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Abstract. Agent-based Modeling and Simulation (ABMS) has become
a quite popular approach among researchers in the community, mainly
due to its simplicity, expressiveness and wide applicability. However, in
most cases, ABMS tools demonstrate reduced performance, especially
when dealing with large experiments. This paper presents HLogo, a par-
allel variant of the NetLogo ABMS framework, that aims to increase the
performance of simulations by utilizing Software Transactional Memory
and multi-core CPUs, while maintaining the user friendliness of NetL-
ogo. HLogo is implemented as a Domain Specific Language embedded
in the functional language Haskell, which means that it also inherits
Haskell’s features, such as strong static typing, a module system and a
vast collection of programming libraries.

Keywords: Agent-based Modeling · Agent-based simulation · Concur-
rent agent-based simulation · Concurrent NetLogo.

1 Introduction

Simulating a system as a set of interacting agents has gained significant popu-
larity in the past decades. The approach proved to be both natural and widely
applicable in various areas, giving rise to the so called Agent Based Modelling
and Simulation (ABMS) field. In the latter, complex system behaviour often
emerges from the interaction of relatively simple agents and simulation allows to
study these emergent phenomena. ABMS has been shown to have broad applica-
bility, e.g. in social sciences [13], ecology [15], biology [28], and physics [39]. As
a consequence, numerous ABMS frameworks have been proposed [6,29,36], and
research has focused on various aspects of the latter, such as methodology [32],
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ease of use [40], portability [2], and expressiveness [31]. The size of agent pop-
ulations may be a crucial factor towards the emergence of certain sought-after
system phenomena, so performance is also an important aspect. The ability to
scale up simulations to large populations comes down to, basically, how much
computation the used ABMS framework can “crunch” per time unit. However,
till recently little attention was devoted in improving the performance of avail-
able ABMS frameworks [30].

This paper extends our previous work reported in [4] by introducing in greater
depth a new ABMS framework called HLogo. The framework is strongly inspired
by the well-known NetLogo framework [38]. Like NetLogo, HLogo also strives
for simplicity. For this reason HLogo is implemented, actually embedded, in a
powerful and pure functional programming language called Haskell [1], hence the
name “HLogo”. Unlike NetLogo, HLogo is a concurrent ABMS framework, that
aims to speed up simulations by harvesting the parallelism available in modern
multi-core CPUs. HLogo offers three unique features which also constitute the
main contribution of this paper:

– HLogo allows agents to run concurrently, with the latter implemented by
utilizing a technology called Software Transactional Memory (STM) [33]. This
allows the complexity of synchronizing agents to be completely hidden from
the programmers, hence keeping HLogo just as simple as NetLogo, despite the
concurrency. Coupled with Haskell’s lightweight (green) threads, the overall
ABMS execution enjoys significant benefits from multi-core parallelism.

– HLogo is embedded as a Domain Specific Language (eDSL). As a DSL it has a
simple base syntax. As an embedded DSL it also inherits all the advantages of
its host language, Haskell. For example, it inherits Haskell’s module system
(which NetLogo lacks), allowing HLogo programmers to import and use a
plethora of Haskell libraries. The decision to embed the DSL, rather than
directly implementing it, does mean however that its syntax is limited by
that of its host language.

– HLogo is statically typed and it inherits Haskell’s type inference. This
strengthens the safety of HLogo programs without burdening the user with
writing type annotations.

The rest of this paper is organized as follows. Section 2 outlines the NetLogo
approach to ABMS, in order to explain the concepts implemented in HLogo.
Section 3 presents related work in the area of Logo-like simulation platforms
and parallel approaches to simulation. Some important features of Haskell, the
implementation language of choice, are presented in Sect. 4. The HLogo language
is presented in Sect. 5 with Sect. 6 discussing the parallel features of the former,
and Sect. 7 reporting an experimental evaluation of the former. Finally, Sect. 8
concludes the paper and presents future research directions.

2 Agent Based Modelling and Simulation in NetLogo

The ABMS community has enjoyed the introduction of a significant number of
simulation platforms that differ in a number of characteristics, such as modelling
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approach, efficiency, user-friendliness, etc. NetLogo [38] is one of the most well
known and widely used platforms, mainly due to its simplicity, small learning
curve and the ease by which users create simulations, or experiments as the
former are referred to in NetLogo.

Three kinds of agents exist in the NetLogo environment, namely patches,
turtles and links, each modelling a different aspect of the simulation world. All
entities are stateful and active, i.e. they have a set of attributes (variables)
which determine their state and the user can encode agent behaviour using the
provided domain specific language. The latter offers a set of primitives that
target encoding of both agent perception and action mechanisms, simplifying
the task significantly.

Patches are stationary agents, that form the two dimensional (or three dimen-
sional) world, i.e. the grid on which turtles “live”. The dimensions of the grid are
fixed during the execution of an experiment and in the case of patches, variables
and code allow modelling of complex environments. Turtles are agents that are
dynamically created during the experiment and can move on the grid with links
connecting two turtles, i.e. representing a relation between the latter. Agents
can be organized into breeds, although the depth of such organisation is lim-
ited to one. Each breed can have its own user-defined attributes, apart from the
system-specified ones. For instance, this declaration:

breed [cows cow]
cows-own [age hunger]

defines a new breed called cows, with each of its member having attributes age
and hunger.

One of the important notions in programming NetLogo agents is that of an
agentset, i.e. a set of agents of a specific type (either turtles, patches or links)
that have certain characteristics. For instance, all agents of a specific breed are
part of the agentset with the same name (e.g. cows). More interesting agentsets
are formed with the use of NetLogo primitives, as for example cows in-radius 3
which forms an agentset of all cows located around the calling agent at a specific
distance. A rich set of primitives similar to the above allow implementation of
agent perception mechanisms. Among those are the with primitive that defines
a boolean condition on the agentset formation, i.e. the line cows with [age>4],
will collect all cows older than 4 years old.

