
LETTERS
PUBLISHED ONLINE: 16 JANUARY 2017 | DOI: 10.1038/NCLIMATE3199

Sensitivity of projected long-term CO2 emissions
across the Shared Socioeconomic Pathways
G. Marangoni1,2,3*, M. Tavoni1,2,3, V. Bosetti1,2,4, E. Borgonovo4, P. Capros5, O. Fricko6,
D. E. H. J. Gernaat7,8, C. Guivarch9,10, P. Havlik6, D. Huppmann6, N. Johnson6, P. Karkatsoulis5,
I. Keppo11, V. Krey6, E. Ó Broin9, J. Price11 and D. P. van Vuuren7,8

Scenarios showing future greenhouse gas emissions are
needed to estimate climate impacts and the mitigation
e�orts required for climate stabilization. Recently, the Shared
Socioeconomic Pathways (SSPs) have been introduced to
describe alternative social, economic and technical narratives,
spanning a wide range of plausible futures in terms of
challenges to mitigation and adaptation1. Thus far the key
drivers of the uncertainty in emissions projections have not
been robustly disentangled. Here we assess the sensitivities
of future CO2 emissions to key drivers characterizing the SSPs.
Weuse six state-of-the-art integratedassessmentmodelswith
di�erent structural characteristics, and study the impact of
five families of parameters, related to population, income,
energye�ciency, fossil fuel availability, and low-carbonenergy
technology development. A recently developed sensitivity
analysis algorithm2 allows us to parsimoniously compute both
the direct and interaction e�ects of each of these drivers
on cumulative emissions. The study reveals that the SSP
assumptions about energy intensity and economic growth are
the most important determinants of future CO2 emissions
from energy combustion, both with and without a climate
policy. Interaction terms between parameters are shown to be
important determinants of the total sensitivities.

Counterfactual or baseline scenarios of future greenhouse gas
emissions play a crucial role in the scientific analysis of climate
change, but they also increasingly matter in the political debate.
Long-termprojections of socioeconomic and emission scenarios are
needed to be able to assess future climate change, and its physical
and economic impacts. Emission reduction policies, including
several of the Nationally Determined Contributions (NDCs), are
expressed as reductions relative to emissions projections. Moreover,
baseline emissions are one of the most important drivers of
mitigation costs3–5: the higher the expectations of future emissions
in the absence of climate policy, the greater the mitigation effort for
a given climate target, which translates into higher policy costs and
technological transformation requirements.

Although long-term emissions projections are needed for
decision-making, there is large uncertainty in their estimates.
Several emission scenarios have been generated by the integrated

assessment model (IAM) research community over the years.
These include the Intergovernmental Panel on Climate Change
(IPCC) Special Report on Emission Scenarios6 and the new Shared
Socioeconomic development Pathways (SSPs)7–11.

Scenarios generated by several models allow one to quantify both
parametric and model uncertainty, which have been identified as
a major source of uncertainty. Moreover, diagnostics of IAM is a
relatively nascent field that is growing in importance to help validate
models. Hence, it is useful to disentangle the key drivers of the
uncertainty in emissions projections because that understanding
can help design hedging strategies.

Building baseline scenarios is a daunting task that requires
projecting forward multiple factors driving emissions and
accounting for the large uncertainties characterizing them. To
date the research community has relied on multi-scenario and
multi-model comparisons to help quantifying the uncertainties
surrounding future emissions. As no single model projection nor
individual scenario will probably be exactly true, it is extremely
useful to gauge the relative importance of drivers of these scenarios
and allocate research efforts to strategically minimize uncertainties.
In such an exercise, it is worth also to design additional scenarios
that are not necessarily self-consistent with the original narratives,
but still may bring important insights into surprises and risks we
might want to hedge against. However, so far limited attention
has been given to the understanding of the sensitivity of projected
emissions to the underlying drivers that together define a specific
narrative. The aim of this paper is to fill this gap by systematically
decomposing the individual and combined influence of each driver
on greenhouse gas emissions in a multi-model perspective.

