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Abstract. This paper concerns networks of precedence constraints
between tasks with random durations, known as stochastic task net-
works, often used to model uncertainty in real-world applications. In
some applications, we must associate tasks with reliable start-times
from which realized start-times will (most likely) not deviate too far.
We examine a dispatching strategy according to which a task starts as
early as precedence constraints allow, but not earlier than its correspond-
ing planned release-time. As these release-times are spread farther apart
on the time-axis, the randomness of realized start-times diminishes (i.e.
stability increases). Effectively, task start-times becomes less sensitive
to the outcome durations of their network predecessors. With increas-
ing stability, however, performance deteriorates (e.g. expected makespan
increases). Assuming a sample of the durations is given, we define an
LP for finding release-times that minimize the performance penalty of
reaching a desired level of stability. The resulting LP is costly to solve,
so, targeting a specific part of the solution-space, we define an associated
Simple Temporal Problem (STP) and show how optimal release-times
can be constructed from its earliest-start-time solution. Exploiting the
special structure of this STP, we present our main result, a dynamic pro-
gramming algorithm that finds optimal release-times with considerable
efficiency gains.

Keywords: Activity network · Stochastic scheduling · Solution
robustness

1 Introduction

A stochastic task network is a directed acyclic graph G(V,E) with each node
in V = {1, . . . , n} representing a task with a random duration and each arc
(i, j) ∈ E representing a precedence-constraint between tasks i and j, specifying
that task j cannot start unless task i has finished. Such networks appear in
several domains like project scheduling [16], parallel computing [22], or even
digital circuit design [4], where there is a need to model a partial order of events
with uncertain durations. Postulating that a model of uncertainty is known, task
durations are described by a random vector D = (D1, . . . , Dn) with a known
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probability distribution. In project scheduling, for example, the duration Di of
task i may turn out to be shorter or longer than a nominal value according to a
certain distribution.

A given task network is typically mapped to a realized schedule (i.e. an assign-
ment of start-times to tasks) via earliest-start dispatching ; i.e. observing outcome
durations and starting a task immediately when precedence-constraints allow
(i.e. not later than the maximum finish-time of its network predecessors). Ran-
dom durations make the realized start-time of a task (and the overall realized
schedule makespan) also random. Since PERT networks [17], a large body of
literature focused on the problem of determining the makespan distribution [1],
eventually shown to be a hard problem [11]. A variety of efficient heuristics have
been developed so far (see [4]), among which Monte Carlo sampling remains,
perhaps, the most practical.

Consider, for example, the stochastic task network in Fig. 1, detailing the plan
of a house construction project, assuming task durations are random variables
that follow the uniform distribution within respective intervals. With earliest-
start dispatching, the overall duration of the project (i.e. the realized schedule
makespan) will range between 12 and 20 days with an expected value of a little
over 16 days.

Fig. 1. A motivating example.

This paper addresses a problem which, to our knowledge, has not been
addressed in existing literature. To motivate our problem, let us return to the
earlier example and suppose task 7 (“Paint interior”) is assigned to a painting
crew charging $100 per day. Assume we are willing to hire them for at least 4 days
(the maximum number of days they will need) and for at most 6 days; i.e. we
have a budget of $600 for painting. With earliest-start dispatching, 7 may start
within 8 to 15 days from the project start (the start-date of task 1). A challenge
that arises in this situation is deciding when to hire the painting crew, because
to allow for an expected makespan of a little over 16 days (as mentioned earlier),
we must book the painting crew from the 8-th day and until the 19-th day, at
the excessive cost of $1100. The solution we examine here, is to use a different
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dispatching strategy, associating task 7 with a planned release-time, t7, before
which it may not start even if installing plumbing and electricity are finished
earlier than t7. If we choose that 7 may not start earlier than, e.g., t7 = 13 days
from the project start, we only need to book the painting crew on the 13-th day
until the 19-th day, for an acceptable cost of $600. However, the price to pay for
this stability is an expected makespan increase to a little over 17 days.

Now suppose that after assessing our budget carefully it turns out that each
task may deviate at most, say w days, from its respective planned release-time.
The emerging question addressed in this paper is:

Which planned release-times reach the desired level of stability1 while
minimizing the incurred performance penalty?

This problem does not involve resource-constraints. However, task networks
are often used in the area of resource-constrained scheduling under uncertainty
(see [2,12]) to represent solutions (e.g. the earliest-start policy [13], the partial-
order schedule [5,10,20]). Thus, our work is expected to be useful in dealing with
associated problems, such as distributing slack in a resource-feasible schedule to
make it insensitive to durational variability [8].

