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The classification of chiral WZW models
by H4

+(BG,Z)

André Henriques

Abstract. We axiomatize the defining properties of chiral WZW models.
We show that such models are in almost bijective correspondence with pairs
(G, k), where G is a connected Lie group and k ∈ H4

+(BG,Z) is a degree four
cohomology class subject to a certain positivity condition. We find a couple
extra models which satisfy all the defining properties of chiral WZW models,
but which don’t come from pairs (G, k) as above. The simplest such model is
the simple current extension of the affine VOA E8 × E8 at level (2, 2) by the
group Z2.
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1. Introduction

1.1. Simply connected WZW models. Associated to every simple, simply
connected, compact Lie group G, and to every level k ∈ N := Z>0, are certain
well-known unitary chiral conformal field theories (χCFTs), known as the chiral
Wess-Zumino-Witten models. They where first introduced as field theories in their
own right (as opposed to chiral ‘halves’ of full CFTs) by Witten [53], following
Spiegelglas [46], and were subsequently studied by many authors.

These χCFTs are usually described by means of a construction. It is interesting
to note that they can also be defined in terms of characterizing properties. Using
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100 ANDRÉ HENRIQUES

unitary vertex operator algebras (VOAs) as a mathematical formalism for χCFTs1,
we propose:

Definition 1. A “simply connected chiral WZW model” is a unitary VOA
which is rational, and generated in degree 1.

Here, we call a unitary VOA rational if it has only finitely many isomorphism
classes of irreducible unitary modules.2

Let us show how the above definition agrees with the more standard approach
(see [2, §4] for an expanded version of the argument that we are about to present).
Let V be a VOA as above, and let Ja ∈ V1, a = 1, . . . , n, be a basis of its degree
one part. Then the constants fab

c and kab which appear in the OPE

Ja(z)Jb(w) =
kab

(z − w)2
+

fab
c Jc(w)

z − w
+ reg.

endow g := V1 with the structure of a Lie algebra, and with an invariant bilinear
form κ : g×g → R. The universal affine VOA Vg,κ maps to V , and our assumption
that the latter is generated in degree one is equivalent to V being a quotient of
Vg,κ.

Now, if V is unitary, g acquires a positive definite hermitian form in addition
to the invariant bilinear form. Those two pieces of data combine to a real structure
of compact type, and so g is the direct sum of a semi-simple Lie algebra gss and an
abelian Lie algebra z [2, Thm. 4.10]:

g = gss ⊕ z = g1 ⊕ g2 ⊕ . . .⊕ gn ⊕ z.

On each simple summand gi, the bilinear form κ is a positive multiple of the basic
inner product (no constraint imposed on κ|z) and V is isomorphic to Lg,κ, the
quotient of Vg,κ by its unique maximal ideal.

If V is furthermore assumed to be rational, then we also have z = 0. Simply con-
nected chiral WZWmodel as defined above are therefore in bijective correspondence
with pairs (g, k) consisting of a semi-simple Lie algebra g = g1⊕ . . .⊕ gn (with real
structure of compact type), and an n-tuple of positive integers k = (k1, . . . , kn) ∈
Nn. If one wants, one can rephrase the result by saying that simply connected
chiral WZW model are classified by a pair (G, k) where G is a compact simply
connected Lie group, and k is an element in the positive part H4

+(BG,Z) ∼= Nn of
H4(BG,Z) ∼= Zn.

We summarize the conclusion of the above discussion in the following theorem:

Theorem 2. There is a natural bijective correspondence between simply con-
nected chiral WZW model and pairs (G, k), where G is a compact simply connected
Lie group and k is an element of H4

+(BG,Z).

The goal of this paper is to generalize the above result to the case of non-simply
connected groups.

1Throughout this article, all VOAs will be assumed to be one-dimensional in degree zero.
2The term ‘rational VOA’ has many meanings in the literature (see [25, Appendix] for an

overview). The present rather crude notion will be sufficient for our purposes.
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1.2. Non-simply connected WZW models. Wess-Zumino-Witten models
for non-simply connected Lie groups have been considered by many authors, and
so have their chiral halves [15][39, §2][21, §6]. In the mathematical literature, this
class of models was studied in [11][33]. Their representations were classified, and
their fusion rules computed.

The cohomology group H4(BG,Z) is briefly mentioned in [53, Appendix], and
its role in setting up certain aspects of the chiral WZW models was explained
in [4, §5]. But the question of classification of chiral WZW models has, to our
knowledge, never been formulated in the way we do it here.

In order to formulate our question, we first need a definition of chiral WZW
models, analogous to the one given in the previous section. In Definition 3, we
present a preliminary notion of a not necessarily simply connected chiral WZW
model (in Section 2, we will justify it in an informal way, from the point of view of
geometric quantization). Later, we will fine-tune our definition (Definition 4) so as
to make our main theorem (Theorem 5) be true.

An extension of VOAs W ⊂ V is a called a simple current extension if V
decomposes as a direct sum V =

⊕
λ∈π Mλ of invertible W -modules indexed by

a (possibly infinite) abelian group π ⊂ Rep(W ), and the VOA structure on V is
compatible with the π-grading.

Definition 3. A “general chiral WZW model” is a unitary rational VOA V
which is a simple current extension of the sub-VOA generated by its degree one part.

Given a compact Lie group G, the positive part of H4(BG,Z) is the subset of
elements whose image under the Chern–Weil homomorphism

H4(BG,Z) → Sym2(g∗)

are positive definite bilinear forms on the Lie algebra of G. We denote it by

H4
+(BG,Z) ⊂ H4(BG,Z).

We refer the reader to the end of Section 3 for a more precise description of
H4

+(BG,Z). The result which we had hoped to be true is the following:

“There is a natural bijective correspondence between general chiral WZW models
and pairs (G, k) where G is a compact connected Lie group (not necessarily simply
connected), and k is an element of H4

+(BG,Z).”

Unfortunately, with Definition 3, the natural map

(1) {(G, k) |G connected, k ∈ H4
+(BG,Z)} → {General chiral WZW models}

is neither injective nor surjective. The simplest example that illustrates the lack of
injectivity is SU(2) level 1, versus U(1) level 1:3 those two models yield isomorphic
VOAs [45]. In order to restore injectivity, we need to add the Lie algebra of
G as part of our data, which leads us to the following modified definition (still
preliminary):

Definition 3. A′ “general chiral WZW model” is a pair (V, g) consisting of a
unitary rational VOA V and a Lie algebra g ⊂ V1, such that V is a simple current
extension of the sub-VOA generated by g.

3A better name is to call this “U(1) level 2”, and to reserve “U(1) level 1” for the free fermion
super-VOA. We called it “U(1) level 1” because it corresponds to the generator of H4(BU(1),Z).
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102 ANDRÉ HENRIQUES

Even after this modification, we still have the problem that the map (1) is not
surjective: the pairs (G, k) only parametrize a proper subset of the general chiral
WZW models. The problem can be entirely blamed on the existence of the affine
VOA LE8,2 associated to the Lie group E8 at level 2. For all simply connected chiral
WZW models Lg,k except the one associated to E8 at level 2, the set of invertible
Lg,k-modules is in bijection with the centre of G [19]. The VOA LE8,2, on the other
side, admits a non-trivial invertible module, despite the fact that Z(E8) = {e}.

