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Abstract 

 
During low-moderate energetic conditions, onshore migration of intertidal bars results in beach accretion. The 

mechanisms driving the onshore directed transport of sand and their relative importance are still under debate. To 

improve our knowledge on these mechanisms, a field experiment was conducted at the beach of Vejers, Denmark. 

Measurements of flow velocities including turbulence, sand concentrations and morphology were collected in the 

intertidal zone for a period of four weeks. This resulted in a unique dataset including detailed measurements at multiple 

locations during two periods with an onshore migrating intertidal bar. This paper gives an insight in the type of 

measurements that were collected, the hydrodynamic conditions and resulting variability in the cross-shore and 

alongshore morphology during the campaign, and presents preliminary results. 
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1. Introduction 

 

It is well known that nearshore bars move in the offshore direction during storms and in the onshore 

direction during low energetic conditions. While the offshore directed sand transport is reasonably well 

understood and mainly driven by the undertow (e.g., Gallagher et al., 1998), our knowledge on the onshore 

directed and mainly wave-driven transport is still rather poor (e.g., Van Rijn et al, 2011). The onshore 

directed transport of sand during fair weather conditions is, however, essential for beach recovery between 

storms and a better understanding of the processes involved is thus crucial to improve predictions of 

coastal development. 

 

The onshore directed migration of nearshore bars is often the result of onshore directed short wave-driven 

transport being larger than the offshore directed transport by the mean cross-shore current at the seaward 

flank and over the crest of a bar. The onshore directed short-wave transport in the surf zone has before been 

ascribed to velocity skewness (e.g. Ribberink and Al-Salem, 1994; O'Donoghue and Wright, 2004), 

acceleration skewness (e.g. Watanabe and Sato, 2004; van der A et al., 2009; Silva et al., 2011) and the 

surface-induced turbulence beneath plunging breakers (e.g. Aagaard and Hughes, 2010; Brinkkemper et al., 

2017). It remains unclear, however, what the relative contributions of these processes are to the migration 

of nearshore sandbars. 

 

In the alongshore direction, cross-shore migration rates may vary within distances of <200 m, despite 

identical offshore wave conditions. In this case, alongshore variations in bar depth result in alongshore 

variable wave fields over the bar, driving horizontal circulation patterns (Falqués et al., 2000). At the 

shallower parts, if the water depth above the bar crest is small and the trough landward of the bar is 

sufficiently pronounced (Sunamura and Takeda, 1984; Aagaard et al., 2006; Aagaard and Vinther, 2008), 

the onshore directed propagation of an intertidal bar results from the short-wave, infragravity-wave and 
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Figure 1. The location of (a) the study area in Denmark, (b) the fieldsite and the waverider buoy at Vejers and 

Nymindegab, respectively and (c) an orthophoto of the fieldsite. The symbols in (c) indicate the location of the 

instruments with (orange circles) R1 and R2, (yellow circles) R3 and R4, and (blue squares) the pressure sensors. 

 

mean transport all being onshore-directed. Here, the mean onshore current over the bar crest is 

compensated by offshore directed rip currents over the deeper parts of the bar crest. The alongshore 

variability of the intertidal bar may be coupled to that of the subtidal bar (Price et al., 2014). It is 

hypothesized that the variability in intertidal bar morphodynamics is partly driven by a modulation of the 

wave height by the alongshore variable water depth over the crescentic subtidal bar crest (Castelle et al., 

2010). Field evidence supporting this hypothesis, however, is currently lacking. 

 

To improve our knowledge on the morphodynamics during onshore bar migration and more specifically to 

determine which mechanisms are responsible for the onshore directed sand transport, the field experiment 

TASTI (Turbulence And Sand Transport Initiative) was conducted at the beach of Vejers, Denmark in 

September/October 2016. The experiment resulted in a dataset containing two periods of onshore directed 

migration of an intertidal bar. In this contribution we first introduce the field experiment (Section 2), 

followed by some preliminary results (Section 3) and the first conclusions (Section 4). 

 

2. Field experiment 

 

2.1 Setting 

 

The field experiment was conducted between September 16 and October 10 in 2016 at the beach near 

Vejers, Denmark (Figures 1a,b). This beach is characterized by a yearly average offshore significant 

waveheight of 1.3 m and a mean wave period of 4-5 s, a semidiurnal tide ranging from 0.6 m (neap) to 1.3 
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m (spring) and at the shoreface a median grain size of 180-200 µm. The nearshore consists of a multiple (3-

4) bar system, these bars show a net offshore migration cycle (period in the order of 15 years) and decay in 

approximately 6 m water depth at a distance of around 900 m from the shoreline (Aagaard and Kroon, 

2007). Despite the net offshore bar migration, the beach accretes with a rate of 6-7 m
3
/m/y due to a 

gradient in the net sand transport by wave-driven alongshore currents (Aagaard, 2011). The typical beach 

width is 150 m and the mean slope of the upper shoreface is 0.006. 