Execution involves asking an agent or a set of agents to perform some action.
For instance, the following line of code:

ask cows in-radius 3 [set hunger 0]

commands all cows inside the specific radius to set their hunger attribute to 0.
The observer entity is the initiator of the experiment, and can ask other agents
to execute some code, and every agent can ask other agents to perform some
action. The built-in variables self and myself refer to the currently executing
agent (similar to ‘this’ in OO), and the parent caller that asked this agent,
respectively. Besides built-in commands an agent can execute custom commands
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defined by user-defined procedures and user-defined functions called reporters, in
NetLogo terminology.

Finally, the state of other turtles can be queried by using the “of” primitive.
For example, the expression [age] of cows reports back a list of all cows’ ages
in the simulation world. In addition to reporting an attribute, “of” can also
evaluate a function on the target agent’s context and report the result.

The approach, briefly outlined above, has become widely accepted by
researchers using ABMS in a number of fields, with the list of publications citing
NetLogo becoming quite large and increasing steadily each year, proving that
the environment has sufficient modelling capabilities. However, building large
experiments is currently not sufficiently supported, mainly due to the fact that
the execution model is sequential. During an ask command as the one shown
above, each agent in the set has to complete the execution of the code given to
it, before the next agent in the set can start. Although this approach does solve
a number of problems, it simply cannot take advantage of the computational
power offered by current multi-core processors.

Running a simulation in parallel is a rather complex task, since executing
agents have constant access to a shared environment as well as each other’s
states. Handling concurrent changes creates a major challenge that any par-
allel simulation platform must address. This work addresses the problem by
introducing a NetLogo variant implemented in Haskell, relying to the Software
Transactional Memory control mechanism provided by the later.

3 Related Work

Since this work deals with a parallel ABMS platform developed in Haskell, this
section first discusses existing implementations of NetLogo ABMS platforms,
then parallel simulation platforms, and finally existing simulation frameworks in
Haskell.

NetLogo [38] models are written in a dialect of the educational programming
language Logo. The language is dynamically typed with lexical variable scoping
and is implemented in the Scala programming language. A compiler translates
NetLogo code to Java bytecode, to be later run in a Java Virtual Machine (JVM).
The platform includes a GUI to visualize simulation results, and a rich collection
of predefined models. A limited form of type checking based on agent types
(turtles, patches etc.) is supported, i.e. there are certain commands that can only
be run in a specific agent context and a user defined procedure that contains
them must be run in the same context as well.

ReLogo [24] is a NetLogo clone embedded as a DSL in Groovy (an OO
language running in JVM) that comes as a part of the Repast simulation suite.
As is the case with NetLogo, ReLogo is single-threaded and comes with a rich
GUI & IDE based on Eclipse. Although Groovy 2.0 introduced optional static
typing, ReLogo cannot type-check many of its expressions: agentsets are untyped,
and ask/of/with closures cannot track the type information of their context (self,
myself). The simulation user has to either resort to type-casting or turn off
Groovy’s static typing in the pertinent code.
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In order to speedup large sets of experiments, both NetLogo and ReLogo
support parameter sweeping [19]: running multiple instances of the same model in
parallel, each on its own CPU core, while varying the model’s input parameters.
Taking a more traditional approach, HLogo, tries to inject parallelism inside
a single instance of a simulation run; this can be crucial for large models or
time-critical simulations where any performance gain is desirable.

To the best of our knowledge, the work described in this paper is the first
to apply Software Transactional Memory in Agent-Based Modelling. However,
there are other approaches in the literature that investigate the issue of speeding
up ABM execution using various parallel techniques: the work described in [21]
proposes to execute Agent-based systems through Distributed Discrete-Event
Simulation. The key problem as reported in the paper, is the decomposition
of the environment which leads to the problem of fair load balancing of the
distributed machines. SPADES [30] is another Distributed Agent Simulation
Environment that explicitly models the full agent cycle (sense-think-act), while
having distributed execution and reproducibility of results. The work reported in
[22] employs a well known parallelization technology, OpenMP, to speed up the
execution of agent-based models. However, the technique restricts the implemen-
tation language of ABM frameworks to only those which provide an OpenMP
implementation, i.e. C, C++, Fortran. It also adds the burden of annotating
simulation code with extra OpenMP pragmas, which is rather discouraging for
simulation developers. SASSY [16] is a scalable agent based simulation system
that acts as a middle-ware between an agent-based API and a Parallel Discrete
Event simulation (PDES) kernel. The difference in SASSY compared to [21,30] is
that the ABM framework can be built up from existing standard PDES kernels.
An innovative method of executing mega-scale Agent-Based Models in the mas-
sively parallel Graphics Processing Unit (GPU) is proposed in [10]. Although,
it is well established that this method can lead up to considerable speed gains,
we feel that the expressiveness of Agent-based models that can be run on this
platform is rather restricted. A similar framework is Flame GPU, built on-top
the FLAME ABM framework [17], and has successfully been applied on project
EURACE to simulate the European economy model [8].

Within the Haskell community, our work is the first Logo-based simulation
framework implemented in Haskell. Other simulation packages for Haskell are
for example Hasim [3] and the recently introduced Aivika [35]; both are libraries
for Discrete Event Simulation (DES). Hasim [3] provides process-based DES,
however it does not employ any kind of parallelism. Aivika provides DES with
extensive system dynamics. There is also the event-monad library that provides
a monad (see also Sect. 4.2) and monad transformer for events; it can be used as
a low-level helper library to build a simulation framework. Users can create an
event-graph simulation system and schedule events to it. In principle, it does not
employ any parallelism, but it could theoretically be used together with some
parallel strategy to exploit parallelism.