In writing this paper we were faced with the following unpleasant choice. We
could either stick to a cleaner notion of chiral WZW model, such as the ones
presented in Definitions 3 or 3′, at the cost of making our main theorem inelegant,
or add a weird-looking clause to our definition so as to ensure that our main theorem
looks good. We chose the second option: our working definition of chiral WZW
model (Definition 4) explicitly excludes the counterexamples that would otherwise
be there. As a consequence, our main theorem (Theorem 5) does not have to
mention these counterexamples.

Our choice was also guided by our conviction that the VOAs built using the
non-trivial invertible module of LE8,2 should not be called “chiral WZW models”.

Let us write ME8,2 for the non-trivial invertible LE8,2-module. We modify
Definition 3′ so as to explicitly rule out the possibility that ME8,2 gets used in the
simple current extension. Let us call an extension W ⊂ V E8,2-contaminated if
one can write W as a tensor product W = W ′ ⊗ LE8,2 and find a sub-W -module
M ⊂ V of the form M = M ′ ⊗ME8,2 for some W ′-module M ′:

Definition 4. A “chiral WZW model” is a pair (V, g) consisting of a rational
unitary VOA V and a Lie algebra g ⊂ V1, such that V is a simple current extension
of the sub-VOA generated by g, and the extension is not E8,2-contaminated.

With this definition in place, we can state our main theorem:

Theorem 5. There is a natural bijective correspondence between chiral WZW
models and pairs (G, k) where G is a compact connected (not necessarily simply
connected) Lie group and k is an element of H4

+(BG,Z).

Given a Lie group G as above with Lie algebra g and a positive level k ∈
H4

+(BG,Z), the corresponding VOA is given by

(2) VG,k := π � (Lgss,k ⊗Mz).

It is a simple current extension of the tensor product Lgss,k ⊗Mz of an affine VOA
(associated to the semi-simple part of g) and a Heisenberg VOA (associated to the
center of g) by the abelian group π := π1(G).

Remark. The proof of Theorem 5 is conditional on a conjecture (Conjecture 9),
according to which simple current extensions of unitary VOAs by unitary modules
are again unitary. The construction of VG,k does not rely on Conjecture 9, but its
unitarity does.

The interest of our theorem is that the group H4
+(BG,Z) is never mentioned

in Definition 4. It just comes out from the proof.
Note that our result is in stark contrast with the classification of full WZW

models by (positive) elements of H3(G,Z) [10] (as a side remark, we note that,
unlike Theorem 5, the latter is only valid when G is semi-simple; sigma-models
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with target a torus are classified by translation-invariant Riemannian metrics, and
those are not quantized).

In the last section of our paper, we describe the chiral WZW models in the
formalism of chiral conformal nets. We do not have an analog of Theorem 5 in that
context. Chiral conformal nets are conjecturally equivalent to unitary VOAs [7]
(both are mathematical formalisations of the concept of a unitary χCFT), and it
is tempting to try to formulate a version of Theorem 5 for chiral conformal nets.
However, unlike for VOAs, the property of being generated in degree 1 is not easily
expressible in terms of conformal nets.
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2. Geometric quantization

In this section, we provide an informal construction of the chiral WZW models
from the point of view of loop groups and geometric quantization. We then use this
to justify our Definition 3.

Let G be a compact connected Lie group, and let k ∈ H4
+(BG,Z) be a level.

The construction goes as follows:

(1) To begin with, for every circle S (here, a ‘circle’ is a smooth oriented
manifold that is diffeomorphic to S1) one can use the level k to get a
central extension4

1 → U(1) → L̃G → LG → 1

of the loop group LG := Map(S,G). See [41, Chapt 4] [38] for the
construction in the case of simply connected gauge groups, and [49, Thm
3.7] [50, Thm A] for the general case. This group satisfies the locality
axiom of quantum field theory, in the sense that loops supported in disjoint

intervals lift to commuting elements of L̃G [50, §3.3] ([22, Lem 3.1] in the
simply connected case).

(2) Given the further data of a conformal disc D bounded by S, one constructs

a certain representation H0 = H0(D) of L̃G, called the vacuum sector
associated to D. It is the geometric quantisation of the Hamiltonian LG-
space

LG/G = {moduli space of flat G-bundles over D trivialised over ∂D}
= {holomorphic GC-bundles with a smooth trivialisation over ∂D}
with respect to the pre-quantum line bundle induced by the central exten-
sion. This construction is described in [41, Chapt 11] in the case of simple
simply connected gauge groups, and in [40] in the case of tori. It is in
this step that it is important that k be a positive element of H4(BG,Z),

4The central extension ˜LG depends on k, even though this is not reflected in our notation.

Licensed to Universiteit Utrecht.  Prepared on Tue Jan 23 08:06:20 EST 2018for download from IP 131.211.105.193.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



104 ANDRÉ HENRIQUES

as this ensures that the Kähler structure on LG/G is positive definite and
the pre-quantum line bundle has enough sections.

(3) We now take D to be the standard unit disc. The circle group S1 acts on
D by rotations, and there is a corresponding action on H0. The vertex
algebra VG,k associated to G and k is the algebraic direct sum of the
eigenspaces of this rotation action.

Unfortunately, it is not easy to describe the VOA structure on VG,k from the above
perspective. The construction also doesn’t provide the projective action of Diff(S1)
on H0. We will not try to address these shortcomings. Instead, we just take the
above heuristic construction as a road map for understanding the meaning of being
a chiral WZW model. We then use this to justify our Definition 3, at an informal
level.

When G is simply connected, then the above geometric quantization procedure
yields the affine VOA Lg,k. This is the construction in [41, Chapt 11]. (When g is
not simple but only semi-simple, we denote by Lg,k the tensor product of the affine
VOAs associated to the simple summands of g, with the understanding that k is
now an n-tuple of numbers.)

Let us now take G to be a Lie group that is not simply connected. If we
assume that the fundamental group of G is finite, then the universal cover G̃ is
compact and we can proceed as follows. Let k̃ ∈ H4(BG̃,Z) be the restriction of
k. The moduli space of flat G-bundles over D trivialised over ∂D decomposes as
a disjoint union of π1(G) many copies of the corresponding moduli space for G̃.
The vacuum sector of LG decomposes accordingly as π1(G) many representations

of LG̃. These representations are all invertible, and so we get that VG,k is a simple
current extension of Lg,k by the group π1(G).

