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a b s t r a c t

To evaluate the sustainability of potential agricultural land developments, scenario projections with land
use change models are often combined with environmental impact assessments. Although this allows
inter-scenario comparison of impacts, it does not permit interpretation of scenarios in the light of
theoretically optimal impacts. A Pareto frontier provides this information. We demonstrate this for
ethanol production in Goi�as, Brazil, in 2030. For a Business-as-Usual scenario projection, the spatial
configuration, production costs, and GHG emissions of the production chain are compared with those
obtained from spatial optimization and summarized by the Pareto frontier. Projected production costs
are 729 $/m3 ethanol, with GHG emissions of 40 kg CO2-eq/m3 ethanol. The Pareto frontier indicates an
improvement potential of ~50 $/m3 ethanol when keeping emissions fixed, or ~250 kg CO2-eq/m3

ethanol when keeping costs fixed. Robust locations having low costs and emissions show where and how
improvements are reached, offering instruments for policy (re)design.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Intensifying pressure on land, by e.g., requirements for pro-
ducing food, feed, fibre and bioenergy, has stimulated debates
about sustainable land use (e.g. Lambin and Meyfroidt, 2011;
Seppelt et al., 2014). The spatial expansion of multiple land use
types can be projected by using land use change models, given
expected future demands for commodities (e.g. Fargione et al.,
2010; Verstegen et al., 2016b). In such spatially explicit pro-
jections, it is common to use scenarios that allow for divergent
future story lines, where each line is represented by a particular set
of future trends in system drivers. We refer to this modelling
approach as ‘scenario projection’. Scenario projections are com-
bined with environmental impact assessments of the projected
land use changes to quantify the effects of the different story lines
on the indicators associated with the impacts of interest. Examples
of such indicators are greenhouse gas (GHG) emissions for climate
tics, University of Münster,

. Verstegen).
impact, employment for socio-economic impact, and mean species
abundance for ecologic impact.

Although scenario projection allows for comparing impacts
among a set of scenarios, it has a distinct limitation: it gives no
information on the overall optimality of the projection. In other
words, a scenario projection does not indicate its position in the
total indicator solution space (Seppelt et al., 2013). Thereby, it re-
mains unclear if it is possible to attain lower impacts than those
evaluated by the scenario(s), and, if so, how much lower (Fig. 1a).
Our aim here is to show how adding spatial optimization to a
spatial scenario projection allows for the assessment of how much
a scenario can potentially be improved for a given set of impact
indicators.

Spatial optimization is a contrasting method to assess the
impact of land use change: it involves designing an optimal land
use configuration with respect to one or more impact indicators of
interest (e.g., GHG emissions, employment, and/or mean species
abundance) given a range of boundary conditions (e.g. Almeida
et al., 2016). Thus, this approach does not actually apply any land
use change model. When optimizing multiple impact indicators
(objectives) simultaneously, there is typically a very large number
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Fig. 1. A hypothetical land use change scenario projection for which two impact indicators are assessed, 1 and 2. For both impact indicators, low values are desired. (a) Scenario
projection with spatial configurations projected by the land use change model (maps), the impact indicator values (black dot) derived from these, and the question of if (and by how
much) lower impact indicator values are attainable (grey dot). (b) Scenario projection and calculation of Pareto frontier (red line) with an assessment of the maximum impact
reduction (dotted arrows) and constrained impact reduction (solid arrows). (c) Comparison of spatial land use configurations associated with points on the Pareto frontier and
calculated by the scenario projection, to identify required spatial reorganization of scenario projections to minimize impacts. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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of optimal land use configurations (solutions); together, these
optimal solutions form a Pareto frontier (Seppelt et al., 2013).
Because for all these solutions it is impossible to improve one
objective without impairing another, the best solution from the
Pareto frontier depends on the weighting of the impact indicators.
As such, the Pareto frontier shows trade-offs between the different
impact indicators.

It is hypothesized that combining spatial scenario projection
and spatial optimization would provide deeper insights in the so-
lution space of future land use, because it enables the scenario
projections to be interpreted in the context of the optimal solutions
given by the Pareto frontier. In particular, this approach is expected
to provide information on:

1. The performance of a scenario is in terms of impact indicators,
and how much each impact indicator value of the scenario
projection can theoretically be improved. The maximum and
constrained improvement can be calculated, where ‘constrained
improvement’ is calculated by keeping the other impact in-
dicator(s) at the same value as in the scenario projection
(Fig. 1b) and;

2. Where and how the land use projected by the scenario should
be reorganized to reach these improvements (and where it
should not be reorganized) (Fig. 1c).

These two aspects are beneficial for policy making, because they
assist in developing scenarios with an increased performance by
quantifying improvement opportunity and identifying land use
characteristics that lead to these improvements. On the other hand,
a Pareto frontier alone, without scenario projection results, does
not provide information about the feasibility of reaching these
improvements given the current land use system dynamics and
current policy instruments captured in the scenario. For example,
Cotter et al. (2014), used spatial optimization to design a sustain-
able land use scenario, but they did not have a Business-as-Usual
(BAU) scenario of land use change, thereby missing information
on which part of the optimal future configuration is likely to be
attained by current dynamics and policies. If it is known to what
extent the BAU is sustainable, then one can assess in what way
policies should be redesigned.

Some recent studies have used spatial optimization to optimize
certain parameters of scenarios (e.g. Arancibia et al., 2016; Law
et al., 2017), whereby this integration of optimization and
scenario projection allowed for selection of the optimal scenario.
However, such integration still cannot ascertain if the retrieved
impacts are the lowest attainable, as the lowest impacts might not
be attainable using any of the options defined as the scenario pa-
rameters. Seppelt et al. (2013) agree with this sentiment: they
argue that it is not the integration but the combination of scenario
projection and optimization that can strengthen efficient decision
making for sustainable land use. Yet, as a very limited number of
case studies exists with which to investigate this approach (e.g.
Gaddis et al., 2014), and none exists in land use change, our paper
aims to provide such a case study.

At this time, biofuels are, rightly or unrightly so, at the centre of
the debate around sustainable land use (Tempels and Van den Belt,
2016). Because of this, we performed an impact assessment of
ethanol production from sugar cane for 2030, in Goi�as, Brazil, a
region with a large expected increase in ethanol production (e.g.
Lapola et al., 2010). In line with other biofuel impact assessments
(e.g. Akgul et al., 2012; Arancibia et al., 2016), we consider two
impact indicators: ethanol production costs, as an indicator of
economic competitiveness, and greenhouse gas (GHG) emissions,
as an indicator of the potential to mitigate climate change. Our
research questions for this case study are: What is the performance
of and improvement potential for a BAU scenario projection in
terms of impact indicator values? How can an assessment of the
spatial differences between the projected and optimized land use
configurations explain the performance of the BAU scenario pro-
jection? How can these spatial differences be used to (re)design
land use policies?

We evaluated the way in which the configuration of the ethanol
production chain impacts ethanol production costs and GHG
emissions for the sum of the ethanol production chain's four main
components: acquisition and preparation of land for sugar cane
production, sugar cane cultivation and harvest, sugar cane trans-
port to the production facilities (mills), and conversion from sugar
cane to ethanol. First, we performed an impact assessment on a
BAU scenario projection of the expansion of sugar cane fields and
mills for 2030, using an existing land use change model (Verstegen
et al., 2016b; Jonker et al., 2016); the impact indicators were
calculated through a post-analysis on the configuration of sugar
cane fields and mills for 2030. Next, we performed a separate
impact assessment via the Pareto frontier for the two impact in-
dicators, calculated through spatial optimization, also for 2030. In
this assessment, we optimized the locations of the sugar cane fields



Fig. 2. Land use map of Goi�as, Brazil for 2006 at a 5 � 5 km2 resolution (adapted from
Verstegen et al., 2016b). The inset shows all states in Brazil with Goi�as indicated in
yellow. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

1 Throughout the manuscript $ means US$2014, unless explicitly stated otherwise.
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and the locations and processing capacities of the mills using a
genetic algorithm (Li and Yeh, 2005). Finally, we compared the first
and second impact assessment results in terms of impact indicator
values, as in Fig. 1b, and in terms of spatial land use configurations,
as in Fig. 1c. Policy redesign recommendations were derived from
these comparisons.