102 N. Bezirgiannis et al.

4 Haskell

The functional programming language Haskell [1] was selected as the HLogo
implementation platform, for two main reasons. Firstly, it is an excellent choice
for embedding domain specific languages (DSLs) [14] and HLogo is designed as a
DSL. Secondly, Haskell offers an excellent implementation of Software Transac-
tional Memory (STM) [9], which is crucial for realizing HLogo’s parallelism. This
section will introduce several concepts from functional programming necessary
to explain the embedding of HLogo in Haskell, and introduce STM.

4.1 Static Typing

An important feature that HLogo gets from its implementation in Haskell is
that the latter is a statically typed language. This extends to HLogo as well,
which is in contrast to NetLogo’s dynamic typing. For example, in Haskell, and
thus also in HLogo, a type error in an expression such as 1 + non number will
be detected at compile time. It should be noted that NetLogo also checks type
consistency of its expressions, but the majority of such checks is done at runtime
and consequently, such errors, as in the example above, are detected rather
late. In this respect, HLogo can be said to provide more safety for agent-based
modeling. However, if the user needs dynamic typing, e.g. for its flexibility, it
can be supported in Haskell through the Data.Dynamic module.

HLogo also takes advantage of Haskell’s powerful type system and thus can
type-check not just simple arithmetic expressions, but also more elaborate state-
ments. The majority of built-in Logo-like commands need to be executed in a
specific agent context, e.g. the command forward n may only be executed by a
turtle agent (other types of agents are immovable). The example below presents
a NetLogo expression, and its HLogo counterpart, where we erroneously “ask”
the patch at location (0, 0) to die:

%% NetLogo version: yields error only later at runtime
ask patch 0 0 [die]

-- HLogo version: this program does not type-check
ask (atomic die) =<< patch 0 0

In this case, HLogo will detect the error successfully at compile time. Elab-
orating more on this error, the action die should only be invoked on either a
turtle or a link, whereas patches are to live through out the simulation, so they
should not “die”. In Haskell, this is enforced by overloading the name die, which
is achieved by defining die as an operation of a ‘type-class’ called TurtleLink.
Haskell type-classes offer a similar concept to interfaces in OO languages, e.g.
Java, used for ad-hoc polymorphism. A type-class defines a set of operations,
but it only defines their signatures, and thus provides no implementation. When
the type T is declared to be an instance a type-class, e.g. TurtleLink (in OO
jargon we would say T ‘implements’ TurtleLink), T gets all TurtleLink’s oper-
ations including die, but on the other hand the declaration must specify how
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T implements those operations. In HLogo turtles and links are declared to be
instances of TurtleLink, thus allowing die to be overloaded for both types of
agents. On the other hand, patches are not instances of the former type-class;
therefore the action die in the above code yields a type error.

Haskell’s strong type system also comes with Hindley-Milner type inference
[23], which makes type annotations optional. This provides type safety to the
user, without the burden of annotating the code with type signatures. For exam-
ple, the following command is a variation of the previous example:

ask (atomic (do {forward 3 ; die})) =<< agentT

There is no need to explicitly annotate the type of agentT. Haskell type sys-
tem can infer that it must be a turtle: it “knows” that die expects an agent
which is an instance of TurtleLink, whereas forward expects a turtle (patches
and links are not supposed to move around). So by implication Haskell success-
fully infers that the agent on which the above commands are applied has to be
of type Turtle.

4.2 Monads

In Haskell, types can be parameterized. For example, lists of integers are of type
[Int]. Actions that perform input/output (IO) are instances of the type IO a,
where a is the type of the result of such an action. For instance, the function
getChar that reads from the console and returns the read character has the type
IO Char. The [.] and IO parts in these examples are called type constructors; they
construct a new type from the type given to them.

Being a purely functional language, Haskell has no natural concept of side
effect and thus modeling agents that are stateful and have actions with side
effects on their own or other’s states and the environment does not come natu-
rally. However, such states and side effects are brought into the language through
monads [27]. In functional programming, a monad is a generic concept for com-
posing items through an associative operator. A simple example of a monad is
lists with the concatenation operator. It should be noted that in Haskell function
compositions are allowed and thus monads can be used to compose computa-
tions. In more technical terms, a Haskell Monad is a type-class and for the purpose
of this discussion, we will assume that this type-class offers an associative oper-
ator “;” for composing monadic actions1. A type constructor M can be made an
instance of Monad by providing a concrete definition for “;”. If M is a monad, then
an expression of type M a is a monadic action: when executed, at the end will
produce a value of type a. For example, the previously mentioned type construc-
tors, IO and [.] are both monads and the function getChar is thus a monadic
action. The set of commands for HLogo agents, such as forward and die also
form monads.

1 The actual definition of Monad offers a slightly different and richer set of opera-
tions [26].
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Monadic actions can be sequentially composed with the do notation.
E.g., suppose c is a monadic action of type M Int, then the expression:
do{z ← c; return (z+1) } is a new monadic action2. It first evaluates/executes
c, then binds the produced value in the variable z, then z + 1 is returned as the
produced value of the whole action. The concept is general through the overload-
ing of “;” operator (recall that Monad is a type-class) and the exact meaning of
the example do expression above depends on the used monad (which M is being
used). If it was the IO monad, or the monad of agents’ commands, the meaning
is roughly as described above. If the monad was the list monad, it would have
the net effect of constructing the list [ z + 1 | z ∈ c ].

The expression do{e1 ; e2 ; ...} will evaluate the expressions e1, e2, ... in the
given order. When e1, e2, ... are written vertically, and start at the same column,
we can drop the use of delimiters “{“,”}”, and the “;” to get a cleaner syntax.
A do-sequence that does not explicitly specify a return as the last expression,
implicitly returns whatever the last expression returns. For example, the HLogo
expression below is a monadic action that first obtain the set of all patches in
the simulation, and then it returns the number of elements of this set.

do p ← patches
count p

There is also the e =<< d operator that we saw before in Sect. 4.1, that pipes
the value returned by the monadic action d as an input for e. So, the above code
can also be written more succinctly as count =<< patches.

