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Preface

For as long as we can remember, humans have asked questions. Often about the
universe(s?) we find ourselves in. We want to know the ‘why’, the ‘what’ and the

‘how’. This thesis is not ambitious enough to answer any of these questions.

As disappointing as that may be for you, my reader, it is the aim of this thesis to set
these questions in a certain context. Using the ‘why’ as guiding direction, we will answer
aspects of the ‘what’ and the ‘how’. We will concern ourselves with the mathematical and
physical descriptions of the most fundamental of interactions that take place in nature, as
I write. And in fact, even as you read.

These interactions range from those occurring between the smallest building blocks
we know, of nature, to those between the largest astrophysical objects we have come to
learn of. Quantum Field Theory has been remarkably successful in describing the small.
Quantum Electrodynamics and the theories of Weak and Strong forces have all been put
together in the StandardModel of Particle Physics, based on the pillars of Quantum Field
Theory. These theories have been extremelywell tested and experimental evidence contin-
ues to pour in, in support of their validity as good descriptions of the fundamental inter-
actions between the smallest of particles we are aware of, in nature. The massive objects,
on the other hand, are extremely well described by Einstein’s theory of General Relativity
[1]. Putting the small and the large together, however, has turned out to be a consider-
able challenge. Most glaringly when it came to the study of black holes; these are solutions
to Einstein’s theory [2–9] which have been confirmed to exist in nature [10–12], albeit
through indirect detection.

Black holes Bardeen, Bekenstein, Carter andHawking proposed a remarkable analogy
between the laws of black hole mechanics (for stationary black holes with charge and
angular momentum) and the laws of thermodynamics [13–15]. The analogy had been
formalized with further work by Bekenstein [16] and Hawking [17, 18]. It is these laws
that were first indicatives of a quantum structure within black holes, for thermodynamic
systems exhibit a quantum statistical structure.

These indicatives spurred extensive research on the so-called ‘information paradox’.
The premise of which is that in a collapse ofmatter forming a black hole, the intermediate
state post-collapse is a black hole that can be characterized by a small number of physical

ix
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parameters (mass, charge, angular momentum, etc.). A semi-classical calculation as the
one Hawking originally did, however, suggests that black holes radiate as black bodies.
That is, with a thermal spectrum. This seems to suggest a gross violation of unitary
evolution as all information about the exact in-state that went into forming the black hole
appears to have been lost after its evaporation.

For this reason, since the seminal work of [19, 20], the study of black hole microscopics
has received significant attention. A quantum understanding of black holes had been
plagued with several problems for decades since Bekenstein and Hawking’s work. Of
them, the apparent infiniteness of the Hilbert space of states associated to the horizons
was particularly striking [21]. The microscopic explanation of black hole entropy
elegantly solved this problem in a naturally UV complete setting; that of string theory.
What is more, the microscopic theory is manifestly unitary.

At this juncture, one had two obvious paths to deliberate between. One, to take
the finiteness of the space of states as a final result from string theory and seek an
understanding of the special nature of interaction between these degrees of freedom
that endow black holes with their exceedingly mysterious dynamics; this is perhaps an
obvious path leading towards a quantum understanding of gravitational dynamics. The
other, perhaps more modest path, would have been to first seek a refined understanding
of the static; more than a mere count of states, that is. Both paths have been travelled,
even extensively if onemight add, and yet it is fair to say thatmuch is left to be understood.

Static aspects of black hole physics are often easiest to study when there is sufficient
symmetry in the game. Think of a balloon. Imagine we said a balloon was approximately
spherical. That would leave a child the freedom to poke it a little, see how it responds
and play around with it. Imagine we said that the balloon must be exactly spherical all
the time. Any touch is going to distort its shape (even if only ever so slightly) and so that
does not leave the child any room for play. Nevertheless, it is when nobody touches the
balloon that it is easiest to study! That is when we know exactly how to tell its shape; it is
spherical. Knowing just the radius of the sphere, we would know its precise surface area
and even the volume of air contained inside the balloon. In fact, demanding spherical
symmetry and fixing one additional parameter (say the size of the balloon) allows us to
completely determine how it behaves with time: exactly nothing would change and the
balloon would be a thousand years later just as it is now. Of course, the most fun might
be to pierce the balloon with a pin and see it explode! But that is arbitrarily far from
any symmetric process—unfortunately rendering it too difficult to write down, say, an
evolution equation for.

On account of similar logic, the more symmetric they are, the easier the black holes are
to study. The completely static ones are often supersymmetric. They are stable; in fact
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more so than the balloon. A little poke (or more formally, a small perturbation) doesn’t
disturb a supersymmetric black hole. The ones that may be disturbed a little while still
allowing us some control are often non-supersymmetric. But they tend to retain most of
their character upon perturbation by, say, throwing a particle into them; these are called
‘large semi-classical black holes’ in technical jargon. To burst the balloon is to watch a
black hole evaporate into ‘nothingness’1. In fact, the reverse process of creating a small,
non-perturbative black hole is rather exciting too. But again, such fun does not come
easy. And in this thesis, we will either let the black holes be or poke them a little, ever so
slightly. For good or for bad, we will neither create nor destroy them.

In the case where black holes are static and supersymmetric, we will attempt to obtain
a complete and precise understanding of the exact microstates that render them with a
horizon and consequently an entropy. Further on, with a view towards what happens
whenwe throwparticles into them, when the black holes are near-extremal but still arising
in supergravity theories, we will still aim at understanding their entropy, but admittedly
with less precision. As patience catches up with us on how unwieldy studying dynamics
is, within a controlled string theoretic setting, we will then turn the plate upside down to
move to a bottom up approach; after all, our interest is in understanding black holes that
are closer to those found in nature. These black holes, being far from supersymmetric or
extremal, have horizonswith rich dynamicswhichwewill studywith the help of quantum
mechanics. The top-down and bottom-up approaches may neatly converge to help us
understand the complete underlying story in the long-run. Conveniently enough for the
impatient, however, an intermediate probe has emerged in recent decades, via a study of
strongly coupled gauge theories in the limit of a large number of degrees of freedom.

Strongly coupled gauge theories Some of the smallest particles that we know
nature is built out of, are quarks. They interact with each other via the Strong force.
Of the many remarkable successes of 20th century theoretical physics, the theory of
Quantum Chromodynamics [22–30] explaining these interactions is among the finest.
This theory was discovered to be asymptotically free in the ultra-violet (UV) and known
to be confining in the infra-red (IR). A perturbative description for the former and an
effective hadronic description for the latter have since been successfully developed and ex-
perimentally tested. However, an understanding of this theory at all intermediate energy
scales has proven to be a big challenge. Studying the limit of large number of degrees of
freedom (called the large N limit) has opened up an unprecedented set of tools to study
QCD-like theories, even if in a simplified setting. It paved way for a concrete realization
of the holographic principle [21, 31, 32] in the form of gauge-gravity duality [33–35].
Which in turn allowed for an entirely new way of studying gravitational dynamics via
field theoretic tools and vice-versa. In fact, some of the most incisive contributions to
1What black holes evaporate into, is not decisively known yet.
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our modern day understanding of the microscopics of black hole physics are owed to the
study of strongly coupled gauge theories in the large N limit.

While static aspects of black holes often entail an understanding of the microscopic
origin of their entropy, Wald has shown [36] that any theory with diffeomorphism
invariance necessitates black hole entropy as a corresponding Nöther charge. This begs
the question of how a microscopic theory may conceivably accommodate an emergent
diffeomorphism invariance in the classical limit; often this is asked as ‘how or where
does gravity emerge from?’ An understanding of microscopic theories that allow for
such emergent general coordinate invariance naturally allow for a study of gravitational
dynamics via the microscopic field theories. Gauge-Gravity duality has already taught
us interesting lessons in this regard: we have come to learn that radial evolution in the
d + 1 dimensional gravitational theory is governed by renormalization group flow in
the field theory. Consequently, this allows us to study strongly coupled gauge theories
at intermediate scales via their gravitational duals. Conversely, aspects of gravitational
dynamics and space-time emergence may be addressed by the field theoretic degrees of
freedom. We will embark upon both of these issues in this thesis, using semi-holography.

Semi-holography is a proposal for an effective framework inwhich one can include both
perturbative and non-perturbative effects consistently in a wide range of energy scales.
Its present formulation is targeted towards an effective description of asymptotically free
theories like QCD which are weakly coupled in the ultraviolet but strongly interacting
in the infrared. It is assumed that in the large N limit (i) the infrared non-perturbative
effects such as confinement and chiral symmetry breaking can be obtained from a
holographic dual description in the form of an appropriate classical theory of gravity2,
and (ii) the perturbative degrees of freedom determine the effective background metric,
relevant and marginal couplings, and background gauge-fields (coupling to conserved
currents) in which the emergent infrared holographic degrees of freedom live. The
second assertion then implies that the perturbative degrees of freedom determine the
leading asymptotic behaviour of the classical gravity fields forming the holographic
dual of the non-perturbative sector. As we will argue, such a set-up allows for only a
few effective parameters3 in a wide range of energy scales. Concrete phenomenological
semi-holographic models with a small number of effective parameters have been pro-
posed for some non-Fermi liquid systems [40, 45–47, 49, 50], and for the quark-gluon
plasma (QGP) formed in heavy-ion collisions [48, 55]. In such instances, indeed both
perturbative and non-perturbative effects are phenomenologically relevant.

2This was demonstrated in the Witten-Sakai-Sugimoto top-down model [37–39] obtained from string
theory. We do not assume here that the holographic description of the non-perturbative sector can be
embedded in string theory.

3See [40–54] for relevant literature.
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In this thesis, wewill take first steps towards aderivationof the general semi-holographic
framework from first principles, i.e. from the fundamental theory describing the micro-
scopic dynamics. This amounts to answering the following questions:

• Which principles tell us how the perturbative degrees of freedom determine the
leading asymptotic behaviours of the gravitational fields forming the holographic
dual of the non-perturbative sector?

• How do we find the appropriate classical gravity theory which provides the dual
holographic description of the non-perturbative sector?

We will arrive at partial answers to both these questions, and also illustrate the full
construction of semi-holography with a toy example.

Previously, semi-holography has been conceived of as an effective simplified method
for solving low energy holographic dynamics where the asymptotic geometry determin-
ing model-dependent features is replaced by simple boundary dynamics which couples to
the near-horizon geometry controlling universal scaling exponents [40, 42]. It has also
been argued that decoding holography as a form of non-Wilsonian RG flow which pre-
serves Ward identities for single-trace operators (like the energy-momentum tensor) and
can self-determine microscopic data via appropriate infrared endpoint conditions natur-
ally gives rise to a more general semi-holographic framework in which the ultraviolet can
be asymptotically free so that it is describedbyperturbative quantum field dynamics rather
than by a classical gravity theory [53, 54, 56]. In this thesis, we will deal with the funda-
mental aspects of construction of the general semi-holographic framework (which may
not be embeddable in string theory as we know of it today) by understanding what con-
strains it structurally and illustrate it with a toy example.

Organization of this thesis This thesis is divided into two parts. The first part
concerns static, supersymmetric aspects of black hole physics; the primary focus is on
a detailed understanding of the microscopic degrees of freedom contributing towards
supersymmetric black hole entropy in N = 2 supergravity theories in four space-time
dimensions. Chapter I is a review of literature that is to set Chapter II in context. Famili-
arity with supersymmetry, supergravity and string theory aside from minimal algebraic
geometry, elementary aspects of modular forums, general relativity and (quantum) field
theory aids the reading of this part of the thesis. The second part moves towards some
dynamical aspects of black holes. In Chapter III, familiarity with string theory is still
very useful and references to the static aspects discussed in Part One are frequent. While
the aim of this chapter is to move towards dynamical aspects, the results still merely
concern black hole entropy. Chapter IV may be read independently and only familiarity
with general relativity and field theory should suffice despite references to non-critical
string theory that may be overlooked without any interruption to the flow of the thesis.
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The results of this chapter concern the dynamical nature of (Schwarzschild) black
hole horizons. The last segment of this document is Chapter V where familiarity with
bottom-up gauge-gravity duality is useful. Gravitational consequences of this chapter
insofar as black hole physics is concerned, is still very much work in progress. The results
of this chapter may be viewed as field theoretic in nature.

We will see, in this thesis, that asking why black holes have entropy guides us in identi-
fying theories where such a question is tractable. Asking why it has been difficult to probe
non-extremal black holes within string theory allows us to pin-pointwhat it is thatwemay
be able to concretely learn about near-extremal black holes. Asking how the Schwarzschild
black hole could possibly be compatible with quantum mechanics allows us to identify
how the corresponding degrees of freedom of the former are in fact re-arranged versions
of the latter. And finally, asking why gravitational physics can emerge out of intrinsic in-
termediate field theoretic energy scales enables us to at least address how this happens in an
illustrative toymodel. This thesis—an account of my research pursuits in recent years—is
based on the following work [57–60]:

• N. Gaddam, Elliptic genera from multi-centers, jhep 1605, 076 (2016), arxiv:
1603.01724.

• N. Gaddam, A.Gnecchi, S. Vandoren andO.Varela,Rholography, Black Holes and
Scherk-Schwarz, jhep 1506, 058 (2015), arxiv: 1412.7325.

• P. Betzios, N. Gaddam and O. Papadoulaki, The Black Hole S-Matrix from
Quantum Mechanics, jhep 1611, 131 (2016), arxiv: 1607.07885.

• S. Banerjee, N. Gaddam and A. Mukhopadhyay, Semi-holography illustrated with
bi-holography, in reviewwith prd, arxiv: 1701.01229.

For themost part, this document is an identical reproduction of the above papers. A pub-
lication of mine that does not find place in this thesis is [61]

• S. Demulder, N. Gaddam and B. Zwiebach, Doubled geometry and α′ corrections,
Fortsch. Phys. 64, 279 (2016), in: Proceedings, The String Theory Universe, 21st
European String Workshop and 3rd COST MP1210 Meeting: Leuven, Belgium,
September 7-11, 2015, 279-291p.

A note on referencing All references within a chapter to sections, equations, figures
and tables in the same chapter come without the chapter number. All references to those
in other chapters are appended with the corresponding chapter number. A reference—in
Chapter II—to equation 8 of the third section of Chapter II appears as (3.8) while the
same equation is written as II.3.8 when referred to in other chapters.
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Chapter I

Supersymmetric black hole entropy

The best known examples where black hole entropy is seen to be originating from a
microscopic theory arise in String Theory. The first seminal contributions towards

this understandingweremade in [19, 20]. In this thesis, wewillmostly confine ourselves to
four-dimensional black holes. The black holes are often descendants of p-brane solutions
to supergravity equations of motion while the microscopic degrees of freedom are those
of the world-volume field theory living on Dp -branes in String Theory. The validity of
this correspondence between Dp -branes and p-brane solutions is, at least in part, owed
to Polchinski [62]. In this chapter, we will present an invitation to how the said entropy
matchingworks. Only to soon point outwhere the shortcomings lie, as we allow ourselves
lesser supersymmetry.

1 Preliminaries
For the purposes of studying microscopic black hole entropy in four dimensions, it has
proven significantly useful to use the description of N = 2 supergravity, even in cases
where more supersymmetry is available. Since the aim of the first part of this thesis is to
understand black hole entropy in N = 2 theories, this is rather convenient. Let us start
with a p-brane action that breaks 10-dimensional Lorentz symmetry of Type IIA super-
gravity down to SO(1, p) × SO(9 − p). The truncated supergravity action now contains
only the appropriate Ramond-Ramond gauge fields, themetric and the dilaton appended
with appropriate Dirac-Born-Infeld (DBI) and Chern-Simons terms:

S =
1

16πGN

∫
d10x
√
−G

(
R − 1

2 dφ2 − 1
2 e

(3−p)φ
2

1
(p + 2)!

(
dCp+1

)2
)

+ Tp(SDBI + SCS ) . (1.1)

Here,GN is Newton’s gravitational coupling constant,G = detGMN the determinant of
the metric tensor, φ is the dilaton, Cp+1 the gauge field associated to the p-brane and Tp
the tension associated to it. To find solutions to the equations of motion arising from this
action, we could start with a spherically symmetric ansatz of the form [63]

ds2 = e2A(r )d®x2 + e2B(r )d®y2, (1.2)

3



4 Chapter I Supersymmetric black hole entropy

where ®x and ®y are coordinates longitudinal and transverse to the brane respectively and
A(r ) and B(r ) are some functions of the radius of the black hole solution. One may hope
to solve for the equations of motion coming from (1.1) using this ansatz. However, this
is a rather cumbersome task. Supersymmetry, though, comes to our rescue. Demanding
that the solution preserve half the available supersymmetry, one finds that with

φ = φ0 +
p − 3

4 (C −C0) , A(r ) =
7 − p

16 C and B(r ) = −
p + 1

16 , (1.3)

there exists a general p-brane solution to the equations of motion iff

e−C ≡ Hp(r ) = e−C0 +
Qp

r 7 − p
(1.4)

is a harmonic function in the transverse coordinates, with some constantQp that can be
interpreted as the charge of the brane. The solution in the string frame is

ds2 =
1√
Hp

d®x2 +
√
Hpd®y2, (1.5)

where Hp is given by

Hp(r ) = 1 + Np gs l
p−7
s

Γ

(
1
2
(
7 − p

) )(
2
√
π
) p−5 (r 7 − p

) , (1.6)

with Γ being theGamma function, gS and lS being the string coupling and length, respect-
ively and Np the number of p-branes in consideration [64]. The ubiquitous appearance
of such harmonic functions is evident inmost literature on solutions to supergravity equa-
tions of motion. Our interest, though, is in four dimensional black hole solutions. These
arise in compactifications of string theory down to four-dimensions, on a Calabi-Yau1
threefold. Topology of the threefold dictates the field content of the four-dimensional
supergravity theory and the (bosonic) action is entirely specified by the scalar manifold.
We will label the number of vector multiplets by nV and the number of hypermultiplets
by nH henceforth. For Type IIA compactifications, these are determined uniquely by the
Hodge numbers ℎ1,1(CY3) and ℎ2,1(CY3) respectively. Certain black hole solutions (which
are BPS or contain an AdS2 horizon, for instance) in these theories exhibit the attractor
mechanism; where the values of the scalar fields are fixed by the charges of the black hole at
the horizon. Regardless of their values at infinity, the scalar fields get attracted to specific
1Various inequivalent definitions of a Calabi-Yau manifold exist in the literature; in this thesis, we will
call a manifold a Calabi-Yau n-fold iff it has SU (n) holonomy. Furthermore, we will label a Calabi-Yau
threefold by CY3.
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values determined by the charges of the black holes. Consider the following spherically
symmetric ansatz for the four-dimensional black hole

ds2 = −e2U (τ)dt2 + e−2U (τ)d®x2 with τ =
1
r
. (1.7)

Although first derived in [65], the attractor equations were later written down—in
[66]—as first order flow equations on the space of moduli as

∂τU = −eU |Z | and ∂τ tA = −2eU gAB̄ ∂̄AB̄ |Z | , (1.8)

where the capital Latin indices run over the number of vector multiplets, nv , and Z is the
central charge in the theory. Along with the additional relation

∂τ |Z | = −4eU gAB̄ ∂A |Z |∂̄B̄ |Z |, (1.9)

the flow equations ensure that ∂τ |Z | ≤ 0. This implies that the gradient of the flow of
central charge radially inwards to the black hole, is negative. Therefore, the central charge
converges to a fixed value at the horizon. This gives us 2nV + 1 equations to uniquely de-
termine the point inmoduli space where the central charge is fixed, in terms of the electric
andmagnetic charges of the black hole; in fact, these determine the 2nV + 1 real quantities
U (τ), Re(tA) and Im(tA). A simple example [67] is rather illustrative and we now turn to
one. An explicit version of the attractor equations derived in [66] is the following—

Re(CXΛ) = pΛ and Re(C F Λ) = qΛ , (1.10)

where XΛ = (X 0,X A) and C is a complex, space-time parameter2. Furthermore, pΛ are
magnetic charges while qΛ are the electric ones carried by the black hole. The charges pA
arise from integrals of the appropriate field strength tensors arising from the nv vectors in
the vector multiplets while qA arise from their Hodge duals. Finally, p0 and q0 arise from
the vector in the gravity multiplet; one that is often called the graviphoton. Clearly, the
black hole under consideration may be charged under any or all of these gauge fields. As
is usual, we will denote the set of all charges that any BPS state (including the black hole)
carries in the theory by a charge vector α = (p0, pA, qA, q0); and the lattice of all possible
charges, we will call Γ. For simplicity, let us pick a simple supergravity theory with the tree
level prepotential

F
(
X 0,X A

)
= DABC

X AX BXC

X 0 , (1.11)

2For simplicity, we stick to this rather sloppy formulation in this chapter, without specifying C . This
parameter can in fact be solved for and the equationswrittenmore accurately as can be found in [68, 69],
for instance.
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in the large volume limit, where DABC encode the intersection numbers of the compact
threefold. This results in the following sections—defined as derivatives of the prepotential
FΛ

(
X 0,X A

)
B ∂ΛF

(
X 0,X A

)
:

F0
(
X 0,X A

)
= −DABC

X AX BXC(
X 0)2 , FA

(
X 0,X A

)
=

3DABCX BXC

X 0 . (1.12)

Assuming p0 = 0 = qA, for simplicity, the attractor equations (1.10) now reduce to

Re(CX A) = pA , Re(CX 0) = 0 , Re(C FA) = 0 and Re(C F0) = q0 .