 

There have been field campaigns focusing on longshore bar dynamics and breaking induced turbulence at 

the beach of Vejers previously (Aagaard and Hughes, 2010; Aagaard and Jensen, 2013). The campaign 

presented herein, however, is the first at this site to include simultaneous measurements of the vertical 

profiles of turbulence and sand concentration at multiple locations, and with extensive surveys of both 

cross-shore and alongshore morphodynamics. 

 

2.2 Instrumentation 

 

Instruments were deployed in a cross-shore and alongshore array, mostly within the intertidal zone from -1 

to 1 m above mean sea level (Figure 1c). The cross-shore array consisted of five individual pressure 

transducers (PT; P1 – P5) to estimate water depth and wave characteristics, and four PTs which were 

collocated with other instruments at the two main rigs (R1 and R2) and two smaller rigs (R3 and R4). The 

alongshore array was located along the low water line on the first day of the campaign, centred around the 

cross-shore array, and consisted of five additional PTs (P6 – P10) to measure alongshore differences in the 

wave field over the intertidal beach. The offshore significant waveheight H0 was available from a wave 

buoy near Nymindegab (Figure 1b) in 16 m water depth. 

 

The two main rigs were initially deployed in the trough between the first, most landward located, subtidal 

bar and the intertidal bar (R1) and at the low water line (R2). Both rigs were equipped with three vertically 

spaced acoustic current meters (ADVs) to estimate the vertical variability in turbulent fluctuations 

(Ruessink, 2010) at 10 Hz. Sand concentrations were measured at R1 with five fiber-optical backscatter 

sensors (UFOBS; Downing, 2006) close to the bed (nominally 0.01-0.05 m) and with three individual 

optical backscatter sensors (OBS3+) higher in the water column (0.05-0.25 m), at R2 a vertical stack of 

five OBSs was used for near-bed measurements (nominal height of the sensing volumes 0.04 – 0.17 m 

above the bed) and two individual OBSs were deployed higher in the water column (0.25 and 0.30 m above 

the bed). Bedforms were monitored at R1 with an Imagenex 881A Profiling Sonar, scanning in a cross-

shore line and an Imagenex 881A Imaging Sonar for 2D imaging of the seabed. At R2 high-resolution 

circular elevation models were measured every 30 minutes using a 1.1 MHz 3D profiling Sonar 2001 

(Marine Electronics Ltd., see also Ruessink et al., 2016). Data loggers and batteries were included in both 

rigs, R1 additionally uploaded part of the data with a 3G modem connection. While R2 was deployed for 

the full length of the experiment, R1 was recovered at day 9 because of high rates of local accretion which 

buried the instruments. 

 

The two smaller rigs (R3 and R4) were deployed between R2 and the high water line. These rigs contained 

a PT, an electromagnetic flow meter (EMF) to measure horizontal velocities and three vertically spaced 

OBSs. The nominal height of the PTs was 0.10 m, for the EMFs 0.15 m and for the OBSs 0.05, 0.10 and 

0.15 m above the bed. The measurements collected by these instruments were used to estimate transport 

gradients landward of the two main rigs. 

 

Instrument heights above the bed were measured, and if necessary readjusted, once a day during low tide. 

The elevation of the intertidal beach was measured with a wheeled RTK GPS carrier over an area 

alongshore from 150 m north to 150 m south of the instrument array and cross-shore from the top of the 

primary foredune to approximately -1 m below mean sea level. These surveys were conducted every day 
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during low tide, except for three days when the water level was too high. To get qualitative data on the 

position and the alongshore variability of the subtidal bars, a daily time-exposure image was created by 

recording and averaging images collected for 10 minutes with 2 Hz using a GoPro camera during low-tide 

from the top of the foredune. 

