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1. Introduction

D-branes in Lie groups have received a great deal of attention recently. They provide

an ideal laboratory for the study of D-branes in nontrivial string backgrounds, as they

are amenable to both microscopic analysis via the algebraic methods of boundary

conformal field theory and to the more standard field theoretic techniques based on

sigma models and the path integral. Moreover it is precisely in the combination of

these two rather different approaches that many of the recent developments have

taken place.

One of these recent developments concerns the problem of stability of D-branes

and the definition and quantisation of their D0-charge [1]–[10], about which several

somewhat different points of view seem to emerge. Our motivation in this paper is

to further explore these points of view.

Throughout this paper we will refer to the submanifolds on which D-branes can

wrap as D-submanifolds. In the case of the WZW model, the D-submanifolds in

question are described by (twisted, shifted) conjugacy classes [11]–[14]. In general

these submanifolds are not minimal (although see [15] for an example of a totally

geodesic twisted conjugacy class in SU(2)×SU(2)) and hence they are not stabilised
gravitationally. This is hardly surprising as the metric is not the only field in the

background: there is also a B-field, or more precisely a closed 3-form H with integral

periods.
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The stability of a D-brane wrapping such submanifolds should therefore be re-

lated to this integrality condition and should manifest itself in the quantisation of the

allowed D-submanifolds. There seem to be at least two mechanisms through which

this may be explained. One of them [11, 16, 2, 7] uses an argument which can be

understood as the vanishing of the global worldsheet anomaly [17] in the lagrangian

description of the boundary WZW model. Alternatively, it was argued in [1] that

the stability of these D-branes is a result of the quantisation of the flux of a U(1)

gauge field on the D-brane.

As far as the definition of the D0-charge is concerned there seem to be a number

of candidates. As we will recall below, the data describing a D-submanifold in a Lie

group is a pair (Q,ω) where Q is, in the simplest case, a conjugacy class and ω is

a two-form on Q such that dω = H there. According to one view [1, 2], the D0-

charge of the D-brane is defined by the flux of the gauge invariant two-form field ω

on the D-submanifold. If one computes explicitly the spectrum of this D0-charge for

the possible D2-branes in SU(2), one obtains that these charges are not quantised;

however their values agree with the RR charges as obtained from the boundary state

approach. This is the charge recently identified in [6] as the brane source charge.

A second candidate definition of the D0-charge is obtained [3, 5] by adding to

the brane source charge a bulk contribution, such that the resulting D0-charge agrees

with the flux of a U(1) gauge field defined on the D-submanifold. According to this

view, the quantisation of the D0-charge is a consequence of the quantisation of the

flux of this U(1) field. In the nomenclature of [6], this charge can be identified either

with the Page charge [5] or with the Maxwell charge [3], which in this case coincide.

This definition of the D0-charge requires a trivialisation of the NS 3-form.

An alternative definition of the D0-charge of such a D-brane was proposed in [7]

by one of the authors, where the quantisation of the D0-charge is seen as a conse-

quence of the vanishing of the global worldsheet anomaly for the boundary WZW

model. This third definition is essentially a Page charge, and one of the aims of this

paper is to compare this charge with the one in [3, 5].

Let Q be a D-submanifold in a compact simple Lie group G and let k be the

level of the WZW model. Let H be the bi-invariant 3-form in G and let ω be a

2-form on Q such that H = dω there. We will show that the charge in [7] can

be identified with the reduction modulo k of the class of (H,ω)/2π in the degree 3

integral relative cohomology of G modulo Q. On the other hand, a U(1) gauge field

on the D-submanifold would give rise to a class in the degree 2 integral cohomology

of Q, namely the first Chern class of the corresponding line bundle. These two

cohomology groups are related by a long exact sequence in cohomology and studying

this sequence will reveal that the integral cohomology class represented by H/2π is

the obstruction to associate a line bundle on Q with the relative class [(H,ω)]/2π.

In other words, when H is topologically nontrivial there is strictly speaking no line

bundle on the D-submanifold; but rather, as we will see, an equivalence class of line

2
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bundles corresponding to the reduction modulo k of their first Chern classes, in such

a way that their fluxes also compute the D0-charge. This has a natural interpretation

in terms of gerbes.