Writing X A = pA + ibA and plugging these into the expression for FA we see that
Im(CX A) = 0. Along with a similar constraint from plugging the expressions for X A

into F0, this gives3

X A = pA and X 0 = i

√
D
q0
, (1.13)

with D = DABC pApBpC . Therefore, the values of the moduli are fixed exclusively by
the charges that the BPS state carries, with no dependence on their values at infinity. In
projective coordinates, writing the moduli as tA B X A

X 0 , we will denote the values of the
moduli at infinity by tA∞. Another form of the BPS equations, also discussed in [66], is

2e−U Im(e−iθΩ) = −α τ + 2 Im(e−iθΩ)|τ=0, (1.14)

whereΩ is the holomorphic section associated to the Special Kählermanifold of the scalars
XΛ and θ = arg(Z). The insight we gain with this rewriting is via the identification of the
harmonic function describing the solution

H (r ) = α

r
− 2 Im(e−iθ )|r=∞. (1.15)

This identification of the harmonic function H (r ) allows us to interpret the solution as a
charge at r = 0 with backgroundmoduli chosen as −2 Im(e−iαΩ). Moreover, it allows for
a convenient generalization to multi-center black holes.

Multi-center black holes Given two BPS charge vectors α1 and α2, there is a natural
symplectic inner product defined4 between them 〈α1, α2〉. This can be thought of as
purely electric and magnetic ‘interaction’ between the charge vectors. However, if the
repulsion due to this interaction is balanced by the attraction between the two BPS
3Up to the complex space-time parameterC
4Wewill return to the exact definition of the inner product in the next chapter.
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states (now thought of as black holes), we could well imagine a bound state of them.
In supergravity, these are realized as multi-center black hole solutions. These are not
just superpositions of single center solutions but are finitely separated and satisfy some
conditions to balance the gravitational and electric–magnetic forces. Those solutions that
are merely superpositions satisfy 〈α1, α2〉 =: α12 = 0.

Since these multi center black holes are interacting black holes bound together, a good
intuitive way to think about the general case is to imagine a non-trivial Poynting vector at
each point on the space spanned by a given solution. This renders the bound state with a
non-trivial angular momentum to modify the general ansatz for the metric [70]

ds2 = −e2U (dt + ω)2 + e−2U d®x2, (1.16)

where ω is a one-form to keep track of the above-mentioned angular momentum. The
BPS equations now conveniently generalize to

2e−U Im(e−iαΩ) = −H ,

?ω = 〈dH ,H 〉 , (1.17)

where the harmonic function now generalizes to

H (®r ) =
N∑
i=1

αi

| ®r − ®ri |
− 2 Im(e−iθΩ)|τ=0, (1.18)

for an N centred black hole bound state in asymptotically flat space. Much like the in-
trinsic angular momentum in electron-monopole bound states, these bound states also
carry an intrinsic angular momentum given by

®J = 1
2

∑
i< j

αi j ®ri j, (1.19)

where ®ri j is a vector pointing from ®r j to ®ri . The equations that govern the distances
between the centres, derived from (1.17), are called the Bubble equations and are given by

N∑
j=1

αi j

| ®r − ®ri |
= 2 Im(e−iαZi)|τ=0, (1.20)

where the Zi are the central charges for each individual black hole center and all the con-
stants on the R.H.S (for all j) sum to zero. This latter constraint can be used to fix one
of the centres to be at the origin—essentially breaking translational invariance—for this
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does not change the configuration degrees of freedom of our interest. To put things to-
gether, a multi center black hole bound state can exist provided there is a solution to the
above Bubble equations, the entropy is real and positive and finally if the moduli fields
remain physical throughout. This final condition implies that the tA must remain in one
Kähler cone. In a single center solution, the entropy is proportional to the square root of
a function called the discriminant function:

S ∼
√
D . (1.21)

For instance, in the Schwarzschild black hole, the discriminant is defined as
(
1 − 2GM

r

)
which is always positive outside the horizon. However, for a multi-center solution, since
several individual black holes contribute, this regularity of the bound state solution must
be independently checked in supergravity. Physically speaking, this condition corresponds
to checking that there are no closed time-like curves inside the full solution. This condi-
tion, when explicitly spelled out, is [63]

D
(
β +

N∑
i=1

αi

| ®r − ®ri |

)
≥ 0, (1.22)

where, β = −2 Im(e−iαΩ); this is to ensure that

S ∼
√
D ∈ R. (1.23)

1.1 An invitation to microscopic entropy
The entropy of the single center black holes we discussed so far, has been shown to arise in
M-Theory [71]. M-Theory compactified on a compact Calabi-Yau threefold, of volume
V and proper SU (3) holonomy, results in a five-dimensional theory which we further
compactify on a circle of radius R. This results in the N = 2, d = 4 supergravity. This
is merely a T-dual picture of what we considered above. First reducing M-Theory on the
circle gives us the IIA theory we picked earlier; so long as our interest is restricted to the
supersymmetric sector, the order of compactification is not of much significance. We will
often shift between the IIA andM-Theoretic perspectives for circumstantial convenience.
For simplicity, let us restrict to compactifications on threefolds with ℎ1,1 = 1 yielding the
t 3 model in four dimensional supergravity theory.

Macroscopics

Prepotentials for compactifications with ℎ1,1 = 1 are of the simple form

F (X ) = κ (X
1)3

X 0 (1.24)



1 Preliminaries 9

and the corresponding Kähler potential is obtained from the equation

ie−K
vec
= XΛ F̄Λ − X̄ΛFΛ . (1.25)

Consequently, the charge vector is four-dimensional and again, for simplicity, we pick
α = (0, p, 0, q0). The attractor equations are now solved by

CX 0 = i

√
D
q0

and CX 1 = p (1.26)

where D = κp3. The black hole entropy is now given by

SBH =
πiCC̄

4

(
XΛ F̄Λ − X̄ΛFΛ

)
(1.27)

= 2π
√
Dq0 . (1.28)

Interestingly, the quantity under the square-root in the last equality above, is quartic in
the charges and is uniquely associated to theU-duality group of the supergravity theory in
question. Clearly, this invariant depends on the compact manifold under consideration.

Microscopics

The horizon of the above macroscopic black hole preserves eight supercharges. Though
the black hole is half-BPS, there is an enhancement at the horizon. From the point of view
of the 10d Type IIA theory, these are space-time quarter-BPS states. The black hole can
be modelled by considering appropriately charged D-branes extending in the compact
dimensions. Naívely, one may think of a D-branes living entirely in the compact dimen-
sions as appearing to be localized charged particles in the non-compact space-time. Since
D-branes break half of the supersymmetry, space-time quarter-BPS states correspond to
the half-BPS states of the D-brane world-volume theory. Therefore, we are interested in
counting these half-BPS states of the D-brane world-volume theory; these are the ones
that contribute to the are of the horizon of the black hole. However, the black hole carries
more quantum numbers than mere supersymmetry. The D-brane being considered
must have the same Ramond-Ramond (R-R) charge as the magnetic charge p of the
black hole. Additionally, the black hole being considered carries an electric q0 charge.
Therefore, supersymmetric excitations of the appropriate D-brane world-volume the-
ory carrying precisely this electric charge appear to correspond to the black hole of interest.

InM-Theory, theM5brane is the only object supported by theR-R charge in 11 dimen-
sions. A stack of p M5-branes would carry exactly the same quantum magnetic charge
as the black hole of interest. The M5-brane worldvolume is a 5 + 1 dimensional theory
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with (0, 2) supersymmetry. Wrapping this brane on a holomorphic divisor in the threefold
yields a (0, 4) CFT (often called the MSW-CFT after the authors of [71]) in two dimen-
sions. BPS states in this theory are those that are annihilated by half the supercharges.
Denoting the four supercharges byG± and Ḡ±, their modes can be written asG±r and Ḡ±s .
Since a BPS state is invariant under two of these four supercharges, say5 Ḡ± |BPS〉 = 0,
all their corresponding modes annihilate these states as well: Ḡ±r |BPS〉 = 0. In particular,
the zero modes kill the BPS states: Ḡ±0 |BPS〉 = 0. This results in a constraint on the mo-
mentum of the right moving states in the CFT via the following expression in the algebra
[72]

{Ḡ a
r , Ḡb

s } = 2δ ab L̄r+s − δ ab
cR
12 , (1.29)

where a, b = ±. Since the modes Ḡ a
0 annihilate the BPS states, we have that

2L̄0 −
cR
12 = 0 , (1.30)

which implies that
L̄0 =

cR
24 . (1.31)

The shift in the ground state value of L̄0 can be understood in the following way. The
dilatation operator in a classical CFT is given by l0 + l̄0. However, upon radial quantiza-
tion, theVirasoromodes are given by aLaurent expansion of the stress energy tensorT (z).
In such a quantum theory, the Schwarzian derivative of the stress-energy tensor results in
a conformal anomaly with exactly this shift of c

12 . This shift is carried over to the Virasoro
modes when the Laurent expansion of T (z) is inverted. As a result, the Hamiltonian is
shifted by

H = L0 −
cL
24 + L̄0 −

cR
24 = L0 −

cL
24 . (1.32)

The BPS states of interest—aside from being the desired supersymmetric excitations of
the CFT—carry additional charges.

• Since these states arise from the M5-brane worldvolume, they naturally carry the
RR charge p.

• Moreover, they also carry momentum around the M-Theory circle. If P is the mo-
mentum operator on the circle, we have

P = L0 −
cL
24 −

(
L̄0 −

cR
24

)
= L0 −

cL
24 = q0 , (1.33)

5For non-vanishing p0 and q1 charges,
(
Ḡ± − (p0q0 + p1q1)ψ̄±α

)
|BPS〉 = 0 is the appropriatemodification

of this condition. The ψ̄±α are the fermionic Goldstino modes that sit in the universal hypermultiplet.
Since the shortN = 4 SCA of the MSW-CFT is extended by the universal hypermultiplet, this modi-
fication of the BPS condition is one way to see how the additional symmetry affects the states in the
theory.
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where the last equality is owed to the knowledge that electric charge q0 in the super-
gravity theory arises fromquantizedKaluza-Kleinmomentumalong theM-Theory
circle.

From (1.32) and (1.33), we see that the momentum of the BPS states is all left moving.
And therefore, they are right moving ground states. For a unitary two-dimensional CFT,
Cardy’s formula shows that the asymptotic growth of states for L0− cL

24 = n, when n � 1,
is given by [73]

d(n, c) = exp
(
2π

√
n c
6

)
, (1.34)

where c is the central charge of the theory. Modular properties of the partition function of
the 2d CFT are extremely powerful in determining such a growth of states. An illustrative
example of how an estimate for the growth of statesmay bemade is presented inAppendix
A. In theMSW-CFTwehave at hand, wewant to pick out the leftmoving excitationswith
total momentum q0. Therefore we have that n = q0. It was shown in [71] that the central
charges cL,R of the theory can be computed from the topological data of the divisor being
wrapped by theM5-brane. This was achieved via an assumption on the very-ample nature
of the divisor inside a toric threefold (when Kodaira’s embedding theorem in Algebraic
Geometry comes to use); the result was found to be that cL = 6D , where D encodes
the triple intersection numbers as before. Therefore, the micro-canonical entropy arising
from this degeneracy of states with charge q0 is given by

SC FT = 2π
√

cLq0
6 = 2π

√
Dq0 , (1.35)

which is exactly the same as the entropy coming from the macroscopic black hole (1.27).
It is the degrees of freedom from the non-supersymmetric left moving sector that give the
black hole its entropy!

2 Entropy in N = 8 and N = 4 theories
The microscopic origin of black hole entropy we saw so far is of fair significance in that
it encompasses all the half-BPS dyonic black holes that solve N = 2, d = 4 supergravity
equations of motion. Including all those that arise in appropriate truncations of N = 4
andN = 8 supergravity theories; after all, these theories are at leastN = 2. However, the
microscopic entropywe found in (1.35) is a leading order result. There are logarithmic and
polynomial corrections—in the charges—thatwehavenot kept trackof in themicroscopic
counting of states. Moreover, the prepotential of the supergravity theory in (1.24)—upon
string compactification—receives perturbative and instanton corrections. Consequently,
the black hole entropy in (1.27) also receives corrections that we have ignored. We saw
thatN = 2 supersymmetry was powerful enough to allow us to solve gravity equations of
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motion (via the first order flow equations) easily and allow us to identify the microstates
too. As one might naturally guess, life is easier with more symmetry. And one can go far
beyond this leading order entropymatching and in fact arrive at an exact counting of states
on both the microscopic and macroscopic fronts inN = 4 andN = 8 theories.

2.1 N = 8 supergravity and IIB string theory on T 6

Circle compactifications do not break supersymmetry. Therefore, reducing Type IIB
string theory on T 6 = T 4 × S 1 × S̃ 1 preserves all the 32 available supercharges in 10 di-
mensions. The two circles have been illustratively written separately for convenience that
is to be apparent soon; there is no topological difference between any of the circles in con-
sideration and the manifold is an honest six-torus. The resulting supergravity theory is
N = 8, in four dimensions. The corresponding U-duality group is E7,7(Z) whose asso-
ciated invariant of charges is given by ∆ B q2

e q2
m −

(
qe · qm

)2, where qe and qm are the
electric and magnetic charge vectors, respectively.

Microscopics On the microscopic front, the configuration to consider this time in the
Type IIBpicture is that of aD5-brane thatwraps theT 4, aD1-branewrapping a circle—say
the one we called S 1, momentum n along the circle S 1 and finally, a unit of Kaluza-Klein
monopole charge along S̃ 1. With the charge vectors given by 1

2q
2
e = n, 1

2q
2
m = 1 and

qe · qm = l , the U-duality invariant is then∆ = 4n− l 2. This configuration is one instance
of the famousD1-D5 system that was the first example of a microscopic counting of states
[19]. Half-BPS black holes in N = 2 supergravity are now 1

8 -BPS states in the N = 8
theory. It was shown in [74] that the partition function for the counting of such states of
this theory is given by

Z 1
8−BPS

(τ, z) =
∑
n,l ∈Z

a
(
n, l

)
qn y l

=
ϑ1(τ, z)2

η(τ)6

= ℎ0(τ)ϑ1,0(τ, z) + ℎ1(τ)ϑ1,1(τ, z) (2.1)

=

(
−ϑ1,1(τ, 0)

η(τ)6

)
ϑ1,0(τ, z) +

(
ϑ1,0(τ, 0)
η(τ)6

)
ϑ1,1(τ, z)

=
(
−2 − 12q + . . .

)
ϑ1,0(τ, z) +

(
q−1/4 + 8q3/4 + . . .

)
ϑ1,1(τ, z) ,

where q = e2πiτ and y = e2πiz . This is a weight -2 and index 1 Jacobi form. And it was
shown that the degeneracies of the 1

8 -BPS states of the D1-D5 CFT we picked are related
to the Fourier coefficients of the above partition function via d(∆) = (−1)∆+1 a

(
n, l

)
, with
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l = ∆ mod 2. Counting these degeneracies, then, is a rather non-trivial task if it has to
be done exactly. This difficult task is rather beautifully achieved [75] by the Rademacher
expansion6. Since there is only one polar term in this theory, and with degeneracy 1, the
Rademacher expansion yields the rather simple result that

a
(
n, l

)
= 2π

( π
2

)7/2 ∞∑
c=1

c−9/2Kc Ĩ7/2

(
π
√
∆

c

)
, (2.2)

where Kc represents a particular combination of the Kloosterman sums7 with K1(∆) = 1.

Macroscopics The large amount of supersymmetry, as we might guess, allows for this
expression to be entirely reproduced from a macroscopic calculation. First, we note that
since the 1

8 -BPS solutions inN = 8 theories are still 1
2 -BPS solutions in a truncatedN = 2

theory, the attractor mechanism we saw is still in play. This ensures that Sen’s quantum
entropy function is applicable at the AdS2 horizon and that it indeed computes the cor-
responding black hole entropy [79]. Moreover, the technique to be used this time for
computing the said entropy is supersymmetric localization [80]. As it turns out, this tech-
nique needs off-shell supersymmetry. For which, a convenient off-shell formulation of
theN = 2 supergravity theory can be employed; it is that of conformal supergravity [81–
83]. The prepotential8 in conformal supergravity is not only a function of the scalar fields
as before but also of the (rescaled9) lowest component, say Â, of the square of the Weyl
multiplet: F = F

(
XΛ, Â

)
. While supersymmetry freezes the Weyl multiplet to its at-

tractor value [88], localization techniques have been employed to show [89–92] that the
quantum entropy arising from the leading saddle-point results in

exp[S] B Ŵ

=

∫
MQ

nv∏
A=0

[
dφA

]
exp

(
−π qAφA + 4 Im F

(
φA + ipA

2

))
Z1−loop

(
φA

)
= 2π

( π
2

)7/2
Ĩ7/2

(
π
√
∆

)
. (2.3)

6See [76] for a brief exposition on the expansions and references therein for more details. We also refer to
[77] for all relevant definitions and notions of (mock) modular forms, (weak) Jacobi forms and Siegel
forms; all of which repeatedly appear in this thesis.