IAMs have been subjected to sensitivity analyses in the past.
However, most of these analyses have focused on either a small
set of models, or on individual sensitivities12–18 (see Supplementary
Information for a literature review). Individual sensitivities are
computed by varying just one factor at a time. However, this allows
for the computation of only the individual effects of a particular
factor change, disregarding interactions among factors. A more
refinedmethodology is employed here to also capture nonlinearities
and interactions across factors at limited computational cost. Thus,
this paper goes beyond the existing literature on three main issues:
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Figure 1 | Main CO2 emission drivers for the first three SSP scenarios. In colour, the range spanned by SSP marker models; in grey (and delimited by black
lines), the range of the models participating to this study. a–c, Yearly world population. d–f, Yearly world GDP (PPP) per capita. g–i, Yearly world primary
energy supply per unit of GDP (PPP). j–l, Yearly world CO2 FFI emissions per unit of primary energy supplied. Central black lines are means across models.

we use the SSPs, we carry out a multi-model comparison, and we
evaluate both individual and total sensitivities.

The SSP framework has identified five main narratives, which
span the mitigation and adaptation challenges space. In this
paper we focus on the first three scenarios, namely SSP1 (ref. 19),
SSP2 (ref. 20) and SSP3 (ref. 21). These scenarios represent low,
intermediate and high challenges to bothmitigation and adaptation.
Our variable of interest is the global cumulative CO2 emissions
from fossil fuels and industry over the next decades, a good
proxy for changes in relevant climate variables, such as average
surface temperature of the Earth22,23. We focus on energy-related
emissions given their predominant role in future greenhouse gas
atmospheric concentrations, and their ease of comparability across
the differently structured models. Six IAMs have participated in
the study: GEM-E3-ICCS24, IMAGE25, IMACLIM26, MESSAGE-
GLOBIOM20, TIAM-UCL27 and WITCH-GLOBIOM28.

These models have previously contributed to major scientific
and policy-relevant evaluations such as the IPCC 5th assessment
report29 and the Impact Assessments of the EU energy and climate
policies. The ensemble of models includes computable general

equilibrium models with detailed representation of economics
sectors, technology-rich models, as well as hybrid models, thus
collectively encompassing different modelling paradigms (see
Methods for details). Three of the six models (IMAGE, MESSAGE-
GLOBIOM and WITCH-GLOBIOM) have been directly involved
in a recent quantification process of SSPs1, and two models
were identified as ‘marker’ models, that is, providing a preferred
implementation of a selected SSP19,20.

SSP narratives differ inmany regards (see Supplementary Table 2
for a full description). In a nutshell, SSP 1, 2 and 3 describe a world
characterized by low, medium and high challenges to mitigation
and adaptation, respectively. Narratives are distinguished by vari-
ables that have been precisely quantified, such as population, and
economic growth. Other variables—such as household preferences,
technical progress, or technology availability—have been defined
more qualitatively. For the sake of our analysis, we consider five
main factors: population (POP), gross domestic product (GDP) per
capita (GDPPC), energy intensity improvements (END), fossil fuel
availability (FF) and low-carbon energy technology development
(LC). These are the main family of drivers of emissions, commonly
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Percentage of change in cumulative CO2 fossil emissions 2010−2050 wrt SSP2 under BASE
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Figure 2 | Sensitivities of cumulative CO2 emissions to scenario factors. a,b, Changes refer to global cumulative CO2 FFI values in the period 2010–2050
when moving from SSP2 to either SSP1 (a) or SSP3 (b) without climate policies. TOTAL refers to total emission changes, and the rows below show emission
changes for each of the five factors. Individual e�ects are reported with transparent thicker bars, total e�ects with solid thinner bars and interaction e�ects
with striped bars. Values are reported for each of the six IAMs involved in the study.

used for historical decomposition analysis. The SSP assumptions for
key variables related to these five drivers, as implemented in this
study, are shown in Fig. 1.

Given this set-up, we have designed a scenario protocol such that
when deviating from the central SSP2 case to either SSP1 or SSP3
it is possible to attribute the observed change in output to changes
in each of these five groups of inputs. Since we are interested in
determining also the relevance of parameter interactions, we employ
a recently developed sensitivity analysis algorithm2. The method
is illustrated in Supplementary Fig. 1, and involves changing the
factor of interest from a reference to an alternative value, as well
as changing all of the other factors except the one of interest. The
first set of model runs provides the individual effect. The second—
with a change in sign—gives us the total effect of that same factor,
that is, an effect that contains both the individual effect and the
interaction effect. The interaction effect includes all the interactions
of the factor at hand with all the other factors. It is computed as the
difference between individual and total effects. We coordinated the
work in such a way that the six IAMs ran exactly on the same grid
of points. The full matrix of scenarios is reported in Supplementary
Table 4. The design has been chosen to obtain interaction effects
with a parsimonious number of model evaluations, an important
feature given the computational cost of the experiment.