2. Methods

2.1. Case study description

Brazil started producing ethanol from sugar cane at the begin-
ning of the 20th century, motivated by a gasoline import burden
and a sugar production surplus (Walter et al., 2014). In the harvest
season 2013/2014, Brazilian ethanol production reached 27.5
million m3 (UNICA, 2015). The region in Brazil with the second
highest production, with 3.9 million m3 (UNICA, 2015), was the
state Goi�as, which recently experienced a fast growth of sugar cane
area (Adami et al., 2012). Goi�as is 340 000 km2, roughly the size of
Germany. It mainly consists of a plateau with a tropical climate,
characterized by a vast area of planted pastures, especially in the
west. Furthermore, there is a sizeable patch of cropland in the
southwest, with mainly soy, corn and sugar cane (IBGE, 2013). Most
forest areas are found in the centre north part, which has a more
mountainous character.

In our study, we assume a total ethanol supply increase for Goi�as
of 10.2 million m3 for 2030. This is derived from the total produc-
tion of sugar cane in 2030 projected by the land use change model
(see next section) minus the total production in the initial land use
map from 2006 (Fig. 2), and an assumed conversion efficiency of
0.09 m3 ethanol/tonne cane (Jonker et al., 2016). In both the sce-
nario projection and the optimization, new sugar cane fields cannot
be allocated on raster cells that are urban, water or sugar cane in
the initial land use map (placing ‘new’ sugar cane fields over
existing ones would generate no additional ethanol compared to
the initial situation). Furthermore, it is assumed that sugar cane
present in the initial land use map goes to existing mills; this is not
remodelled.

2.2. Scenario projection of land use change for ethanol production

For the scenario projection, we build upon an existing land use
projection for Brazil from an integrated economiceland use change
model (Verstegen et al., 2016b). The economic model determines
the total demands for all commodities, including ethanol, in 15
world regions, one of them being Brazil. The land use change model
projects the expansion and contraction of a set of land use types in
Brazil based on these demands and suitability factors that vary per
land use type. The land use change model is calibrated between
2006 and 2012 and provides a scenario projection, with input from
the economic model, between 2012 and 2030. The suitability fac-
tors for sugar cane are, with their calibrated median weight in
parentheses, the area of sugarcane fields in an extended Moore
neighbourhood (0.29), travel time to existing mills (0.28), potential
yield (0.22) and the conversion elasticity from other land use types
to sugarcane cultivation (0.21) (Verstegen et al., 2016b). The land
use changemodel has a 5� 5 km2 resolution. Therefore, we employ
this resolution in our Goi�as case study as well (Fig. 2). We use the
projected positions of the new sugar cane fields for ethanol pro-
duction in Goi�as for 2030 from the BAU scenario that includes an
increased ethanol supply due to current and planned ethanol
mandates worldwide. The word ‘new’, in this context, means allo-
cated at any point in time between the initial year of the simulation
(2006, Fig. 2) and 2030.

Land use change models, including our model, typically do not
project the processing facilities of the cultivated crops, in our case
the sugar canemills. Therefore, we append results from Jonker et al.
(2016) who have determined the number, scales and locations of
ethanol production mills for 2030, based on the minimization of
production cost. This is done with a mixed-integer linear pro-
gramming model, while fixing the locations of the sugar cane fields
as projected by the BAU scenario used here. As such, part of our
scenario projection is optimized, because we considered this the
best way to append the mills to our land use results. Although the
optimization involved only the mills and was based on production
costs only, the BAU results may be too optimistic. The effect is ex-
pected to be small because, compared to the locations of the mills,
the locations of the sugar cane fields have a much larger impact on
the two impact indicators used in this study (Jonker et al., 2016).

2.3. Impact assessment

Both impact indicators were calculated for the four main com-
ponents in the ethanol production chain (see Introduction). Note
that we calculate costs and emissions at the ‘factory gate’, meaning
that the revenues from selling the ethanol and the avoided emis-
sions that come from ethanol replacing fossil fuels are not included.
Total production costs, c ($/m3 ethanol),1 are:

c ¼ cl þ cc þ ct þ cp (1)



2 Processing costs cannot be calculated yet, because they depend on the scale of
the mill, which can only be determined once the fields are allocated.

3 No carbon pricing system is currently installed in Brazil and it is unknown if
and when it will be installed (Dahan et al., 2015).
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In equation (1), cl ($/m3 ethanol) denotes the land costs,
involving the acquisition costs and the costs to turn the initial land
use into sugar cane production; cc ($/m3 ethanol) are the cultivation
costs, consisting mainly of fertilizer, labour and machinery costs; ct
($/m3 ethanol) are the transport costs, being the diesel costs of the
truck, subject to the distance, speed and road type(s) between the
fields and the processing mills; and cp ($/m3 ethanol) are the pro-
cessing costs, depending on the processing capacity (scale) of the
mill. Correspondingly, total emissions e (tonne CO2-eq/m3 ethanol)
are:

e ¼ el þ ec þ et þ ep (2)

In equation (2), el (tonne CO2-eq/m3 ethanol) are the land use
and land management change emissions, depending mainly on the
carbon stocks of the replaced land use type (method IPCC, 2006); ec
(tonne CO2-eq/m3 ethanol) are the cultivation emissions, being
fertilizer and machinery emissions; et (tonne CO2-eq/m3 ethanol)
are the transport emissions, being the diesel emissions from the
truck travelling between the fields and the processing mills; and ep
(tonne CO2-eq/m3 ethanol) are the processing emissions, a fixed
amount per m3 ethanol produced.

The land, cultivation, transport, and processing costs and
emissions are averages over the whole study area. The first three
components are calculated by averaging the spatially explicit costs/
emissions (varying over space because of former land use type,
fertilizer application, distance to the mill etc.) over all sugar cane
fields. The processing costs are calculated by averaging the spatially
explicit costs/emissions (varying over space because of the scale of
the mill) over all ethanol mills. The methods to calculate the cost
and emission components are based on Jonker et al. (2015, 2016).
The details of these calculations, parameter values, and sources are
provided in Appendix A.

For the scenario projection, the impact indicators were calcu-
lated through a post-analysis on the configuration of sugar cane
fields and mills for 2030. For the optimization approach, the impact
indicators were minimized for 2030 by optimizing the configura-
tion of sugar cane fields and mills for 2030, as explained in the next
section.

2.4. Optimization of impacts and calculation of the Pareto frontier

The two impact indicators of ethanol production needed to be
minimized to find the Pareto frontier that shows the trade-offs
between the two. One way to stimulate reduction of GHG emis-
sions for agricultural products is to charge the producer for these
emissions using a carbon price (Smith et al., 2008; Chen et al.,
2012). When a carbon pricing system is established, the two ob-
jectives of minimizing production costs and GHG emissions can be
combined into a single objective:

x ¼ cþ e$p (3)

In equation (3), x ($/m3 ethanol) are the aggregate costs (pro-
duction costs plus GHG costs) that we aim to minimize and p
($/tonne CO2-eq) is the carbon price. So, x is the performance cri-
terion, i.e. the objective value, for the optimization. The Pareto
frontier between the production costs (c) and GHG emissions (e) of
ethanol is found by minimizing the aggregate costs (x) for a set of
different carbon prices (p). The Pareto frontier allows policy makers
to evaluate the effect of carbon price on the trade-offs between
costs and emissions.

