
Cut and Count and Representative Sets on
Branch Decompositions
Willem J. A. Pino1, Hans L. Bodlaender∗2, and
Johan M. M. van Rooij3

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
w.j.a.pino@students.uu.nl

2 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, and
Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands
H.L.Bodlaender@uu.nl

3 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, and
Consultants in Quantitative Methods, Eindhoven, The Netherlands
jmmrooij@cs.uu.nl

Abstract
Recently, new techniques have been introduced to speed up dynamic programming algorithms
on tree decompositions for connectivity problems: the ‘Cut and Count’ method and a method
called the rank-based approach, based on representative sets and Gaussian elimination. These
methods respectively give randomised and deterministic algorithms that are single exponential
in the treewidth, and polynomial, respectively linear in the number of vertices. In this paper,
we adapt these methods to branch decompositions yielding algorithms, both randomised and
deterministic, that are in many cases faster than when tree decompositions would be used.

In particular, we obtain the currently fastest randomised algorithms for several problems on
planar graphs. When the involved weights are O(nO(1)), we obtain faster randomised algorithms
on planar graphs for Steiner Tree, Connected Dominating Set, Feedback Vertex Set
and TSP, and a faster deterministic algorithm for TSP. When considering planar graphs with
arbitrary real weights, we obtain faster deterministic algorithms for all four mentioned problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Graph algorithms, Branchwidth; Treewidth, Dynamic Programming,
Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.27

1 Introduction

It is well known that many problems that are NP-hard on general graphs, become polynomial
or linear time solvable on graphs where the treewidth or branchwidth is bounded by a
constant. More precisely, many problems are fixed parameter tractable with treewidth or
branchwidth as parameter. For an overview regarding treewidth, e.g., see [1] .

∗ Hans L. Bodlaender was partially supported by the Networks project, funded by the Dutch Ministry of
Education, Culture and Science through NWO.

© Willem J.A. Pino, Hans L. Bodlaender, and Johan M.M. van Rooij;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 27; pp. 27:1–27:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Cut and Count and Representative Sets on Branch Decompositions

Table 1 Our results using the ‘Cut and Count’ (randomised) and rank-based (exact) techniques.

Problem Randomised Deterministic
Steiner Tree O(3 ω

2 bwnO(1)) O(n((1 + 2ω)
√

5)bwbwO(1))
Connected Dominating Set O(4 ω

2 bwnO(1)) O(n((2 + 2ω)
√

6)bwbwO(1))
Feedback Vertex Set O(3 ω

2 bwnO(1)) O(n((1 + 2ω)
√

5)bwbwO(1))
Hamilton Cycle / TSP O(4 ω

2 bwnO(1)) O(n(5 + 2
ω+2

2)bwbwO(1))
Planar Steiner Tree O(23.991

√
n) O(28.039

√
n)

Planar Connected Dominating Set O(25.036
√

n) O(28.778
√

n)
Planar Feedback Vertex Set O(23.991

√
n) O(28.039

√
n)

Planar Hamilton Cycle / TSP O(25.036
√

n) O(26.570
√

n)

It was long known that many graph problems with a local nature (e.g., Independent
Set, Dominating Set) can be solved on graphs given with a tree decomposition of width k

in time, that is single exponential in k and linear in the number of vertices n, e.g., see [17]. For
several problems with a global ‘connectivity’ property in it, it was open whether there existed
O(2O(k)nO(1)) time algorithms. This was resolved by Cygan et al. [5] with the ‘Cut and
Count’ method; this approach gives fast randomised algorithms that are single-exponential in
the treewidth and polynomial in the number of vertices for various problems, e.g., Feedback
Vertex Set, Hamiltonian Circuit, TSP, Connected Dominating Set. At the cost of
a higher constant in the base of the exponential factor, Bodlaender et al. [2] gave deterministic
algorithms that are single-exponential in the treewidth and linear in the number of vertices
for these connectivity problems, with a technique, based on representative sets and Gaussian
elimination, called the rank-based approach. This algorithm was experimentally evaluated
by Fafianie et al. [9], showing that in the case of the Steiner Tree problem, the method
gives a significant speedup over naive dynamic programming. An alternative method that
gives similar time bounds, based on representative sets and matroids, was given by Fomin et
al. [11]. Later, Fomin et al. [10] showed how to use matroids to speed up the computation at
join nodes in these algorithms leading, for several connectivity problems with Steiner Tree
as flagship example, to the currently fastest algorithms on graphs of bounded treewidth.

Branchwidth is another well studied graph parameter, with strong relations to treewidth.
The branchwidth and treewidth of a graph are bounded by each other in the following
way: bw ≤ tw + 1 ≤ b 3

2bwc. The transformation from a tree decomposition to a branch
decomposition or vice versa, fulfilling these bounds can be executed in linear time. This
implies that a running times of the form O(cknO(1)) for graphs of treewidth k or branchwidth
k follow from each other, except for a possibly different value for the base of the exponent c.