Each of the six IAMs ran the 23 required scenarios for the
no climate policy case (referred to as BASE), as well as another
23 scenarios for an idealized climate policy case (referred to as

CPRICE). The climate policy scenarios assume a global carbon
price starting in the year 2020 at 2005US$11 per tCO2eq, and
rising at a fixed rate of 5% per year30. This is roughly consistent,
at the global level, with a reasonable continuation of the climate
stringency of current NDCs, but probably not with a 2 ◦C target (see
Supplementary Information). Running both cases allows us to test
whether the key parameters driving emissions are the samewith and
without a mitigation policy.

The main results of the sensitivity analysis of emissions for the
no climate policy case and the first half of the century are shown
in Fig. 2. The left-hand-side panel reports results when moving all
drivers from the parameterization of the SSP2 scenario, the ‘middle
of the road’, to those of SSP1, the more sustainable scenario. The
overall reduction in emissions is 12% on average across models.
GDP per capita and energy intensity improvement (GDPPC and
END, respectively, in Fig. 2) appear to be the most important
drivers, with an absolute median impact on emissions of 5% (full
model range: 3 to 8%) and 10% (6 to 18%), respectively. Since SSP1
portrays a wealthier but more efficient world than SSP2, these two
drivers induce variations in output of opposite sign and thus partly
offset each other. Low availability of fossil fuel resources (FF) and
high deployment of low-carbon technologies (LC) contribute to
lowering SSP1 emissionswith respect to SSP2 by 2% (−0.1 to 8% and
−1.9 to 6%, respectively). Assumptions about population appear
to have the lowest impact on emissions to 2050 across all models,
with a median reduction of 1%. This is both due to models being
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Table 1 |Changes in total sensitivities across climate policies and time horizons.

Year 2010–2050 2050–2090

Policy input BASE CPRICE BASE CPRICE
SSP2 →SSP1

TOTAL −12 [−20,−5] −9 [−17,1] −27 [−38,−21] −20 [−47,−9]
END −10 [−18,−6] −8 [−18,−6] −21 [−40,−8] −30 [−63,−7]
GDPPC 5 [3,8] 5 [3,7] 12 [7,16] 13 [6,26]
FF −2 [−8,0] −1 [−7,1] −5 [−23,0] −1 [−18,3]
LC −2 [−6,2] 0 [−6,3] −4 [−16,3] 3 [−6,14]
POP −1 [−2,0] −1 [−2,0] −5 [−12,−2] −9 [−12,−2]

SSP2 → SSP3

TOTAL 13 [−3,31] 9 [−5,31] 10 [8,35] 11 [−21,92]
END 9 [2,29] 7 [2,30] 24 [4,44] 19 [4,99]
GDPPC −9 [−21,−3] −9 [−20,−3] −44 [−86,−35] −56 [−170,−29]
FF 4 [0,8] 3 [−1,6] 17 [0,21] 0 [−7,10]
LC 2 [0,6] 2 [1,6] 4 [2,11] 2 [−10,15]
POP 0 [−1,1] 0 [−2,1] 1 [−5,8] 8 [−4,20]
Sensitivities are quantified as total e�ects of factors on global cumulative CO2 FFI emissions for two climate policies (BASE or CPRICE) and two time horizons (2010–2050 or 2050–2090). Median
values are reported along with model ranges (in brackets). The row ‘TOTAL’ refers to the total observed change in output. All figures are rounded to the nearest whole number.

generally less responsive to changes in population than in other
factors (Supplementary Fig. 13), and to population assumptions
being only gradually diverging over time across SSPs (Fig. 1).

Figure 2 reports both individual and interaction effects that sum
up to the total effect. The interaction effect can either amplify
or dampen the changes resulting from individual effects. The
assumptions of higher sustainability in SSP1 are synergistic with the
availability of higher wealth per person, leading to a lower emission
increase than the one produced by the same increase in income in
the less sustainable SSP2 scenario. As a result, the median impact
of larger income per capita on emissions is reduced from 8%—had
we changed the factor in isolation—to 5%. For other parameters,
the direction of individual and interaction effects is less clearcut,
showing model-dependent behaviours.