For a given ethanol supply increase d (m3 ethanol) and carbon
price p, the aggregate costs x are controlled by 1) the locations of
the sugar cane fields, 2) the number of processing mills and their
scale (processing capacity), and 3) the locations of these mills (see
previous section and e.g. de Meyer et al., 2014). The relationship
between the aggregate costs and each of these three control vari-
ables is non-linear and the set of potential solutions is too large for
exhaustive search. For such cases, it is advantageous to use meta-
heuristics, which is a set of methods designed to find near-optimal
solutions in an acceptable computation time using a smart search
through the solution space (Blum and Roli, 2003). We use a genetic
algorithm (GA), because this metaheuristic has been proven to
generate good results for optimization problems like ours (e.g., Li
and Yeh, 2005; Stewart et al., 2004). A GA mimics the process of
natural selection in a population of solutions, called individuals,
similar to the set of samples in a Monte Carlo approach (Bennett
et al., 1998). The genome of the individuals represents the setting
of the control variables of the optimization task. This population
evolves through a given number of iterations, called generations,
towards better solutions in terms of the performance criterion. The
best performing individual of the final evolved population is the
optimal solution. Appendix C provides a more elaborate explana-
tion of how the GA works. It is not feasible to simultaneously
optimize the locations of all fields, the number of mills, and all
locations and scales of these mills. Such a large number of variables
for a large case study area becomes too computationally intensive
for a GA (Haupt and Haupt, 2004). Therefore, we took a sequential
approach.

The genome of the GA represents the coordinates of a fixed
number of mills M (Fig. 3). For each individual in each generation,
the followingmethodwas applied to calculate the objective value x.
Once the locations of the mills are set by the GA, sugar cane fields
are placed at the locations with the lowest (cl þ cc þ ct) þ p ∙
(el þ ec þ et) until the total supply 10.2 million m3 is met.2 The total
area of sugar cane fields can differ per individual in the GA, i.e. per
solution, depending on whether sugar cane is allocated on high
yielding (small area) or low yielding (large area) locations. When
the fields are allocated, it is known which field delivers sugar cane
to which mill (lowest ct þ p ∙ et), and thus the scale of each mill
(tonne cane/year) can be calculated by summing the supply of all its
fields. In this process, it is ensured that the scale of each mill cannot
exceed the maximum attainable scale S (tonne cane/year). If no
fields are assigned to a mill, it is not considered in the calculation of
the objective value. Now, because all control variables are known,
the objective value x can be calculated. Next, the GA adapts the
locations of themills of a selected fraction of the population and the
process is repeated for the next generation (Fig. 3).

The optimizationwas implemented in the Python programming
language (Python software foundation, 2014) using the AMORI
software (AMORI, 2009) for the GA and the PCRaster Python
framework (Karssenberg et al., 2010) for the placement of mills and
fields and the calculation of the objective value. The number of
mills placed, M, is 30 and each mill has a maximum scale, S, of 5.5
million tonne cane/year (Jonker et al., 2016). The GAwas run for five
different carbon prices p of 0, 10, 100, 200 and 400 $/tonne CO2-eq.3

In addition, it was run to optimize emissions only, to get the min-
imum attainable emissions (minimum attainable costs are reached
at a carbon price of 0 $/tonne CO2-eq).

We used a population of 1000 individuals and stopped the GA at
generation 24. The population fraction to reproduce was set to 0.1
and the mutation rate to 0.3. During reproduction, individuals were
split at two locations in the bit-string of the genome. Themaximum
number of bits to mutate in a single individual was two. These GA



Fig. 3. Conceptual model of control variables and calculation of the objective value (aggregate costs).
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settings were determined by performance tests as shown in
Appendix C.

3. Results and discussion

3.1. What is the performance of and improvement potential for a
BAU scenario projection in terms of impact indicator values?

For a supply increase of 10.2millionm3 ethanol in Goi�as in 2030,
the BAU scenario projection has production costs of 729 $/m3

ethanol and GHG emissions of 40 kg CO2-eq/m3 ethanol (Fig. 4). The
scenario projection indicates that the region of Goi�as will meet the
emission savings required by the Renewable Energy Directive
(RED)4 (European Parliament and Council of the European Union,
2009).

The minimum attainable emissions, calculated from the opti-
mization, are �399 kg CO2-eq/m3 ethanol, i.e. carbon sequestra-
tion of 399 kg CO2-eq/m3 ethanol, and the minimum attainable
production costs (excluding GHG costs) are 656 $/m3 ethanol
(Fig. 4). These minimum costs are similar to the 520 US$2010/m3
(approximately 650 US$2014/m3 ethanol) calculated for Brazil by
Jonker et al. (2015).

The BAU scenario projection does not lie on the Pareto frontier,
meaning that under the current land use system dynamics, the
projected land use for 2030 is suboptimal in terms of production
costs and GHG emissions. Looking at the minimum attainable costs,
the projected production costs can be reduced at most by 73 $/m3

ethanol (dotted arrow in Fig. 4); this is a cost improvement of 11%,
but the trade-off is that emissions will become 20 times as high.
The maximum possible amount by which emissions of the BAU
scenario can be reduced is 439 kg CO2-eq/m3 ethanol. As percent
improvement is a non-informative measure for GHG emissions,
because themeasurement scale of GHG emissions is of the ‘balance’
type (unbounded, positive and negative values). Therefore, we can
report the percentage of shift in the total range of the y-axis of the
Pareto frontier, which is about 37% for the case of maximum
reduction in emissions (for maximum reduction in production
costs, this value is 41%). This means that for the two impact in-
dicators, the potential shift is almost equally large in view of the
total solution space.
2

lation is plotted, where each individual is indicated by a coloured circle. For both
impact indicators, the maximum impact reduction (dotted arrows) and constrained
impact reduction (solid arrows) of the scenario are visualized. The red dotted line is
the maximum GHG emission value allowed for biofuels produced in installations in
which production started on or after 1 January 2017 according to the Renewable En-
ergy Directive (RED) (European Parliament and Council of the European Union, 2009).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

4 Note that RED also requires inclusion of GHG emissions from the distribution of
ethanol (transport from the mills to the customers). This is not included in our
study, but we expect its contribution to be small because the emissions of sugar
cane transport are already small and the ethanol has a much higher energy density
than sugar cane, and, therefore, lower GHG emissions per m3 ethanol (e.g.
Hamelinck et al., 2005a; Wang et al., 2014).
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The constrained improvement (Fig. 4, solid arrows), i.e. what can
be gained in one indicator, without causing an increase in the
projected value of the other, is a reduction of about 50 $/m3 ethanol
for production costs. This is a 7% improvement compared to the
BAU scenario and a 28% shift in the total range of the x-axis of the
Pareto frontier. The constrained improvement for GHG emissions is
a reduction of about 250 kg CO2-eq/m3 ethanol compared to the
BAU scenario, which is a 21% shift in the total range of the y-axis of
the Pareto frontier. So, even the constrained (‘no-loss’) improve-
ments are still significantly better than the BAU scenario.

3.2. How can an assessment of the spatial differences between the
projected and optimized land use configurations explain the
performance of the BAU scenario projection?