In this paper, we show that ‘Cut and Count’ and the rank-based approach can be used
directly on branch decompositions. As a result, we obtain, in several cases, improvements
compared to using tree decompositions instead. For an overview of our results, see Table 1.

Two other techniques to speed up dynamic programming algorithms on tree and branch
decompositions are the following: Dorn [6] showed how to use matrix multiplication to speed
up algorithms on branch decompositions and van Rooij et al. [3, 18] showed how to speed up
algorithms on tree, branch and clique decompositions using (generalised) subset convolutions.
In this paper, we build upon these works applying these techniques where possible.

For a comparison of our results to the current best treewidth algorithms, see Table 2
and Table 3. Here, ω < 2.373 [14] is the matrix multiplication exponent. Our branch
decomposition based results improve known treewidth results for parts of the range bw ≤
tw + 1 ≤ b 3

2bwc (note that ω
2 < 3

2). In case of deterministic algorithms for TSP with

W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:3

Table 2 Comparison of our results with best known results on treewidth [5] for randomised
algorithms on problems where the weights are O(nO(1)).

Problem Treewidth Branchwidth
Steiner Tree O(3twnO(1)) O(3 ω

2 bwnO(1))
Connected Dominating Set O(4twnO(1)) O(4 ω

2 bwnO(1))
Feedback Vertex Set O(3twnO(1)) O(3 ω

2 bwnO(1))
Hamilton Cycle / TSP O(4twnO(1)) O(4 ω

2 bwnO(1))

Table 3 Comparison of our results with best known results on treewidth for deterministic
algorithms on problems with arbitrary real weights.

Problem Treewidth Branchwidth
Steiner Tree O(n23.134tw) [10] O(n23.790bw)
Connected Dominating Set O(n23.628tw) [2] O(n24.137bw)
Feedback Vertex Set O(n23.134tw) [10] O(n23.790bw)
Hamilton Cycle / TSP O(n23.257tw) [2] O(n23.257bw)

arbitrary real weights, our algorithms even give the advantage of using lower width branch
decompositions compared to tree decompositions without the additional cost of a higher
constant in the base of the exponent of the running time.

As planar graphs have branchwidth at most 2.122
√

n, and such a branch decomposition
can be constructed in polynomial time [12] (or we use the ratcatcher algorithm that exactly
computes the branchwidth of planar graphs in O(n3) time [15, 16]), we can apply our
algorithms to solve connectivity problems on planar graphs. This leads to the currently
fastest algorithms on planar graphs for several problems improving upon the best known
results, due to Dorn [6, 7]. When considering randomised algorithms, we improve the currently
fastest algorithms for all considered problems when weights are bounded by O(nO(1)). When
considering determinstic algorithms, we improve the currently fastest algorithms for all
considered problems with arbitrary real weights, and the currently fastest algorithm for
Hamilton Cycle and TSP when weights are bounded by O(nO(1)).

2 Preliminaries

Let G(V, E) be a graph with |V | = n vertices and |E| = m edges. For a vertex set X ⊆ V

the induced subgraph is denoted by G[X], i.e., G[X] = G(X, E ∩ (X ×X)). Likewise, the
induced subgraph of an edge set Y ⊆ E is denoted as G[Y], i.e., G[Y] = G(V (Y), Y) where
V (Y) stands for all endpoints of edges in Y . A cut in a graph is a tuple of two vertex sets
(X1, X2) for which it holds that X1 ∪X2 = V and X1 ∩X2 = ∅.

Throughout the paper the Iverson bracket notation is used. This notation denotes a
number that is 1 if the condition between the brackets is satisfied and 0 otherwise, e.g.,
[1 = 1]42 = 42 and [1 = 2]42 = 0. We also use this notation in combination with sets S, then
this denotes [True]S = S and [False]S = ∅.

This paper considers dynamic programming algorithms on branch decompositions.

I Definition 1 (Branch decomposition). A branch decomposition of a graph G is a tree T in
which every internal node has degree 3 together with a bijection between the leaves of T and
the edges of G.

As such, every leaf of T is assigned an edge of G and every edge of G is in exactly one leaf.

IPEC 2016

27:4 Cut and Count and Representative Sets on Branch Decompositions

Table 4 Comparison of our results on planar graphs with best known results. The column
‘Dorn (nO(1))’ states deterministic results by Dorn [6] when weights are O(nO(1)); the column ‘Dorn
(R)’ states deterministic results by Dorn [7] for arbitrary real weights; the column ‘Randomised’
states our randomised results when weights are O(nO(1)); and the column ‘Deterministic’ states
our deterministic results that also apply to arbitrary real weights. We note that the mentioned
results by Dorn [6, 7] have not been adjusted for the recently slightly improved matrix multiplication
constant ω [14].