The right-hand-side panel of Fig. 2 reports results when moving
all scenario drivers from SSP2 to the more challenging world
of SSP3. Emissions increase, in line with the SSP3 narrative,
but variations across models are larger than between SSP2 and
SSP1. Once again, income and energy efficiency emerge as key
determinants. The magnitude of sensitivity to these two drivers is
even larger than for the SSP1 case. Specularly to the SSP1 case,
we find that interaction effects amplify the emission reductions
associated with the GDP decrease from SSP2 to SSP3, and mitigate
the increase in emissions associated with higher energy end use.
On the one hand, income reduction in a more energy- and fossil-
intensive economy leads to a larger drop in emissions. On the
other, lower efficiency in a poorer world yields a smaller increase in
emissions. Absolute levels of cumulative emissions and total effects
in GtCO2 can be found in Supplementary Fig. 8.

Table 1 provides a robustness test over different time horizons
(that is, first and second halves of the century) and for the carbon
price case. Overall, results are consistent across scenarios. In the
medium term, that is, up to 2050, the results shown in Fig. 2
are confirmed in the case of the carbon price policy. Looking
at the second half of the century, fossil fuel availability becomes
slightly more important, while the contribution from low-carbon
technologies availability and population remains marginal. Full
tornado plots with values per model are reported in Supplementary
Figs 9 (CPRICE 2050) and 11 (BASE 2090). Changes in sensitivities
are further highlighted in Supplementary Figs 10 and 12.

This analysis has shown that the assumptions about energy
demand and per capita income underlying the SSPs appear to be the
most influential factors in explaining the projected change in future

cumulative CO2 emissions. Results are conditional to the width of
uncertainty spanned by SSP storylines (for example, the expected
limited variation in population in demographic projections in
general up to 2050 reduces automatically its impact), the specific
modelling choices in implementing the storylines and the different
modelling responses. Normalizing sensitivities by the magnitude
of drivers yields slightly different rankings, with resource and
technology assumptions gaining importance (in Supplementary
Fig. 13). The ranking of drivers is also affected by the fact that
individual impacts of input groups can be dampened or reinforced
when these are varied together.

Further research is needed to cast light on the mechanics of
interactions and on the correlations between deviations frommeans
and specific models characteristics. Expanding the analysis to
additional factors, such as land-use emissions and carbon capture
and storage, could provide additional insights. Results shown in
this paper could be robust to these additional elements given that
they play a significant role only in climate mitigation scenarios, but
further exploration is warranted. Assessments aiming at quantifying
uncertainty, exploring surprise scenarios31, and designing hedging
strategies in the face of both parametric andmodel uncertainty32 are
needed to inform climate policy, including the upcoming reports of
the IPCC. Such efforts, along with those undertaken in this paper,
can provide important insights into the nascent literature on IAMs
diagnostics30. In addition to unpacking model results, it can also
provide guidance in terms of research directions: our results on the
relevance of energy intensity together with the recognition of the
currently limited capability to model energy demand33 indicate this
as a focus of priority for future model development.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Socioeconomic pathways. The narratives behind the SSP scenarios7–10 have been
described both qualitatively11 (see Supplementary Table 2) and, more recently, also
quantitatively1,34. This study focuses just on the first 3 SSPs19–21, which, if located in
a mitigation versus adaptation challenge space, would belong to the main diagonal,
as both types of challenge increase.

SSPs are different along many dimensions, which eventually translate into
different assumptions on CO2 emissions drivers (Supplementary Figs 2–4). Here
we assume that SSP scenarios are implemented by changing model inputs
belonging to one of the five categories described below.

POP refers to assumptions on regional population over the century. Estimates
have been developed by the International Institute for Applied Systems Analysis
(IIASA) at country level35. SSP1 has lower global population growth, while in SSP3
the growth is low in industrialized and high in developing countries, resulting in
higher global levels.

GDPPC refers to assumptions on regional income per capita over the century.
These are obtained by dividing the GDP level projections obtained with the
ENV-Growth model by OECD (Organisation for Economic Co-operation and
Development) specialists for the SSP scenarios36 with the population levels above.
SSP1 features favourable economic growth, while the SSP3 economy is weakened
by international fragmentation.