Of all optimization results, the BAU scenario projection is
closest to those for carbon prices of 100 and 200 $/tonne CO2-eq in
terms of ethanol production costs and GHG emissions (Fig. 4). Yet,
the spatial land use configurations of the scenario projection and
these two optimization results are very different (Fig. 5, panels b, c
and d). To quantify this, comparing these two optimizations with
the BAU scenario regarding the locations of the sugar cane fields
results in a Kappa statistic (Cohen, 1960) of 0.11 for the results
of 200 $/tonne CO2-eq and 0.07 for the results of 100 $/tonne
CO2-eq, where 1 means full agreement with the scenario
projection and 0 is the agreement obtained by random allocation.
Because the locations of the fields in the optimizations and the
BAU scenario are so dissimilar, the mills are in very different loca-
tions as well.

Besides comparing the actual locations of the optimized and
projected sugar cane fields and ethanol, we can categorize the lo-
cations in terms of their performance for the impact indicators and
compare the optimized and projected results in terms of these
categories. Locations can be categorized as being in use for ethanol
production at (Figs. 5 and 6).

1. low production cost and low GHG emission points on the Pareto
frontier, and for the scenario projection. Examples is the mu-
nicipality Chapad~ao do C�eu.5

2. low production cost and low GHG emission points on the Pareto
frontier but not for the scenario projection. An example is
Cristalina.

3. low production cost or low GHG emission points on the Pareto
frontier and for the scenario projection. Example are Rio Verde,
for low GHG emission points and S~ao Luiz do Norte for low
production cost points.

4. low production cost or low GHG emission points on the Pareto
frontier but not for the scenario projection. An example is
Silvânia, for low GHG emission points.

5. the scenario projection, but not for any of the points on the
Pareto frontier. An example is Goiatuba.

6. neither the scenario projection, nor any of the points on the
Pareto frontier.

Type 1 and type 2 locations are ‘robust’. Ethanol produced here
has economic competitiveness (low production costs) and climate
change mitigation potential (low GHG emissions), a win-win situ-
ation. These locations are optimal under both high and low future
carbon prices.

Robust locations all have high yields (Figs. 5 and 6). Both pro-
duction costs and GHG emissions are reduced if sugar cane is
5 The official name of the municipality is Chapad~ao do C�eu. The short name
Chapad~ao is used in Fig. 5.
produced in high-yielding areas, because this requires smaller
areas for the production of the same amount of ethanol. A smaller
area reduces costs, because some of the land costs and cultivation
costs are area dependent (Appendix A). An example of area-
dependent costs are machinery costs. The harvest machines have
to drive over the total area of land, independent of how much is
harvested per hectare. A high yield indirectly reduces the ma-
chinery costs per liter of ethanol. A high yield also reduces GHG
emissions because a smaller sugar cane area means less land use
change, and thus less land emissions (the largest component of the
total emissions). In addition, cultivation emissions are also area
dependent because the machinery has constant emissions per
hectare.

The second characteristic of robust locations are large areas of
cropland and/or grass and shrub land in 2006 (Figs. 5 and 6). Both
production costs and GHG emissions are reduced when former
cropland is used for sugar cane production. Production costs are
reduced because the costs to prepare the land are low, as the land is
already in use for agriculture (no trees need to be cut etc.). GHG
emissions mainly depend on the type of land use replaced by sugar
cane (land emissions). When the replaced land use is cropland,
carbon is sequestered, because cropland consists mostly of annual
crops, having a low permanent carbon stock as they are harvested
each year. When the replaced land use is grass and shrubs, emis-
sions are low, because sugar cane is similar to grass in terms of
carbon stock.

Although production costs are reduced when sugar cane is
cultivated on former cropland and/or grass and shrub land, the
relative effects are the largest for the GHG emissions. This is shown
by the selected locations of type 3 and 4, Rio Verde and Silvânia.
These municipalities had large areas of cropland and/or grass and
shrub land in 2006, but relatively low yields. Therefore, the opti-
mization suggests producing ethanol here under carbon prices of
200 $/m3 and above, but not under lower carbon prices, because the
low yield increases the production costs too much. For yield, on the
other hand, the relative effects are the largest for the production
costs. This is shown by the selected location of type 3 S~ao Luiz do
Norte. This municipality has high yields, but had no cropland in
2006. Therefore, the optimization suggests producing ethanol here
under carbon prices up to 200 $/m3, but not under higher carbon
prices, because not enough carbon can be sequestered.

The GHG emissions of the BAU scenario fall in between emis-
sions reached at carbon prices of 100 and 200 $/tonne CO2-eq as
calculated by the optimization approach (Fig. 4). We expected that,
as there is currently no carbon pricing system installed, the
BAU scenario projection would have emissions comparable with
the optimization results for a zero carbon price. But the projected
GHG emissions are 720 kg CO2-eq/m3 ethanol lower than that. A
possible explanation is that, although no carbon pricing system is
currently installed in Brazil, ethanol producers in the current land
use system take into account GHG emissions through other sus-
tainability regulations. The RED is not likely to have an effect,
because it is a European regulation and almost all Brazilian ethanol
is currently used domestically. But there are some Brazilian sus-
tainability regulations, such as the federal ecological zoning for
sugar cane and certification of sustainably produced ethanol (e.g.
Aguiar et al., 2011). Although such regulations were not explicitly
included in the land use change model, they might have been
implicitly captured in the model structure through calibration us-
ing historic data. This is a major difference between optimization,
in which an explicit goal function is formulated, and scenario
projection, in which past behaviour of both known and
unknown processes is captured in the model structure through
calibration.



Fig. 5. Spatial patterns of sugar cane fields and mills belonging to the best-performing individual for different carbon prices of (a) 0, (b) 10, and (c) 200 $/tonne CO2-eq, and for (d)
the scenario projection. Fields with the same colour deliver to the same mill. At the bottom the input maps (e) fraction of the maximum attainable yield (T�oth et al., 2012) and (f)
initial land use (2006) (Verstegen et al., 2016b). The municipalities with red boundaries are evaluated. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 6. Overview of the categorization and characteristics of the spatial outputs (of the optimization and scenario projection, separated by a dashed vertical line) and inputs for six
example municipalities in Goi�as. The locations of the municipalities can be found in Fig. 5. Left: filled bars (fraction sugarcane fields) and filled circles (number of mills) show the
mean results over the total final population of the GA, for each carbon price; black horizontal lines (fraction of sugarcane fields) and black dots (number of mills) are the results of
the best-performing individual (Fig. 5a,b,c) and the results of the projection (Fig. 5d). Centre: land use in 2006 (Fig. 5f) for each municipality. Right: distribution of the fraction of the
maximum attainable yield (Fig. 5e) of all cells in each municipality.
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6 The area of natural vegetation eventually converted is often not equal to the
area of sugar cane allocated, for example because the location where the agricul-
tural land has been moved, has a higher or lower productivity or different man-
agement practices. Or because of price effects, which can only be determined if an
economic equilibrium model is used. These things are additional complications
when trying to include iLUC in the optimization.
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3.3. How can these spatial differences be used to (re)design land
use policies?

Policy redesign should be focused on directing ethanol pro-
duction away from the bad-performing locations in the projected
situation (Fig. 5d) towards locations in the optimized solutions
(Fig. 5a, b, or c), where the choice between the optimized solutions
depends on Brazil's aims regarding the minimization of production
costs and/or GHG emissions.

Type 1 locations require, in theory, no policy redesign, as the
BAU scenario projects ethanol to be produced here in 2030 with
current policies. At type 2 locations, the BAU scenario does not
project sugar cane fields and mills. It is advantageous to design
policies to stimulate ethanol production here independent of the
current political preference for economic competitiveness or
climate change mitigation potential as there will be a profit
regarding both impacts.