7See [78] for basic definitions and some details on these number theoretic phases.
8There are terms one may add to the conformal supergravity action that are not encoded in the prepo-
tential. These are called the D-terms. However, these do not contribute to the exact quantum entropy
[84, 85] of full BPS black holes; they may contribute to the quarter BPS solutions [86]. The terms that
are always characterized by the prepotential are called the F-terms.

9In [87], the rescaled field was called Υwhile the field itself went with Â.
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In the first equality,MQ is the manifold of localization; one that is specified by the set of
all field configurations satisfyingQψ = 0, for a chosen superchargeQ and all fermions ψ
in the theory. The choice ofQ was such thatQ2 = L0 − J0, where L0 and J0 are Cartan
generators of the enhanced SL(2) and SU (2) bosonic symmetries—respectively—at the
AdS2 × S2 horizon. The localizing manifold is parametrized by coordinates φA with[
dφA] accounting for the non-trivial measure arising from the curvature ofMQ . In the
toroidal compactification we are considering, qA and pA label the electric and magnetic
charges as before while10 Â = −64. Finally, the one-loop determinant Z1−loop(φA)
takes care of the fluctuations of the fields orthogonal to the manifold of localization.
Direct inspection shows that the result (2.3) agrees with the c = 1 contribution to the
microscopic Rademacher expansion in (2.2). In fact, it was further shown in [78] that
gravitational saddle-points of the kind AdS2 × S2/Zc give rise to c > 1 contributions to
Ŵ that exactly match the corresponding microscopic Rademacher series in (2.2).

The punchline of this analysis is that all the macroscopic entropy of 1
8 -BPS black holes

inN = 8 supergravity in four dimensions can be accounted for, by an exact microscopic
identification of states in appropriate dual conformal field theories arising in string the-
ory. In fact, corresponding sub-leading gravitational saddles can also be identified, that
contribute to the supersymmetric sector of the quantum gravity path integral!

2.2 N = 4 supergravity and IIB string theory on K3 ×T 2

Onemay wonder howmuch of the exact identification of microstates is owed to the large
degree of supersymmetry. The natural step next is to reduce supersymmetry. This is easily
achieved by replacing the T 4 part of the toroidal compactification with a K3 surface, to
reduce IIB string theory on K3 × S 1 × S̃ 1. The K3 surface is a Calabi-Yau twofold and
therefore breaks space-time supersymmetry upon compactification to result inN = 4 su-
pergravity. This time,wewill be interested in 1

4 -BPS states for these are the
1
2 -BPS solutions

toN = 2 supergravity. The U-duality group this time is SL(2,Z) × SO(6, 22) and the in-
variant charges that label the states are givenby the vector

(
1
2q

2
e , qe · qm, 1

2q
2
m

)
C

(
n, l ,m

)
.

Microscopics The brane configuration is almost identical to the toroidal compactific-
ation with the only difference being that the D5-brane this time wraps the K3 as opposed
to the four-torus. In fact, it has been shown that the corresponding partition function
can be computed with Q5 D5-branes on K3 and Q1 D1-branes wrapping the S 1. As in
the toroidal case, there are n units of momentum along S 1, l units of momentum along
with one unit of Kaluza-Klein monopole charge on the S̃ 1. These are related to the charge

10Strictly speaking, it is the rescaled field that is given by the number −64 and not Â itself [87].
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vector via 1
2q

2
e = n, qe · qm = l and 1

2q
2
m = Q5Q1.

Z 1
4−BPS

(τ, z, σ) = 1
Φ10(τ, z, σ)

, (2.4)

where the function Φ10(τ, z, σ) is the famous Igusa cusp form [93–97]; it is the unique
weight 10 Siegel cusp form. The generating functionof symmetric products ofK3 surfaces
(in fact, a multiplicative lift thereof) is related to this Igusa cusp form via the division of
suitable Jacobi form; the interested reader may consult Section 5.2 of [77] for details on
this exact relation. For our purposes, it suffices to note the relationship between elliptic
genera of the target space of the D5-brane and the supersymmetric partition function of
themicroscopic theory. Wewill see this feature repeating itself in several examples ofN = 2
compactificationswewill consider inChapter II.Thedegeneracies for a given charge vector(
n, l ,m

)
can be extracted from the above 1

4 -BPS partition function via an integral with a
specification of an appropriate contour as shown in [98]

d
(
n, l ,m

)
= (−1)l+1

∫
C

dτ dz dσ
exp

[
−iπ

(
τn + 2zl + σm

) ]
Φ10(τ, z, σ)

. (2.5)

Unfortunately for computational simplicity and fortunately for richness in structure, this
degeneracy does not always return the degeneracies of a given single-center black hole. It
receives contributions from two-center configurations with the total charge adding up to
the chosen charge vector. One reason for this is that the Igusa cusp form is meromorphic
in z , in that it has finitely many poles. Therefore, different choices of contours return
different results [99, 100]. However, as was shown in [77], first Fourier expanding the
Siegel form in σ

1
Φ10(τ, z, σ)

=
∑
m≥−1

ψm(τ, z) exp(2πimσ) , (2.6)

in terms of meromorphic Jacobi forms ψm(τ, z). These allow for the following splitting:

ψm(τ, z) = ψF
m(τ, z) + ψP

m(τ, z) , (2.7)

where ψP
m(τ, z) contains all the terms with poles

ψP
m(τ, z) =

p24(m + 1)
η(τ)24

∑
s∈Z

qms2+sy2ms+1(
1 − yq s )2 , (2.8)

and ψF
m(τ, z) corresponds to the remaining finite piece. Furthermore, the function pi( j)

counts the number of partitions of an integer j in i colours. The double poles in the
above equation (2.8) at y = q−s is indicative of theWall-crossing phenomenon. The index
is not constant everywhere in moduli space; it jumps discretely across co-dimension one
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surfaces called ‘walls of marginal stability’11. The polar piece ψP
m(τ, z) captures precisely

these jumps. The finite pieces ψF
m(τ, z), on the other hand, are a mock-Jacobi forms. The

Rademacher expansion that was useful to derive (2.2) is no longer so, for extracting degen-
eracies of these mock-Jacobi forms. Nevertheless, it has been shown [77] that the Fourier
coefficients, cFm

(
n, l

)
, associated to ψF

m(τ, z) via

ψF
m(τ, z) =

∑
n,l

cFm
(
n, l

)
qn y l , (2.9)

are related to the degeneracies d
(
n, l ,m

)
in (2.5) with a specific choice of contour (corres-

ponding to single-center black holes) by

d
(
n, l ,m

)
= (−1)l+1cFm

(
n, l

)
. (2.10)

Despite this realization, an actual analytic expression for these degeneracies—such as the
one forN = 8 theories in (2.2)—has been difficult to achieve. It was shown in [77] that
the mock-Jacobi forms ψF

m(τ, z)whenmultiplied by appropriate powers of the Dedekind
Eta function, can be written as a sum of an honest weak-Jacobi form (say ϕweakm ) and a
mock-Jacobi form (say ϕsubm ), but this time one with sub-leading growth of states when
compared to the weak-Jacobi form ϕweakm . This allows for a very good estimate for the
growth of states associated to ψF

m(τ, z), especially when the mock-Jacobi forms ϕsubm are
sufficiently12 sub-leading.

Macroscopics Themacroscopic side of the K3×T 2 compactification has been demon-
strated to show all the interesting and complicated structure in comparison to the six-
torus. Multi-center configurations are not stable everywhere in the moduli space; they
degenerate across walls of marginal stability. And the contributions arising from these
multi-center black holes match precisely those coming from the polar piece of the Igusa
cusp form, ψP

m(τ, z). Consequently, the wall-crossing phenomenon can be re-interpreted
asmulti-center configurations being stable on one side of the wall while degenerating into
constituent single-centers on the other. Moreover, in recent work, the corresponding loc-
alization calculations inN = 4 supergravity have been carried out [76, 101] to show an ex-
plicit matching with the degeneracies obtained from themicroscopic estimates. However,
there are still minor discrepancies to be ironed out, arising from the mock nature of the
forms ψF

m(τ, z), which render an exact microscopic counting difficult as we noted earlier.
Despite the exceeding success, three significant pieces of the puzzle remain missing—

• Themock-Jacobi formsψF
m(τ, z) can be completed via a ‘shadow’ function to regain

modularity that is ubiquitous in string theory and in the single-center indices in the
11There is a concrete mathematical notion of these notions of stability in Algebraic Geometry which un-

fortunately lies outside the scope of the presentation in this thesis.
12This happens for primem when their growth can be demonstrated to be polynomial at best.
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N = 8 theories. However, this completion renders the forms non-holomorphic. A
good physical understanding of this non-holomorphicity remains a puzzle.

• A mathematically rigorous way to estimate the growth of states of mock-Jacobi
forms in general, andψF

m(τ, z) in particular, is not known. Therefore, an absolutely
exact understanding of states as in theN = 8 theories is verymuchwork in progress.

• While the matching of the leading saddle point from single-center black holes re-
produces the expected microscopic answer, the Zc orbifolded AdS saddles that re-
produce the sub-leading Kloosterman terms such as the ones with c > 1 in (2.2)
have not been localized on, in supergravity. This appears to be an interesting and
rather straight-forward extension of existing literature.

• Finally, while single-center black hole saddles have been explored as far as localiz-
ation in supergravity is concerned, an honest multi-center localization calculation
has not been carried out.

Despite these missing pieces in the literature, we have come to learn some extremely
important lessons about the microscopic origin of supersymmetric black hole states.
An obvious observation is that an exact identification of states is significantly more
challenging, with decreasing supersymmetry. Realizing that going one step further to
N = 2 compactifications implies a large number of possible vacua (since there are many
threefolds that lead to N = 2 supergravity in four dimensions), one anticipates that
a universal formula for single-center states is that much more magnanimous a task.
Notwithstanding the apparent insurmountability of the task, we learn an extremely
important pragmatic lesson from the more supersymmetric compactifications. It is that
picking a black hole and looking for its microstates is difficult. Much like in the N = 4
compactification, identifying the multi-center and subtracting them away from the total
partition function appears to be a more pragmatic approach to the problem. For one, it
is such a subtraction that allowed for the identification of the single-center mock-Jacobi
forms ψF

m(τ, z), which were then approximated by an honest weak-Jacobi form ϕweakm to
estimate the growth of states. Moreover, it is imperative for this procedure to work that
one understands exactly what it is, that is being computed on the microscopic front. For
instance, in the K3 × T 2 compactification, it was crucial to know the significance of the
contour of integration in (2.3) which led to hindsight on how the microscopic partition
function captures both single- and multi-center states.

As it turns out, in N = 2 compactifications that we will study in the following two
chapters, we will need all of this invaluable insight and more to pave way for an under-
standing of the appropriate micro-states. An answer as comprehensive as in the N = 8
theories or even as satisfactory as the one in N = 4 theories is still distant. However,
we will arrive at a stage that lays a concrete road to the identification of appropriate
single-center states inN = 2 vacua.
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There has been considerable evidence in recent months [102, 103] that subtracting the
two-center piece from the total partition function results in a mock-Jacobi form even in
N = 2 theories. However, the polar pieces now contain three, four and all higher center
configurations. This means that the mock-Jacobi piece obtained from stripping off an
n–center piece still contains more than mere single-center degeneracies. Presumably,
although this is merely educated speculation, stripping off three–center degeneracies
yields a function that is mock-Jacobi but still containing the poles of two–center con-
figurations. While starting by stripping off the four–center contributions results in a
mock-Jacobi form that contains the poles of three and two–center configurations. And
so on. Such intricate structure renders an entirely comprehensive analysis difficult with
current techniques.

Therefore, to address this rather intimidating task, wewill resort to amodest analysis by
picking specific classes of threefolds and explicitly studying the lowest lying states. We will
carefully analyse the low-lying spectrum to isolate all possible contributions to the parti-
tion function in the regimewhereno single-center blackholes contribute; this is the strictly
polar regime ofmoduli-spacewhere the single-center cosmic censorship bound is violated.
This analysis paves a clear path for pushing into the non-polar sector to subtract away all
multi-center contributions to be left with the single-center degeneracies. An important
ingredient in this analysis will be a technique to compute the degeneracy associated to a
given multi-center configuration. After introducing the problem inN = 2 theories from
amore self-contained perspective—in the next chapter—wewill introduce this technique
and use it to identify the low-lying states of the partition function in gravity.

A Cardy’s formula - Leading order growth of states
Consider a function that can be written as a q-expansion with one polar term (the Dede-
kind Eta function is an example):

f (τ) :=
∞∑

m=−n0

amqm, (A.1)

where −n0 is the power of q in the polar term. Let us assume that this function, f (τ),
transforms under a modular transformation τ → − 1

τ as

f
(
− 1
τ

)
∼ g

(√
−iτ

)
f (τ). (A.2)

For the Dedekind Eta function, g
(√
−iτ

)
is given by

√
−iτ. The coefficient an of the n-th

power of q in this expansion gives the number of operators of conformal dimension n, in
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the CFT.This coefficient can be extracted via a contour integral in the q-plane, of the form

an ∼
∮

f (τ) q−n
dq
q
. (A.3)

Turning this into a τ integral, we obtain

an ∼
∫

f (τ)e−2πinτdτ

∼
∫

f
(
− 1
τ

)
g
(√
−iτ

)−1
e−2πinτ dτ

∼
∫ ( ∞∑

m=−n0

ame−
2πim
τ

)
g
(√
−iτ

)−1
e−2πinτ dτ. (A.4)

If n � n0, the integral is dominated by the first term in the sum in the integrand:

an ∼
∫

a−n0e
2πi( n0

τ −nτ) g
(√
−iτ

)−1
dτ. (A.5)

In a saddle point approximation,

∂τ

(
e2πi( n0

τ −nτ)
)���
τ=τ∗

= 0. (A.6)

This implies that

τ∗ = ±i
√

n0
n
. (A.7)

This reduces the equation for an to

an ∼ a−n0e
2πi(−2i√n0n)

∫
g
(√
−iτ

)−1
dτ

∼ e4π√n0n . (A.8)

Since the entropy is a logarithm of an , contributions in front of the exponential are sub-
leading. These factors only contribute to log corrections to the entropy, which along with
other sub-leading corrections are captured by the more careful Rademacher expansion.
For the purposes of the leading order growth of states, thesemay be ignored. In this calcu-
lation, no knowledge of the specific form of the function f (τ)was necessary; very general
properties were sufficient. A more careful analysis using the famous Hardy-Ramanujan
circle method results in Rademacher’s exact computation of the degeneracies.





Chapter II

Multi-centers and N = 2 theories

The microscopic counting of [19, 20] accounts for the number of states, to leading
order in charges1, that yield black hole entropy. Having seen the N = 8 and

N = 4 cases, we now return to the N = 2 theories considered in [20]; the microscopics
of which are governed by the MSW-CFT we saw in Chapter I.1.1. Much like in the
K3 × T 2 compactification, what is counted on the microscopic front is an index—a sum
over all ‘angular momentum states’—one that includes contributions from single and
multi-center states. The macroscopic black hole is a singlet in that it is a static, stationary,
spherically symmetric solution to the bulk supergravity equations of motion. While
the leading order counting of states matches with the macroscopic entropy, an often
under-appreciated problem is the lack of understanding of what each of these states is.
One reason for the difficulty in identifying them exactly is that a sum over states of a given
representation under the angular momentum group is not a protected quantity. On
the macroscopic front, however, a sum over various black hole configurations may seem
unnatural. In examples with sufficient amount of supersymmetry, significant progress
has been made [77, 78, 89, 101, 104–107] as we saw in the previous chapter. Nevertheless,
in cases with lesser supersymmetry, the picture is a lot less clear. In this chapter, we will
study a set-up that is least understood in this context—the one of [20].

The MSW CFT is a (0,4) supersymmetric non-linear sigma model that is believed to
flow to a conformal fixed point in the IR. The supersymmetric states of this theory can be
counted via an index—the modified elliptic genus [108, 109]

Z
(
q, q̄, ỹ

)
= Tr

(
1
2 F

2(−1)F qL0−
cL
24 q̄ L̄0−

cR
24 ỹ2J

)
, (0.1)

where q = e2πiτ with τ being the modulus of the torus on which the theory is to live and
q̄ is its complex conjugate. F refers to the fermion number as in the case of the stand-
ard Witten index. cL and cR label the left and right moving central charges of the field
theory. Finally, ỹ = e2πiz is a fugacity associated to the elliptic variable z and is raised

1Sub-leading corrections to single-center black hole entropy arising from higher derivative terms have also
been studied in the same papers and many more since.

21
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with a ‘chemical potential’ J associated to the eigenvalue of the generator2 of the right-
moving U (1) algebra arising from the self-dual part of the (1, 1) forms of the threefold.
BPS excitations of this theory, counted by the above partition function, have been shown
to grow—to leading order in charges—exactly as does the entropy of a macroscopic single
center supersymmetric black hole in the four dimensionalN = 2 supergravity theory [20].
Exciting as that result may already be, the above modified elliptic genus (0.1) in fact enjoys
an even richer structure. It is a weak Jacobi form of weight (− 3

2,
1
2 ) and is endowed with a

Θ-decomposition3 in terms of vector valued modular formsZγ as [108, 109]

Z
(
q, q̄, ỹ

)
=

n∑
γ=0
Zγ

(
q
)
Θγ

(
q, q̄, ỹ

)
, (0.2)

where γ labels the independent elements of the corresponding discriminant group.
Loosely speaking, the vector valued modular form Zγ captures the growth of states of
the partition function (0.1) while the Θγ functions—forming modular representations
of weight ( 1

2 ℎ
(1,1)(CY3) − 1, 1

2 )—add to the rich pole structure of the modified elliptic
genus. While much more can be said of this decomposition than is within the scope of
this thesis, we will restrict our attention to the vector Zγ which captures the growth
of states that endow the macroscopic black holes with their entropy. For simplicity, we
will also only consider those compactifications4 with ℎ(1,1) = 1; this allows for a study
of uni-modulus supergravity theory on the macroscopic front. Furthermore, given that
the Θγ functions are then of weight (0, 1

2 ), Zγ would carry modular weight − 3
2 . Finally,

Zγ is also endowed with a q-expansion—the coefficients of which capture a sum over all
the black hole microstate degeneracies falling in various representations of the space-time
angular momentum—that begins with a negative power of q . The polar sector of the
modular form is defined to be the set of all terms in this expansion with negative powers
of q ; knowledge of all the polar terms uniquely determines the entire modified elliptic
genus [108–110].

The leading order growth of coefficients in this q-expansion of Zγ is what a Cardy-
estimate of the growth of states counts. However, as the trace in the definition of the index
indicates, all bound states with a total charge equalling that of a single center black hole
also contribute to the corresponding term in the q-expansion. While contributions from
any one of these bound states may be small, the number of possible configurations clearly
grows as the number of partitions of the charge/energy level in question. As Ramanujan

2Note that thisU (1) generator is to be distinguished from J3, appearing in the next sections. The latter
refers to the angular momentum of the macroscopic black hole dual to a given state in the field theory.

