
Modeled and perceived RF-EMF 
exposure from mobile phone base 
stations in relation to symptom 
reporting

Astrid Lysanna Martens



Modeled and perceived RF-EMF exposure from mobile phone base stations 
in relation to symptom reporting

PhD thesis Utrecht University, the Netherlands
Proefschrift Universiteit Utrecht, Nederland

ISBN	 978-94-6299-717-2
Author	 Astrid Martens
Cover design	 James Jardine
Cover photo	 Ben Martens
Lay-out	 Ridderprint | www.ridderprint.nl
Printed by	 Ridderprint | www.ridderprint.nl

© 2017 Astrid Martens
No part of this thesis may be reproduced without prior permission of the author.



Modeled and perceived RF-EMF exposure from mobile 
phone base stations in relation to symptom reporting

De rol van gemodelleerde en gepercipieerde blootstelling aan RF-EMF 

van zendmasten voor mobiele telefonie in het rapporteren van 

gezondheidsklachten

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan,
ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op
dinsdag 21 november 2017 des middags te 4.15 uur

door

Astrid Lysanna Martens
geboren op 27 oktober 1988 te Albrandswaard



Promotoren:	 Prof. dr. T. Smid
		  Prof. dr. H. Kromhout
		  Prof. dr. D.R.M. Timmermans

Copromotor:	 Dr. R.C.H. Vermeulen

The research described in this thesis was financially supported by the Netherlands 
Organisation for Health Research within the research program Electromagnetic Fields 
and Health (grant 85200001).



﻿

5

Table of contents

Chapter 1 General introduction 7

Part I Exposure assessment RF-EMF from mobile phone base 
stations

Chapter 2 Validity of at home model predictions as a proxy for personal 
exposure to radiofrequency electromagnetic fields from 
mobile phone base stations

23

Chapter 3 Residential exposure to RF-EMF from mobile phone base 
stations: Model predictions versus personal and home 
measurements

39

Part II Modeled and perceived RF-EMF exposure from mobile 
phone base stations in relation to symptom reporting

Chapter 4 Somatic symptom reports in the general population: 
Application of a bi-factor model to the analysis of change

61

Chapter 5 Modeled and perceived exposure to RF-EMF from mobile 
phone base stations and the development of symptoms over 
time in a general population cohort.

77

Chapter 6 Longitudinal associations between risk appraisal of base 
stations and non-specific symptoms

99

Chapter 7 Modeled and perceived RF-EMF, noise and air pollution
and symptoms in a population cohort. Is perception key in 
predicting symptoms?

119

Chapter 8 General discussion 147

English Summary 163

Nederlandse Samenvatting 169

Dankwoord 175

Curriculum vitae 177

List of publications 179





1
General introduction





General introduction

9

1.0.	General introduction

Presently, most people in the Netherlands own a smartphone, that can be used not 
only for phone calls, but also for texting, internet use, navigation, etc. Over the past few 
decades there has been a large increase in the use of mobile phones. To facilitate mobile 
communication, the number of mobile phone base stations has grown simultaneously. 
Currently, there are about 43933 antennas for mobile phone use in the Netherlands, 
compared to 25002 in January 2012 (1). These base stations emit radiofrequency 
electromagnetic fields (RF-EMF). Many people in Europe (about 33%) are concerned 
about the potential health risks of this new exposure in their residential environment 
(2–4). Besides health concerns, some people also report non-specific symptoms such 
as headaches or dizziness, that they attribute to electromagnetic fields (EMF) exposure. 
Both biological and psychosocial processes could play a role in symptom reporting 
related to RF-EMF. Currently, there is ongoing debate regarding the potential health 
effects of this new environmental exposure, in society, as well as among scientists. The 
relation of mobile phone base station exposure to perceptions of exposure, percep-
tions of health risks, and effects on symptoms, is a complex and multifaceted topic 
that will be studied in this thesis. To overcome the limitations of previous studies, a 
multidisciplinary approach will be used, applying insights and methods from both 
epidemiological and psychosocial research.

1.1.	Potential health effects of RF-EMF exposure

Epidemiological evidence for health effects of RF-EMF from mobile phone 
base stations
Epidemiological studies that focused on exposure from RF-EMF from mobile phone 
base stations often focused on symptom based health outcomes, rather than carcino-
genic risks or chronic diseases (5). An important reason for studying symptom based 
health outcomes is that these are the health problems reported by people who identify 
themselves as electro hypersensitive (EHS). EHS is not an official medical diagnosis, and 
is instead self-reported by people with health problems that they attribute to electro-
magnetic fields (EMF) exposure. Many people with EHS claim that they can sense when 
they are exposed to EMF, although experimental studies, to date, were not able to iden-
tify individuals who were able to accurately indicate when exposed to EMF (6, 7). There 
is a lot of variation in the health problems reported by people with EHS, but among the 
symptoms often reported are severe headaches, sleep disturbance, and fatigue (8, 9). 
The health problems experienced by this group can in some cases severely limit daily 
functioning. Several studies examined the potential link between RF-EMF exposure and 
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the development of non-specific symptoms. Systematic reviews (5, 10, 11) indicated 
the absence of a relationship between exposure and acute symptom development, 
but there is insufficient evidence (12) to draw firm conclusions about long term effects 
on non-specific symptoms, resulting from low RF-EMF exposure levels in the residential 
environment.

Other epidemiological evidence
For most people, RF-EMF from mobile phone base stations makes up a smaller portion 
(13%) of the total RF-EMF exposure than personal mobile phone use (37.5%) (13). There-
fore, many epidemiological studies focus on health effects of mobile phone use rather 
than of mobile phone base station exposure. For mobile phone use, the head is the 
most localized exposure target region, and many studies have focused on associations 
with brain tumors (14–16). Some of these studies found associations between long 
term mobile phone use and brain tumors. However, other studies did not find such 
effects. It is difficult to reach a definite answer as to whether RF-EMF exposure from 
mobile phone use can cause brain tumors because of the potentially long lag periods 
between exposure and development of brain tumors, the difficulty to characterize long 
term exposure, rapid technological changes, and rarity of brain tumors. If such effects 
do exist, they cannot be directly equated to health effects of RF-EMF exposure from 
mobile phone base stations. It is important to study health effects of RF-EMF from mo-
bile phone base stations separately from effects of other RF-EMF sources, as there may 
be different health effects, because the exposure is not localized in the head region, 
and because the exposure levels are different. In addition, for individuals without a 
mobile phone (mainly young children and elderly), RF-EMF from mobile phone base 
stations can make up a large percentage of the total RF-EMF exposure. Although overall 
RF-EMF exposure for these groups may be lower, young children and elderly could be 
more sensitive groups for developing health effects.

1.2.	Reasons for uncertainty regarding health effects

Despite the available body of experimental and epidemiological evidence, there is still 
scientific uncertainty regarding the evidence for health effects of exposure to RF-EMF 
from mobile phone base stations. There are a number of different reasons for the con-
tinued scientific uncertainty that will be discussed in this thesis:

Exposure assessment
First, exposure assessment to RF-EMF from mobile phone base stations is difficult be-
cause of large spatial variation in exposure levels. Outside, but also within buildings, and 
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even within rooms there can be a lot of variation, because RF-EMF waves are attenuated 
when they encounter walls or metal objects. When exposure assessment is inaccurate, 
studies will have insufficient statistical power to find potential health effects. Although 
personal measurements can be an accurate method to assess exposure, these are not 
feasible for large scale epidemiological studies with thousands of participants across 
the country. For this reason, many studies have used models to estimate exposure to 
RF-EMF from mobile phone base stations. In this project, the NISMap model (17, 18) 
will be used. This model uses 3D topography, 3D building data, and detailed informa-
tion on transmitters to estimate RF-EMF levels. Validation studies (19–21) have shown 
that NISMap is capable of adequately ranking indoor and outdoor locations on relative 
exposure levels in the Netherlands. When models such as NISMap are to be used for 
exposure assessment in epidemiological studies, there is another source of variation 
that must be considered. People typically spend 65-75% of their time at home, most 
of this time (slightly more than 8 hours) in their own bedroom (22–24). The remaining 
time is spent outside of the home, for travelling, work, leisure, etc. However, there is a 
lot of temporal and individual variation in the amount of time people spend at home, 
depending on for example the weather (rain, temperature, etc), but also employment 
characteristics, and size of the home (22). RF-EMF exposure from mobile phone base 
stations is usually modelled at the home address, ignoring the time people spend at 
other locations. In theory, it would be possible to model exposure at locations other 
than the home address, if the floor height, address and time spent there are known, 
and if the surface area of the address is not too large (because of the spatial variation in 
RF-EMF levels). In practice, it is often difficult to obtain the required data and therefore 
it is likely to be more efficient to estimate exposure at the home address. Chapter two 
and three of this thesis will examine the applicability of modelled exposure at the home 
address for accurate and efficient exposure assessment in epidemiological studies.

Lack of longitudinal data
Secondly, many prior studies have been cross-sectional or experimental, as longitu-
dinal projects are costly. This limits the causal inference of associations, as temporal 
precedence cannot be studied in cross-sectional studies. Temporal precedence is a 
requirement for proving causal associations. In cross-sectional studies, it is often not 
possible to fully exclude alternative explanations (for example reversed causation) for 
associations between determinants and health outcomes. A disadvantage of experi-
mental studies is that they can only study short term effects, and that the results of such 
studies cannot easily be generalized to an actual population context. This thesis will 
include analyses on RF-EMF and health outcomes in the longitudinal AMIGO cohort, 
which will be described in chapter five and seven.
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Uncertainty about relevant health outcomes
Thirdly, not much is known about potential biological mechanisms through which 
RF-EMF could cause health problems. Prior studies have established that high intensity 
RF-EMF may lead to an increase in body temperature (25), damaging body tissue. Based 
on this effect, many countries have set exposure limits for RF-EMF. In the everyday 
environment total exposure levels are much lower than these limits (average exposure 
levels less than 1% of limits) (13, 26). There may be other biological mechanisms than 
tissue heating through which health effects could occur, but there is currently no 
conclusive evidence for such mechanisms to occur in humans at everyday levels of 
exposure. As a result of this knowledge gap, it is also a challenge to determine which 
health outcome measures should be studied. For non-specific symptoms, it is unclear 
which symptoms should be studied specifically and how the outcome measures should 
be constructed. Chapter four of this thesis examines the underlying factor structure of 
self-report symptom questionnaires and compares different methods to construct and 
analyze symptom scores.

Role of psychosocial mechanisms
Finally, as many studies did not include information about perceptions of exposure and 
perceived health risks, it was not possible to rule these perceptions out as an alterna-
tive explanation, nor to examine indirect effects of actual exposure on health through 
perceptions. Some studies looked at effects of risk perception on symptom reporting, 
but often these studies do not consider the potential role of actual exposure simulta-
neously. Also, there have been few longitudinal studies in the general population. In 
chapter four we will study associations between both modelled and perceived RF-EMF 
exposure to mobile phone base stations in relation to symptom reporting. Chapter six 
will evaluate the impact of different perceptions about exposure and health risks on 
health outcomes for participants with different subject characteristics. Chapter seven 
will examine whether the role of modelled and perceived exposure in symptom report-
ing is similar for different types of environmental health risks.

1.3.	Psychosocial mechanisms

People form mental models of base stations in their living environment. Mental models 
are internal representations of the external reality that allow individuals to interact with 
the world (27, 28). These models shape reasoning, decision making, and behavior and 
can play a role in individual health responses to the environment. Mental models of 
base stations can include beliefs about exposure and potential health risks (29–31). 
Such beliefs can influence the way people interpret new information about health 
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risks, but also the way they think about the cause of somatic symptoms (32, 33). Prior 
research has linked risk perception and concerns about potential health risks of new 
technologies to increased somatic symptom scores, health care use, and a decreased 
quality of life (33–36). It is thought that perceptions about exposure and perceptions 
of health risks and concerns can also be important in the case of RF-EMF from mobile 
phone base stations, aside from, or in combination with a potential influence of actual 
exposure, which will be studied in chapter four.

Characteristics of a risk
The introduction of new technologies in the environment often leads to concerns 
about potential health risks. There are a number of known risk characteristics that 
influence risk perception. A few decades ago, influential studies (37, 38) highlighted 
discrepancies between the perception of risks by the general population and actual 
risks. A number of characteristics of a hazard were shown to influence risk perception: 
1) voluntariness of the exposure, 2) immediacy of the consequence, 3) whether the 
risk was known precisely by the exposed person, 4) chronic versus catastrophic effect, 
5) dread, 6) severity of consequences (fatality), 7) to what extent the risk is known to 
science, 8) perceived control over exposure, 9) novelty of the risk. In the case of RF-EMF 
exposure from mobile phone base stations, this exposure is involuntary, people are 
often uncertain about what the risks could be, there is uncertainty among scientists, 
people do not have control over their exposure, and it is a relatively new technology. 
All these factors explain why many people are concerned about the potential health 
risks of mobile phone base stations. People are generally less concerned about the 
health risks of the use of their own mobile phones, and continue to use these devices, 
despite the fact that for most adults RF-EMF exposure from own mobile phone use is 
higher than from mobile phone base stations. Characteristics such as the voluntariness, 
and control over exposure are likely to play a role. Despite the observation that many of 
the above mentioned risk characteristics apply for mobile phone base stations, a study 
among the New Zealand population (39) showed that people were more concerned 
about other environmental risks such as air pollution or pesticides than about mobile 
phone base stations, for which many of the characteristics mentioned above apply as 
well. Chapter seven compares the role of risk appraisal in symptom reporting for differ-
ent type of environmental exposures (RF-EMF, noise, air pollutants), taking the actual 
(modelled) exposures into account.

Subject characteristics
Aside from characteristics of a risk, there are other factors that could affect how people 
perceive potential risks. Cultural, political, and sociological factors may play a role. For 
example, a study (40) in Bangladesh found that people interpreted the presence of 
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mobile phone base stations as a sign of economic progress, rather than as a potential 
health risk. Although many factors can be important, this thesis will focus on subject 
characteristics such as gender and education. Subject characteristics can influence 
how people perceive potential risks, but they could also influence the degree to which 
someone experiences somatic symptoms, or the associations between perceptions 
and symptoms. These topics will be studied in chapter six. People may also worry about 
other aspects of mobile phone base stations, rather than health risks. For example, the 
placement process of a new antenna in a residential area may be perceived as unfair, 
and people might worry about property values (41). Such concerns are not the focus 
of this thesis, but may contribute to distrust in the responsible authorities regarding 
mobile phone base stations, and less trust in official reports that communicate absence 
of health effects.

Mechanisms
Chapter six will examine the temporal directionality of associations between risk ap-
praisal and symptom reporting. Studying the temporal directionality of associations 
can improve our understanding of which underlying psychosocial mechanisms are 
important. Understanding the underlying psychosocial mechanisms is important to 
develop effective risk communication strategies, but also to interpret the effects of 
epidemiological studies and the role of perception. There is evidence for the existence 
of nocebo effects through expectations of negative health effects from EMF exposure. 
A nocebo response is the counterpart of placebo, i.e. an adverse health response after a 
treatment or exposure that is not a direct result of this exposure, (42). A self-reinforcing 
circular process may occur through somatosensory amplification, especially in people 
who report electro hypersensitivity (43, 44). A lot of research into psychosocial mecha-
nisms has been done in laboratory experiments. Although experimental studies have 
shown that nocebo mechanisms can be responsible for an increase in symptoms after 
a change in the environment through expectations of negative health effects, it is still 
not fully understood to what extent this mechanism is responsible for the associations 
between risk appraisal and symptom based health outcomes in the general population. 
Therefore, more research is needed in a general population context, as the relevance of 
such mechanisms in a general population context is difficult to study in experimental 
studies. In exposed general population samples other mechanisms may be important 
as well, such as reversed causation mechanisms where people become more aware of 
environmental exposures as a potential cause of existing or new symptoms, which has 
been described as environmental monitoring and incorrect attribution (45, 46). The 
relative importance of different psychosocial mechanisms can have implications for 
the effectiveness of different risk communication strategies in preventing unnecessary 
concerns and increased symptom reporting.
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1.4.	The AMIGO participants

The chapters three to six all study data from the Dutch population-based Occupational 
and Environmental Health Cohort study (AMIGO) (47) to study associations between 
modelled exposure, perceptions and symptom based health outcomes. The AMIGO co-
hort was setup to longitudinally study occupational and environmental determinants 
of diseases and wellbeing in The Netherlands. The recruitment strategy and population 
characteristics were described in detail in (47). All participants were adults, between 
31 and 65 years old at the time of enrollment. Participants were recruited through an 
invitation from their general health practitioner. The general practitioners were part 
of a network for primary healthcare at the Netherlands institute for Health Services 
Research (NIVEL). The cohort members were invited to fill in online questionnaires, 
see Figure 1 for the timeline. 14829 Cohort members (16% of those who were invited) 
filled in the online baseline questionnaire in 2011 or 2012. A subsample of the AMIGO 
participants was invited to participate in additional follow-up questionnaires in 2013 
(n=3999 invited, 2228 participants) and in 2014 (n=2228 invited, 1740 participated). 
All AMIGO baseline participants were invited for a follow-up questionnaire in 2015 
(n=7905 participated).

Baseline 
questionnaire 

2011/2012

Follow up 
2015Follow up  

2013

Follow 
up 2014

Figure 1. Timeline questionnaires

1.5.	Thesis Aims and Research Questions

This thesis is divided in two parts. The first part will focus on exposure assessment of 
RF-EMF exposure to mobile phone base stations. The second part is about studying 
symptom based health outcomes in AMIGO and the associations with modelled and 
perceived exposures, and will also discuss the role of risk appraisal.
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Aim
The overall aim of this thesis is to improve the understanding of the associations be-
tween modelled and perceived exposure to RF-EMF from mobile phone base stations 
in relation to self-reported health outcomes.

Research questions
1.	 Can a three-dimensional geospatial model (NISMap) be used to efficiently and ac-

curately assess personal RF-EMF exposure in epidemiological studies? (Chapter 2 
& 3)

2.	 What is the underlying factor structure of self-report symptom questionnaires and 
how can this structure be taken into account in epidemiological studies? (Chapter 4)

3.	 How are modelled and perceived exposure to RF-EMF from mobile phone base 
stations related to overall symptom score and sleep disturbances? (Chapter 5)

4.	 Can we improve our understanding of perceptions of exposure and health risks 
by examining cross-sectional and longitudinal associations between these per-
ceptions and symptom scores, and what is the influence of a number of subject 
characteristics (sex, age, education, and trait negative affect) on risk appraisal and 
symptoms? (Chapter 6)

5.	 Do we find similar patterns of associations between modelled and perceived expo-
sure in relation to self-reported health outcomes for air pollutants and noise from 
road traffic as for RF-EMF exposure of mobile phone base stations? (Chapter 7)
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Abstract

Background: Epidemiological studies on the potential health effects of RF-EMF from 
mobile phone base stations require efficient and accurate exposure assessment meth-
ods. Previous studies have demonstrated that the 3D geospatial model NISMap is able 
to rank locations by indoor and outdoor RF-EMF exposure levels. This study extends on 
previous work by evaluating the suitability of using NISMap to estimate indoor RF-EMF 
exposure levels at home as a proxy for personal exposure to RF-EMF from mobile phone 
base stations.

Methods: For 93 individuals in the Netherlands we measured personal exposure to 
RF-EMF from mobile phone base stations during a 24 h period using an EME-SPY 121 
exposimeter. Each individual kept a diary from which we extracted the time spent at 
home and in the bedroom. We used NISMap to model exposure at the home address 
of the participant (at bedroom elevation). We then compared model predictions with 
measurements for the 24 h period, when at home, and in the bedroom by the Spear-
man correlation coefficient (rsp) and by calculating specificity and sensitivity using the 
90th percentile of the exposure distribution as a cutpoint for high exposure.

Results: We found a low to moderate rsp of 0.36 for the 24 h period, 0.51 for measure-
ments at home, and 0.41 for measurements in the bedroom. The specificity was high 
(0.9) but with a low sensitivity (0.3).

Discussion: These results indicate that a meaningful ranking of personal RF-EMF can be 
achieved, even though the correlation between model predictions and 24 h personal 
RF-EMF measurements is lower than with at home measurements. However, the use of 
at home RF-EMF field predictions from mobile phone base stations in epidemiological 
studies leads to significant exposure misclassification that will result in a loss of statisti-
cal power to detect health effects.
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1. Introduction

There is ongoing concern about the potential health effects of exposure to radiofre-
quency electromagnetic fields (RF-EMF) from mobile phone base stations (1). Epide-
miological studies to date have found only very limited evidence for any kind of health 
effects related to RF-EMF (2). However, uncertainties in the exposure assessment of 
personal RF-EMF (from all sources and sources separately) hinder reaching a more de-
finitive conclusion about the absence or presence of any possible association between 
RF-EMF exposure, from for example mobile phone base stations, and health problems.

RF-EMF exposure from mobile phone base stations (in the Netherlands) contributes 
~13% to total environmental RF-EMF exposure (3). This contribution may vary by loca-
tion and by age groups due to differences in behavioural patterns. There is no scientific 
evidence for any specific biological mechanisms leading to health effects, and thus 
potential health effects of RF-EMF may differ across frequency bands. Therefore, it is 
important to study the exposure from mobile phone base stations both separately and 
combined. Due to the absence of a strong correlation between RF-EMF from mobile 
phone base stations and other RF-EMF sources (4) it is possible to study this source 
separately.

Several methods have been employed to assess individual exposure to RF-EMF from 
mobile phone base stations. Personal measurements are considered the best ap-
proach in assessing personal RF-EMF exposure (5). However, even the use of personal 
dosimeters has limitations that can lead to underestimation of exposure, such as body 
shielding, measuring multiple signals in one frequency band, and measurements 
below the detection limit (6, 7). Further, because of time and cost constraints personal 
measurements are not feasible for large scale epidemiological investigations (4). Other 
methods typically estimate exposure at the home address as a proxy of personal expo-
sure. Simple methods such as the distance between nearby transmitters and the home 
address as a proxy of personal exposure to RF-EMF (8–10) are insufficiently accurate (4, 
11). Frei et al. (2010) (4) showed that using a model to estimate exposure at the home 
address is currently the most appropriate method for estimating RF-EMF exposure in 
large epidemiological studies. In recent years several geospatial models have been 
developed for estimating RF-EMF exposure from mobile phone base stations at the 
home address (11–13).

The 3D radiowave propagation model NISMap (13) has been developed to predict RF-
EMF exposure from fixed site transmitters. Previous studies (13–16) have shown that 
NISMap is able to meaningful rank outdoor and indoor RF-EMF exposure levels from 
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mobile phone base-stations. Spearman correlations for total mobile phone downlink 
(hereafter referred to as downlink) RF-EMF between predicted values and spot mea-
surements were around rsp =0.7. However, people are not always at their home address, 
and the amount of time they spend at home can vary between individuals and differ-
ent time periods (17, 18). Therefore, a model estimating RF-EMF for the home address 
may not be sufficiently accurate to predict personal exposure to RF-EMF from base 
stations. Limited work has been done to validate the estimation of personal RF-EMF 
exposure from base-stations based on spatial models. Frei et al. (2009) (20) measured 
personal exposure during one week for 166 subjects in Switzerland. They compared 
personal RF-EMF exposure measurements from all far field sources (including FM, TV, 
Tetrapol, mobile phone uplink (hereafter referred to as uplink), downlink, DECT, W-LAN) 
with NISMap model predictions of exposure to fixed site transmitters (FM, TV, Tetrapol, 
mobile phone base station downlink). They reported a Spearman correlation of 0.28 
(CI 95%: 0.14-0.42) between measured and modelled values (4). As in the end health 
effects are driven by the individual exposure experience there is a clear need for addi-
tional studies on the suitability of using at home modeling of RF-EMF for approximating 
personal exposure to RF-EMF from base stations. In this study we extend on previous 
observations by evaluating whether at home modelled RF-EMF exposure by NISMap 
has a good correlation with personal measurements, and whether it is a valid proxy for 
24 h personal exposure to RF-EMF from base stations.

2. Material and Methods

2.1 Population
The selection method and exclusions are described in more detail in Bolte & Eikelboom 
(2012) (3). In short, we invited 3000 adult (18+) members from an internet panel 
(TNS-Nipo) living in the north-west of the Netherlands. The panel members were ap-
proached by email to fill out a questionnaire and carry a measurement device for 24 
hours. This resulted in a positive response of 909 persons from which 140 were selected 
(based on variation in features such as sex, age, social economic status, employment 
and residential area) to participate in the measurements. The measurements took place 
in 2009 and 2010 and continued until 100 complete measurement datasets were col-
lected. After excluding participants with incomplete diary data, 98 participants with 
complete measurement data were retained (age range: 18-82 years). Five participants 
were excluded because we could not estimate the field strength for their home ad-
dress due to missing input data, resulting in a total of 93 participants with both model 
estimates as well as personal measurements.
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2.2 Model description and model input
For each participant we estimated RF-EMF exposure at the home address (at bedroom 
elevation) using the NISMap model. We did not model the exposure at work, as subjects 
in general spend less than 30% of their time at work and because the work address was 
not known for all participants. Additionally, some of the participants have professions 
that are not bound to one location, f.i. driver or builder.

NISMap is a three dimensional radiowave propagation model that uses detailed informa-
tion about antenna location and radiation patterns, 3D building data and topography 
to compute the field strength of the downlink sources of different frequencies (UMTS, 
GSM900, GSM1800). The Double Power Law (21) radio wave propagation algorithm 
used previously by (14–16) was used to calculate the decrease of RF-EMF with distance. 
NISMap allows to set building damping values to correct for the attenuation of radio 
waves by buildings. We set the damping of roofs to 4.5 dB, damping of walls to 3 dB 
and the inside damping to 0.6 dB/m for all buildings. These values are similar to values 
used in earlier studies (14–16). Individual building characteristics such as the type of 
wall material were not used as input data for the model, as a previous study found 
that inclusion of these predictors did not significantly improve model prediction in the 
Netherlands most likely because of the relative homogenous building characteristics 
(15). A technical description of the model can be found in (13, 16).

The coordinates of the participants’ home addresses were obtained from the Dutch 
Cadastre in 2012 (BAG, Basisregistraties Adressen en Gebouwen). The Dutch Radiocom-
munications Agency (Agentschap Telecom) provided us with detailed information 
about transmitters (2011), such as the coordinates, beam direction, and height of the 
transmitter. We created a 3D box model of all buildings in the Netherlands, by combin-
ing data on the building locations and outline from the national BAG building data 
set with height information from the Netherlands elevation model (Actueel Hoogtebe-
stand Nederland 2, AHN2). The bedroom elevation was used as input for the model, 
as participants generally spend most of their time in their bedroom while they are at 
home. To obtain the bedroom elevation we asked participants the floor number of their 
bedroom (where ground level counts as zero). We assumed a floor height of 3 meters 
per floor. If this resulted in an estimation of the bedroom elevation larger than the total 
building height (n=5) we subtracted 1.5 meters from the total building height and used 
that value as an estimate of bedroom elevation.

2.3 Exposure assessment
We used the EME-spy 121 (Satimo, Cortaboeuf, France, http://www.satimo.fr) to mea-
sure the RF electric fields in 12 frequency bands (FM radio (88–108 MHz), TV3 (174–233 
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MHz), TETRA (380–400 MHz), TV4&5 (470–830 MHz), GSM 900 uplink (880–915 MHz), 
GSM 900 downlink (925–960 MHz), GSM 1800 uplink (1710–1785 MHz), GSM 1800 
downlink (1805–1880 MHz), DECT (1880–1900 MHz), UMTS uplink (1920–1980 MHz), 
UMTS downlink (2110–2170 MHz), WiFi (2400–2500 MHz)), with the sampling frequency 
set to every 10th second. The upper detection limit of the device is 265 mW/m² (10 V/m). 
The lower detection limit is 0.0066 mW/m² (0.05 V/m).

Participants were asked to carry the measurement set continuously for 24 h, except 
when they were sleeping or during activities where it would not be safe for the par-
ticipant to wear the device or the device would be at risk of being damaged (such as 
showering, sports). Participants carried the EME-SPY in a camera bag strapped over 
their left shoulder and clipped on the right hip to the belt. At night, the exposimeter 
was positioned on the bedside table next to the head, with the blue side, containing 
the antennae, directed towards the window.

Participants filled in a time activity diary, where they described their activities during 
the measurements, including mobile/cordless phone use, as well as all unexpected or 
notable events such as not being able to wear the measurement set during a specific 
time window. More information about the exact procedure can be found in Bolte and 
Eikelboom (2012).

2.4 Data-analysis
A calibration correction for each exposimeter was applied to all measurements, based 
on calibration tests in a GTEM (Gigahertz Transverse ElectroMagnetic cell) and an Open 
Area Test site (6). Downlink measurements may be slightly influenced by out-of-band 
signals such as DECT (6). We therefore removed the measurements during time spent 
on DECT cordless phones. We then computed the total downlink exposure by sum-
ming power density (W/m²) of the GSM900 downlink, GSM1800 downlink and UMTS 
downlink frequencies for the measurements and the model predictions (results per 
downlink frequency in the Appendix, Table A.1.). Based on the activity diary, all measure-
ment data were placed in three different categories: in bedroom, at home, overall 24 h. 
Statistics per category (bedroom / at home /overall 24 h) were calculated by pooling all 
available measurements per category.

Because the detection limit of the exposimeter is relatively high compared to exposure 
values in a home environment there was a large percentage (GSM900 83%, GSM1800 
90%, UMTS 96%, total downlink 78%) of measurement data below the detection limit. 
We used robust regression on order statistics (ROS) to impute measurement values 
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below the detection limit, which has been shown to be an reliable method for this type 
of data (22).

We computed several indicators to determine the accuracy of the NISMap model 
predictions: The mean modelled and measured values, the ratio (mean modelled value 
divided by the mean measured value), the mean difference between modelled and 
measured values (modelled - measured), the mean relative difference (mean difference 
divided by the average of measured and modelled values), precision (the standard 
deviation of differences between modelled and measured values), the coefficient of 
variation (ratio of the standard deviation to the mean) and the Spearman rank cor-
relation (rsp) between modelled and measured values. In order to calculate sensitivity 
and specificity parameters we dichotomized the modelled and measured values with 
a cutoff percentile of 90% based on distributional plots. All analyses were carried out 
using the statistical program R (3.1.0).