The case study results can be used to design policies that
stimulate ethanol production in robust locations with roughly two
different types of instruments. The first instrument is to give
farmers credits if they certify the product came from a specific
location. For example, this is currently done for soybean farmers:
Banco do Brasil requires soybean farmers who apply for credit to
certify the origin of their soybeans in order to assure that no
deforestation took place to grow the soybeans (The Nature
Conservancy, 2012). A similar location check could also be done
for sugar cane ethanol, using location types 1 and 2, and potentially
3 and 4, when there is a preference for minimizing one of the two
impact indicators. The second instrument is to analyse the char-
acteristics of robust locations and then incentivise producers to
build mills and farmers to start producing sugar cane for ethanol in
locations with these characteristics. This is currently done in Brazil
for a single impact indicator: the Low-Carbon Agriculture (ABC)
programme, launched in 2010, provides low-interest rural credit
for the implementation of agricultural practices, such as the
restoration of degraded grasslands, to reduce GHG emissions
(Newton et al., 2016).

Besides being used to create policies to stimulate sustainable
ethanol production, the spatial configuration results can be used to
(re)design policies for preventing unsustainable ethanol produc-
tion. The same two instruments can be applied, but now focusing
on locations of type 5, where ethanol production is sub-optimal for
both impact indicators. Preventing ethanol production there can be
targeted by location through the installation of national parks or
agro-ecological zones. Or it can be targeted by fining or banning the
purchase of commodities produced at high-emission locations (or
at high-cost locations, but it is unlikely that farmers want to pro-
duce there anyway), as is done via the soy moratorium (Gibbs et al.,
2015). If one of the two impact indicators is more important than
the other, locations of type 3 and 4 have to be taken into account in
the policy design as well. Locations of type 6 are of little concern,
because sugar cane expansion is not projected to occur there, so
little effort has to be made to prevent expansion there. Still, one
should assess (before implementation, using scenarios including
the new policies and the land use changemodel) andmonitor (after
implementation) that the redesigned policies do not cause expan-
sion here (Gibbs et al., 2015).

3.4. Limitations and uncertainties of the case study

Three main sources of uncertainty exist in our study: uncer-
tainty in the inputs, uncertainty in the process representations, and
the capacity of the GA to find the optimum. Regarding input un-
certainty, we have seen in the results that the improvement po-
tentials and the robust locations are sensitive to the two crucial
input maps: potential yield and initial land use. Especially for yield,
the uncertainty is high, because we use a global yield map (T�oth
et al., 2012), including little local knowledge. It is likely that the
results are also sensitive to other input parameters in the impact
assessment, such as the time horizon over which the land emis-
sions are divided (see Appendix A, equation (A.6)). In theory, one
could use error propagation analysis, using Monte Carlo, to assess
these uncertainties. But since one optimization run, i.e. a single
Monte Carlo sample, costs 28 h, this is hardly doable. Input un-
certainties in the land use change model have been assessed and
reported in Verstegen et al. (2016b).

Regarding process representation uncertainties, the GHG
emission calculations in the impact assessment, especially land
emissions, are relatively crude. But the advantage of using this
crude method (IPCC, 2006) is that it is used in most emission
impact assessments, which makes our results at least comparable.
Another limitation regarding the process representation of our case
study is that indirect land use change (iLUC) is not taken into ac-
count. ILUC is the cascading effect of a land use change: for instance,
when sugar cane is allocated on land previously used for crop
cultivation, the crop production has to be moved elsewhere in or-
der to sustain the supply for this crop (Wicke et al., 2012). ILUC is
likely to cause GHG emissions, additional to the direct GHG emis-
sions. Since these emissions are (indirectly) caused by the land
allocation to sugar cane, it could be argued that they should be
included in the commodity's Pareto frontier and scenario projec-
tion. Incorporating iLUC requires one to determine where the dis-
placed land use type reappears. This entails the use of either a
spatial land use change model determining the dynamics of all
displaceable land use types (e.g. Verstegen et al., 2016b) or a
combined optimization model for ethanol production and all other
commodities (e.g. Lautenbach et al., 2013). Both options are data
intensive and therefore require massive computation times. And,
modelling Goi�as only is not sufficient, because the reallocation can
take place anywhere in the world. Yet, it is obvious that if iLUC
could be included in the optimization of the BAU scenario, 1) it is
very likely that higher GHG emissions would be obtained and 2)
placing sugar cane on croplands would become less favourable,
because the crop production has to be moved to elsewhere and
eventually natural vegetation will probably be converted.6 This
means that the position and shape of the Pareto frontier would
change, as well as the position of the scenario projection relative to
the frontier. This might change the improvement potentials and the
robust locations identified in our case study. The omission of iLUC
in the calculation is of less relevance whenworking with a scenario
in which iLUC prevention is ensured through policies (e.g. Gerssen-
Gondelach et al., 2017). Another option to avert (but not prevent)
iLUC is to include local food security as an additional impact
indicator.

Another potential process representation limitation to this
study is that our BAU scenario projection assumes that current
trends in the land use system will continue into 2030, while in
reality a system can change quite abruptly (Verstegen et al., 2016a).
Therefore, the low GHG emissions of the scenario projection are
uncertain and by no means undermine the potential benefits of a
carbon pricing system in Brazil. Another uncertainty is in the ability
of the GA to find the optima. A GA is a metaheuristic, meaning that
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finding the optimum is not guaranteed. Yet, we are confident that
we have found near-optima, because 1) the spatial configurations
of the individuals in the final populationwere similar to each other
yet not the same (Fig. 6), indicating proper convergence, and 2)
running the GA multiple times with the same settings always
resulted in almost the same value of the objective function
(Appendix C).

Finally, the optimization technique we used is relatively simple.
We combined the two impact indicators into a single objective
using a carbon price. It would be interesting to assess more impact
indicators, such as mean species abundance for ecologic impact, or
employment for socio-economic impacts, or food security for local
market impact. With more objectives, the conversion of all objec-
tives to a common unit becomes harder. To solve optimization
problems of this nature, more complex, multi-objective optimiza-
tion methods exist (see e.g. Lautenbach et al., 2013), and these
methods result in a Pareto frontier of two or more dimensions. So,
despite the limitations and uncertainties of our case study, we
believe to have shown how the addition of a Pareto frontier to a
land use change scenario projection allows one to assess the po-
tential for improvement in different impact indicators.

4. Conclusion

In the future, commodity production chainswill ideally combine
economic benefits with positive environmental impacts. This study
aimed to show how the value of an impact assessment performed
via scenario projection can be increased by adding a Pareto frontier,
because together they provide information on the attainability of
that ideal. To illustrate this, production costs and greenhouse gas
(GHG) emissions were assessed given a projected increase in the
ethanol supply of 10.2 million m3 ethanol in the state Goi�as, Brazil,
in 2030. This was done by complementing the results of a Business-
as-Usual (BAU) scenario projection (Verstegen et al., 2016b) with
the results of a spatial optimization performed using a genetic al-
gorithm (GA). The spatial optimization was carried out for different
carbon prices ($/tonne CO2-eq) to establish different weights for
the production costs and GHG emission objectives, together
forming the Pareto frontier.

The BAU scenario projection of land use change in Goi�as towards
2030 resulted in production costs and GHG emissions of 729 $/m3

ethanol and 40 kg CO2-eq/m3 ethanol, respectively. The Pareto
frontier addition allowed for the analysis of two pieces of new in-
formation. First, we were able to analyse to what degree the BAU
scenario projection could be improved in terms of production costs
and GHG emissions of ethanol production. The constrained
improvement potential (keeping the other impact indicator(s) at
the same value as in the BAU scenario projection) for ethanol
production costs was found to be a reduction of about 50 $/m3

ethanol, and for GHG emissions a reduction of about 250 kg CO2-eq/
m3 ethanol. Maximum improvements, i.e. without trying to keep
the other indicator constant, were found to be a reduction of 73
$/m3 ethanol for production costs (46% additional reduction) and a
reduction of 439 kg CO2-eq/m3 ethanol for GHG emissions (76%
additional reduction).