This paper is organised as follows. In section 2 we briefly review the geometry

of the WZW model with and without boundary, paying particular attention to the

consistency conditions which must be met for the well-definedness of the quantum

theory. The appropriate mathematical framework for discussing these conditions is

the relative cohomology of the Lie group modulo the D-submanifold. In section 3 we

study the relation between the D0-charge defined in [7] and flux quantisation. We will

find that despite the absence in general of a line bundle on the D-submanifold, the

modularity of the D0-charge is such that the flux also computes it. This modularity

has a natural interpretation in terms of gerbes. Finally in section 4 we summarise

the main points of the paper.

2. D-branes in the boundary WZW model

In this section we describe the boundary WZW model; that is, the WZW model

associated to a worldsheet with boundary [18, 16]. It is instructive to compare this

with the “standard” WZW model, so we recall this briefly first. Although these

results are not new, we believe it is useful to collect them here in a hopefully simpler

form than has been done until now.

2.1 The WZW model

Let Σ be a compact Riemann surface (without boundary) and let G be a Lie group

admitting a bi-invariant metric. In order to circumvent special cases associated

with abelian groups or with noncompact groups, we will assume that G is compact

semisimple; although the theory is of course more general. The WZW model is the

theory of maps g : Σ→ G defined by the following action:

I =

∫
Σ

〈
g−1∂g, g−1∂̄g

〉
+

∫
M

H , (2.1)

where M is a 3-dimensional submanifold of G with boundary ∂M = g(Σ), and

H = 1/6 〈θ, [θ, θ]〉, where θ is the left-invariant Maurer–Cartan 1-form on G and
〈−,−〉 is an invariant metric on the Lie algebra of G.
There is an obstruction to the existence ofM , which is measured by the homology

class of g(Σ) in H2(G). Demanding that this class vanish for all g(Σ) is equivalent

to demanding that H2(G) vanishes. This is the case, for instance, for G a compact

semisimple Lie group.1

1For compact Lie groups where H = 0 or noncompact groups where H is exact, one can work

with the B-field directly, without having to introduce the submanifold M and hence avoiding any

obstructions. For these theories, it is the B-field that is part of the data and one does not impose

that the theory be independent of this choice.

3
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Even when the obstruction is overcome and such anM found, the action depends

on the choice ofM ; although because the 3-formH is closed, the equations of motion

do not. Indeed ifM ′ is another 3-dimensional submanifold of G with boundary g(Σ),
then M −M ′ is a 3-cycle and as observed originally in [19], the path integral is also
independent on the choice of extension provided that

∫
M−M ′

H ∈ 2πZ .

Demanding that this be the case for all 3-cycles M −M ′, is equivalent to the co-
homology class [H ]/2π ∈ H3(G;R) being integral. The definition of H (as well as
the kinetic term) involves a choice of bi-invariant metric. For G a simple Lie group

there is a unique conformal class of bi-invariant metrics, and it is always possible to

choose a metric in this class for which this integrality condition is satisfied.

2.2 The boundary WZW model

Suppose now that Σ is a compact Riemann surface with nonempty boundary ∂Σ.

The boundary is homeomorphic to a disjoint union of circles. We will assume for

simplicity of exposition that the boundary is connected, so that it consists of only

one circle. The extension to the general case does not represent any added difficulties

nor does it reveal any extra structure at this level.

Dirichlet boundary conditions in the

Q

g(Σ)

D

M

Figure 1: The relation ∂M = g(Σ) + D.

In the figure M is the solid object whose

boundary is g(Σ)+D, where D is contained

in the D-submanifold Q.

WZW model are described [18] by a sub-

manifold ι : Q ↪→ G of the Lie group and
a 2-form ω on Q such that ι∗H = dω. The
submanifold Q is called a D-submanifold.

The WZW model corresponding to this

boundary condition is the theory of maps

g : Σ→ G sending the boundary ∂Σ to Q,
which is governed by the following action

I =

∫
Σ

〈
g−1∂g, g−1∂̄g

〉
+

∫
M

H −
∫
D

ω ,

(2.2)

where M is a 3-dimensional submanifold

of G with boundary ∂M = g(Σ)+D where

D is a 2-dimensional submanifold of Q.

Applying the boundary again, we see that g(Σ) and D have the same boundary with

opposite orientations. Therefore we can think of ∂M as the manifold g(Σ) ∪∂ D
obtained by gluing the worldsheet g(Σ) and D along their common boundary, as in

figure 1.
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D2D1

M1 M2

g(Σ) g(Σ)

S

Z

Figure 2: Gluing M1 and M2 along g(Σ) to obtain the relative cycle Z, and gluing D1
and D2 along g(∂Σ) to obtain its boundary ∂Z = S.