Remarkably, the above story goes through essentially unchanged when π1(G) is
infinite (i.e., when g is reductive but not semi-simple). In that case, we first consider

finite covers G̃ → G of G, so that G̃ is again a compact Lie group. The story then
proceeds as before: the moduli space of flat G-bundles over D trivialised over ∂D
is a disjoint union of copies of the corresponding moduli space for G̃, this time
indexed over Z := ker(G̃ → G). The vacuum sector of LG decomposes accordingly

as a direct sum of Z many representations of LG̃, and VG,k is a simple current
extension of VG̃,k̃ by Z. Thus, for every finite quotient Z of the fundamental group,
we get a direct sum decomposition of VG,k into Z many summands, exhibiting it
as a simple current extension of some smaller vertex algebra. Taking the common
refinement of all these decompositions as Z ranges over the finite quotients of π1(G),
we get a direct sum decompositions of VG,k into π1(G) many summands. The direct
summand that corresponds to the trivial element in π1(G) is the tensor product of
the affine VOA L

gss,k̃ with the Heisenberg VOA Mz, where

g = g
ss ⊕ z,

is the decomposition of g into its semi-simple part gss and its center z = z(g). At
the end of the day, we get that VG,k is a simple current extension of L

gss,k̃ ⊗ Mz

by the infinite abelian group π1(G).
Now, the distinguishing feature of the vertex algebras L

gss,k̃ ⊗Mz is that they
are unitary, and generated in degree one: any unitary VOA that is generated in
degree one is isomorphic to Lg,k ⊗ Mz for some semi-simple Lie algebra g, and a
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complex vector space z equipped with a real form zR ⊂ z and an inner product on
zR [2, Thm. 4.10]. It is those features that we have distilled into Definition 3:

A general chiral WZW model is a unitary rational VOA, which is a simple
current extension of a VOA that is generated in degree one.

The additional requirement that the VOA should be rational corresponds to G
being compact. Finally, as explained in the introduction, the sub-VOA generated
in degree one needs to be part of the data, as otherwise one cannot always recover
the Lie algebra g from the VOA.

3. H4(BG) for connected Lie groups

Before embarking in the proof of Theorem 5, it will be important to acquire a
good understanding of the group H4(BG,Z), in which the levels live.

Theorem 6. Let G be a connected Lie group and let g be its complexified Lie
algebra. Then there is a natural bijection between H4(BG,Z) and the group of
G-invariant symmetric bilinear forms 〈 , 〉 : g⊗ g → C that obey

1
2 〈X,X〉 ∈ Z for every X ∈ g s.t. exp(2πiX) = e.

Letting T be a maximal torus of G and W the Weyl group, we also have H4(BG,Z) =
H4(BT,Z)W .

We emphasize that the above result is very special toH4. For a general compact
Lie group, the higher integral cohomology of BG is full of torsion and admits no
easy description, even when G is simply connected [1].

Proof of Theorem 6: Let

(3) G̃ = Gss × T0 → G

be a finite cover of G by the product of a semi-simple simply connected Lie group
Gss and a torus T0. Let T̃ be the preimage in G̃ of the maximal torus T ⊂ G. Let
t be the complexified Lie algebra of T (and of T̃ ). Let Λ = π1(T̃ ) be the coroot

lattice of T̃ , identified with the set of elements X ∈ t such that exp(2πiX) is trivial

in T̃ . Finally, let Λ∗ := hom(Λ,Z) be the weight lattice of T̃ .

The cohomology ring of BT̃ is the symmetric algebra on Λ∗, and the map

Sym2(Λ∗) → hom(Λ⊗Λ,Z) : ω1· ω2 
→
(
λ1 ⊗ λ2 
→ ω1(λ1)ω2(λ2) + ω1(λ2)ω2(λ1)

)
identifies H4(BT̃ ,Z) = Sym2(Λ∗) with the group of even symmetric bilinear forms
on Λ, equivalently, symmetric bilinear forms 〈 , 〉 : Λ⊗Λ → Z such that 1

2 〈X,X〉 ∈
Z for every X ∈ Λ. By [9, (1.7.4)], the image of H4(BG̃,Z) in H4(BT̃ ,Z) is

exactly its Weyl invariant part. Similarly, H2(BG̃,Z) is the Weyl invariant part of

H2(BT̃ ,Z) = Λ∗, which is just the weight lattice of T0.

Let Z = ker(G̃ → G) be the kernel of the projection map and let K(Z, 2) be
the corresponding second Eilenberg-MacLane space. The Serre spectral sequence
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106 ANDRÉ HENRIQUES

for the fibration BG̃ → BG → K(Z, 2) looks as follows:

(4)

Z 0 0 Z∗ 0 H5(K(Z, 2))

0 0 0 0

H2(BT0) 0 0 H2(BT0)⊗ Z∗

0 0 0

H4(BT̃ )W

H4(BG) = ker
(
d5 : ker(d3 : H4BG̃ → H2BT0 ⊗ Z∗) → H5K(Z, 2)

)
.

Here, Z∗=H3(K(Z, 2),Z)=hom(Z,U(1)) and H5(K(Z, 2),Z)=H4(K(Z, 2), U(1))
is the group of U(1)-valued quadratic forms on Z [14, Thm 26.1].

We wish to compare the above spectral sequence with the one associated to the
fibration BT̃ → BT → K(Z, 2):

(5)

Z 0 0 Z∗ 0 H5(K(Z, 2))

0 0 0 0

H2(BT̃ ) 0 0 H2(BT̃ )⊗ Z∗

0 0 0

H4(BT̃ )

H4(BT ) = ker
(
d5 : ker(d3 : H4BT̃ → H2BT̃ ⊗ Z∗) → H5K(Z, 2)

)
.

The map from the E2 page of the spectral sequence (4) to the E2 page of the
spectral sequence (5) is injective in all the bidegrees drawn. It follows that

H4(BG) = H4(BG̃) ∩H4(BT ) = H4(BT )W ,

where the intersection takes place inside H4(BT̃ ).
To finish the argument, we recall that the set of vectors X ∈ g which are

conjugate to elements of t is Zariski dense. So there is a bijection between G-
invariant (equivalently G̃-invariant) symmetric bilinear forms on g and W -invariant
symmetric bilinear forms on t:

H4(BG) = H4(BT )W = W -invariant symmetric bilinear forms 〈 , 〉 : t⊗ t → C s.t.
1
2
〈X,X〉 ∈ Z for every X ∈ t with exp(2πiX) = e

= G-invariant symmetric bilinear forms 〈 , 〉 : g⊗ g → C s.t.
1
2
〈X,X〉 ∈ Z for every X ∈ g with exp(2πiX) = e

where the exponential map takes its values in T , respectively in G. �
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Remark. Given a homomorphism G1 → G2 of connected Lie groups, the
induced map in cohomology H4(BG2,Z) → H4(BG1,Z) corresponds to restriction
of bilinear forms. This is clear when the groups are tori, and the general case
follows since H4(BG,Z) is always a subgroup of the corresponding cohomology
group H4(BT,Z) for the maximal torus.

Under the isomorphism provided by the above proposition, the subsetH4
+(BG,Z)

of positive levels corresponds to those G-invariant symmetric bilinear forms 〈 , 〉 :
g⊗g → C which satisfy the property that 1

2 〈X,X〉 ∈ Z>0 for every non-zero X ∈ g

with exp(2πiX) = e. The above description is slightly more precise than the one
given in Section 1.2, because we had not specified our normalization of the Chern-
Weil homomorphism, and so the exact meaning of H4

+(BG,Z) was actually left
ambiguous. The archetypal example of a positive level is given by the bilinear form

〈A,B〉 := tr(AB) on sl(n).

It corresponds to the positive generator of H4(BSU(n),Z).