Problem Dorn (nO(1)) Dorn (R) Randomised Deterministic
Planar Steiner Tree O(27.16

√
n) O(28.49

√
n) O(23.991

√
n) O(28.039

√
n)

Planar Connected Dom. Set O(28.11
√

n) O(29.82
√

n) O(25.036
√

n) O(28.778
√

n)
Planar Feedback Vertex Set O(27.56

√
n) O(29.26

√
n) O(23.991

√
n) O(28.039

√
n)

Planar Hamilton Cycle/TSP O(28.15
√

n) O(29.86
√

n) O(25.036
√

n) O(25.63
√

n)

The removal of an edge x in a branch decomposition T divides the edges of G in two
parts E1 and E2, namely the edges assigned to the leaves of the resulting subtrees T1 and T2
of T. For an edge x in T, the associated middle set is the vertex subset Bx ⊆ V consisting of
all vertices both in G[E1] and in G[E2], i.e., Be = V1 ∩ V2 where V1 and V2 are the vertices
in G[E1] and G[E2], respectively. The width assigned to the edge x is the size of the middle
set Bx. The width of a branch decomposition T is the maximum width over all edges of the
decomposition, and the branchwidth of a graph G is the minimum width over all possible
branch decompositions of G.

To simplify the presentation, we only consider rooted branch decompositions. One
obtains a rooted branch decomposition by splitting an arbitrary edge (u, v) in the branch
decomposition into (u, w) and (w, v), adding a root node r, and adding the edge (w, r). The
middle sets of these three edges are defined to be B(u,w) = B(w,v) = B(u,v) and B(w,r) = ∅.
On rooted branch decompositions, we can define a leaf edge to be an edge of T connected to
a leaf of T, the root edge to be the edge (w, r) to the root r, and an internal edge to be any
other edge of T. Additionally, for a non-leaf edge x of T, we can now define its left child y

and right child z in T by ordering the two edges below x in T.
A dynamic programming algorithm on branch decompositions typically computes a

table Ax for every edge x of the branch decomposition T in a bottom-up fashion. Such
a table Ax usually contains a set of partial solutions (or the number of partial solutions)
on G[Ex] where Ex is the set of the edges assigned to the leaves below the edge x in T. In
the case that x is the root edge, the table Ax contains (the number of) complete solutions.

When considering a non-leaf edge x of a branch decomposition T, it is convenient to
define a well-known partitioning on the three middle sets involved.

I Definition 2 (Partioning of middle sets). Consider a non-leaf edge x in a branch decompos-
ition T. Let x have left child y and right child z, and let the associated middle sets be Bx,
By, and Bz. We now define the following partitioning of Bx ∪By ∪Bz (see Figure 1):

Intersection vertices: I = Bx ∩By ∩Bz.
Forget vertices: F = (By ∩Bz) \Bx.
Left vertices: L = (Bx ∩By) \Bz.
Right vertices: R = (Bx ∩Bz) \By.

I Lemma 3 (Constraints on size of middle set partitions). Given a branch decomposition T
of width bw, the following inequalities on the sizes of the middle-set partitions hold for all
non-leaf edges in T:
|I|+ |L|+ |R| ≤ bw.
|I|+ |L|+ |F | ≤ bw.
|I|+ |F |+ |R| ≤ bw.

W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:5

Figure 1 The partitioning of the middle sets.

Finally, to obtain our results on planar graphs, we need the following lemma that relates
planar graphs to branch decompositions:

I Lemma 4 (Branch decompositions of planar graphs [8, 12, 15, 16]). Given a planar graph G,
a branch decomposition T of G of minimal width can be computed in O(n3) time. Furthermore,
the computed branch decomposition T has width at most 2.122

√
n, and for every non-leaf

edge x in T the middle set partitions satisfy |I| ≤ 2.

3 Cut and Count and Branch Decompositions

In this section, we will discuss how to use ‘Cut and Count’ [5] on branch decompositions.
We will illustrate this approach using the unweighted variant of the Steiner Tree problem.
Our results on other problems use the same ideas, however these proofs are omit due to
space restrictions.

The ‘Cut and Count’ technique of Cygan et al. [5] has two parts, the cut part and the
count part. In the cut part, the problem is reformulated and transformed into a counting
problem on consistently-cut candidate solutions where the connectivity constraint is relaxed.
In the count part, this counting problem is solved using dynamic programming. In this paper,
we summarise the cut part for Steiner Tree in Lemma 5 and refer to [5] for more details.