As in the case of the WZW model, there is a homological obstruction to the

existence of M . This time the relevant homology theory is the relative homology of

G modulo Q. Since the boundary of the worldsheet g(Σ) of the string lies in Q, g(Σ)

is a relative 2-cycle and defines a homology class in H2(G,Q). The existence of M

and D ⊂ Q such that ∂M = g(Σ) +D simply says that g(Σ) is a boundary modulo
Q, whence its relative homology class is zero. Demanding that this be true for all

g(Σ) is equivalent to demanding that H2(G,Q) vanish.

Even when the existence ofM (and hence D) is unobstructed, suchM is generally

not unique and the action will depend on the choice of M . As in the WZW model,

the equations of motion do not depend on the choice of M . (In fact, they do not

depend on ω either, only the boundary conditions do.) A condition which guarantees

the independence of the path integral on the choice of M can again be captured

cohomologically—this time in the relative cohomology of the pair (G,Q) [18, 16].

To see this let M1 and M2 be two 3-dimensional submanifolds of G such that

∂M1 = g(Σ) + D1 and ∂M2 = g(Σ) + D2 for some D1 and D2 in Q. Then the

difference in the Wess–Zumino term is(∫
M1

H −
∫
D1

ω

)
−
(∫
M2

H −
∫
D2

ω

)
=

∫
M1−M2

H −
∫
D1−D2

ω .

Let Z =M1 −M2 and S = D1 −D2. Notice that
∂Z = ∂M1 − ∂M2 = Σ +D1 − (Σ +D2) = D1 −D2 = S .

5
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Since S ⊂ Q, Z is a cycle modulo Q, whence it defines a class in the degree 3 relative
homology of G modulo Q. We can picture Z as obtained by gluingM1 andM2 along

g(Σ) and S as gluing D1 and D2 along their boundary g(∂Σ), as shown in figure 2.

The path integral is independent of the choice of Z (and hence S) provided that

the quantity

C =
1

2π

(∫
Z

H −
∫
S

ω

)
(2.3)

is integral. As we now explain, this is simply the pairing between the relative ho-

mology and the relative cohomology of G modulo Q (see, e.g. [20, 21]).

The real relative cohomology of G modulo Q can be computed from the relative

de Rham complex. A relative p-form in this complex consists of a pair (α, β) where

α is a p-form on G and β is a (p − 1)-form on Q. The differential is defined by
d(α, β) = (dα, ι∗α − dβ) where ι : Q → G is the embedding and ι∗ is the pullback
on forms. It obeys d2 = 0 and the resulting cohomology is the relative de Rham

cohomology H∗(G,Q;R) of G modulo Q. Notice that a relative form (α, β) is closed
if α is closed in G and exact when restricted to Q: ι∗α = dβ.
As in the de Rham complex, integration provides the pairing between cycles

(more generally, currents) and closed forms. Given a relative p-cycle N and a closed

relative p-form (α, β) the expression

∫
N

α−
∫
∂N

β

gives a pairing between the relative homology and the relative de Rham cohomology

of G modulo Q.

Therefore we see that the quantity C in equation (2.3) is precisely the result

of the pairing between the relative 3-cycle Z and the relative 3-form (H,ω)/2π.

Demanding that C be integral for all relative cycles Z is simply the requirement

that the relative cohomology class [(H,ω)]/2π ∈ H3(G,Q;R) be integral, which is
precisely the cancellation of the global worldsheet anomaly [17]. Table 1 contrasts

the topological conditions for the existence of the quantum WZW models with and

without boundary.2

Model Obstruction Well-definedness

WZW H2(G) = 0 [H ]/2π ∈ H3(G;Z)
BWZW H2(G,Q) = 0 [(H,ω)]/2π ∈ H3(G,Q;Z)

Table 1: Topological conditions for the existence of the quantum WZW model with and

without boundary.

2This table possibly suggests that the boundary WZW model should be renamed the relative

WZW model. Alas we have not been able to reach an agreement on this point.
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In a theory of strings propagating in a Lie group, we want both closed strings

propagating in the bulk and open strings with ends in the D-branes. Therefore

consistency of the theory requires that both the WZW model and the boundary

WZW model should be well-defined. This means that both H2(G) and H2(G,Q)

should vanish; and that both [H ]/2π ∈ H3(G;R) and [(H,ω)]/2π ∈ H3(G,Q;R)
should be integral classes.