3Θγ arises in a decomposition of the modular invariant theta function associated to the flux lattice of the
Calabi-Yau being compactified on. For details, see [108, 109].

4Strictly speaking, it is only in this case of ℎ(1,1) = 1 that the aboveΘ-decomposition is possible.
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famously showed, this number grows exponentially; much like the Cardy estimate, one
might observe. This raises the following question–

What states is the Cardy formula really counting?

The aim of this chapter is to provide a disambiguation of this issue and work towards
an answer to the above question. Ideally, a clinching answer would be a listing of all
bound states contributing to a large charge coefficient in the q-expansion of Zγ leaving
an appropriate single-center entropy and the origin of the corresponding states behind.
However—unlike in the N = 4 case where only two-center states exist—the exponen-
tially large number of such bound states for a given total charge renders this practically
impossible to achieve. One hopes to uncover a structure in the contributions arising from
these bound states that may be extrapolated to arbitrary charges. Since the polar terms
are the low-lying states and are those that actually entirely determine the modular form
uniquely, one may imagine that they provide for a good starting point.

One may in fact opt for a more direct approach to understand single-center black hole
entropy: it has been shown [111] that sub-leading corrections to the growth of states of
the modified elliptic genus depend on their representation of angular momentum. It is
certainly an interesting way forward and deserves more attention than it has received.
Notwithstanding this aside, we take the former approach.

In this chapter, we will arrive at a systematic way to identify all the multi-center
configurations that enumerate the polar states of the vector valued modular form Zγ

using the equivariant refined index introduced in [112, 113]; as has been noted before
[114] no single-center configurations contribute to the polar sector. Along the way
we find some interesting results regarding the existence—or lack thereof—of certain
three-center configurations involving D2(D̄2) charges. We will work by example to
identify all the multi-centers needed to uniquely determine the elliptic genera of the
following Calabi-Yau threefolds: the quintic in P4, the sextic in WP(2,1,1,1,1), the octic in
WP(4,1,1,1,1) and the dectic inWP(5,2,1,1,1). All results in this chapter that have been derived
before in [109, 110], agree with those references; furthermore, as in the said references, we
will use the knownGopakumar-Vafa invariants. These were computed in [115–117] while
the relation of Gromov-Witten invariants to Gopakumar-Vafa invariants is excellently
reviewed in [118]5. Finally, the equivalence of these to Donaldson-Thomas invariants was
conjectured and proved in [119–122].

The rest of this chapter is organized as follows. In Section 1, we will first review the rel-
evant multi-center configurations of interest and provide an intuitive argument for what

5See chapters 33 and 34, in particular.
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the appropriate index that counts their interaction degrees of freedom must be; further-
more, we will also spell out the prescription to be used to identify those configurations
that contribute to the polar terms of the elliptic genera under consideration. In Section
2, we will explicitly compute the said indices for several examples. We will then conclude
with a discussion in Section 3.

1 The refined equivariant index
In this section, we will first review the phase space of multi-center configurations, merely
stating results and known facts. Details may be found in [70, 114, 123]. We then move on
to a present an intuitive explanation for the appropriate index that counts multi-center
degeneracies.

Multi-center configurations inN = 2 supergravity are characterized by a metric ansatz
for stationary solutions

ds2 = −e2U (®r ) (dt + a(®r )
)2
+ e−2U (®r )d ®r 2 , (1.1)

with a(®r ) denoting a Kaluza-Klein one-form andU (®r ) the scale factor. The scalars in the
vector multiplet are typically called t a , with the index a running over the set of all vector
multiplets. Since we restrict to Type IIA compactifications with ℎ(1,1) = 1, there is only
onemodulus in the theory allowing for a dropping of the index a. The real and imaginary
decomposition of the modulus is labelled as t = B + iJ. Denoting the charge lattice by
Γ, a given center carries charges that form a vector α ∈ Γ; for the case at hand in uni-
modulus supergravity, this vector is four-dimensional:

(
p0, p, q, q0

)
. The charges p0 and p

aremagnetic in our conventions and correspond to D6 and D4 brane charges in Type IIA
language. Whilst q and q0 are electric charges corresponding to D2 and D0 excitations.
There is a natural symplectic inner product between two such charge vectors α and α̃

〈α, α′〉 = q0p ′0 + qp ′ − q ′p − q ′0p
0 (1.2)

and it is clearly antisymmetric. For a multi-center configuration with total charge γ =∑
i αi , with each center at a location ®ri , the scale factor and the value of the modulus t are

uniquely fixed by the ‘attractor equations’ [123]

−2e−U (®r )Im
[
e−iφΩ(t (®r ))

]
= β +

n∑
i=1

αi��®r − ®ri �� with

φ = arg
(
Zγ

)
. (1.3)

The moduli space of the scalars in the vector multiplet is a special Kähler manifold that
has a principal bundle over its base space with a structure group Sp(2nv + 2), where nv is
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the number of vector multiplets in the theory. Calling the coordinates on the fibers of the
appropriate vector bundle X A and FA, the manifold affords a nowhere vanishing holo-
morphic symplectic section. The index A runs over nv + 1 indices; therefore A ∈ {0, 1}.
Now, in the above attractor equations, Ω(t (®r )) = −eK/2

(
X A, FA

)
is the said symplectic

section. K = − ln
[
i
(
FAX̄ A − F̄AX A

)]
is the Kähler potential associated toMv . Further-

more, β is a constant vector given in terms of the asymptotic value t∞ of the modulus
by

β = −2Im
[
e−iφΩ(t∞)

]
. (1.4)

In the one-modulus supergravity theory at hand, projective symmetry allows for a fixing
of the X 0 coordinate to unity leaving the only modulus t = X 1/X 0. The coordinates FA
on the fibers are in fact derived, as FA = ∂AF , from the prepotential F of the theory:

F
(
X 0,X 1

)
= −k6

(
X 1)3

X 0 +
A
2

(
X 1

)2
+
c2 · P

24 X 0X 1 + instantons . (1.5)

Here, we will work in the following normalizations∫
CY3

ω ∧ ω ∧ ω = k ,∫
CY3

ω ∧ c2(CY3) = c2 · P , (1.6)

where the ω form a basis of integer two-cycles in the threefold. Finally, the half-integer
constant in the quadratic piece of the prepotential is given by A = k/2 mod 1. For the
purposes of this chapter, the instanton correctionsmay be ignored6. Finally, the one-form
a
(
®r
)
is determined in terms of the Hodge-star operator of the three flat dimensions by

?3 da
(
®r
)
=

〈
d

n∑
i=1

αi��®r − ®ri ��, β + n∑
i=1

αi��®r − ®ri ��
〉
. (1.7)

In what follows, we shall label
��®r − ®ri �� by ri j and 〈αi, α j 〉 by αi j . The ‘integrability equa-

tions’
n∑
j=1
j,i

αi j

ri j
= ci with ci = 2Im

[
e−iφZαi

]
(1.8)

6While one may be worried about the validity of the supergravity regime—without instanton correc-
tions—in the case of small charge configurations, they turn out to have a rather specific and easily con-
trolled effect insofar as regularity of solutions is concerned. Wewill be explicit about this effect in further
sections.
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ensure the existence of an a
(
®r
)
such that the configuration is supersymmetric. Finally, the

central charge Zγ is given by

Zγ = 〈γ,Ω(t )〉

= eK/2
[
pAFA − qAX A

]
= eK/2X 0

[
k
6 p0t 3 − k

2 pt2 − q̃ t − q̃0

]
, (1.9)

where the charges have been written with a tilde suggestively, to indicate that they are not
integer quantized. The exact quantization can be spelled out and we shall do so in Section
2. Furthermore, the Kähler potential can be computed from its definition as

e−K = i
(
X̄ AFA − X AF̄A

)
=

4
3 k J3 . (1.10)

Having specified all the quantities appearing in the attractor equations (1.3), there is
one additional and extremely important constraint that these multi-center configurations
must satisfy; that of regularity. Onemight impose this by demanding the positivity of the
scale factor in front of the d ®r 2 term in the metric. The attractor equations can be shown
to imply that—for a configurationwith i centers located at ®ri—this is equivalent to evalu-
ating the entropy on the regularity vector appearing on the right hand side of the attractor
equations (1.3) [70]

S

(
β +

n∑
i=1

αi��®r − ®ri ��
)
> 0 , ∀ ®r ∈ R3 . (1.11)

One may in fact solve for the attractor equations in full generality in uni-modulus
supergravity to spell out this entropy function explicitly [124]. We will see the explicit
formula in the next section.

At this stage, however, the goal is to understand how one may calculate the total
number of degrees of freedom associated to such a gravitational solution. To this end, an
‘equivariant refined index’ for such bound states as described was proposed in [112, 113].
While we leave the technical derivation of this refined index to those papers, in what
follows we will argue for the correctness of their proposed index. This discussion is to give
an intuitive picture leaving themore rigorous, technical treatment to those original papers.

Consider the solutions of the integrability equations (1.8). Although the equations
are seemingly simple, they are deceptively so. There is no general analytic solution set to
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these equations. However, for a given configuration, one might numerically solve for the
positions ri of the black hole centers. In general, there is a non-trivial angular momentum
associated to every point in the space generated by the solutions of the Denef equations;
for a single-center on the other hand, spherical symmetry ensures that this angular
momentum is zero. There is also an action of the rotation group SO(3) that leaves the
space of solutions invariant; this is just a rotation of the whole configuration of the bound
state in space-time. The corresponding study of such spaces, with an action of a group, in
the Mathematics literature is that of Hamiltonian spaces and equivariant cohomology.
Leaving the intricate details to the excellent review [125], we will resort to a more sketchy
and qualitative consideration to tell the number of degrees of freedom to be associated to
such bound states. While a two center solution can immediately be imagined, increasing
the number of centers in the problem prevents easy visualization. For instance, the
integrability equations for a two center problem essentially fix the distance between the
two centers7. Rotating this configuration in space-time generates a round sphere as the
space of solutions; the sphere is clearly smooth and symplectic. To generalize this to phase
spaces of solutions of a configuration with higher number of centers is an open problem
in Mathematics. Nevertheless, one can write down a symplectic two-form on the phase
space of solutions of the integrability equations [126]. It is again a non-trivial task to
prove that a given two-form is indeed non-degenerate on the phase space. Therefore,
that the phase space is symplectic is best left to be conjectural at this juncture. This phase
space is classical. An ‘equivariant volume element’ of this phase space (read as a volume
element that accounts for the non-trivial angular momentum at each point in the space)
is one that accounts for the interaction between the black hole centers. The phase space is
built out of these equivariant volume elements. This is an extremely important insight.
It tells us, among other things, that quantizing this phase space yields a quantum index
of the interaction between the black hole centers [113]. Such a quantum index is to keep
track of the interaction degrees of freedom of the black holes. While this is a very naive
picture, a more rigorous discussion can be found in [113]. In the following, we will take a
slightly different perspective from [113] to understand this index.

In mathematical terms, quantization of a phase space that is symplectic, is best
understood with the theory of Geometric Quantization. An excellent review for aspects
relevant to us can be found in [127]. The basic idea is the following - given a line bundle
(called the pre-quantum line bundle) and a space of sections of this line bundle (called
the pre-quantum space) on the phase space, one can construct a quantum space as a
set of subspace of sections of this pre-quantum line bundle that vanishes under the
action of a covariant derivative that is defined on the line bundle (via the corresponding
connection). Physically speaking, a pre-quantum space can be identified with the space
of square integrable sections on an appropriate pre-quantum line bundle. These sections

7Up to translations that can be gauged by fixing one of the centers to be at the origin.
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would, upon quantization, build up the quantum space - the Hilbert space of states. In
the setting at hand, apart from square integrable sections on the line bundle, we also have
a spinor bundle consisting of sections corresponding to the fermionic supersymmetry
generators in the theory. A clever ploy would be to choose the covariant derivative to be
the Dirac operator on the phase space. This is a clever choice for the formally defined
equivariant index of the Dirac operator now counts the quantum states in the theory.
This is a direct consequence of the definition of the index of the Dirac operator. It is
worth understanding this index better for this is what is to be computed, eventually.

Given a vector bundle E → M on a manifold M with an action of a groupG acting on
it; consider the action of the group on M such that it lifts to an action on E . The Dirac
operator (whose action is assumed to commute withG henceforth) is now defined on the
space of sections of this vector bundle as

D : Γ(E) −→ Γ(E). (1.12)

By definition, the equivariant index of this Dirac operator, for an element g ∈ G , is

IndG (g,D) = TrKerD+(g ) − TrKerD−(g ). (1.13)

Equivalently, considering the Lie Algebra g of G and an element x = ln(g ) ∈ g, the
equivariant index can be defined as [128]

IndG (exp(x),D) = 1
(2πi) n2

∫
M
Cℎg(x, E)Âg(x,M ), (1.14)

whereCℎ denotes the Chern character and Â denotes the usual A-roof genus; this is also
called Kirilov’s formula. For our purposes, in the spirit of the Witten index, picking an
element y2J3 ∈ G , where y is a formal generating parameter and J3 is the third generator
of the angular momentum algebra of the rotations in space-time, the index can now be
written as8

gref({αi}, y) = TrKerD+
[
(−y)2J3

]
− TrKerD−

[
(−y)2J3

]
. (1.15)

This is the index for a configuration of black hole centers carrying charges αi that form a
bound state satisfying the integrability equations (1.8). gref stands for the refined index; to
avoid confusion, we merely stick to conventional notation used in [113]. This can further
be shown to reduce to [113]

gref({αi}, y) =
∫
Mn

Cℎ(ν,L)Â(ν,Mn), (1.16)

8A dependence on the complexified Kähler parameter t is implicit if one is to work globally in the moduli
space; locally, however, the index is constant.
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where L is the line bundle,Mn is the phase space of an n-centered problem solving the
integrability equations and ν = ln y .

The idea now, is to compute this index via Localization. Knowing the group action on
the phase space, a localization technique under an Abelian subgroup of this group (U (1)
of SO(3)) results in a localization of the black hole centers along a line, say the z axis, with
manifestU (1) symmetry; the symmetry being rotations about the axis of localization. This
renders a non-vanishing contribution to the index only from the fixed points that are the
black hole centers. What was originally a problem inR3 has now localized to a problem on
a linewith the centers lying at positions, say z i . With this knowledge, onemaywrite down
a ‘superpotential’ whose fixed points are given by exactly the fixed points of localization
[113]

Ŵ (λ, {z i}) = −
∑
i< j

αi j sign
[
z j − z i

]
ln

��z j − z i
�� −∑

i

(
ci −

λ

n

)
z i . (1.17)

This superpotential is a function of n + 1 variables: the n centers and a parameter λ. With
these considerations, the index can now be written in its computationally easiest form as

gref({αi}, y) =
(−1)

∑
i< j αi j+n−1(

y − y−1)n−1

∑
p

s(p) y
∑

i< j αi j sign[z j−z i ], (1.18)

where p corresponds to a given regular configuration of black hole centers that satisfy the
integrability equations and s(p) = −sign det M̂ , with M̂ being the Hessian ofŴ (λ, {z i})
with respect to z1, . . . , zn . Upon specifying y = −1, this gr e f is exactly that quantum index
which computes the interaction degrees of freedomarising from a givenmulti center black
hole solution to supergravity. Another interpretation of this quantity is that of the Poin-
caré polynomial associated to the moduli space of the quiver representations: each center
in the configuration arises from a D-brane that may be treated as a node with an Abelian
gauge group associated to it. With bi-fundamentals extending between the bound centers
playing the arrows, these configurations do indeed take the guise of a quiver diagram[129].
Topological invariants associated to the moduli space of representations of these quivers
have been shown to be enumerated by this index gref [130, 131]. With the knowledge of
the interaction degrees of freedom between the black hole centers, the total degeneracy
associated to a multi-center black hole configuration can now be naturally written as

Ω̄({αi}; t ) =
gr e f ({αi}; t )
|Aut({αi})|

∏n

i=1
Ω̄

S (αi), (1.19)

where Ω̄({αi}; t ) is the total degeneracy associated to the multi-center configuration in
question, Ω̄S (αi) corresponds to the rational index associated to a single black hole center
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carrying charge αi and the |Aut({αi})| factor9 takes repeated centers into account. The
single center indices are input parameters. These rational indices are given, in terms of the
integer invariants, by

Ω̄
S (αi) =

∑
m |αi

m−1 y − y−1

ym − y−mΩ
S (αi), (1.20)

where ΩS (αi) are the integer invariants of the single centers. It may be noted that the
product of these rational indices is the mathematical counterpart of the symmetric
product of the moduli spaces in the string regime, that contains several singularities
[109, 110]. From a supergravity perspective, however, this product can physically be
understood as arising from the Bose-Fermi statistics of the interacting single center black
holes [112]. This essentially negates all troubles encountered with singularities in the
geometric counting.

Finally, a word on the regime of validity of this approach is in order. Owing to the
attractor mechanism in four dimensional N = 2 supergravity theories, as the size of the
modulus approaches the attractor value, it is fixed by the charges of the single center black
hole towards which the modulus is being attracted. In a multi-center configuration how-
ever, bound states exist only at large values of the modulus. This is because at smaller
values, one is attracted to the basin of attractor of one of the bound state constituents,
owing to the attractor mechanism. Therefore, the analysis of multi-center configurations
in this thesis is done in the large volume limit: J � B .

2 M5-brane elliptic genera from multi-centers
Having—at least heuristically—justified the index that computes the interaction degrees
of freedom, in this section we will show how one may identify those mutli-centers that
contribute to the polar terms of the MSW elliptic genus. Working by example, we
explicitly show that all polar terms of the quintic in P4, the sextic inWP(2,1,1,1,1), the octic
in WP(4,1,1,1,1) and the dectic in WP(5,2,1,1,1) can be reconstructed with this approach. In
the next section, we will finish with an argument why this approach is well suited to
identifying single-center black hole entropy in the non-polar sector.