Organization. A formal problem statement and its LP formulation are pre-
sented in Sect. 2. As the resulting LP can be quite costly to solve, Sect. 3 presents
our main result, an efficient dynamic programming algorithm. Section 4 con-
cludes the paper and outlines issues to be addressed in future work.

2 Problem Definition

We are given a task network G(V,E) and a stochastic vector D = (D1, . . . , Dn)
describing task durations. Let Q index the space of all possible realization sce-
narios for D such that dip denotes the realized duration of task i in scenario
p ∈ Q. We assume to know the probability distribution of D; i.e. the probability
P[D = (d1p, . . . , dnp)] for all p ∈ Q. To limit the unpredictability of the real-
ized schedule, we want to associate tasks with respective planned release-times
t = (t1, . . . , tn) such that the realized schedule is formed by starting a task as
early as permitted by precedence-constraints, but not earlier than its release-
time. That is, the start-time sjp of task j in scenario p will be determined as:

sjp = max[ max
(i,j)∈E

(sip + dip), tj ] (1)

Given a sample P ⊆ Q of size m of the stochastic durations vector, this paper
is devoted to the following problem:

1 As in Bidot et al. [3], stability here refers to the extent that a predictive sched-
ule (planned release-times in our case) is expected to remain close to the realized
schedule.
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min
t≥0

F :=
∑

j∈V,p∈P
sjp (P )

subject to sjp = max[ max
(i,j)∈E

(si + di), tj ] ∀j ∈ V, p ∈ P (2)

sjp − tj ≤ w ∀j ∈ V, p ∈ P (3)

This problem tries to optimize a trade-off between stability and performance:
release-times are sparsely spread in time in order to form a stable schedule, i.e.
such that in every considered scenario a realized start-time will stay within w
time-units from the corresponding release-time.

Since the whole space of possible duration realizations, Q, may be too large,
or even infinite, we only consider a manageable sample P ⊆ Q during opti-
mization.2 At the same time, we want to ensure a minimal performance penalty
F − F ∗ where F ∗ denotes the throughput of earliest-start dispatching with no
release-times.3

Instead of minimizing a standard performance criterion like expected
makespan, we choose to maximize expected throughput, 1

m
n∑

j,p sjp
, which equals

the average rate at which tasks finish over all scenarios. It can be shown that
a schedule of maximum throughput is one of minimum makespan and/or tar-
diness (in case tasks are associated with deadlines). We maximize throughput
indirectly by minimizing its inverse, with the constant m

n omitted for simplicity.

LP Formulation. The resulting problem is not easy to handle due to the
equality constraint, but using a standard trick it can be rewritten as the following
linear program (LP):

min
s,t≥0

F :=
∑

j∈V,p∈P
sjp (P )

subject to sjp ≥ sip + dip (i, j) ∈ E, p ∈ P (4)
sjp ≥ tj j ∈ V, p ∈ P (5)
sjp − tj ≤ w j ∈ V, p ∈ P (6)

Note that the solution-space of the resulting LP encompasses that of the original
formulation. However, it is easy to show that both problems have the same set of
optimal solutions, because a solution (s, t) for the LP cannot be optimal unless
it satisfies (2).

Currently, the best (interior-point) LP solvers have a complexity of O(N3M)
where N is the number of variables and M the input complexity [21]. Thus,
letting δ ≤ n denote the max in-degree in G(V,E), the cost of solving (P ) as an
LP with nm variables and O(nδm) constraints can be bounded by O(n4m4δ) ⊆
2 Knowing the distribution of D, we assume to be able to draw P.
3 The reader can easily recognize the similarity of the proposed LP with a so-called

Sample Average Approximation (SAA) of a stochastic optimization problem [14].
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O(n5m4), which can be daunting even for small instances. Fortunately, as shown
in the following section, we manage to obtain the substantially tighter bound of
O(n2m) for solving (P ), by exploiting its simple structure to devise a dynamic
programming algorithm.

3 Fast Computation of Planned Release-Times

We first show that a fixed relationship between variables sjp and tj can be
assumed while looking for an optimal (s, t). Based on this, a problem (P ′) is
defined which can be solved instead of (P ).