4.3 Software Transactional Memory (STM)

STM is a concurrency control mechanism that allows concurrent processes to
be programmed without having to synchronize them, and yet allowing them
to safely operate on common states. This makes the task of programming such
processes much easier and much less error prone. There is no need to worry about
race conditions, nor deadlocks. STM’s concurrency relies on the so-called transac-
tions—a concept that originally comes from the database domain. A transaction
is a sequence of reads and writes to a set of so-called transactional variables or
TVars. A TVar represents an actual store in the memory, which can be shared by
multiple transactions. The execution of a transaction is virtually atomic, that is,
its intermediate changes on the TVars it operates on cannot be witnessed by any
other transaction. The idea originates from the field of Distributed Databases,
where a transaction corresponds to an atomic SQL query or update. Whereas
database transactions operates on tables’ rows or columns, transactional mem-
ory operates at the level of memory stores. Historically, transactional memory
was introduced in 80’s by Knight as an extension to Lisp with suitable hardware
modifications to enable concurrency [18]. In 90’s, Shavit and Touitou turned
the idea to a pure software implementation of the approach, and coined the

2 The actual symbol in Haskell is <− instead of ←. We use the later just for improving
the presentation.
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term Software Transactional Memory. Recently, STM programs can be further
accelerated through hardware instruction-set extensions, e.g. with Transactional
Synchronization Extensions (TSX) of the Intel R© Skylake processor.

Multiple transactions can run in parallel, however each transaction τ does not
directly write to its TVars. Instead, it keeps a separate log of reads and writes
to the TVars, with writes not committed yet. At the end of the transaction, it
checks if one of its TVars has been modified with respect to its value at the start
of τ . If no modifications have occurred, all τ ’s writes are committed and the
transaction is said to be successful. Otherwise, τ is aborted, and later retried
again.

Haskell has an excellent STM library [9] and furthermore, its strong type sys-
tem guarantees that transactions are ‘safe’. It is important that aborted trans-
actions have no irreversible side effects, in other words, if they do have effects,
we should be able to rollback those effects. This can present a problem, as for
example in cases where within a transaction we perform IO actions (e.g. to read
a value from the keyboard), which typically cannot be rollbacked. In most other
language implementations, this cannot be enforced. In Haskell however, STM
transactions and IO actions are both monadic actions, but of different types: a
transaction that returns an integer will have the type STM Int whereas an IO
action that read an integer from the keyboard has the type IO Int. Haskell type
system guarantees that expressions of these monads cannot be intermixed, in
the same way that Haskell does not allow an instance of Int to be subtracted
from an instance of Bool.

In HLogo, a model typically consists of many agents. To gain parallelism,
agents’ actions can be composed from transactions. Internally, committing a
transaction involves complicated orchestration where different places in the mem-
ory must be locked and unlocked in a certain order. However, this process is
hidden from the programmers: from their perspective transactions are lock free,
thus making concurrent programming much easier for them. For HLogo this is
important, since we want to maintain NetLogo’s user friendliness. Using STM
does have its price. It introduces overhead due to aborted transactions. But
still, experiences reported with STM in the literature suggests that considerable
speedup can still be expected [25].

Ultimately, transactions are run by threads for concurrent execution. There
are several options on how to do this. The obvious one is to run each transaction
on its own thread. Haskell provides so-called green threads, i.e. virtual threads
managed by a virtual machine (or by a language’s runtime-system), as opposed
to OS’ native threads. Green threads use less memory and can be activated
and synchronized faster. A large number (thousands; even millions) of green
threads can be created without running out of memory. Haskell runtime-system
employs an M :N threading model, where M green threads are automatically
mapped to N OS (heavy weight) threads for multi-core parallelism. While this
maximizes concurrency, in our case most of the time the number of available
CPU cores is much less than the number of agents. The above solution would
lead to performance degradation. Section 6 will discuss our solution to this.
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5 HLogo

Both NetLogo and HLogo are instances of Domain Specific Languages (DSLs) for
describing and simulating dynamic systems. A DSL is a programming language
that offers, through appropriate notations and abstractions, expressive power
focused on a particular problem domain [37]. NetLogo is a native DSL, i.e. it has a
dedicated parser and a compiler or interpreter to execute its code, whereas HLogo
is an embedded DSL (eDSL). An eDSL is embedded inside another language
(host), usually a general purpose programming language and tries to imitate
a native DSL by providing its language constructs in terms of the constructs
of the host. It is an imitation in the sense that it may not look or even work
entirely the same as the DSL it imitates, but it tries to. On the other hand, an
eDSL can be more rapidly developed because we do not need a separate parser
and compiler for it. An eDSL also inherits all the important features of its host
language. HLogo inherits, among other features, Haskell’s:

– expressiveness and its powerful type checking, as discussed in Sect. 4.1,
– module system, thus allowing us to organize HLogo agents into separate mod-

ules, a feature that NetLogo currently (as of version 5.3.1) lacks, and
– the already vast collection of open-source Haskell libraries (Hackage).

Haskell was chosen since it is a brilliant host language for embedding
DSL’s [14], as has been demonstrated in various cases [5,11,26]. In particu-
lar, the expressiveness provided by higher-order functions and type classes is
crucial for imitating native DSL constructs. This approach also makes HLogo
more easily extendible: new constructs can be simply added by the inclusion of
more higher order functions, whereas in a native DSL we would need to modify
the parser and interpreter.

It is true though, that as an eDSL the syntax of HLogo will be limited by the
syntax of its host language, Haskell. For example, in NetLogo binary operators
have higher precedence than function application; e.g. we can write: print 1+3.
This is not possible in HLogo, because in Haskell the precedence is reversed.
So, the same code in HLogo has to be written as: print (1+3). As mitigation,
Haskell’s clean syntax and support for overloading can often be exploited to
provide acceptable syntactical imitations of the original NetLogo constructs.

Nearly the complete set of NetLogo’s standard library has been ported to
HLogo. In the sections that follow, we limit ourselves to explaining how the
main concepts are represented in HLogo. A complete example of a simple model
is also included.