2.3 D-branes in WZW models

An interesting class of D-branes which are by now well-understood are those where

the D-submanifold Q corresponds to a (possibly twisted, shifted) conjugacy class.

These D-branes are special in that they preserve not just conformal invariance but

also (one half of) the infinite-dimensional symmetry current algebra of the WZW

model. They are described in terms of the following gluing conditions:

J = RJ̄ , (2.4)

where J = −∂gg−1, J̄ = g−1∂g and R is a metric-preserving automorphism of the
Lie algebra of G. This type of gluing conditions describe [11]–[14] D-branes whose

worldvolumes lie on twisted conjugacy classes

Cr(g0) :=
{
r(g)g0g

−1 | g ∈ G} ,
where r : G→ G is the metric-preserving automorphism of G which integrates R.
Two metric-preserving automorphisms r and r′ which are related by an inner

automorphism, yield twisted conjugacy classes Cr(g0) and Cr′(g0) which are simply

shifted relative to each other. Hence in this sense these types of D-submanifolds are

classified [22] by the group Outo(G) of metric-preserving outer automorphisms of G,

which is defined as the quotient Auto(G)/Inno(G) of the group of metric-preserving

automorphisms by the invariant subgroup of inner automorphisms.

As shown in [11, 16, 7] there is a natural 2-form ω on each twisted conjugacy

class Cr(g0) such that dω agrees with the restriction of the 3-form H to Cr(g0). This

2-form is obtained by demanding that the boundary conditions associated to the

gluing conditions (2.4) and the ones coming from the sigma model description of the

WZW model coincide.

3. Flux quantisation and D0-charge

The issue of flux quantisation and the definition of the D0-charge for D-branes in

Lie groups has generated a great deal of interest recently. The existence of a U(1)

gauge field on the D-brane whose flux is quantised was assumed in [1, 3], in order

to discuss the stability and D0-charge of the D2-branes in SU(2). Alternatively, it

was shown in [7] that both the stability and the various D0-charges of this type of

7
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D-branes can be analysed without having to rely on the existence of a U(1) gauge

field on the D-brane, by defining all the relevant quantities in terms of the globally

defined gauge invariant fields H and ω. The central concept in this approach is the

global worldsheet anomaly, whose vanishing explains both the discrete spectrum of

stable D-branes and the quantisation of a suitably defined D0-charge. However one

question remains: Does the vanishing of the worldsheet anomaly actually imply the

quantisation of a U(1) gauge field flux on the brane?

This question is symbolically encoded in the following identity:

∫
Z

H −
∫
S

ω
?
=

∫
S

F ; (3.1)

where the precise definition and geometrical nature of the field F in the right-hand

side have hitherto remained somewhat obscure. The purpose of this section is to

shed some light on this hypothetical equivalence.

Before going into any systematic analysis let us make a rather simple but in-

structive remark. The left-hand side of equation (3.1) depends not only on S but

also on Z, whereas the right-hand side depends on S and on F . Given an S and a

Z, it is possible to find an F such that the identity in (3.1) holds; but this F will

depend on Z. The existence of one F for which this identity holds irrespective of Z,

means that the Z-dependence of the left-hand side is only apparent and this imposes

a condition on H . To see this let Z ′ be another submanifold with boundary S. The
identity in (3.1) would result in the following condition on H

∫
Z−Z′

H = 0 ,

where Z − Z ′ is a 3-cycle, and this would imply that H is exact. This suggests that
when H is not exact, the identity in (3.1) will not hold for a fixed F .

3.1 A line bundle on the D-submanifold

Clearly, the strong version of the statement encoded in (3.1) would be to have a line

bundle on the D-submanifold whose Chern class is equal to the relative class defined

by the fields H and ω. As we now explain, there are conditions under which the

relative class represented by (H,ω)/2π is equivalent to an integral class in H2(Q);

that is, to the Chern class of a line bundle on the D-submanifold Q. In this case, C

in (2.3) can be understood as the flux of F/2π, where F is the curvature on the line

bundle.