3. Results

3.1 Descriptive statistics
The mean age of the 93 participants, 45 men and 48 women, was 44.3 years (range: 
19–81, standard deviation: 16.2). Participants spent on average 16.8 h (standard devia-
tion: 3.9) at home, of which 7.3 h (standard deviation: 1.93) in the bedroom. The major-
ity of participants did not work on the day of the measurements (worked: n=36, not 
worked: n= 57). There was a large variation in home types (detached/semi-detached 
home: n= 25, terraced home: n=28, large apartment: n=15, small apartment: n=25) 
as well as degree of urbanisation (downtown urban area: n=21, urban outskirts: n=27, 
urban green area: n=17, village: n=28).

3.2 Accuracy of model predictions
Table 1 shows the accuracy of the model predictions (see appendix table A.1 for re-
sults per frequency band). The mean modelled value for the 24 h period was 0.039 
mW/m², the mean measured value 0.023 mW/m². We found a Spearman correlation 
of 0.36 between modelled and measured values for the 24 hour period. The statistics 
restricted for time spent at home (mean measured: 0.017 mW/m²) and time spent in 
the bedroom (mean measured: 0.018 mW/m²) were similar but with somewhat higher 
Spearman correlations (at home rsp = 0.51; bedroom rsp = 0.41). The sensitivity of the 
model predictions for the total 24 h period was 0.30 (CI 95% = 0.07-0.65), the specificity 
of the model predictions was 0.92 (CI 95% = 0.83-0.97). In figure 1 we show two Bland-
Altman plots (23) for the absolute and the relative differences between the NISMap 
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Table 1. Accuracy of model predictions for the total downlink RF-EMF of all mobile phone base sta-
tions (unit: mW/m²) for the 24 h period, time spent at home and in the bedroom

24 h overall At home In bedroom

Mean modelled* 0.039 0.039 0.039

mean measured 0.023 0.017 0.018

ratio model/measured 1.713 2.356 2.212

median measured 0.011 0.004 0.000

mean difference (modelled-measured) 0.016 0.022 0.021

mean relative difference 0.525 0.808 0.755

Precision (sd difference) 0.102 0.102 0.099

Coefficient of variation 4.470 6.129 5.572

Spearman r 0.36 0.51 0.41

Sensitivity 90% cutoff and 95% confidence intervals  0.30 (0.07-0.65) 0.30 (0.07-0.65) 0.40 (0.12-0.74)

Specificity 90% cutoff and 95% confidence intervals  0.92 (0.83-0.97) 0.92 (0.83-0.97) 0.93 (0.85-0.97)

*This value is equal for each category because we only model exposure for the home address at 
bedroom elevation.
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Figure 1. Bland–Altman plot of the mean downlink RF-EMF, showing the absolute (A. left) and rela-
tive (B. right) differences between modelled and measured values for the 24 h period. The solid line 
shows the bias and the striped lines the bias ±2 standard deviations.
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model predictions and the 24 h overall measurements. We observe large differences 
between modelled and measured RF-EMF levels, with both an over- and underestima-
tion. However, on average there is indication of an overestimation of the model of the 
absolute levels (Table 1, Figure 1). An extra analysis where we stratified by the subjects 
that did not work during the measurement data (n=57) and subjects that did work dur-
ing the measurement day showed a slightly higher Spearman correlation for subjects 
who did not work (not worked: rsp = 0.39, worked: rsp = 0.32).

4. Discussion

In this study we evaluated the validity of using the at home exposure (at bedroom 
elevation) as modelled by NISMap to assess personal exposure to RF-EMF in epide-
miological studies. We compared NISMap model predictions of RF-EMF exposure from 
mobile phone base stations with personal measurements (downlink). We found a low 
to moderate Spearman correlation between model predictions and personal measure-
ments of 0.36 for a 24 h period. As expected, these correlations are lower than correla-
tions between model predictions at home (rsp 0.51) and in the bedroom (rsp 0.41).

In epidemiological studies it is important to be able distinguish between high and low 
exposed individuals. In our study we used the sensitivity and the specificity to evaluate 
how well we distinguish between exposed and non-exposed individuals (as defined by 
the 90th percentile of the empirical distribution). We found a high specificity (0.9) of the 
NISMap model, but a relatively low sensitivity (0.3). An ideal model would have a high 
specificity as well as a high sensitivity. However, for epidemiological studies with rare 
exposures, such as high exposure to RF-EMF, a high specificity is more important than 
a high sensitivity. Neubauer et al. (2007) (5) have demonstrated that, if an association 
exists, low specificity leads to a greater risk bias and therefore less power to detect 
potential health effects. The effect of low sensitivity on the risk bias is much smaller.

Frei et al. (2010) (4) also assessed the performance of the NISMap model in predicting 
personal RF-EMF exposure in Switzerland. Frei and colleagues modelled all fixed site 
transmitters (FM, TV, Tetrapol, and Downlink) and compared this with measurements 
from all far field sources (FM, TV, Tetrapol, uplink, Downlink, DECT, W-LAN). Compared 
to our study they reported a slightly lower correlation of rsp = 0.28. This might in part be 
explained due the fact that the comparison of Frei et al. included more RF-EMF sources 
in their measurements than that were used in the NISMap model. Similarly, when we 
compared our modelled downlink exposures to the personal measurements including 
all far field exposures, we obtained a correlation of rsp = 0.22.
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The studies by Bürgi (2009) and by Beekhuizen (2014) (16, 15) focused on downlink RF-
EMF levels only. They compared indoor spot measurements with NISMap predictions 
and found Spearman correlations between 0.60 and 0.74. These values are noticeably 
higher than our indoor values based on personal measurements (bedroom rsp 0.41; 
at home rsp 0.51). Possible explanations might be the higher detection limit of the 
measurement device used in our study as well as differences in measurement method. 
Our subjects carried a dosimeter on their bodies and left the device on a small bedside 
table during nighttime. In contrast, both other studies (15, 16) used stationary spot 
measurements on 7 spots in the room, thereby capturing the average exposure in the 
room. While our method may reflect personal exposure more accurately, our measure-
ment results could be influenced strongly by local interference patterns.

The specificity (0.90) reported in (16) is similar to our specificity for the at home mea-
surements (0.92), although they reported a higher sensitivity (0.60 versus 0.32 in our 
study). These results indicate that modelling bedroom exposure at the home address 
as a proxy for personal exposure does not lead to a large number of ‘false positives’ 
(subjects incorrectly classified as high exposed), which is an important feature for 
epidemiological studies with a low prevalence of (high) exposure. However, because 
of the low sensitivity it will take a large sample size to detect potential health effects if 
they exist.

4.1 Strengths and limitations
One of the strengths of our study is the varied subject sample. The subjects vary greatly 
considering age, sex, employment, residential area and housing characteristics. A 
second strength is the detailed input data on antenna characteristics, 3D buildings and 
elevation used to predict exposure, as accurate and complete input data is important 
for the spatial modeling of RF-EMF levels (24, 25). Another strength of our study is the 
knowledge about the whereabouts of the subjects allowing us to compare separately 
between the measured exposure when at home and when in the bedroom.

One of the limitations in validation studies is the lack of a “golden standard” for estimat-
ing error in model predictions. In our study we compare model predictions to personal 
measurements, but even personal measurements are not a perfect reflection of true ex-
posure. The EME Spy 121 measurement device underestimates actual exposure (6) and 
has a relatively high lower detection limit. Due to the large number of measurements 
below the detection limit our results are highly dependent on the ROS modelling. 
However, it has been shown that ROS is a reliable imputation method for this type of 
data. (22) and we therefore do not expect that the large number of non-detects influ-
enced our results. Secondly, we estimated bedroom elevation using a rough estimate 
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of an average floor height of 3 meter per floor multiplied with the floor number of the 
bedroom, leading to some error in the exact receptor height. An accurate estimation of 
the height is however very important for the accuracy of the model estimation (25) and 
this may have led to a decrease in model performance. Finally, for this study we used 
antenna data from 2011 as input data for the prediction model. The measurements 
were taken earlier, in 2009 and 2010. For an optimal comparison the information about 
location and characteristics of the antenna should be dated as closely to the date of the 
measurements as possible.

4.2 Considerations for future research
The use of models to predict personal exposure to RF-EMF has limitations due to the 
large spatial variation in RF-EMF levels in combination with subject movement pat-
terns. Misclassification can lead to significant problems in epidemiological studies that 
look at an association between RF-EMF exposure and possible health effects, as poten-
tial health effects might not be detected due to lack of power and attenuated effect 
sizes (26). However, there are currently no alternatives for geospatial models to predict 
exposure for large scale epidemiological studies. Some improvements might be made 
by modelling additional locations where participants spend a lot of time like work or 
school, but future studies are necessary to assess the potential added value of this ap-
proach. It should be noted that detailed location information of the participants within 
buildings such as schools and offices are needed to reliable model RF-EMF exposure 
due to the large spatial variation in RF-EMF levels. This information is often not readily 
available, making it difficult to include these locations in estimating total exposure. 
When we stratified our analyses by the subjects that did not work during the measure-
ment day (n=57) and subjects that did work during the measurement day we observed 
a slightly higher Spearman correlation for subjects who didn’t work (not worked: rsp = 
0.39, worked: rsp = 0.32). Note that the low to moderate association between modelled 
exposure to RF-EMF from mobile phone base stations and measured personal exposure 
is similar to the accuracy found for other environmental pollutants, most notably air 
pollution (27, 28). Despite the presence of misclassification, a large number of air pollu-
tion studies have found health effects, although the type of exposure and health effects 
expected for air pollution are very different than for RF-EMF. When epidemiological 
studies have a sufficient sample size it should be possible to pick up potential health 
effects of RF-EMF exposure using NISMap.

4.3 Conclusion
This study evaluated the use of NISMap to predict personal exposure to RF-EMF from 
mobile phone base stations. The results indicate that a meaningful ranking of personal 
RF-EMF can be achieved, even though the correlation between model predictions and 
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24 h personal RF-EMF measurements is lower than with at home measurements. Our 
results indicate significant misclassification of participants, although in part our low 
Spearman correlations and sensitivity parameters can be explained by the inherent 
measurement error in the personal RF-EMF measurements. Exposure misclassification, 
assuming a classical error structure, leads to loss of power and can lead to attenuation 
of effect sizes (29). The main implication of our findings is therefore that epidemiological 
studies of health risks from far field RF-EMF will need a large number of participants in 
order to have sufficient power for detecting potential health effects. Ideally, we would 
use more accurate methods of exposure assessment, but such methods (personal mea-
surements, modelling multiple locations where the participants spend a lot of time, or 
including behavioral characteristics and other RF-EMF sources in the exposure model) 
are often expensive or require information that is not readily available.
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Appendix

Table A.1 Accuracy of model predictions for GSM, DCS, UMTS and total downlink RF-EMF of all mo-
bile phone base stations (unit: mW/m2) for 24 h overall, time spent at home, and in the bedroom.

24 h overall At home In bedroom

GSM DCS UMTS
Total
down-
link

GSM DCS UMTS
Total
down-
link

GSM DCS UMTS
Total
down-
link

Mean modelled 0.017 0.015 0.007 0.039 0.017 0.015 0.007 0.039 0.017 0.015 0.007 0.039

Mean measured 0.007 0.014 0.002 0.023 0.006 0.010 0.001 0.017 0.006 0.011 0.001 0.018

Ratio modelled/
measured

2.405 1.068 4.227 1.712 2.981 1.536 6.346 2.356 2.969 1.408 5.548 2.122

Median measured 0.003 0.004 0.001 0.011 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000

mean difference 
(modelled-
measured)

0.010 0.001 0.005 0.016 0.011 0.005 0.006 0.023 0.011 0.004 0.006 0.022

Mean relative 
difference

0.825 0.065 1.235 0.525 0.995 0.423 1.455 0.808 0.992 0.339 1.389 0.755

Precision (SD 
difference)

0.075 0.053 0.018 0.102 0.074 0.054 0.018 0.102 0.073 0.058 0.017 0.099

Coefficient of 
variation

10.558 3.770 10.804 4.470 13.038 5.452 15.990 6.129 12.805 5.365 12.943 5.572

Spearman R 0.323 0.269 0.173 0.361 0.426 0.522 0.428 0.511 0.413 0.327 0.362 0.410
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Abstract

Introduction: Geospatial models have been demonstrated to reliably and efficiently 
estimate RF-EMF exposure from mobile phone base stations (downlink) at stationary 
locations with the implicit assumption that this reflects personal exposure. In this study, 
we evaluated whether RF-EMF model predictions at the home address are a good 
proxy of personal 48h exposure. We furthermore studied potential modification of this 
association by degree of urbanisation.

Method: We first used an initial NISMap estimation (at an assumed height of 4.5 m) 
for 9,563 randomly selected addresses in order to oversample addresses with higher 
exposure levels and achieve exposure contrast. We included 47 individuals across the 
range of potential RF-EMF exposure and used NISMap to re-assess downlink exposure 
at the home address (at bedroom height). We computed several indicators to deter-
mine the accuracy of the NISMap model predictions. We compared residential RF-EMF 
model predictions with personal 48h, at home, and night-time (0:00-8:00 AM) ExpoM3 
measurements, and with EME-SPY 140 spot measurements in the bedroom. We ob-
tained information about urbanisation degree and compared the accuracy of model 
predictions in high and low urbanized areas.

Results:
We found a moderate Spearman correlation between model predictions and personal 
48h (rSp=0.47), at home (rSp=0.49), at night (rSp=0.51) and spot measurements (rSp=0.54). 
We found no clear differences between high and low urbanized areas (48h: high 
rSp=0.38, low rSp=0.55, bedroom spot measurements: high rSp=0.55, low rSp=0.50).

Discussion:
We achieved a meaningful ranking of personal downlink exposure irrespective of de-
gree of urbanisation, indicating that these models can provide a good proxy of personal 
exposure in areas with varying build-up.
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1. Introduction

There has been a widespread increase in exposure to radiofrequency electromagnetic 
fields (RF-EMF) in recent decades due to the rise of mobile phone use and develop-
ments in communication technology (1, 2). Potential risks from modern technology 
can lead to concern within the general public, especially when exposure is perceived 
as unavoidable and uncontrollable (3), such as the potential health risk of exposure 
to RF-EMF from mobile phone base stations (4). As a result, several studies addressed 
the possible association between RF-EMF exposure and development of various health 
problems (e.g. (5, 6)) If such health effects exist, they are likely to be small, and therefore 
accurate and efficient RF-EMF exposure assessment for large populations is essential for 
epidemiological studies (7).

RF-EMF exposure from mobile phone base stations is difficult to assess because of 
the large 3D spatial variation in exposure patterns and subject movement patterns. 
Personal measurements are at present not feasible for large epidemiological studies 
due to time and cost constraints, and therefore models are needed to accurately and 
efficiently estimate exposure. The geospatial model NISMap (8, 9) was developed to 
efficiently estimate exposure from fixed site transmitters. Validation studies (8–11) 
found a reasonably good agreement (Spearman correlations around rsp = 0.7) between 
measured and modelled values for both outdoor and indoor static locations. Epidemio-
logical studies (e.g. (12)) have used these fixed site estimates as exposure assessment 
with the implicit assumption that they reflect personal exposure levels. However, the 
agreement between measurements and model predictions at static locations does 
not account for subject movement patterns, and therefore agreement with personal 
measurements may be lower.

Studies that compared geospatial model predictions with personal measurements 
are scarce. A study (13) by Frei et al. (2010) found a poor correlation between model 
predictions and personal 7 days measurements (rsp = 0.28) based on a comparison 
of model predictions by NISMap of RF-EMF levels from fixed site transmitters (FM, TV, 
Tetrapol, mobile phone base station downlink (hereafter referred to as downlink)) with 
personal measurements from all far field RF-EMF exposure sources (including FM, TV, 
Tetrapol, mobile phone downlink, but also mobile phone uplink (hereafter referred to 
as uplink), DECT, and W-LAN). Martens et al. (2015) (14) compared downlink predic-
tions by NISMap with downlink personal measurements for a 24-h period and found a 
slightly higher but still modest Spearman correlation (rsp = 0.36). These previous results 
would indicate that there is considerable misclassification in personal RF-EMF exposure 
levels when approximated by fixed site estimates. However, these previous studies may 
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have suffered from several methodological limitations. First, the measurement devices 
used in these studies (EME-SPY 120:(15), EME-SPY 121: (14)) were not sensitive enough 
to detect low field strengths (below 6.63E-03 mW/m²), they underestimate actual RF-
EMF levels and may suffer from crosstalk between different frequency bands (16, 17). 
Recently, improved measurement devices such as EME-SPY 140 and the ExpoM3 have 
become available. Secondly, the use of more accurate height and antenna input data 
can improve the accuracy of NISMap model predictions (18).

In this study, we compare NISMap model predictions with personal 48h, at home, 
at night, and static measurements in the bedroom, using more accurate height and 
antenna input data and contemporary measurement instruments. We will address two 
factors that could impact exposure assessment in epidemiological studies: (i) variability 
in areas with different degrees of urbanisation, as different spatial characteristics (build-
up topology) in urban versus rural areas may influence the accuracy of the model 
predictions; and (ii) the relative contribution of downlink RF-EMF exposure to total 
far field RF-EMF exposure, and whether this contribution is different for high and low 
exposed subjects.

2. Method

2.1 Population and sampling strategy
The sampling strategy and flow of participants are displayed in Fig. 1. To recruit partici-
pants distributed across a broad exposure range, we used NISMap to estimate RF-EMF 
downlink levels for 9,563 randomly selected addresses in five towns near Utrecht, the 
Netherlands (Bunnik, Odijk, Zeist, de Bilt and Bilthoven). Potential subjects (one per 
household) were approached through postal mail addressed to their household. These 
households were selected based on geographical spread, variation in urbanisation 
degree (information about the urbanisation level at postal code level was obtained 
from the Dutch CBS (Statistics Netherlands)), and a broad variation in exposure range. 
Based on initial exposure estimation (see model description and model input) we 
invited potential subjects equally distributed over three categories: < 0.0265 mW/m², 
0.0265 - 0.106 mW/m² and > 0.106 mW/m². The thresholds 0.0265 mW/m² (0.1 V/m) and 
0.106 mW/m² (0.2 Vm) corresponded with respectively the top 10% and the top 1% of 
the distribution of modelled (initial) RF-EMF downlink values. Assumed low exposed 
subjects (<0.0265 mW/m²) were sampled from the same neighbourhoods as higher 
exposed subjects to ensure maximum comparability (e.g. similar type of residences). 
No more than two households from each street, and no addresses directly next to 
each other, could participate, so that sufficient geographical spread was achieved, and 
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to avoid correlated errors. Invitation letters were sent in batches of approximately 50 
letters each until the desired number of participants was reached. From the 276 invita-
tion letters that were sent, 40 individuals participated, as well as eight spontaneous 
applicants who were friends or (distant) neighbours from the selected households. 
All participants signed a written informed consent. Participants were given a 20-euro 
voucher as an incentive. After completing the first set of measurements, we asked if the 
participant was willing to take part in a repeated measurement, which 16 participants 
agreed to. The purpose of these repeated measurements was to assess whether one 
48h measurement period is an adequate period to assess long-term personal exposure. 
All measurements took place between November 2013 and May 2014.

6 letters retour because invalid 
address/no inhabitants

~ 30 000 total addresses in area

Downlink RF-EMF exposure 
modelled for 9,563 random 

addresses in the area

Invitations to 276 addresses based 
on geographical spread, broad 

variation in exposure and variation 
in degree of urbanisation

40 agreed to participate 

48 total participants 

Repeat in 16 participants

8 spontaneous applicants

exposure estimation including 
more detailed and updated input 
information 

Initial exposure estimation in order 
to select potential participants

Figure 1. Participant sampling strategy and flow of participants



RF-EMF Exposure assessment; model versus measurements 2

45

2.2 Model description and model input
We modelled RF-EMF exposure to different downlink frequencies (UMTS, GSM900, 
GSM1800) from mobile phone base stations in the bedroom of the study participants 
using a three-dimensional radio wave propagation model (NISMap). We first modelled 
exposure for 9,563 random selected households out of an approximate 30,000 house-
holds in the study area. This allowed the selection of participants over a broad exposure 
range. For this initial estimation we had no information on the bedroom height, which 
in previous uncertainty analyses has been shown to be influential (18), and had avail-
able only an older list of the presence of communication transmitters. Therefore, we 
remodelled exposure for all participants with more detailed and updated input data. 
The required input data and technical details of the model have been described in 
several previous studies (e.g. (8, 9, 19). Briefly, detailed information on communication 
transmitters (for initial estimation transmitter data from 2011 and for the final estimation 
transmitter data from 2013), such as the coordinates, beam direction, and height of the 
transmitter was obtained from the Dutch Radiocommunications Agency (Agentschap 
Telecom). The estimated output power of the antennas is based on long-term averages. 
Coordinates of home addresses were obtained from the Dutch Cadastre in 2012 (BAG, 
Basisregistraties Adressen en Gebouwen). A 3D representation of all buildings in the 
Netherlands was constructed by combining data on the building locations and outline 
from the national BAG building data set with height information from the Netherlands 
elevation model (Actueel Hoogtebestand Nederland 2, AHN2).

Decrease of RF-EMF levels with distance were calculated using the Double Power Law 
(20) as previously done by Bürgi et al. (2010) (9) and Beekhuizen et al. (2013, 2014)(10, 
11). Building damping values were set equal to Martens et al. (2015) (14) to correct for 
the attenuation of radio waves by buildings. Damping of roofs was set to 4.5 dB, damp-
ing of walls to 3 dB and the inside damping to 0.6 dB/m for all buildings. The bedroom 
height was used as input for the model, as people generally spend the majority of 
their time in their bedroom while they are at home. For the initial model estimation 
to select participants, the bedroom height input was set at 4.5 metres, unless the total 
building height was lower than 5.0 metres. In that case we used the total building 
height minus 0.5 metres. To obtain the bedroom height for the final model estimation, 
we asked subjects the total number of floors in the building and the floor number of 
their bedroom (where ground level counts as zero). We used the following formula to 
calculate approximate bedroom height (11):

bedroom height =
building height in meters

* floornumber bedroom + 1.5 metres
total number of floors
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2.3 Bedroom measurements
Bedroom spot measurements were performed by the researchers at the home addresses 
of all study participants using a Satimo EME-SPY 140 exposimeter (the detection limit for 
the downlink frequencies was 6.63 * 10−5 mW/m² (0.005 V/m) sampling every 4 seconds 
(http://www.eudisa.com/fileadmin/PDFs/industrieloesungen/EMESPY140_EN.pdf ). 
The Satimo EME-SPY 140 measures the RF-electric fields in 14 separate frequency bands 
ranging from FM (88 – 108 MHz) to WiFi 5G (5150 – 5850 MHz). This measurement 
device was chosen for the spot measurements in order to compare the results with our 
previous studies (11) as well as for the possibility to immediately read out the data to 
check if the measurements were successful. The measurement device was placed on a 
wooden tripod. We measured for two minutes at seven spots in the room starting in the 
centre of the room at height 1.10, 1.50 and 1.70 metres, and in all corners of the room at 
height 1.50 metres with a distance to the centre of approximately 1 metre (conducted 
in the same manner as e.g. (9)).

2.4 Personal measurements
To determine personal exposure over a period of 48 consecutive hours, the participants 
carried a small hip bag containing a radiofrequency meter (ExpoM3, sampling frequency 
set to every 30 seconds) for a period of 48 hours. The ExpoM3 measures the RF-electric 
fields in 16 separate frequency bands (ranging from FM Radio (88 – 108 MHz) to WiFi 
5G (5150 – 5875 MHz). We did not include the LTE uplink and downlink frequencies for 
calculating total far field RF-EMF exposure (see table 1 for a list of frequencies), as LTE 
was not yet introduced in our study area at the time of the measurements. The ExpoM 

Table 1. Frequency bands from the ExpoM 3 used to calculate total far field RF-EMF exposure

Band name Frequency range

FM Radio 87.5 – 108 MHz

DVB-T 470 – 790 MHz

GSM900 uplink 880 – 915 MHz

GSM900 downlink 925 – 960 MHz

GSM1800 uplink 1710 – 1785 MHz

GSM1800 downlink 1805 – 1880 MHz

DECT 1880 – 1900 MHz

UMTS uplink 1920 – 1980 MHz

UMTS downlink 2110 – 2170 MHz

ISM 2.4 GHz 2400 – 2485 MHz

WiMax 3.5 GHz 3400 – 3600 MHz

ISM 5.8 GHz / U-NII 1-2e 5150 – 5875 MHz
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measurement device was chosen for personal measurements for its small size and low 
weight, as well as long battery life since we aimed for a 48h measurement period. The 
lower detection limits of the ExpoM3 radiofrequency meter for the downlink frequen-
cies were: UMTS downlink: 2.39 * 10−5 mW/m² or (0.003 V/m), GSM900 downlink: 6.63 
* 10−5 mW/m² or (0.005 V/m) and GSM1800 downlink: 6.63 * 10−5 mW/m² (or 0.005 
V/m). Participants were asked to continue their daily activities as usual. During sleep, 
participants were asked to place the cotton bag containing the device on a bedside 
table at a minimum distance of 30 centimetres from the wall. We asked participants to 
keep a diary in which they specified at what times they left and entered their home. The 
diary was also used to register any time the participant did not carry the bag with the 
measurement device (for example swimming, sports or forgetting to wear the bag) as 
well as to register any incidents such as dropping the bag by accident.

2.5 Urbanisation
To get a measure of the degree of urbanisation, we used the address density for each 
postal code, based on publicly available data from the Central Bureau of Statistics 
(2010) (five categories: < 500, 501-1000, 1001-1500, 1501-2500 and - >2500 addresses 
per km²). We dichotomized this variable because of few observations in some of the 
categories to two categories: low urbanisation, 0-1500 addresses per km²; and high 
urbanisation, >1500 addresses per km².

2.6 Data analysis
In a few instances, short time slots of the 48h measurement periods were removed from 
the data because the participant reported in the diary not having carried the measure-
ment device for reasons other than night-time (for example because the participant 
went running outside and it was inconvenient to carry the measurement device). In 
total, this amounted to 17.5h summed over six participants, which was less than 1% of 
the total (2076h) sampled hours.

Measurements below the detection limit were set at the detection limit (for the EME-
SPY spot measurements in the bedroom: 0% of the GSM900 DL, 30% of the GSM1800, 
and 15% of the UMTS DL. For the ExpoM3, 48h personal measurements: 2% of the 
GSM900 DL, 12% of the GSM1800, and 20% of the UMTS).

We computed the total downlink exposure for each subject by summing the mean 
RF-EMF levels of the GSM 900 downlink, GSM 1800 downlink and UMTS downlink fre-
quencies (in mW/m²) for the following periods: the overall 48h period, the time spent at 
home as reported in the diary, and assumed night-time between 0:00 and 08:00 AM. Of 
21 participants the actual night-time (mean duration: 16.4h, start time: 23:32, and end 
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time: 07:41) was known and we used this data in a sensitivity analysis. Furthermore, we 
assessed the agreement between the initial and final model estimation to evaluate the 
method of participant selection. In addition, we evaluated the repeated 48h sampling 
scheme for personal measurements by comparing initial and repeated 48h measure-
ments using the intraclass correlation and Spearman (rSp)coefficients.

We computed several indicators to determine the accuracy of the NISMap model pre-
dictions: mean modelled and measured values, ratio (mean modelled value divided by 
the mean measured value), mean difference between modelled and measured values 
(modelled - measured), mean relative difference (mean difference divided by the aver-
age of measured and modelled values), precision (standard deviation of differences 
between modelled and measured values), coefficient of variation (ratio of the standard 
deviation to the mean) and Spearman rank correlation between modelled and mea-
sured values. We compared differences in the association between model predictions 
and measurements between areas with high and low urbanisation.

We compared the contribution of each frequency to the total far field RF-EMF 48h ex-
posure for all participants and for participants with downlink exposure on or below the 
median, above the median. Analyses were carried out using the statistical programme 
R (3.1.0) and SAS 9.2.

3. Results

3.1 Descriptives
One participant had to be excluded from the analyses due to failure of the ExpoM3. 
Failure of the ExpoM3 also occurred in two other instances, but in those cases at least 
one set of measurements (first or repeated measurement set) was successful. Therefore, 
we analysed data for 47 unique participants and 14 repeated measurements resulting 
in total 61 observations.

Our study population consisted of 26 male subjects and 21 female subjects between 
the ages of 21 and 80. Less than half of the participants lived in urban areas (N = 21; 45%) 
while the other participants lived in more rural areas (n = 26; 55%). The mean measured 
duration with the ExpoM3 for all participants was 43.8 hours, including night-time and 
time spent outside the home and excluding day-time periods not carrying the device. 
On average, participants were at home for 34.2 hours (78%). In a sensitivity analysis 
(n=21) we compared the measurement values for actual reported bedtime and the as-
sumed night-time, and these were similar (reported bedtime: mean 0.151 mW/m² (SD 
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0.402), assumed night-time: mean 0.151 mW/m² (SD 0.404). We therefore conducted all 
analyses using the assumed bedtime allowing the use of the full set of 47 participants.

3.2 Description of initial model estimation
The mean initial exposure for 9,563 random addresses in the area estimated by NISMap 
was 0.010 mW/m² (SD 0.024) for all addresses, 0.078 mW/m² (SD 0.062) for the 40 par-
ticipants in the study that were selected based on the initial estimation. The mean final 
NISMap model estimation for these 40 participants was 0.159 mW/m² (SD 0.238), and 
the correlation between the initial and the final estimation was rSp=0.40. Including the 
spontaneous applicants resulted in an average exposure of 0.140 mW/m² (SD 0.225).

3.3 Inter- and intra-individual variability in RF-EMF measurements
We assessed the variability for the first and repeat 48h measurements available for 14 
participants. There was more inter-individual (between persons) variation than intra-
individual (between the first and repeat sets of measurements) variation, as reflected 
in a high intraclass correlation (0.81) and Spearman correlation (rSp=0.76). Subsequent 
analyses are therefore based on the first successful 48h measurement period of all 
participants.

3.4 Accuracy of the model predictions
Table 2 shows the distribution of modelled and measured 48h downlink RF-EMF values 
for all 47 participants. Table 3 shows the accuracy of the model predictions for the first 
measurement of all 47 participants. The mean modelled value for the 48h overall period 
was 0.140 mW/m², the mean measured value was 0.091 mW/m². The mean measured 
value from the spot measurements in the bedroom was 0.292 mW/m². We found a 
Spearman correlation of rSp= 0.47 between modelled and measured values for the 48h 
overall period, and rSp=0.54 between model predictions and spot measurements in the 
bedroom. In figure 2 we show two Bland-Altman plots (21) for the absolute (Figure 2A) 
and the relative differences (Figure 2B) between the NISMap model predictions and the 
48h personal measurements. We more often observe overestimation than underestima-

Table 2. Distribution of modelled and measured values of RF-EMF far field downlink (mW/m²) for 
all 47 participants

Min 25% quantile median 75% quantile max

modelled 0.000 0.025 0.066 0.141 1.210

Measured 48h 0.002 0.010 0.027 0.051 1.526

Measured at home 0.001 0.005 0.012 0.050 1.547

Measured at night 0.000 0.004 0.011 0.057 1.829
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tion of RF-EMF, and the degree of overestimation increases for higher absolute values, 
but not for relative values. There are no consistent differences in relative prediction ac-
curacy (Figure 2, Table 4 (rSp)) for addresses in high versus low urbanized areas. However, 
measured values are higher in low urbanized areas, while modelled values are similar in 
high and low urbanized areas, resulting in different modelled/measured ratios.