 

Furthermore, a number of innovative instruments were deployed, for comparison of their measurements 

with data from more conventional instruments. A SICK LMS511 laser scanner was deployed on day 15 and 

16 to measure the instantaneous water surface along the cross-shore instrument array. The scanner was 

mounted on a 10 m high aluminium tower and set to scan at 25 Hz with an angular resolution of 1/6 

degree. The two major advantages over an array of pressure sensors are the high cross-shore resolution and 

a better approximation of the wave shape in shallow water, as pressure data needs to be converted to the 

sea surface elevation with for example linear wave theory. Moreover, a tilt current meter (TCM) was 

deployed at R1 from day 6 until day 9 of the experiment (Hansen et al, 2017). The TCM consisted of a 

cylindrical floatation body fitted with 9 degree of freedom motion sensor (accelerometer, gyro and 

compass). The floatation body was tethered to a casing containing a data logger and the energy supply. 

Using the pre-determined response curve, the measured tilt angles were used to estimate the two horizontal 

components of the flow velocity. Similar devices were earlier successfully deployed in deeper water to 

estimate tidal currents (e.g. Radermacher et al., 2015). Measurements of the cross-shore flow velocity by 

the TCM during the campaign in Vejers shows good agreement with measurements by a collocated ADVO, 

both for mean currents as for the wave-orbital motion. These results are presented and further discussed by 

Hansen et al. (2017). 

 

 

Figure 2. Hydrodynamics during the field campaign, with (a) the significant waveheight Hs at the (bold) offshore wave 

buoy and at the most seaward pressure sensor P1, (b) the water level η in respect to ordnance datum (DVR90), (c) 

wave angle of incidence θ at R2 and (d) normalized wave-energy spectra at P1. 
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2.3 Wave conditions 

 

During the first five days of the campaign (September 16 – 21), the offshore wave conditions were 

characterized by long-period (Tp ~ 12 s) swell waves (H0 ~ 0.5 m), with the peak wave period Tp gradually 

decreasing as swell-waves were dispersed while propagating from their distant source (Figures 2a,c). The 

wave-angle of incidence at R2 in this period was between five and ten degrees North of shore normal 

(Figure 2b). At September 22 wind from the North West generated waves at higher frequencies and a 

transition from swell waves to sea waves can be observed in the wave spectrum (Figure 2d). These sea 

waves with Tp ~ 7 s reached R2 with an angle between 10
o
 and 15

o
 South  from the shore normal, i.e. from 

the West (Figure 2c). The waveheight at the most seaward located pressure sensor now shows lower values 

than the offshore waveheight and waves thus dissipated part of their energy seaward of our instrument 

array. From the 13
th

 to the 15
th

 day of the experiment (September 29 – October 1), a northwesterly storm 

resulted in an increase in H0 to up to 4 m, and elevated waterlevels (Figures 2a,b). The wave angle of 

incidence at our instrument array decreased as the higher waves were refracted further seaward. The storm 

was followed by low-energetic swell conditions (H0 < 1 m) and an easterly wind from day 16 till day 24 

(October 2 – October 10). The waveheight at the wave buoy now also includes seaward propagating waves 

and is thus not representative for the waves at the field site. Limited data could be collected during this 

period, as the water level was lowered by the offshore directed winds and rarely exceeded the crest of the 

intertidal bar. 

 

 

Figure 3. (a) The bed elevation at September 27 (before the storm) with 0.20 m spaced contours, (b) difference between 

the survey at the September 27 and October 2, the contours indicate bed elevation at October 2, and (c) difference 

between the survey at October 2 and October 10 with contours showing the bed elevation at October 10. The symbols 

indicate the locations of (green circles) PTs, (red circle) R2 and (black crosses) R3 and R4. 
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3. Results 

 

3.1 Large-scale morphology 

 
At the start of the field campaign the beach was in an intermediate state, with a rhythmic bar and beach 
(RBB, Wright and Short, 1984). The cross-shore measurement array was located at an embayment in the 
shoreline, where the intertidal area consisted of a steep intertidal bar, coinciding with an embayment in the 
subtidal bar. North of the instrument array, at the location of P9 and P10, the intertidal bar was not yet fully 
welded to the shoreline and a runnel was present in between (Figures 1c and 3). During the first 12 days of 
the experiment, the intertidal bar further steepened and moved in the onshore direction. The development 
of the bar was similar alongshore, although the cross-shore location of the bar was coupled to the 
crescentic shoreline (Figure 3a). During the storm, the offshore directed transport of sand resulted in a 
flattening of the intertidal beach profile along the entire field site (Figure 3b), although alongshore 
variability remained in both the shoreline and the subtidal bar. The high water levels during the storm also 
resulted in a significant accretion of sand (approx. 0.5 m) on the upper beach (Figure 3b). During the 
subsequent low-energetic swell and low water levels in the last week of the study period, the mean water 
level rarely exceeded the bar crest, resulting in the reformation of an intertidal bar and a migration in the 
onshore direction (Figure 3c). 