Indeed, suppose that H = dB is exact. This does not mean that the relative

cocycle (H,ω) is a coboundary. Indeed, the cocycle condition simply says that ι∗H =
ι∗dB = dω on Q, whence the 2-form F = ι∗B − ω defined on Q is closed and defines
a class in H2(Q). If W is any 3-dimensional submanifold of G whose boundary ∂W

8
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is contained in Q, then using Stokes we have that∫
W

dB −
∫
∂W

ω =

∫
∂W

F ,

and hence integrality of [(dB, ω)]/2π ∈ H3(G,Q;R) is precisely the integrality of
[F ]/2π ∈ H2(Q;R).3 This is equivalent to the existence of a line bundle on Q whose
curvature is F and whose first Chern class is [F ]/2π.

Furthermore, the converse is also true and a relative class [(H,ω)] in H3(G,Q)

comes from a class in H2(Q) only if the integral class represented by H/2π is zero.4

This is a consequence of the exact cohomology sequence (see, e.g. [21])

· · · → H2(G) ι∗→ H2(Q)→ H3(G,Q)→ H3(G)→ · · · . (3.2)

Indeed, consider a relative class [(H,ω)]/2π in H3(G,Q). By exactness at H3(G,Q),

such a class comes from a class in H2(Q)—that is, is in the image of H2(Q) →
H3(G,Q)—if and only if it is the kernel of H3(G,Q)→ H3(G); in other words if the
class [H ]/2π in H3(G) vanishes.

In other words, we can understand the integral cohomology class in H3(G) rep-

resented by H/2π as the obstruction to defining a line bundle L on Q whose first

Chern class obeys c1(L) = [(H,ω)]/2π. From this it follows in particular that, for a

compact semisimple Lie group, there is no line bundle on a D-brane described by a

conjugacy class.

3.2 Local considerations

It is important to remark that even if H is not exact, its restriction to M is. This

follows from the fact that a top form on a manifold with nonempty boundary is exact,

and the fact that H is a 3-form and M is a 3-manifold with nonempty boundary

g(Σ) ∪∂ D. Therefore there exists a 2-form B on M such that H = dB. This means
that there is a closed 2-form F = B−ω on D such that the equation (3.1) is satisfied.
The triviality of H3(M) is true also in integral cohomology, therefore there is a line

bundle on D whose curvature is F , and the integrality of C is the quantisation of

the flux of F . It is important to emphasise that this line bundle is defined on D

and not on all of Q. In other words, whereas ω is intrinsic to Q, B is intrinsic to M

and hence F is only defined where both of these quantities make sense; that is, on

D =M ∩Q. This seems to suggest a physical picture of the U(1) field on the brane
being due to the ends of the open strings ending on the D-brane and hence existing

locally near them.
3Strictly speaking, the above equality only proves that [F ]/2π is an integer on those 2-cycles in

Q which bound in G. Since we are assuming, for consistency of the WZW model that H2(G) = 0

this is true for all 2-cycles on Q.
4Notice that this is stronger than the fact that H should be exact, since this only means that

the class [H ]/2π is torsion. Of course, if G is simply connected, G is homotopy equivalent to a

product of odd spheres and hence H3(G) has no torsion.
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It might be illuminating to compare this with the case of the standard WZW

model. Although H is in general not an exact form on the group G, it again becomes

exact when restricted to M , the 3-dimensional submanifold of G whose boundary

is ∂M = g(Σ). This means that there is a 2-form B in M which satisfies H = dB

there. In terms of this form, the action can be written in a manifestly local way [19],

since ∫
M

H =

∫
M

dB =

∫
g(Σ)

B =

∫
Σ

g∗B . (3.3)

Notice that B is not generally the restriction to M of a 2-form defined on the whole

group, as this would require H to be exact.

3.3 D0-charge

Several definitions of the D0-charge have been proposed recently. The picture that

begins to emerge is that one can in fact introduce several D0-charges [6], distinguished

not only by their form but also by their specific properties (e.g. gauge invariance,

quantisation). In the sigma model framework one can define at least two types of

charges: the so-called brane source charge introduced in [1], which is gauge invari-

ant but not quantised, and a Page charge [5, 7] which is gauge invariant (at least

infinitesimally) and quantised.5

The brane source charge can be written as the integral of the two-form ω on a

2-cycle of the D-submanifold. It is in general not conserved because ω is not closed.

Nevertheless its nonconservation is to a large extent under control since dω = H .