3.5 Downlink contribution to total far field RF-EMF
On average, downlink exposure contributed for 64% to total far field RF-EMF exposure 
for the 48h period. When the contribution is assessed separately for subjects with a 
downlink exposure below and above median, we find that downlink contributed re-
spectively 18% and 76% to the total far field RF-EMF exposure.

4. Discussion

4.1 Interpretation of findings
In this study, we expanded on previous studies to assess the validity of using NISMap 
model predictions at the home address as a proxy for personal downlink RF-EMF expo-
sure from mobile phone base stations in epidemiological studies. Compared to previ-
ous studies (9, 14), we included more high exposed subjects and used improved model 
input data, as well as contemporary measurement devices. Our results showed that 
participants can be meaningfully ranked by modelled exposure at the home address 
irrespective of the degree of urbanisation, and that RF-EMF from mobile phone base 
stations can be a major source of total RF-EMF exposure for a portion of the population 
with high downlink exposure.

A similar measurement study with data from 2009/2010 reported a Spearman correla-
tion of rSp=0.36 between model predictions and 24h personal measurements (14). The 
current study indicated better agreement (rSp= 0.47) between model predictions and 
personal measurements, possible owing to improved measurement devices (EME-SPY 
140 vs. EME-SPY 120) and better model input data, mainly improved height estimation, 
and improved transmitter data. Beekhuizen et al., (2014) (11) collected spot measure-
ments in the bedroom for 30 households and found a Spearman correlation of rSp= 
0.60 with model predictions using NISMap. In our study, we found a similar value (rSp= 
0.54). Since the spot measurements in the bedroom corresponded most closely with 
the modelled location by NISMap, we expected better agreement between these spot 
measurements and the model predictions than with personal 48h measurements. 
The difference in correlation between ‘spot measurements–model prediction’ and 
‘personal 48h measurement–model prediction’ can be interpreted as the loss in predic-
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tion accuracy due to personal movement patterns. In our study, the loss in accuracy 
(0.54-0.47) seems minimal. The extent of the loss in prediction accuracy is influenced 
by the amount of time participants spend at home/in the bedroom, and by activities/
locations. Our study population spent somewhat more time at home (78%) than in 
other environmental studies (65-70%, e.g. (14, 22)), which may have resulted in a slightly 
optimistic estimate of the loss in prediction accuracy.

We were especially interested in knowing if the prediction accuracy differed by urbani-
sation degree. If this would be the case, this could bias exposure estimations and as a 

Table 3. Comparison of downlink RF-EMF (mW/m²) model predictions with personal 48h, time 
spent at home, and at night measurements, and with spot measurements in the bedroom

Personal 48h
(ExpoM3)

At home
(ExpoM3)

At night
0:00-08:00
(ExpoM3)

Spot measurements
bedroom

(EME-SPY 140)

mean measured 0.091 0.083 0.090 0.292

mean modelled 0.140 0.140 0.140 0.140

Ratio modelled/measured 1.532 1.691 1.557 0.478

mean difference (modelled-measured) 0.048 0.057 0.050 -0.152

mean relative difference 0.30 0.60 0.61 0.41

Precision 0.17 0.17 0.20 0.82

Coefficient of variation 2.60 2.90 3.01 3.66

rSp correlation between measured and 
modelled

0.47 0.49 0.51 0.54

Table 4. Mean RF-EMF downlink exposure (mW/m²) and Spearman correlations with modelled ex-
posure by urbanisation*

High urbanity (n=21) Low urbanity (n=26)

Mean rSp Ratio modelled/
measured

Mean rSp Ratio modelled/
measured

Modelled 0.152 0.130

Measured

	 48h period 0.068 0.38 2.22 0.110 0.55 1.18

	 At home 0.069 0.52 2.21 0.094 0.46 1.38

	 At night 0.060 0.46 2.52 0.113 0.59 1.14

	 Spot measurements in bedroom 0.168 0.55 0.91 0.393 0.50 0.33

*high urbanisation: >1500 addresses per km², low urbanisation: <=1500 addresses per km²
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consequence, might bias epidemiological exposure-response analyses especially if the 
health effect of interest is also associated with level of urbanisation. Earlier validation 
studies by Beekhuizen et al. focused on highly urbanized areas, with more complicated 
spatial characteristics and potentially less accurate model estimation than in low ur-
banized areas. Our results did not indicate clear differences in correlation (Figure 2, 
Table 4). However, the modelled/measured ratios were lower in less urbanized areas, 
and urbanisation degree should remain a point of attention in exposure assessment.

Previous studies reported that the contribution of RF-EMF exposure from mobile phone 
base stations to total far field RF-EMF exposure differs across countries and activities but 
is generally low (23, 24). Neubauer et al., (2007) (7) did not recommend epidemiological 
studies on RF-EMF exposure to mobile phone base stations alone, due to uncertainty 
in exposure assessment and low contribution to overall RF-EMF exposure in general. 
Our results show that this contribution differs depending on the level of exposure to 
RF-EMF from mobile phone base stations. For participants in our study with exposure 
from mobile phone base stations above the median, the contribution to total far field 
RF-EMF exposure was 76%, compared to 18% for participants with lower exposure.

4.2 Strengths and limitations
Strengths of this study were the accurate input data for the NISMap model predic-
tions and the contemporary measurement devices used to measure RF-EMF fields. In 
contrast to previous studies (11, 14, 13), we did not focus on spot measurements or on 
personal measurements, but did both type of measurements, enabling us to evaluate 
the impact of personal movement patterns on prediction accuracy. Previous RF-EMF 
personal measurement studies differed in the length of the measurement period ((15):1 
week, (14): 24 hours). Large temporal variation in personal exposure patterns could 
mean that longer measurement periods or repeated measurements would be neces-
sary to get an indication of the typical long-term exposure of an individual. We found a 
high intraclass correlation (0.81) between repeated measurements, indicating that one 
measurement period of 48 hours is adequate to assess long-term personal exposure.

A limitation of this study arose from using different measurement devices for spot 
measurements in the bedroom (EME-SPY 140) and personal measurements (ExpoM3), 
which may have influenced the comparison between spot measurements and per-
sonal measurements. The ratio of modelled to measured values were different for the 
measurements with the ExpoM3 and the EME-SPY 140 device. However, limited side-
by-side testing of the two devices (results not presented) showed no consistent differ-
ences between values of the two measurement devices and all measurement devices 
were calibrated both before and after the measurement period. Like model predictions, 
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measurements have their own limitations, and are not a perfect ‘golden standard’ (16, 
17). Another limitation of this study was the lack of information regarding mobile and 
DECT phone use. Gaining information about phone use would require more detailed 
activity diaries, which can be bothersome for participants and lead to selective dropout. 
Phone use is a source of near field RF-EMF exposure (the uplink and DECT frequencies), 
for which there can be large differences in measurement values depending on small 
differences in distance. Measurement devices such as the ExpoM3 can therefore not 
give a reliable indication of full-body near field exposure, and the measurement values 
in the uplink bands of our measurement values (data not presented here) are a mix 
of both near field exposure (own phone use) and far field exposure (phone use by 
other people in the area). Therefore, and given our study aim, we focused on downlink 
frequencies.

We oversampled high exposed subjects to obtain subjects across a broad range of 
exposure, using an initial model estimation with incomplete input data (less accurate 
height input and transmitter data). A disadvantage of this selection method is that the 
results of this study are not representative for the general population. We selected all 
participants from the same neighbourhoods as participants living at addresses with 
a high exposure estimate based on the initial estimation. As a consequence, we have 
selected neighbourhoods with high exposure contrasts, which may reflect spatial char-
acteristics of these neighbourhoods such as large variation in building heights. Since 
estimation of exposure with a 3D geospatial model may be more difficult in such areas 
than in areas with less spatial variation, we may have slightly underestimated the ability 
of NISMap to classify subjects as high or low exposed.

4.3 Conclusion
Findings of previous measurement studies suggested that the agreement between 
model estimations of downlink RF-EMF from mobile phone base stations at the home 
address and personal measurements was substantially lower than the agreement with 
measurements at a static location. In our study, we found that the loss in prediction ac-
curacy resulting from movement patterns and specifically, the time spent at locations 
other than the home address, is limited. Although misclassification is present, it is pos-
sible to meaningfully rank participants on modelled downlink exposure and to identify 
relatively high exposed individuals, both for low and high degree of urbanisation. The 
contribution of exposure from mobile phone base stations to total far field RF-EMF 
exposure can be substantial for subjects with a high exposure. Large epidemiological 
studies regarding health effects of RF-EMF from mobile phone base stations are now 
feasible, as limited individual input data is required owing to the availability of an ad-
equate prediction model.
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ABSTRACT

Objective: To investigate the latent structure of somatic symptom reports in the general 
population with a bi-factor model and apply the structure to the analysis of change in 
reported symptoms after the emergence of an uncertain environmental health risk.

Methods: Somatic symptoms were assessed in two general population environmental 
health cohorts (AMIGO, n = 14,829 & POWER, n = 951) using the somatization scale of 
the four-dimensional symptom questionnaire (4DSQ-S). Exploratory bi-factor analysis 
was used to determine the factor structure in the AMIGO cohort. Multi-group and 
longitudinal models were applied to assess measurement invariance. For a subsample 
of residents living close to a newly introduced power line (n = 224), we compared a 
uni- and multidimensional method for the analysis of change in reported symptoms 
after the power line was put into operation.

Results: We found a good fit (RMSEA = 0.03, CFI = 0.98) for a bi-factor model with one 
general and three symptom specific factors (musculoskeletal, gastrointestinal, cardio-
pulmonary). The latent structure was found to be invariant between cohorts and over 
time. A significant increase (p < .05) was found only for musculoskeletal and gastroin-
testinal symptoms after the power line was put into operation.

Conclusions: In our study, we found that a bi-factor structure of somatic symptoms re-
ports was equivalent between cohorts and over time. Our findings suggest that taking 
this structure into account can lead to a more informative interpretation of a change in 
symptom reports compared to a unidimensional approach.
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1. INTRODUCTION

The experience of non-specific somatic symptoms such as headaches or back pain 
has negative effects on daily functioning in a considerable proportion of the general 
population, and is a major cause of health care utilization (1–3). These experiences are 
typically assessed with self-report questionnaires (4) and are frequently used in varying 
research disciplines such as psychosomatic medicine [e.g. 5] or environmental health 
[e.g. 6,7]. In most studies the total symptom score is analyzed and/or the individual 
symptoms separately. Neither approach reflects the multifactorial origin of reporting 
somatic symptoms (8, 9).

Self-report symptom questionnaires such as the PHQ-15 (10) or the SCL-90 SOM (11) 
were designed to measure the experience of distressing somatic symptoms. A high 
score (clinical cut-off scores are generally provided) is interpreted as an indication of so-
matization. Although these questionnaires were designed to measure one underlying 
construct (i.e. somatization), there is evidence for the latent structure to be multi- rather 
than unidimensional (12–15). This is due to the existence of specific symptom patterns, 
such as symptoms pertaining to musculoskeletal or gastrointestinal complaints. A wide 
range of influences can lead to higher scores on symptoms from a specific symptom 
group (e.g. infections, diseases, and psychosocial distress) while scores on other do-
mains are less affected. It is therefore plausible that additional variance in reported 
symptoms is explained by symptom specific factors. The bi-factor model separates the 
general variance of scores on all symptoms (i.e. general factor, representing a general 
tendency to report symptoms), from the unique variance of scores relating to specific 
symptom groups (i.e. specific factors). This model allows studying both components of 
somatic symptom reporting simultaneously.
So far, only a few studies (16–18) have applied a bi-factor model to data gathered with 
symptom questionnaires. These studies showed that specific factors explain unique 
variance over and above the common variance in symptom reporting explained by a 
general factor. In addition the bi-factor model has been shown to provide a better fit 
than alternative factor models. However, the evidence gathered so far is limited and 
mainly based on two cross-sectional clinical samples using two different symptom 
questionnaires. There may be differences in the underlying structure between popula-
tions and symptom questionnaires which could impact application to health effect 
studies.

In order to compare symptom scores on underlying constructs between different 
populations and over time, measurement invariance (MI) must be established (19). MI 
refers to the underlying factor structure being equivalent across samples and over time. 
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Changes in the underlying factor structure complicate the interpretation of differences 
in symptom scores. When the structure is not invariant a score difference could reflect 
a change in the score on the underlying latent construct, or reflect a change in the 
construct itself. If MI can be established, there may be useful practical applications of 
the bi-factor model to intervention studies using somatic symptom reports as an out-
come. One could assess the effect of an intervention or exposure on general symptom 
reporting (i.e. over and above reporting symptoms from specific symptom groups), as 
well as on symptom specific factors (i.e. over and above general symptom reporting). 
A potential benefit of a bi-factor model is the greater conceptual clarity provided by a 
separation between general and specific variance (20).

The aim of the present study is threefold. First, we aim to test the structural validity of a 
bi-factor model for the somatization scale of the 4DSQ [4DSQ-S, 21] in a large general 
population sample. Structural validity of this subscale has not been investigated before. 
Second, we assess MI of the resulting latent structure by comparing the structure be-
tween two different general population samples, as well as across time in one sample. 
Third and last, we apply a bi-factor structure to analyze change in symptom reports 
after the emergence of an uncertain environmental health risk. In previous work we 
found a greater increase in overall reported somatic symptoms after a new power line 
was put into operation for residents living close by, compared to a control group of 
residents living farther away (22). We extend those findings by evaluating the change in 
reported somatic symptoms in line with the underlying latent structure of the 4DSQ-S.

2. METHODS

2.1. Participants
Participants were members of the adult general population in the Netherlands enrolled 
in two different cohorts. The first cohort (AMIGO) was set up to study environmental 
and occupational determinants of diseases and symptoms [see 23 for a full description]. 
The AMIGO cohort at baseline consisted of 14,829 subjects of which 50.2% men. The 
mean age of the AMIGO participants was 51 years (SD = 9). The second cohort (POWER) 
was set up to study health responses to the introduction of a new high-voltage power 
line [see 24 for a full description]. At baseline the POWER cohort consisted of 951 sub-
jects of which 46% men. Mean age of the participants was 52 years (SD = 13). The 
longitudinal models to assess measurement invariance were based on a total of 1241 
subjects. This number is higher than the number of participants at baseline, because 
new subjects were enrolled at T2 (22). For the analysis of change we focused on the 
group of residents within 300 meter of the new high voltage power line (n=224), as we 
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established in previous work that only this group experienced more symptoms after 
the line was put into operation (22). The overall response rate to the baseline question-
naires was similar in both cohorts (AMIGO: 16%, POWER: 19%).

2.2. Procedures
In both cohorts, invitations were sent through postal mail. Both studies were presented 
to participants as longitudinal environmental health studies, which consisted of filling 
out questionnaires by one adult per household about health and the environment. To 
reduce the chance of response bias, there was no mentioning of power lines in the 
POWER cohort invitation letter.

The AMIGO cohort subjects (31-65 years old) were recruited using a national informa-
tion network of general practitioners established at the Netherlands Institute for Health 
Services Research (NIVEL), called NIVEL Primary Care Database. Participants were invited 
between April 2011 and July 2012. For the POWER cohort one member older than 18 of 
each household within 500 meters of the planned construction of a new power line (n 
= 2379) was invited to participate, as well as a random stratified sample of households 
within 500-2000 meters (n = 2382). Data was collected before the power line was put 
into operation, starting in June 2012 (T1), 5 months later (T2), and after the power 
line was put into operation, 12 months (T3) and 18 months (T4) after the baseline 
measurement (T1). The study protocols of both studies were approved by the Medical 
Ethics Committee of the research boards of the involved institutes, and all participants 
participated voluntarily with informed consent.

2.3. Measures

Somatic symptoms
In both cohorts the somatization scale of the 4DSQ (21) was used to assess self-reported 
somatic symptoms. The 4DSQ consists of 4 scales measuring distress, depression, 
anxiety and somatization, but only the somatization scale was administered in our 
study samples. The somatization scale (4DSQ-S) consists of 16 non-specific somatic 
symptoms (e.g. headaches, low back pain, and dizziness) commonly reported in gen-
eral practices (see Figure 1 for a list of all symptoms). For each symptom, participants 
indicated whether they were bothered by it during the previous week on a 5-point 
scale (ranging from no, through to constantly). The scores were trichotomized before 
analysis (no = 0; sometimes = 1, regularly/often/constantly = 2) (21).
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2.4. Statistical analyses
To answer the first research question regarding the underlying latent structure of 
the 4DSQ-S we conducted a categorical exploratory bi-factor analysis on the AMIGO 
baseline data with Bi-Geomin rotation (22) and WLSMV estimation. Two (1 general, 1 
specific factor) up to six (1 general, 5 specific factors) factor solutions were considered 
and one bi-factor specification was selected for a confirmatory analysis, based on the 
theoretical interpretation of the models as well as the statistical fit. We assigned items 
to a factor only if the factor loading for that item on that factor was greater than 0.30. 
The variances of the common factors were identified by fixing the loading of the first 
item to one. Root mean square error of approximation (RMSEA) and comparative fit 
index (CFI) were used to assess model fit. For RMSEA, models with values ≤ 0.06 had 
acceptable fit and for CFI values ≥ 0.95 had acceptable fit (26).

To answer the second research question regarding MI of the 4DSQ-S we fitted a 
multi-group model where we increasingly constrained more parameters to be equal 
across the baseline AMIGO and POWER cohort samples to assess invariance (19, 27). 
The following models were tested consecutively: configural invariance (factor load-
ings freely estimated and thresholds constrained), loading invariance (factor loadings 
and thresholds constrained), and residual invariance (factor loadings, thresholds and 
residual variance constrained). We compared the models using the criteria suggested 
by Chen et al. (28) to establish MI: a decrease in CFI of ≥ 0.01, and an increase in RMSEA 
of ≥ 0.015 were interpreted as an unacceptable decrease in model fit (i.e. indicating 
absence of MI).

To test whether the measurement model was invariant across time within the full 
POWER cohort we used similar procedures [see 29]. In addition to cross-sectional 
orthogonal constraints between the general and specific factors and constraints neces-
sary for identification, we added orthogonal constraints to the longitudinal relations 
between latent factors (30). Residuals of the same indicators over time were allowed 
to correlate. Comparison of the models and assessment of model fit was similar to the 
multi-group models.

To answer the third and final research question regarding the analysis of change in 
reported somatic symptoms, we applied linear mixed models with an unstructured re-
sidual covariance structure to the data gathered from participants in the POWER cohort 
living within 0-300 meters of the new power line (n = 224). Sum scores were calculated 
for the specific symptom factors identified in the bi-factor analysis of the 4DSQ-S, as 
well as the total sum score as indication of the general factor. Time was entered as 
categorical predictor (T2, T3, and T4) with T1 as reference category. We compared two 
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different ways to analyze change in reported somatic symptoms. First, the standard ap-
proach where we assessed the effects of time (i.e. change from baseline) on the specific 
and total sum scores. Second, a bi-factor approach, where we adjusted the effects of 
time on specific symptom scores for the total sum score (minus overlapping items). This 
analysis indicates to what extent a change in reports from specific symptom groups 
was confounded by a general symptom reporting pattern. For the mixed model with 
the total sum score as outcome, we adjusted the effect of time for scores on the specific 
symptom groups. This analysis indicates to what extent a change in overall symptom 
reporting was confounded by specific symptom patterns.

SPSS version 20 was used for the mixed models analyses; Mplus version 7.2 was used 
for all other analyses.

3. RESULTS

3.1. Latent structure of the 4DSQ-S
Information about all symptoms was missing for 330 (2%) subjects in the AMIGO co-
hort, and for 11 (1%) in the baseline POWER cohort. These subjects were not included 
in further analyses. The exploratory bi-factor analyses indicated that a model with one 
general and three specific factors provided a good fit (RMSEA = 0.027, CFI = 0.992) to 
the AMGIO baseline data, and was most readily interpretable. We named the specific 
factors musculoskeletal (muscle pain, neck pain, back pain), gastrointestinal (bloated 
feeling in abdomen, nausea, pain in stomach) and cardiopulmonary (palpitations, 
shortness of breath, tight feeling in chest, pain in chest). Fit indices of the confirmatory 
bi-factor model in the baseline AMIGO (RMSEA = 0.032, CFI = 0.984) and POWER cohort 
(RMSEA = 0.029, CFI = 0.985) indicated that the selected bi-factor model fitted well to 
the data from both cohorts. Figure 1 presents the confirmatory AMIGO baseline model 
with standardized factor loadings for the 4DSQ-S items on the general and symptom 
specific factors.

3.2. Measurement invariance of the bi-factor model
Table 1 shows the fit statistics for the measurement invariance models. For both the 
multi-group and longitudinal models, the fit indices indicated a good fit to the data 
(i.e. RMSEA ≤ 0.06 and CFI ≥ 0.95). If the RMSEA and CFI values do not deteriorate in the 
more constrained models (i.e. the loading and residual invariance models), this is in-
dicative of measurement invariance. As can be seen in Table 1, there was no decrease in 
fit for the more restricted models in the multi-group and longitudinal comparisons. The 
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differences are well below the suggested cut-off points for establishing MI (a decrease 
in CFI of ≥ 0.01, and an increase in RMSEA of ≥ 0.015 (25)).

3.3. Change in somatic symptom patterns
Table 2 displays the parameter estimates for the change from baseline for the general 
and symptom specific scores in participants living close to the newly introduced power 
line. The mean scores at baseline (T1) were 4.02 (SD = 3.81) for the total sum score of 
somatic complaints, 1.53 (SD = 1.55) for musculoskeletal, 0.63 (SD = 1.01) for gastro-
intestinal, and 0.42 (SD = 0.87) for cardiopulmonary complaints. After the new power 
line was put into operation we found an increase in overall symptom reports (on the 
total sum score) from baseline (previously reported in 22). When these estimates were 
adjusted for scores on the symptom specific factors, in line with a bi-factor model, we 
no longer found a significant change from baseline in the total score. This suggests that 
the change we found using a sum score of the total scale was mainly due to change 
in symptom specific factors. This was confirmed in the mixed models for the symptom 
specific factors. When we inspected the estimates of the specific symptom scores, a 
significant increase from baseline was seen for musculoskeletal symptoms at T2, T3 and 
T4, and for gastrointestinal symptoms at T3. When adjusting for a general symptom 
reporting pattern, only the change at T4 for musculoskeletal and T3 for gastrointestinal 
symptoms remained significant.

Table 1. Model fit indices for the measurement invariance models.

Model n Chi-square d.f. p-Value CFI RMSEA RMSEA 90%-CI

Multi-group baseline (AMIGO & POWER)

Configural invariancea 15439 1636.383 200 < 0.001 0.983 0.031 0.029 – 0.032

Loading invarianceb 15439 1421.149 222 < 0.001 0.986 0.026 0.025 – 0.028

Residual invariancec 15439 1253.197 238 < 0.001 0.988 0.024 0.022 – 0.025

Longitudinald (POWER)

Configural invariancea 1241 1920.475 1589 < 0.001 0.987 0.013 0.011 – 0.015

Loading invarianceb 1241 1971.465 1652 < 0.001 0.987 0.012 0.010 – 0.015

Residual invariancec 1241 1960.503 1697 < 0.001 0.989 0.011 0.009 – 0.013

a factor loadings freely estimated and thresholds constrained.
b factor loadings and thresholds constrained.
c factor loadings, thresholds and residual variance constrained.
d The item assessing ‘fainting’ was removed from the longitudinal models due to counts of 0 in the 
higher categories (sometimes = 1, regularly/often/constantly = 2) at some time-points.
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4. DISCUSSION

This study applied a multidimensional approach to the analysis of somatic symptom 
reports in a general population. We found that:
1.	 A bi-factor model with one general and three specific factors provided a good fit 

to symptom data from two large general population samples, providing further 
evidence for a multidimensional latent structure of somatic symptom reports in the 
general population.

2.	 The bi-factor structure was stable when measurement invariance was evaluated 
across two large general population samples, and over time in one sample.

3.	 Application of the bi-factor structure to a general population sample showed that 
the longitudinal course of symptom reports differed for the different symptom pat-
terns after emergence of an uncertain environmental health risk.

Table 2. Longitudinal development of general and specific somatic complaints in participants liv-
ing close (0-300m, n = 224) to a newly introduced power line.

Beta estimates (95% CI)

T2a T3a T4a

Somatic complaints

Total sum score (0-32) .33 (-.26, .92) .80 (.23, 1.38)** .85 (.21, 1.48)**

Adjusted for specific symptomsb -.04 (-.29, .22) -.09 (-.33, .15) -.07 (-.31, .18)

Musculoskeletal complaints

Specific sum score (0-6) .24 (.02, .46)* .30 (.03, .57)* .51 (.25, .76)**

Adjusted for general symptomsc .20 (-.02, .42) .19 (-.07, .44) .44 (.19, .68)**

Gastrointestinal complaints

Specific sum score (0-6) .10 (-.10, .30) .29 (.11, .47)** .11 (-.07, .28)

Adjusted for general symptomsc .08 (-.10, .25) .22 (.05, .38)* .01 (-.15, .17)

Cardiopulmonary complaints

Specific sum score (0-8) -.01 (-.16, .13) .07 (-.07, .21) .09 (-.10, .28)

Adjusted for general symptomsc -.05 (-.19, .09) .00 (-.14, .14) .02 (-.16, .19)

* p < .05
** p < .01
a T1 (10 months before power line was put into operation) is reference category. T2 = 5 months 
before the line was put into operation, T3 = 2 months after the line was put into operation, T4 = 7 
months after the line was put into operation.
b Estimates adjusted for the sum scores of the symptom specific factors (i.e. musculoskeletal, gas-
trointestinal and cardiopulmonary).
c Estimates adjusted for the total sum score minus overlapping items.
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Previous studies used unidimensional methods to analyze effects of interventions or 
environmental exposures on symptoms see (31) for an overview. The application of bi-
factor models to somatic symptom reports has so far been rare. In two cross-sectional 
samples a good fit was found for a bi-factor model applied to two different somatic 
symptom questionnaires; the MMPI-2-RF-RC1 (17) and the frequently used PHQ-15 (16). 
Both studies found a bi-factor structure with a general factor and a number of spe-
cific symptom factors (specific factors found in (16): pain, gastroenterological, cardio-
pulmonary, fatigue; and in (17): gastrointestinal, head pain, neurological). Although 
there are some differences, the overall factor structure in these studies is similar to our 
findings. Differences may be explained by differences in specific symptoms included in 
the used questionnaires (e.g. no fatigue symptoms in 4DSQ-S).

Our study found that symptom patterns can be affected differently by the emergence 
of an uncertain environmental health risk. Using a total sum score we previously re-
ported an effect of the introduction of a power line on somatic symptom reports (22). 
In the present study, we found that the introduction of a new power line was uniquely 
associated with reporting more musculoskeletal and gastrointestinal somatic com-
plaints when accounting for the general factor. This finding illustrates the relevance of 
acknowledging the underlying bi-factor structure when studying the mechanisms and 
determinants of a change in symptom reports. A total sum score of somatic complaints 
does not reflect just one source of variation which blurs the interpretation of a change if 
one does not take into account the other known sources (i.e. symptom specific factors). 
This could particularly be problematic when the changes over time in these sources of 
variation are in opposite directions. As a result one may develop inappropriate theories 
to explain the research findings, or implement ineffective intervention strategies (32).

More research into determinants of change in symptom scores on the general and 
symptom specific factors is needed. Both the general and specific factors may reflect 
influences of diseases, environmental factors and psychosomatic mechanisms. Findings 
of Witthoft and colleagues (16) suggest that the general as well as certain specific fac-
tors are associated with functional somatic syndromes (e.g. irritable bowel syndrome). 
They hypothesize that where symptom specific factors might reflect temporary 
(environmental) influences, the general factor could reflect a disposition relevant for 
perpetuation of symptom experiences. This might explain the absence of an effect of 
time on the general factor in the POWER cohort. Any (temporary) intervention or illness 
may be more likely to affect symptom specific factors, which, if combined with a higher 
score on the general factor, could be perpetuated and lead to chronic health problems.
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There are some limitations to the interpretation of our findings. First, we used a regres-
sion based method to study the longitudinal course for each symptom pattern. The as-
sumption in all regression based methods that a construct is measured without error is 
untenable. Hence, it may be better to investigate change on the different factors within 
a structural equation model (e.g. latent growth curve model). However, this method 
requires a large sample size due to the computational complexity of the model. Our 
experimental group (the subgroup of the POWER cohort living within 300 meters 
from the new power line (n=224)) was too small to estimate such a model. The cur-
rent method has the advantage of reduced complexity, but cannot perfectly separate 
general and specific variance within each item. This is disadvantageous when assessing 
effects on the general factor over and above effects on specific symptom patterns. The 
overlap in items leads to overcorrection when including all specific symptom patterns 
as a covariate, and therefore to less power to demonstrate the unique effect on the 
general factor.

Second, we used a single symptom questionnaire to address our research questions (i.e. 
4DSQ-S). Although this questionnaire represents the major symptom specific groups 
identified in a review of somatic symptom questionnaires (Zijlema et al., 2013), one 
might find a different latent structure when other symptoms are probed. To improve 
the analysis of symptoms in health effect studies, it is important to use a symptom 
questionnaire which covers all potentially relevant symptom groups (see (33)).

Third and last, we did not investigate whether alternative models such as a hierarchical 
or correlated factor model would lead to different conclusions regarding change over 
time. Hierarchical or correlated group factor models are the most likely candidates as 
these are also multidimensional (34). A disadvantage of the correlated factor model is 
that it does not explicitly represent a general tendency to report symptoms (general 
factor). The hierarchical model specifies that there is no direct relationship between the 
items and the general construct, instead this relationship is mediated by the specific 
factors (35). We prefer the bi-factor model for our study because of the conceptual 
differences between the two models. The bi-factor model specifies the specific factors 
as orthogonal from the general factor. Because of this representation it is possible to 
study whether symptom scores are affected differently over time for the general and 
the specific factors.