4. Representations of affine and Heisenberg VOAs

In this section, we recall the well-known classification of representations of the
affine VOAs Lg,k and of the Heisenberg VOAsMz (see [18, §3][33, §2] and references
therein, along with [12] for a discussion of unitarity).

4.1. Affine VOAs. Let g is a simple Lie algebra over C, with Cartan subal-
gebra h. Let Λroot ⊂ Λweight ⊂ h∗ and Λcoroot ⊂ Λcoweight ⊂ h be the root, weight,
coroot, and coweight lattices (the root and weight lattices are dual to the coweight
and coroot lattices, respectively). Let α1, . . . , αn be the simple roots, let αmax be
the highest root, and let

A = A(g) := {X ∈ h |αi(X) ≥ 0 and αmax(X) ≤ 1}

be the Weyl alcove. When g = g1 ⊕ . . .⊕ gn is a direct sum of simple Lie algebras,
we write A = A(g) := A(g1) × . . . × A(gn) for the product of the corresponding
alcoves.

It is well known that the irreducible positive energy representations of the affine
VOA Lg,k are classified by the orbits of the lattice k−1(Λweight) under the action

of the affine Weyl group Ŵ := W � Λcoroot, and that these representations are all
unitary [18, Thm. 3.1.3][12, Thm. 4.8].

Let G be the compact simply connected Lie group associated to g. The level
k ∈ H4

+(BG,Z) can be treated as a number when g is simple. But it better to think
of it as the linear map k : h → h∗ (coming from a bilinear form of h), which we use
to pull back the weight lattice Λweight ⊂ h∗ to a lattice k−1(Λweight) ⊂ h. Every

orbit of Ŵ intersects the Weyl alcove in exactly one point. The irreps of Lg,k are
therefore also classified by

(6) Ak = Ak(g) := k−1(Λweight) ∩ A ⊂ A.
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We illustrate the sets Ak with some rank two examples:

•

••

•
••

•
••

•

•

•
•

•

•

A2 level 4 B2 level 3 G2 level 5 A1×A1 level (3,4)

•
•
•
•

•
•
••

•
• • • •

•••
• •
••

•
• • • • •

• • • •
• • • •
• • • •
• • • •

Let A× ⊂ Ak be the subset of sharp corners of the Weyl alcove [42]:

(7) A× := Λcoweight ∩ Ak = Λcoweight ∩ A ∼= Λcoweight/Λcoroot.

It can also be described as the orbit of the origin 0 ∈ A under the isometry group
of the Weyl alcove (automorphism group of the extended Dynkin diagram), and is
canonically isomorphic to the center of G [42, Thm. 3] (see also [3, §4, Prop. 8]).

The following result was proved in [33, Prop. 2.20] by elementary means. We
provide here a less elementary, but possibly more informative proof:

Proposition 7. The elements of A× ⊂ Ak correspond to invertible Lg,k-
representations.

Proof. By the combined work of [16, 17, 28–31, 35, 36] (see also [37] for
a discussion of the few exceptional cases not covered by Kazhdan and Lusztig,
including E8 level 2), the representation category of the VOA Lg,k is known to
agree with that of the corresponding quantum group at root of unity. The fusion
rules are described by the quantum Racah formula [43, §5] (see [43, Remark 4]
for a very beautiful algorithm that allows one to compute all the rank two fusion
multiplicities by hand).

Using the quantum Racah formula, one easily verifies that the representations
Lg,k(λ) corresponding to elements λ ∈ A× are invertible with respect to fusion.
Indeed, the algorithm is invariant under Isom(A). So if μ, ν ∈ Ak are in the same
isom(A) orbit, then Lg,k(μ) is invertible if and only if Lg,k(ν) is. Now, use that
Lg,k(0) = Lg,k is invertible. �

It was proven by Fuchs [19] that for all simple Lie algebras and levels except
E8 at level 2, the subset A× ⊂ Ak exhausts all invertible Lg,k-modules. In the case
of E8 level 2, there is only one sharp corner, but the group of invertible modules
has order two.

4.2. Heisenberg VOAs. Let z be a complex vector space equipped with
a real form zR and a positive definite inner product on the latter. The repre-
sentation theory of the Heisenberg VOAs Mz associated to z is very easy (e.g.
[33, Prop. 2.17]). The irreducible representations of Mz are all invertible and they
are classified by the points of z. Among those, the unitary ones correspond to the
points of zR.

5

5We note that [12, Prop. 4.10] only lists a subset of the unitary irreducible Mz-modules.
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5. Simple current extensions

Simple current extensions were introduced in [44] in the physics literature.
Given a vertex operator algebra W , we let Rep×(W ) denote by its group of

isomorphism classes of invertible modules. For λ ∈ Rep×(W ), we write Mλ for a
representative of the isomorphism class. Let

π ⊂ Rep×(W )

be a subgroup. A simple current extensions of W by π is an inclusion of VOAs
W ⊂ V (sending the conformal vector of W to the conformal vector of V ), such
that V ∼=

⊕
λ∈π Mλ as a W -module, and such that the VOA structure on V is

compatible with the π-grading. We write

V = π �W

for the simple current extension.
The following proposition was shown in [5] (see [12, Thm. 3.3] for a special

case), without reference to unitarity, modulo a certain issue that the author was
not able to solve. In the more recent paper [8], the issue was resolved for unitary
VOAs, and non-unitary counter-examples were presented.6

Proposition 8 ([5],[8]). Let W be a unitary vertex operator algebra, and let
π ⊂ Rep×(W ) be a subgroup of its invertible unitary modules.

Then the simple current extension π �W exists if and only if the modules Mλ

corresponding to the elements λ ∈ π have integral L0-eigenvalues. In that case, the
VOA π �W is unique up to isomorphism.

Conjecture 9. For W and π as above, the simple current extension π �W
is unitary.

Clearly, if
⊕

λ∈π Mλ admits a VOA structure, then the L0-eigenvalues of each
Mλ must be integral. The difficult part is to show, provided the latter condi-
tion is satisfied, that

⊕
λ∈π Ma admits a VOA structure. We provide a proof of

Proposition 8 when W is rational in the sense of [25, Appendix], by relying on the
classification of extensions established in [25].

Proof. Let W be a unitary VOA which satisfies the conditions named in
[25, Appendix] (necessary for the results in that paper to apply), and let π ⊂
Rep×(W ) be a group of invertible modules.

Let Cπ ⊂ Rep(W ) be the subcategory spanned by π, i.e., the full subcategory
whose objects are isomorphic to direct sums of elements in π. A braided tensor
category all of whose objects are invertible is entirely determined by its fusion rules
and by the self-braiding of its simple objects [20, Prop 2.14]. The self-braidings
are equal to the conformal spins θλ = e2πiL0 |Mλ

by [8, (1.1) & (1.2)] (this is where
unitarity gets used). By assumption, those numbers are all 1 for λ ∈ π, and so Cπ is
equivalent as a braided tensor category to the category of π-graded vector spaces,
with its trivial braiding:

Cπ � Vec[π].