Second, we assessed the spatial differences between the opti-
mized and projected land use configurations in order to design and
suggest policies to reach these improvements. The optimization
results are able to identify robust ethanol production locations that
perform well for all impact indicators, in our case production costs
and GHG emissions. If no ethanol production is projected by the
scenario at these locations (as was the case for many robust loca-
tions in our case study), policies need to be redesigned to stimulate
production there, resulting in reduced impacts. Our paper outlined
two different instruments for instituting such policies, namely
location-specific (targeting the robust locations themselves) and
characteristic-based (targeting the general characteristic of robust
locations) instruments. In our case study, the characteristics of
robust locations were high yields and current land use as cropland
or grass and shrub land; many of the locations selected for ethanol
production via the scenario projection already had the latter
characteristic, but not the high yield.

Although our case study has some drawbacks, in particular the
inability to take into account the costs and GHG emissions of in-
direct land use change, this study shows that complementing land
use change scenario projections with a Pareto frontier offers sig-
nificant added value for policy making. The developed methodol-
ogy is general and can be applied to other regions, scales, objectives
and commodities.
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Software/data availability

The Automatic Model Optimization Reference Implementation,
AMORI, optimization software is freely available online: https://
sourceforge.net/projects/amori/. Developer: L.M. de Vries, email
lmdevries@barcelonascience.com.

The land use model can be downloaded with input data from an
earlier case study: https://github.com/JudithVerstegen/PLUC_
Mozambique. Developer: J.A. Verstegen, first author, see contact
details on first page. Running themodel requires Python version 2.7
with NumPy version 1.8, and PCRaster version 4.1.0 (current
release), downloadable for free at: http://pcraster.geo.uu.nl/
downloads/.

The sources of all datasets and parameter values are provided in
Appendix B.

Appendix A. Equations of the cost and emission components

A.1. General

This section provides all equations used for the cost and emis-
sion components of the allocation model. In the equations the
following notations are used throughout. Italic variables are non-
spatial and bold variables are spatial, i.e. a map of values at raster
cells instead of a single value. The subscript i for a spatial variable
indicates the selection of a cell in the map on which sugar cane is
allocated, for i ¼ 1, 2, …I. The value for I, the total number of cells
with sugar cane, varies per model run (per individual in the genetic
algorithm (GA) population), depending on whether sugar cane is
allocated on high yielding (low I) or low yielding (high I) cells.

Many of the equations contain the yield of sugar cane. Sugar
cane is a semi-perennial crop. This means that after planting, it can
be harvested for some consecutive years. In Brazil, a 6-year cycle is
most common: the first harvest takes place 12 or 18 months after
planting and the subsequent harvests once every year for four years
(Macedo et al., 2008). During these four years, the yield gradually
decreases. In the next year, the field is renewed. The yield we use, is
the average yield over this 6-year cycle. The exception are the
cultivation costs, wherewe do specifically account for the changing
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yield over the cycle, because here it influences the total costs. The
yield of sugar cane in a cell, yi (tonne cane), is constructed from a
map showing the relative yield distribution over space and an
average (over the cycle) maximum attainable yield:

yi ¼ fi$m$a for each i (A.1)

In equation (A.1), m (tonne cane/ha) is the maximum attainable
yield, in our case for 2030. Furthermore, fi2½0; 1� (�) is the fraction
of the maximum yield that can be obtained. And a (ha) is the cell
area, which is constant over space since we use an Albers Equal
Area map projection.

Many of the cost and emission components are expressed per
tonne cane. Because we are interested in the costs of the end
product, ethanol, all components are converted to costs and
emissions per m3 ethanol, using the conversion efficiency h (m3

ethanol/tonne cane). We assume a single conversion efficiency for
all mills allocated.
A.2. Costs

All cost equations are derived from the equations by Jonker et al.
(2015). For more detailed information we refer to that study. The
land costs, cl (US$2014/m

3 ethanol), consist of two parts: the costs to
buy the land and the land conversion costs to make the land
cultivatable for sugar cane. Both parts contain area dependent costs
and yield dependent costs:

cl ¼
1
I$h

$
XI
i¼1

a$a$ðal$ðbi þ liÞ þ bl$yi$ðbi þ liÞÞ
yi

(A.2)

In equation (A.2), bi (US$2014/ha) are the costs to buy the land
and li (US$2014/ha) are the land conversion costs. Both vary over
space based on region and/or current land use type. The factors al
(�) and bl (ha/tonne cane) distinguish between the area dependent
costs and yield dependent parts. The factor a (�) is the annuity
factor that transforms the total costs to yearly costs:
a ¼ r=ð1� ð1þ rÞ�LÞ. Herein, r (�) is the discount rate, i.e. the time
value of money according to the theory of time preference, and L
(years) is the lifetime or amortization period (Blok, 2006, p. 195,
equation 11.2b). Again, a is the cell area.

The cultivation costs, cc (US$2014/m3 ethanol), contain many
factors, like fertilizer application and machinery use. A simplified
equation, summing all cost components in area-dependent and
yield dependent cultivation costs, is derived from the equation
given by Jonker et al. (2015). The initial investment costs are
annualized, but this cannot simply be done using a as in equation
(A.2), because the yearly costs vary over the 6-year sugar cane
cultivation cycle:

cc ¼ 1
I$h

$
XI
i¼1

 P6
t¼1
�
ac;t$a

�.P6
t¼1
�
1þ rt

�
P6

t¼1ðyi$ytÞ
.P6

t¼1ð1þ rtÞ

þ
P6

t¼1
�
bc;t
�.P6

t¼1
�
1þ rt

�
P6

t¼1yt
.P6

t¼1ð1þ rtÞ

!
(A.3)

In equation (A.3), yt (�) is the yield factor for year t¼ 1, 2, 3, 4, 5,
6, decreasing over the 6-year sugar cane cultivation cycle, ac;t
(US$2014/ha) are the area-dependent cultivation costs at year t, for
example the costs of machinery, bc;t (US$2014/tonne cane) are the
yield dependent cultivation costs at year t, for example for fertil-
izers. Again, r (�) is the discount rate.

The costs of transporting the sugar cane to the mill, ct (US$2014/
m3 ethanol), are calculated over the road network. It is assumed
that the truck will take the fastest route. The fastest route is
determined by applying a least cost path algorithm on the road
map with speed differing per road type and off-road, where the
‘costs’ per kilometre are one divided by the speed (higher speed
are lower ‘costs’ because it is faster). The ‘costs’ themselves are
not used, only the route, to compute the average speed and diesel
use along the routes and total distance of the routes per sugar cane
cell:

ct ¼ 1
I$h

$
XI
i¼1

ðat=vi þ biÞ$di þ ot (A.4)

In equation (A.4), vi (km/hour) is the average truck speed, and di
(km) is the total distance of the fastest route to the nearest (time-
wise) mill. Furthermore in equation (A.4), at (US$2014/tonne cane-
hour) are the annual costs of the truck, bi (US$2014/tonne cane-
km) are the diesel costs per tonne cane that differ per field
depending on the road types in the route to the mill, and ot
(US$2014/tonne cane) are the costs of loading and unloading the
truck. When, during the allocation process of the fields, one of the
mills has reached the maximum capacity, the spatial variables are
updated for all cells that had this ‘full’ mill as their closest mill,
according to the fastest route to the next nearest mill.