Strengths of our study are the large sample size to assess the latent structure of symp-
tom reports as well as the extensive assessment of measurement invariance, and its ap-
plication to the analysis of change with an ecologically valid example. The importance 
of measurement invariance as a prerequisite to interpret scores on a questionnaire has 
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been widely acknowledged [e.g. 19,29,35], but rarely addressed for the use of symptom 
questionnaires. By establishing invariance of the bi-factor model for the 4DSQ-S in a 
general population we found support to study symptom scores based on the underly-
ing constructs over time and to compare scores between different general population 
samples.

In conclusion, we demonstrated the potential use of applying the bi-factor model 
in an analysis of change in reported symptoms, using the example of an emerging 
uncertain environmental health risk. Our findings have implications for the analysis and 
interpretation of symptom checklists in psychosomatic and (environmental) health 
research. Application of the bi-factor structure can lead to a more informative interpre-
tation of changes in somatic symptom reporting, as it allows to separately evaluate the 
impact of an intervention or change in the environment on the longitudinal course of 
each symptom pattern. Future health effect studies are needed to compare different 
methods to approach the multidimensional nature of symptom reports, as well as to 
improve insight in determinants of specific symptom patterns.
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Abstract

We assessed associations between modeled and perceived exposure to RF-EMF from 
mobile phone base stations and the development of non-specific symptoms and sleep 
disturbances over time. The Dutch population-based Occupational and Environmental 
Health Cohort study (AMIGO) (n=14829, 31-65 years old) was established in 2011/2012 
(T0), with follow up of a subgroup (n=3992 invited) in 2013 (T1, n=2228) and 2014 (T2, 
n=1740). We modeled far-field RF-EMF exposure from mobile phone base stations at 
the home address of the participants using a 3D geospatial model (NISMap). Perceived 
exposure (0=not at all to 6=very much), non-specific symptoms, and sleep disturbance 
were assessed by questionnaire. We performed cross-sectional and longitudinal analy-
ses, including fixed effects regression. We found small correlations between modeled 
and perceived exposure in AMIGO at baseline (n=14,309, rSpearman = 0.10). For 222 follow-
up participants modeled exposure increased substantially (>0.030 mW/m²) between 
T0 and T1. This increase in modeled exposure was associated with an increase in 
perceived exposure in the same time period. In contrast to modeled RF-EMF exposure 
from mobile phone base stations, perceived exposure was associated with reporting 
higher symptom scores in both cross-sectional and longitudinal analyses, and with 
sleep disturbance in cross-sectional analyses.
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1. Background

Exposure to radio frequency electromagnetic fields (RF-EMF) from mobile phone base 
stations has increased rapidly in previous decades. Biological mechanisms responsible 
for health effects at every day exposure levels are unknown. Systematic reviews (1–4) 
found no consistent associations between modeled RF-EMF exposure and any indi-
vidual symptoms or groups of symptoms. A part of the general population (1.5-10%) 
(5, 6) attributes symptoms such as sleep disturbances, headaches or dizziness to elec-
tromagnetic field (EMF) exposure. It is suspected that there may also be psychosocial 
mechanisms involved (7–10). People have little control over being exposed to RF-EMF 
from mobile phone base stations, and in combination with uncertainty about potential 
health risks, this can lead to concern (11, 12) and increased symptom reporting.

Different type of studies have been applied to study effects of RF-EMF exposure from 
mobile phone base stations on symptoms: laboratory studies (13, 14), and observational 
studies (15, 16). An important limitation of laboratory studies is that only acute effects 
of short term exposure can be studied. A limitation of observational epidemiological 
studies is that the exposure assessment is often inaccurate. Simple proxies have been 
used for exposure assessment, such as the distance between fixed site transmitters and 
the home address (17, 18), but these are not sufficiently accurate (19, 20). Using a three 
dimensional geospatial model is currently the preferred method for assessing personal 
exposure to far-field RF-EMF exposure from base stations in large populations (19, 21), 
but application of these models in epidemiological studies has so far been limited. In 
addition, most observational studies have been cross-sectional, limiting causal infer-
ence. Longitudinal studies with accurate exposure assessment are needed to resolve 
uncertainty about the potential association between far-field RF-EMF exposure and 
health outcomes (22).

In a cross-sectional study (16) among the general population in the Netherlands over 
20% of the participants reported high or extremely high worry about potential health 
effects from RF-EMF exposure to mobile phone base stations. This study also found that 
perceived exposure was associated with a higher number of non-specific symptoms 
when accounting for modeled RF-EMF and extremely low frequency magnetic field 
exposure. Numerous other studies found associations between symptom reporting 
and different perceptions (e.g. perceived exposure, perceived risk, worry, concerns, an-
noyance, or modern health worries), with regard to EMF (4, 9, 16, 23–26), but also with 
regard to other potential environmental risks (27–32), such as perceived infrasound 
exposure from wind turbines and perceived air quality. However, most of these studies 
were cross-sectional and many did not consider actual exposure. One explanation for 
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the association between EMF perceptions and symptom reporting could be a nocebo 
mechanism, which postulates: The expectation that negative health effects may oc-
cur upon exposure can lead to more symptoms. Evidence for this mechanism was 
seen in provocation studies with sham exposure (9, 26). Conversely, the experience 
of symptom distress may lead to the search of a cause for these symptoms (33, 34), 
and increased attention to potential exposures. Attention focusing can amplify the 
perception of physical signals, a process described as somatosensory amplification (26, 
35, 36). Biochemical and psychosocial mechanisms may mutually influence each other 
(37), and therefore there is added value in considering both modeled and perceived 
exposure in relation to health outcomes simultaneously and longitudinally.

This is what we set out to do in this prospective cohort study with respect to modeled 
and perceived exposure to RF-EMF from mobile phone base stations and self-reported 
non-specific symptoms and sleep disturbance. Figure 1 shows a diagram of the pos-
sible relations between the variables of interest. The main research questions that are 
addressed in this paper are: 1) Is there an association between modeled and perceived 
exposure to RF-EMF from mobile phone base stations? and 2) How are modeled and 
perceived exposure associated with non-specific symptoms and sleep disturbances 
over time? We improve upon previous studies by our longitudinal design, and the 
combination of modeled exposure and self-reported perceived exposure, in a large 
sample nested within a community-based cohort that was not recruited specifically for 
EMF-related questions.

Health outcomesModelled exposure

Perceived exposure

Figure 1. Possible associations between modeled and perceived exposures to far-field RF-EMF from 
mobile phone base stations and health outcomes (non-specific symptoms and sleep disturbances).

2. METHODS

2.1. Population
This study is nested in the AMIGO cohort, which was set up to study environmental and 
occupational determinants of diseases and symptoms in the Dutch population (aged 
31-65) (see (38) for a full description). From the full cohort, i.e. all participants who were 
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eligible and participated in the questionnaire at baseline (T0 = 2011/2012, n=14829), 
we invited a subgroup (n=3992) to participate in two follow-up questionnaires (in 2013 
(T1) and 2014 (T2)). We based the selection criteria for this subgroup on modeled and 
perceived exposure to RF-EMF from mobile-phone base stations at baseline in order to 
achieve exposure contrast: a random selection of 1,429 persons with modeled expo-
sure less than 0.0265 mW/m² and perceived exposure (on a scale of 0–6) less than 2; 
all subjects with modeled exposure less than 0.0265 mW/m² and perceived exposure 
greater than 1 (n = 1,272); all subjects with modeled exposure greater than or equal 
to 0.0265 mW/m² and perceived exposure less than 2(n = 1,069); and all subjects with 
modeled exposure greater than or equal to 0.0265 mW/m² and perceived exposure 
greater than 1 (n = 222). Only subjects who participated at T1 (n=2228, response rate 
56%) were invited for the T2 questionnaire (n=1740, response rate 78%).

2.2. Modeled exposure
RF-EMF exposure to mobile phone base stations at the geocoded home address was 
modeled with the 3-dimensional geospatial model NISMap. The applicability of this 
model for epidemiological studies has been described in a number of previous stud-
ies (21, 39–43). The model uses detailed information about 3-dimensional building 
data, topography, home coordinates, bedroom elevation (exposure modeled 1.5 m 
above floor height), antenna location, antenna characteristics, and radiation patterns 
to compute the field strength of GSM900 (Global System for Mobile Communica-
tions; European Telecommunications Standards Institute, Sophia-Antipolis, France), 
GSM1800, and UMTS (Universal Mobile Telecommunications System; 3rd Generation 
Partnership Project) mobile-phone frequencies. Antenna locations and characteristics 
were not available for the year 2014, and therefore the exposure estimate only changed 
in comparison with 2013 in the case of a different home address or bedroom elevation. 
Therefore, analyses with modeled exposure as predictor of interest are only carried 
out for T0, T1, and the time interval T0-T1. We calculated the total modeled downlink 
exposure in mW/m² by summing GSM 900, GSM 1800, and UMTS modeled values (i.e. 
at time of the study LTE (Long-Term Evolution) was not available in The Netherlands). 
We did not model exposure at work, because subjects in general spend less than 30% 
of their time at work, and because exact locations at work are uncertain, in particular for 
professions that are not bound to one location (e.g. drivers or builders).

2.3. Perceived exposure
Perceived exposure is measured at all time points (T0,T1,T2) with the question: “To 
what extent are you exposed to (electromagnetic fields/radiation from) base stations 
for mobile phones, radio or television (scale of 0-6 where 0= not at all, 6= very much)?” 
Although we did not model exposure to base stations for radio and television, we 
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expected that participants may not be able to distinguish between different type of RF-
emitting stations, and therefore included all types of emitters in the perceived exposure 
question.

2.4. Health outcomes
We assessed two self-reported health outcomes at T0, T1, and T2: non-specific symp-
toms and sleep disturbances. Similar to another study on EMF and symptoms (44) we 
used the total symptom score of somatization scale of the 4 dimensional symptom scale 
(4DSQ-S)(45), which consists of 16 non-specific somatic symptoms (e.g. headaches, 
low back pain, and dizziness) commonly reported in general practices. According to 
the 4DSQ manual (45), participants indicated for each symptom whether they were 
bothered by it during the previous week on a 5-point scale (ranging from no, through 
to constantly). The scores per symptom were trichotomized and then summed over the 
symptoms to obtain a total score (no = 0; sometimes = 1, regularly/often/constantly = 
2). Sleep disturbances were measured using the sleep scale of the Medical Outcomes 
Study (MOS). Based on the responses to six sleep items a scale score (sleep index 1: 
0-100) was calculated following the instructions described in (46). Higher scores indi-
cate more sleep disturbances, or lower sleep quality.

2.5. Covariates
General information about age, sex, and education was gathered by questionnaire 
at baseline. We gathered information about neighborhood income (percentage of 
income earners with a low income in the neighborhood) as an indication of neighbor-
hood socioeconomic status, and degree of urbanization from the Dutch Central Bureau 
of Statistics (CBS) in 2012 (Key figures neighborhoods).

2.6. Statistical analysis
To answer the first research question we computed the Spearman correlation between 
modeled and perceived exposure in the full AMIGO cohort. Secondly, we applied linear 
regression in the subgroup to examine whether participants with an increase in mod-
eled exposure of at least 0.030 mW/m² between T0 and T1 (the cutoff point based on 
the 90th percentile of the distribution of absolute change in modeled RF-EMF exposure 
to mobile phone base stations) experienced a different change in perceived exposure 
than the reference group (no change in modeled exposure)

The data from all questionnaires (T0, T1 and T2) were then combined and analyzed 
with mixed effect regression models (unstructured covariance structure), clustered at 
the subject level, with a fixed effect for year to adjust for temporal population trends 
in health outcomes. Four type of models were used in the subgroup to assess cross-
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sectional and longitudinal associations between perceived and/or modeled exposure 
with health outcomes; 1) cross-sectional analyses, 2) cohort analyses; 3) change 
analyses, and 4) fixed effect analyses. The cross-sectional analyses were also done in 
the full cohort at baseline. In the cohort analyses, we assessed the association between 
exposure and change in symptoms in the subsequent year. In the change analyses, 
we examined whether change in exposure over a 1 year period was associated with 
change in health outcome over the same time period. Perceived exposure and health 
outcomes were analyzed as continuous variables. Change scores were calculated by 
subtracting the score between two consecutive years, i.e. T1-T0 and T2-T1). Because of 
the skewed distribution of modeled exposure, it was analyzed dichotomously in the 
cross-sectional, cohort and fixed effect analyses. The cutoff point was based on the 
distribution of modeled total downlink exposure at baseline in the full cohort (low: 
0th-90th percentile, high: 90th-100th percentile, cutoff point: 0.050 mW/m²). For the 
change analyses, we created a variable with 3 categories of modeled exposure based 
on the distribution of the absolute change in modeled exposure between T0 and 
T1. We compared the study participants with the 10% largest decrease (upper cutoff 
point: −4.571*10−4 mW/m²) and 10% largest increase (lower cutoff point: 0.030 mW/
m²) with the remaining 80% (reference group) for the time interval T1-T0. All models 
were adjusted for age, sex, urbanization and neighborhood income at baseline and 
both with or without additional adjustment for exposure (i.e. perceived adjusted for 
modeled exposure and vice versa). Finally we applied fixed effects regression models 
(47)(outcome variables respectively DSQ-s score and sleep index), with the predictors 
perceived exposure (continuous) and modeled exposure (dichotomous). An advantage 
of this model is that it controls for all stable characteristics of an individual, whether 
measured or not. However, there is a potential disadvantage for the estimation of the 
effect of a change in modeled exposure, as an increase in modeled exposure is as-
sumed to have the exact opposite effect of a decrease in modeled exposure, which is 
not necessarily true.

Missing values (full cohort: ≤4%, subgroup:<1%) were replaced with the most common 
category (categorical variables), or with the mean (continuous variables). Analyses were 
carried out using SAS (SAS Institute, Inc., Cary, North Carolina).

3. RESULTS

Table 1 lists the baseline characteristics of the full cohort (n=14,829) and the subgroup 
(n=3,992) at baseline. Demographics were similar in the full cohort and the subgroup. 
The exposure and health characteristics at baseline and follow up are shown in Table 2. 
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Perceived and modeled exposure were higher in the subgroup than in the full cohort 
as a consequence of the selection method we applied to increase exposure contrast. 
There were no significant differences for mean modeled (t-test: t=0.16, p=0.88) or per-
ceived exposure (t-test: t=1.80, p=0.07) at baseline between subgroup participants who 
completed all follow-up questionnaires and participants who did not complete both 
follow-up questionnaires. The distribution of change scores from perceived exposure, 
DSQ-s, and sleep-index are shown in Web Figure 1.

Table 1. Baseline Characteristics (T0) of the AMIGO Cohort, Including a Subgroup Also Invited to 
Complete 2 Additional Follow-Up Questionnaires (T1 and T2), in a Study of Modeled and Perceived 
Radio-Frequency Electromagnetic Field Exposure From Mobile-Phone Base Stations in Relation to 
Nonspecific Symptoms and Sleep Disturbances, the Netherlands, 2011/2012

Full cohort T0 (n=14829) Subgroup T0 (n=3992)

n Percentage n Percentage

Sex

Male 6561 44.2 1755 44.0

Female 8268 55.8 2237 56.0

Age in yearsa 50.6 (9.4) 50.2 (9.5)

Education

Low 4546 30.7 1123 28.1

Middle 4627 31.2 1239 31.0

High 5656 38.1 1630 40.8

Neighborhood socioeconomic statusb 39.4 (6.9) 39.5 (7.4)

Urbanisation

Very high 1263 8.5 516 12.9

High 3307 22.3 1236 31.0

Moderate 3228 21.8 972 24.3

Low 3615 24.4 867 21.7

Very low 3416 23.0 401 10.0

Abbreviations: AMIGO, Occupational and Environmental Health Cohort Study; SD, standard devia-
tion; SES, socioeconomic status. a Low = primary school/vocational education/community college; 
intermediate = vocational education/high school;
high = college/university or higher. b Very high = average of >2,500 addresses/km²; high = average 
of 1,500–2,500 addresses/km²; moderate =average of 1,000–<1,500 addresses/km2; low = average 
of 500–<1,000 addresses/km²; very low = average of <500 addresses/km².
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We found small correlations between modeled and perceived exposure in the full co-
hort at baseline (rSpearman = 0.10). We compared participants with an increase in modeled 
exposure between T0 and T1 (absolute change > 0.030 mW/m², n=222) with the refer-
ence group (10th-90th percentile of the absolute change in modeled exposure, n=1,779) 
and found a positive association with change in perceived exposure in the same time 
period (increase in βmodeled (95% confidence interval) = 0.31 (0.11,0.50), p <0.01). For 
most of these participants with an increase in modeled exposure this change was due 
to changes in antennas in the vicinity of their home address; only 15 (7%) of these 
participants had moved to a new address.

The cross-sectional analyses conducted in the full cohort at T0 (Table 3) and in the 
subgroup (Table 4) show that perceived, but not modeled exposure is significantly 
positively associated with both non-specific symptoms and sleep disturbances. In 
the cohort analyses, we found no associations between either modeled or perceived 

Table 2. Modeled and Perceived Exposure to Radio-Frequency Electromagnetic Fields From Mo-
bile-Phone Base Stations and Symptom Characteristics in the Full AMIGO Cohort (T0) and a Se-
lected Subgroup Invited to Complete 2 Follow-Up Questionnaires (T1 and T2), the Netherlands, 
2011–2014

Variable

Full cohort Subgroup

T0 (n=14829) T0 (n=3992) T1 (n=2228) T2 (n=1740)a

Modeled exposure (mW/m²)

Percentile 10 0.000 0.000 0.000 0.000

Percentile 25 0.000 0.001 0.001 0.001

Percentile 50 0.001 0.007 0.009 0.009

Percentile 75 0.013 0.040 0.051 0.050

Percentile 90b 0.050b 0.121 0.146 0.137

Perceived exposurec 1.0 (1.2) 1.8 (1.6) 1.9 (1.6) 1.8 (1.6)

4DSQ-s 5.9 (5.2) 6.4 (5.5) 6.2 (5.2) 6.1 (5.1)

MOS Sleep-index 27.4 (14.8) 28.3 (15.3) 28.2 (14.7) 27.1 (14.3)

Abbreviations: AMIGO, Occupational and Environmental Health Cohort Study; 4DSQ-S, somatiza-
tion scale of the Four-Dimensional Symptom Questionnaire; MOS, Medical Outcomes Study; RF-
EMF, radio-frequency electromagnetic field; SD, standard deviation.
a Transmitter locations and characteristics were not available in 2014; therefore, transmitter data 
from 2013 were used.
b Cutoff point for cross-sectional and cohort analyses.
c Perceived exposure was measured on a scale of 0–6, where 0 = not at all and 6 = very much.
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exposure and change in non-specific symptoms or sleep disturbances one year later 
(table 4). In the longitudinal change analyses in the subgroup (table 4), an increase 
in perceived exposure but not modeled exposure was associated with an increase in 
non-specific symptoms but not sleep disturbances over the same time interval. These 
results were consistent with the results of the fixed effect models for both non-specific 
symptoms (βperceived = 0.13 (95% CI: 0.05, 0.21), P < 0.01; βmodeled = 0.20 (95% CI: −0.35, 
0.75), P = 0.47) and sleep disturbances (βperceived = 0.09 (95% CI: −0.14, 0.32), P = 0.48; 
βmodeled = −0.32 (95%CI: −1.97, 1.33), P = 0.70).

4. DISCUSSION

In this prospective cohort study, we investigated the association between modeled 
and perceived exposure to RF-EMF from mobile phone base stations and self-reported 
health outcomes, that is, non-specific symptoms and sleep disturbances. The small 
correlation between modeled and perceived exposure enabled the investigation of 
these two measures as conceptually separate predictors for health outcomes. Our 
results gave no indication that modeled RF-EMF exposure from mobile phone base 
stations was associated with health outcomes. On the contrary, perceived exposure 
was associated with higher nonspecific symptom scores as well as more reported sleep 
disturbances.

4.1. Interpretation of findings
The lack of an association between low modeled RF-EMF exposure levels from mobile 
phone base stations in the home environment and health outcomes in both the cross-
sectional or the longitudinal analyses is in line with most recent previous studies (15, 
16, 48). However, modeled exposure may be associated with certain symptoms, but not 
with the total symptom score. We therefore explored this in secondary cross-sectional 
logistic regression analyses, for each of the symptoms in the 4DSQ-S scale separately 
in the full cohort (Web Table 1). Two symptoms (dizziness, pressure or tightness in the 
chest) were slightly more likely to be reported by exposed than non-exposed partici-
pants, but not significantly after adjustment for multiple testing.

Visible exposure sources such as antennas may influence to some extent whether 
participants think they are exposed, resulting in a weak correlation between modeled 
and perceived exposure in this study. Interestingly, a substantial increase in modeled 
exposure in a one year period was associated with a corresponding change in per-
ceived exposure, suggesting that some participants were aware of changes in their 
environment such as the placement of new antennas.
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Perceived exposure was associated with worse health outcomes, in cross-sectional 
(DSQ-s and Sleep index) and longitudinal change and fixed effect analyses (only DSQ-s 
scores). Perceived exposure may be influenced by visual cues related to actual expo-
sure, although other factors such as affective reactions to the environment could be 
more important. Previous studies (49, 50) found that most people have little knowledge 
about RF-EMF exposure, which can explain the small correlation between modeled 
and perceived exposure. Not only the perception of being exposed, but also the belief 
that exposure may be harmful, the extent someone feels concerned about exposures 
or symptoms, and a number of social and personal factors are probably important to 
determine whether one develops and/or reports symptoms (10, 26, 51, 52). Higher 
symptom scores are associated with lower health-related quality of life and increased 
use of health-care services (53, 54). Adequate risk communication can improve the 
understanding of EMF exposure for the general population (50) and may prevent the 
development and/or increased reporting of symptoms in part. However, the pathways 
between perceived exposure and symptoms may be bidirectional, or perhaps experi-
encing symptoms typically precedes concern about environmental exposures (33, 34). 
This may partly explain why our longitudinal cohort analyses did not show temporal 
precedence of perceived exposure before an increase in symptoms. Other explana-
tions for this effect may be a shorter lag period, or ceiling effects. Subjects with higher 
perceived exposure already had higher symptom scores at baseline, and were therefore 
less likely to report even higher symptom scores in the following questionnaire.

Despite our finding that modeled RF-EMF exposure from mobile phone base stations 
was not associated with health outcomes, it remains important to consider the role 
of both RF-EMF exposure sources in the environment and perceived exposure. Our 
results suggest that especially a change in the presence of antenna’s in the home 
environment may increase perceived exposure, and possibly also indirectly influence 
symptom scores in individuals. Complicated relationships between exposure sources, 
actual exposure, perception, and the development of symptoms also exist for other 
environmental exposures. For noise exposure, prior studies found that the association 
between modeled exposure to noise from road traffic and symptom score was medi-
ated by noise annoyance (55, 56). There is a need for more multidisciplinary studies that 
consider the role of both actual environmental exposures and perception in relation to 
self-reported health outcomes.

4.2. Strengths
Our study design had several strengths, allowing for robust conclusions regarding 
potential effects of perceived and modeled exposure to mobile phone base stations on 
the experience of non-specific symptoms and sleep disturbances. The main strength 
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of our study was the prospective design. Secondly, the study sample was large, and 
we oversampled high exposed subjects, which produced adequate statistical power 
for assessment of potential health effects of RF-EMF from mobile phone base stations 
in the general population. Thirdly, the AMIGO cohort (38) was setup with the broad 
purpose to study occupational and environmental exposures in relation to health 
outcomes in the general population. Therefore, the participants were probably not 
aware of the focus on EMF. Finally, we used the NISMap model, with detailed input data 
(home coordinates, bedroom elevation, antenna characteristics) to estimate RF-EMF 
exposure to mobile phones in the bedroom at the home address. NISMap is able to 
meaningfully rank participants on modeled exposure (21, 40, 41, 43), although there 
can be substantial misclassification.

4.3. Limitations
This study has limitations. Importantly, RF-EMF exposure at locations other than the 
home address was unknown. Secondly, in contrast to modeled exposure, the measure 
of perceived exposure also included perceived exposure to RF-EMF from base stations 
for radio and TV, because subjects in general have little knowledge about different 
types of transmitters (50). Furthermore, we modeled RF-EMF exposure at home, yet 
subjects reported perceived RF-EMF exposure from base stations in general, which 
could include base stations they usually come across at work, during commuting and 
leisure time. For these two reasons, we may have slightly underestimated the asso-
ciation between modeled and perceived exposure. However, the chance that subjects 
indeed referred to radio and TV base stations is relatively low, given that they are much 
less abundant than mobile phone base stations. We did not consider RF-EMF exposure 
from other sources than mobile phone base stations. Therefore, we cannot exclude the 
possibility that total RF-EMF exposure is associated with symptoms. However, including 
other exposure sources was not feasible for this particular study because of the aim to 
compare effects of modeled and perceived exposure. Correlations between modeled 
and perceived exposure may be different for other sources. Additionally, the associa-
tions of perceived or modeled exposure with health outcomes could be different for 
other RF-EMF sources.

4.4. Conclusion
The results of our nationwide prospective study showed that not modeled exposure 
but perceived exposure to mobile phone base stations is a predictor of nonspecific 
symptoms and sleep disturbances. Awareness of the presence of mobile phone base 
stations in the home environment may play an indirect role in symptom reporting, 
through effects on perceived exposure. Our robust study design adds to the body of 
evidence that there seems to be no substantial adverse effect of every day residential 
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RF-EMF exposure levels from mobile phone base stations on the development of non-
specific symptoms and sleep disturbance in the general public.
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Supplemental material

Web Figure 1.

Web Figure 1. Distribution of changes in 1) perceived exposure, 2) Four-Dimensional Symptom 
Questionnaire (DSQ-s), and 3) sleep index for each time interval. Rhombs mark mean values, hori-
zontal lines mark median values, inner boxes show the 25%–75% quantiles, and the outer lines 
show the 1.5 interquartile range of the lower/upper end of the inner box.
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Web Table 1. Logistic Regression in the Full AMIGO Cohort (n = 14,829) at Baseline: Effects of Mod-
eled and Perceived Exposure to Mobile-Phone Base Stations on Individual Symptoms

Health Outcome

Odds Ratio (95% Confidence Interval)

Modeled Exposure
(Dichotomous, Cutoff 90th 

Percentile)

Perceived Exposure
(0–6)

Dizziness 1.14 (1.02, 1.29) 1.15 (1.12, 1.18)

Pain in muscles 0.97 (0.87, 1.09) 1.11 (1.07, 1.14)

Fainting 0.84 (0.55, 1.31) 1.22 (1.12, 1.34)

Neck pain 1.03 (0.92, 1.15) 1.14 (1.11, 1.17)

Back pain 1.06 (0.95, 1.19) 1.08 (1.05, 1.11)

Excessive sweating 1.09 (0.97, 1.22) 1.09 (1.05, 1.12)

Palpitations 1.07 (0.94, 1.22) 1.17 (1.14, 1.21)

Headache 1.04 (0.93, 1.16) 1.09 (1.06, 1.12)

Bloated feeling in abdomen 0.99 (0.89, 1.11) 1.13 (1.09, 1.16)

Blurred vision 1.00 (0.89, 1.14) 1.14 (1.11, 1.18)

Shortness of breath 1.10 (0.95, 1.27) 1.14 (1.10, 1.19)

Nausea 1.03 (0.90, 1.17) 1.16 (1.12, 1.20)

Pain abdomen 1.08 (0.95, 1.23) 1.14 (1.10, 1.18)

Tingling fingers 0.99 (0.87, 1.13) 1.16 (1.12, 1.19)

Tight feeling in chest 1.22 (1.05, 1.42) 1.16 (1.12, 1.20)

Chest pain 1.07 (0.89, 1.28) 1.15 (1.10, 1.20)

AMIGO, Occupational and Environmental Health Cohort Study.
Analyses were adjusted for perceived, respectively modeled exposure. In addition, all analyses in 
this table were adjusted for sex, age, education, neighborhood socioeconomic status, and urban-
ization.
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Abstract

Introduction: Studies found that higher risk appraisal of radiofrequency electromagnetic 
fields is associated with reporting more non-specific symptoms such as headache and 
back pain. There is limited data available on the longitudinal nature of such associations 
and what aspects of risk appraisal and characteristics of subjects are relevant.

Objective: To examine cross-sectional and longitudinal associations between risk ap-
praisal measures and non-specific symptoms, and assess the role of subject character-
istics (sex, age, education, trait negative affect) in a general population cohort.

Methods: This study was nested in the Dutch general population AMIGO cohort that 
was established in 2011/2012, when participants were 31-65 years old. We studied a 
sample of participants (n=1720) who filled in two follow-up questionnaires in 2013 
and 2014, including questions about perceived exposure, perceived risk, and health 
concerns as indicators of risk appraisal of base stations, and non-specific symptoms.

Results:
Perceived exposure, perceived risk, and health concerns, respectively, were associated 
with higher symptom scores in cross-sectional and longitudinal analyses. Only health 
concerns (not perceived exposure and perceived risk) temporally preceded high 
symptom scores and vice versa. Female sex, younger age, higher education, and lower 
trait negative affect were associated with higher risk appraisal of mobile phone base 
stations.

Discussion:
The findings in this study strengthen the evidence base for cross-sectional and longi-
tudinal associations between higher risk appraisal and non-specific symptoms in the 
general population. However, the directionality of potential causal relations in non-
sensitive general population samples should be examined further in future studies, 
providing information to the benefit of risk communication strategies.
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1. Introduction

On average people report more non-specific symptoms such as headache or dizziness 
when they think they are exposed to radiofrequency electromagnetic fields (RF-EMF) 
from base stations, regardless of actual level of exposure (1–5). Several studies exam-
ined the underlying psychosocial mechanisms in experimental studies with sham 
exposure (2, 5–8). However, there is a need for more prospective population studies to 
gain insight in the direction(s) of associations in a general population context.

People form mental models of base stations in their living environment (9). These 
internal representations of the external reality shape reasoning, decision making, and 
behavior and can play a role in individual health responses to the environment (10, 11). 
Mental models of base stations can include beliefs about exposure and potential health 
risks, which often do not correspond with the view of experts (12, 13). For example, 
there are low correlations between perceived RF-EMF exposure levels on one hand and 
measured or modelled exposure levels on the other hand (3, 4, 14–16). At the same 
time, many people are concerned about potential health risks from EMF (3, 17–19). 
They associate EMF exposure with perceived health risks such as cancer, but also with 
non-specific symptoms such as dizziness or concentration problems, and with sleep 
disturbance (1, 18, 20–22). These concerns do not match the results of epidemiological 
research, which does not indicate clear adverse health effects of RF-EMF exposure from 
base stations at every day levels of exposure (4, 23–25). If health effects exist at every 
day exposure levels, these are likely to be small, and to occur in small (sensitive) groups 
that have not been identified yet. We will use the term risk appraisal as an overarching 
term for individual perceptions about personal exposure, health risks, and concerns 
for personal health. These perceptions can play a role in individual health responses 
to a potential health hazard (26, 27), regardless of any disparities with epidemiological 
findings.