END refers to assumptions on energy intensity. Qualitatively, SSP1 features a
fast phase-out of traditional fuels, modest service demands and low energy
intensity of services and industry due to improved resource efficiency. SSP3 goes in
the opposite direction, with continued reliance on traditional fuels, high service
demands and high energy intensity of services. Quantitatively, levels of world final
energy demand per unit of GDP were aligned across models and scenarios with the
same END assumptions.

FF refers to assumptions on fossil fuel availability. Qualitatively, SSP1 features a
fast decrease in fossil fuel dependency, reluctance to use unconventional fossil
resources, slow extraction technology improvements and no trade barriers. SSP3
instead involves supportive policies to the production of both conventional and
non-conventional fossil fuels, with a medium to high development of extraction
technology, partially counterbalanced by high trade barriers and support of energy
security goals. Quantitatively, levels of world fossil primary energy per unit of
primary energy were aligned across models and scenarios with the same
FF assumptions.

LC refers to assumptions on low-carbon energy technologies availability.
Qualitatively, SSP1 features high development and high social acceptance of
non-biomass renewables, specifically wind and solar technologies, along with a
medium development and low social acceptance of nuclear. On the other side, SSP3
involves low development and medium social acceptance of non-biomass
renewables, along with low to medium development and high social acceptance of
nuclear. Quantitatively, levels of world renewables and nuclear primary energy per
unit of primary energy were aligned across models and scenarios with the same
LC assumptions.

More details on the implementation in the six models of these five sets of
assumptions across the three SSP scenarios can be found in Supplementary Table 3.
These sets are referred to as sensitivity ‘factors’, as each represents a collection of
related scenario features relevant to the sensitivity, or emissions ‘drivers’, for their
important role in shaping emissions.

Elements related to land use and CCS are left out from this analysis. The
assumption is to leave them unchanged at their SSP2 levels. Thus, in principle a
scenario with all five input categories at level 1 may slightly differ in terms of
fossil fuel CO2 emissions from an SSP1 scenario with its comprehensive
implementation.

Finite change sensitivity analysis and design of experiment. In our analysis,
we assume that CO2 emissions Y are an output of a set of model inputs z given
by the model f (z). These inputs are grouped into a limited number N of
categories, or sensitivity factors. When changing one of our N factors, for
example, POP assumptions from SSP2 to SSP1 levels, we are changing the
corresponding subset of z components, for example, regional population levels at
each time period.

In decomposition analysis, often a simple relationship between model drivers
and output is postulated (for example, a product or a sum of products). This
allows subsequently to estimate the influence of individual factors using an
index decomposition analysis (for example, with logarithmic mean Divisia
index or LMDI37). Such an approach is useful especially when no additional
information exists (for example, for historical data or for a limited set of
model outputs).

In our case, CO2 emissions are the result of an arbitrarily complex computation,
represented by each model f . Since we have access to the data-generating process,
we can build a convenient data set of pairs (z ,Y ) for our sensitivity purposes. For
further information on the difference with an LMDI approach, refer to the
Supplementary Information.

We resort to a finite change sensitivity method based on the functional ANOVA
expansion. A change1Y in output, obtained when moving from a reference
scenario 0 with inputs z 0 to a deviation scenario 1 with inputs z 1 is expanded in a
sum of N individual and 2N −N interaction terms.

The individual term φ1
i for a factor i is the1Y obtained when moving the

components of z related to factor i from levels 0 to levels 1. The interaction term
φ1
i,j for the factors i and j is the1Y obtained when moving the components of z

related to that pair of factors from levels 0 to levels 1, minus the sum of i and j
individual effects, that is, φ1

i +φ
1
j . Analogous definitions can be thought for

interaction terms involving three or more factors, every time subtracting effects of
lower order. If we sum all the terms involving a factor i, we obtain the total effect
φT
i of i. This represents the impact of changing factor i on the output, accounting

for all the interactions embodied in f .
Thanks to a computational shortcut, it is possible to reduce the number of

scenarios required for calculating total effects from exponential to linear2,38, at the
expense of ignoring each single interaction term. φT

i is in fact equivalent to the
opposite of the1Y obtained when moving all the inputs corresponding to all the
factors but i from 0 to 1. This is illustrated in Supplementary Fig. 1, and the
resulting scenario matrix required for calculating the sensitivities is shown in
Supplementary Table 4. In Supplementary Information the methodology is further
described in rigorous terms.