5.1 HLogo Agents

By default in each simulation there are always turtles, patches, and links. Iden-
tifiers of the corresponding names can be used to refer to them, e.g. turtles
represents the set of all turtles in the model at hand. The dimension of the sim-
ulation world is set through command line and this determines the number of
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patches in the model. Turtles can be created dynamically e.g. by the command
create turtles N . The command ask create link with β =<< α creates a
link between α and β. These agents come with a number of pre-defined proper-
ties. E.g. turtles and patches have x and y coordinates specifying their position.

We can introduce a new breed of turtles and define new attributes for them.
Technically, this requires the user to define a new Haskell datatype represent-
ing the breed, along with the corresponding set and get functions to access its
attributes. To avoid having to write such boilerplate code, we employ Template
Haskell [34], a compile-time meta-programming technique that will generate the
needed code. As an example, the following code is part of the preamble of the
example HLogo model in Fig. 1:

-- HLogo eDSL is a library

import Language.Logo

-- generates: cows,cows here,...

breeds ["cows", "cow"]

-- generates getter/setter: energy

breeds own "cows" ["energy"]

breeds and breeds own are actually Template Haskell macros. The first creates,
among other things, Haskell identifiers named cows and cow which can be used
to refer to all cows, or to a specific cow (e.g. as in cow 0 0, the cow at position
0, 0). The second creates a new attribute for cows, which can be referred to by
the identifier energy.

5.2 Commands

As mentioned in Sect. 2, NetLogo’s main primitives for invoking commands on
agents are: ask, of, and with. HLogo also provides these primitives (since “of” is
a keyword in Haskell, the name “of ” is used instead).

The general syntax of ask is ask c =<< α, where c is the command to invoke
and α is an agent (or an agentset) and which has the obvious effect of invoking
c on α (or all members of α). More precisely, a command like c is a monadic
action. The monad has a quite rich structure, but abstractly we can view com-
mands as instances of the IO monad. For example xcor and ycor are commands
that return respectively the x and y coordinates of the given agent. Other exam-
ples include forward and die mentioned in Sect. 4.1. These are actually STM
transactions, which can be turned into commands by wrapping them with the
function atomic—the connection will be discussed later. The whole construct
ask c =<< α is again a command; it simply returns void.

Since these are monadic actions, commands can be composed with the do
notation (see also Sect. 4.2), e.g. do {c1; ...; cn}, and we can invoke them on a
set of agents, e.g. all turtles, as in:

ask (do {c1; ...; cn}) =<< turtles
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The primitives of and with can be used with similar syntax: of c =<< α and
with c =<< α. The primitive of is actually just a slight variation of ask; whereas
ask always returns void, of c =<< α returns whatever value c returns. If α is an
agentset, the construct then returns a list of the results of invoking c on every
member of α. The primitive with expects c to be of type IO Bool and α to be an
agentset. It returns a new agentset consisting of those members of α, on which
c returns true.

5.3 Procedures

NetLogo allows procedures to be defined through the to ... end syntax, for
instance the code below defines the move[p] procedure, which will turn all cows
5◦ to the right, then move them p points forward:

to move[p]
ask cows [right 5 forward p]

end

In HLogo, the same definition is achieved by a top-level function bound to its
corresponding right-hand side monadic action:

move p = ask (atomic (do {right 5 ; forward p })) =<< cows

5.4 A HLogo Model Example

A complete model simulating a population of cows living on a field is shown
in Fig. 1. In this simple model, Grass grows on random patches in the field
and cows move around randomly, eating grass to gain energy. Regrowth of the
grass and loss of energy are not included in this simple model. The example
code also demonstrates a rudimentary support for visualization: the command
snapshot can be called at any place in HLogo code to save an image of the
current simulation’s 2D canvas to a fresh postscript image. The image in Fig. 2
shows a snapshot of a run of the model in Fig. 1. Live visualization, as offered
by the NetLogo platform, is part of future work.

6 Parallelizing HLogo

Both HLogo and NetLogo models are compiled to native code to run simula-
tions. HLogo uses the Haskell compiler whereas NetLogo is actually compiled to
Java bytecode which is then interpreted by a JVM; however, nowadays JVMs
regularly employ Just-In-Time (JIT) compilation to native code. Both HLogo
and NetLogo’s simulation engines use similar data-structures to store agents: a
2-dimensional array for patches, and tree-based maps for turtles/links. However,
they differ fundamentally on how they execute their commanding primitives
(ask/of/with). E.g. in NetLogo’s ask A c where A is an agentset, the command
c is invoked on every agent in A, in a sequential manner. NetLogo does pro-
vide a variant called ask−concurrent; but this only simulates concurrency by
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Fig. 1. An example of agent model in HLogo. Cow-turtles move around and eat grass-
patches to gain energy.

Fig. 2. An example of HLogo visualization output. White triangles represent cows.
Green patches are patches with grass. Brown patches have no grass.
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interleaving the execution of c between the agents in A. In other words, it does
not run the agents in parallel. In contrast, HLogo tries to parallelize the exe-
cution of ask/of/with by utilizing Software Transactional Memory (STM) and
green threads, two technologies for parallelism provided by Haskell discussed in
Sect. 4.3.

Figure 3 shows the algorithm of the worker function behind HLogo’s ask.
The function askWorker gets the command c to execute and an agentset A.
It also gets a few other things as context: self is the id of the agent that calls
it and parent is the id of self ’s parent (in NetLogo also denoted by myself).
The worker adopts a ‘divide and conquer’ strategy: it randomly splits A into N
subsets, called slices, where N is the number of available CPU cores. For each
slice B, a separate green thread t will be created, and the command c will be
executed on every agent β in B. So, the execution of the slices is parallel, but
within each slice the agents execute sequentially. Executing c on an agent β will
need a context similar to the context passed to askWorker, except that β is now
the ‘self’, and the worker’s self is its parent. Finally, the worker will wait until
all slices finish their execution.