The graded vector space
⊕

λ∈π Cλ admits a unique commutative graded algebra
structure in Vec[π]. It follows that

⊕
λ∈π Mλ ∈ Cπ ⊂ Rep(W ) also has a unique

6We note that a similar result in the world of chiral conformal nets was proved in [27, Lem. 2.1]
(chiral conformal nets are conjectured to be equivalent to unitary VOAs [7]).
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commutative algebra structure. By the main result of [25], we conclude that the⊕
λ∈π Mλ admits a unique VOA structure extending that of W . �

We finish this section by analyzing our main example of interest: W = Lg,k ⊗
Mz. We assume that Lg,k ⊗Mz is equipped with a unitary structure, coming from
a real form of g and of z. We also assume for simplicity that π does not involve the
non-trivial invertible LE8,2-module, so that π ⊂ A× × zR. Let L := π ∩ zR, and let
us furthermore assume that rk(L) = dim(z), so that VL := L�Mz is a lattice VOA.
The simple current extension L� (Lg,k ⊗Mz) is isomorphic to the tensor product
Lg,k ⊗ VL, and is unique by [33, Prop. 3.22]. The existence and uniqueness of

π � (Lg,k ⊗Mz) = (π/L)�
(
L� (Lg,k ⊗Mz)

)
= (π/L)� (Lg,k ⊗ VL)

then follows from our earlier proof, since Lg,k ⊗ VL is rational in the sense of [25].
This provides an independent proof of Proposition 8 in our case of interest.

We remark that simple current extensions of Lg,k ⊗Mz were the main object
of study of [33]. Our results are small variations of the ones in that paper.

6. The minimal energy

The minimal energy of a representation is the smallest eigenvalue of the energy
operator L0. Given a representation Mλ of some unitary VOA, we write hλ ∈ R

for its minimal energy. It is related to the conformal spin by the formula θλ =
exp(2πihλ).

In view of Proposition 8, it is important to compute the minimal energies of
the invertible unitary representations of Lg,k ⊗Mz and to determine whether they
are integers.

6.1. Affine VOAs. Recall from Section 4.1 that the irreducible representa-
tions of the affine VOA Lg,k are classified by the finite set Ak ⊂ A. For λ ∈ Ak, we
denote by hλ ∈ R the minimal energy of the corresponding representation Mλ =
Lg,k(λ). When g is simple, it is given by the well known formula [26, (12.8.11)]

(8) hλ =
‖λ+ ρ‖2 − ‖ρ‖2

2(k + g∨)
.

Here, ρ is the sum of the fundamental weights (also the half-sum of the positive
roots), g∨ = 〈ρ, αmax〉 + 1 is the dual Coxeter number (αmax is the highest root),
the square norm is taken with respect to the basic inner product on h∗ (the one
for which long roots have square-length 2), and k ∈ H4(BG,Z) = Z is treated as a
number. Note that, for the purpose of equation (8), λ ∈ Ak ⊂ h is now viewed an
element of the weight lattice, via the isomorphism h → h∗ provided by k.

When λ corresponds to an invertible representation (and (g, k) is not E8 level
2), the above formula simplifies greatly:

Proposition 10. Let g be a simple Lie algebra. Let ω be an element of A× ⊂ h,
and let λ := kω ∈ h∗ be the corresponding weight. Let 〈 , 〉k : g ⊗ g → C be the
symmetric bilinear form associated to k ∈ H4

+(BG,Z) under Theorem 6. Then we
have

(9) hλ = 1
2 〈ω, ω〉k.
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Proof. Let 〈 , 〉 denote the basic inner product on h∗. We identify h with its
dual h∗ via the basic inner product, so as to have 〈 , 〉k on h correspond to k〈 , 〉
on h∗. The equation λ = kω can be interpreted in the following two equivalent
ways: (1) viewing k as bilinear form, λ is the image of ω under the induced map
k : h → h∗; (2) treating k as a mere number and using the basic inner product to
identify ω ∈ h with an element of h∗, again denoted ω, then λ is k times ω. In what
follows, we will use the second interpretation. We will show that

(10) hλ =
‖kω + ρ‖2 − ‖ρ‖2

2(k + g∨)
=

k〈ω, ρ〉
g∨

= k · 12 〈ω, ω〉.

The first equality is just (8). By Lemma 11, the numerator ‖kω + ρ‖2 − ‖ρ‖2

vanishes when k = −g∨. The function k 
→ ‖kω+ρ‖2−‖ρ‖2

2(k+g∨) is therefore linear. One

easily checks that it vanishes at zero and that its derivative at zero is 〈ω,ρ〉
g∨ . This

establishes the second equality in (10). Finally, by the same Lemma 11, the point
ρ
g∨ is equidistant to 0 and to ω. It is therefore on the bisecting hyperplane of the

segment [0, ω], and so 〈ω, ρ
g∨ 〉 = 〈ω, ω

2 〉 =
1
2 〈ω, ω〉. �

Lemma 11. Let ω be as above (a vertex of A in the isom(A)-orbit of 0), and let
g∨ be the dual Coxeter number. Then ‖ρ− g∨ω‖ = ‖ρ‖.

Proof. The dual Coxeter number g∨ is such that ρ ∈ Λweight is the unique
weight in the interior of g∨A. The vector ρ is therefore fixed under the action of
isom(g∨A). The vertices 0 and g∨ω are in the same orbit of the isometry group of
g∨A. They are therefore equidistant to ρ. �

6.2. Heisenberg VOAs. As mentioned in Section 4.2, the unitary represen-
tations of the Heisenberg VOA Mz are parametrized by the real part zR of z. We
write Mz(λ) for the representation of Mz corresponding to λ ∈ zR. Its minimal
energy is given by the well-known formula

(11) hλ = 1
2 〈λ, λ〉z.

The striking similarity between the formulas (9) and (11) can be explained by the
fact that the same twisting construction [32, §3] can be used to construct Lg,k(λ)
from Lg,k and Mz(λ) from Mz. In both cases, the minimal energy of the resulting
representation is given by formula [33, (2.41)]. This provides a proof of equation
(11), and an alternative proof of Proposition 10.

7. The classification of chiral WZW models

Let G be a compact connected Lie group. Pick a finite cover Gss × T0 of G
which is the product of a semi-simple simply connected Lie group Gss and a torus
T0. Let G̃ and T̃0 be the universal covers of G and of T0, so that

G̃ ∼= Gss × T̃0.

We identify the fundamental group π := π1(G) with the kernel of the projection

G̃ → G. It is a subgroup of the center π ⊂ Z(G̃), and satisfies rk(π∩T̃0) = dim(T0).

Conversely, if we start from a pair (G̃, π) with π ⊂ Z(G̃), if we assume that

G̃ = Gss × T̃0 is the product of a compact simply connected Lie group Gss by
a real vector space T̃0, and if we assume that π ⊂ Z(G̃) is discrete and satisfies

rk(π ∩ T̃0) = dim(T0), then the quotient group G := G̃/π is compact. These two
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constructions are each other’s inverses, and establish a bijective correspondence
between compact connected Lie groups G and pairs (G̃, π) as above.