To this end, one first needs to identify what the charges of individual terms of the q-
expansion ofZγ must be. Knowing that these charges arise from a D4 − D2 − D0 brane
construction, the central charge Zγ(t ) provides an easy tool for this purpose. Dp branes
often support lower dimensional brane charges. A pure D4 brane, for instance, sup-
ports non-zero D2 and D0 fluxes [108, 109] to cancel the Freed-Witten anomaly [132].
9 |Aut({αi })| =

∏
k zk !.
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Since these branes must form localized objects as black holes in the four dimensional non-
compact space in the low energy theory, their extension is entirely confined to the compact
Calabi-Yau space. Every Calabi-Yau threefold has a non-vanishing structure-sheaf. Since
the D6 brane must extend entirely in the threefold, one may view it as the structure-sheaf
of the manifold and consequently, there is always one at our disposal. The central charge
of a BPS brane is given by the same formula (1.9) as in the supergravity theory. However,
the lower dimensional fluxes on the D6 brane induce additional curvature. In addition, if
the brane has a non-trivial gauge bundle turned on, the charge vector of the brane would
arise from turning on the relevant Chern classes. Taking all of these into consideration,
the central charge takes the form [114]

Zγ(t ) = −
∫
CY3

eU1+U2+U3 ∧ e−tω ∧
(
1 + c2(CY3)

24

)
(2.1)

where theUi represent integer classes in which the Chern classes of the gauge bundle have
been expanded as c1 = U1ω, c2 = U2ω and c3 = U3ω. Expanding the exponentials and
using the normalization of (1.6), the central charge reduces to

Zγ =
k
6 t 3 − k

2U1t2 +

(
k
2U

2
1 +

c2 · P
24 +U2

)
t −

(
U 3

1
k
6 +U1U2 +

BU1
24 +U3

)
. (2.2)

Using (1.9), this allows for an identification of the corresponding charge vector of a single
D6 brane as

γ =
(
p0, p, q̃, q̃0

)
=

(
1,U1,−

k
2U

2
1 −

c2 · P
24 −U2,

k
6U

3
1 +

c2 · P
24 U1 +U1U2 +U3

)
=

(
1,U ,−k2U

2 − c2 · P
24 ,

k
6U

3 +
c2 · P

24 U
)
. (2.3)

where in the last line, we restrict to an Abelian gauge bundle and label the only available
integer classU1 byU . This turns out to be sufficient for the polar sector of interest. Now,
solving the attractor equations for a large black hole with the above charges results in a
Bekenstein-Hawking entropy S = π

��Zγ(tattractor)��2—where tattractor is the attractor value
of the modulus determined in terms of the charges—as follows [124]

S = π
√
D(1, p, q̃, q̃0), (2.4)

whereD(1, p, q̃, q̃0) is the discriminant function given in terms of the charges as

D(1, p, q̃, q̃0) =
k2

9

[
3
(q̃ p)2

k2 − 18
q̃0 q̃ p
k2 − 9

q̃2
0

k2 − 6
p3 q̃0

k
+ 8

q̃3

k3

]
(2.5)
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for a single center solution. For a multi-center configuration, however, the discriminant
is given by (1.11), where the argument of the discriminant is chosen to be the ‘regularity
vector’ appearing in the attractor equations

D = D
(
β +

n∑
i=1

αi��®r − ®ri ��
)
. (2.6)

Positivity of the discriminant on the ‘regularity vector’ ensures regularity of the multi-
center configuration.

2.1 Some generalities

It has long been argued that a D4 brane splits into a bound state of a D6 brane and an
anti-D6 brane [114]. In an M-Theory setting of the case at hand, it has proved to be very
difficult towrite down elliptic genera for theMSWCFTswithmultipleM5branes. There-
fore, in what follows, we will consider only those with a single M5 brane. This means a
unit D4 brane charge in the charge vector. Indeed, from the charge vector (2.3), consider-
ing a D6 brane with one unit flux and a D̄6 with no flux yields a D4 brane charge vector
with induced lower dimensional fluxes:

αD6 =

(
1, 1,−k2 −

c2 · P
24 ,

k
6 +

c2 · P
24

)
and αD̄6 =

(
−1, 0, c2 · P

24 , 0
)

give

αD4 = αD6 + αD̄6 =

(
0, 1,−k2 ,

k
6 +

c2 · P
24

)
. (2.7)

Of course, as a consistency check, this must match with the appropriate induced fluxes on
the D4 brane that cancel the Freed-Witten anomaly; this is indeed satisfied. For example,
specifying to the quintic threefold, which has k = 5 and c2 · P = 50, this charge vector
produces the correct fluxes known from [109]. One can now compute the interaction de-
grees of freedom between these two centers and check if it matches with what one expects
from modularity. Before that however, consider the Θγ decomposition of the partition
function again:

Z
(
q, q̄, y

)
=

n∑
γ=0
Zγ

(
q
)
Θγ

(
q, q̄, y

)
. (2.8)

One property of this decomposition is thatZγ = Zδ for all γ = −δ modulo a pull-back
of the second integer cohomology onto the D4 brane. For the quintic for instance, n = 4
andZ1 = Z4,Z2 = Z3. Now, the pure D4 brane degeneracy appears as the first (or most
polar) term in the q-expansion ofZ0.
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Symmetric product orbifolds and adding D0 charges To go to the next term in
the expansion, one simply adds D0 charge. Thinking geometrically, the D0 brane has a
moduli space of the entire threefold in consideration and demanding a bound-state with
the D4 reduces themoduli space of a the latter; the combinedmoduli space yields the cor-
rect degeneracy [109]. Adding more and more D0 charges results in symmetric product
orbifolds of the moduli space of the D0 particles, namely the threefold. Owing to config-
urations with coinciding branes, one runs into singularities on themoduli space that need
to be resolved. As was pointed out in [112], the rational refined indices overcome these
subtleties of moduli space singularites. From a multi-center configuration perspective,
adding D0 charges implies an increase in the number of centers in a configuration. And
there are exponentiallymany of them; the number growingwith the number of partitions
of the D0 charge to be added. Nevertheless, the low-lying spectrum can still be handled.
And considering all configurations satisfying regularity, an addition of D0 charges takes
us towards the non-polar sector ofZ0. Wewill work out explicit examples in the next sub-
section to show that counting degrees of freedom associated to all regular configurations
produces the correct polar terms.

Rational curves and adding D2 charges In order to move ‘vertically’, so to speak,
into the degeneracies inZ1, one adds D2 charges. Thinking geometrically again, adding
D2 charges is equivalent to demanding that theD4 brane passing through rational curves.
So, one computes themoduli space associated to degree ‘β’ rational curves in conjunction
with a demand that the D4 brane intersect them. D2 fluxes, however, induce D0 charges
and the amount of induced charge had to be computed using techniques of algebraic
geometry. Even in attempts to obtain the elliptic genera from supergravity split-attractor
flows [133], the amount of induced charge was needed as an input from geometry to
identify the appropriate flows that contribute to the index. Notwithstanding this input,
consider the most polar10 term in the q-expansion of Z1, say q−y . Writing this term as
q−xq z , such that−x + z = −y with q−x being themost polar term inZ0, it turns out to be
sufficient to consider added D0 charge that corresponds to the positive integer part11 of
z . In the several examples under consideration, it is sufficient to consider rational curves
of degree 1 and all polar terms of such kind have z > 1; we leave the cases with higher
degree rational curves for future work. Positivity of (z − 1) has a geometric interpretation:
it is that rational curves come with non-trivial moduli spaces only upon an induction of
D0 charges. In fact, in the theory of Donaldson-Thomas invariants—where a Witten
index enumerates invariants NDT (β, n) associated to a D2 brane wrapping a curve in
the homology class β that intersects a collection of points ascribed to D0 branes—there
are no topological invariants associated to NDT (1, 0) when z > 1. That the index is

10It may be worth pointing out that not all partition functions necessarily have a polar term in the q-
expansion ofZ1.

11z is positive in all the examples under consideration.
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correctly reproduced by looking at multi-center configurations with added D0 charges
as we prescribe may be interpreted as supergravity’s way of telling us that NDT (1, 0) = 0
whenever z > 1.

In view of the previous discussion on adding D0 charges, it is tempting to guess that
adding D2 charges must involve adding additional centers to charge configurations. In-
terestingly, a simple argument shows that a generic D2 − D0 charge vector never binds to
a D6 center. Consider generic D6 and D2 − D0 charge vectors as follows

γ1 =

(
1, p,−

p2

2 k − 25
12 ,

p3

6 k +
25
12 p

)
and γ2 =

(
0, 0, q, q0

)
. (2.9)

Their symplectic product is given by

γ12 = −
(
q0 + pq

)
. (2.10)

Using the fact that the phase factor associated to them e−iφ is given by

e−iφ ∼
Z(γ1+γ2=γ)��Zγ

�� , (2.11)

we have that

Im
(
e−iφZγ

)
∼ Im

(
Zγ1 Z̄γ2

)
∼

(
q0 + pq

)
J3. (2.12)

where the second line is true up to some numerical factors and only holds in the large
volume limit J � 0 for a threefold with positive triple-intersection k > 0. Wherever it
needs specification, we make an arbitrary choice for the vacuum value of the modulus t
at infinity to be t = 0 + 3i; this satisfies the large volume condition J � B . Since the
FI constants now have the opposite sign of the symplectic product of the corresponding
charges, the integrability equations for the bound state implies that r12 < 0, which violates
regularity. This implies that a bound state of D6 with a generic D2 − D0 charge never
occurs! One might imagine that a three center bound-state of a generic D2 − D0 center
with D6 − D̄6 might still be possible. Although it is hard to prove in full generality, one
might take the previous argument as an indication that such three-center bound states
generically violate regularity. In the next subsection, we explicitly show that this is true in
several examples.

2.2 Explicit elliptic genera for some Calabi-Yau threefolds
The quintic in P4

The quintic threefold is defined by a degree 5 polynomial inP4. The topological invariants
associated to the quintic are: χ(X5) = −200, k = 5 and c2 · P = 50. Its modified elliptic



2 M5-brane elliptic genera from multi-centers 35

genus is given by

ZX5

(
q, q̄, y

)
=

4∑
γ=0
Zγ

(
q
)
Θ
(5)
γ

(
q, q̄, y

)
and

Θ
(m)
k

(
q, q̄, y

)
=

∑
n∈Z+ 1

2+
k
m

(−1)mnq
m
2 n2

ymn (2.13)

where

Z0(q) = q−
55
24

(
5 − 800q + 58500q2 + non-polar terms

)
Z1(q) = Z4(q) = q−

83
120

(
8625 + non-polar terms

)
Z2(q) = Z3(q) = non-polar terms . (2.14)

Pure D4 brane The charge vector associated to a Pure D4 brane for this compactific-
ation can be written from (2.7) with the topological data of the quintic

γ1 B αD6 =

(
1, 1,−55

12 ,
35
12

)
and γ2 B αD̄6 =

(
−1, 0, 25

12 , 0
)

give

γ B αD4 = αD6 + αD̄6 =

(
0, 1,−5

2,
35
12

)
. (2.15)

Computing the discriminant associated to this vector via (2.5), one finds

DD4 = −
275
36 , (2.16)

which yields an imaginary single-center entropy. This renders this solution un-physical12.
In order to compute the interaction degrees of freedom, the two-center integrability equa-
tions

γ12
z12
= c1, (2.17)

where z12 ∈ R, need to be solved. The required constants, to solve this equation, are
tabulated below in Table 1. This results in the following solution

z12 =
611
√

12665
12 . (2.18)

12In fact, computing the discriminant associated to the D6 center also yields a negative value: −3125/1944.
We expect that the ignored instanton corrections to the prepotential lift this sickness; working with this
hypothesis, we merely shift the definition of a ‘zero discriminant’ fromDγ = 0 to that of the D6 brane.
Aside from this subtlety, the instanton corrections play no other role in the analysis.
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γ12 Z1 Z2 α = arg[Zγ] Dγ c1

-5
(

47
72 + i

7
24

)√
5 −i 13

√
5

24 tan−1
(

18
47

)
−275

36 −
611

√
5

2533
12

Table 1. Relevant constants for the Pure D4 brane.

Since it is only the relative distance between the centers that is important, we fix z1
to be at the origin. The above solution then implies that z2 is at a distance of ±z12
from the origin on the axis on which the centers are localized. This leaves us with two
possible configurations, namely: 12 and 21, where z1 < z2 and z2 < z1 respectively.13 For
consistency, the discriminant associated to the two-center configuration must be positive.
This requires the knowledge of β—with an arbitrary choice of the value for the modulus
at infinity to be t = 0 + 3i as mentioned before—

β =

(
6

√
12665

,
53

√
12665

,−611
12

√
5

2533,−
76

√
12665

)
, (2.19)

Plugging this into the regularity vector, we find that both configurationsD12 andD21 are
regular everywhere14 outside the centers; infinities at the locationof the centers is expected.
Given all the configurations that contribute, using the formula in (1.18)

gref({γi}, y) =
(−1)

∑
i< j γi j+n−1(

y − y−1)n−1

∑
p

s(p) y
∑

i< j γi j s i gn[z j−z i ] , (2.20)

the Poincaré polynomial associated to the interaction degrees of freedom of the Pure D4
brane realized as a bound state of the D6 and D̄6 is

gref(γ1, γ2, y) =
(−1)−5+2−1(
y − y−1) (

y5 − y−5
)

=
(
y−4 + y−2 + 1 + y2 + y4

)
, (2.21)

where the sign s(12) was computed to be + 1 from the Hessian of the superpotential in
(1.17). Specializing to y → (−1) results in gref = 5. Substituting this into (1.19) with the
implicit understanding that a D6 and a D̄6 have refined indices of 1 each15 yields a final
13In the configuration 12, z2 = +z12 and in the configuration 21, z2 = −z12
14For simplicity, we check for positivity of the corresponding regularity vector only along the axis of local-

ization.
15The structure sheaves have a unit degeneracy.
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index of
Ω̄(γ1, γ2; t ) = gref Ω̄

S
D6 Ω̄

S
D̄6 = 5 × 1 × 1 = 5. (2.22)

This matches the prediction from the string regime and modularity; the most polar term
in Z0 is the pure D4 brane. The final index being exactly the same as the norm of the
symplectic inner product of the two charge vectors is not a mere coincidence. This is a
generic feature of two center solutions to the integrability equations.

D4-D0 bound state As advertised in the previous subsection, the next polar term in
Z0 may be achieved by adding a D0 brane center. Three-center solutions of D0 branes
bound to D6 and D̄6 centers have been extensively studied in [113]. While the D6 centers
considered there were both with D4 fluxes turned on, the analysis is largely similar. It has
also been previously noted that Dp−6 branes bound to Dp branes energetically prefer to
stay ejected from them as opposed to dissolving as fluxes as preferred by Dp−2 and Dp−4
branes. This is consistent with the picture in [113] that adding a D0 charge necessarily
implies an addition of a new D0 center with charge vector αD0 = (0, 0, 0,±1). The correct
sign may be fixed by noting that adding a positive D0 flux on the Pure D4 reduces the
entropy via a reduction in D. Therefore, in these conventions, a D4 brane binds to an
anti-D0 brane. Therefore, the three-problem of interest now has a third center γ3 B
(0, 0, 0,−1) in addition to the two centers that generated a pure D4 brane. These result in
a total charge vector given by

γ B αD4−D0 =

(
0, 1,−5

2,
23
12

)
. (2.23)

The corresponding integrability equations take the form
γ12
z12
+
γ13
z13
= c1, (2.24)

γ23
z23
+
γ21
z21
= c2, (2.25)

where γ12 = −γ21
16. We tabulate the relevant data required to solve these equations, in

Table 2 and Table 3. Starting far out in the moduli space at t = 0 + 3i again, the corres-
ponding vector for β is

β =

(
−6

√
5

69109,
247

√
345545

,−3211
12

√
5

69109,−
295

2

√
5

69109 +
247

2
√

345545

)
. (2.26)

Solving the Denef equations and writing down those solutions that satisfy the discrimin-
ant positivity condition (i.e,D > DD6) we find Table 4. Gathering all the computations,
16The symplectic product of any two charge vectors is antisymmetric.
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γ12 γ13 γ23 Z1 Z2 Z3 α = arg[Zγ]

-5 1 -1
(

47
72 + i

7
24

)√
5 −i 13

√
5

24
1

6
√

5
tan−1

(
90

247

)
Table 2. Relevant data for the D4 − D0 state (Part a).

Dγ c1 c2

−155
36 −3139

12

√
5

69109
3211

12

√
5

69109

Table 3. Relevant data for the D4-D0 state (Part b).

Configuration z1 z2 z3 s(p)
231 0 −1.33278 −0.65506 -1
312 0 2.07521 −5.42298 1
132 0 1.33278 0.65506 -1
213 0 −2.07521 5.42298 1

Table 4. Configurations contributing to the D4-D0 state.

we now compute the interaction degrees of freedom for this three center bound state

gref(γ1, γ2, γ3, y) =
(−1)−5+1−1(
y − y−1)2

(
y5 − y3 − y−3 + y−5

)
= −

(
y−3 + y−1 + y1 + y3

)
. (2.27)

Specializing to y → (−1) results in gref = 4. Substituting this into (1.19) and using the fact
that the single center refined index for a D0 is χ(CY3) = −200 yields a final index of

Ω̄(γ1, γ2, γ3; t ) = gref Ω̄S
D6 Ω̄

S
D̄6 Ω̄

S
D0

= 4 × 1 × 1 × (−200)
= −800. (2.28)

This too is in perfect agreement with the partition function.

D4-D0-D0 bound states There are two possibilities for the next polar state.
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• A three center scenario, similar to the D4-D0 case17, but with the third center car-
rying twice the unit D0 charge α2D0 = (0, 0, 0,−2). The total charge vector is now

γ =

(
0, 1,−5

2,
11
12

)
. (2.29)

The corresponding integrability equations take the form
γ12
z12
+
γ13
z13
= c1, (2.30)

γ23
z23
+
γ21
z21
= c2. (2.31)

The relevant data required to solve these equations is collected in the following
tables.

γ12 γ13 γ23 Z1 Z2 Z3 α = arg[Zγ]

-5 2 -2
(

47
72 + i

7
24

)√
5 −i 13

√
5

24
1

3
√

5
tan−1

(
90

259

)
Table 5. Relevant data for the D4-2D0 state (Part a).

Dγ c1 c2

−35
36 −3223

12

√
5

75181
3367

12

√
5

75181

Table 6. Relevant data for the D4-2D0 state (Part b).

The corresponding vector for β is

β =

(
−6

√
5

75181,
259

√
375905

,−3367
12

√
5

75181,−
295

2

√
5

75181 +
259

2
√

375905

)
.

(2.32)
Solving the integrability equations and writing down those solutions that satisfy
the discriminant positivity condition, we find the values in Table 7. The associated
Poincaré polynomial is now

gref(γ1, γ2, γ3, y) =
(−1)−5+2−2(
y − y−1)2

(
y5 − y1 − y−1 + y−5

)
17This is an example of a scenario whereD > DD6 and yet it corresponds to a purelymulti-center solution.
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Configuration z1 z2 z3 s(p)
231 0 −0.446522 −0.222042 -1
312 0 1.95346 −5.41678 1
132 0 0.446522 0.222042 -1
213 0 −1.95346 5.41678 1

Table 7. Configurations contributing to the D4-2D0 state.

= −
(
y−3 + 2y−1 + 2y1 + y3

)
. (2.33)

Therefore gref = 6 while the refined index for the 2D0 center is given by

Ω̄
S
2D0 = χ(CY3) +

χ(CY3)
4 = −250. (2.34)

This yields a final index of

Ω̄(γ1, γ2, γ3; t ) = gref Ω̄S
D6 Ω̄

S
D̄6 Ω̄

S
2D0

= 6 × 1 × 1 × (−250)
= −1500. (2.35)

• A four center scenario with two explicit D0 centers:

The contributing centers are the previousD6 and D̄6 centers with two explicit unit
charge D0 charge vectors. The total charge vector is clearly the same as before. A
detailed computation is no more illuminating to present here; the resulting gref in
this scenario is half that of the previous case, owing to the halving of the symplectic
products. The degeneracy for this four center D6-D̄6-D0-D0 solution is gref = 3.
This yields a final index of

Ω̄(γ1, γ2, γ3, γ4; t ) =
gref
2 Ω̄

S
D6 Ω̄

S
D̄6 Ω̄

S
D0 Ω̄

S
D0

=
3
2 × 1 × (−200) × (−200)

= 60000, (2.36)

where the factor of half comes from the automorphism arising from the two
identical D0 centers. This results in a total contribution of -1500 + 60000 = 58500,
towards this state. All these numbers are clearly consistent with the modular pre-
diction forZ0.
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Once one has identified the appropriate centers that are of interest, the authors of [134]
have developed a Mathematica code for the computation of the Poincare polynomials.
The code is attached to their paper.