To randomly split A we use a high-quality treefish random generator library
[7]. This random generator is splittable, allowing the random generator used by
askWorker to be split into N fresh generators, one for each slice so that the
threads do not have to compete on a single generator. Note that c may contain
another ask, which then needs a random generator to do its own splitting.

Notice that askWorker blocks at the end, to wait until all the threads it
spawned have completed. There is also a non-blocking variant of ask named
ask async where the worker simply continues.

askWorker (self, parent) c A =
N ← the number of CPU cores
slices ← use rndG to split A into N parts
T ← ∅
for B ∈ slices

t ← (λ() → for β ∈ B → executeCommand (β, self) c)
run t() as a new thread
T ← T ∪ {t}
i ← i+1

wait until all threads in T finish

Fig. 3. The algorithm of HLogo ‘ask’ implementation.

The other two primitives, of and with, are implemented in a similar man-
ner, with the only difference being that their workers need to collect (of ) and
filter (with) the results of executing c on the agents in A. All three primitives
are themselves commands, which implies that their usage can be nested. For
example, in:

ask (ask eat grass =<< cows here) =<< green patches (1)
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This command will ask every green patch to pass back all the cows that are
currently on the patch, and ask these cows to eat the grass there. Note that
this nesting will have maximum N2 + 1 green threads running. Haskell runtime
system will automatically load-balance the threads to the available CPU cores,
if for example there are some patches with less or no cows on them.

6.1 Commands and Transactions

A Haskell thread expects to execute some code with IO effects. Consequently,
commands are instances of the IO monad. However, if this simple approach is
followed, race conditions might occur between the agents. Consider the follow-
ing HLogo ‘procedure’ (in Haskell terminology this is a ‘function’) defining the
command eat grass:

eat grass = do g ← grass
when (g > 30) (do set grass (g − 30)

e ← energy
set energy (e + 30))

If we allow the commands in eat grass’s body to operate in the IO monad, two
race conditions may happen: (a) two cows eat grass from the same patch, but
the patch grass level is decreased only once; (b) at another point in the program,
an agent ‘ask’s to (destructively) modify the energy of a currently-eating cow.

Instead, what Hlogo actually does is to store agents’ attributes in TVars,
i.e. transactional variables as discussed in Sect. 4.3. Basic agent commands (e.g.
right, left, forward, but also getters and setters such as grass and set grass
in the example above) are allowed to execute only inside an STM transaction.
In other words, these commands are instances of the STM monad. As discussed
in Sect. 4.2, using the do-notation we can compose multiple monadic actions to
form a more complicated monadic action. This also applies to STM transactions.
This means that the command eat grass is an instance of STM. The code in (1)
is thus not type correct since ask expects an instance of IO as the command.

We extend the language with the command atomic which given an STM
transaction will try to ‘run’ it; when the atomic succeeds, it means its effects
have been committed as a whole to the outside (IO) world, and will not be
rollbacked. The type of atomic is STM a → IO a. So abstractly it is a function
that turns an STM transaction into an instance of the IO monad. To fix (1) we
can do the following, which is now type correct, parallel, and race-condition free
(we underline ‘atomic’ to make it stand out):

ask (ask (atomic eat grass) =<< cows here) =<< green patches (2)

Does this mean that the programmer should create as large transaction blocks
as possible and merely surround them with a single atomic? Not exactly, since
larger transactions can affect performance negatively, since the probability to
conflict with transactions running on other threads increases. If a large trans-
action has to be rollbacked, the computation it has performed up to the point
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of rollback is also wasted. With HLogo, it is left to the programmer to decide if
the whole transaction should be atomic or if it is safe to break it into smaller
atomic blocks. As an example, below is a variation of eat grass that avoids the
above mentioned race-condition (a) and is faster than the variant with top level
atomic in (2). It does not however avoid the race-condition (b).

eat grass = do g ← atomic grass
atomic (when (g > 30) (do set grass (g − 30)

e ← energy
set energy (e + 30)))

Despite the gain in parallelism, STM is not a ‘silver bullet’ to all problems
that occur in a parallel setting. The execution of multiple STM transactions
is inherently non-deterministic. In the simplest case, two simultaneous threads
competing to modify the same TVar do not always commit in the same order.
Consequently, HLogo simulations are non-reproducible, but still consistent with
respect to race-conditions. On the bright side, HLogo’s engine guarantees that
on a 1-core configuration, and if we do not use any asynchronous primitive such
as the previously mentioned ask async, the simulation of any agent model is
reproducible.

7 Experiment

To compare the performance of HLogo to that of NetLogo, we ran the following
benchmarks. They are run on 100×100 patches, forming a torus-shaped canvas.
The benchmarks are simulated for 1000 ticks.

1. The benchmark Redblue has N turtles. The patches are randomly colored red
or blue. At every tick, each turtle moves one step forward, and then turns 30◦

to the left if it is on a red patch, and else 30◦ to the right. Agents never write
to the same TVar, and therefore their transactions never need to roll back.

2. The benchmark Cows has N cows. The patches are seeded with grass. The
cows move around randomly and eat grass. Consumed grass will regrow after
some random time (but below a certain maximum). Cows compete thus for
the grass, so some transactions may conflict and have to roll back.

3. The benchmark Termites has N termites. Each patch may contain 1 wood
chip. Termites navigate randomly to find a wood chip, pick it up and move it
next to other wood chip(s). Later on, sparse areas of wood chips are formed.
In this benchmark, termites compete both for picking up and placing of wood
chips.

4. The benchmark Dummy has N turtles, each simply wiggles randomly and
moves. Similar to RedBlue, agents do not conflict, but furthermore they do
not interact.

These benchmarks are run on a system provided by the SURF foundation
with 32 cores Intel R© Xeon E5-2698, 128 GB RAM. Hyper-Threading is disabled
since it does not provide true CPU-core parallelism. The OS Ubuntu 16.04 64 bit
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was installed, with The Glorious Glasgow Haskell Compiler version 8.0.1 and
NetLogo 5.3.1 running Java-8 version OpenJDK 1.8.0 111.

