH simulations, the dependency of the dynamic contact angle on the
fluid viscosity is captured in the CLF model as predicted by the semiempirical model of
Shikhmurzaev (1997).

4. Only for the case of pure water (Figs. 9a, b), there is a reasonable agreement between
simulated and measured contact angles for Ca > 1 × 10−3. But, for slower dynamics,
simulated contact angles are significantly smaller.

5. For 59 and 86% aqueous glycerol solutions, simulated values are significantly smaller
than measured values for the whole range of capillary numbers.

With the choice of a liquid–liquid system in the SPH simulations, it is likely that the damping
effect is overestimated by a factor of two compared with a gas–liquid combination, which is
the case in the experiments. For the case of considerably large wetting speeds ofCa > 10−2,
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Fig. 9 Comparison of SPH simulations with the CLF model and experiments of dynamic wetting processes
with different wetting liquids on a PET tape. a, b Water on PET, c, d 59% aqueous glycerol solution, e, f 86%
aqueous glycerol solution. The results for 59 and 86% aqueous glycerol solution are also compared to the
model of Shikhmurzaev (1997)

the influence of the choice of ζ = 2 in the volume reformulation term (Eq. 27) should be
studied more closely. Indeed, it seems questionable that all the forces at the contact line work
only on the fluid phases, as stated by Huber et al. (2016b). The large differences between
simulated and measured values show that some major effect is not included in CLF model.
This is more evident in the case of low capillary numbers, where fluid–solid interactions play
a crucial role as stated by Blake (1993).

4 Application of the Stick-Slip (SSL) Model for Two-Phase Flow
Simulations

4.1 Comparison of the Dynamic Contact Angles Computed by the SSL Model
with Experimental Data

In order to show that the stick-slip (SSL) model properly simulates the full range of wetting
dynamics, it was employed to simulate the same three cases described in the previous section.
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Table 3 Stick-slip parameters
for liquid–solid interactions

% (glyc) α CaTp

0 227 1.91 × 10−4

59 9.07 5.78 × 10−3

86 4.5 7.30 × 10−3

0 1 2 3 4

·10−2

80

100

120

140

Ca

θ D
[ d

eg
]

(a)

10−5 10−4 10−3 10−2 10−1
80

100

120

140

Ca
θ D

[d
eg

]

Experiment
CLF simulations
SSL simulations

(b)

0 2 4 6

·10−2

60

80

100

120

Ca

θ D
[d

eg
]

(c)

10−5 10−4 10−3 10−2 10−1
60

80

100

120

Ca

θ D
[d

eg
]

Experiment
CLF simulations
SSL simulations

(d)

0 2 4 6

·10−2

60

80

100

120

Ca

θ D
[ d

eg
]

(e)

10−5 10−4 10−3 10−2 10−1
60

80

100

120

140

Ca

θ D
[d

eg
]

Experiment
CLF simulations
SSL simulations

(f)

Fig. 10 Comparison of SPH simulations with the SSL model and experiments of dynamic wetting processes
with different wetting liquids on a PET tape. Vertical dash-dot lines are representing the capillary number at
the transition point CaTp a, b water on PET, c, d 59% aqueous glycerol solution, e, f 86% aqueous glycerol
solution

The proper choice of the two parameters is clearly crucial for the simulated physical effect
of stick-slip behavior. A good choice ofCaTp comes directly from experimental results.CaTp
is in the region where the offset in dynamic contact angles between experiments and SPH
simulations without the stick-slip extension becomes smaller. A good choice of α is the ratio
between the initial slope of dynamic contact angle with respect to wetting speed comparing
SPH simulations without the stick-slip extension and experimental data. The parameters α

and CaTp for the three liquids wetting PET are given in Table 3.
In Fig. 10, the results of the SPH simulations using the new SSL model are compared