For a subset X ⊆ V , Cygan et al. [5] define a consistent cut of G[X] to be a cut (X1, X2)
such that there is no edge (u, v) in G[X] with u ∈ X1 and v ∈ X2. Since we consider
the unweighted version of Steiner Tree, we can let a solution be a subset of vertices
X ⊆ V such that T ⊆ X and G[X] is connected. A consistently-cut (possibly disconnected)
candidate solution then is a pair (X, (X1, X2)) consisting of a candidate solution X and a
consistent cut (X1, X2) of G[X].

I Lemma 5 (based on [5]). Suppose we are given an algorithm Count that, given a graph G,
a terminal set T , some fixed terminal t0 ∈ T , and a weight function w : V → [0, ..., W],
computes the values A(i, w) defined below, for all 0 ≤ i ≤ k and 0 ≤ w ≤ kW :

A(i, w) =
∣∣∣∣{(X, (X1, X2))

∣∣∣∣ X ⊆ V, (X1, X2) a consistent cut of G[X],
T ⊆ X, t0 ∈ X1, |X| = i, w(X) = w

}∣∣∣∣ (mod 2)

Then, there exists a Monte-Carlo algorithm that solves Steiner Tree on G, that cannot give
false-positives and may give false negatives with probability at most 1/2. The running time
of this algorithm is dominated by the running time of the Count algorithm with W = O(n).

We will omit the modulo two in the description of our counting algorithms and take the
modulus afterwards, doing all computations modulo two requires slightly less time and space.

For easier exposition, we first prove the following theorem. Next, we will improve this
using fast matrix multiplication in Theorem 7.

IPEC 2016

27:6 Cut and Count and Representative Sets on Branch Decompositions

I Theorem 6. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Steiner Tree in time O(3 3

2 bwnO(1)).

Proof. The result follows from Lemma 5 if we can give an algorithm that computes the
required values A(i, w) in O(3 3

2 bwnO(1)) time. We give this algorithm below.
We compute A(i, w) by bottom-up dynamic programming on the branch decomposition T.

For each edge x of T, we count partial-solution-cut pairs (X, (X1, X2)), where we call X

a partial solution in G[Ex] if all terminals in G[Ex] are in X, and where the cut (X1, X2)
is a consistent cut of the subgraph of G[Ex] induced by X (i.e., a cut in (G[Ex])[X]) with
additionally that if t0 ∈ X then t0 ∈ X1. To count these pairs, we define a labelling using
labels 0, 11 and 12 on the vertices in the middle set Bx associated to an edge x of T.
These labels identify the situation of the vertex in a partial-solution-cut pair (X, (X1, X2)):
label 0 means not in X, and labels 11 and 12 mean in X and on side X1 and X2 of the cut,
respectively.

In a bottom-up fashion, we associate to each edge x of T a table Ax(i, w, s) with entries
for all 0 ≤ i ≤ k, 0 ≤ w ≤ kW , and s ∈ {0, 11, 12}Bx . Such an entry Ax(i, w, s) counts the
number of partial-solution-cut pairs (X, (X1, X2)) as defined above that satisfy the constrains
imposed by the states s on Bx and that satisfy |X| = i and w(X) = w.

For a leaf edge x of the branch decomposition T, we have that Bx = {u, v} for some edge
(u, v) in E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0, 0, 0 0) = 1[u /∈ T ∧ v /∈ T]
Ax(1, w(u), 11 0) = 1[v /∈ T]
Ax(1, w(v), 0 11) = 1[u /∈ T]
Ax(1, w(u), 12 0) = 1[u 6= t0 ∧ v /∈ T]
Ax(1, w(v), 0 12) = 1[u /∈ T ∧ v 6= t0]

Ax(2, w(u) + w(v), 11 11) = 1
Ax(2, w(u) + w(v), 12 12) = 1[u 6= t0 ∧ v 6= t0]

Here, we enforce that the cut is consistent, that every terminal t ∈ T is in the partial
solution X, that t0 is on the correct side of the cut (t0 ∈ X1), and that |X| = i and
w(X) = w.

For an internal edge x of the branch decomposition T with children y and z, we fill the
table Ax by combining the counted number of partial-solution-cut pairs from the tables for y

and z. For this, we say that labellings sx of Bx, sy of By, and sz of Bz are compatible if and
only if sL

x = sL
y ∧ sR

x = sR
z ∧ sF

y = sF
z ∧ sI

x = sI
y = sI

z (where we denote by sL
x the labelling sx

restricted to middle set partition L; for the middle set partitions see Definition 2).
We fill Ax by means of the following formula, where iZ denotes the number of vertices

with state 1 in middle set partition Z, and wZ denotes the sum of the weights of the vertices
with state 1 in middle set partition Z (for Z equals F , or I):

Ax(ix, wx, sx) =
∑

sx, sy, sz

compatable
labellings

∑
ix=iy+iz−iI−iF

∑
wx=wy+wz−wI−wF

Ay(iy, wy, sy)·Az(iz, wz, sz) .