In fact this very relation suggests us a way of modifying the brane source charge in

order to obtain a conserved quantity, which turns out to be nothing but C. This

procedure is reminiscent of the way one constructs the Page charge in supergravity.

Notice however that, as we pointed out before, C depends not only on H , ω and

S ⊂ Q, which describe the given D-brane configuration, but it depends also on Z,
the 3-submanifold of G with boundary S.

An alternative way of motivating the definition of the (Page) D0-charge in terms

of the quantity C in (2.3) is the following. We have seen that C agrees, when H is

exact, with the normalised flux of a U(1) gauge field F on Q. It is therefore natural

in this case to identify C with the D0-charge of a region S ⊂ Q: ∫
S
F/2π. This

point of view led in [7] to the proposal that the expression for C in equation (2.3)

should be understood as a covariantisation of
∫
S
F/2π in the case where H is not

exact. However, as noted above, this expression depends on Z, the 3-submanifold of

G with boundary S.

Physically the D0-charge of the region S should not depend on Z. However, as

we saw above, the difference in the charges computed by Z and Z ′ is the integral of

5There is a third type of charge, the Maxwell charge, which is computed in [3] and which agrees

with the Page charge in the case of D2-branes in the WZW model.
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H/2π on the 3-cycle Z − Z ′ of G. For G a compact simple Lie group, H3(G) ∼= Z.
Therefore if the 3-cycle Z − Z ′ is mapped to n under this isomorphism, one has

1

2π

∫
Z−Z′

H = n k ,

which is always a multiple of the level k. Therefore, if we insist in the Z-independence

of the D0-charge, we must define it to be given by C (with an appropriate normal-

isation) and reduce it modulo k. In other words, the D0-charge is the image of

[(H,ω)]/2π under the natural map H3(G,Q;Z) → H3(G,Q;Zk) induced by reduc-
tion modulo k.

In [7], for the special case of G = SU(2) this modularity was found to be consis-

tent with the fact that the D0-branes sitting at the points in the center of the group

should carry the same charge. The modularity of the D0-charge for G = SU(2) was

also observed in [8], but with a period of k + 2. This difference can be explained by

the fact that the D0-charge in [8] incorporates the contribution from the fermions,

whereas in the present treatment we are ignoring the fermions and identifying the

D0-charge with the reduction of the quantity C in (2.3).

For a compact semisimple Lie group G =
∏n
i=1Gi, with Gi simple and with

level ki, the same argument implies that the D0-charge should be defined modulo

the greatest common divisor k = gcd(k1, . . . , kn) of the levels. Notice that this has

the property that if two of the levels are coprime, then the charge is always zero.

Defining the charge in this way also has the virtue that the hypothetical equality

in (3.1) becomes an honest equality modulo k. In this way, one could still obtain the

D0-charge from the flux of a (locally defined) U(1) gauge field, since the change in

the flux on overlaps is a multiple of k and hence not seen by the charge.

3.4 Gerbe interpretation

The fact that there is no canonical line bundle on the D-submanifold should not

come as a surprise. At the heart of the WZW model is an integral class in H3(G),

which should alert us to the existence of an underlying gerbe (see, for example, [23]).

Gerbes are the third member in an infinite sequence of objects, whose first two

members are smooth circle-valued functions and line bundles, respectively. They are

an attempt to geometrise integral classes in H3 in roughly the same way that line

bundles geometrise integral classes in H2. There are several different descriptions of

gerbes.

One such description is in terms of line bundles on the loop group of G. By

transgression (see, e.g. [24]) integral classes in H3(G) are in bijective correspondence

with integral classes in H2(LG), where LG is the loop group of G. Therefore one

can understand a gerbe in G as a line bundle on LG. This description is useful in

discussing the functional integral approach to the WZW model [16]. This line bundle

11
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can be trivialised locally on the subspace LQ ⊂ LG corresponding to loops in the
conjugacy class; but trivialising a gerbe does not give rise to a line bundle on Q.