A number of studies, mostly experimental studies and studies with electro hypersensi-
tive participants, have examined the link between risk appraisal and increased symptom 
reporting. There is evidence for the existence of nocebo effects, especially in situations 
with sham exposure (2, 16), or when there is a visible change in the environment such 
as the placement of a new base station or power line (27, 28). A nocebo response is the 
counterpart of placebo, i.e. an adverse health response after a treatment or exposure 
that is not a direct result of this exposure (29). Based on studies with people who re-
port electro hypersensitivity (6, 30) or idiopathic environmental intolerance (31) there 
is evidence of a circular process where somatosensory amplification plays a role in 
amplifying symptoms and risk perception. Other processes may also be important, for 
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instance people who experience many symptoms may be more likely to attribute their 
symptoms to exposures to an environmental exposure, and become more aware of, 
and concerned about environmental exposures including EMF (Dieudonné, 2016). This 
increased awareness has been described as environmental monitoring (Köteles and 
Simor, 2013). Although experimental studies are important for understanding which 
psychosocial mechanisms could explain the link between risk appraisal and increased 
symptom reporting, there is a need for more prospective studies in the general popula-
tion. With prospective studies, it may be possible to gain insight in the direction(s) of 
associations and the relative importance of mechanisms such as nocebo and incorrect 
attribution in the general population. This insight is important for the development of 
adequate risk communication strategies, as well as for the interpretation of possible 
indirect health effects of exposure, or exposure sources, through risk appraisal. For 
example, the placement of a new base station could have a negative impact on symp-
tom experiences through increases in perceived exposure (4), but this phenomenon is 
difficult to disentangle from incorrect attribution of existing or new symptoms to this 
new exposure source.

Subject characteristics such as sex, age, education, and trait negative affect have been 
shown to influence both symptom scores and risk appraisal (26). For example, women 
consistently report higher risk appraisal and more symptoms than men (34, 35). As a 
trait, higher negative affect is associated with higher levels of risk appraisal as well as 
with reporting more symptoms (31, 36–39). For other subject characteristics (f.i. educa-
tion level, race, age) the results regarding risk appraisal are inconsistent across studies, 
different measures, and type of risks (1, 35, 40–46). For example, education was associ-
ated with higher risk appraisal of mobile phone base stations (46) and smoking (47) but 
negatively with risks in general (41, 44). The inclusion of the role of subject characteris-
tics in this prospective study will achieve a more comprehensive understanding of risk 
appraisal of base stations and its link with symptom reporting.

The first objective of this study was to examine cross-sectional and longitudinal associa-
tions between risk appraisal of RF-EMF exposure from base stations and the experience 
of non-specific symptoms in a prospective general population cohort. We considered 
different aspects of risk appraisal with respect to RF-EMF from mobile phone base sta-
tions, namely perceived personal exposure in the residential environment, perceived 
risk that exposure could be a health risk in general, and concerns regarding personal 
health risks. Secondly, we examined the influence of a number of subject characteristics 
(sex, age, education, and trait negative affect) on risk appraisal and symptom score.
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2. Method

2.1 Population
This study is nested in the AMIGO cohort, which was setup in 2011/2012 (n=14,829) to 
study environmental and occupational determinants of diseases and symptom report-
ing in the general population (see (48) for a full description). The participants were 
not specifically recruited for EMF related topics. We studied a follow-up sample of the 
cohort that participated in two additional questionnaires (in 2013 (defined here as T1) 
and 2014 (defined here as T2). The selection strategy for the invitations to participate 
in the follow-up sample is described in detail elsewhere (4). In short, the purpose of 
this selection was to achieve contrast in both modelled (as a proxy of exposure) and 
perceived exposure to RF-EMF from mobile phone base stations. This was achieved by 
oversampling subjects with high modelled, and/or high perceived exposure at T0. Only 
participants who answered all questions regarding symptoms, concerns, risk percep-
tion, perceived exposure, and negative affect at both T1 and T2 were included in this 
study (n=1720). This resulted in the exclusion of n=484 participants who participated 
at T1 but not at T2, and the exclusion of an additional n=24 participants with missing 
responses on one or multiple key variables.

2.2 Non-specific symptoms
At T1 and T2 we assessed the total symptom score with the somatization scale of the 
4 dimensional symptom scale (4DSQ-S), which consists of 16 non-specific somatic 
symptoms commonly reported in general practices (e.g. headaches, low back pain, and 
dizziness). According to the 4DSQ manual (49), participants indicated for each symptom 
whether they were bothered by it during the previous week on a 5-point scale (ranging 
from no, through to constantly). The scores per symptom were trichotomized and then 
summed over the symptoms to obtain a total score (no = 0; sometimes = 1, regularly/
often/constantly = 2).

2.3 Risk appraisal of RF-EMF exposure to base stations
We assessed risk appraisal of RF EMF from base stations at T1 and T2 with three separate 
items: 1) Perceived exposure: “To what extent do you think are you exposed to (elec-
tromagnetic fields/radiation from) base stations for mobile phones, radio or television 
(scale of 0-6 where 0= not at all, 6= very much)?”. 2) Perceived risk: “To what extent do 
you think that (electromagnetic fields/radiation from) base stations for mobile phones, 
radio or television can be a health risk in everyday situations (scale of 0-6 where 0= 
not at all, 6= very much)?”. 3) Concerns: “To what extent are you concerned about your 
own health because of (electromagnetic fields/radiation from) base stations for mobile 
phones, radio or television (scale of 0-6 where 0= not at all, 6= very much)?”.
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2.4 Subject characteristics
The baseline questionnaire in 2011/2012 included questions on sex, date of birth (to 
calculate age), and education level. We assessed trait negative affect at T2 with a Dutch 
version of the I-PANAS-SF (50). This scale consists of ten items (five positive and five 
negative) such as alert, upset, ashamed. Participants were asked how often (never – 
always) they experience each of these feelings. A total score for negative affect was 
calculated from the five negative items. A higher score indicates more negative affect. 
Positive affect was not analyzed as it fell beyond the scope of this study.

2.5 Statistical Analyses
The data were analyzed using SAS enterprise guide 6.1 software. We first performed 
cross-sectional analyses. Multifactor Analysis Of Variance (ANOVA) was used to measure 
mean differences for sex, age, education and negative affect in risk appraisal (perceived 
exposure, perceived risk, and concerns) and symptom scores. Next, we examined the 
correlations among variables of interest by calculating Spearman correlations. The data 
from both questionnaires were then combined and analyzed with multivariate mixed 
effect regression models clustered at the subject level with a fixed effect for year to 
adjust for temporal population trends in total DSQ-s symptom score. Risk appraisal indi-
cators and individual characteristics (sex, age, education, negative affect) were included 
as predictors. Risk appraisal indicators were included jointly in the multivariate models 
presented in Table 3, and in separate models in the tables presented in Table 4. We 
then studied the longitudinal associations between risk appraisal and symptom score 
with two different types of models. With the first type, the autoregressive linear models, 
we examined a time lag of one year between risk appraisal indicators and symptom 
score, and vice versa. These models examined whether the risk appraisal indicators 
perceived exposure, risk perception and concerns, respectively, at T1 were associated 
with symptom score at T2 (adjusting for symptom score at T1), and whether symptom 
score at T1 were associated with perceived exposure, risk perception and concerns, 
respectively, at T2 (adjusting for T1 values). The second type of longitudinal analyses 
were fixed effect analyses, where we examined the intra-individual variation in risk ap-
praisal (T2-T1) on the one hand and symptom score (T2-T1) on the other. Fixed effect 
models only consider within individual variation, effectively adjusting for unmeasured 
time invariant confounders (51–53).
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3. Results

3.1 Subject characteristics
The population characteristics are reported in table 1. Age and negative affect are 
presented categorically for presentation in this table. Slightly more women (53%) than 
men participated in this study. The most common age category was 51-60 years (37%, 
at T1). A large portion of the sample had a high education (46%). The results of the 

Table 1. Participant Characteristics, risk appraisal and symptom scores in AMIGO follow-up sample 
at T1 (2013), n=1720

Perceived 
exposure T1 

mean (SD)

Perceived risk 
T1

mean (SD)

Perceived 
concerns T1

mean (SD)

Symptom 
score T1

mean (SD)

Gender

Male n=804 (47%) 1.69 (1.54) 1.77 (1.63) 1.33 (1.51) 5.41 (5.03)

Female n=916 (53%) 2.05 (1.58) 2.35 (1.74) 1.70 (1.69) 6.56 (4.83)

	 p-value* <0.0001 <0.0001 <0.0001 <0.0001

Age (in years)

31-40 n=192 (11%) 2.39 (1.44) 2.48 (1.61) 1.64 (1.57) 5.75 (4.46)

41-50 n=437 (25%) 2.03 (1.54) 2.31 (1.72) 1.57 (1.61) 5.73 (4.80)

51-60 n=630 (37%) 1.86 (1.56) 2.10 (1.72) 1.56 (1.63) 6.52 (5.26)

>60 n=461 (27%) 1.55 (1.59) 1.65 (1.65) 1.39 (1.61) 5.72 (4.84)

	 p-value* <0.0001 <0.0001 0.166 0.008

Education

Low n=439 (25%) 1.69 (1.55) 1.84 (1.63) 1.55 (1.66) 7.41 (5.72)

Middle n=487 (28%) 1.87 (1.59) 2.14 (1.74) 1.62 (1.63) 6.09 (4.87)

High n=794 (46%) 1.99 (1.56) 2.17 (1.74) 1.45 (1.58) 5.21 (4.35)

	 p-value* 0.003 0.002 0.177 <0.0001

Negative affect a

Lowest tertile n=558 (33%) 1.71 (1.58) 1.91 (1.75) 1.29 (1.56) 4.51 (4.18)

Medium tertile n=521 (30%) 1.78 (1.52) 1.98 (1.70) 1.38 (1.53) 5.40 (4.20)

Highest tertile n=641 (37%) 2.11 (1.57) 2.29 (1.67) 1.85 (1.68) 7.84 (5.56)

	 p-value* <0.0001 0.0001 <0.0001 <0.0001

*P-values show the significance of effects in multifactor ANOVAs. First and higher order interactions 
between factors were not significant.
a Negative affect is presented categorically in this table and was assessed at T2 (2014)
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multifactorial ANOVAs (Table 1) show the influence of subject characteristics on risk 
appraisal and symptom scores at T1. Overall, men had lower indicators of risk appraisal 
than women and reported lower symptom score (p<0.0001). Risk appraisal scores were 
lower for older participants. Participants with a low education reported lower indicators 
of risk appraisal and higher symptom scores than participants with a high education. 
Differences in risk appraisal by age and education were significant for perceived expo-
sure and perceived risk but not for concerns. Negative affect was associated with higher 
risk appraisal and higher symptom scores. First and higher order interaction effects 
(results not presented) between subject characteristics were not significant.

3.2 Risk appraisal and symptom score
The means of and correlations among variables of interest are presented in Table 1 (with 
ANOVA of means by subject characteristics) and Table 2 (overall means and Spearman 
correlations). Note that reported mean scores were not representative of the means in 
the full AMIGO cohort due to the sampling strategy based on perceived (and modelled) 
exposure. The Spearman correlations over time among variables measured at T1 and 
T2 ranged from 0.55 (risk perception) to 0.77 (DSQ-s symptom scores). Correlations 
between different aspects of risk appraisal at the same point in time ranged from 0.58 
to 0.68.

Table 2. Spearman Correlations and overall means and standard deviations in AMIGO follow-up 
sample that completed questionnaires at T1 (2013) and T2 (2014), (N=1720)
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mean (sd)

perceived exposure T1 - 1.88 (1.57)

perceived exposure T2 0.63 - 1.76 (1.64)

risk perception T1 0.63 0.49 - 2.08 (1.71)

risk perception T2 0.44 0.60 0.55 - 2.06 (1.74)

concerns T1 0.58 0.51 0.67 0.50 - 1.53 (1.62)

concerns T2 0.45 0.59 0.48 0.68 0.60 - 1.51 (1.61)

Symptoms T1 0.13 0.11 0.11 0.07 0.15 0.14 - 6.02 (4.96)

Symptoms T2 0.10 0.12 0.09 0.11 0.14 0.17 0.77 - 6.10 (5.06)

negative affect T2 0.12 0.19 0.12 0.18 0.18 0.24 0.35 0.41 - 8.99 (2.82)

Darker blue colors represent stronger correlations, lighter blue colors represent weaker correlations.



Risk appraisal of base stations and non-specific symptoms

107

Multivariate models including the three risk appraisal items (Table 3) showed that per-
ceived exposure and concerns explained unique variance in symptom scores, despite 
the correlations between these predictors. The regression coefficient for the effect of 
risk appraisal on symptom score was smaller when negative affect was included in 
the model (Table 3), in particular for concerns. Perceived risk was redundant in the 
multivariate model, as well as concerns when negative affect was included (Table 3). 
All risk appraisal variables were significant when included in separate models (Table 4). 
Interaction effects between risk appraisal and individual characteristics were examined 
in additional analyses (results not presented), but did not result in improved model fit.

In the longitudinal autoregressive analyses (Table 5) we found that concerns at T1 
were significantly associated with higher symptom score at T2 (adjusted for symptom 
score at T1), and that symptom score at T1 was associated with more concerns at T2 
(adjusted for concerns at T1). In contrast, we found no association between perceived 
exposure or perceived risk at T1 and symptom score at T2, adjusting for symptom score 
at T1. Also, the associations between symptom score at T1 and perceived exposure 
or perceived risk at T2 were not significant (adjusting for baseline values of perceived 
exposure, respectively perceived risk). The results of fixed effect analyses are presented 
in Table 6. Intra-individual variation in risk appraisal scores over time was associated 
with intra-individual variation in symptom scores in the same time period.

Table 3. Results of Multivariate Mixed models with Symptom score as dependent variable in AMI-
GO follow-up sample that completed questionnaires at T1 (2013) and T2 (2014), (N=1720)

Predictor(s)

model 1. with year, gender,  age 
and education

model 2. with year, gender,  age, 
education, Negative Affect

Parameter estimate (CI) p-value Parameter estimate (CI) p-value

Perceived exposurea 0.17 (0.06, 0.27) 0.002 0.13 (0.03, 0.24) 0.013

Perceived riska 0.09 (-0.01, 0.19) 0.079 0.09 (-0.01, 0.19) 0.089

Concernsa 0.13 (0.02, 0.24) 0.081 0.05 (-0.05, 0.16) 0.305

year of questionnaire (T2) 0.11 (-0.05, 0.27) 0.183 0.10 (-0.06, 0.26) 0.207

female gender 0.91 (0.47, 1.35) <.0001 0.58 (0.17, 0.98) 0.006

age 0.00 (-0.03, 0.02) 0.925 0.02 (-0.01, 0.04) 0.146

Medium educationb -1.25 (-1.85, -0.66) <.0001 -1.07 (-1.62, -0.52) 0.0001

High educationb -2.20 (-2.75, -1.66) <.0001 -1.99 (-2.50, -1.49) <.0001

Negative affect 0.64 (0.57, 0.71) <.0001

Predictors are mean centered
a Likert Scale 0 = not at all to 6 = very much
b The reference category is low education
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Table 4. Results of separate Mixed models for each risk appraisal indicator (perceived exposure, per-
ceived risk, and concerns) with symptom score as dependent variable in AMIGO follow-up sample 
that completed questionnaires at T1 (2013) and T2 (2014), (N=1720)

Predictor(s)

Perceived exposure Perceived risk Concerns

Parameter
estimate (CI)

p-value
Parameter
estimate (CI)

p-value
Parameter
estimate (CI)

p-value

indicator risk 
appraisal

0.20 (0.11, 0.29) <.0001 0.17 (0.09, 0.25) <.0001 0.16 (0.07, 0.25) 0.0003

year (T2)a 0.11 (-0.05, 0.27) 0.183 0.09 (-0.07, 0.24) 0.283 0.09 (-0.07, 0.25) 0.295

female gender 0.61 (0.20, 1.01) 0.003 0.61 (0.20, 1.01) 0.004 0.63 (0.23, 1.04) 0.002

age 0.02 (-0.01, 0.04) 0.161 0.02 (-0.01, 0.04) 0.186 0.01 (-0.01, 0.03) 0.272

Medium educationb -1.06 (-1.61, -0.51) 0.0002 -1.06 (-1.61, -0.51) 0.0002 -1.04 (-1.59, -0.49) 0.0002

High educationb -2.00 (-2.50, -1.50) <.0001 -2.00 (-2.50, -1.50) <.0001 -1.93 (-2.43, -1.43) <.0001

Negative affect 0.65 (0.57, 0.72) <.0001 0.65 (0.58, 0.72) <.0001 0.64 (0.57, 0.72) <.0001

Predictors are mean centered.
a The reference category is T1 (2013)
b The reference category is low education.

Table 5. Results of Autoregressive analyses for longitudinal associations between Symptom score 
and each risk appraisal indicator in AMIGO follow-up sample that completed questionnaires at T1 
(2013) and T2 (2014), (N=1720)

Model Outcome variable Predictors Estimate P-value

1 Symptom score T2 Symptom score T1 0.79 (0.76,0.82) <0.0001

Perceived exposure T1 -0.006 (-0.10,0.10) 0.96

2 Symptom score T2 Symptom score T1 0.79 (0.76,0.82) <0.0001

Perceived risk T1 0.02 (-0.07,0.10) 0.73

3 Symptom score T2 Symptom score T1 0.78 (0.75,0.81) <0.0001

Concerns T1 0.10 (0.00,0.19) 0.04

4 Perceived exposure (0-6)a T2 Perceived exposure T1 0.65 (0.62,0.69) <0.0001

Symptom score T1 0.01 (-0.01,0.02) 0.25

5 Perceived risk (0-6)a T2 Perceived risk T1 0.56 (0.52,0.60) <0.0001

Symptom score T1 0.00 (-0.01,0.02) 0.58

6 Concerns(0-6)a T2 Concerns T1 0.60 (0.56,0.63) <0.0001

Symptom score T1 0.02 (0.00,0.03) 0.01

a Likert Scale 0 = not at all to 6 = very much
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4. Discussion

We studied the cross-sectional and longitudinal associations between risk appraisal of 
base stations and non-specific symptoms and the influence of subject characteristics in 
a prospective general population cohort. Risk appraisal (perceived exposure, perceived 
risk, personal health concerns) of RF-EMF from base stations was associated with higher 
symptom scores in cross-sectional and longitudinal analyses. In addition, we showed 
that subject characteristics in sex, age, education, and trait negative affect were related 
to both risk appraisal and symptom scores.

4.1 Interpretation risk appraisal-symptom score association
In our study we showed cross-sectional and longitudinal associations between risk 
appraisal of base stations and symptom reporting in a general population sample, 
despite the relatively low mean levels of risk appraisal. Previous studies found similar 
associations between risk appraisal of EMF and symptom scores (2, 3, 6, 27, 32), but 
most of these studies were experimental, cross-sectional or in specific sub-populations. 
With longitudinal analyses we aimed to improve our understanding of the directional-
ity of the associations between risk appraisal and symptom scores. Health concerns, 
but not perceived exposure nor perceived risk, were associated with reporting more 
symptoms one year later, adjusting for baseline values of the dependent variable. And, 
vice versa, symptoms were positively associated with reporting more concerns one year 
later. In the longitudinal fixed effect models, we showed that intra-individual variation 
between T1 and T2 in risk appraisal scores was associated with intra-individual variation 
in symptom scores in the same period. These longitudinal analyses show that there are 
possibly bidirectional causal associations between risk appraisal and symptom scores. 
An alternative explanation for this result however, could be an unmeasured variable, 
that changes over time within individuals, and is correlated with both risk appraisal and 

Table 6. Results of Fixed effect models* for associations between intra-individual variation over 
time in risk appraisal indicators and symptom score in AMIGO follow-up sample that completed 
questionnaires at T1 (2013) and T2 (2014), (N=1720).

Models Predictor(s) Parameter estimate (CI) p-value

1 Perceived exposure (0-6)a 0.17 (0.05, 0.29) 0.004

2 Perceived risk (0-6)a 0.17 (0.08, 0.27) 0.0004

3 concerns (0-6)a 0.12 (0.01, 0.23) 0.039

a Likert Scale 0 = not at all to 6 = very much
*These fixed effect models only consider within individual variation over time, effectively adjusting 
for unmeasured time invariant confounders.
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symptom reporting (for example: current negative feelings). Interestingly, we found 
some evidence suggesting that at least for personal health concerns, mechanisms in 
both directions can occur in a general population sample. This would indicate that pre-
viously proposed psychosocial mechanisms such as nocebo, incorrect attribution and 
environmental monitoring are simultaneously responsible for the associations between 
risk appraisal and symptom reporting in the general population. It will be interesting 
to further explore to what extent these mechanisms complement and reinforce each 
other. Although considered in some studies (32, 33) reversed causation mechanisms 
such as incorrect attribution have not received much attention in prior studies. The 
role of such mechanisms could be of importance for the effectiveness of intervention 
strategies targeted at lowering high risk appraisal scores, and for the interpretation of 
associations between risk appraisal and symptom scores. In future studies, for example 
with a larger number of repeated measurements and shorter time intervals, may aid the 
understanding of how these mechanisms occur together and complement each other.

4.2 Subject characteristics
We showed that women, younger participants, participants with a moderate to higher 
education and higher trait negative affect reported higher risk appraisal scores. Symp-
tom scores were higher for women, for participants with a low education, and for par-
ticipants high in negative affect. The effect of education level on risk appraisal deserves 
further study. Previous studies (41, 44, 54) generally reported lower risk appraisal for 
demographic groups with more power in society, including individuals with a higher 
education. Our results showed that this principle does not apply to all type of risks, at 
least not to risk appraisal of RF-EMF from base stations. Possibly, there is a lower familiar-
ity with mobile phone base stations as a potential health risk among participants with a 
lower education, which may have resulted in lower risk appraisal scores for this group.

4.3 Different measures of risk appraisal
Previous studies (3, 26, 55, 56) often focused on a single aspect of risk appraisal, for 
example perceived exposure or worry about a risk. In this study we analyzed three 
different aspects of risk appraisal regarding RF-EMF: perceived personal exposure, 
perceived risks in general, and concerns about personal health. These items differed 
conceptually on two dimensions, respectively personal versus general and cognitive 
versus affective perception. Perceived exposure and concerns addressed the personal 
situation of the participant, while perceived risk focused on the potential health risk of 
RF-EMF in general. Perceived exposure (“To what extent do you think you are exposed 
to..”) and perceived risk (“To what extent do you think that… is a health risk”) predomi-
nantly reflected cognitive elements of risk appraisal, while concerns for personal health 
reflected affective elements (57). Although the results consistently showed positive 
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associations between risk appraisal and symptoms, regardless of the particular risk 
appraisal item, there were subtle differences between the results of different analyses. 
We found higher overall means for perceived risk than for the other two items, in line 
with research showing that people perceive others as more vulnerable to potential risks 
than themselves (58, 59). Correlations with trait negative affect were slightly higher for 
the more affective item concerns than for perceived exposure and perceived risk. In 
addition, concerns became redundant when negative affect was taken into account 
in the multivariate mixed models (Table 3), indicating greater overlap with the effect 
of trait negative affect than the other two items. On the other hand, only for concerns 
we found evidence of temporal precedence of reporting concerns before an increase 
in symptom score and vice versa. Thus, using different items to assess risk appraisal 
might lead to slightly different conclusions, which advocates the use of multiple items 
in future studies to thereby refine the interpretation of the underlying processes.

4.4 Strengths
Our study had a number of strengths. First, it is one of the few large longitudinal gen-
eral population studies concerning risk appraisal and symptom reporting. Secondly, 
as discussed above, we used different measures to assess risk appraisal, and therefore 
we were able to compare these measures and study their associations with symptom 
reporting. Thirdly, the AMIGO cohort was recruited to study occupational and envi-
ronmental health in general and therefore subjects were not prompted to participate 
in an EMF and health study which could have resulted in biased responses. Moreover, 
the questions on risk appraisal were embedded within a list of other environmental 
exposures, such as traffic-related air pollution and noise. Nevertheless, the responses of 
participants were not completely representative of a general population sample, due 
to the follow-up selection strategy of oversampling participants with high perceived 
and modelled exposure. This sampling strategy likely did not result in the selection 
of a large number of self-identified electro hypersensitive participants. In the survey 
questionnaires, participants were asked whether they attributed any health problems 
to an environmental exposure, and if so, they were subsequently asked which environ-
mental exposure and what kind of health problems. The list of potential attributions 
included EMF exposure sources and free text ‘other environmental causes’. In the full 
AMIGO cohort (n=14829), 84 participants attributed health problems to any sort of EMF 
exposure at baseline (2011/2012 questionnaire). They were all invited for the follow-up 
questionnaires used in this study, and 27 of them did participate in the follow-up ques-
tionnaires. Only six of these participants still reported attribution of health problems 
to EMF exposure at both follow-up surveys (T1 and T2). Finally, in previous work (4) we 
did not find associations between modelled (“actual”) RF-EMF exposure from mobile 
phone base stations and symptom reports in the AMIGO cohort. The exposure model 
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NISMap that was used to assess RF-EMF exposure from mobile phone base stations 
was previously validated for use in epidemiological studies (60). Therefore, we could 
be fairly certain that actual exposure did not confound the association between risk 
appraisal and symptom score in our current study sample.

4.5 Limitations
This study also had a number of limitations. The questionnaires were spaced apart for 
approximately a year, and it is not certain what lag period is relevant to study longitu-
dinal associations between risk appraisal and symptom scores. Secondly, trait negative 
affect (T2) was only measured at a single point in time. However, the associations of 
negative affect with risk appraisal and symptom scores were stronger when measured 
in the same questionnaire, indicating that the negative affect measure captured both 
stable (“trait”) and occasion specific (“state”) variance. The mixed model analyses in-
cluded risk appraisal and symptom scores at T1 and T2, but included “trait” negative 
affect only measured at T2. As a result, we overestimated the effect of “trait” negative 
affect, because a portion of the “state” variance in negative affect was included in the 
parameter estimates. Finally, we focused on risk appraisal of RF EMF from mobile phone 
base stations. Studies using measures such as modern health worries show that per-
ceptions of different risks are highly correlated (36) as they are presumed to be part of 
a more general overarching mental model. Thus, it remains interesting to further study 
how specific our results on risk appraisal and symptom reporting are for RF-EMF from 
base stations, as we did not consider risk appraisal of other risks.

4.6 In summary
In conclusion, this study shows that risk appraisal of mobile phone base stations is 
cross-sectionally and longitudinally associated with increased symptom reporting in a 
general population sample. This finding is of interest to public health, as non-specific 
symptoms are very common in the population, and are associated with a lower quality 
of life and increased health care use (61, 62). However, the directionality of potential 
causal relations in non-sensitive general population samples should be examined fur-
ther in future studies, providing more information to the benefit of risk communication 
strategies.
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Abstract

Psychosocial research has shown that perceived exposure can have an influence on 
symptom reporting, regardless of actual exposure. The impact of this phenomenon 
on the interpretation of results from epidemiological research of environmental de-
terminants on self-reported health is unclear and understudied. We examined the 
interplay between environmental exposures, the perceived level of these exposures, 
and reported symptoms, for three different exposures in a prospective cohort study. 
Spearman correlations between modeled and perceived exposure were substantial for 
air pollution (rSp=0.34) and noise (rSp=0.40). These findings were less distinct for radiofre-
quency electromagnetic fields (RF-EMF) (rSp=0.11). The exposures varied in the degree 
to which they can be sensorially observed, and in the plausibility of the link with dif-
ferent symptoms (non-specific, sleep, respiratory). We found that perceived exposures 
were consistently associated with increased symptom scores. In general, modeled 
exposures except RF-EMF) were associated with increased symptom scores, but these 
associations disappeared or strongly diminished when perceived exposure was added 
in the analyses. These results indicate that perceived exposure captures an additional 
element of the exposure that is not captured by modeled exposure. When environmen-
tal determinants of symptoms are studied without acknowledging the potential role of 
exposure perceptions, there is a risk of bias in the health effects attributed to modeled 
exposures. By combining recent insights from both psychosocial and epidemiological 
research, we have highlighted a range of complex issues that previously received little 
attention, yet can have important implications for interpretation of epidemiological 
associations and public health policy and intervention strategies.

Significance Statement:

We examined modeled and perceived environmental exposures to radiofrequency 
electromagnetic fields (RF-EMF), noise, air pollution in relation to symptom reporting. 
The extent to which participants could estimate their own exposure varied, depending 
on the degree to which exposure sources could be observed (noise > air pollution > RF-
EMF). Perceived exposures were more strongly related to self-reported symptoms, than 
modeled exposures. These findings show the importance of perceptions of exposures 
and psychosocial mechanisms for epidemiological research into environmental deter-
minants of self-reported health. When perceptions are ignored, there is a risk of bias in 
the health effects attributed to modeled exposures. This has important implications for 
interpreting associations between environmental exposures and self-reported health 
and for public health policy.
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1. Introduction

Radiofrequency electromagnetic fields (RF-EMF) from mobile phone base stations, 
noise exposure from road traffic, and air pollutants are environmental exposures often 
clustered in more densely populated area (1, 2). The general population is involuntarily 
exposed to these exposures, and many people have concerns about potential health 
risks. Recent studies have highlighted a complex interplay between these environ-
mental exposures, perceptions of exposure and health risks, and symptom reporting 
(3–5). For example, for residential RF-EMF exposure from mobile phone base stations 
we recently showed that perceived, but not modeled (as a proxy for actual) exposure, 
was associated with self-reported symptoms (5). For noise from road traffic and air 
pollutants, perceptions mediated the effect of exposure on symptom-based health 
outcomes (3, 4). These studies show that research into environmental determinants 
of symptom-based health outcomes can benefit from applying insights from both 
psychosocial and epidemiological research disciplines.