This counts the total number of partial-solution-cut pairs (X, (X1, X2)) that satisfy the
constraints as the summations combine all compatible entries from Ay and Az and the
multiplication combines the individual counts. To see that exactly these entries are compatible,

W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:7

note that the consistency of the cut, the fact that T ⊆ X, and that t0 ∈ X1 are all enforced at
the leaves and maintained by enforcing compatible labels. Furthermore, the partial-solution
size i and weight w is the sum of both underlying partial solutions minus the doubling on
the middle set partitions F and I.

By computing Ax for all edges in the branch decomposition T in the above way, we can
find the required values A(i, w) at the root edge r of T where Br = ∅.

Consider the time required for computing table Ax. This table has at most 3|L|3|R|3|I|k2W

entries, and for each entry we have to inspect at most 3|F |k2W combinations of entries from
Ay and Az, thus requiring O(3|L|+|R|+|I|+|F |k4n2) time using W = O(n). This leads to a
worst-case running time of O(3 3

2 bwnO(1)) under the constraints in Lemma 3. J

This result can be improved by using fast matrix multiplication similar to Dorn et al. [6].

I Theorem 7. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Steiner Tree in time O(3 ω

2 bwnO(1)), where ω is
the matrix multiplication exponent.

Proof. The algorithm is similar to the proof of Theorem 6, however, we evaluate the formula
for the table Ai(ix, wx, sx) associated to an internal edge of the branch decomposition in
a more efficient way. Instead of first fixing all labellings, we now first only fix compatible
a labelling on I and fix ix, iy, wx and wy. Then, we can compute the contribution to
Ai(ix, wx, sx), given the fixed values and fixed partial state, for all compatible states sx ∈
{0, 11, 12}Bx using a single matrix multiplication.

To do so, we construct two matrices B and C. In matrix B there is a row for each
labelling of L and a column for each labelling of F , and in matrix C there is a row for each
labelling of F and a column for each labelling of R. As the labellings on I are fixed, each
entry in B can be associated to a full labelling of the middle set By, and each entry in C

can be associated to a complete labelling of the middle set Bz. Moreover, each entry in the
matrix product BC can be associated to a full labelling of Bx, corresponding to the row of B

(labelling of L) and column of C (labelling of R). If we fill matrix B with the corresponding
values Ay(iy, wy, sy), and matrix C with the corresponding values Az(iz, wz, sz) (note that
we did not fix iz and wz, but these follow from all other fixed values and labellings), then
matrix BC holds the contribution to Ax(ix, wx, sx) given the fixed labellings and values.

In the above way, we perform 3|I|k2W 2 matrix multiplications of a 3|L|× 3|F | matrix and
a 3|F | × 3|R| matrix. These rectangular matrices can be multiplied in O(3(ω−1)|L|3|F |nO(1))
time (see also [6, 13]), where we use that we can assume |L| = |R| in a worst-case analysis
for symmetry reasons. Under the constraints of Lemma 3, the worst-case arises when
|L| = |R| = |F | = 1

2bw resulting in a running time of O(3 ω
2 bwnO(1)). J

I Corollary 8. There exist a Monte-Carlo algorithm that, given a planar graph G, solves
Planar Steiner Tree in time O(23.991

√
n).

Proof. Combine Theorem 7 with Lemma 4 and use ω < 2.373 [14]. J

The other randomised results in Table 1 follow in a similar fashion and are omitted due to
space restrictions. However, for some problems we need to use (generalised forms of) subset
convolution to obtain the claimed time bounds. For the generalised subset convolution, we
refer the reader to [18], and for an exposition on how to apply this in the setting of branch
decompositions to [3].

IPEC 2016

27:8 Cut and Count and Representative Sets on Branch Decompositions

4 Representative Sets and Branch Decompositions

In this section, we will discuss how to use the rank-based approach based on representative
sets and Gaussian elimination [2] on branch decompositions. We will illustrate this approach
using the weighted variant of the Steiner Tree problem. Our results on other problems
use the same ideas, however the proofs are omitted due to space restrictions.

We need some definitions and notion regarding partitions. The set of all partitions of a
set U is denoted by Π(U). An element of a partition is also called a block. For p ∈ Π(U), the
term |p| denotes the amount of blocks in the partition, where we let the empty partition in
Π(∅) have zero blocks. For p, q ∈ Π(U), pt q is obtained from p and q by iteratively merging
blocks in p that contain elements that are in the same block in q and vice versa. Also, p u q

is the partition that contains all blocks that are a non-empty intersection of a block in p

and a block in q. If X ⊆ U , then p↓X ∈ Π(X) is formed by removing all elements not in X

from the partition p and possibly removing empty blocks. In the same way, if U ⊆ X, then
p↑X ∈ Π(X) is formed by adding a singleton to p for every element in X \ U .