Let us agree that a real structure on a complex Lie algebra g consists of a real
vector space gR ⊂ g whose complexification is g, and such that igR is closed under
the Lie bracket of g. A real structure is of compact type if there exists a compact
Lie group whose Lie algebra is igR. From the above discussion, we get a bijection

{
G

∣∣G is a compact connected Lie group
}

�{
(g, π ⊂ Z(G̃)

∣∣ g is a Lie algebra equipped with a real

structure of compact type; G̃ is the simply

connected Lie group associated to igR;

π satisfies rk
(
π ∩ exp(izR)

)
= dim(z),

where z = z(g) and zR = z ∩ gR
}

(12)

Given the extra data of a positive level k ∈ H4(BG,Z), then, by Theorem 6,
the complexified Lie algebra g comes equipped with an invariant symmetric bilinear
form 〈 , 〉k : g ⊗ g → C such that for every X ∈ g with exp(2πiX) = e in G, we
have 1

2 〈X,X〉k ∈ Z. The level k is positive if 1
2 〈X,X〉k > 0 for every non-zero X

with exp(2πiX) = e.
Let T ss be a maximal torus of Gss and let h be its complexified Lie algebra.

We identify the coroot lattice with the set of elements X ∈ h such that exp(2πiX)
is trivial in Gss, and write

hR := h ∩ gR = Λcoroot ⊗Z R

for the real span of the coroot lattice (or coweight lattice). The vector space hR

can also be described as i times the Lie algebra of T ss.
Putting together the formulas (9) and (11) from the previous section, we obtain:

Corollary 12. Let gss = g1 ⊕ . . .⊕ gn be a semi-simple Lie algebra equipped
with a real structure of compact type. Let Gss be the associated simply connected
compact Lie group, and let k = (k1, . . . , kn) ∈ H4

+(BGss,Z) be a level. Let h be a
Cartan subalgebra of gss, and let 〈 , 〉k : h⊗ h → C be the symmetric bilinear form
associated to k.

Let z be a complex vector space, with symmetric bilinear form 〈 , 〉z : z⊗ z → C,
and let zR be a real form of z on which the bilinear form restricts to a positive
definite inner product.

Let W = Lgss,k ⊗Mz be the tensor product of the affine and Heisenberg VOAs
corresponding to the above data, and let Mλ be an invertible unitary W -module,
classified by some λ ∈ A×× zR ⊂ h× z. Then the minimal energy of Mλ is given by

hλ = 1
2 〈λ, λ〉k⊕z,

where 〈 , 〉k⊕z denotes the symmetric bilinear form on h⊕ z which is the direct sum
of the forms 〈 , 〉k on h and 〈 , 〉z on z.
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We summarize what we have learned so far into the following commutative diagram:
(13)

Z(G̃)

G̃

A× × zR

hR × zR

Rep×unitary(Lgss,k ⊗Mz)

R U(1)

exp(2πi·)
∼=

h

exp(2πi·) 1
2‖ · ‖2

k⊕z exp(2πi·)

θ

Here, h is the minimal energy and θ is the conformal spin. The map A××zR → Z(G̃)
is an isomorphism by [42, Thm. 3], and the commutativity of the middle rectangle
is the content of Corollary 12.

The natural map A×× zR → Rep×unitary(Lgss,k⊗Mz) is almost an isomorphism:

it is injective with cokernel isomorphic to n copies of Z/2, where n is the number
of occurrences of (E8, 2) in the decomposition of (gss, k) into simples.

Recall that a chiral WZW model (Definition 4) is a pair consisting of a unitary
rational VOA V and a Lie algebra g ⊂ V1 such that V is a simple current extension
of the sub-VOA W ⊂ V generated by g. The VOA V is assumed to be unitary
and rational (W does not need to be rational), and we are not allowed to use
the non-trivial invertible LE8,2-module in the construction of the simple current
extension.

By [2, Thm. 4.10], W has the following structure. Since W is generated by
g ⊂ W1, it is a quotient of the universal affine VOA Vg,κ associated to g and to
some invariant bilinear form κ : g ⊗ g → C. Since W is unitary, the Lie algebra g

comes equipped with an invariant positive definite hermitian form which, together
with the bilinear form κ, yields a real structure of compact type on g. The Lie
algebra g is therefore a direct sum gss ⊕ z of a semi-simple Lie algebra of compact
type and an abelian Lie algebra:

g = g
ss ⊕ z = g1 ⊕ g2 ⊕ . . .⊕ gn ⊕ z.

On each simple summand gi, the bilinear form κ is a positive multiple of the basic
inner product, and W is isomorphic to the tensor product Lgss,k ⊗Mz of a number
of affine VOAs and a Heisenberg VOA.

Let Ak be the finite set that parametrizes the irreducible representations of
Lgss,k, and let A× ⊂ Ak be the subset of sharp corners of the alcove. By definition,
V is of the form

V = π � (Lgss,k ⊗Mz)

for some injective homomorphism π → Rep×unitary(Lgss,k⊗Mz) that doesn’t hit any
of the stuff that involves the non-trivial invertible LE8,2-module. In other words,
the homomorphism factors through the image of A× × zR:

π

A× × zR

Rep×unitary(Lgss,k ⊗Mz)

It remains to examine the condition under which V is rational. Let L := π ∩ zR.
If rk(L) = dim(z), then VL := L � Mz is a lattice VOA. Our VOA is the simple
current extension of the rational VOA Lg,k ⊗ VL by the finite group π/L

(14) V = π � (Lg,k ⊗Mz) = (π/L)� (Lg,k ⊗ VL),
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and is rational by the results in [25]. If, on the contrary, rk(L) < dim(z), then
L � Mz is the product of a lattice VOA and a Heisenberg VOA, which is not
rational. The tensor product Lg,k ⊗ (L � Mz) is also not rational, and neither is
its finite simple current extension V = (π/L) � (Lg,k ⊗ (L � Mz)). All in all, we
conclude that

(15) V is rational ⇐⇒ rk(π ∩ zR) = dim(z).

With all the above preliminaries in place we are now ready, assuming that
Conjecture 9 holds, to prove our main theorem:

Proof of Theorem 5. Consider the following sets:

A1 :=
{
(G, k)

∣∣G is a compact connected Lie group; k ∈ H4
+(BG,Z)

}

A2 :=
{
(G, 〈 , 〉 : g⊗ g → C)

∣∣G is a compact connected Lie group;

g is its complexified Lie algebra;

〈 , 〉 is G-invariant, positive definite on iLie(G);

1
2 〈X,X〉 ∈ Z ∀X s.t. exp(2πiX) = e in G

}

A3 :=
{
(g, π ⊂ Z(G̃), 〈 , 〉 : g⊗ g → C)

∣∣ g is a Lie algebra equipped with a real

structure of compact type; G̃ is the simply

connected Lie group associated to igR;

〈 , 〉 is g-invariant, positive definite on gR;

1
2 〈X,X〉 ∈ Z ∀X s.t. exp(2πiX) ∈ π;

rk
(
π ∩ exp(z(igR))

)
= dim(Z(G))

}

A4 :=
{
(g = g

ss ⊕ z, π ⊂ A× × zR,
∣∣ g is a Lie algebra equipped with a real

〈 , 〉 : g⊗ g → C) structure of compact type, written as

the sum of a semi-simple Lie algebra g
ss

and an abelian Lie algebra z; A× is the set

of sharp corners of the Weyl alcove of gss;