A Tighter Formulation. Begin by rewriting (6) as tj ≥ maxp sjp−w ,∀j ∈ V .
Now, let Λ denote the set of all feasible (s, t) for problem (P ) and let Λ∗ ⊆ Λ be
that part of the solution-space that only contains (s, t) for which tj = maxp sjp−
w for all j.

Lemma 1. For every feasible (s, t) ∈ Λ \ Λ∗ there exists (s′, t′) ∈ Λ∗ with equal
objective value.

Proof. Consider feasible (s, t) with tj = maxp sj∗p−w+c with c > 0 for some j∗.
Construct t′ by letting t′j = tj for all j �= j∗ and t′j∗ = tj∗ − c = maxp sj∗p − w.
Trivially, if (s, t) is feasible, so is (s, t′), with the same objective value. Keeping
s fixed, we may repeat this construction to enforce that tj = maxp sjp −w for all
j and have (s, t′) ∈ Λ∗.

The previous result allows us to consider the following problem, obtained by
substituting maxp′∈P sjp′ − w for tj in (P ):

min
s≥0

∑

p

snp (P ′)

subject to sjp ≥ sip + dip (i, j) ∈ E, p ∈ P (7)
sjp ≥ max

p′∈P
sjp′ − w j ∈ V, p ∈ P (8)

sjp − (max
p′∈P

sjp′ − w) ≤ w j ∈ V, p ∈ P (9)

Clearly, (s, t) ∈ Λ∗ iff s is feasible for (P ′).4 In other words, the solution-space of
P ′ comprises only those s that can be paired with t by letting tj = maxp sjp −w
to form a feasible (s, t) for (P ). By Lemma 1, if s is optimal for (P ′), then (s, t)
is optimal for (P ). Also, if (P ) has a solution (i.e. if G(V,E) is acyclic), then
(P ′) also has a solution.

4 Since (s, t) ∈ Λ∗ implies maxp′ sjp′ − w = tj for all j.
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The Resulting STP. Formulation (P ′) is useful because it can be cast as a
certain type of Temporal Constraint Satisfaction Problem (TCSP) [9]. We start
by noting that (9) is always true and can be omitted. Moreover, (8) can be
rewritten as (11), to obtain the following reformulation:

min
s≥0

∑

p

snp (P ′)

subject to sip − sjp ≤ −dip (i, j) ∈ E, p ∈ P (10)

sjp − sjp′ ≤ w (p, p′) ∈ P2, j ∈ V (11)

Constraints (10) and (11) effectively represent the solution-space of a Simple
Temporal Problem (STP) [9] with temporal variables {sjp : j ∈ V, p ∈ P}.
The structure of the resulting STP (specifically, of its distance graph [9]) is
demonstrated in Fig. 2.

Fig. 2. Example task network (a) and resulting STP (b) for a sample P = {p, p′′}.

The earliest start time (est) solution of any given STP (assuming it is con-
sistent) assigns to each variable the smallest value it may take over the set of
feasible solutions. Therefore, the est solution of the resulting STP optimally
solves (P ′), leading us to the following observation.

Observation 1. By Lemma 1, an optimal solution (s, t) for (P ) can be formed
by finding the earliest start time solution s of the resulting STP and pairing it
with t formed by letting tj = maxp∈P sjp − w for all j.
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Algorithm 1
1: l(s1p) ← 0 for all p ∈ P
2: for each tier j in a topological sort of G(V, E) do
3: kjp ← min{l(sip) − dip : (i, j) ∈ E} for all p ∈ P
4: p∗ ← arg min{kjp : p ∈ P}
5: l(sjp) ← max{kjp, kjp∗ + w} for all p ∈ P
6: end for
7: sjp ← l(sjp) for all j ∈ V, p ∈ P
8: tj ← maxp∈P sjp − w for each j ∈ V

The est value of sjp is the length of the shortest-path (in the distance graph)
from (the node corresponding to) sjp to the special-purpose variable z which is
fixed to zero. Those values can be found with a single-source shortest-path algo-
rithm (e.g. Bellman-Ford [19]) in time O(NM) where N is the number of nodes
and M the number of arcs. In our case, N = nm and M = O(nmδ), yielding
O(n3m2); already a better bound than that of solving (P ) as an LP. However,
in the following we obtain an even better bound with a dynamic programming
algorithm.