We run them on different configurations, with varying number of CPU cores
(1, 2, 4, 8, 16, 32) and the problem size (N). 20 simulations are run for each
benchmark and each configuration where we compute the average run time and
resident memory. Note that NetLogo first needs to parse and compile the model,
and then launches the JVM before it can start running a simulation. Being
an embedded DSL, HLogo does not do these. To make the comparison fair,
when measuring NetLogo’s run time we exclude the time it takes to do the
aforementioned preparation tasks. The benchmarks results are shown in Table 1:
speedup is measured as the ratio of NetLogo execution time over the HLogo
execution time for all experiments conducted; additionally, the memory ratio,
i.e. HLogo memory used over the NetLogo memory used is given. Figure 4 shows
a visualization of the absolute execution time of all four benchmarks.

Table 1. Execution speedup and memory usage of HLogo versions compared to Net-
Logo for a varying number of processors (cores). N is the size of the problem.

Problem N Execution speedup HLogo, #cores Memory ratio HLogo, #cores

1 2 4 8 16 32 1 2 4 8 16 32

RedBlue 1000 0.74 1.18 1.82 2.87 2.87 1.33 0.12 0.19 0.3 0.34 0.38 0.44

2500 0.55 0.67 1.04 1.96 2.57 2.33 0.12 0.18 0.25 0.48 0.72 0.72

5000 0.56 0.65 0.99 1.77 3.01 3.12 0.12 0.18 0.27 0.47 0.85 0.98

10000 0.54 0.67 1.09 2.02 3.24 4.15 0.13 0.19 0.28 0.48 0.85 1.24

20000 0.46 0.53 0.82 1.73 3.22 3.55 0.16 0.21 0.33 0.48 0.91 1.69

30000 0.40 0.50 1.00 1.82 3.23 4.71 0.18 0.26 0.39 0.65 1.14 1.85

Cows 100 3.29 5.08 7.57 10.79 8.99 6.54 0.10 0.17 0.3 0.52 0.82 0.87

250 2.73 4.00 6.64 8.57 8.27 5.97 0.10 0.16 0.29 0.51 0.78 0.88

500 2.04 3.36 5.19 6.90 7.09 6.55 0.10 0.17 0.3 0.54 0.87 1.03

1000 1.55 2.59 4.08 5.37 6.03 5.97 0.10 0.16 0.29 0.53 0.88 1.15

2000 1.16 1.84 3.27 4.52 5.28 5.41 0.10 0.17 0.29 0.53 0.92 1.32

3000 0.90 1.04 2.28 3.57 4.86 4.92 0.10 0.17 0.25 0.46 0.91 1.77

Termites 100 1.26 1.72 2.45 4.29 3.96 3.03 0.10 0.16 0.26 0.37 0.39 0.43

250 1.08 1.75 2.69 3.80 5.01 5.01 0.09 0.16 0.31 0.51 0.81 0.87

500 1.09 2.06 3.15 5.17 7.13 6.42 0.10 0.17 0.31 0.58 1.10 1.77

1000 0.58 1.05 2.04 2.98 4.35 5.37 0.10 0.16 0.3 0.57 1.08 2.06

2000 0.42 0.84 1.45 2.78 4.61 6.01 0.09 0.14 0.27 0.51 0.97 1.89

3000 0.46 0.67 1.17 2.30 4.03 6.30 0.09 0.15 0.25 0.48 0.90 1.5

Dummy 1000 0.54 0.95 1.24 1.56 1.75 1.17 0.25 0.45 0.84 1.56 2.43 2.81

2500 0.45 0.55 0.90 1.59 1.95 1.79 0.22 0.3 0.49 0.99 1.91 3.81

5000 0.41 0.51 0.91 1.60 2.42 2.38 0.23 0.34 0.52 0.96 1.86 3.64

10000 0.40 0.48 0.85 1.58 2.77 2.96 0.24 0.32 0.56 0.91 1.72 3.31

20000 0.33 0.42 0.70 1.30 2.52 2.56 0.28 0.41 0.58 0.99 1.75 3.22

30000 0.32 0.53 0.94 1.60 2.39 3.07 0.3 0.44 0.68 1.18 2.19 4.28
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(a) RedBlue model
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(b) Cows model
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(c) Termites model
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(d) Dummy model

Fig. 4. NetLogo & HLogo execution time for the 4 benchmarks.

Overall, we can clearly witness the speed gain in HLogo as we increase the
number of cores, while the performance scalability is retained. HLogo manages
to be at its best 10.79 times faster than NetLogo using a configuration of 8 cores.
Even with two cores HLogo manages to match or surpass the speed of NetLogo,
while using on average 78% less memory, which is a positive outcome considering
the fact that STM concurrency incurs certain overhead.

More specifically, the benchmark RedBlue at Fig. 4(a) shows linear growth
of the execution time relative to the problem size, which is expected for this
model. HLogo manages to be faster than NetLogo on a configuration of 4 cores
and above; however, on less cores HLogo’s speedup (see Table 1) actually worsens
fast, attributed perhaps to the administrative costs of managing and distributing
the turtles agentset to the different cores.

The results of the Cows benchmark (shown at Fig. 4(b)) indicate a sublinear
complexity behaviour, since normally the overall workload grows less than the
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number of cows as there is no much grass left to be eaten. Again, the speedup
of HLogo is positive for almost all core configurations; however, the speedup
degrades (Table 1) as the problem size increases, which is due to increasing con-
flicts between the cows as they compete for the grass, hence leading to more
STM rollbacks.

The Termites benchmark at Fig. 4(c) suggests a superlinear complexity of
the model, since the turtles (termites) compete greatly with each other for
(dis)placing the wood chips (patches) into forming piles. HLogo manages to
be at its best 7.13 times faster than NetLogo using a configuration of 16 cores;
the speedup degrades similarly to the Cows benchmark, attributed to the vast
competition between the turtles.