A set of weighted partitions over U is a set F ⊆ (Π(U)×N), i.e., a set of pairs consisting
of a partition of U and a non-negative integer that is the weight of the partition. We use the
following operators from [2] on a set of weighted partitions F ⊆ (Π(U)× N):

Remove: Define rmc(F) = {(p, w) ∈ F | @(p, w′) ∈ F ∧ w′ < w}. This operator removes
non-minimal weight copies.
Union: For G ⊆ (Π(U) × N), define F] G = rmc(F ∪ G). This operator combines the
two sets of weighted partitions and discards non-minimal weight copies.
Project: For X ⊆ U , let X̄ = U \X and define proj(X,F) ⊆ Π(X̄)× N as

proj(X,F) = rmc({(p↓X̄ , w) | (p, w) ∈ F , |p↓X̄ | = |p| ∨ (X = ∅ ∧ |p| = 1)}) .

This operator removes all elements from X from each partition and discards a partition
if the amount of blocks in it decreases because of this, unless there is only one partition
which is projected upon the empty set.
Join: For a set U ′ and G ⊆ Π(U ′), let Û = U ∪ U ′, we define any pair of partitions
(p, w1) ∈ F , (q, w2) ∈ G to be compatible, unless (p, w1) or (q, w1) is the empty partition
with non-zero weight. In that case, the pair is compatible, if and only if, the other
partition is the empty partition with zero weight.
Now we define join(F ,G) ⊆ (Π(Û)× N) as:

join(F ,G) = rmc({(p↑Û t q↑Û , w1 + w2) | (p, w1) ∈ F , (q, w2) ∈ G compatible}) .

This operator extends all partitions to the same base set Û . It then combines each
compatible pair of partitions by means of the t operator and assigns the sum of the
weights as a new weight. We will need pairs to be compatible to keep solutions connected.

We will start by giving a naive algorithm for weighted Steiner Tree on branch decom-
positions. Thereafter, we will show how to use representative sets and Gaussian elimination
to improve the time complexity. We note that, different from Section 3, we now let (partial)
solutions be sets of edges connecting the terminals T .

The Naive Algorithm for Steiner Tree on Branch Decompositions

In a bottom-up fashion, the naive algorithm computes a table Ax for each edge x of the
branch decomposition T. This table keeps track of all possible partial solutions Y ⊆ Ex

on G[Ex] that can be extended to a minimal weight solution on G. These partial solutions

W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:9

are subsets Y ⊆ Ex such that all terminals in G[Ex] are incident to an edge in Y , and
all connected components in G[Y] either contain an edge incident to Bx or connect all
terminals T in G.

Each entry Ax(s) in the table is indexed by a labelling s ∈ {0, 1}Bx on the vertices in Bx

and contains a set of weighted partitions. The label 1 means that the vertex will be incident
to the solution edge set, which is the case when the vertex is a terminal or when the vertex is
incident to an edge in the partial solution Y . The label 0 means that it will not be incident
to the solution edge set. The set of weighted partitions Ax(s) is a set of weighted partitions
on all vertices with label 1 in s. Ax(s) represents all partial solutions on G[Ex] consistent
with the labelling s in the following way: the weight of the partition corresponds to the
weight of the partial-solution Y ; and vertices are in the same block of the partition p that
represents that solution Y , if and only if, the vertices are in the same connected component
in G[Y].

For a leaf edge x of the branch decomposition T, we have that Bx = {u, v} for an edge
(u, v) in E. The table Ax associated to x can be filled as follows:

A(0 0) = {(∅, 0)}[u /∈ T ∧ v /∈ T]
A(1 0) = {({{u}}, 0)}[v /∈ T]
A(0 1) = {({{v}}, 0)}[u /∈ T]
A(1 1) = {({{u}, {v}}, 0), {{u v}}, w((u, v)))}

Here, we make sure that terminal vertices in T correspond to 1 labels, and that vertices
incident to an edge in the partial solution correspond to 1 labels. We also make sure that
the partition corresponds to the connected components on the vertices with a 1 label, and
that the weight of the partition equals the weight of the partial solution.

For an internal edge x of the branch decomposition T with children y and z, we fill the
table Ax by means of the following formula:

Ax(sx) =
⊎

sF∈{0,1}F

proj
(
F, join(Ay(sL

x sI
xsF), Az(sR

x sI
xsF))

)
.