D6-D̄6-D2D0 bound states To move into the polar sector ofZ1, now, one must add
D2 charges. Naively, this added chargemaymerely be an increase in theD2 component of
either of theD6 brane charges or act as an additional third center, with possible additional
induced D0 centers. The split attractor flow allows for such flows into many channels
[114]. In fact, in the large volume limit—the one we stick to in this thesis—one can even
compute the index across the wall of marginal stability along the flow [135]; for an end
point with three centers—which we will think of being the two D6 centers along with a
generic D2D0 center

(
0, 0, q, q0

)
—is given by [135]

Ω((12)3; t ) = 1
4 (−1)γ12+γ31+γ23 γ(1+2)3 · γ12 · Ω(γ1) · Ω(γ2) · Ω(γ3)

©­­­«sgn
[
Im[Z(γ1 + γ2, t )Z̄(γ3, t )]

]︸                                   ︷︷                                   ︸
a

+ sgn[γ(1+2)3]︸        ︷︷        ︸
b

ª®®®¬©­­­«sgn
[
Im[Z(γ1, t1)Z̄(γ2, t1)]

]︸                             ︷︷                             ︸
c

+ sgn[γ12]︸   ︷︷   ︸
d

ª®®®¬ . (2.37)

Specifying the quintic data, we find

sgn[a] = sgn
[
q0 −

235
12

]
,

sgn
[
b
]
= −sgn

[
5 + q0

]
sgn

[
d
]
= −sgn

[
q + q0

]
,

sgn[c] = sgn
[
−72q2

0 − 360q0 + 408qq0 + 5785q
1728(5 + q0)

]
, (2.38)

upon computing the corresponding quantities in the underbraces. For a non-vanishing
index, sgn[a] and sgn

[
b
]
must have the same sign (and similarly with sgn[c] and sgn

[
d
]
).

sgn[a] and sgn
[
b
]
have the same sign iff −5 < q0 < 20, where we use the fact that q

& q0 ∈ Z. Therefore, if this condition is satisfied, sgn[a] + sgn
[
b
]
= −2. For the total

contribution to the index to be positive18, sgn[c] and sgn
[
d
]
< 0. Since γ12 = −q − q0,

sgn
[
d
]
= sgn[γ12] = −sgn

[
q + q0

]
. (2.39)

18Considerations similar to those that will follow, rule out the case when the contribution is negative too.
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Now sgn
[
d
]
< 0 implies q > −q0. Putting all the pieces together, the allowed values for

the center γ2 such that there is a non-vanishing contribution to the index are collected in
Table 8 of Appendix A. It is evident that in the direction of the physical D0 charges that
bindwith theD4, there are no non-vanishingD2 charges to form a three-center black hole
bound state. Nevertheless, one might still investigate if D0 charges of the opposite sign
can form the third center with non-vanishing D2 charges. As it turns out, none of the
allowed values in Table 8 result in a positive discriminant everywhere outside the location
of the centers. An example of this is shown in Figure 1 where the discriminant function
(2.6) associated to a three center configuration with charges D6 and D̄6 as in (2.15) and a
third D2D0 center with (0, 0,−1, 2) is plotted against the axis of localization of the centers.
Owing to the negative discriminant of the Pure D4 brane (arising from the ignoring of
instanton corrections to the prepotential), one expects that the discriminant is negative at
the locations of the D6 and D̄6 centers. However, as is evident from the plot, the discrim-
inant dips below zero even near the third center corresponding to theD2D0 charge vector.
This charge vector has zero discriminant and therefore must not go down to negative in-
finity as it does in the plot. Onemay easily check that in fact all allowed values of theD2D0
center listed in Table 8 violate regularity.

This rules out the possibility of having a three center bound state with non-vanishing
D2 charges. This may be seen as a more precise vindication of the naive argument we saw
in the previous subsection.

In so far as the modified elliptic genus is concerned, this means that a polar term with
D2 charges can occur only as a two-center configuration where one of the centers has ad-
ditional D2 and D0 fluxes. To identify which of the two centers picks up the additional
lower dimensional charges, we again look for the charge vectors whose discriminant in-
creases upon the addition of the said charges to find the configuration to be

D6 : γ1 =

(
1, 1,−55

12 ,
23
12

)
and D̄6 : γ2 =

(
−1, 0, 13

12, 0
)
. (2.40)

Since this is now a two center problem, gr e f is given by the symplectic product of the
charge vectors gref = |γ12 | = 3. Therefore, the final index is given by

Ω̄(γ1, γ2; t ) = gref Ω̄S
1 Ω̄

S
2

= 3 × 2875 × 1
= 8625, (2.41)

where the factor of 2875 comes from the Donaldson-Thomas invariants associated to the
D6 with a D2 flux and a point p.



2 M5-brane elliptic genera from multi-centers 43

Figure 1. Discriminant function of aD6− D̄6−D2D0 three-center configurationwith
charges D6 and D̄6 as in (2.15) and D2D0 charge vector (0, 0,−1, 2) plotted against the
axis of localization of the centers.

X6 inWP(2,1,1,1,1)

The sextic is a degree 6 hypersurface in WP(2,1,1,1,1). For the purposes of this thesis, the
topological invariants associated to the sextic we need are: χ(X6) = −204, k = 3, c2 · P =
42 and NDT (1, 1) = 7884. Its modified elliptic genus is given by

ZX6

(
q, q̄, y

)
=

2∑
γ=0
Zγ

(
q
)
Θ
(3)
γ

(
q, q̄, y

)
(2.42)

where

Z0(q) = q−
45
24

(
4 − 612q + non-polar terms

)
Z1(q) = Z2(q) = q−

5
24

(
15768 + non-polar terms

)
. (2.43)

The charge vector of the Pure D4 brane is given by

αD6 =

(
1, 1,−13

4 ,
9
4

)
and αD̄6 =

(
−1, 0, 7

4, 0
)

give
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αD4 = αD6 + αD̄6 =

(
0, 1,−3

2,
9
4

)
, (2.44)

Omitting explicit detail, the associated Poincaré polynomial is

gref
(
D4, y

)
= −

(
y−3 + y−1 + y1 + y3

)
. (2.45)

which yields the correct final index of 4. Adding a D0 brane, yields

gref
(
D4 − D0, y

)
= y−2 + 1 + y2 (2.46)

which gives a final index of 3×−204 = −612. Finally, adding a D2 charge, the two centers
are

D6 : γ1 =

(
1, 1,−13

4 ,
5
4

)
and D̄6 : γ2 =

(
−1, 0, 3

4, 0
)
. (2.47)

with
gref

(
D4 − D2D0, y

)
= 2 (2.48)

yielding a final index of 2 × 7884 = 15768.

X8 inWP(4,1,1,1,1)

The octic threefold is a degree 8 hyperplane inWP(4,1,1,1,1) its relevant topological invariants
are: χ(X8) = −296, k = 2, c2 · P = 44 and NDT (1, 1) = 29504. Its modified elliptic genus
is given by

ZX8

(
q, q̄, y

)
=

4∑
γ=0
Zγ

(
q
)
Θ
(2)
γ

(
q, q̄, y

)
(2.49)

where

Z0(q) = q−
23
12

(
4 − 888q + non-polar terms

)
Z1(q) = q−

1
6
(
59008 + non-polar terms

)
. (2.50)

The Pure D4 brane is now

αD6 =

(
1, 1,−17

6 ,
13
6

)
and αD̄6 =

(
−1, 0, 11

6 , 0
)

give

αD4 = αD6 + αD̄6 =

(
0, 1,−1, 11

6

)
, (2.51)
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with an associated Poincaré polynomial

gref
(
D4, y

)
= −

(
y−3 + y−1 + y1 + y3

)
. (2.52)

and final index of 4. Adding a D0 brane, yields

gref
(
D4 − D0, y

)
= y−2 + 1 + y2 (2.53)

which gives a final index of 3×−296 = −888. Finally, adding a D2 charge, the two centers
are

D6 : γ1 =

(
1, 1,−17

6 ,
7
6

)
and D̄6 : γ2 =

(
−1, 0, 5

6, 0
)
. (2.54)

with
gref

(
D4 − D2D0, y

)
= 2 (2.55)

yielding a final index of 2 × 29504 = 59008.

X10 inWP(5,2,1,1,1)

The dectic is a degree 10 hypersurface inWP(5,2,1,1,1). The relevant topological invariants
associated to the dectic are: χ(X10) = −288, k = 1 and c2 · P = 34. Its modified elliptic
genus is given by

ZX5

(
q, q̄, y

)
=

η(q)−35

576
[
541E4(q)4 + 1187E4(q)E6(q)2

]
Θ1(q̄, y)

= q−
35
24

(
3 − 576q + non-polar terms

)
. (2.56)

A Pure D4 brane in this example is

αD6 =

(
1, 1,−23

12 ,
19
12

)
and αD̄6 =

(
−1, 0, 17

12, 0
)

give

αD4 = αD6 + αD̄6 =

(
0, 1,− 1

2,
19
12

)
. (2.57)

The Poincaré polynomial is

gref
(
D4, y

)
= y−2 + 1 + y2 . (2.58)

And the corresponding index is 3. Adding a D0 brane, yields

gref
(
D4 − D0, y

)
= −y−1 − y1 (2.59)

which gives a final index of 2 × −288 = −576. Clearly, all results exactly build the polar
terms under consideration in the examples.
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3 Discussion
In this chapter, we have identified all multi-center configurations (whose total charge
vectors violate the naive single-center cosmic censorship bound) that build the polar
sector of several elliptic genera of Calabi-Yau threefolds with maximal holonomy. It is
natural to expect that once one moves into the non-polar sector of the theory, when
total charge vectors no longer violate the cosmic-censorship bound, single center black
holes begin to contribute. Exactly what states these constitute is not fully known. Several
interesting suggestions have been made [136–139] in the literature. Nevertheless, large
charge single-center black hole entropy has not been easy to understand concretely, with
these suggestions.

With the prescriptionwe have proposed in this chapter, onemay now seek to push into
the non-polar sector of the elliptic genus to understand single-center black hole entropy.
Naively, the approach from split-flows proposed in [133, 139] might have been a good
starting point to push deep into the non-polar sector. As one increases charge, there is an
expectation that an increasing number of multi-center configurations must contribute
to the index. For instance, moving on from a D4-D0 charge vector to a D4-2D0 charge
vector, one expects two different contributions: one from a three center D6-D̄6-2D0
solution and another from a four center D6-D̄6-D0-D0 configuration. The authors of
[133, 139], however, argue for only a single flow. On the contrary, we saw explicitly in
(2.35) and (2.36) that both the expected configurations do indeed contribute to produce
the correct polar term. In extension, enumeration of all multi-center configurations
can systematically be done with the approach we present in this thesis. It may be
noted that a more general prescription might be needed to incorporate higher degree
rational curves to include more D2 charges with appropriately induced D0 charges. Nev-
ertheless, it is our hope that this enables for a better understanding of the non-polar sector.

Although we have refrained from stressing on them, there are several aspects of purely
mathematical interest that are very closely related to the study of BPS states mentioned
in this chapter. The elliptic genera we studied so far encode topological invariants of
the moduli space of the derived category of coherent sheaves on a Calabi-Yau threefold.
Some questions in this field related to this thesis are: What is the generating function for
the Euler numbers of the moduli space of stable sheaves (seen as objects in the derived
category of coherent sheaves where stability is usually thought to be Bridgeland stability
as in the Kontsevich-Soibelman setup) on a smooth three-dimensional quasi-projective
variety? What is the generating function for the Betti numbers for the same? Göttsche
has answered both these questions for sky-scraper sheaves on smooth two-dimensional
quasi-projective varieties [140]. In the mid-nineties, Cheah [141] managed to write a
generating function (theMcMahon function) for the Euler numbers of the moduli space
of stable sky-scraper sheaves on smooth three dimensional quasi-projective varieties.
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A refinement of Cheah’s result in the spirit of Göttsche is expected to be related to
single-center black hole entropies. While hoping for a general result might be far fetched
from the explicit multi-center prescription presented in this chapter, we speculate that it
may well prove to be very helpful in conjuring up and testing conjectures [136, 137] in
this regard.

Another branch of mathematical interest that is closely related is the study of Poin-
caré polynomials of quiver representation spaces. A Kähler manifold is endowed with
a natural Sl2 Lefschetz action on the cohomology. And the generating function of the
Euler numbers mentioned above captures this action because Euler numbers are, after all,
characterized by the cohomology. However, the refined generating function of the Betti
numbers exactly organizes BPS states into different representations of the Lefschetz ac-
tion. States invariant under this action have been conjectured to be special, in that they
are expected to capture single-center black hole entropy. With the results presented in
this chapter, one may identify the Lefschetz singlets in the low-lying non-polar terms to
test the conjecture of [136, 138] that Pure-Higgs states make up single-center indices in
all the above examples. The Poincaré polynomials studied in the mathematics literature
that encode these invariants are based on Reinike’s solution to the Harder-Narasimhan
recursion for quivers without oriented closed loops. However, the indices used in this
thesis, originally proposed in [134, 135], applies to those with or without closed loops. It
would be interesting to understand amathematical counterpart of the latter, as extensions
of Reinike’s results. On the other hand, one may seek to understand a pattern of growth
ofmulti-center entropies to compare against asymptotic behaviour of states under various
representations that has been predicted in [111].
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A Three-center D6-D̄6-D2D0 configurations in the
quintic

The allowed D2-D0 charges for a generic D6-D̄6-D2D0 three-center configuration to
have a non-vanishing index are collected in Table 8 below. None of these allowed values

q0 q
-4 None
-3 None
-2 None
-1 None
0 None
1 0
2 -1, 0
3 -2, -1, 0
4 -3, -2, -1, 0
5 -4, -3, -2, -1, 0
6 -5, -4, -3, -2, -1, 0
7 -6, -5, -4, -3, -2, -1, 0
8 -7, -6, -5, -4, -3, -2, -1, 0
9 -8, -7, -6, -5, -4, -3, -2, -1, 0
10 -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
11 -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
12 -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
13 -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
14 -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
15 -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
16 -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1
17 -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2
18 -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2
19 -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2

Table 8. Allowed values for q and q0.

satisfy regularity, proving the non-existence of the corresponding three-center solutions.



Part Two

The non-supersymmetric and
the dynamical
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Chapter III

Near-extremal black hole entropy

Entropy is a quantity that appears in the study of finite-temperature systems in statist-
ical physics. And yet, we found it easier to study it in supersymmetric configurations

which have vanishing temperature. No physical process can lead us to absolute zero tem-
perature, as thermodynamics has come to teach us. Therefore, it is imperative that we are
able to use the intuition gained from the study of supersymmetric black holes to study
those that have non-zero temperature. In fact, it was shown in several papers starting with
[104, 142–146] that the near-extremal generalization of the leading order entropy we saw
in (I.1.27) and (I.1.35) is given by

Snon-extremal = 2π
(√

cLnL

6 +

√
cRnR

6

)
, (0.1)

where the additional term arises from the right-moving excitations in the CFT. This
formula is valid (microscopically) only when nL � 1 and nR � 1. And on the black hole
front, the additional term may be seen as coming from the parameter of non-extremality
(which is either the temperature, T , or the distance, r0, between the inner and outer
horizons of the charged black hole). Since supersymmetry allowed us to leave the
right-moving sector in the ground state, excitations of it naturally imply a breaking of
supersymmetry. Finally, the momentum in the CFT (or equivalently the electric charge)
is given by q0 = nL − nR. The macroscopic analysis is valid only in the near-extremal limit
nL � nR.

Despite this simple generalization, true dynamics of the blackhole arise fromnon-trivial
interaction between the horizon and fundamental matter in the theory, which are not
captured by a mere identification of states. Therefore, we would like to study such non-
extremal black hole entropy in theories with light, charged matter in the spectrum of the
gravitational theory. And yet, wewould still like to have themicroscopic field theory tract-
able. Such instances are hard to come by and it is the aim of this chapter to take strides in
this direction. We will first illustrate how light, charged matter in the spectrum leads to
interesting dynamics and how powerful such considerations can be in teaching us about
the microscopic dynamics of black holes.

51
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1 An invitation to dynamics of a black hole
It is important to note that the black hole solutions whose near-extremal entropy is cap-
tured by (0.1) are physically different from those captured by (I.1.27). Despite the small
temperature or near-extremality, they are not to be seen as a perturbation from either the
supersymmetric or extremal black holes. Nevertheless, from (0.1), we see that there exists a
smooth limit to the supersymmetric entropy formula by taking nL � nR � 1. Ensuring
a fixed nR � 1, considering larger and larger nL takes us closer and closer to the super-
symmetric case. The strict BPS entropy is achieved by a ground state on the right moving
sector. But it is no small perturbation to jump from a ground state to a large ensemble of
states in the right moving sector. However, the only way to approach an extremal black
hole (to arbitrary proximity), starting from a near extremal one, is by considering a large
ensemble of states in the rightmoving sector and taking an even larger ensemble on the left
moving sector. Therefore, one is not a ‘small perturbation’ of the other, by any measure.
Another, perhaps more straight forward, way to see this is by recalling that a supersym-
metric black hole has an infinitely long throat in the geometry, while a near extremal hole
has a finite throat. Nomatter how close one is to the supersymmetric limit, a near extremal
throat is infinitely smaller than the supersymmetric one. Therefore, it could not possibly
be a perturbation. Therefore, to understanddynamics of a black holewith chargedmatter,
it is imperative that we pick a black hole that is arbitrarily close to extremality and consider
how its entropy changes upon, say, throwing a particle into it.

Constraints in a Reissner-Nordström background

To get a flavour for the nature of microscopic features we might hope to learn via such
dynamics, for simplicity, let us start with a Reissner-Nordström black hole as was done in
[147]. The temperature of such a black hole is given by1

T =
√
f

4πM
(
1 − Q2

2M 2 +
√
f
) , (1.1)

where f = 1 − Q2

M 2 . Q is the charge of the black hole while M is its mass. The change in
temperature, if the mass and charge of the black hole change by δM and δQ , respectively,
is then

δT u
1

2πM 2 f −
1
2

(
δM − Q

M
δQ

)
. (1.2)

Here, we have assumed that the changes are small compared to the mass and charge of the
black hole, such that the original background is still a good approximation. Barring any
exotic features, we expect the temperature of the near extremal black hole to monotically
1See, for instance, equation (1) of [147].
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decrease in the approach to extremality as particles of opposite charge are absorbed. There-
fore, in the process of moving out of extremality, we expect that δTT is positive. Therefore,
we see that δQ − δM > 0 if we pick a black hole with M > 0 andQ > 0. Now, consider

δT
T
=

2
(
1 − Q2

2M 2 +
√
f
) (
q Q
M −m

)
M f

, (1.3)

where δQ = −q with q > 0 and δM = −m withm > 0. The reason for such a considera-
tion is the following. Due to vacuum polarization in the presence of a strong electric field
at the horizon, we expect the oppositely charged particles (of those that are pair created,
say,) to fall into the black hole while the like-charged ones to fly off to infinity. Since the
mass of the black hole is measured at infinity, we also expect the mass of the black hole to
reduce by the mass of the particle that is detected at infinity. Therefore, upon pair pro-
duction of a particle of mass m and charge q, the mass and charge of the black hole are
expected to change to (M − m) and (Q − q), respectively. Since the pair created particle
does not have a horizon of its own, we have q > m which implies that (M −m) > (Q − q).
For a statistical interpretation of the black hole to be reasonable, we would like to demand
that δTT � 1. This means,

q
Q
M
−m �

M f

2
(
1 − Q2

2M 2 +
√
f
) . (1.4)

We can rewrite this as

q
Q
M
−m �

M f(
1 + 2

√
f + f

) = M f
(
1 +

√
f
)−2
∼ M f

(
1 − 2

√
f
)
.