 

At day 6 of the campaign, the cross-shore bed profiles at the location of P6, P7, the cross-shore array, P9 

and P10 (Figure 4a) show that the location and height of the subtidal bar crest were alongshore variable 

and lowest at the location of the cross-shore array. The distance between the subtidal bar and the shoreline 

decreased from the cross-shore array both to the north and to the south, reflecting the difference in subtidal 

bar depth. The location of the intertidal bar, between x = 140 – 170 m (Figure 3), was coupled with this 

water depth variation above the subtidal bar, as it was located most landward at the cross-shore array (see 

also Figure 1c).  

 

 

Figure 4. (a) Cross-shore bed profiles at (dashed blue) P6, (dashed red) P7, (solid yellow) the cross-shore array, (dotted 

purple) P9 and (dotted green) P10 at day 6 of the campaign. The dashed (dotted) bed profiles are located south (north) 

of the cross-shore array. The stars indicate the location of the pressure sensors. (b) Observed significant wave height 

(Hs) versus the water depth (h) for blocks of 30 minutes during one tidal cycle at the five alongshore locations. The 

lines show a linear fit through the observations of each instrument. Colors and line types are equal to (a). 
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In order to relate alongshore morphological variability in the intertidal zone with the incoming waves for 

different wave conditions and beach states, the wave data from the alongshore array of pressure sensors (P3 

and P6-P10) was analyzed. As the bed level and thus the water depth varied between the locations of the 

sensors for a given time interval, observed Hs at the alongshore spaced PTs could not be directly compared.  

 

To remove this additional variation in wave height, wave heights at a specific water depth can be compared 

at each alongshore location during a tidal cycle, through linear regression. Figure 4b shows an example of 

observed Hs versus h during an entire tidal cycle on day 6 of the campaign. Observed Hs at P3 (at the cross-

shore array) was highest throughout the measured range in h and was up to 1.8 times higher than Hs at the 

more northern location P9, located landward of a shallower area in the subtidal bar. This agrees with the 

expected modulation in Hs driven by the alongshore depth variability in the subtidal bar. For low local h, 

the observed Hs shows less difference between the sensors, as Hs becomes limited by the local water depth. 

 

3.2 Small-scale morphology 

 

The presence of bedforms can increase the turbulence intensity close to the bed and ejected turbulent 

vortices from the ripple crests can reduce the magnitude or even reverse the direction of the short-wave 

sand transport (e.g. van der Werf et al., 2007; Brinkkemper et al., 2017). Moreover, measurements in the 

shoaling zone of a dissipative beach (Miles and Thorpe, 2015) showed that migrating ripples can explain 

up to 15% of the total transport. Observations of the bed state and ripple characteristics are thus relevant to 

understand sand transport and morphodynamics. 

 

 

Figure 5. Two scans of the imaging sonar at R1 recorded at (a) September 21 at 06:20 AM and (b) September 23 at 

07:40 AM and two processed scans of the profiling sonar at R2 at (c) September 21 at 06:00 AM, and (d) September 22 

at 7:30 PM. The landward side is located at the right of the images. The V-shaped frame holding the main instrument 

suite at R1 can be seen at about 260 degrees in the image (a) and (b), wave ripples and mega-ripples are seen in the 

blue and orange encircled areas, respectively. The dark-red circles in (a) and (b) indicate a spacing of 1 m. 

(a) (b) 
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The mobility number ψ, here calculated as ψ = um
2
/(s-1)gD50) with um the vector product of the maximum 

orbital velocity, is often used to predict the bed state and ripple characteristics (e.g. Hay, 2011). Recent 

field measurements by Larsen et al. (2015) showed a transition from wave ripples to mega-ripples when ψ 

> 240, in contradiction with earlier measurements which show the bed to be flat for these conditions 

(Dingler and Inman, 1976). Here, we show some examples of bedform observations including raw data 

collected with the imaging sonar at R1 and processed data from the profiling sonar at R2 (Figure 5). The 

measured bed elevations at R2 were interpolated, using a second-order loess interpolator, to a grid with 

0.01 m spacing using lx = ly = 0.04 m, and subsequently detrended (lx = ly = 3.5 m) to remove the large-

scale morphology (Ruessink et al., 2015). 