The Dummy benchmark of Fig. 4(d) shows analogous complexity behaviour
(linear) to the RedBlue benchmark. The HLogo speedup benefit is mostly pos-
itive but less than what is offered by RedBlue, although the problem has less
agent interaction. This can be attributed to the fact Dummy’s model has one large
atomic block, whereas RedBlue has finer-grained atomic blocks. For the latter,
this leads to smaller-sized STM logs and less traversal of the logs’ contents when
committing each STM log, i.e. atomically writing out the effects to memory.

HLogo, the above benchmarks, and other examples are available as open-
source software at http://github.com/bezirg/hlogo.

8 Conclusions and Future Work

We have presented HLogo, a variant of the ABMS framework NetLogo, that
offers an embedded DSL front end. At the back end it utilizes Software Transac-
tional Memory (STM) to obtain performance gains from multi-core execution,
and at the same time hide the complexity of concurrent programming from the
programmers. As an embedded DSL, HLogo has the advantage of inheriting the
Haskell’s module system, thus allowing its programmers to import any of the
whole wealth of Haskell libraries. Furthermore, the DSL is statically strongly
typed for all its expressions and agent commands, which adds a certain level of
safety when crafting a model.

Our benchmarks showed that HLogo’s performance does not suffer from the
use of STM. In fact, on multi CPU cores HLogo runs faster than NetLogo.
Giving HLogo more cores progressively increases its speed. HLogo also uses less
memory than NetLogo, up to a certain number of CPU cores (8 in most of our
experiments’ configurations). On the other hand, the trade off is that HLogo
simulations on multiple cores are not reproducible. Despite this, we believe that
there is room for applying HLogo, namely on problems where reproducibility is
not a factor, and where speedup is crucial to keep the running time feasible.

As a final note, we want to add that HLogo’s STM-based parallelism is in
principle framework-agnostic and thus could be applied to other ABMS frame-
works. For example, it can be applied to NetLogo. It should be possible to
extend NetLogo with the atomic construct. Then, one can use one of available
STM implementations in Scala (the implementation language of NetLogo) and

http://github.com/bezirg/hlogo
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mimic the described Haskell implementation. This might be attractive to the
already large NetLogo community, thus giving NetLogo the performance bene-
fits of HLogo.

Future Work. Our work so far has mainly focused on providing a front end
ABMS DSL and its backend simulation engine. To improve HLogo’s usabil-
ity it will need a decent visualization front end, e.g. as NetLogo now has and
this is a future work direction. Another feature that HLogo currently lacks and
would come as a great addition is parameter sweeping, i.e. executing the model
with multiple runs, each with a different parameter input (similar to NetLogo’s
BehaviorSpace tool).

With respect to its simulation engine, HLogo currently splits the workload to
threads using a random divide and conquer strategy. If transactions that write
to some common TVars are distributed to different CPU cores, this may lead
to transactions conflicts and therefore rollbacks. On the other hand, assigning
them to the same CPU core will avoid rollbacks. A smarter dynamic workload
distribution strategy should take this into account. Such a strategy could be
based on for example the turtles’ last known positions, or how they are connected
by links. Turtles that are close to each other, e.g. linked together, are more likely
to conflict. A static approach is probably less likely to be successful because
turtles move around, and links can be added and removed dynamically.

On the technical side, the turtles and links agentsets can be modified, cur-
rently, only in a non-concurrent fashion: a thread has to acquire a lock on the
agentset to create or remove (die) a turtle or link. By changing the data struc-
ture to a concurrently modifiable tree-map implementation we would benefit
from faster in-parallel insertions and deletions of turtles and links. Furthermore,
we can consider optimizing the tree-map data structure used to store the tur-
tles (see the beginning of Sect. 6) with a hybrid representation where turtles are
added in-order into a who-indexed vector, which if needed is transformed into
a sparse tree-map implementation when removals happen (as in ‘die’) dynami-
cally at runtime. For the patches, we can consider low-level optimization of their
array data structure by storing the indices (patches) in the so-called Z-order
scan (similar to a zigzag) instead of linearly as it is now. A Z-order patch array
would result in better performance because of better data locality: agents most
often interact with 2D-neighbouring patches and would then store the data of
the neighbouring patches close to each other, leading on average to less cache
misses than accessing the array in the common row order.

HLogo currently requires programmers to specify the atomicity level of the
agents by inserting calls to the function atomic. Through this mechanism, the
programmers can increase parallelism e.g. by grouping an agent’s access to unre-
lated TVars to different atomic blocks. As future work, we want to investigate if
the function atomic can be extended e.g. to log information that would enable a
simulation run to be reproduced or at least to some degree reconstructed, even
if it was originally run on multiple cores. The challenge here is to be able to
log enough information without slowing down the simulations. We also want to
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investigate if the insertions of atomic can be done automatically, e.g. through
data flow analysis. Moreover, some STM transactions can be accelerated after
applying certain optimizations, e.g. a wiggling cow move:

atomic( do{right =<< random 50 ; left =<< random 50})

can be optimized to atomic( do{i ← random 50 ; j ← random 50 ; left(i+j)})
which is faster since the STM transaction log is shortened through combining
two modifications of the turtle’s heading (right, left) to one (left). The program
remains consistent since this code runs atomically: no other agent could have,
in anyway, witnessed the intermediate modification.

Finally, since Cloud computing has become widely available, it might also
be interesting to investigate if HLogo can be extended to a distributed setting.
For example, this would enable HLogo models to run in High-performance Com-
puting (HPC). There is also the extreme case where models cannot fit in a
single shared memory machine and have to be distributed to multiple processing
nodes. There are Haskell technologies, such as Distributed Software Transac-
tional Memory [20] or Cloud Haskell [12] that can be employed towards this
direction.
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