The current study will compare effects of RF-EMF from mobile phone base stations, noise 
and air pollutants from road traffic for the following symptom-based health outcomes: 
non-specific symptoms, sleep disturbance, and respiratory symptoms. These health 
outcomes are chosen based on variation in the plausibility of the link with the different 
environmental exposures. For environmental RF-EMF exposure, there is evidence of 
changes in sleep electroencephalography (EEG) (6), but no convincing epidemiological 
evidence for specific effects on symptom-based health outcomes, nor a known biologi-
cal mechanism (7, 8). However, people who regard themselves as electrohypersensitive 
report a wide variety of non-specific symptoms, such as headache, fatigue, and pain in 
numerous places which they attribute to EMF exposure (9, 10). Noise exposure on the 
other hand, can induce arousal, which can be observed during sleep through changes 
in EEG, heart rate, and respiration (11). Prior epidemiological studies reported associa-
tions between noise exposure and sleep disturbances e.g., (12–14), and there is also 
evidence for effects on wellbeing and an overall symptom score (15). Air pollutants can 
cause oxidative stress and an inflammatory response (16). Epidemiological studies have 
found associations between exposure to air pollutants and respiratory symptoms such 
as shortness of breath, coughing, and wheezing (17–19).

The expectation that negative health effects may occur, can itself induce symptoms 
when people think they are exposed, regardless of the actual exposure and risk (20–22). 
This is also described as nocebo-effect (which is the counterpart of placebo) (23). This 
may be a circular process, as experiencing symptoms may also influence perceptions 
of potential environmental health hazards (10, 24). Perceptions of environmental expo-
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sures, perceived health risks and worries play an important role in symptom experiences 
(25–27). The type of symptoms that are reported depends on negative expectations 
which may differ for example based on biological characteristics of the environmental 
hazard and the content of media reports (22, 28). Characteristics of a potential hazard 
can influence perception of health risks (29), but are also likely to influence percep-
tions of exposure (described as perceived exposure, or self-reported exposure). There 
are differences in the degree to which environmental exposures can be perceived by 
humans. For RF-EMF from mobile phone base stations, only the exposure source can 
be perceived (f.i. visibility of antennas on nearby buildings). While black smoke or diesel 
exhaust can sometimes be seen on windows, or smelt, there is no sensory system in 
humans that can directly perceive the level of air pollutants such as NO2. Traffic noise 
is the only exposure, in this study, which is perceived by a specific sensory system in 
humans (14) and we therefore expect higher correlations with self-reported perceived 
exposure than for air pollutants and in particular RF-EMF.

This paper applies insights from epidemiological and psychosocial research to study 
environmental determinants of symptom-based health outcomes within a prospective 

RF-EMF Noise
(traffic)

Air pollution
(traffic)
(NO2, PM2.5, PM10, NOX)

Modelled Perceived

Non-specific
symptoms

Sleep 
disturbances

Respiratory
symptoms

Symptom-
based health 

outcomes

Exposure sources

Figure 1. Analytical framework: hypothesized relations of interest between the different perceived 
and modeled environmental exposures (RF-EMF, noise, and air pollution) and symptom-based 
health outcomes (non-specific symptoms, sleep disturbances, and respiratory symptoms) in the 
AMIGO cohort
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general population cohort (AMIGO). We have formulated three research questions, with 
the purpose of achieving a better understanding of the complex interplay between 
environmental exposures, perceptions and reported symptoms: 1) Which correlation 
clusters can we identify, and to what extent are there differences in correlations be-
tween modeled exposures and their corresponding perceived exposures?; 2) What are 
the associations between modeled exposures and symptom-based health outcomes, 
and between perceived exposures and symptom-based health outcomes, and how do 
these associations change when both modeled and perceived exposures are taken into 
account simultaneously?; 3) Lastly, what is the impact on perceived exposures and on 
health outcomes, after a change in exposures due to moving to a different home? With 
these final longitudinal analyses, we aim to improve our understanding of the processes 
that underlie the relations between modeled and perceived exposures, and symptom-
based health outcomes. The hypothesized relations of interest between the different 
modeled and perceived urban environmental exposures (EMF, noise, and air pollutants) 
and symptom-based health outcomes are shown in the analytical framework in Figure 1.

2. Methods

2.1. Study population
Data for this study were collected within the Dutch population-based AMIGO cohort. 
This cohort was set up in 2011 and 2012 to study environmental and occupational 
determinants of chronic diseases and symptoms in the general population (see (46) 
for a full description). Participants were recruited through general practices, and 
were 31-65 years old at baseline (T0, 2011/2012). Of the invited 93849 people, 14829 
participants responded (participation rate=16%), referred to as the baseline cohort. A 
follow-up questionnaire was conducted in 2015 (T1, invited n=14597, response=7905; 
54%), referred to as the follow-up sample, to assess changes in exposures, exposure 
perceptions, and symptom-based health outcomes.

2.2. Symptom-based health outcomes
Self-reported symptom-based health outcomes (non-specific symptoms, sleep dis-
turbances and respiratory symptoms) were assessed with the baseline and follow-up 
questionnaires. Non-specific symptoms were assessed with the somatization scale of 
the Four-Dimensional Symptom Questionnaire (4DSQ-S) (47), which consists of 16 non-
specific somatic symptoms commonly reported in general practices (e.g. headaches, low 
back pain, and dizziness). Participants indicated for each symptom whether they were 
bothered by it during the previous week on a 5-point scale. The scores per symptom 
were trichotomized and then summed over the symptoms to obtain a total score (no= 
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0; sometimes= 1; regularly/often/constantly= 2). Sleep disturbances were measured 
with the items of the Medical Outcomes Study (MOS) (48). The sleep problem index 9 
was calculated following the instructions described in (48) as a measure of overall sleep 
quality. Higher scores indicate more sleep disturbance, or lower sleep quality. Respira-
tory symptoms were assessed with items from the European Community Respiratory 
Health Survey II (49). A measure for respiratory symptoms is calculated as the sum of 
five items based on the method used by Sunyer et al. (50). A higher respiratory score 
indicates more respiratory symptoms.

2.3. Modeled environmental exposures
The home addresses were geocoded using data from the Netherlands Cadastre, Land 
Registry and Mapping Agency (Kadaster Netherlands). The geocoded home addresses 
were linked to various spatial models to assess (modeled) exposure at the home ad-
dresses of participants as a proxy for actual exposure. Exposures were modeled for both 
the baseline (2011/2012) and follow-up (2015) home addresses. For noise and air pol-
lutants, the model estimates only changed if participants moved to a different home, as 
other input variables in the exposure models were not updated over time.

RF-EMF exposure from mobile phone base stations was modeled with the 3D-geospa-
tial model NISMap. The applicability of this model for epidemiological studies has been 
described in a number of previous studies (52–54). The model uses detailed information 
about 3D building data, topography, home coordinates, bedroom elevation, antenna 
location, antenna characteristics and radiation patterns to compute the field strength 
of GSM900 (Global System for Mobile Communication), GSM1800, and UMTS (Universal 
Mobile Telecommunications System) frequencies at the geocoded addresses in mW/
m². Information about location and characteristics of antennas was available for 2011, 
2012, and 2014. Input data closest to the questionnaire completion date was used for 
the RF-EMF baseline and follow-up estimates.

Road traffic noise exposure was estimated by the Standard Model Instrumentation for 
Noise Assessments (STAMINA), which is a model to map environmental noise from vari-
ous sources in the Netherlands (44, 55). Input variables for the calculations were noise 
sources (in this case only road traffic), building data, and ground type (f.i. asphalt) from 
the year 2011. The model takes dampening by ground and buildings into account. The 
resulting noise maps were linked to the coordinates of the home address. We used 
noise levels (dB) estimated over a whole day period (Lden), which uses penalties for 
the evening and night. In practice there is a very high correlation between whole day 
period noise estimates and night time noise estimates as shown in an earlier Dutch 
study (rSp of 0.99) (44). Uncertainty in the modelling of noise at low levels and lack of 
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information on roads with low volumes of traffic led to the introduction of a cut-off 
value of 24 dB Lden for the noise level.

Long-term residential ambient air pollutant concentrations of NO2 (nitrogen dioxide), 
NOX (total concentration of NO and NO2), PM2.5 and PM10 (particles with an aerodynamic 
diameter ≤ 2.5 µm and ≤ 10 µm, respectively) were assessed using land-use regression 
(LUR) models developed within the European Study of Cohorts for Air Pollution Effects 
(ESCAPE) (41, 43), following a standardized protocol described elsewhere (41, 43) Air 
pollution measurements used to develop the LUR models took place between 2008 
and 2011. The results section reports mainly results for NO2, as this exposure is primarily 
traffic related, corresponding with our perceived exposure measure. Results for other 
air pollutants: NOX, PM2.5, PM10 are reported in the supplements.

2.4. Perceived environmental exposure
Perceived exposure was assessed at both time points (T0, 2011/2012 and T1, 2015) 
for the environmental exposures with the question: “To what extent are you exposed 
to: (1) electromagnetic fields/radiation from base stations for mobile phones, radio or 
television; (2) noise from road traffic in your home neighbourhood; (3) air pollution in 
the residential area from road traffic?”. Answers were given on a 7-point Likert scale 
ranging from 0= not at all, to 6= very much.

2.5. Covariates
The baseline questionnaire included questions on sex, age (in years), highest attained 
level of education (classification according to Statistics Netherlands), and smoking 
(never, ever, current). We furthermore gathered information on neighbourhood income 
(percentage of income earners in the neighbourhood with an income lower than the 
40th percentile of the national income distribution) as an indication of neighbourhood 
socioeconomic position from Statistics Netherlands (56).

2.6. Statistical analyses
We reported the baseline characteristics of the study participants and descriptives for 
modeled and perceived environmental exposures (RF-EMF from mobile phone base 
stations, noise, air pollutants), as well as the various health outcomes (non-specific 
symptoms, sleep disturbances, respiratory symptoms), for the two time points used in 
this study (T0, 2011/2012 and T1, 2015). To answer the first research question, identify-
ing correlation clusters, Spearman correlations were calculated between all variables of 
interest at baseline (e.g. the correlation among all three modeled exposures, among all 
three perceived exposures, among the different symptom-based health outcomes, and 
the correlation between modeled and corresponding perceived exposure).
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To address the second research question, the associations between modeled expo-
sures, perceived exposures and the symptom-based health outcomes were analysed 
with mixed models. We performed both single predictor models (including modeled 
or perceived exposure, respectively) and two-predictor models (including modeled 
and perceived exposure simultaneously). We then used fixed effect models (57) in the 
follow-up sample to analyse temporal changes, i.e. whether intra-individual variation in 
perceived exposure was associated with intra-individual variation in health outcomes. 
Intra-individual variation in modeled exposure was not included in these fixed effect 
analyses, as there was no temporal (T0-T1) variation in modeled estimates for air pollut-
ants and noise unless participants moved to a different home address (n=592).

For the last research question, to assess the impact of a change in the environment 
on modeled, perceived exposures and symptom-based health outcomes, we analysed 
only the group of participants who had moved house between baseline and follow-up 
and had participated in both questionnaires (n=592). Only for this group there were 
participants with sufficient temporal variation in modeled exposure estimates to evalu-
ate the impact thereof on health outcomes. We first plotted the course of perceived 
exposure (means) over time for three percentile-based categories of absolute change 
(T1-T0) in modeled exposure (decrease: 0-20, no or small change: 20-80, increase: 80-
100). Finally, we performed fixed effect models for the group of movers, including both 
modeled and perceived exposures as predictors.

Perceived and modeled exposures were analysed as continuous variables with the 
exception of RF-EMF from mobile phone base stations. Because of the large percentage 
of participants with modeled RF-EMF levels at or near 0.000 mW/m², we decided to 
dichotomize based on the 90th percentile of modeled baseline exposure, with values 
≤ 0.050 mW/m² defined as low and values > 0.050 mW/m² defined as high, similar to 
Martens et. al., (2017). The health outcomes are analysed as continuous variables. All 
mixed models were adjusted for sex, age, education, smoking, neighbourhood income 
level, and for year of filling in the questionnaire (baseline/follow-up). The fixed effect 
model controls for all measured and unmeasured stable characteristics of an individual 
(57) and therefore no covariates were included in the model.

Missing values ranged between 0% and 7%. Missing values were imputed using the 
fully conditional method (FCS) in SAS. This method applied a discriminant function for 
binary/categorical variables and predictive mean matching for continuous variables. 
For all statistical analyses a p-value of 0.05 was used as the cut-off for statistical signifi-
cance. The statistical analyses were carried out using SAS (version 9.4.; SAS Institute Inc., 
Cary, NC, USA).
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3. Results

3.1. Descriptive statistics
Baseline characteristics of the AMIGO cohort participants at baseline (n=14829) and 
at the time of follow-up (n=7905) are shown in Table 1. Participants who filled in the 
follow-up questionnaire (follow-up sample) were more often higher educated, were 
less often current smokers, were on average older, and had more favorable symptom 
scores at baseline (Table 2) than the baseline cohort. The follow-up sample had similar 
scores at baseline for modeled exposures, perceived exposures and symptom scores, 
compared to the participants who participated only at baseline (Table 2). Over time, 
perceived exposures increased, and sleep disturbance and respiratory symptoms 
decreased in the follow-up sample. Modeled exposure values ranged from 0.00-3.13 
mW/m² for RF-EMF, 27.00-74.80 dB for noise, and 10.25-68.39 µg/m³ for NO2 at baseline.

3.2. Correlations
Table 3 shows the Spearman correlations between modeled environmental exposures 
(RF-EMF, noise, air pollutants), perceived exposures, and symptom-based health 
outcomes (non-specific symptoms, sleep disturbances and respiratory symptoms). 
Correlation clusters were identified among the three modeled exposures (rSp 0.18-
0.41), between modeled and corresponding perceived exposures (rSp RF-EMF= 0.11, 
noise=0.40, NO2= 0.34), among the three perceived exposures (rSp 0.42-0.76), and the 
three health outcomes (rSp 0.27-0.50).

3.3. Effects of modeled and perceived exposure on symptom-based health 
outcomes
Table 4 summarizes the results of the mixed model analyses of all perceived and mod-
eled exposures and the different symptom-based health outcomes (non-specific symp-
toms, sleep disturbances, and respiratory symptoms). Modeled RF-EMF exposure from 
mobile phone base stations was not significantly associated with respiratory symptoms 
and sleep disturbances, but was associated with lower non-specific symptom score 
in the single-predictor model. Perceived RF-EMF exposure was significantly associated 
with worse symptom-based health outcomes in all single- and two-predictor analyses.

Modeled noise exposure was significantly associated with worse scores on each symp-
tom-based health outcome in the single-predictor models. Modeled noise exposure 
was associated with less sleep disturbance in the two-predictor model. Perceived noise 
exposure was significantly associated with worse health outcomes in all single- and 
two-predictor analyses.
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Table 1. General baseline (2011/2012) characteristics for the baseline cohort (n=14829) and follow-
up sample (n=7905) in AMIGO.

Variable

Baseline cohort (n=14829) Follow-up sample (n=7905)

n % n %

Sex

	 Male 6 561 44.24 3 728 47.16

	 Female 8 268 55.76 4 177 52.84

Education

	 Low 4 714 31.79 2 246 28.41

	 Medium 4 773 32.19 2 420 30.61

	 High 5 342 36.02 3 239 40.97

Smoking status

	 Never 6 748 45.51 3 685 46.62

	 Ever 5 755 38.81 3 239 40.97

	 Current smoker 2 326 15.69 981 12.41

Mean (SD) IQR Mean (SD) IQR

age (years) 50.65 (9.37) 43.00-59.00 52.17 (9.04) 46.00-60.00

socioeconomic position (%)* 39.41 (6.92) 35.00-44.00 39.16 (6.87) 34.00-44.00

* Percentage income-earners with a low-income in the neighbourhood.

Table 2. Exposure and health outcome characteristics for the baseline AMIGO cohort (n=14829) at 
T0 (2011/2012) and for the follow-up sample (n=7905) at T0 (2011/2012) and T1 (2015).

Variable

Baseline cohort
T0 (n=14829)

Follow-up sample
T0 (n=7905)

Follow-up sample
T1 (n=7905)

Mean (SD) IQR Mean (SD) IQR Mean (SD) IQR

modeled RF-EMF (mW/m²)
modeled Noise (dB)
modeled NO2 (µg/m³)

0.02 (0.09)
53.11 (5.82)
22.11 (5.60)

0.00-0.01
49.40-56.70
18.30-25.53

0.02 (0.09)
53.15 (5.86)
22.22 (5.59)

0.00-0.01
49.40-56.70
18.44-25.64

0.03 (0.11)
53.14 (5.86)
22.19 (5.60)

0.00-0.02
49.40-56.70
18.38-25.61

perceived Base station (0-6)
perceived Noise (0-6)
perceived Air pollution (0-6)

1.05 (1.26)
1.65 (1.48)
1.83 (1.55)

0.00-2.00
1.00-2.00
1.00-3.00

1.02 (1.21)
1.62 (1.44)
1.82 (1.52)

0.00-2.00
1.00-2.00
1.00-3.00

1.22 (1.45)
1.96 (1.58)
2.17 (1.64)

0.00-2.00
1.00-3.00
1.00-3.00

Non-specific symptoms (0-32)
Sleep disturbances (0-100)
Respiratory symptoms (0-5)

5.96 (5.24)
27.18 (14.71)
0.48 (0.97)

2.00-8.00
16.11-35.56
0.00-1.00

5.66 (5.00)
26.42 (14.28)
0.44 (0.91)

2.00-8.00
15.56-33.89
0.00-1.00

5.64 (4.93)
25.40 (14.26)
0.40 (0.87)

2.00-8.00
15.56-33.33
0.00-0.00

SD=standard deviation, IQR=interquartile range, RF-EMF=radiofrequency electromagnetic fields, 
NO2=nitrogen dioxide.
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Modeled NO2 was significantly associated with worse scores on each symptom-
based health outcomes in the single predictor models and in the two-predictor 
models, although effects of NO2 diminished when perceived exposure was included 
in the two-predictor model. Perceived exposure to air pollution from road traffic was 
significantly associated with worse health outcomes in all single- and two-predictor 
analyses. Results for NOx, PM2.5, and PM10 were similar (Supplement Table S1), although 
the majority of the associations for these modeled air pollutants were not significant in 
the two-predictor models.

Table 4. Mixed model analyses of Modeled and Perceived Exposure to RF-EMF from Mobile Phone 
Base Stations, Traffic Noise and Road Traffic Air Pollution on Non-specific symptoms, Sleep dis-
turbances, and Respiratory symptoms for AMIGO respondents (n=14829, T0 = 2011/2012 and 
n=7905, T1=2015).

Non-specific symptoms
 (0-32)

Sleep disturbances
 (0-100)

Respiratory symptoms
(0-5)

β (95%CI)* p β (95%CI)* p β (95%CI)* p

RF-EMF

1 modeled (0-1) -0.23 (-0.43,-0.03) 0.026a -0.58 (-1.15,0.00) 0.051 -0.03 (-0.07,0.01) 0.096

2 perceived (0-6) 0.37 (0.32,0.40) 0.000 0.81 (0.68,0.94) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (0-1) -0.13 (-0.33,0.07) 0.201 -0.36 (-0.94,0.22) 0.222 -0.02 (-0.06,0.02) 0.305

perceived (0-6) 0.37 (0.32,0.41) 0.000 0.80(0.67,0.93) 0.000 0.04 (0.03,0.05) 0.000

Noise

1 modeled (dB) 0.02 (0.01,0.03) 0.001 0.05 (0.01,0.09) 0.008 0.00 (0.00,0.01) 0.002

2 perceived (0-6) 0.30 (0.26,0.35) 0.000 0.83 (0.72,0.95) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (dB) -0.01 (-0.03,0.00) 0.067 -0.04 (-0.08,-0.00) 0.028a -0.00 (-0.00,0.00) 0.655

perceived (0-6) 0.32 (0.28,0.36) 0.000 0.88 (0.76,1.01) 0.000 0.04 (0.03,0.05) 0.000

NO2

1 modeled (µg/m³) 0.05 (0.04,0.06) 0.000 0.15 (0.11,0.19) 0.000 0.01 (0.01,0.01) 0.000

2 perceived (0-6) 0.27 (0.23,0.31) 0.000 0.67 (0.56,0.78) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (µg/m³) 0.02 (0.01,0.04) 0.001 0.10 (0.05,0.14) 0.000 0.00 (0.00,0.01) 0.000

perceived (0-6) 0.25 (0.21,0.29) 0.000 0.59 (0.48,0.71) 0.000 0.04 (0.03,0.06) 0.000

1. These are the single predictor models for modeled exposure. 2. These are the single predictor 
models for perceived exposure. 3. These are the two-predictor models, i.e. including both modeled 
and perceived exposure.
*Adjusted for baseline values of sex, age, education, smoking, socioeconomic position, and year 
(baseline/follow-up).
RF-EMF=radiofrequency electromagnetic fields, PM= particulate matter, NO2=nitrogen dioxide.
Adverse effects are printed in bold if the p-value is lower than 0.05.
a beneficial effects with p-value below 0.05



RF-EMF, noise, air pollution. Is perception key in predicting symptoms?

131

Table 5 summarizes the results of the fixed effect analyses in which temporal changes on 
an individual basis (between T0 and T1) in perceived exposure were related to changes 
in symptom reporting for the follow-up sample (n=7905). For all environmental expo-
sures, changes in perceived exposure were significantly associated with corresponding 
change in non-specific symptoms. Change in perceived RF-EMF exposure from base 
stations and noise exposure was significantly associated with a corresponding change 
in sleep disturbance. Change in perceived air pollution from road traffic was signifi-
cantly associated with a corresponding change in respiratory symptoms.

Table 5. Fixed effect analyses for effects of intra-individual changes in Perceived Exposure to Mobile 
Phone Base Stations, Noise and Air Pollution on intra-individual changes in Non-specific symp-
toms, Sleep disturbances, and Respiratory symptoms for AMIGO respondents (n=7905) who 
participated at T0 (2011/2012) and T1 (2015).

Non-specific symptoms
(0-32)

Sleep disturbances
(0-100)

Respiratory symptoms
(0-5)

Β (95%CI)* p Β (95%CI)* p Β (95%CI)* p

Perceived Base station (0-6) 0.16 (0.10, 0.22) 0.000 0.19 (0.01, 0.36) 0.042 0.01 (-0.00,0.02) 0.161

Perceived Noise (0-6) 0.07 (0.01, 0.13) 0.021 0.21 (0.03, 0.39) 0.019 0.01 (-0.01,0.02) 0.311

Perceived Air pollution (0-6) 0.04 (0.02, 0.10) 0.184 0.08 (-0.09, 0.25) 0.344 0.01 (0.00,0.03) 0.049

Adverse effects are printed in bold if the p-value is lower than 0.05.

3.4. Effects of a change of environment
In total 1224 (8.25%) participants moved to a different home address between baseline 
in 2011/2012 (T0) and the follow-up questionnaire in 2015 (T1); of these, 592 partici-
pants filled in both questionnaires. This change of environment sometimes resulted in 
changed modeled and perceived exposures. Moved participants were categorized into 
three percentile based categories of change in absolute modeled exposure (decrease: 
0-20 percentile, no change: 20-80, increase: 80-100). The cut-off points of the categories 
for the absolute change in modeled exposure are presented in Supplement Table S2. 
Figure 2 presents the course of mean perceived exposures over time for these three 
categories. For the group of participants with an increase in modeled exposure, the 
corresponding average perceived exposure increased as well in the same time period, 
in particular for NO2 and noise. For the participants with a decrease in modeled expo-
sure, the corresponding average perceived exposure decreased as well over time for 
noise and NO2, but not for RF-EMF, which remained the same. Supplement Table S3 
shows that intra-individual variation in perceived exposures and modeled exposures 
were not significantly associated with any intra-individual variation in symptom-based 
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health outcomes, except for perceived RF-EMF, which was significantly associated with 
intra-individual variation in non-specific symptoms and sleep disturbance.

4. Discussion

In this prospective cohort study, we examined the interplay between three modeled 
and perceived environmental exposures (RF-EMF from mobile phone base stations, 
noise and air pollutants from road traffic) and three symptom-based health outcomes 
(non-specific symptoms, sleep disturbances, and respiratory symptoms).
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Figure 2. Course of mean perceived exposures (a= RF-EMF, b =Noise, c= NO2) over time (T0 
=2011/2012, T1 = 2015) for AMIGO respondents who moved house between T0 and T1 (n=592) for 
percentile based categories (0-20, 20-80, 80-100) of absolute change in the corresponding mod-
eled exposure.
* For each exposure (a=RF-EMF, B=noise, c=NO2), moved participants were divided in three per-
centile based categories (decrease: 0-20, no or small change in modeled exposure: 20-80, increase: 
80-100) of the absolute change in modeled exposure between baseline and follow-up (see supple-
ment table S3).
RF-EMF=radiofrequency electromagnetic fields and NO2=nitrogen dioxide.
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4.1. Interpretation results

Correlation clusters
First, we found substantial correlation clusters among the three modeled exposures, 
the three perceived exposures and three different symptom-based health outcomes. 
Further, it seems that beliefs of participants about their exposure level to noise and air 
pollutants corresponded to some extent with their modeled exposure level, whereas 
this was not apparent for RF-EMF. In line with previous work (5), we found low correla-
tions between modeled and perceived exposure to RF-EMF from mobile phone base 
stations. The low levels of knowledge regarding RF-EMF in the general population (30) 
likely plays a role. An additional factor is that RF-EMF exposure cannot be perceived 
directly by a sensory system, while noise and in part air pollution exposure can (14). 
As expected, we found much higher correlations between modeled and perceived 
exposure for noise exposure from traffic (1). For air pollution from road traffic, correla-
tions between modeled and perceived exposure were only slightly lower than for noise 
exposure. Perhaps familiarity with the link between road traffic and air pollutants, the 
visibility of nearby roads and the smell of exhaust gave participant an indication of the 
level of air pollutants near the home. As expected, we found correlations among mod-
eled exposures, likely due to the clustering of exposures in urbanized areas. Correlation 
clusters among perceived exposures could be explained by a general environmental 
health worry factor (31), as well as the clustering of actual exposures. Correlations 
among health outcomes may be partly explained by underlying factor, representing 
a general tendency to report symptoms (32). The presence of substantial correlation 
clusters among modeled exposures, perceived exposures, and health outcomes, im-
plicates that disentanglement of different exposures and their individual health effects 
may prove difficult in epidemiological research.

Effects of modeled and perceived exposure on symptom-based health outcomes
Modeled RF-EMF was not associated with higher symptom scores, which is in line with 
earlier conducted studies (5, 33, 34). For modeled noise exposure, prior studies on self-
reported health (12–14) indicated that noise is mainly associated with increased sleep 
disturbances, and air pollutants mainly with respiratory symptoms (17–19). The results 
of single predictor models in this study confirm the presence of significant adverse ef-
fects of noise and air pollutants on symptom scores. Contrary to our expectations, these 
health effects extended across all assessed health outcomes, even those not previously 
reported in literature. However, the results were notably different in the two-predictor 
models, that included both modeled and perceived exposures. Significant adverse 
effects of modeled exposures on health outcomes generally disappeared (noise) or 
severely diminished (NO2), when perceived exposure was included in the model. In two 
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analyses (Table 4: effect of RF-EMF on non-specific symptoms, effect of noise on sleep 
disturbance) we found unexpected beneficial effects of modeled exposures, but these 
effects were small and possibly coincidental findings. The associations with symptom 
scores indicate a greater maximum impact of perceived than modeled exposure on 
symptom scores, for both single- and two-predictor models (as is shown in Supple-
mentary Table S4). These findings indicate that perceptions of exposures can play an 
important role when studying environmental determinants of symptom-based health 
outcomes.

High scores on perceived exposures are likely to be in part the result of features of the 
environment that also drive modeled exposure levels (such as the proximity of nearby 
roads). In addition, worries about potential health effects of the specific exposure, and 
worries about environmental risks in general (25), can influence perceived exposure 
scores. A part of the cohort participants moved to a new home (n=592), and therefore 
changed their residential environment which affected their modeled exposure levels. 
For this group, we found that a substantial increase or decrease in modeled exposure 
with respect to noise and air pollution (NO2) was coupled with a simultaneous increase, 
respectively decrease in the corresponding perceived exposure (Figure 2). This longitu-
dinal evidence strengthens the conclusion that participants are to some extent aware 
of, and able to estimate, the level of these two environmental exposures in their resi-
dential environment. The observed relation with change in perception was less distinct 
for RF-EMF from mobile phone base stations. Here, risk perception and health concerns 
appear to influence perceived exposure to a greater extent than exposure cues such as 
visibility of nearby base stations.

In the group of follow-up participants (n=7905), change in perceived exposures 
was significantly positively associated with change in most symptom-based health 
outcomes in the fixed effect analyses. This finding was not replicated in the smaller 
group of moved participants (n=592), except for positive effects of change in perceived 
RF-EMF on change in non-specific symptoms and sleep disturbance. However, due to 
the small number of movers, the power to detect such associations was limited in this 
subgroup. A change in perceived exposure in a new residential environment can be 
important given the associations between higher exposure perception and increased 
symptom scores, which were in line with earlier studies (3, 4, 35, 36).

The implications of these findings in combination with the role of modeled exposures 
depend on the underlying causal mechanisms. The framework with the hypothesized 
relationships between the variables we assessed in this study is shown in figure 1. A 
causal link from the exposure source both to modeled exposure (as a proxy of the true 



RF-EMF, noise, air pollution. Is perception key in predicting symptoms?