Here sL
x sI

xsF stands for the concatenation of the labelling sx restricted to L, the labelling sx

restricted to I, and the labelling sF on F (note that this gives a valid labelling on By).
For every labelling sF on F , the above formula combines all entries with compatible

weighted partitions from Ay(sL
x sI

xsF) and Az(sR
x sI

xsF). Partitions in the computed set Ax(s)
now correspond to the connected components of the partial solution, by definition of the
join and proj operations. This is because, the resulting entries in which vertices in F are
in separate blocks (separate connected components in G[Ex]) are discarded by the project
operation. Also, we require compatible weighted partitions in the join operation to make sure
that no connected components that do not contain vertices in Bx are combined, i.e., these do
not result in new non-empty partitions. The weights of the partitions in Ax(s) correspond to
the weights of the partial solutions, as we choose edges from G in a partial solution in leaf
edges of the branch decomposition and the join operation sums up the weights.

By computing Ax for all edges in the branch decomposition T in the above way, we can
find the weight of the minimum weight solution to Steiner Tree at the root edge r of T
where Br = ∅ as the weight of the empty partition.

Using Representative Sets

The essence of the rank-based approach lies in the Reduce procedure from [2]. This procedure
reduces the size of the tables used in the dynamic program without loss of representation.

IPEC 2016

27:10 Cut and Count and Representative Sets on Branch Decompositions

I Definition 9 (Representation [2]). For sets of weighted partitions F ,F ′ ⊆ (Π(U)× N) and
a partition q ∈ Π(U), define:

opt(q,F) = min{w | (p, w) ∈ F ∧ p t q = {U}} .

We say that F ′ represents F , if for all q ∈ Π(U), it is the case that opt(q,F ′) = opt(q,F).

I Theorem 10 ([2]). There exists an algorithm Reduce that, given a set of weighted partitions
F ⊆ (Π(U)×N), outputs a set of weighted partitions F ′ ⊆ F , such that F ′ represents F and
|F ′| ≤ 2|U |−1, in O(|F|2(ω−1)|U ||U |O(1)) time.

We apply the above theorem at each step of the naive algorithm for Steiner Tree and
carefully analyse the resulting running time to obtain the following result.

I Theorem 11. There exist an algorithm that, given a graph G and a branch decomposition T
of G of width bw, solves Steiner Tree in time O(n((1 + 2ω)

√
5)bwbwO(1)).

Proof. The algorithm computes the tables Ax in a bottom-up fashion over the branch
decomposition T according to the formulae in the description of the naive algorithm. Directly
after the algorithm finishes computing a table Ax for any edge x in the branch decomposition,
the Reduce algorithm is applied to each entry Ax(sx) of the table to control the sizes of the
sets of weighted partitions. Because the naive algorithm is correct and the Reduce procedure
maintains representation (Theorem 10), we conclude that the new algorithm is correct also.

To prove the running time, consider a non-leaf edge x in the branch decomposition T
with left child y and right child z. The operations in the naive algorithm used to compute,
for a labelling sx ∈ {0, 1}Bx , the set of weighted partitions Ax(sx) can be implemented in
O(bwO(1)) time times the number of combinations of entries from Ay and Az involved. This
can be done using the straightforward implementations (see also [2]). As each combination
of entries from Ay and Az can lead to an entry in Ax(sx) before the Reduce step is applied,
the running time is dominated by the time required by the Reduce algorithm.

For a fixed sx ∈ {0, 1}Bx , let j be the amount of vertices in sx with label 1, which we will
also denote by j = |s−1

x (1)|. For the set of weighted partitions Ax(sx), Reduce takes time:

O
(
|Ax(sx)|2(ω−1)jjO(1)) .

The size of Ax(sx) is the result of combining, for every labelling sF ∈ {0, 1}F , every entry
of Ay(sL

x sI
xsF) with every entry of Az(sR

x sI
xsF). Using sy = sL

x sI
xsF and sz = sR

x sI
xsF , the

sizes of Ay(sy) and Az(sz) are bounded by 2|s
−1
y (1)| and 2|s−1

z (1)|, respectively, since these
table were reduced after computing Ay and Az. Therefore, the total time it takes to reduce
the sets of partitions for all entries in Axis:

O
(|I∪R∪L|∑

j=0

(
|I ∪R ∪ L|

j

)
2(ω−1)j |Ax(sj)|jO(1)) .

The sum and the binomial coefficient consider all possible labellings using j for the number
of 1 labels. This is the only information needed about the labellings. As such, we will slightly
abuse notation and denote any labelling with j vertices with label 1 as sj . Also, we will
denote by si,l,f any labelling with i vertices with label 1 on I, l vertices with label 1 on L,
and f vertices with label 1 on F .