Computing the est Solution by Dynamic Programming. Let us associate
each task j ∈ V with a corresponding tier including all nodes {sjp : p ∈ P} of
the STP distance graph. A few remarks on the structure of the STP are in order.
First, due to (11) the resulting STP is not acyclic, but each cycle only includes
nodes that belong to the same tier. Second, due to (10) there is a path from each
node in tier j to each node in tier i if and only if there is a path from task i to
j in G(V,E).

Let l(sjp) denote the shortest-path length from sjp to z (i.e. the value of
variable sjp in an optimal solution of (P ′)). From the structure of the resulting
STP, we have:

l(sjp) = min
{

min
(i,j)∈E

(l(sip) − dip), min
p′ �=p

l(sjp′) + w

}
(12)

The existence of cycles complicates solving subproblem l(sjp) as it depends
on (and is a dependency of) other subproblems l(sjp′) in the same tier. However,
we can “break” dependencies between subproblems in the same tier as shown
below.

Define kjp := min(i,j)∈E(l(sip) − dip) and p∗ := arg minp∈P kjp.

Lemma 2. l(sjp) = min{kjp, kjp∗ + w}
Proof. Begin by noting that the shortest-path from sjp to z visits at most one node
sjp′ from the same tier. As such, for every sjp we have that: either l(sjp) = kjp,
or l(sjp) = kjp′ + w < kjp for some p′ �= p.
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Now, note that l(sjp∗) = kjp∗ , since if not (i.e. if l(sjp∗) �= kjp∗), then
l(sjp∗) = kjp′ + w < kjp∗ with p′ �= p∗, which contradicts the definition of p∗.

Last, we show that if l(sjp) �= kjp then l(sjp) = kjp∗ + w. Suppose not.
Since l(sjp) �= kjp then according to (12), l(sjp) = l(sjp′) + w but with p′ �= p∗.
Expanding l(sjp′) according to (12),

min{kjp′ , min
p′′ �=p′

l(sjp′′) + w} + w < l(sjp∗) + w = kjp∗ + w

and since kjp′ ≥ kjp∗ ,

min
p′′ �=p′

l(sjp′′) + w < kjp∗

⇔ l(sjp∗) + w < kjp∗

which contradicts that l(sjp∗) = kjp∗ .

The resulting recursion suggests a dynamic programming approach, summa-
rized in Algorithm 1. It involves solving the subproblems of one tier at a time,
visiting tiers according to a topological sort of G(V,E) (recall that tiers corre-
spond to tasks j ∈ V ). Finding a topological sort takes O(nδ) [23], recalling that
δ denotes the max in-degree of a task in the network. The overall complexity of
Algorithm 1 is therefore O(nmδ) ⊆ O(n2m).

4 Conclusion

Given a stochastic task network with n tasks we consider dispatching the tasks
as early as possible, subject to (planned) release-times. Assuming a sample with
m realizations of the stochastic durations vector is drawn, we defined an LP
for finding optimal release-times; i.e. that minimize the performance penalty
of reaching a desired level of stability. The resulting LP is costly to solve, so
pursuing a more efficient solution method we managed to show that optimal
release-times can be expressed as a function of the earliest start time solution of
an associated Simple Temporal Problem. Exploiting the structure of this STP,
we were able to define a dynamic programming algorithm for finding optimal
release-times with considerable efficiency, in time O(n2m).

Future Work. Since we optimize according to a manageable sample P, there
is a (potentially non-zero) probability Pv that the realized start-time of a task
deviates further than w time-units from its planned release-time. The question
of how Pv (or E[Pv] as in [6]) depends on m (the size of P) should be addressed
in future work. Furthermore, in an earlier paper [18], an LP similar to (P ) was
used it in a two-step heuristic for a flavor of the stochastic resource constrained
project scheduling problem (stochastic RCPSP) [15,24]. Given a resource alloca-
tion determined in a first step, in a second step a LP was used to find planned
release-times that minimize the total expected deviation of the realized sched-
ule from those release-times. This heuristic was found to outperform the state-
of-the-art in the area of proactive project scheduling. In future work, we shall
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investigate using the algorithm presented here in order to stabilize the given
resource-allocation, expecting gains in both efficiency and effectiveness. Finally,
a potentially related problem, namely PERTCONVG, is studied by Chrétienne
and Sourd in [7], which involves finding start-times for a task network so as to
minimize the sum of convex cost functions. In fact, their algorithm bears struc-
tural similarities to ours, since subproblems are solved in a topological order. It
would be worth investigating if their analysis can be extended in order to enable
casting the problem studied here as an instance of that problem.
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