135

exposure level) and to perceived exposure is plausible(37), based on observability of 
exposure sources, and supported by the results of this study. For exposures that can be 
sensorially observed (f.i. noise) sensitivity and annoyance can play role as mediator (4) 
in the association between perceived exposure and symptom scores. In addition, there 
is sufficient evidence for the existence of nocebo effects (20, 22, 38), to support a causal 
link between perceived exposure and reported symptoms through negative health 
expectations when participants think they are exposed. If such nocebo effects occur in 
this population, mediation effects of modeled exposure on symptom scores through 
perceived exposure would be likely. Such mediation mechanisms can have an impact 
on epidemiological studies examining environmental determinants of symptom-based 
health outcomes. When perceived exposure is not taken into account, indirect health 
effects through perceived exposure may be incorrectly ascribed to modeled environ-
mental exposures. However, the importance of such mediation mechanisms could 
be overestimated. Nocebo mechanisms have been mainly studied in laboratory and 
field-experiment studies, but the extent to which they are important for associations 
between perceived exposures and reported symptoms in the general population is 
unknown. Mechanisms of reversed causation may also play a role. For example, par-
ticipants with health problems with an unknown cause may become more aware of 
environmental exposures in their environment, and incorrectly start attributing these 
to environmental sources (10, 39, 40). They experience and report their perceived 
exposure levels differently than healthy participants, which often is described as recall 
bias in epidemiological research and can be a problem in cross-sectional research and 
case-control studies. In this longitudinal study, with the use of a qualitative measure 
of perceived exposure, that is intended to capture the subjective experience of self-
reported exposure, it perhaps is better described as a process of reversed causation. 
Depending on characteristics of the individual, but also features of the environment, 
such as recent changes in exposure versus a stable situation, different processes un-
derlying causal mechanisms of the link between exposure perceptions and symptom 
experiences could be important. Clarifying the underlying mechanisms is of great in-
terest and importance for both epidemiological and psychosocial research disciplines, 
because of the implications for the interpretation of the relationships between the 
environment, perception, and symptom experiences. In addition, the need for effec-
tive public health intervention measures and policy implications varies depending on 
the importance of different mechanisms. Intervention measures targeted at reducing 
negative health expectations will only be effective in reducing symptom scores if the 
nocebo mechanism is the main explanation for the associations between exposure 
perception and reported symptoms.
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4.2. Strengths and Limitations
The study had a large study sample for studying the symptom-based health outcomes 
of interest. In addition, there were observations at two points in time, allowing for 
longitudinal analyses for a subset of participants. Thirdly, all studied exposures were 
modeled using validated geospatial models that have been used in previous epidemio-
logical research (41–44). These models do not require manual data-collection, allowing 
for research in large country-wide cohort studies. A limitation of the current study was 
that we only had modeled estimates for noise and air pollutants for one point in time 
(i.e. baseline), because input data for the models was not available for different years. 
Although estimates for noise and air pollutants would have improved slightly with new 
input data, large changes in exposure are not expected in this relatively short time 
frame. Eeftens et. al. (2011) showed that NO2 decreased only slightly between 1997 
and 2007 and correlations were high (45). Another limitation concerns RF-EMF, where 
we modeled exposure from mobile phone base stations while perceived exposure also 
included radio and tv base stations, because we expected people to not be familiar 
with differences between mobile phone and radio/tv base stations. However, given 
that mobile phone base stations are by far more present in residential areas, we expect 
this to dominate perceived RF-EMF levels.

4.3. Conclusion
Our study covered three environmental exposures, both modeled and perceived, and 
three symptom-based health outcomes. Correlations between modeled and perceived 
exposures appeared to be influenced by the observability of the exposure sources. Due 
to correlation clusters among modeled and perceived exposures, and among health 
outcomes, disentangling the effects of individual environmental exposures on health 
is a methodological challenge. Perceived exposures were consistently associated with 
increased symptom scores. In general, modeled exposures (except RF-EMF) were asso-
ciated with increased symptom scores, but these associations disappeared or strongly 
diminished when perceived exposure was also added as a predictor. Under the reason-
able assumption that perceived exposure is not a better proxy of the actual exposure 
than modeled exposure, these results would indicate that perceived exposure captures 
an additional element of the exposure that is not captured by the modeled exposure. 
When environmental determinants of symptoms are studied without acknowledging the 
potential role of these exposure perceptions, there is a risk of biasing the health effects at-
tributed to modeled exposures. However, the etiological role of exposure perceptions in 
relation to symptom reporting requires further research. By combining insights from epi-
demiological and psychosocial research we have highlighted a range of complex issues 
that previously received little attention, but which can have important implications for 
interpretation of associations of interest, public health policy and intervention strategies.
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Supplementary tables

Table S1. Mixed model analyses of Modeled and Perceived Exposure to Air pollutants (NO2, NOX, 
PM2.5, PM10) on Non-specific symptoms, Sleep disturbances, and Respiratory symptoms for 
AMIGO respondents (n=14829, T0 = 2011/2012 and n=7905, T1=2015).

Non-specific symptoms
(0-32)

Sleep disturbances
 (0-100)

Respiratory symptoms
(0-5)

β (95%CI)* p β (95%CI)* p β (95%CI)* p

NO2

1 modeled (µg/m³) 0.05 (0.04,0.06) 0.000 0.15 (0.11,0.19) 0.000 0.01 (0.01,0.01) 0.000

2 perceived (0-6) 0.27 (0.23,0.31) 0.000 0.67 (0.56,0.78) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (µg/m³) 0.02 (0.01,0.04) 0.001 0.10 (0.05,0.14) 0.000 0.00 (0.00,0.01) 0.000

perceived (0-6) 0.25 (0.21,0.29) 0.000 0.59 (0.48,0.71) 0.000 0.04 (0.03,0.06) 0.000

NOx

1 modeled (µg/m³) 0.02 (0.01,0.03) 0.000 0.05 (0.03,0.07) 0.000 0.00 (0.00,0.01) 0.000

2 perceived (0-6) 0.27 (0.23,0.31) 0.000 0.67 (0.56,0.78) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (µg/m³) 0.01 (-0.00,0.01) 0.153 0.01 (-0.01,0.04) 0.236 0.00 (-0.00,0.00) 0.068

perceived (0-6) 0.26 (0.22,0.30) 0.000 0.65 (0.53,0.77) 0.000 0.04 (0.03,0.05) 0.000

PM2.5

1 modeled (µg/m³) 0.20 (0.09,0.32) 0.001 0.59 (0.26,0.92) 0.000 0.02 (0.00,0.04) 0.041

2 perceived (0-6) 0.27 (0.23,0.31) 0.000 0.67 (0.56,0.78) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (µg/m³) 0.08(-0.04,0.19) 0.197 0.28 (-0.05,0.61) 0.096 0.00 (-0.02,0.02) 0.870

perceived (0-6) 0.27 (0.23,0.31) 0.000 0.66 (0.54,0.77) 0.000 0.04 (0.03,0.05) 0.000

PM10

1 modeled (µg/m³) 0.24 (0.16,0.32) 0.000 0.63 (0.40,0.86) 0.000 0.04 (0.02,0.05) 0.000

2 perceived (0-6) 0.27 (0.23,0.31) 0.000 0.67 (0.56,0.78) 0.000 0.04 (0.03,0.05) 0.000

3 modeled (µg/m³) 0.08 (-0.00,0.17) 0.056 0.25 (0.01,0.49) 0.044 0.01 (-0.00,0.03) 0.117

perceived (0-6) 0.26 (0.22,0.30) 0.000 0.64 (0.52,0.75) 0.000 0.04 (0.03,0.05) 0.000

1. These are the single predictor models for modeled exposure. 2. These are the single predictor 
models for perceived exposure. 3. These are the two-predictor models, i.e. including both modeled 
and perceived exposure.
*Adjusted for baseline values of sex, age, education, smoking, socioeconomic position, and year.
NO2=nitrogen dioxide, NOx = nitrogen oxide and PM=particulate matter.
Adverse effects are printed in bold if the p-value is lower than 0.05.
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Table S2. Mean, minimum and maximum absolute change in modeled exposures for the different 
percentile based categories (0-20, 20-80, 80-100) for AMIGO respondents (n=592) who moved to a 
different home address between T0 (2011/2012) and T1 (2015).

Exposure

Mean absolute 
change for 
each category

Minimum absolute 
change for each 
category

Maximum 
absolute change 
for each category

RF-EMF (mW/m²)

	 Decrease (percentile 0-20) -0.078 -0.870 -0.010

	 No or small change (percentile 20-80) 0.003 -0.010 0.0280

	 Increase (percentile 80-100) 0.157 0.0290 1.417

Noise (dB)

	 Decrease (percentile 0-20) -10.308 -24.780 -6.100

	 No or small change (percentile 20-80) -0.047 -6.100 5.400

	 Increase (percentile 80-100) 9.686 5.400 20.500

NO2 (µg/m³)

	 Decrease (percentile 0-20) -7.859 -27.382 -4.081

	 No or small change (percentile 20-80) -0.371 -4.050 2.756

	 Increase (percentile 80-100) 6.872 2.770 31.779

RF-EMF=radiofrequency electromagnetic fields and NO2=nitrogen dioxide
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Table S3. Fixed effect analyses of effects of Modeled and Perceived Exposure to Mobile Phone Base 
Stations, Noise and Air Pollution on Non-specific symptoms, Sleep disturbances, and Respira-
tory symptoms for AMIGO respondents (n=592) that moved between baseline (2011/2012) and 
follow-up (2015) questionnaire.

Non-specific symptoms
(0-32)

Sleep disturbances
 (0-100)

Respiratory symptoms
(0-5)

β (95%CI)* p β (95%CI) * p β (95%CI) * p

RF-EMF Modeled (0-1) 0.42 (-0.26,1.11) 0.226 -0.03 (-2.05,1.99) 0.977 0.09 (-0.06,0.25) 0.237

Perceived (0-6) 0.30 (0.08,0.52) 0.008 0.71 (0.05,1.36) 0.034 -0.00 (-0.05,0.05) 0.893

Noise Modeled (dB) -0.04 (-0.09,0.01) 0.100 -0.13 (-0.28,0.01) 0.074 -0.00 (-0.01,0.01) 0.526

Perceived (0-6) -0.03 (-0.22,0.16) 0.735 0.03 (-0.52,0.59) 0.902 -0.01 (-0.05,0.04) 0.777

NO2 Modeled (µg/m³) -0.07 (-0.13,-0.01) 0.029a -0.16 (-0.34,0.02) 0.079 -0.00 (-0.02,0.01) 0.499

Perceived (0-6) -0.08 (-0.27,0.11) 0.394 0.24 (-0.31,0.79) 0.394 -0.01 (-0.04,0.04) 0.926

NOx Modeled (µg/m³) -0.01 (-0.04,0.02) 0.548 -0.04 (-0.13,0.04) 0.306 0.00 (-0.00,0.01) 0.517

Perceived (0-6) -0.11 (-0.30,0.08) 0.262 0.21 (-0.35,0.76) 0.466 -0.01 (-0.05,0.03) 0.739

PM2.5 Modeled (µg/m³) 0.19 (-0.43,0.82) 0.541 -0.14 (-1.98,1.70) 0.880 -0.07 (-0.21,0.07) 0.311

Perceived (0-6) -0.13 (-0.32,0.06) 0.176 0.16 (-0.40,0.72) 0.571 -0.00 (-0.04,0.04) 0.995

PM10 Modeled (µg/m³) -0.10 (-0.40,0.20) 0.519 -0.61 (-1.49,0.28) 0.180 -0.00 (-0.07,0.07) 0.992

Perceived (0-6) -0.10 (-0.29,0.09) 0.282 0.24 (-0.32,0.80) 0.402 -0.00 (-0.05,0.04) 0.835

RF-EMF=radiofrequency electromagnetic fields, NO2=nitrogen dioxide, NOx = nitrogen oxide and 
PM= particulate matter.
Adverse effects are printed in bold if the p-value is lower than 0.05.
a beneficial effects with p-value below 0.05
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Table S4. Comparison of effect sizes based on the Mixed effect model analyses of Modeled and 
Perceived Exposure to RF-EMF from Mobile Phone Base Stations, Traffic Noise and Road Traffic Air 
Pollution on Non-specific symptoms, Sleep disturbances, and Respiratory symptoms for AMI-
GO respondents (n=14829, T0 = 2011/2012 and n=7905, T1=2015).

Non-specific symptoms
(0-32)

Sleep disturbances
(0-100)

Respiratory symptoms
(0-5)

Predictors maximum modeled effect on symptoms (maximum effect as percentage of the 
baseline mean)

RF-EMF

1 modeled (0-1) -0.23 (-3.9%) -0.58 (-2.1%) -0.033 (-7.1%)

2 perceived (0-6) 2.21 (37.2%) 4.84 (17.8%) 0.042 (8.9%)

3 modeled (0-1) -0.13 (-2.2%) -0.36 (-1.3%) -0.021 (-4.4%)

perceived (0-6) 2.20 (37.0%) 4.81 (17.7%) 0.042 (8.9%)

Noise

1 modeled (dB) 0.49 (8.2%) 1.16 (4.3%) 0.004 (0.8%)

2 perceived (0-6) 1.83 (30.8%) 5.00 (18.4%) 0.040 (8.6%)

3 modeled (dB) -0.30 (-5.0%) -1.01 (-3.7%) -0.001 (-0.1%)

perceived (0-6) 1.91 (32.2%) 5.29 (19.5%) 0.041 (8.7%)

NO2

1 modeled (µg/m³) 1.09 (18.4%) 3.39 (12.5%) 0.009 (1.8%)

2 perceived (0-6) 1.62 (27.3%) 4.03 (14.8%) 0.043 (9.0%)

3 modeled (µg/m³) 0.55 (9.2%) 2.10 (7.7%) 0.005 (1.0%)

perceived (0-6) 1.50 (25.3%) 3.56 (13.1%) 0.038 (8.1%)

Nox

1 modeled (µg/m³) 0.82 (13.8%) 2.01 (7.4%) 0.004 (0.8%)

2 perceived (0-6) 1.62 (27.3%) 4.03 (14.8%) 0.043 (9.0%)

3 modeled (µg/m³) 0.24 (4.0%) 0.55 (2.0%) 0.001 (0.3%)

perceived (0-6) 1.57 (26.5%) 3.91 (14.4%) 0.040 (8.5%)

PM2.5

1 modeled (µg/m³) 0.48 (8.1%) 1.40 (5.1%) 0.022 (4.6%)

2 perceived (0-6) 1.62 (27.3%) 4.03 (14.8%) 0.043 (9.0%)

3 modeled (µg/m³) 0.18 (3.0%) 0.66 (2.4%) 0.002 (0.4%)

perceived (0-6) 1.60 (26.9%) 3.93 (14.5%) 0.042 (9.0%)
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Table S4. (continued)

Non-specific symptoms
(0-32)

Sleep disturbances
(0-100)

Respiratory symptoms
(0-5)

PM10

1 modeled (µg/m³) 0.83 (14.0%) 2.19 (8.1%) 0.037 (7.9%)

2 perceived (0-6) 1.62 (27.3%) 4.03 (14.8%) 0.043 (9.0%)

3 modeled (µg/m³) 0.29 (4.8%) 0.85 (3.1%) 0.012 (2.7%)

perceived (0-6) 1.55 (26.1%) 3.81 (14.0%) 0.040 (8.6%)

The maximum impact of the predictors on symptom scores was calculated by multiplying the range 
of the predictor values with the regression coefficients. The percentage in brackets represents the 
maximum impact of the predictors as a percentage of the mean symptom score at baseline. RF-
EMF=radiofrequency electromagnetic fields, NO2=nitrogen dioxide, NOx = nitrogen oxide and PM= 
particulate matter. * For continuous predictors the range was calculated as the 97.5th percentile 
minus the 2.5th percentile to exclude impact of extreme values.
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8.0.	General discussion

The introduction of mobile phone base stations in the society has led to concerns about 
the potential health effects of this new exposure among citizens (1) and scientists (2). 
The aim of this thesis was to improve the understanding of the associations between 
modelled (as a proxy of actual) and perceived exposure to RF-EMF from mobile phone 
base stations in relation to self-reported health outcomes. The findings showed that 
perceptions of exposure to RF-EMF from mobile phone base stations, and perceptions 
of health risks, play an important role in self-reported health outcomes, in contrast to 
modelled exposure. Through the application of recent insights from epidemiological 
and psychosocial research in a longitudinal research design, this thesis contributed to 
advancing the knowledge in this field. This chapter will discuss the overall findings, 
ongoing developments, and the impact for research and society.

8.1.	 Exposure assessment
This thesis addressed the challenging task of characterizing an individual’s RF-EMF ex-
posure from mobile phone base stations in epidemiological studies. Geospatial model 
(NISMap) predictions at the home address were compared with personal measurements 
in two separate studies (3, 4). The results showed that modelling exposure at the home 
address is a suitable method for exposure assessment in epidemiological studies. The 
impact of participants’ mobility on the accuracy of the model estimations was limited. 
However, there was still substantial misclassification. As high exposure levels are rare, 
misclassification is potentially problematic because epidemiological studies then need 
a very large sample size to have sufficient power to detect health effects, especially 
when the studied health outcome is rare, or the potential health effect is very small 
(5). In this thesis exposure misclassification probably did not impede the results of the 
study to a great extent, as the studied health issues (self-reported symptoms) were 
common and the sample relatively large (almost 15000 participants from the AMIGO 
cohort (6), in 2011 and 2012). Modelling exposure, rather than measuring, has advan-
tages for epidemiological research because an increase in the number of participants 
does not come with a linear cost increase.

Further improvements in exposure assessment would aid future epidemiological stud-
ies. Improvements may be achieved by improvements in the accuracy of model input 
data, such as more accurate 3D building data and information about the location and 
characteristics of antenna’s (7, 8). In the future, modelling far field RF-EMF exposure 
may become more challenging, as there is an ongoing change in technology use from 
the application of large macro stations to more micro stations and femtocells (9). The 
output power of these stations is lower, but the number needed for adequate mobile 
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phone service is much larger, and it may be more difficult to gather accurate input data 
for model estimations. New technologies may also offer opportunities for improved 
exposure assessment. The location of study participants can be continuously tracked 
through their mobile phone (10, 11). Then, exposure is modelled not only at the home 
address, but at every location the participant has spent some time (for example at work, 
or visiting a friend), potentially leading to improvement in the accuracy of exposure 
assessment. The use of this method is not likely to lead to huge gains, given the limited 
impact of time spent outside the home on the accuracy of the model estimations in 
this thesis. However, more substantial improvements in accuracy may be achieved for 
participant groups who spend more time outside the home than participants in our 
measurement studies (chapter 2 & 3). When such methods are applied, there should 
be ethical discussions about the privacy implications of such methods, as proper ano-
nymization of individual data may not always be possible (12). Ethical considerations 
are important in particular when this method is applied in combination with adaptive 
health tracking, for example by requesting participants to fill in questions about their 
health when their exposure is above a certain level (11). Invited participants may feel 
uncomfortable with this type of data collection and refuse to participate, although 
recruiting participants was not a problem in a recent study that applied this method 
(11). Low participation rates are a major problem in many recent studies, lowering the 
generalizability of the findings. On the other hand, mobile phone technology may pro-
vide opportunities to improve recruitment of demographic groups that are currently 
often underrepresented in questionnaire based research, such as younger participants, 
participants with a lower socioeconomic position and ethnic minorities (11, 13). These 
demographic groups were also underrepresented in the AMIGO cohort.

8.2.	 Risk appraisal and Attribution
Previous studies have shown that perceptions of environmental exposures and health 
risks can play a role in symptom reporting (14–16). In this study, a minority of the 
participants indicated that they were thought they were exposed to RF-EMF from 
mobile phone base stations (AMIGO cohort 2011/2012, mean = 1.0, SD= 1.2, on a scale 
of 0-6) or that exposure could be a health risk (AMIGO cohort 2011/2012, mean = 1.3, 
SD= 1.5, on a scale of 0-6). In previous studies in the Netherlands (17, 18) and other 
countries (1, 19–22) participants often reported relatively higher scores on measures of 
perceived exposure, perceived risk, or concerns regarding health risks of EMF. Different 
factors may have played a role, for example the recruitment strategy. The number of 
participants who are concerned about EMF may be higher when health risks of EMF or 
other technologies are an explicit focus of invitation letters to participate in research. 
Also, cultural and social factors, including alarming media reports (23) can influence the 
public perception of EMF risks and lead to different perceptions in different countries. 
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Although the perception of mobile phone base stations was not as negative as in some 
other studies, the portion of the population with high risk appraisal was still substantial. 
High risk appraisal is related to lower trust in the responsible authorities (18), and risk 
appraisal can also be a factor in protest actions against the placement of new mobile 
phone base stations (24). In addition, there is a link with increased symptom scores, 
as was shown in chapter five to seven (25). As recent epidemiological studies do not 
indicate health risks at every day levels of exposure, high risk appraisal seems inap-
propriate, based on current knowledge. Therefore, intervention measures targeted at 
informing people, to achieve a more accurate level of risk appraisal, may help to reduce 
the potentially negative consequences of high risk appraisal.

Despite the substantial portion of participants with high risk appraisal, the number of 
participants who attributed health problems to EMF was very low. In 2011/2012, only 
88 (0.6%) participants attributed health problems to any EMF source, and in later years 
most of these participants no longer attributed health problems to EMF, showing little 
temporal consistency of attributions (21). Previous studies found prevalence rates of 
self-reported electro hypersensitivity ranging from 1,5-13.3% in different countries (26, 
27). The low levels of attribution found in this study may have been an underestimation 
due to the way the question was worded in the questionnaires. Participants were first 
asked whether they currently experienced any health problem which they thought 
had an environmental cause, and only participants who replied to this question with 
“yes” received a list with potential environmental causes including EMF sources. By 
presenting the question this way, it is likely that only people who were very certain that 
EMF caused health problems showed up as attributors in the statistics. On the other 
hand, prevalence rates of attribution may have been overestimated in other studies 
through oversampling of electro hypersensitive participants, or due to the phrasing 
of the attribution question. Attribution rates may sometimes include participants who 
were uncertain about the cause of their health problems, and considered that EMF may 
have contributed to them when presented with this option, but who did not have prior 
concerns about EMF health risks. Because of the influence of the wording of questions 
on the prevalence rates in different studies, it is difficult to compare the results of differ-
ent studies and to objectively assess the prevalence of attribution of health problems 
to EMF. Studies may want to carefully think about the wording of questions in their 
questionnaire, and reflect on the influence thereof.

It is important to distinguish between risk appraisal and attribution rates when examin-
ing the public perception of mobile phone base stations. Even when attribution rates 
are low, there may be widespread misconceptions about exposure levels and health 
risks from mobile phone base stations. High levels of risk appraisal can have conse-
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quences for public health and satisfaction of residents with their neighborhood, as well 
as for the acceptance of mobile phone base stations in residential areas.

Risk appraisal scores of mobile phone base stations may be in part be an expression of 
a more general perception toward potential environmental hazards and modern tech-
nologies, rather than a specific concern about mobile phone base stations. Studies of 
modern health worries previously found correlations between risk appraisal of different 
risks (28), and in chapter seven perceived exposure of mobile phone base stations was 
compared with perceived exposure of other potential environmental health hazards in 
the living environment. Perceived exposure of mobile phone base stations was strongly 
positively correlated with perceived exposure of noise and air pollution from road traffic. 
In part, this may be due to the clustering of environmental exposures in urban regions, 
and thus reflect correlations in actual exposures (29). On the other hand, more general 
beliefs about environmental risks, subject characteristics, and personal life experiences 
influence the interpretation of information about new potential health hazards (30–33). 
That is reflected in correlations among risk appraisal, including exposure perceptions, 
of different exposures in chapter seven. Risk judgment can also be driven by general 
beliefs about environmental risks, rather than a specific mental model including only 
information about base stations, and that has implications for interventions targeting 
risk appraisal of mobile phone base stations. It may be more difficult to influence health 
risk perceptions of specific potential environmental hazards such as mobile phone base 
stations, when these are largely an expression of a more general environmental worry.

8.3.	 Modelled and perceived exposure
This thesis showed that there is a very low correlation between modelled exposure and 
perceived exposure to RF-EMF from mobile phone base stations, indicating that most 
people cannot accurately estimate their own exposure. This is in line with evidence 
from recent experimental studies with sham exposure (34, 35), showing that people 
cannot report exposure levels better than chance. In observational studies, higher cor-
relations between modelled (as a proxy of actual) and perceived exposure could be 
expected because participants may get clues about their exposure levels through the 
visibility of nearby base stations. In chapter seven we discussed that the observability of 
the exposure source, as well as knowledge of, or familiarity with the exposure, is likely to 
influence the extent to which participants are able to estimate their own exposure, and 
therefore the correlations between modelled and perceived exposures. It seems that 
the presence or absence of exposure cues has a limited impact on participants’ estima-
tions of exposure to mobile phone base stations. Other factors, such as risk perception 
and health concerns likely had a greater impact on perceived exposure levels.
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For noise and air pollution from road traffic, which are environmental exposures with 
a more visible exposure source, the correlation between modelled and perceived 
exposure was much higher. The presence of moderate correlations between modelled 
and perceived (self-reported) exposures indicates that these cannot always be seen as 
conceptually separate predictors of health outcomes. Because the underlying causal 
mechanisms are not fully clear, this complicates the analysis of environmental determi-
nants of self-reported health outcomes. In that perspective, RF-EMF from mobile phone 
base stations is an interesting exposure, because the low correlations with perceived 
exposure allow for the interpretation of modelled and perceived exposure as concep-
tually separate predictors in an observational cohort study. Observational studies are 
a valuable addition to existing experimental studies and qualitative research, as they 
allow for the generalization of results to real-life situations in a representative sample.

The perception of exposures can also be influenced by the presence of health problems 
(often described as recall bias), as well concerns about potential health risks (30). In 
the circumstance of an exposure-related change in the environment, these factors can 
have an impact on the likelihood that this environmental change is noted. Modelled 
RF-EMF exposure from mobile phone base stations at the home address could change 
over time when new antennas were added or removed, or when participants moved 
to a different home. For people with a substantial increase in modelled exposure in 
a given year, perceived exposure increased in that same year, as opposed to people 
with small changes or a decrease in modelled exposure. Possibly these people noted 
the visual change in the environment that caused the higher RF-EMF exposure. Other 
explanations could be that people noticed announcements in newspapers or other 
media, or that they heard about the change from neighbors (24). So, even though 
participants were generally not able to accurately estimate their own RF-EMF expo-
sure, it appears that participants could notice changes in the environment related to 
changed RF-EMF exposure. Also for other exposures (noise and air pollution from road 
traffic) exposures changes after moving to a new home were often accompanied by 
corresponding changes in perceived exposures, showing that people can be aware of 
exposure-related changes in their environment.

8.4.	 Health outcomes
The results of chapter five to seven showed that not modelled, but perceived RF-EMF 
from mobile phone base stations was consistently associated with increased symptom 
scores. Because of the accurate exposure assessment and longitudinal design, this study 
reduced the existing uncertainty about potential health effects of RF-EMF from mobile 
phone base stations. Nevertheless, the results cannot exclude the possibility that there 
may be small effects on symptom scores in specific subgroups, or effects at much 
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higher exposure levels, or that there are effects on other health outcomes that were 
not studied in this thesis. In addition, the presence of mobile phone base stations could 
have indirect effects on symptom scores through risk appraisal, but the importance of 
such mediation mechanisms depends on the underlying mechanisms. The maximum 
impact of such mechanisms is limited, because participants were generally not aware 
of the presence of base stations in the vicinity of their home. This was reflected by the 
low correlation between modelled and perceived exposure (rSp=0.11), but also by a low 
correlation between distance to the nearest antenna and perceived exposure levels 
(rSp=0.14). However, mediation mechanisms may play a larger role when there is an 
increase in exposure, as increases in modelled exposure was accompanied by increases 
in perceived exposure. Then, there may be long-lasting (30) effects on risk appraisal, 
and possibly indirectly also on symptom scores and mental health. To understand the 
underlying mechanisms and the temporal directionality of the relations between risk 
appraisal and symptom scores these were examined in chapter six.

The results of chapter six indicate that higher symptoms may precede high levels of 
concern about the potential health effect of exposure to RF-EMF from mobile phone 
base stations, as well as vice versa. Multiple mechanisms are likely to play a role simul-
taneously, including nocebo processes, as well as increased environmental monitoring 
and awareness by participants with many symptoms (30, 32, 36, 37). These findings from 
chapter six are valuable because they show that bidirectional associations between risk 
appraisal and symptom scores may exist in general population samples, even though 
the mean risk appraisal levels were relatively low. Nevertheless, a better understanding 
is needed of the relative importance of different mechanisms, as they occur in society, 
as this has important implications for intervention strategies. Interventions targeting 
high risk appraisal and negative health expectations will only be effective in reduc-
ing symptom burden if the nocebo mechanism is the main causal pathway for the 
association with symptom scores. In contrast, if increased environmental awareness 
and incorrect attribution play a large role, then interventions targeting risk appraisal are 
unlikely to be effective in reducing the symptom burden.

The relative importance of different mechanisms could not be determined in this study, 
despite the longitudinal design. In part, this was due to general population study setup. 
There was no specific event or intervention that could result in change in the mean 
population levels of modelled and perceived exposure and/or symptom scores. Also, 
symptoms can be temporary and recurrent, but no data was available on the dura-
tion of reported symptoms throughout the study period. The questionnaires provide 
snapshots of symptom experiences but there was no data on the intermittent periods. 
Intermittent periods of both symptom experiences and high risk appraisal may have 
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occurred unnoticed between the timing of different questionnaires. Future studies 
may improve by increasing the number of measurements. A large number of measure-
ments with short time intervals may allow for easier identification of temporal relations 
between the different variables. Even then, observational studies have their limitations, 
because important factors cannot be controlled, contrary to experimental research. 
However, results from experimental research cannot easily be translated to society, and 
the number of factors that can be studied simultaneously is limited. To understand the 
role of important political and cultural factors, a sociological approach may be better 
suited. In summary, a combination of different research approaches is needed. Com-
munication between different research disciplines may contribute to achieving a better 
understanding of the different processes that play a role.

One of the main health outcomes in this thesis was the overall score on the 4DSQ-s 
symptom questionnaire. In order to interpret the results of this study, it is important to 
understand what this symptom score means. In psychology, a high symptom score on 
this type of questionnaires is often interpreted as a possible indication of a somatoform 
disorder. In the past, a distinction was made between patients with symptoms with a 
known medical explanation, and patients with symptoms without a known medical ex-
planation, for which a psychogenic cause could be assumed. This distinction was hard 
to make in practice, and studies (38–40) have shown that somatic symptoms have a 
substantial impact on daily functioning and health care use, regardless of the presence 
or absence of a known medical explanation for these symptoms. In many cases, both 
biological and psychosocial factors will play a role in symptom experiences (41, 42). In 
this thesis, the focus is on health effects on the overall symptom score, a combination 
of both number of symptoms and intensity of these symptoms. The overall symptom 
score does not provide specific information about which specific symptoms, or patterns 
of symptoms are associated with perceived exposure to mobile phone base stations. 
An association between environmental exposure and groups of symptoms, but not all 
symptoms, is common when there are biological mechanisms that specifically cause 
that type of symptoms. However, also when perceived exposure is responsible for 
increased symptoms it is possible to find associations with some, but not all symptoms. 
Psychosocial factors, such as knowledge and expectations about the exposure can 
influence the type of symptoms that people report (23, 43). Chapter 5 also includes 
results of analyses with individual symptoms as outcome variables. Not only was per-
ceived exposure associated with a higher overall symptom score, but also with nearly 
all measured individual symptoms such as headache, dizziness, chest pain, and back 
pain. A disadvantage of these analyses, using either the total symptom score, or the 
presence or absence of individual symptoms, is that it ignores the underlying structure 
of the symptom questionnaire. An analysis of the total symptom score cannot provide 
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insight into whether only some individual symptoms, or specific groups of symptoms, 
such as musculoskeletal symptoms are affected. Analyses of all individual symptoms 
separately ignores the dependencies among different symptoms, with an increased 
chance of false discoveries. Chapter four examined the factor structure underlying the 
4-DSQ-s symptom questionnaire (44). A bi-factor structure fit the data well. This model 
assumes that scores on the questionnaire items are in part due to general factor. i.e. 
representing a general tendency to report symptoms, and in part due to a number 
of specific factors. Ideally the underlying factor structure of the questionnaire would 
be taken into account when analyzing effects of perceived and modelled exposure 
to achieve a better insight into the specificity of effects on self-reported symptoms. 
This calls for the development of new analytical techniques that can easily be used in 
applied research.