The costs of processing the sugar cane (converting it to ethanol),
cp (US$2014/m3 ethanol), include capital depreciation, operational
costs and revenues from electricity generation. In contrast to the
other cost components, the processing costs are calculated per mill
instead of per field, because the costs depend on the scale of the
mill. Therefore, the total processing costs are obtained by summing
over all activemills, j¼ 1, 2,…J. The notion ‘active’ indicates all mills
to which fields are assigned. Mills to which no fields are assigned,
do have a location in theory (they have a x and y coordinate in the
GA), but do not contribute to the total costs of the individual and
are thus excluded from the analysis:

cp ¼ 1
J$h

$
XJ
j¼1

�
a$
�
ap$sj

�þ bp
�

sj$q
þ co � ge$ re (A.5)

In equation (A.5), sj (tonne cane/hour) is the scale of the mill,
indicating the sugar cane processing capacity, and sj$q$h (m3

ethanol) is the annual output of the mill, in which q (hours) is the
number of hours per year the mill is in running. In this study, q is
assumed to be the same for all mills. Furthermore, ap (US$2014-h/
tonne cane) is a cost factor that decreases with the scale of the mill,
representing the advantages of economies of scale, while bp
(US$2014) is a fixed cost factor. Moreover, co (US$2014/m3 ethanol)
are the fixed operation costs, and ge (kWh/m3 ethanol) is the
electricity surplus. This electricity is generated from bagasse, a
fibrous product left over after the sugary juice is extracted from the
sugar cane. The electricity surplus, the part of the generated elec-
tricity the mill does not need for the sugar cane processing, can be
sold to the grid; re (US$2014/kWh) are the revenues obtained for this
surplus. Again, as with land costs, a (�) is the annuity factor that
transforms the total costs to yearly costs.
A.3. Emissions

The land emissions, el (tonne CO2-eq/m3 ethanol), from carbon
stock changes are calculated using the IPCC approach (IPCC, 2006).
This approach involves five carbon pools: above ground biomass,
below ground biomass, dead wood, litter, and soil organic carbon
(SOC). In line with the Tier 1 approach of the IPCC, an equilibrium is
assumed in the dead wood and litter stocks, i.e. they are considered
not to change:
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el ¼
44
12

$
1
I$h

$
XI
i¼1

�
si;2006 � si;c þ bi;2006 � bi;c

�
$a

h$yi
(A.6)

In equation (A.6), si;2006 (tonne C/ha) is the mineral soil organic
carbon for 2006, the reference year. The mineral SOC is calculated
given the soil type, climate, land use andmanagement (IPCC, 2006).
Next, si;c (tonne C/ha) is the mineral soil organic carbon when all
cells i ¼ 1, 2, …I are converted to sugar cane. This means that land
use and management are changed, while soil type and climate
remain the same. Organic SOC is not considered in equation (A.6)
because our study area does not contain organic soils. Further-
more, bi;2006 (tonne C/ha) is the above and below ground biomass
for 2006, based on land use and productivity. In the same fashion as
with si;c, bi;c (tonne C/ha) is the above and below ground biomass in
all cells i ¼ 1, 2, …Iwhere sugar cane is cultivated. The total carbon
stock changes are divided over a time horizon h (years). The factor
44/12 is to convert from C to CO2-eq.

The cultivation emissions, ec (tonne CO2-eq/m3 ethanol), origi-
nate from the use of diesel (for machinery), fertilizers, agrochem-
icals and other chemicals:

ec ¼ 1
I$h

$
XI
i¼1

lc$aþ yi$kc
yi

(A.7)

In equation (A.7), kc (tonne CO2-eq/ha) are the diesel emissions
from the machinery, and lc (tonne CO2-eq/tonne cane) are the
yield-dependent emissions, including primarily fertilizer emis-
sions. These are mainly N2O emissions, converted to CO2-eq.

The transport emissions, et (tonne CO2-eq/m3 ethanol), are
diesel emissions from the trucks transporting the sugar cane to the
mill:

et ¼ 1
I$h

$
XI
i¼1

ki$di

lt
(A.8)

In equation (A.8), ki (tonne CO2-eq/km) are the diesel emissions
per tonne cane that differ per field depending on the road types in
the route to the mill, including a factor to correct for the empty
return of the truck, and lt (tonne cane) is the load of a full sugar
cane truck.
Table B.1
Non-spatial data for the sugar cane production costs. All values are for the year 2030 and
converted using the IGP-DI index (Banco Central do Brasil, 2015).

Cost component Variable Unit

general maximum yield tonne cane/ha

cell area ha
conversion efficiency m3 ethanol/tonne cane

land annuity factor e

correction factor e

correction factor ha/tonne cane
cultivation yield factor in year t e

area-dependent cultivation
costs in year t

US$2014/ha

US$2014/tonne cane
The processing emissions, ep (tonne CO2-eq/m3 ethanol), are
assumed not to differ per mill, in contrast to the processing costs; it
is a fixed emission per tonne cane and thus per m3 ethanol:

ep ¼ 1
h
$kp � lp (A.9)

In equation (A.9), kp (tonne CO2-eq/tonne cane) includes all
processing emissions and lp (tonne CO2-eq/tonne cane) are the
emissions avoided by electricity production.

Appendix B. Input data

This section describes the data used for the Goi�as case study
within the equations given in the previous section. The values of
non-spatial variables are given in Table B.1 for costs and in Table B.2
for emissions. The data sources for all maps are given in Table B.3.

One of the most important variables in the cost calculations is
the maximum attainable yield, m. The value of m is determined for
2012 by finding the m for which

PI
i¼1yi ¼ q, where i ¼ 1, 2, …I are

in this case all cells that are projected to be sugar cane for 2012 by a
combination of data from the Canasat project (Rudorff et al., 2010)
and a model projection from the PCRaster Land Use Change model
PLUC (van der Hilst et al., in prep.). Furthermore, q is the total sugar
cane production reported by the Brazilian Sugarcane Industry As-
sociation UNICA (UNICA, 2015). The value of m for 2030 (Table B.1)
is found by applying a yield trend over time from Jonker et al.
(2015) to the 2012 value.

Regarding land emissions we assume, in line with the IPCC
method (IPCC, 2006), that the above and below ground biomass of
cropland is zero, because the crops are fully harvested each year. For
planted pasture, it is assumed that all above ground biomass is
eaten by the livestock each year, so the biomass stock of pasture is
only its below ground biomass. Rangelands have a stocking rate of
about 70% lower than pastures (Aguiar and d'Athayde, 2014), so we
assume that only 30% of the above ground biomass is eaten each
year, 70% remains in stock. Along similar lines, we assume that the
above ground sugar cane is harvested each year and that the roots
remain intact. The biomass stock of planted forest is also its below
ground biomass only, as all carbon in the above ground stock is
eventually harvested.
expressed in US$2014; if values in the source were in another monetary unit, they are

Symbol Value Source

m 212 Rudorff et al., 2010, see explanation in main text,
van der Hilst et al., in prep., UNICA, 2015

a 2500 e

h 0.09 Jonker et al., 2015
a 0.13 * Jonker et al., 2015
al 0.33 FNP Informa economics, 2012
bl 6.67 ∙ 10�3 FNP Informa economics, 2012
yt t yt Macedo et al., 2004

1 0
2 1.29
3 1.09
4 0.95
5 0.87
6 0.81

ac;t t yt Jonker et al., 2015
1 2577
2 1124
3 1124
4 1124
5 1124
6 1050

bc;t t yt Jonker et al., 2015



Table B.1 (continued )

Cost component Variable Unit Symbol Value Source

yield dependent cultivation
costs in year t

1 8.3
2 15.0
3 15.9
4 16.3
5 16.9
6 17.2

discount rate e r 0.12 Jonker et al., 2015
transport capital depreciation of the truck US$2014/tonne cane-hour at 2.68 Jonker et al., 2015

truck loading and unloading US$2014/tonne cane ot 2.00 Jonker et al., 2015
processing annuity factor e a 0.13 * Jonker et al., 2015

period per year the mills runs hours q 170 ∙ 24 Dias et al., 2011
cost factor decreasing with scale US$2014-h/tonne cane ap 75.57 **

59.09 ***
Jonker et al., 2015

fixed cost facor US$2014 bp 40 ∙ 106 **

100 ∙ 106
***

Jonker et al., 2015

operation costs of the mill US$2014/m3 ethanol co 98.67 Jonker et al., 2015
electricity surplus kWh/m3 ethanol ge 906.67 Jonker et al., 2015
revenues from electricity US$2014/kWh re 0.07 Jonker et al., 2015

* Calculated for an amortization period L of 20 years with a 12% interest rate r (Blok, 2006, p. 195, equation 11.2b).
** For mills with a scale smaller than 1000 tonne cane/hour.
*** For mills with a scale equal to or larger than 1000 tonne cane/hour.