To see this one needs a different description of a gerbe, in terms of (locally

defined) line bundles on G [25]. Suppose that U = {Uα} is an open cover for G such
that the restriction of the 3-form H to Uα is exact: H|Uα = dBα. The gerbe on G
characterised topologically by the integral class [H ]/2π in H3(G) can be defined by

specifying a line bundle Lαβ on each double intersection Uα ∩ Uβ , an isomorphism
Lαβ ∼= L−1βα, and some further conditions in triple and fourfold intersections which will
not concern us here. These line bundles come equipped with a natural connection

whose curvature is given by fαβ = Bα − Bβ.
Now let V = {Vα = Uα ∩Q} be an open cover for Q induced from the one for

G. On Vα define Fα = Bα − ω, since the 2-form ω is globally defined on Q. Clearly
dFα = 0, and it is this that is interpreted as the curvature of the hypothetical line

bundle on Q. However the curvature is not globally defined on Q: on Vα ∩ Vβ,
Fα − Fβ = fαβ . If the class of H is nontrivial, neither is fαβ and Fα and Fβ are
therefore curvatures on topologically different line bundles. This means that the line

bundles of which the {Fα} are the curvatures do not patch up to a global line bundle.
Let us illustrate this for G = SU(2) ∼= S3, where Q ∼= S2 is a spherical conjugacy

class. It separates G into two hemispheres G± with common boundary Q. Let
U± be open sets defined as the complement of chosen points in the interior of G∓
respectively. For example, if we think of Q as a “parallel”, we can take U+ to be the

complement of the south pole and U− to be the complement of the north pole. The
intersection is U+ ∩ U− ∼= Q × R. On U± we have H = dB±, and on U+ ∩ U− we
have B−−B+ = f+−, which is the curvature of a line bundle defined on Q×R. The
restriction of this line bundle to Q is topologically nontrivial provided that H is as

well.

To see this, let W± be closed sets contained in

Q

W+

W−

Figure 3: Two ways of comput-

ing the D0-charge of a spherical

D2-brane Q in SU(2).

U± covering G and such that W+ ∩ W− = Q as
shown in figure 3. We then integrate to find:∫

G

H =

∫
W+

H +

∫
W−
H

=

∫
Q

B+ −
∫
Q

B−

=

∫
Q

f+− .

Since
∫
G
H = 2πk, it follows that the first Chern

class of the line bundle whose curvature is f+− is k
times the generator of H2(Q) ∼= Z. This provides
another way to understand why for the SU(2) D2-

branes, the flux is only defined modulo k.
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4. Conclusions

In this paper we have re-examined the issues of D0-charge and flux quantisation in the

context of D-branes in WZW models. We have started by studying the topological

conditions necessary for the existence of a consistent theory of open and closed strings

propagating on a Lie group. The topological conditions are phrased naturally in

terms of the (relative) cohomology of the Lie group modulo the D-submanifold on

which the D-branes wrap. Table 1 summarises these conditions. The upshot is that

that both H2(G) and H2(G,Q) must vanish and that not just must the NS 3-form

H/2π represent a class in H3(G;Z), but also the pair (H,ω)/2π must represent a

class in the relative cohomology H3(G,Q;Z).

For G be a compact simple Lie group and k the level of the corresponding WZW

model, the D0-charge is the class in H3(G,Q;Zk) induced by the reduction modulo

k of the relative class represented by (H,ω)/2π in H3(G,Q;Z). We then showed

that the class in H3(G;Z) represented by H/2π is the obstruction to the existence

of a line bundle on Q whose first Chern class induces the relative class [(H,ω)]/2π.

Hence if H is not cohomologically trivial, there is no canonical line bundle on Q,

and hence no U(1) gauge field whose flux computes the D0-charge. Instead we have

a family of (locally defined) line bundles on Q, interpreted as a trivialisation on Q

of the gerbe whose characteristic class is [H ]/2π, whose Chern classes are equivalent

modulo k and such that they agree with the D0-charge. We conclude therefore

that for nontrivial H , there is no line bundle on the D-submanifold and hence no

associated U(1) gauge theory on all of Q. Nevertheless there are locally-defined line

bundles and gauge fields whose fluxes are quantised (and defined modulo k) in such

a way that they agree with the D0-charge.

This local picture of the gauge theory suggests a physical situation in which the

gauge fields are indeed generated locally where the strings hit the D-brane, but in

such a way that they patch up globally only modulo k. It would be nice to have

independent confirmation of the modularity of the D0-brane charge.

Although we have concentrated in the WZW model, where G is a Lie group,

many of the results in this paper are valid in more general situations where G is a

riemannian manifold with a nontrivial NS 3-form. The question of the nature of the

“gauge field” on the D-submanifold in the presence of a nontrivial NS 3-form has

been studied also in [17, 26, 27] and our work gives a complementary perspective on

this issue.
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