8.5.	 Implications for future research
There have been many studies into the potential health effects of RF-EMF exposure, 
and so far, there seems little reason for concern. This raises the question of whether 
more similar follow-up research is an efficient use of the available resources. Some un-
certainty about health effects remains due to inaccuracies in exposure assessment and 
the difficulty of studying health effects that may occur only in sensitive subgroups of 
the population. As long as there is no known biological mechanism pointing to specific 
health effects, continued epidemiological research may be inefficient to identify small 
effects, or effects in small subgroups. However, research in this area must be prepared 
for rapid technological and societal changes in the field of mobile technology, that 
may alter the potentiality for health effects. In addition, there is the possibility of indi-
rect effects of RF-EMF exposure sources on symptom scores through risk appraisal, in 
particular when people experience involuntary changes that affect perceived and/or 
actual exposure in their residential environment. The occurrence of such indirect effects 
may also be effected by technological changes. The design of the network architecture 
for mobile networks in residential areas, as well as the local procedures for required 
permits, may influence the levels of risk appraisal. With the upcoming introduction of 
new mobile 5G networks, and the phasing out of older networks, levels of risk appraisal 
in the general population and indirect effects on symptom scores could change. There 
is a trend toward the use of micro stations and femtocells, which are less likely to be 
noticed by residents, but greater in number.

There are also ethical arguments for continued research into health effects of RF-EMF. 
A substantial portion of the population is still concerned about the potential health 
effects of RF-EMF. The availability of accurate and up-to-date information through 
continued research, may contribute to sustaining trust of the general population in 
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the responsible authorities. At the same time, presenting the research findings in the 
media itself can increase the health concerns in the population (23), which is an unde-
sirable effect if these health concerns are unnecessary, especially if these concerns may 
increase symptom burden.

An extension of the analytical approach for RF-EMF exposure to other environmental 
exposures and symptom scores showed similar results regarding the role of exposure 
perceptions, with important implications for epidemiological and psychosocial research 
into environmental determinants of self-reported health outcomes. Chapter seven 
in this thesis examined three environmental exposures (RF-EMF from mobile phone 
base stations, noise from road traffic, and air pollution from road traffic). In contrast to 
RF-EMF, modelled noise and air pollutants were generally associated with increased 
symptom scores, regardless of the type of symptoms that were assessed. Similarly, 
perceived exposure was consistently associated with increased symptom scores. High 
perceived environmental exposures were also correlated with their corresponding 
modelled exposures, especially in the case of noise and air pollution from road traffic. 
When both modelled and perceived exposure were analyzed as predictors in a single 
model, the effect of modelled exposure generally disappeared or severely diminished. 
Prior epidemiological studies may have incorrectly ascribed significant effects of actual 
exposure on symptom scores by ignoring the role of risk appraisal. However, it is uncer-
tain to what extent this kind of bias occurs, especially because much is unknown about 
the relative importance of the underlying causal psychosocial mechanisms. Here lies an 
important role for psychosocial research.

8.6.	 Recommendations for society
This thesis did not find any direct effects of RF-EMF exposure levels in the residential 
environment on symptom based health outcomes. Based on these findings is unnec-
essary to take efforts to reduce RF-EMF exposure from mobile phone base stations. 
This thesis focused on symptom based health outcomes only, and can therefore not 
exclude the possibility that there may be other health effects, or health effects in sensi-
tive subgroups of the population. However, the availability of scientific evidence from 
other reliable sources currently gives no reason for concern regarding health effects of 
actual exposure to RF-EMF from mobile phone base stations.

A substantial portion of the AMIGO cohort indicated that they think exposure to RF-EMF 
is high and are concerned about its potential health effects. These people are at risk of 
increased symptom scores (25, 45). There can be many factors influencing symptom 
reporting (39, 42), and often the causes of an individuals’ symptom experiences are 
unknown. Because everyone occasionally experiences some of these symptoms, such 
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as headache or back pain, higher symptom scores may not appear like a large health 
issue. However, regardless of whether the causes are known, people who experience 
more symptoms report a lower quality of life and more health care use, and therefore 
preventive measures are needed (38, 40, 42). Citizens who search for health information 
about RF-EMF often find alarming and inaccurate information on the internet. It is im-
portant to improve the public access to accurate and accessible information to prevent 
unnecessary concerns. In specific situations which may provoke public resistance, such 
as the placement of new base stations, it could help to actively communicate with the 
public about health information. Previous research (46) found that people often feel 
that the information they receive is not tailored to their needs, for example because it 
was overly focused on technical information or procedures, rather than address their 
concerns about health effects or effects on property values. At the same time, actively 
providing information about health risks can sometimes inadvertently increase health 
concerns especially when trust in the responsible authorities is low (23, 47). Therefore, a 
balance should be found between actively and passively providing health information 
about RF-EMF exposure.
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English summary

Technological changes have led to a rapid increase in the use of mobile technology. 
This is coupled with an increase in the number of mobile phone base stations that 
emit radiofrequency electromagnetic fields (RF-EMF). There are concerns about the 
potential health effects of this exposure among experts and citizens. Some people at-
tribute symptoms such as headaches and dizziness to RF-EMF exposure. Up until now, 
scientific studies have not shown convincing evidence of adverse health effects associ-
ated with RF-EMF exposure in the everyday environment. Psychosocial mechanisms 
can also play a role in symptom experiences, but the exact role of such mechanisms 
in the general population in combination with the role of actual exposure is not clear. 
Uncertainty about the potential health effects remains, in part due to the unavailability 
of accurate exposure assessment methods that are feasible for use in epidemiological 
research. The aim of this study was to assess the role of both modelled (an objective 
estimate of actual) and perceived exposure to RF-EMF from mobile phone base stations 
in non-specific symptom reporting. The study applied a longitudinal study design that 
combined insights from recent epidemiological and psychosocial studies.

To achieve this aim, we first examined the applicability of a geospatial model (NISMap) 
for use in epidemiological research. We assessed whether an estimation of RF-EMF 
exposure from mobile phone base stations at the home address, corresponds with 
personal exposure levels. We compared model predictions at the home address with 
personal 24h and 48h measurements in two separate measurement studies. Chapter 
two and three showed that this model can be used to meaningfully rank individuals 
on exposure levels (correlation between 48h measurements and model predictions: 
rSp=0.47). The model was more accurate than previously used methods such as estimat-
ing the distance between the nearest antenna and the home. Nevertheless, there was 
considerable exposure misclassification, reducing the power to detect health effects 
and implying a need for large sample sizes in epidemiological studies. The application 
of geospatial models instead of alternative methods such as area measurements with 
interpolation, or personal measurements has advantages. Obtaining the required data 
does not require labour-intensive measurements, and an increase in the number of 
participants or the size of the modeled geographical area does not come with a linear 
increase in the cost of data collection, unlike personal measurements. These advantages 
make geospatial models such as NISMap attractive for use in epidemiological research.

In the second part of this thesis, data was analyzed from the Dutch AMIGO cohort. 
Exposure to RF-EMF from mobile phone base stations was modeled at the home ad-
dress of AMIGO participants using the geospatial model NISMap. Over time, the model 
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estimations were updated with new data regarding the locations and characteristics 
of antennas, and with updated information about the home address of participants. 
Questionnaires were sent out in 2011/2012, 2013, 2014, and 2015 to obtain repeated 
information on perceived exposure, risk perception, health concerns, and symptom 
experiences.

AMIGO participants were asked to what extent they thought they were exposed to RF-
EMF from mobile phone base stations. A majority (approximately 75%) of our respon-
dents choose a score of 0 or 1 on a scale of 0-6, which indicates that most participants 
thought their exposure to RF-EMF was low. A sizable minority (approximately 25%) 
reported higher levels of perceived exposure. Participants were also asked whether 
they thought that this exposure could be a health risk, and if they were concerned 
about their personal health because of RF-EMF exposure from mobile phones. Most 
participants did not indicate that RF-EMF exposure was a great health risk, and most 
were not highly concerned about the potential health risks of RF-EMF exposure. People 
who thought they were exposed to RF-EMF from mobile phone base stations more 
often thought that this exposure could be a health risk, and were also more likely to 
be concerned about the potential health risks of this exposure. These three percep-
tions were grouped under the term risk appraisal in this thesis. Differences between 
elements of risk appraisal and their role in individual health responses to mobile phone 
base stations were discussed in chapter six. Mean levels of risk appraisal varied across 
subjects with different subject characteristics. Women, participants with a high educa-
tion, and participants with high trait negative affect (a tendency to experience negative 
emotions) reported higher levels of risk appraisal.

To evaluate the extent to which participants can accurately estimate their own exposure 
the questionnaire information on perceived exposure was compared with the model 
estimates. There was a weak correlation between modelled and perceived exposure 
(rSpearman=0.10). Probably, the fact that exposure cannot be sensed directly contributed 
to the low correlation. In addition, the exposure sources; antenna’s, are not always vis-
ible from the home. Furthermore, the lack of public knowledge about RF-EMF exposure 
from mobile phone base stations likely contributed to the low correlation. Finally, 
exposure misclassification may explain the low correlation with perceived exposure to 
some extent. Chapter seven also compares correlations between modelled and per-
ceived exposures for other environmental exposures, namely noise (rSpearman=0.40) and 
air pollution (rSpearman=0.34) from road traffic. Here, much higher correlations between 
modelled exposure and their corresponding perceived exposures were observed, in 
particular for noise. In the case of noise from road traffic, this exposure can be directly 
perceived by the auditory system. Also, the exposure source itself, road traffic in the 
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residential environment, is easily identified. For air pollution from road traffic, the 
exposure source is the same as for noise, but the exposure itself cannot be directly 
perceived. Sometimes smell can be an indication of air pollution, but smell is not an 
accurate proxy of exposure to particulate matter from road traffic. In summary, depend-
ing on the observability of the exposure, or the exposure source, there is variation in the 
extent to which participants can estimate their exposure levels. It was possible to also 
analyze the impact of a change in exposure, for participants who moved to a different 
home, or because of updated model estimations over time. In the case of changes in 
modelled exposures the data indicated that these changes are often accompanied by 
corresponding changes in perceived exposures, showing that people can be aware of 
exposure-related changes in their environment.

Chapter five evaluates the impact of both modelled and perceived exposure to RF-EMF 
from mobile phone base stations on self-reported health outcomes. Modelled RF-EMF 
exposure from mobile phone base stations was not associated with self-reported 
symptoms. If such health effects exist at every day levels of exposure, they are likely to 
be small, or to occur (only) in sensitive subgroups of the population (that have not yet 
been identified). In contrast, higher risk appraisal of mobile phone base stations was 
consistently associated with reporting higher symptom scores in chapter five and six. 
The temporal directionality of the effects was examined in chapter six. There was some 
evidence of bidirectional temporal associations between risk appraisal and symptom 
scores. The results of chapter six indicate that higher symptom scores may temporally 
precede higher levels of concern about the potential health effect of exposure to RF-
EMF from mobile phone base stations, as well as vice versa. No such temporal associa-
tions were found for other indicators of risk appraisal. This finding implies that multiple 
mechanisms are likely to play a role simultaneously, including nocebo processes (no-
cebo: the expectation that negative health effects may occur can have an adverse 
impact on symptom experiences). In addition, mechanisms in the opposite causal 
direction can play a role. For example, participants with many symptoms may monitor 
their environment more actively (increased environmental monitoring), and become 
more aware of suspected potential causes of their symptoms. These participants may 
report and recall exposures differently than healthy participants, also described as recall 
bias in epidemiological research.

For noise and air pollution from road traffic, modelled exposures were associated 
with increased symptom scores, as was shown in chapter seven. However, perceived 
exposures showed overall stronger associations with symptom scores than modelled 
exposures. For perceived, and generally also for modelled exposures, associations with 
symptom scores were not specific to individual symptoms or symptom scores. Effects 
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were relatively greater for non-specific symptom scores than for more specific outcomes 
(sleep disturbance and respiratory symptoms). The lack of specificity of health effects 
means it is difficult to disentangle health effects of modelled and perceived exposures. 
When biological mechanisms are responsible for health effects, it seems more likely that 
health effects would be specific for individual symptoms or groups of symptoms, rather 
than general effects on all measured symptoms. However, specific health effects are 
also possible when perceived exposure is responsible for increased symptom scores, 
for example when specific negative health expectations arise after media reports. In the 
case of RF-EMF, the potential biological mechanisms are unknown, and it is uncertain 
what kind of health effects can be expected. The general approach in epidemiological 
analyses is then to either analyze effects on an overall symptom score, or on individual 
symptoms. Neither of these approaches are ideal, as was discussed in chapter four, 
because they do not take into account that multiple factors that play a role in symp-
tom reporting. Chapter four analyzed the factor structure of the 4-DSQ-s symptom 
questionnaire and showed that a bi-factor structure fitted the data well. In this model, 
there is a general factor underlying symptom scores, as well as specific factors. Ideally, 
statistical analyses would separate effects of predictors on general symptom reporting 
from effects on specific symptom reporting, but in practice this is difficult.

When both modelled and its corresponding perceived exposure were included as 
predictors in a single model, the impact of modelled exposures on symptom scores 
disappeared or strongly diminished. The interpretation of these findings depends on 
the relative importance of the mechanisms underlying the associations between risk 
appraisal and symptom scores. In part, for participants with high risk appraisal the 
expectation that negative health effects may occur can have an adverse effect on 
symptom experiences (nocebo) when participants think they are exposed. Because of 
the apparent influence of actual exposure sources (and therefore exposure, with mod-
elled exposure as a proxy) on perceived exposure, especially in the case of changes in 
exposure, it seems that there may be indirect effects of exposure on symptom scores. 
The direct health effects of exposures may then be biased in epidemiological studies 
when risk appraisal is not taken into account. On the other hand, if processes such as 
increased environmental monitoring are mainly responsible for associations between 
risk appraisal symptom scores, the implications for interpretation, policy, and effective 
interventions are different, as was discussed in chapter eight.
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Conclusion

The results did not show evidence of adverse effects of exposure to RF-EMF from mobile 
phone base stations on symptom reporting. Risk appraisal does play an important role 
in symptom reporting, but the etiological role is not fully clear. Risk appraisal appears 
to be influenced by exposure cues in the residential environment, and the presence 
of these exposure cues may have indirect effects on health through an increase in risk 
appraisal. This thesis raises a series of important questions for epidemiological and 
psychosocial research disciplines, with potential major implications for interpretation of 
research findings and policy. Further integration of different research disciplines may in 
the future contribute to reaching new insights into the relative importance of different 
causal mechanisms.
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Technologische veranderingen hebben geleid tot een snelle toename in het gebruik 
van mobiele telefoons. Dat gaat gepaard met een toename in het aantal zendmasten 
voor mobiele telefonie. Deze zendmasten zenden radiofrequente elektromagnetische 
velden (RF-EMF) uit, waaraan de omgeving wordt blootgesteld. Zowel onder experts als 
in de algemene populatie bestaan er zorgen over de mogelijke gezondheidseffecten 
van deze blootstelling.
Sommige mensen hebben gezondheidsklachten zoals hoofdpijn en duizeligheid die zij 
toeschrijven aan RF-EMF blootstelling. Tot nu toe is er geen overtuigend wetenschap-
pelijk bewijs van negatieve gezondheidseffecten door RF-EMF blootstelling in de da-
gelijkse leefomgeving. Psychosociale mechanismen kunnen ook een rol spelen in het 
ervaren van gezondheidsklachten, maar de precieze rol van zulke mechanismen in de 
algemene populatie, in combinatie met de rol van werkelijke blootstelling is niet duide-
lijk. Tot nu toe is er nog steeds onduidelijkheid over de mogelijke gezondheidseffecten. 
Ten dele komt dat door het ontbreken van nauwkeurige methoden om de blootstelling 
te bepalen, die geschikt zijn voor gebruik in epidemiologisch onderzoek. Het doel van 
deze studie was om de rol van gemodelleerde (een objectieve schatting van de wer-
kelijke) en ervaren blootstelling aan RF-EMF van zendmasten voor mobiele telefonie 
te onderzoeken in relatie tot het rapporteren van aspecifieke gezondheidsklachten. 
Daarvoor is een longitudinale onderzoeksopzet toegepast, waarbij inzichten uit recent 
epidemiologisch en psychosociaal onderzoek werden toegepast en gecombineerd.

In het eerste deel van dit project hebben we onderzocht of een georuimtelijk model 
(NISMap) geschikt is voor gebruik in epidemiologisch onderzoek. We hebben geana-
lyseerd of een schatting van blootstelling gebaseerd op het huisadres goed overeen-
stemde met het persoonlijke blootstellingsniveau. Daarvoor hebben we twee aparte 
studies gedaan, waarin de modelschattingen op het huisadres werden vergeleken 
met persoonlijke metingen (meetperiodes van 24 uur/48 uur). Hoofdstuk twee en drie 
hebben aangetoond dat NISMap in staat is om individuen betekenisvol te rangschik-
ken naar blootstellingsniveau (de Spearman correlatie tussen 48 uurs metingen en 
modelschattingen was 0.47). Deze methode is nauwkeuriger dan eerder toegepaste 
methoden zoals het schatten van de afstand tussen de dichtstbijzijnde antenne en het 
huis. Echter, er is wel sprake van substantiële misclassificatie. Dit zorgt dat epidemio-
logische studies minder kans hebben om een bestaand gezondheidseffect te vinden, 
en daarom zijn er grote aantallen studiedeelnemers nodig. Er zijn voordelen aan het 
gebruik van georuimtelijke modellen ten opzichte van alternatieve methoden zoals 
het gebruik van persoonlijke metingen, of de interpolatie van gemeten blootstelling 
op verschillende punten. Er is namelijk minder personeel nodig dat veel tijd moet be-
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steden aan het uitvoeren van de metingen. Ook nemen de kosten van dataverzameling 
niet lineair toe naarmate er meer deelnemers zijn, of de deelnemers verspreid zijn over 
een groter geografisch gebied. Dankzij deze voordelen is het aantrekkelijk om georuim-
telijke modellen zoals NISMap te gebruiken in epidemiologisch onderzoek.

In het tweede deel van deze scriptie is data geanalyseerd van het Nederlandse AMIGO 
(Arbeid, Milieu, en Gezondheid Onderzoek) cohort. De blootstelling aan RF-EMF van 
zendmasten voor mobiele telefonie werd gemodelleerd met het georuimtelijke model 
NISMap. Gedurende de tijd zijn de modelschattingen geüpdatet met nieuwe informa-
tie over de locaties en kenmerken van antennes, en met nieuwe informatie over het 
huisadres van de deelnemers. De deelnemers hebben ook uitnodigingen ontvangen 
om deel te nemen aan vragenlijsten, in 2011/2012, 2013, 2014, en 2015. Zo konden we 
herhaalde informatie vergaren over ervaren blootstelling, risicoperceptie, zorgen over 
gezondheidseffecten, en ervaren gezondheidsklachten.

Aan de AMIGO deelnemers is gevraagd in welke mate zij denken te worden bloot-
gesteld aan RF-EMF. Een meerderheid (ca 75%) van de deelnemers koos een waarde 
van 0 of 1 op een schaal van 0 tot 6. Dit geeft aan dat de meeste deelnemers dachten 
dat hun blootstelling laag was. Er was wel een grote minderheid (ca 25%) die hogere 
niveaus van ervaren blootstelling rapporteerden. Er werd ook aan de deelnemers ge-
vraagd of ze dachten dat blootstelling een gezondheidsrisico kon zijn, en of zij zich 
zorgen maakten over de mogelijke gevolgen van blootstelling voor hun eigen gezond-
heid. De meeste deelnemers dachten niet dat RF-EMF een groot risico vormt voor de 
gezondheid, en waren ook niet bezorgd over de mogelijke gevolgen voor hun eigen 
gezondheid. Mensen die rapporteerden dat hun blootstelling hoog was, dachten ook 
vaker dat blootstelling een gezondheidsrisico was, en maakten zich meer zorgen over 
de gevolgen voor hun eigen gezondheid. Deze drie gerapporteerde percepties zijn 
gegroepeerd onder de term risicobeleving. Verschillen tussen deze elementen van ri-
sicobeleving en in hun rol in het rapporteren van gezondheidsklachten zijn besproken 
in hoofdstuk zes. De gemiddeld gerapporteerde niveaus van risicobeleving varieerde 
tussen deelnemers met verschillende persoonskenmerken. Vrouwen, deelnemers met 
een hogere opleiding, en deelnemers die over het algemeen veel negatieve emoties 
ervaren rapporteerden hogere niveaus van risicobeleving.

Om te evalueren in welke mate deelnemers in staat zijn om zelf hun blootstellings-
niveau in te schatten hebben we de vragenlijst informatie over ervaren blootstelling 
vergeleken met de modelschattingen. Er was een zwakke samenhang tussen gemodel-
leerde en gemeten blootstelling (rSpearman=0.10). Wat waarschijnlijk heeft bijgedragen 
aan de zwakke samenhang is het feit dat het niet mogelijk is om blootstelling direct 
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zintuiglijk waar te nemen. Daarnaast zijn de blootstellingsbronnen (zendmasten) niet 
altijd goed zichtbaar in de woonomgeving. Ook kan een gebrek aan kennis (over RF-
EMF blootstelling) in de samenleving een rol spelen bij de zwakke samenhang tussen 
gemodelleerde en ervaren blootstelling. Ten slotte is het mogelijk dat misclassificatie 
van gemodelleerde blootstelling een rol speelde. In hoofdstuk zeven is ook voor 
andere omgevingsblootstellingen de samenhang tussen gemodelleerde en ervaren 
blootstelling onderzocht, namelijk voor geluid (rSpearman=0.40) en luchtvervuiling (rSpear-

man=0.34) van wegverkeer in de woonomgeving. De samenhang tussen gemodelleerde 
en ervaren blootstelling was hier veel sterker. In het geval van geluid zal het een rol 
spelen dat het mogelijk is om deze blootstelling direct zintuiglijk waar te nemen (te 
horen). Ook is het eenvoudig mogelijk om te bron van de blootstelling (wegverkeer) 
te identificeren. De bron van de blootstelling was gelijk voor luchtvervuiling, maar de 
blootstelling zelf kan minder makkelijk worden waargenomen, hoewel geur soms een 
indicatie kan geven dat men is blootgesteld aan luchtvervuiling. Kortom, afhankelijk 
van de mate waarin de blootstelling, of de bron, kan worden waargenomen, is er vari-
atie in de mate waarin deelnemers hun blootstelling kunnen inschatten. Voor een deel 
van de deelnemers was het mogelijk om te onderzoeken in welke mate verandering in 
de gemodelleerde blootstelling invloed had op de ervaren blootstelling. De resultaten 
laten zien dat verandering in gemodelleerde blootstelling vaak gepaard gaat met cor-
responderende veranderingen in ervaren bloostelling. Dit toont aan dat mensen zich 
bewust kunnen zijn van blootstelling gerelateerde veranderingen in hun omgeving.

In hoofdstuk vijf wordt de impact van zowel gemodelleerde als ervaren blootstelling 
aan RF-EMF van zendmasten op het rapporteren van gezondheidsklachten onder-
zocht. Gemodelleerde RF-EMF blootstelling hing niet samen met zelf-gerapporteerde 
gezondheidsklachten. Als zulke gezondheidseffecten bestaan, dan zijn ze waarschijnlijk 
klein, of treden ze alleen op in bepaalde gevoelige groepen in de samenleving (zulke 
groepen zijn tot nu toe niet geïdentificeerd). In tegenstelling tot gemodelleerde bloot-
stelling waren ervaren blootstelling en risicobeleving consistent geassocieerd met het 
rapporteren van hogere klachtenscores in hoofdstuk vijf en zes. In hoofdstuk zes is ook 
de richting van deze verbanden over de tijd onderzocht. We hebben enig bewijs ge-
vonden van het bestaan van verbanden tussen risicobeleving en klachtenscores over 
de tijd in beide richtingen. Hogere klachtenscores gingen vooraf aan het rapporteren 
van meer zorgen over de eigen gezondheid, maar ook het omgekeerde verband werd 
gevonden. Voor de andere elementen van risicobeleving zijn niet zulke effecten over 
de tijd gevonden. Het is waarschijnlijk dat diverse psychosociale mechanismen een rol 
spelen bij het verband tussen risicobeleving en klachten. Zo spelen nocebo processen 
mogelijk een rol, wat inhoudt dat de verwachting dat negatieve gezondheidseffecten 
zouden kunnen optreden een ongunstige impact heeft op gezondheidsklachten. 
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Daarnaast kunnen mechanismen in de tegenovergestelde causale richting een rol 
spelen. Deelnemers met veel gezondheidsklachten zijn mogelijk meer bezig met het 
actief volgen van hun omgeving, en worden ze zich dan meer bewust van mogelijke 
omgevingsoorzaken van hun gezondheidsklachten. Deelnemers met veel gezond-
heidsklachten kunnen blootstelling anders ervaren en rapporteren dan gezonde 
deelnemers, wat ook omschreven wordt als recall bias in epidemiologisch onderzoek.

In tegenstelling tot gemodelleerde RF-EMF was er sprake van samenhang tussen 
gemodelleerde blootstelling aan geluid en luchtvervuiling door wegverkeer, en een 
toename aan gezondheidsklachten, zoals aangetoond in hoofdstuk zeven. Echter, 
de samenhang tussen ervaren blootstellingen en gezondheidsklachten was sterker 
voor alle onderzochte omgevingsblootstellingen (RF-EMF, geluid, en luchtvervuiling). 
Als we kijken naar het soort klachten dat samenhing met ervaren en gemodelleerde 
blootstellingen, was daarin geen duidelijk patroon van individuele of groepen klach-
ten te ontdekken. Gezondheidseffecten leken sterker voor aspecifieke klachten (een 
uitkomstmaat bestaande uit allerlei gezondheidsklachten) dan voor meer specifieke 
uitkomstmaten (slaapproblemen en respiratoire symptomen). Omdat de gevonden 
gezondheidseffecten aspecifiek zijn is het lastig om deze te ontwarren, en toe te 
schrijven aan specifieke gemodelleerde of ervaren blootstellingen. Als biologische 
mechanismen verantwoordelijk zijn voor gezondheidseffecten, is het aannemelijk dat 
er specifieke gezondheidseffecten optreden, in plaats van slechts aspecifieke effecten. 
Specifieke gezondheidseffecten zijn echter ook mogelijk als ervaren blootstelling 
verantwoordelijk is voor een toename in gezondheidsklachten, bijvoorbeeld als er 
specifieke negatieve verwachtingen optreden na berichten in de media. De potentiele 
biologische mechanismen zijn onbekend in het geval van RF-EMF, en het is onzeker wat 
voor soort gezondheidseffecten zouden kunnen optreden. In zo’n geval is de typische 
aanpak in epidemiologisch onderzoek om een uitkomstmaat te gebruiken bestaande 
uit een totaalscore van gezondheidsklachten, ofwel om effecten op individuele klach-
ten te analyseren. Beide benaderingen hebben nadelen, zoals besproken in hoofdstuk 
vier, omdat er geen rekening wordt gehouden met de vele factoren die een rol kunnen 
spelen bij het rapporteren van klachten. Hoofdstuk vier analyseert de factor structuur 
van de 4-DSQ-s vragenlijst voor gezondheidsklachten, en laat zien dat een bi-factor 
structuur met zowel een algemene factor als een aantal specifieke factoren goed bij de 
data past. Idealiter zouden statistische analyses effecten van determinanten op het rap-
porteren van klachten in het algemeen scheiden van effecten op specifieke factoren, 
maar in de praktijk blijkt dit lastig te zijn.

De associaties tussen gemodelleerde blootstellingen en het rapporteren van gezond-
heidsklachten verdwenen meestal wanneer de bijbehorende ervaren blootstelling 
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ook werd meegenomen in het model. Alleen het effect van de ervaren blootstelling 
op gezondheidsklachten was dan significant. De interpretatie van deze bevinding is 
afhankelijk van het relatieve belang van de verschillende mogelijke verklaringen voor 
de relatie tussen risicobeleving en gezondheidsklachten. Ten dele kan het nocebo 
mechanisme een rol spelen als men denkt te worden blootgesteld, en verwacht dat 
deze blootstelling mogelijk ongunstige gezondheidseffecten kan hebben. Omdat de 
aanwezigheid van blootstellingsbronnen (en dus blootstelling) invloed lijkt te hebben 
op ervaren blootstelling, in het bijzonder wanneer er sprake is van veranderingen in 
blootstelling, kan het zijn dat de aanwezigheid van blootstellingsbronnen indirect 
invloed heeft op gezondheidsklachten. De directe effecten van blootstelling kunnen 
dan verkeerd worden ingeschat in epidemiologisch onderzoek, als er geen rekening 
wordt gehouden met de rol van risicobeleving van de deelnemers. Daarentegen, als 
omgekeerde causale mechanismen juist een belangrijke rol spelen, heeft dat andere 
implicaties voor de interpretatie, beleid, en effectieve interventies, zoals beargumen-
teerd in hoofdstuk acht.

Conclusie

De resultaten tonen geen bewijs van negatieve effecten van blootstelling aan RF-EMF 
van zendmasten op gezondheidsklachten. Risicobeleving speelt wel een belangrijke 
rol bij het rapporteren van gezondheidsklachten, maar de etiologische rol is nog niet 
volledig duidelijk. Risicobeleving lijkt te worden beïnvloed door de aanwezigheid van 
blootstellingsindicatoren in de leefomgeving, en deze blootstellingsindicatoren kun-
nen zo indirect effect hebben op de gezondheid via toegenomen risicobeleving. Dit 
onderzoek werpt een aantal belangrijke vragen op voor zowel epidemiologisch als 
psychosociaal onderzoek, met mogelijk grote implicaties voor de interpretatie van 
onderzoeksbevindingen en beleid. In de toekomst kan verdere integratie van verschil-
lende onderzoek disciplines mogelijk bijdragen aan het bereiken van nieuwe inzichten 
in het relatieve belang van de verschillende causale mechanismen die een rol spelen bij 
het rapporteren van (mogelijk) omgeving gerelateerde gezondheidsklachten.
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