  

The observations collected during the first week of the campaign show a continuous presence of ripples at 

R1, wave ripples, mega-ripples, or both, and wave ripples or a flat bed at R2. In the morning of September 

21, wave ripples with an orientation parallel to the shoreline were present at R1 (Figure 5a) while the bed 

was flat at R2 (Figure 5c). The mobility number during this high tide increases from around 200 at R1 to 

240 at R2 (Figure 6c) and thus confirms earlier findings that ripples disappear when ψ > 240. While 

Northeast-Southwest orientated mega-ripples, with superimposed wave ripples, were present at R1 during 

the high tide at September 23 (Figure 5c), ψ was slightly lower than for the scan without mega-ripples. 

Scans from the collocated profiling sonar show that these mega-ripples, with a length of around 0.8 m, are 

0.05-0.06 m in height. The orientation of the wave ripples is now slightly oblique in respect to the 

shoreline, which agrees with the change in wave direction (Figure 2c). Low mobility numbers at R2 also 

resulted in wave ripple formation (Figure 5d), ripple length and height in the scan from September 22 were 

around 0.06 and 0.02 m, respectively. 

 

Figure 6. (a) Water depth h, (b) significant waveheight Hs, (c) mobility number ψ and (d) turbulent kinetic energy k, at 

around 0.15 m above the bed, at (blue) R1 and (orange) R2, during the first week of the campaign. The horizontal line 

in (c) indicates ψ=240, the vertical lines indicate the moments the ripple scans in (solid) Figures 5a,c (dashed) Figure 

5d and (dashed-dotted) Figure 5b were recorded. 
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3.3 Turbulence 

 

Previous measurements beneath irregular shoaling and breaking waves showed an increase of the turbulent 

kinetic energy k with relative waveheight (Hs/h) and a shift from a vertical profile increasing towards the 

bottom to a vertical profile increasing towards the surface (e.g. Grasso et al., 2012). These findings were 

based on turbulence observations collected on one cross-shore location and the variability in Hs/h was thus 

caused by the offshore wave conditions. The turbulence measurements presented here were collected at two 

cross-shore locations and thus give a better insight in the cross-shore variability in turbulence 

characteristics. 

 

Figure 6 shows the variability in hydrodynamics during the first week, when measurements were collected 

at both locations. The tidal water depth variations (Figure 6a) drive variations in Hs (Figure 6b), as with 

lower water levels more waves start breaking at the subtidal bar. The turbulent kinetic energy k at 0.15 m 

above the bed, which was estimated from the ADV measurements using the differencing method 

(Feddersen and Williams, 2007), also shows a variation with h at R1 (Figure 6d), with higher k during low 

tide. The magnitude of Hs at R1 and R2 is similar until September 23, indicating that both rigs are located 

seaward of the surf zone during high water. The magnitude of k during those days is very similar at the two 

rigs during high tide, which shows that turbulence levels are relatively constant throughout the shoaling 

zone. In this period k is only occasionally higher at R2 during rising and falling tide, as it is then located in 

the surf zone. During the last two high tides shown, Hs decreases from R1 to R2 and waves thus dissipate 

energy due to breaking. Here, k levels significantly increase at the inner rig R2. Further analyses will focus 

on whether this breaking-induced turbulence can affect short-wave sand transport. 

 

4. Conclusions 

 

Detailed measurements of hydro- and morphodynamics were collected in the intertidal zone at the beach of 

Vejers. The campaign included two periods of accretive conditions with an onshore directed migration of 

the intertidal bar. These periods were characterized by low-moderate energetic conditions, while the 

intertidal beach profile was flattened during a storm, with high waves and water levels, in between these 

two periods. The intertidal morphology was alongshore variable throughout the campaign, especially 

during periods with an onshore migrating intertidal bar. Observations of the wave height at different 

alongshore locations along the low water line showed that differences in the intertidal morphology could be 

linked with alongshore differences in incoming wave energy due to a water depth variability over the crest 

of the subtidal bar. Measurements at two cross-shore locations show wave ripples to be present when the 

mobility number is below 240, a similar relation with the mobility number for the formation and 

disappearance of the observed mega-ripples was not found. Turbulence levels are relatively constant over 

distance in the shoaling zone and significantly increase in the surf zone. It is anticipated that this extensive 

dataset will enhance our understanding of the hydro- and morphodynamics in shallow water and in 

particular the processes involved in the onshore directed migration of longshore bars during low-moderate 

energetic conditions. 
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