Table B.2
Non-spatial data for the sugar cane production emissions. All values are for the year 2030.

Emission
component

Variable Unit Symbol Value Source

land time horizon years h 20 IPCC, 2006, European Parliament and Council of the European Union,
2009

cultivation yield-dependent emissions tonne CO2-eq/tonne cane (290) kc 15.22 ∙ 10�3 emission per component: Macedo et al., 2008, quantities: Jonker et al.,
2015

area-dependent emissions tonne CO2-eq/ha lc 365.91 ∙ 10�3 emission per component: Macedo et al., 2008, quantities: Jonker et al.,
2015, Seabra et al., 2011

transport truck load tonne cane lt 30 Jonker et al., 2015, CTBE, 2012
processing processing emissions tonne CO2-eq/tonne cane kp 4.45 ∙ 10�3 Jonker et al., 2015, Seabra et al., 2010

emissions avoided by
electricity production

tonne CO2-eq/tonne cane lp 10.44 ∙ 10�3 surplus quantity: Jonker et al., 2015, energy mix of Brazil (excluding
bagasse) and related emissions: IEA, 2013

Table B.3
Sources of all spatial data for sugar cane production costs and emissions.

Component Variable Unit Symbol Source

general yield fraction tonne/ha f i T�oth et al., 2012
land costs land tenure costs US$2014/ha bi FNP Informa economics, 2012*

land conversion costs US$2014/ha li FNP Informa economics, 2012**

transport costs speed km/hour vi speeds on different road types adapted from (to correct for trucks going
slower): de Souza Soler and Verburg, 2010

diesel costs US$2014/tonne-km bi adapted from for different speeds: Jonker et al., 2015
distance km di calculated over road network from: UFG, 2015

conversion costs scale tonne cane/hour sj determined by the model, max scale for 2030 set at 1348 tonne cane/hour
(5.5 Mtonne cane/year) (MME, 2013)

land emissions mineral soil organic
carbon in 2006

tonne C/ha si;2006 values for carbon dependent on land use type, soil, climate and
management level: IPCC, 2006, 2006 land use map: Verstegen et al., 2015,
soil map: Batjes, 2010, climate map: Hijmans et al., 2005, Bernoux et al.,
2006

mineral soil organic carbon when
sugar cane is cultivated

tonne C/ha si;c values for carbon dependent on land use type, soil, climate and
management level: IPCC, 2006, soil map: Batjes, 2010, climate map:
Hijmans et al., 2005

total (above þ below ground)
biomass stock for 2006

tonne C/ha bi;2006 ratio below to above ground biomass: IPCC, 2006, above ground biomass:
maximum yield assumptions by the authors together with yield fraction
map by T�oth et al. (2012), Jangpromma et al., 2012, de Miranda et al., 2014,
Epron et al., 2013, initial land use map: Verstegen et al., 2015

total biomass stock when
sugar cane is cultivated

tonne C/ha bi;c ratio below to above ground biomass: IPCC, 2006, above ground biomass:
maximum yield assumptions by the authors together with yield fraction
map by T�oth et al. (2012), Jangpromma et al., 2012, initial land use map:
Verstegen et al., 2015

transport emissions diesel emissions tonne CO2-eq/km ki Macedo et al., 2008, quantities: Jonker et al., 2015, Hamelinck et al., 2005b

* The FNP (FNP Informa economics, 2012) specifies land value per micro region in Goi�as per land use type (distinction between natural vegetation, pasture and cropland). A
land value map was made using the map of micro regions in Brazil and the land use map of 2006 (Verstegen et al., 2015). In addition the FNP indicates a higher land value
around the cities of Rio Verde and Santa Helena de Goi�as. This higher land value was assigned to all grid cells within a buffer of 50 km around these cities.
** The FNP (FNP Informa economics, 2012) specifies land conversion costs separately for nature and agriculture. A conversion cost map wasmade by linking these values to the
land use map of 2006 (Verstegen et al., 2015).
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Appendix C. Genetic algorithm

A GA searches the solution space by mimicking evolutionary
processes. It starts with a population of N candidate solutions, also
called individuals (Fig. C1). Each individual has a genotype, con-
sisting of a bit-string of genes representing the control variables of
the problem, and a phenotype, the ‘appearance’ resulting from the
genotype (Bennett et al., 1998). The fitness of each individual in the
population is calculated by evaluating this phenotype against the
objective(s). The best-performing individuals (a predetermined
fraction of the population) are selected to ‘reproduce’. This is done
by crossover, also called recombination, and mutation (Blum and
Roli, 2003). Crossover is the process of taking genes from two
parents and combining them into a new genotype. Mutation alters
a bit in one or more randomly selected genes. The new generation,
the parents and the children together, generally has a higher fitness
than the previous generation. The GA is configured to terminate
when the optimum has been found.
Fig. C1. Conceptual model of the optimizationwith the genetic algorithm (below the dashed line) and the control variables and calculation of the objective values (above the dashed
line).
The settings of the parameters of our GA are tuned by sys-
tematic variation and monitoring the effect on the variance in the
population and on the objective value of the best individual of the
final population. First the fraction of the population to reproduce
and the mutation rate are optimized for a population of 100 in-
dividuals. A fraction of the population to reproduce of 0.2 means
that the best 20% of the population is progressed to the next
generation and this 20% creates the new 80% of the population by
cross-over. When the fraction of the population to reproduce is
too low, the objective value stabilizes too early, before the opti-
mum is reached, because too little variation remains in the pop-
ulation. If the fraction is too high, individuals with a relatively low
fitness reproduce, thereby not improving the fitness of the next
generation. The mutation rate is the fraction of the total popula-
tion that will be mutated. If the mutation rate is too low, the GA
can become stuck at a local optimum, while if it is too high, the
genotypes of the individuals with a high fitness change too much
and there is no convergence towards the optimum objective value
(e.g. Bennett et al., 1998). For our optimization problem the fastest
conversion towards the lowest minimum reached was with a
population fraction to reproduce of 0.1 and a mutation rate of 0.3.
During cross-over, individuals are split at two locations in the bit-
string. The maximum number of bits to mutate in a single indi-
vidual is two.

Next, we increased the population size and number of genera-
tions with these settings until no improvement in the objective
function was reached anymore. This was at a population of 1000
(no improvement anymore for 10 000) for 24 generations (no
improvement anymore for 25). One run takes 28 h on a Linux server
with 16 GB RAM and 24 cores with 2 GHz Intel Xeon processors.
Running the GA five times with these parameter settings for a
single carbon price of 100 US$2014/tonne CO2-eq proved that at
generation 24 the objective value of the best final individual is al-
ways stable for some consecutive generations, and has a maximum
variation of 2.8 US$2014/tonne CO2-eq between the different runs
(Fig. C2).



Fig. C2. Development of the objective value x over the generations of the GA for five
different runs (black lines) at a carbon price p of 100 US$2014 / tonne CO2-eq. The red
line indicates the mean over the five runs.
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