〈 , 〉 is g-invariant, positive definite on gR;

the restriction of 〈 , 〉 to each simple

summand of gss is a positive integer

multiple of the basic inner product;

1
2 〈λ, λ〉 ∈ Z ∀λ ∈ π;

rk(π ∩ zR) = dim(zR)
}
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A5 :=
{
(g = g

ss ⊕ z = g1 ⊕ . . .⊕ gn ⊕ z,
∣∣ gi are simple Lie algebras, z is an

k = (k1, . . . , kn), abelian Lie algebra, all with real

〈 , 〉z : z⊗ z → C, structures of compact type; ki ∈ N;

π ⊂ Rep×unitary(Lgss,k ⊗Mz)) 〈 , 〉z is positive definite on zR;

Lgss,k and Mz are the associated

affine and Heisenberg unitary VOAs;

π does not hit stuff involving the

non-trivial invertible LE8,2-module;

θλ = 1 ∀λ ∈ π;

rk(π ∩ zR) = dim(z)
}

A6 :=
{
(V, g)

∣∣V is a rational unitary VOA;

g is a subalgebra of the Lie algebra V1 ⊂ V ;

V is a simple current extension of the sub-VOA generated by g,

and the simple current extension is not “E8,2-contaminated”
}

We will construct a sequence of bijections

A1
∼= A2

∼= A3
∼= A4

∼= A5
∼= A6.

The first bijection A1
∼= A2 is the content of Theorem 6.

The second bijection A2
∼= A3 follows from (12), and from the observation that

the condition exp(2πiX) = e in G is equivalent to the condition exp(2πiX) ∈ π in

G̃.
The bijection A3

∼= A4 uses the canonical isomorphism Z(G̃) ∼= A×
k × zR from

the top left of (13). To go from A3 to A4, we need to check that the restriction
of 〈 , 〉 to any simple summand gi ⊂ gss is a positive multiple of the basic inner

product on gi. Let G̃i be the simply connected compact Lie group associated to
gi. By definition, the basic inner product on gi is the one that assigns square norm
2 to all the short coroots αshort ∈ gi. The latter satisfy exp(2πiαshort) = e in

G̃i. In particular, they satisfy exp(2πiαshort) ∈ π. By assumption, the number
ki :=

1
2‖αshort‖2 is a positive integer, and so we have 〈 , 〉|gi⊗gi

= ki · 〈 , 〉basic, as
desired. To go from A4 to A3, let π ⊂ A× × zR be a subgroup, and let exp(2πi · π)
denote its isomorphic image in Z(G̃). We need to show that if X ∈ g satisfies
exp(2πiX) ∈ exp(2πi · π), then its square norm is even. Given such an X, then, by
the last equality in (7), we can find an element α ∈ Λcoroot such that X + α ∈ π.
We need to show that the quantity

1
2‖X‖2 = 1

2‖X + α‖2 − 1
2‖α‖

2 − 〈X,α〉
is an integer. The first term 1

2‖X + α‖2 is an integer by assumption. The second

term 1
2‖α‖2 is in Z because α ∈ Λcoroot and each 〈 , 〉|gi⊗gi

is an integer multiple
of the basic inner product. Finally, the last term 〈X,α〉 is an integer by Lemma 13
below.

The bijection A4
∼= A5 follows from the isomorphism

A× × zR
∼=−→ Rep×unitary(Lgss,k ⊗Mz) \ {stuff involving E8 level 2}
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116 ANDRÉ HENRIQUES

and from the formula θλ = exp(2πi · 1
2 〈λ, λ〉k⊕z) provided by Corollary 12.

Finally, the bijection A5
∼= A6 follows from the equivalence (V is rational) ⇔

rk(π ∩ zR) = dim(z) proved in (15), from the discussion contained in the three
paragraphs preceding that equation, and from Proposition 8, which says that a
simple current extension can be performed if and only if the conformal spins θλ are
trivial. It is for this last step that the result of Conjecture 9 is needed. �

Lemma 13. Let g be a simple Lie algebra and 〈 , 〉 its basic inner product. Then
〈Λcoweight,Λcoroot〉 ⊂ Z.

Proof. We identify g with its dual g∗ by means of the basic inner product.
Let m ∈ {1, 2, 3} be the ratio between the square norm of the long roots and that
of the short roots. The coroot lattice Λcoroot is spanned by the long roots and by
m times the short roots. In particular, Λcoroot ⊂ Λroot. By dualizing, it follows
that Λcoweight ⊂ Λweight. The lattices Λweight and Λcoroot are dual to each other. In
particular, the pairing of a weight and a coroot is always an integer. It follows that
〈Λcoweight,Λcoroot〉 ⊂ 〈Λweight,Λcoroot〉 = Z. �

To finish our analysis, we compare the sets A1,...,6 from the above proof with
the set of general chiral WZW models given in Definition 3:

A7 :=
{
V

∣∣ V is a rational unitary VOA which is a simple current

extension of a sub-VOA that is generated in degree one
}

The composite

(16) A1
∼= A2

∼= A3
∼= A4

∼= A5
∼= A6 → A7

is neither surjective, nor injective.
As explained in the introduction, the VOA V associated to a simple simply

laced gauge group at level 1 is isomorphic to the one associated to its maximal torus
[45]. This shows that (16) is not injective. Finally, the simple current extension

Z2 � (LE8,2 ⊗ LE8,2)

of LE8,2⊗LE8,2 by its invertible module ME8,2⊗ME8,2 does not correspond to any
Lie group. The gauge group wants to be (E8 ×E8)/Z2, but that quotient does not
make sense as the center of E8×E8 is trivial. This shows that (16) is not surjective.
We have used two copies of E8 because ME8,2 has conformal spin −1, and we can
only perform simple current extensions with invertible modules of conformal spin 1.

Given a compact connected Lie group G with complexified Lie algebra g, and
given a level k ∈ H4

+(BG,Z), we write VG,k for the corresponding VOA, under the
map (16). It is a simple current extension

VG,k = π � (Lgss,k ⊗Mz)

of the tensor product of an affine VOA (associated to the semi-simple part of g) and
a Heisenberg VOA (associated to the center of g) by the abelian group π := π1(G).
Alternatively, it is a simple current extension

(17) VG,k = (π/L)� (Lgss,k ⊗ VL)

of the tensor product of an affine VOA and a lattice VOA by the finite abelian
group π/L (here, L = π ∩ zR is as in (14), where the intersection takes place inside
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A× × zR). We note that the construction of VG,k does not rely on Conjecture 9;
only its unitarity does.

8. WZW conformal nets

In this section, we construct a chiral conformal net AG,k for every compact
connected Lie group G and positive level k ∈ H4

+(BG,Z). We call these the chiral
WZW conformal nets. These conformal nets appear at the starting point of our
construction [24, §5] of the value of Chern-Simons theory on a point. They were
also briefly mentioned in [6, Ex. 5.14].