For a large black hole that is very close to extremality, this relation approximately reduces
to

q
Q
M
−m � M f = M

(
1 − Q2

M 2

)
. (1.5)

Let us now define a quantity that naively measures the ‘extent of non-extremality’ as E B
M − Q . This measures non-extremality since extremal black holes satisfy M = Q . This
definition of E implies

E
M
= 1 − Q

M
.

Therefore, in terms of E , the inequality (1.5) can be rewritten as

q
(
1 − E

M

)
−m � M

(
1 +

Q
M

) (
1 − Q

M

)
= E

(
2 − E

M

)
,
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which can now be simplified to

q −m − q
E
M
� 2E , (1.6)

where we have again used the fact that the black hole under consideration is very close to
extremality, enabling us to drop terms such as E2

M , for small E . We can now rewrite the
above inequality as

q −m � E
(
2 +

q
M

)
. (1.7)

Noticing that M � q , we finally obtain the following constraint:

E � 1
2
(
q −m

)
> 0. (1.8)

This imposes a rather severe constraint. Given that we have picked a black hole that is
arbitrarily close to extremality, we know that E � 1. Therefore, a fulfilling of the above
inequality and the validity of a statistical interpretation of near-extremal black holes are
at obvious odds with each other. The above derivation can be seen as a rephrasing of the
essence of [147]. However, for the black hole of our interest, we will see that string theory
allows for a large ensemble of states that allow for a convenient relaxation of the above
inequality while still allowing for the black hole to be arbitrarily near extremality. From
a stringy point of view, we have already seen this possibility in the form of the inequality
nL � nR � 1, where we see that the degree of extremality can still be very small provided
nL � nR while still exciting a large ensemble of states via nR � 1.

In the rest of this chapter, we will set up a near-extremal black hole arising from
threefold compactificationswhile still aiming to keep themicroscopic picture of theMSW-
CFT under control.

2 Rholography and gauged supergravity
As we saw in Part One of this thesis, among the successes of string (M-) theory, the
interpretation of black hole entropy as resulting from microscopic degrees of freedom of
D-branes (M-branes) stands out. The black hole solutions described in [19, 20] can be
uplifted to black strings in one higher dimension, where the near-horizon limit contains
an AdS3 factor in the supersymmetric case, or a BTZ-factor for near-extremal black holes.
One can then use the Cardy formula for the dual conformal field theories, which are
based on (0, 4) [20] and (4, 4) [19] superconformal field theories in two dimensions. In
the near-extremal case, one makes use of the correspondence between BTZ geometries
and thermal conformal field theories, which does not rely on any supersymmetry [146].
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Among the plethora of asymptotically flat black holes whose microscopics have
been studied, there have been none in gauged supergravity, in which there is light
charged matter in the supergravity spectrum. Such a situation would be needed to
study absorption and reflection coefficients of charged matter by the black hole, or to
compute black hole discharge through Schwinger processes. In this chapter, we will
not go as far as this, but we present a construction of a class of black hole solutions
in gauged supergravity with flat Minkowski vacua. In other words, we present a
framework in which these processes could be studied. Microscopically, we find that
they are described by N = 4 superconformal systems ((0, 4) or (4, 4)) with twisted
boundary conditions, characterized by a parameter, called ρ in the original work of
Schwimmer and Seiberg [148]. The twist involves the outer automorphism group of
the superconformal algebra, and the corresponding ρ-algebra is inequivalent to the
usual NS and R-sectors and its spectral flow [148]. To the best of our knowledge,
this ρ-algebra has never found an interesting application, but in this chapter we show
that it governs themicroscopics of asymptotically flat black holes in gauged supergravities.

Wewill first concern ourselves withM-theory on a compact Calabi-Yau threefold (CY3,
henceforth). This results in five-dimensionalN = 2 supergravity coupled to vector- and
hypermultiplets. The low-energy limit of the M5-brane put on a compact divisor in the
CY3 is a black string solution to the said supergravity theory. A further compactification
of this black string along an S 1 is a black hole solution of a four-dimensional N = 2
supergravity theory. As was shown in [20], the macroscopic entropy of such a BPS black
hole is microscopically realized as a set of microstates within the conformal field theory
living on the worldsheet of the M5-string. This theory has been called the MSW-CFT
in the literature; it is a (0,4) superconformal field theory (SCFT) in 2 dimensions. The
M5-string worldsheet effective action has been studied in detail, in [149] for instance.

While wewill still persist with five-dimensional ungauged supergravity theory resulting
from compactifications of M-theory, we wish now to consider a more general Scherk-
Schwarz reduction along the additional S 1 to arrive at a four-dimensional theory. Such
a consideration is not new. In [150, 151], it was shown that imposing Scherk-Schwarz
twisted boundary conditions results in gauged supergravities theory in four dimensions
with positive definite scalar potentials with Minkowski vacua. Our strategy will be to
find a Scherk-Schwarz twist and the corresponding gauging that preserves the black hole
solutions from the untwisted case. As we will show, such a twist can be done by using
the R-symmetry group. R-symmetry in supergravity is in general not a symmetry of
the action, but classically - ignoring quantum corrections - it often is. We can say it is
an approximate symmetry, valid in the classical supergravity regime, and use it in the
Scherk-Schwarz twist. Since the theory is now gauged, the spectrum is non-trivial and
there are light, R-charged particles in it. Owing to the fact that the circle on which we
Scherk-Schwarz reduce is exactly the spatial circle of the M5-string, boundary conditions
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can consistently be imposed in the microscopics to match the macroscopic supergravity
setup. In essence, a twisted generalization of the MSW-CFT results. The interplay
between R-symmetry, the ρ-twist and the use of holography motivates us to name our
construction “R-Holography", “ρ-lography", or simply “Rholography".

In Section 3, we review the ρ-algebras of [148] and show how the boundary conditions
are implemented in the bulk on the gravitini living in AdS3. Moreover, we will study the
implications of the ρ-twist for the ground state energy of the right moving sector of the
MSW-CFT. This will allow us to determine the entropy of the field theory in a thermal
state, as a function of ρ, using Cardy’s celebrated formula.

Further on, in Section 4, we will identify the appropriate Scherk-Schwarz twist in
the five-dimensional supergravity theory that corresponds to the microscopic ρ-twist
and carry out the reduction to four dimensions. As we will show, the relevant twist
uses the R-symmetry that acts on the supersymmetry generators of the five-dimensional
N = 2 supergravity theory. After identifying a flat Minkowski vacuum we compute
the supergravity spectrum and we construct a non-extremal black hole in the gauged
four-dimensional theory. Uplifting this black hole to five dimensions allows us to define a
consistent near-horizon limit in which we realize a thermal BTZ geometry; but now with
a ρ-twisted angular coordinate. To leading order, its entropy matches the Cardy formula
of the dual ρ-twisted MSW-CFT. Phrased differently, we conjecture that the ρ-twisted
MSW-CFT is dual to M-theory on2 AdS ρ3 × S2 × CY3. The superscript on the AdS3
merely refers to the twisted boundary conditions along the angular coordinate in AdS3.

Finally, we present a different example in Section 5 based on the D1-D5 system in type
IIB on K3 × S 1, which is of equal interest as the MSW setup. The line of thought is
exactly the same as in the MSW system, except that the R-symmetry is now larger, i.e.
SO(5)R instead of SU (2)R. Furthermore, the CFT is (4, 4) instead of (0, 4) allowing for
ρ-twists on either of the chiral sectors.

As is evident through this introduction, we will consistently lay emphasis on the two
punchlines of this work. One is the microscopic description of a large class of asymptot-
ically flat black holes in R-gauged supergravities. The other is the microscopic realization
of the ρ-algebras and their conjectured bulk duals.

2Scherk-Schwarz reductions often break supersymmetry spontaneously [152], and the vacuum might be
unstable. To deal with this properly, one has to actually start with a T 6 instead of a CY3, so that par-
tial supersymmetry can be preserved. This effect is however not relevant for the present leading order
calculations.
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3 Rholography
The M5-brane breaks half of the supersymmetry available in M-theory. It carries a chiral
(0, 2) SCFT in six dimensions. The Lorentz group breaks to Spin(1, 5)with an additional
USp(4)R-symmetry owing to the transverse directions. Its world volume theory consists
of 5 scalars X {= X a, a = 1, ..., 5} (corresponding to the transverse directions of the
brane), four six-dimensional Weyl spinors ψ {= ψi, i = 1, ..., 4} that obey a symplectic
reality condition and an anti-symmetric two form B2 whose field strength is self-dual.
ConsideringM-theory on aCY3 background andplacing theM5-brane on a holomorphic
compact divisor inside the threefold reduces the symmetry of the world-volume theory.
The USp(4) ' SO(5) breaks to a Spin(3) × Spin(2) symmetry—the Spin(3) comes
from the position of the brane in non-compact space while the Spin(2) is owed to the
position of the brane in the CY3. Furthermore, the six dimensional local Lorentz group
breaks to Spin(1, 1) × Spin(4), and reduces to a Spin(1, 1) × SU (2) ×U (1) symmetry on
the M5-string worldsheet [109]. We may now gauge fix the world-sheet coordinates to
align with the target space coordinates to realize the Spin(1, 1) Lorentz symmetry on the
world-sheet. This is the MSW-CFT and its world-sheet field content can be obtained
from the reduction of the M5-brane world-volume fields [149]. In this chapter, we
will entirely focus our attention on two symmetries of this field theory—the Spin(3)
that manifests itself as a local SU (2) Kac-Moody algebra in the field theory, and the
global SU (2) flavor symmetry. The latter is actually only a symmetry of the algebra, and
not necessarily of the CFT. It is the outer automorphism group of the superconformal
algebra. It may happen that for large value of the central charge, the outer automorphism
group may actually become a symmetry. In the dual bulk, this is the classical supergravity
regime. We get back to this point later. Since all the supersymmetry generators are in the
right moving sector of the CFT, we can study this N = 4 superconformal algebra in its
own right. For notational ease, we will call the Kac-Moody gauge group SU (2)η and the
outer automorphism group SU (2)ρ . Together, they form the total automorphism group
SO(4) of the small N = 4 superconformal algebra [148].

It is worth understanding the presence of these symmetries in the different theories
of interest. From the black string perspective, the SU (2)η local gauge symmetry is
realized as the spherical symmetry of the horizon. It sits inside the Lorentz group of the
five-dimensional supergravity theory and similarly, it is also the rotational symmetry goup
of a spherical black hole in the four-dimensional supergravity theory. The outer auto-
morphism group, also called the global SU (2)ρ flavor symmetry when it is a symmetry,
however, has roots in the CY3. As we discuss in Section 4, it is the SU (2) R-symmetry
of five-dimensional N = 2 supergravity acting on the supersymmetry generators. Upon
compactifying on a circle, we will perform the Scherk-Schwarz twist with respect to a
U (1) subgroup of this SU (2) R-symmetry. As we will show, in the supergravity regime,
this subgroup is actually a symmetry of the action. In the N = 4 CFT, as has been studied
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in [148], a twisting of the Abelian subgroup of the local SU (2)η is just a gauge symmetry;
it can be undone by spectral flow. However, a twisting of the Abelian subgroup of the
global SU (2)ρ symmetry results in an infinite family of (0, 4) algebras parametrized by
the twisting parameter ρ. It cannot be undone because theU (1)ρ ⊂ SU (2)ρ is only an
approximate symmetry, in much the same way as the bonus symmetry discussed in [153].
Hence there is no current algebra associated to it, and hence no spectral flow. The twist
is ‘felt’ by all the fields in the CFT that transform non-trivially under the SU (2)ρ . This
includes, in particular, the supercharges that transform under a doublet representation.
Since the twist is under an Abelian subgroup of the R-symmetry, the corresponding
five-dimensional supergravity theory realizes it as a specific Scherk-Schwarz reduction
on the circle; one that corresponds to an R-gauging in four dimensions. This is a U (1)
gauged supergravity theory in four dimensions, and it already indicates that the twist
parameter ρ must be related to the U (1) gauge coupling constant. Much like in the
un-twisted case, the twisted CFT counts the microstates associated to a black hole in this
gauged supergravity theory.

We will now make the discussion more concrete, by first presenting the small N = 4
superconformal algebra with ρ-twist in Section 3.1, and the structure of the holographic
dual in Section 3.2.

3.1 Small N = 4 superconformal algebra with ρ-twist

We will call the Virasoro generators Lm (and their corresponding stress tensor L(z)), the
Kac-Moody generators T i (with i = 1, 2, 3) and the four supercharges G aA (with a =
1, 2 and A = ±). Here, i is an SU (2)η triplet index, a an SU (2)η doublet index and A
an SU (2)ρ doublet index. The Operator Product Expansions (OPEs) can be determined
from [148, 154, 155]. Dropping the regular terms when z → w , they are

L(z)L(w) = ∂wL(w)
z − w +

2L(w)
(z − w)2

+

1
2 cR
(z − w)4

,

G a±(z)Gb∓(w) = δ ab

(
2L(w)
z − w +

2
3 cR
(z − w)3

)
+ (σi)ab

(
2 ∂wT i(w)

z − w +
4i T i(w)
(z − w)2

)
,

T i(z)T j (w) = i
εi jk T k(w)

z − w +

1
12 cR δ i j

(z − w)2
, (3.1)

L(z)G a±(w) = ∂wG a±(w)
z − w +

3
2G

a±(w)
(z − w)2

,
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L(z)T i(w) = ∂wT i(w)
z − w +

T i(w)
(z − w)2

,

T i(z)G a+(w) =
1
2G

b+(w)
(
σi

)
b
a

z − w ,

T i(z)G a−(w) = −
1
2

(
σi

) a
bGb−(w)

z − w ,

where (σi)ab are the Pauli matrices.

As shown in [148, 154], the total automorphism group of these OPEs (and the algebra
generated by them) is SO(4) = SU (2)η × SU (2)ρ . The inner outomorphism group is
SU (2)η and corresponds to the current algebra while the outer automorphism group is
the global SU (2)ρ . Twists under the Abelian subgroups of the two SU (2) groups are
generated by [148, 154] –

G1±(ze2πi) = e∓iπ(ρ+η) G1±(z) ,
G2±(ze2πi) = e∓iπ(ρ−η) G2±(z) ,
T ±(ze2πi) = e±2πiη T ±(z) , (3.2)

where T ± = T 1 ± iT 2, while T 3(z) and L(z) are left to be periodic. The resulting mode
expansion for the supercharges is, therefore,

G1±(z) =
∑
m∈Z

G1±
m± ρ+η

2 +
1
2
z−m∓

ρ+η
2 −2 ,

G2±(z) =
∑
m∈Z

G2±
m± ρ−η

2 +
1
2
z−m∓

ρ−η
2 −2 . (3.3)

The usual NS and R sectors have ρ = 0, with η = 0 and η = 1 respectively. These
result in half-integer (η = 0) and integer (η = 1) modes for the supercharges, respectively.
For ρ , 0, one gets inequivalent algebras. In this chapter, we will exclusively work with
non-zero ρ.

Any particular mode can be extracted out of this Laurent series by an appropriate
Cauchy integral as

G1±
m± ρ+η

2 +
1
2
=

1
2πi

∫
dz zm±

ρ+η
2 +1 G1±(z) ,

G2±
m± ρ−η

2 +
1
2
=

1
2πi

∫
dz zm±

ρ−η
2 +1 G2±(z) . (3.4)
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The anti-commutation relations for the supercharges can now be calculated from this
mode expansion and the OPE in (3.1), using Cauchy’s theorem. The result is:3{

G1+
m+ ρ+η

2 +
1
2
, G1−

n− ρ+η
2 −

1
2

}
= 2 Lm+n + 2(m − n + 1 + (ρ + η))T 3

m+n

+
cR
12

[
(2m + 1 + (ρ + η))2 − 1

]
δm+n,0 . (3.5)

{
G2+

m+ ρ−η
2 +

1
2
, G2−

n− ρ−η
2 −

1
2

}
= 2 Lm+n − 2(m − n + 1 + (ρ − η))T 3

m+n

+
cR
12

[
(2m + 1 + (ρ − η))2 − 1

]
δm+n,0 . (3.6)

We know that the η twist is a gauge redundancy and therefore causes spectral flow. Any
physical quantitymust be independent of η . The gauge independent, spectral flow invari-
ant quantities do not depend on η and are defined by the relations [148]

Ln(ρ, η) = Ln(ρ) − η T 3
n (ρ) + η2 cR

12 δn,0

T 3
n (ρ, η) = T 3

n (ρ) − η
cR
6 δn,0 (3.7)

T ±n±η (ρ, η) = T ±n (ρ) ,

for the bosonic operators, and

G1±
n± ρ+η

2 +
1
2
(ρ, η) = G1±

n± ρ
2 +

1
2
(ρ) and G2±

n± ρ−η
2 +

1
2
(ρ, η) = G2±

n± ρ
2 +

1
2
(ρ) , (3.8)

for the modes of the supercharges. Therefore, we see that one way to arrive at the gauge
independent quantities from the gauge dependent one, is by setting η = 0—this is what
we do in the following. The parameter ρ takes values 0 ≤ ρ ≤ 2, but without loss of
generality we can restrict 0 ≤ ρ ≤ 1 as follows from the periodicity conditions.