with the experimental data as well as SPH simulations using the CLF model. It is shown
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Fig. 11 Particle snapshots forCa = 0 (a),Ca = 5×10−3 (b) andCa = 1×10−2 (c) at t∗ = 6. ForCa = 0
also the pressure field is shown on the left half of the plot and for Ca = 5 × 10−3 and Ca = 1 × 10−2 the
velocity field is given

that the dynamic contact angles of the SSL simulations match the experimental values over a
wide range of capillary numbers. The effect of the two different wetting modes with different
dominant dissipation sources (viscous forces or fluid–solid interactions), as discussed in
Sect. 1.2, on the dynamic contact angle is different for pure water and aqueous glycerol
solutions. In the case of pure water, the dynamics of the biggest influence of the two wetting
modes on the dynamic contact angle are clearly separated (see Fig. 10b). Following the
qualitative discussion on the behavior of the SSL model in “Appendix A”, effects of fluid–
solid interactions on θD are dominant up to Ca ≈ 1 × 10−3, while effects from viscous
dissipation in the flowfield close to the contact line are significant effect afterCa ≈ 5×10−3.
In the case of aqueous glycerol solutions, viscous forces and fluid–solid interactions affect the
dynamic contact angle for Ca ≈ 1 × 10−2 with similar intensity (see Fig. 10d, f). It is clear
that the stick-slip model results agree quite well with measurements in both cases. Particle
snapshots obtained with our stick-slip model are shown in Fig. 11. In Fig. 11 (a), the pressure
field inside the phases on the left side of the tape is shown, as while the particle snapshot at
t = 1 s is shown on the right side. Inside the phases, the pressure field is homogeneous as
is expected when using ISPH. Nevertheless, some pressure oscillations are apparent close
to the fluid–fluid interface, which correspond to spurious currents as a result of the applied
continuous surface force. In Fig. 11b, c, the velocity fields at the dimensionless simulation
time t∗ = t vW

l = 6 are shown for the casesCa = 5×10−3 andCa = 1×10−2, respectively.
In Fig. 12, the convergence of the computed steady-state dynamic contact angles is shown.
This point is crucial, since it shows that the balance between the force at the contact line
and viscous dissipation is not affected with increasing resolution, even though the force at
the contact line is applied in a smaller area closer to the solid wall. Also, the parameters of
the stick-slip model are invariant to the chosen resolution. For a good reproduction of the
equilibrium contact angles, we chose Nd = 100 in all our simulations.
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Fig. 12 The simulation results for different domain resolutions is shown for the case of 59% aqueous glycerol
solutions for the case without the stick-slip model (a) and with the stick-slip model (b). The legend entries
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Fig. 13 Sketch of the two plates being wetted with constant pressure differences �pex applied

Table 4 Pressure differences for
wetting process with full
established Poiseuille flow

Ca �pex (Pa)

1 × 10−3 − 50

2 × 10−3 38

5 × 10−3 300

1 × 10−2 736

4.2 Simulation of Reduced Wetting Dynamics with the Stick-Slip Model at Low
Capillary Numbers

In this section, the influence of fluid–solid interactions around the contact line on the wetting
dynamics at low Ca is shown. We do this by means of simulating the imbibition process
between twoplates, as shown inFig. 13, using theSSLmodel. For the simulations, hydrophilic
PET is chosen as the solid phase. The twofluids have the properties of purewater (seeTable 1),
but they are assumed to be immiscible. The simulation domain consists of two fixed parallel
plates separated by a distance of d = 100µm. The domain length is l = 10 d . A pressure
difference �pex = pin − pout is imposed across the modeling domain, with four different
values (see Table 4) to simulate four different dynamic cases. We assume that the two fluids
are immiscible but have the same properties. Then, the averaging gives us the following
global momentum balance equation:

ρ l
dvcl
dt

= �pex − �pvisc + pc, (44)

with �pvisc and pc being the pressure drops caused by viscous dissipation and the capillary
pressure, respectively. We assume that there is a Poiseuille flow profile, contact line velocity
is equal to the average flow velocity, and there is a static contact angle θ0. As a result, we
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Fig. 14 Capillary numbers of imbibition processes versus time for different external pressure differences. a
�pex = − 50Pa, b �pex = 38Pa, c �pex = 300 Pa and d �pex = 736Pa

can write:

�pvisc = 12μ l vcl
d2

, pc = 2 σwn cos θ0

d
(45)

In accordance with Washburn (1921), this leads to a constant wetting speed v0 once steady

flow (dvcl
dt = 0) is established. Then, Eq. (44) combined with Eq. 45 yields:

v0 = σwn d cos θ0

6μ l
+ �pex d2

12μ l
(46)

According to Fig. 10, the transition zone of the principal dissipation source from fluid–solid
interactions to viscous dissipation is in the range of 1 × 10−3 < Ca < 1 × 10−2, where we
see a clear change in the slope of the curves.We performed four different simulations with the
values of the external pressure difference �pex (see Table 4) chosen so that the steady flow
velocity v0 falls in that transition zone. In Fig. 14, simulation results for the change in capillary
number with time are presented. The results of the CLF model and the new stick-slip model
are compared with the solution of the average momentum balance (Eq. 44).When fluid–solid
interactions are negligible, i.e., large Ca, the imbibition velocities calculated with CLFmodel
should match the solution of Eq. (44). The slightly lower values obtained with the CLFmodel
can be explained by the local rolling-type motion close to the interface (Dussan 1979). We
also see that the simulation results of CLFmodel and SSLmodel are very similar for large Ca
(Fig. 14c, d). For the case shown in Fig. 14b, stick-slip effect with unsteadyCa is significant.
This is discussed qualitatively in Fig. 15 in “Appendix A”. For an applied pressure difference
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of �pex = − 50Pa, a strong stick-slip behavior is apparent and the simulation results in
very small Ca (almost no flow, see Fig. 14a). This big difference can be explained when the
possible dynamic capillary pressures in the system are analyzed. In the simulations of the
PET tape moving down into the liquids (see Sect. 4.1), the dynamic contact angle increased
up to θD = 100◦ for Ca = 10−4. According to Eq. (45), this corresponds to a decrease in
local capillary pressure from pc,0 = 203 Pa to pc,D = − 253Pa (note the negative value of
pc,D). Since at Ca = 10−4, we are still below the transition zone, the wetting dynamic is
much slower than the range that Washburn equation (Eq. 46) predicts.

5 Concluding Remarks

At low flow velocities in a two-phase system, fluid–solid interactions, which are not captured
in the CLF model, account for most of the total energy dissipation. Therefore, an improved
CLFmodel, whichwe call stick-slip (SSL)model, was developed in order to describe wetting
processes which are mainly controlled by such fluid–solid interactions at the contact line.
A major advantage of the stick-slip model, compared to models where the contact angles
are included as boundary condition, is that the dynamic contact angles directly result from
increased energy dissipation at the contact line. With the stick-slip model, strong reductions
in the dynamics of wetting processes compared to Washburn’s equation can be captured, as
illustrated in Sect. 4.2. Comparisons of our simulation results with experimental data showed
a good correlation for the dynamic contact angle with capillary numbers in the full range of
wetting dynamics. Nevertheless, it should be stated that contact angle hysteresis in a static
system, like in a liquid column within in a vertical tube (de Gennes et al. 2003), cannot be
captured with our stick-slip model, since there is no additional dissipation without a moving
contact line. To further increase accuracy in future SPH simulations, recent schemes with
second order accuracy in time and space (Trask et al. 2015; Frontiere et al. 2017) could prove
to be useful.
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Appendix A

Dynamic contact angles θD are usually modeled as a as a feature of viscous dissipation (de
Gennes 1985). The term μ�v in the Navier–Stokes equation (Eq. 1) is the source of the
viscous energy dissipation Φ. Thus, the effect of stick-slip phenomena in our model can be
expressed as follows. At a high capillary number (Ca > 0.1 in the example given in Fig. 5),
there is almost no viscosity increase and it becomes almost constant (μSSL ≈ μ). Since