W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:11

We can now expand the sum, differentiating between I, L and R, and use that Ay(sy)
and Az(sz) are bounded by 2|s

−1
y (1)| and 2|s−1

z (1)|, respectively:

O
(|I∪R∪L|∑

j=0

(
|I ∪R ∪ L|

j

)
2(ω−1)j |Ax(sj)|jO(1)) =

O
(|I|∑

i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)|Ax(si,r,l)|(i + r + l)O(1)) =

O
(|I|∑

i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)

|F |∑
f=0

(
|F |
f

)
|Ay(si,l,f)||Az(si,r,f)|bwO(1)) ≤

O
(|I|∑

i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)

|F |∑
f=0

(
|F |
f

)
2i+l+f 2i+r+f bwO(1)) .

Next, we rearrange the terms and repeatedly apply the binomial theorem to obtain a more
simple expression:

O
(|I|∑

i=0

(
|I|
i

)
2(ω+1)i

|R|∑
r=0

(
|R|
r

)
2ωr

|L|∑
l=0

(
|L|
l

)
2ωl

|F |∑
f=0

(
|F |
f

)
22f bw)O(1)) ≤

O
(
(1 + 2ω+1)|I|(1 + 2ω)|R|(1 + 2ω)|L|5|F |bwO(1)) .

If we maximize this under the constraints in Lemma 3, then we find a worst-case running
time of:

O(((1 + 2ω)
√

5)bwbwO(1)) .

In this case |R| = |L| = |F | = 1
2bw and |I| = 0. Taking into consideration that this must

be done for every edge in the branch decomposition, we find the time-complexity from the
statement of theorem. J

The other deterministic result in Table 1 follow in a similar fashion but are omitted due to
space restrictions. These omitted proofs, use besides (generalised forms of) subset convolution,
also the fact that the Reduce procedure can be modified to output a set of weighted partitions
of size at most 2|U |/2 in case of the Hamilton Cycle and TSP problems [4].

5 Conclusion

In this paper, we have shown two things. First of all, we have shown that cut and count and
the rank-based approach can be used not only on tree decompositions but also on branch
decompositions. This means the techniques are more powerful than they were known to be.
Perhaps these techniques can also be used in combination with other width measures.

We have also given fast algorithms, especially on planar graphs, for several connectivity
problems. These algorithms use branch decompositions and therefore affirm the use of this
type of decomposition as a solid foundation for algorithms.

References
1 Hans L. Bodlaender. Treewidth: Structure and algorithms. In Proceedings of the 14th

International Colloquium on Structural Information and Communication Complexity, SI-
ROCCO 2007, volume 4474 of Lecture Notes in Computer Science, pages 11–25. Springer
Verlag, 2007.

IPEC 2016

27:12 Cut and Count and Representative Sets on Branch Decompositions

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

3 Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M.M. van Rooij, and Martin Vatshelle.
Faster algorithms on branch and clique decompositions. In Proceedings of the 35th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2010, volume
6281 of Lecture Notes in Computer Science, pages 174–185. Springer Verlag, 2010.

4 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases
of perfect matchings. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 301–310. ACM, 2013.

5 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159, 2011.

6 Frederic Dorn. Dynamic programming and fast matrix multiplication. In Proceedings of
the 14th Annual European Symposium on Algorithms, ESA 2006, volume 4168 of Lecture
Notes in Computer Science, pages 280–291. Springer Verlag, 2006.

7 Frederic Dorn. Designing Subexponential Algorithms: Problems, Techniques & Structures.
PhD thesis, Institutt for informatikk, Universitetet i Bergen, 2007.

8 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact
algorithms on planar graphs: exploiting sphere cut decompositions. Algorithmica, 58:790–
810, 2010.

9 Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic program-
ming with representative sets: an experimental evaluation of algorithms for steiner tree on
tree decompositions. Algorithmica, 71(3):636–660, 2015.

10 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
sets of product families. In Algorithms – ESA 2014 – 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in
Computer Science, pages 443–454. Springer, 2014.

11 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of repres-
entative sets with applications in parameterized and exact algorithms. In Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 142–151,
2014.

12 Fedor V. Fomin and Dimitrios M. Thilikos. New upper bounds on the decomposability of
planar graphs. Journal of Graph Theory, 51:53–81, 2006.

13 François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 514–523. IEEE Computer Society, 2012.

14 François Le Gall. Powers of tensors and fast matrix multiplication. In International Sym-
posium on Symbolic and Algebraic Computation, ISSAC, pages 296–303, 2014.

15 Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
time. ACM Trans. Algorithms, 4(3), 2008.

16 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

17 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM J. Discr. Math., 10:529–550, 1997.

18 Johan M.M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Proceedings of the 17th
Annual European Symposium on Algorithms, ESA 2009, volume 5757 of Lecture Notes in
Computer Science, pages 566–577. Springer Verlag, 2009.

	Introduction
	Preliminaries
	Cut and Count and Branch Decompositions
	Representative Sets and Branch Decompositions
	Conclusion