Integrated assessment models. The sensitivity analysis was repeated with six
well-established global climate–energy–economy models. The model suite used in
this paper spans the major families of IAMs: general versus partial equilibrium,
bottom up versus top down, sectoral versus technological disaggregation, and
simulation versus optimization. This provides useful information on how robust
the results are to model uncertainty. All these models have been leading
contributors of scenarios to international assessments (for example, IPCC AR5
scenario database), as well as EU policy evaluation. A brief description of the
models follows.

GEM-E3-ICCS24 is a computable general equilibrium model that puts emphasis
on: the analysis of market instruments for energy-related environmental policy,
such as taxes, subsidies, regulations, emission permits and so on, at a degree of
detail that is sufficient for national, sectoral and worldwide policy evaluation; the
assessment of distributional consequences of programmes and policies, including
social equity, employment and cohesion for less developed regions.

IMACLIM26 is a recursive dynamics hybrid model, combining a general
equilibrium approach with technology-explicit modules. It is intended to study the
interactions between energy systems and the economy, to assess the feasibility of
low-carbon development strategies and the transition pathway towards
low-carbon future.

IMAGE25 is a recursive dynamics model that can be described as a
geographically explicit assessment, integrated assessment simulation model,
focusing on a detailed representation of relevant processes with respect to human
use of energy, land and water in relation to relevant environmental processes. The
model aims: to analyse interactions between human development and the natural
environment to gain better insight into the processes of global environmental
change; to identify response strategies to global environmental change based on
assessment of options; and to indicate key interlinkages and associated levels of
uncertainty in processes of global environmental change.

MESSAGE-GLOBIOM20,39 integrates the energy-engineering model MESSAGE
and the land-use model GLOBIOM into a consistent integrated assessment
framework. To account for general equilibrium effects MESSAGE-GLOBIOM also
soft-links to the aggregated macroeconomic model MACRO.

TIAM-UCL27 is an energy-systems-focused partial-equilibrium model. It uses
the TIMES modelling platform, extended with a stylized representation of
non-energy emissions and a simple climate module. Scenario-based simulations
maximize the total discounted sum of consumer and supplier surplus over the
model horizon, while taking into account the constraints (for example, energy
demand to be fulfilled, availability of energy resources and so on).

WITCH-GLOBIOM28 is a hybrid economic optimal growth model, including a
bottom-up energy sector and a simple climate model, embedded in a game
theoretic set-up. It evaluates the impacts of climate policies on global and regional
economic systems and provides information on the optimal responses of these
economies to climate change. It also considers the positive externalities from
learning by doing and learning by researching in the energy-related
technological change.

Some key characteristics of the six models are reported in Supplementary
Table 1. Additional information can be found online at http://themasites.pbl.nl/
models/advance/index.php, especially regarding the technological detail in
representing the energy sector. Supplementary Table 3 illustrates how the
five sensitivity factors were incorporated in the different models.

Climate policies. The sensitivity analysis is performed twice, one for each of the
following climate policies: BASE, with a global carbon price equal to 0; CPRICE,
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with a global carbon price equal to 2005US$30 per tCO2eq in 2040, starting in 2020
and increasing at 5% yr−1.

The CPRICE climate policy adopts a similar carbon price to one of the
diagnostic carbon prices recommended by the Integrated Assessment Modeling
Consortium30. Further information on how this diagnostic CPRICE scenario
compares with the more familiar NDC and 2◦ scenarios, both in terms of cost of
carbon and resulting emissions, as well as the difference in emissions between SSPs,
can be found in the Supplementary Information.

Data availability. The sensitivity computations in this study are based on the data
collected on future global CO2 FFI emissions across all models and scenarios,
which are available within the Supplementary Information. All the other variables
collected in this exercise and relevant to reproduce both main and supplementary
figures are included as well. Official SSP marker data can be found online at
https://secure.iiasa.ac.at/web-apps/ene/SspDb. Further information regarding the
code used and the data produced are available from the corresponding author
on request.
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