�v monotonically increases as the contact line velocity increases
(
d�v
dvcl

> 0
)
, the viscous

dissipation is also increasing
(
dΦ

dvcl
> 0

)
, because μ is almost constant. We refer to this

behavior as steady contact line movement in Fig. 15. Now, with strongly decreasing viscosity

and with increasing dynamics at slow wetting processes
(
dμSSL
dvcl

< 0
)
, it can happen that the
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stick-slip wetting regime and a steady contact line movement. The dashed lines 1 and 2 represent the viscous
dissipation with a constant high viscosity μSSL = μ(1 + α) (for Ca → 0) and constant low viscosity
μSSL = μ, respectively. The solid line is a qualitative plot when the new stick-slip model is applied

viscous dissipation decreases, while the contact line accelerates dΦ

dvcl
< 0. This property of

our model is in accordance with results from molecular-dynamics simulation of Thompson
and Robbins (1990), where the frictional force is reduced in the transition from the ordered
state, when the fluid molecules are sticking to the solid, to the unordered sliding state. Such
a flow is unstable and will adjust itself toward one of the two possible stable states with
dΦ

dvcl
> 0. This stick-slip behavior is qualitatively shown in Fig. 15.

Appendix B

An appropriate test case to analyze the accuracy of the applied SPH scheme is the two-
dimensional Taylor–Green flow. This test case is well discussed in the literature for the
SPH method (Oger et al. 2016). We consider a Reynolds number Re = l umax

ν
= 100 with

characteristic length l = 1m, the maximum initial velocity umax = 1m
s , periodic boundary

conditions and a resolution l/�x between 25 and 100. The initial divergence-free velocity
field is given as:

v∗
x = sin(2πx∗) cos(2πy∗)

v∗
y = − cos(2πx∗) sin(2πy∗)

(47)

The dimensionless velocities are v∗
x = vx

vmax
and v∗

y = vy
vmax

, respectively. The dimensionless
coordinates are x∗ = x

l and y∗ = y
l , respectively. The analytic solution of the dimensionless

kinetic energy of the system over time is given as:

E∗
kin = Ekin

E0
kin

= e
(−16π2 ν t

)
(48)

with the initial kinetic energy E0
kin and the kinematic viscosity ν. The analytic solution for

the local pressure field is given as:

p∗(x, y) = 1

2

[
cos(4πx∗) + cos(4πy∗)

]
e(−16π2/Re)t∗ . (49)
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Fig. 16 Taylor–Greenflow: Particle snapshots for t∗ = 0.5, a dimensionless velocity field v∗,b dimensionless
pressure field p∗

0 1 2 3

10−2

10−1

100

dimensionless time t∗ [−]di
m
en

si
on

le
ss

ki
n.

en
er
gy

E
∗ k
in

[−
]

25
50
100
analytic

(a)

0 0.5 1 1.5
−0.5

0

0.5

1

x∗2 · y∗2 [−]

di
m
en

si
on

le
ss

pr
es
su

re
p

∗
[−

]

100
analytic

(b)

Fig. 17 Taylor–Green flow: convergence of the kinetic energy decay at Re = 100 obtained with proposed
ISPH scheme

In Fig. 16, we exemplary show the velocity and pressure distribution for Re = 100 at t∗ = 0.5
with a resolution of L/�x = 100. In Fig. 17a, the convergence for the kinetic energy decay
predicted by the proposed ISPH scheme is shown and compared against the analytic solution
for Re = 100 for resolutions L/�x = 25, L/�x = 50 and L/�x = 100. In Fig. 17b, the
comparison between simulated dimensionless pressures p∗ and analytic solution is shown on
the line between the points P0 = (0|0) and P1 = (1|1). The line is also plotted in Fig. 16b.
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