In the remarkable paper [7], a bijective correspondence was established between
a certain class of unitary VOA (the so-called ‘strongly local’ unitary VOAs) and
a certain class of conformal nets. It is natural to ask whether the VOAs VG,k

constructed in (17) fall within the domain of applicability of that correspondence,
and what the corresponding conformal nets are. Unfortunately, even when G is
a torus, it is presently not known whether all lattice VOAs are strongly local [7,
Conj. 8.17]. Another problem for the strong locality of the chiral WZW VOAs
is their unitarity. We will therefore contend with pursuing a more modest goal:
construct a chiral conformal net AG,k for every compact connected Lie group G
and positive level k ∈ H4

+(BG,Z). We conjecture that they correspond to the
VOAs VG,k under the correspondence established in [7].

Our strategy for defining AG,k is to mimic the formula (17). Let π = π1(G) be
the fundamental group of G. Decompose the complexified Lie algebra as a direct
sum

g = gss ⊕ z = g1 ⊕ . . .⊕ gn ⊕ z

of a semi-simple Lie algebra gss = g1 ⊕ . . .⊕ gn and an abelian Lie algebra z. The
level k ∈ H4

+(BG,Z) induces levels ki ∈ N for every simple Lie algebra gi. Let Gi

be the compact simply connected Lie group corresponding to gi, and let AGi,ki
be

the associated loop group conformal net [22,48,52].
Let L = π ∩ zR be as in (17). As explained in Section 3, k induces a metric on

zR which endows L with the structure of an even integral lattice. Let AL be the
lattice conformal net associated to L, equivalently, the loop group conformal net
associated to the torus T0 := L⊗Z U(1) [13,47].

The tensor product

(18) AG1,k1
⊗ . . .⊗AGn,kn

⊗AL

is a chiral WZW conformal net for the gauge group G̃ := G1 × . . . × Gn × T0.
It is generated by the centrally extended loop group of G̃, acting of its vacuum
representation. Let Z := π/L.

Definition 14. The chiral WZW conformal net associated to the Lie group
G ∼= G̃/Z and the level k ∈ H4

+(BG,Z) is the simple current extension

(19) AG,k := Z � (AG1,k1
⊗ . . .⊗AGn,kn

⊗AL)

of the conformal net (18) by the finite abelian group Z.

Here, an extension of conformal nets A ⊂ B [34] is called a simple current
extension if the vacuum sector of B decomposes as a direct sum

⊕
λ∈Z Hλ of in-

vertible A-modules, and the conformal net structure of B is compatible with the
Z-grading.
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Definition 14 requires some explanation which we now provide. First of all, it
is expected but presently not known7 that the irreducible representations of the
conformal net (18) are classified by the set Ak1

(g1) × . . . × Akn
(gn) × L∗/L, with

Aki
(gi) as in (6). In the special case of a weight λ in the subset

(20) A×
k1
(g1)× . . .× A×

kn
(gn)× L∗/L,

we can construct the associated representation Hλ of (18) ‘by hand’, and prove
that it is invertible with respect to the fusion product. This will be sufficient for
our purposes.

The construction of Hλ goes as follows. Identify the set (20) with a subset of

the center of G̃ in the obvious way. Following [41, §3.4][13, Def. 3.12], for every λ
in the above subset, there is an outer automorphism aλ of the centrally extended
loop group of G̃ given by ‘conjugation’ by a path from the identity to λ ∈ Z(G̃).
This extends to a (localisable) automorphism of the associated conformal net. The
representation Hλ is obtained by twisting the vacuum representation H0 by that
automorphism. Fusing with Hλ sends a representation to the representation with
same underlying Hilbert space and action precomposed by aλ [22, Sec. IV.2] (this
is visibly an invertible operation).

The following is the main result of this section:

Theorem 15. The simple current extension (19) used to define the chiral WZW
conformal net AG,k exists and is unique.

Proof. Let Hλ be the conformal net representations which enter in the def-
inition (19) of AG,k, and let Mλ be the (Lgss,k ⊗ VL)-representations which enter
in the definition (17) of VG,k. The twisting construction [41, §3.4][13, Def. 3.12]
of Hλ is identical to the twisting construction [32, §3] of Mλ. In particular, the
L0-eigenspaces of Hλ are canonically isomorphic to those of Mλ (Hλ is the Hilbert
space completion of Mλ). The modules Mλ have trivial conformal spin (otherwise
(17) would not exist). The same property therefore holds for the Hλ. Proposi-
tion 16 then guarantees the existence and uniqueness of the simple current exten-
sion (19). �

Proposition 16 ([27, Lem. 2.1]). Let A be a conformal net and let Z ⊂
Rep×(A) be a finite subgroup of its group of invertible representations. Then the
simple current extension Z �A exists if and only if Hλ has trivial conformal spin
for every λ ∈ Z. In that case, the conformal net Z�A is unique up to isomorphism.

Proof. The proof of [27, Lem. 2.1] only shows existence. We present an al-
ternative argument, along the same lines of our proof of Proposition 8, which also
addresses uniqueness.

Consider the subcategory of Rep(A) spanned by the objects Hλ, λ ∈ Z. By
[20, Prop 2.14] and the conformal spin-statistics theorem [23], that subcategory is
braided equivalent to the category Vect[Z] of Z-graded vector spaces (with trivial
associator and trivial braiding). The ‘group algebra’

⊕
λ∈Z Hλ is a commutative

unitary Frobenius algebra object in an evident way. By applying the main result of
[34] to the latter, we get the desired simple current extension of A. The extension
is unique because the algebra structure on

⊕
λ∈Z Hλ is unique. �

7See [51, §15] for some results in that direction.
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9. Conclusion

We have proposed a novel definition of chiral WZW models, as simple current
extensions of the tensor product of affine and Heisenberg VOAs. We have shown
that, by fine-tuning the definition (Definition 4), we can ensure that there is a
bijective correspondence between chiral WZW models, and pairs (G, k) consisting
of a compact connected Lie group G and a level k ∈ H4

+(BG,Z). The fine-tuning
involves (1) remembering the sub-VOA that was used to perform the simple current
extension, and (2) disallowing the usage of the non-trivial invertible module of E8

level 2.
In the absence of the fine-tuning, i.e., if one doesn’t remember the sub-VOA

that was used to perform the simple current extension and if one is allowed to
use the non-trivial invertible module of E8 level 2, then the natural map from pairs
(G, k) to chiral WZWmodels is neither injective nor surjective. The correspondence{

(G, k)

∣∣∣∣ G: compact connected Lie group
k ∈ H4

+(BG,Z)

}
∼=−→

{
Chiral WZW models

}
that we have established in this paper is therefore fragile: depending on the exact
definition of a chiral WZW model, it either is or isn’t a bijection. However, in all
cases, the map is close to being a bijection.

It is interesting to note that, unlike Chern–Simons theories whose gauge group
can be disconnected (see [10]), the gauge group of a chiral WZWmodel is necessarily
connected. This raises the question of what is the chiral WZWmodel associated to a
disconnected gauge group? Whatever the answer turns out to be, mathematicians
will probably need to enlarge the class of objects that they agree to call ‘chiral
conformal field theories’ in order to accommodate these yet-to-be-defined models.

References

[1] J. F. Adams, Finite H-spaces and Lie groups, J. Pure Appl. Algebra 19 (1980), 1–8, DOI
10.1016/0022-4049(80)90089-4. MR593242

[2] C. Ai and X. Lin. On the unitary structures of vertex operator superalgebras.
arXiv:1510.08609, 2015.
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