From the algebra, we can now derive the unitarity constraints on a highest weight state
labelled by the eigenvalues (ℎ, l ) of L0 andT 3

0 respectively. This analysis was done in [154],
and we state the result here:

l <
cR
12 , ℎ ≥ (1 − ρ) l + cR

12 ρ (1 − ρ

2 ) ,

3In this relation, instead ofG1−
n− ρ+η

2 +
1
2
, note that we have used a shiftedmodeG1−

n− ρ+η
2 −

1
2
such that the latter

is the complex conjugate of the generator G1+
m+ ρ+η

2 +
1
2
, with m = −n. This merely shifts the Laurent

expansion appropriately.
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l =
cR
12 , ℎ =

cR
12 (1 −

ρ2

2 ) . (3.9)

Sincewe are interested in black holeswith zero angularmomentum,wemust take l = 0.
The ground state energy then is

ℎ0 =
cR
6

(
ρ

2 −
ρ2

4

)
,

(
L0 − ℎ0

)
|0〉 = 0 . (3.10)

Acting with raising operators in the algebra on this vacuum state, one obtains repres-
entationswith integer shifts from this ground state. Therefore, a generic state in this sector
has a conformal dimension4 nR = NR + ℎ0. Therefore, the entropy of the field theory in
an excited state with conformal dimensions nL and nR in the Cardy regime is given by

SC FT = 2π
(√

cL
6 nL +

√
cR
6 nR

)
= 2π©­«

√
cL
6 nL +

√
cR
6

(
NR +

cR
6

(
ρ

2 −
ρ2

4

))ª®¬. (3.11)

We shall see that this matches with the expectation from the bulk theory, in Section 4,
where the momentum along the string is identified with the electric charge of the black
hole. Since the field theory is that of anM5-string, themomentum along the string can be
calculated to be

L0 − L̄0 = nL − nR

= nL −
(
NR +

cR
6

(
ρ

2 −
ρ2

4

))
. (3.12)

This momentum is no longer integer-quantized—it is shifted by the ground state energy
ℎ0. It is worth noticing that the ground state energy vanishes for ρ = 2, but this value
is equivalent to ρ = 0 as one can see from (3.10). The maximum value arises for ρ = 1,
namely ℎ0 = c/24. This is precisely the same shift for the ground state energy between
the Ramond and Neveu-Schwarz sector. This is not surprising, since η = 0 and ρ = 1 is
equivalent to the Ramond sector which has η = 1 and ρ = 0.

3.2 AdS ρ3 × S
2 bulk duals

The twisting of the supercharges in the small N = 4 superconformal algebra raises the
questionofwhat the correspondingoperation is in thedual bulk theory that lives onAdS3.
4Here, nL and NR are integers while ℎ0 is a continuous parameter in the space of algebras defined by ρ.
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A systematic study of the asymptotic dynamics and symmetries of three-dimensional
extended supergravity on AdS3 was made in [156] in the Chern-Simons formulation.
The AdS3 superalgebra that corresponds to the small N = 4 superconformal algebra is
SU (1, 1|2)/U (1) and contains an "inner" SU (2) symmetry that is dual to the SU (2)η cur-
rent algebra. Furthermore, itwas shown that the twisting of the SU (2)ρ outer automorph-
ism group corresponds to twisting the periodicity conditions on the gravitini. Indeed,
AdS3 has the topology of a disc times a real line, with coordinates (r , θ) and t , and the
supergravity fields in three dimensions must be given periodicity conditions in θ in such
a way that the supergravity Lagrangian remains invariant (see Section 6 in [156]). In our
notation, following (3.2) for η = 0, and suppressing the coordinates r and t , this means,

ψa±
µ (θ + 2π) = e∓iπ ρψa±

µ (θ) . (3.13)

The three-dimensional gravitini are in general denoted by ψaA
µ , where the superscripts

denote the representation of the R-symmetry in three dimensions. In general, the R-
symmetry inN = 4,D = 3 is SO(4)R, butR-symmetry in supergravity is not always a sym-
metry of the Lagrangian, only of the superalgebra. However, as mentioned in the Intro-
duction and the beginning of this section, our three-dimensional supergravity comes from
N = 2 in five dimensions, where the R-symmetry is only SU (2)R. The five-dimensional
theory is defined on AdS3 × S2, and after reducing to three dimensions, the R-symmetry
enlarges to

D = 5 : SU (2)R ⇒ D = 3 : SO(4)R = SU (2)ρ × SU (2)η . (3.14)

Here, the SU (2)η is now a symmetry and it is gauged, with SU (2)η Chern-Simons
gauge fields that are dual to the current algebra in the small N = 4 superconformal
algebra. The SU (2)ρ is the SU (2)R from five dimensions. It corresponds to the outer
automorphism group in the dual CFT. Both these groups (SU (2)ρ and SU (2)R) are outer
automorphisms and are in general not symmetries of the Lagrangian. It is now clear that
the index a = 1, 2 denotes the two-dimensional representation of SU (2)η and A = 1, 2 (or
in complexified notation A = +,−) the one of SU (2)ρ . Hence, on the one hand, twisting
the periodicity conditions with a U (1) ⊂ SU (2)ρ implies twisting a U (1) ⊂ SU (2)R in
five dimensions. On the other hand, twisting the periodicity conditions on the gravitini
with aU (1) ⊂ SU (2)η can be undone by a gauge transformation or field redefintition in
the bulk. In the boundary CFT, this corresponds to spectral flow in the current algebra.

While the analysis in [156] was done for pure Chern-Simons supergravity, we assume
here that it can be extended to include alsomatter multiplets and that our reduction from
five dimensions can be recasted in this language. This would mean that all fields in five
dimensions that have R-charge, will be subject to boundary conditions similar to (3.13).
For hypermultiplets, we discuss this in the next section.
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Piecing all the above together, we may now conjecture that M-theory on
AdS ρ3 × S2 × CY3 is dual to the ρ twisted MSW-CFT, which we denote by (0, 4)ρ
CFT. By AdS ρ3 , we mean AdS3 with ρ-twisted boundary conditions along the angular
coordinate in AdS3. This is what we call “Rholography". Consequently, the (0, 4)ρ
theory in an excited state at finite temperature—as considered above—accounts for the
entropy of a macroscopic excited state above the AdS ρ3 vacuum. In Section 4, we will
show that this excited macroscopic state is precisely a massive, non-extremal BTZρ black
hole, as one might expect; of course, this BTZρ geometry will also be one with a twisted
angular direction. As we will show, in turn, this BTZρ geometry appears in the uplift of
the four-dimensional black hole using the Scherk-Schwarz mechanism.

In closing, let us note that the discussion in this section is rooted in a chiral N = 4 SCA
in two dimensions; therefore, its scope is certainly not limited to just the (0, 4)MSWCFT.
Let us consider, for instance, the D1-D5 CFT of Strominger and Vafa. It is a (4, 4) theory.
1
2 -BPS states in this theory correspond to space-time

1
4 -BPS states. Such

1
2 -BPS states are

counted by keeping one of the chiral sectors in the vacuum (using supersymmetry), while
exciting the other chiral sector. As was shown in [19], such a count precisely matches
the macroscopic entropy of 1

4 -BPS black holes in five-dimensional N = 4 supergravity
obtained from a Type IIB compactification on a Calabi-Yau twofold times a circle. As
was later pointed out in [143], exciting both chiral sectors of this two dimensional (4, 4)
theory counts microstates of near-extremal black holes.

The reasoning behind rholography works very similarly as for the case discussed be-
fore. Compactifications of type IIB on K3 yield six-dimensional chiral (0, 2) supergravity.
The R-symmetry is SO(5)R ' USp(4)R ' Sp(2)R. We then reduce on six-dimensional
backgrounds of the type AdS3 × S3, and in three dimensions with sixteen supercharges,
the R-symmetry is in general SO(8)R. The R-symmetry is in general not a symmetry, but
since we reduced on S3, an SO(4) subgroup is a symmetry and is gauged. The analogous
(to (3.14)) decomposition of the total R-symmetry group is now

D = 6 : SO(5)R ⇒ D = 3 : SO(8)R → SO(4)ρ × SO(4)η . (3.15)

The SO(4)η is a gauge symmetry and produces two sets of SU (2) current algebras that
are present in the left and right-moving sectors of the dual CFT. The SO(4)ρ further
decomposes in two outer automorphism groups of the left and right-moving sectors,
and each can be used to give twisted boundary conditions with parameters, say ρL and
ρR. As we will argue in Section 5, twisting both sectors would spontaneously break
all the supersymmetry of the vacuum in the macroscopic five-dimensional supergravity
theory. But the qualitatively new feature arising from considering the (ρL = 0, ρR , 0)
D1-D5 system is that the vacuum in the corresponding supergravity theory still breaks
supersymmetry spontaneously; but this time, only partially so. Clearly, this results in
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exactly the same formula (3.11) for the microscopic entropy.

While we will move on to the macroscopic discussion corresponding to theMSWCFT
in the next section, we will comment on the microscopic counterpart of the D1-D5 CFT
in Section 5.

4 Black holes from M-theory and Scherk-Schwarz
reductions

The four-dimensional black holes we wish to describe in this chapter arise fromM-theory
compactifications on CY3 × S 1. Their microscopic entropy is governed by the MSW
(0,4) CFT, and the M5-string is compactified on the S 1. As explained in the introduc-
tion, we extend the discussion here by imposing a non-trivial Scherk-Schwarz twist
along the S 1. The twist group element is chosen to be in the U (1)R subgroup of the
SU (2)R R-symmetry in the five-dimensional supergravity theory. Hence, it acts on the
five-dimensional supercharges that transform as a doublet. This way, as we review in the
subsection to follow, we generate gauged supergravity in four dimensions with a positive
definite scalar potential with a Minkowski vacuum. In the example of this section, the
vacuum spontaneously breaks supersymmetry fromN = 2 toN = 0. In our analysis, in
this section, we will ignore radiative quantum corrections to the potential and possible
worries about instabilities of the vacuum5. The supersymmetry breaking scale will be
proportional to the twist parameter that plays the role of the gauge coupling constant in
gauged supergravity. We assume it to be very small, such that quantum corrections are
suppressed. Furthermore, we assume the S 1 radius R to be much larger than the length
scale of the CY3, i.e. R6 � V olCY3 � l 6

11, where l11 is the eleven-dimensional Planck
length. In this regime, the supergravity approximation is valid. All particles that carry
R-charge in five dimensions (gravitinos, gaugini, and the hypermultiplets) will become
massive in four dimensions, with masses set by the supersymmetry breaking scale—so
they will be light. The black holes that we wish to construct are therefore solutions of
four-dimensional gauged supergravity, and our set-up allows us to study them in the
presence of light charged matter. Since supersymmetry is broken, the only sensible thing
to do is to construct non-extremal solutions, though our microscopic matching only
works in the near-extremal limit. The uplift of this solution to five dimension is a black

5There exist Scherk-Schwarz reductions withR-symmetry twists with supersymmetry preserving vacua, as
wediscuss in thenext section. The readerwho is veryworried about radiative corrections and instabilities
of the supersymmetry breaking vacuum mentioned above, might find the example of the next section
more appealing. There, (half of the) supersymmetry in the vacuum is preserved and calculations are
under better control. Alternatively, one might start with M-theory on aT 6 instead of aCY3, such that
partial supersymmetry can remain after the Scherk-Schwarz twist.
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string with twisted boundary conditions, and a near horizon geometry that contains a
BTZ factor in the near-extremal limit. This near horizon geometry has a holographic dual
which is governed by a CFT with a ρ-algebra of symmetries as in Section 2, at finite (and
small) temperature.

For practical purposes, we choose a CY3 with small Hodge numbers, ℎ1,1 = ℎ1,2 = 1.
Such Calabi-Yau manifolds were constructed in [157]. As a consequence, the low energy
effective action is five-dimensional supergravity coupled to two hypermultiplets and
without any vector multiplets. The Scherk-Schwarz reduction to four dimensions can in
this example be carried out in great detail. Nevertheless, we expect our conclusions to hold
more generally, for any CY3, and as a result for more general hypermultiplet couplings.
We therefore start Section 4.1 with some general statements about Scherk-Schwarz
reductions in supergravity, and then specify our model in more detail. In Section 4.2, we
discuss black hole solutions while in Section 4.3, we uplift them to five dimensions and
argue for a match of their macroscopic entropy with the Cardy-formula (3.11).

4.1 R-Symmetry and Scherk-Schwarz reduction

A generic compactification ofM-theory on aCY3 yields an effective five-dimensional the-
ory ofN = 2 supergravity coupled to ℎ1,1−1 vectormultiplets and ℎ1,2+1 hypermultiplets
[158]. Further compactification on a circle S 1 gives an additional Kaluza-Klein vectormul-
tiplet (so ℎ1,1 in total) and the same number of hypermultiplets as in five dimensions. The
effect of doing a Scherk-Schwarz twist on S 1 is to yield four-dimensional gauged N = 2
supergravity with a gauge groupU (1). Our setup follows the treatment and the analysis
of [150, 151], and we use the conventions of [151]. The five-dimensional metric is decom-
posed as

ds2
(5) = R−1ds2

(4) + R2(dz + A0)2 , (4.1)

where z ∼ z + 2π is the coordinate along the circle, and R denotes the radius of the circle
above a base point x . All length scales are measured in terms of the eleven-dimensional
Planck units. Finally, A0 is the Kaluza-Klein vector that we also call the four-dimensional
graviphoton. Five-dimensional gauge fields decompose as6

AI
(5) = AI

(4) + aI (dz − A0) , (4.2)

6For a supergravity theory obtained as a compactification ofM-theory on aCY3 withHodge numbers ℎ1,1
and ℎ1,2, the indices in (4.11) are Λ,Σ ∈ {0, 1, ...nv } and I , J ∈ {1, ...nv }, with nv the number of vector
multiplets, and u, v ∈ {1, ..., 4nℎ}, with nℎ = ℎ1,2+1 the number of hypermultiplets. In five dimensions,
we have nv = ℎ1,1 − 1 and in four dimensions, we have nv = ℎ1,1. The number of hypermultiplets stays
the same in five and four dimensions.
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with aI four-dimensional scalars. They combine into complex scalars with the real scalars
ℎ I of the five-dimensional vector multiplet

t I = aI − iR ℎ I . (4.3)

All these fields have zero SU (2)R R-charge in five dimensions, so they reduce to four di-
mensions just like in a Kaluza-Klein reduction. Their zero modes are massless. The non-
trivial Scherk-Schwarz twist here is performed only on those quantities that transform un-
der the R-symmetry. These include the supercharges, hence the fermions, and the hyper-
multiplet scalars. These fields get a non-trivial z-dependence, different from a Kaluza-
Klein expansion of a periodic field. As a consequence, what used to be the massless zero
modes in a Kaluza-Klein scheme, now become massive modes, with masses proportional
to the twist parameter. These modes are taken to be very light compared to the higher
Kaluza-Kleinmodes. This can be achieved by taking the twist parameter to be small. To be
more concrete, we can define the Scherk-Schwarz twist on the superchargesQA; A = 1, 2,
which form a doublet under SU (2)R, as

QA(x µ, z + 2π) =
(
e2iπασ3

)A
B QB (x µ, z) , (4.4)

for a Scherk-Schwarz phase α belonging to theU (1)R ⊂ SU (2)R, and with σ3 being the
third Pauli matrix. A similar transformation holds for the gravitini ψA

µ and for the gaugini
λAI . Comparing with the twist on the worldsheet supercharges in (3.2) with η = 0, we
identify

α =
ρ

2 . (4.5)

The justification for this was given before, namely that we identify the bulk SU (2)R
symmetry with the worldsheet SU (2)ρ outer automorphism group. This is because the
S 1 we twist on, is the same as the S 1 we wrap the M5-string around. Similarly, the S 1 we
twist on is the same S 1 that becomes part of the AdS3 in the near horizon geometry of the
black string. In essence, the coordinate z is equal to θ used in (3.13). So the periodicity
conditions we used on the supercharges (4.4) and gravitini are also the same as in (3.13).

Any (complex) fieldΦ(x, z)with twisted periodicity conditions has a mode expansion

Φ(x, z) = e iαz
+∞∑

n=−∞
Φn(x)e inz . (4.6)

In a Scherk-Schwarz reduction, we restrict to the n = 0 mode in the expansion. In other
words, we give the five-dimensional field a particular z-dependence that satisfies

Φ(x, z) = e iαzΦ0(x) =⇒ ∂zΦ = iαΦ . (4.7)
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The effect of this is that the four-dimensional field becomes both charged and massive,
withm2 = q2 in the appropriate units. Themasses will be proportional to α and inversely
proportional to the radius R, andwe give an explicit example at the end of this subsection.
Applied to the case at hand, we get

∂zQA = iασ A
3 BQ

B , ∂zψ
A
µ = iασ A

3 Bψ
B
µ , ∂zλ

AI = iασ A
3 Bλ

BI . (4.8)

These fermionic fields transform with the same Scherk-Schwarz phase, because they are
in the same (doublet) representation of the SU (2)R symmetry.

In the hypermultiplet sector, both scalars and fermions transformunder this twist. The
scalars parametrize a quaternion-Kählermanifold of dimension 4nℎ , withmetric ℎuv , and
the holonomy group is contained in SU (2)R × USp(2nℎ). For a given hypermultiplet
scalar manifold which is a coset of the formG/H , the maximal compact subgroup always
contains an SU (2)R factor. So, homogeneous quaternion-Kähler manifolds always con-
tain SU (2)R isometries, and hence the Scherk-Schwarz twist can be implemented using
theU (1)R ⊂ SU (2)R Killing vector (we add a subscript “0" to the Killing vector for later
notational purposes),

∂zqu = αku
0 (q) , (4.9)

so the Scherk-Schwarz twist is in general non-linearly realized on the real hypermul-
tiplet scalars. One can write down a similar formula for the hyperini, using the results of
[159, 160]. Since this is not very insightful, we refrain fromgiving explicit expressions here.

In general, Scherk-Schwarz twists lead to gauged supergravities in one dimension lower,
with supersymmetry preserved at the level of the action. Gauged supergravities have scalar
potentials Vg which are positive-definite for Scherk-Schwarz reductions. Furthermore,
they typically allow Minkowski vacua with spontaneously broken supersymmetry. The
original references on the topic are [152, 161]. Some other useful literature can be found
in e.g. [162, 163].
In four-dimensional N = 2 supergravity, the bosonic sector of the theory is generically

(for electric gaugings) described by the action [164]

S4d =

∫
R
2 ? 1 − γik̄dt

i ∧?d t̄ k̄ + 1
4IΛΣF

Λ ∧ ∗F Σ + 1
4RΛΣF

Λ ∧ F Σ+

+ ℎuvDqu ∧?Dqv −Vg ? 1 , (4.10)
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and the potential has a universal form for generic gaugings described by [164]7

Vg = 2g2
(
γik̄k

i
Λ
k k̄
Σ
+ 4ℎuvku

Λ
kv
Σ

)
L̄ΛLΣ + 2g2

(
UΛΣ − 3L̄ΛLΣ

)
P x
Λ
P x
Σ
. (4.11)

where i, j = 1, .., nv , u, v = 1, .., 4nℎ , Λ,Σ = 1, .., nv + 1. In this formula, g is the gauge
coupling, k i

Λ
and ku

Λ
are Killing vectors of the special Kähler and quaternionic isometries

respectively, γik̄ is the metric of the special Kähler manifold with holomorphic coordin-
ates t i , and ℎuv the metric of the quaternionic manifold with coordinates qu . Notice that
the hypermultiplet scalars now appear with a covariant derivative Dµqu = ∂µqu + ku

Λ
AΛµ ,

since they are charged under the Kaluza-Klein field, as discussed above. The symplectic
sections LΛ are defined from the holomorphic ones by LΛ = eK /2XΛ, where K is
the Kähler potential, and we use special coordinates such that X 0 = 1. For more on
conventions and properties on special geometry, see [164]. P x

Λ
; x = 1, 2, 3 are the moment

maps that can be computed from the quaternionic Killing vectors. Finally, UΛΣ is the
symmetric tensor defined on any special Kähler manifold. The precise definition is not
important here, since the last term in (4.11) will vanish in our case.

In our setup, only the Kaluza-Klein vector A0 from (4.1) is involved in the gauging, and
this gauge field is labeled by indices Λ,Σ = 0. Even if other gauge fields are present, they
do not take part in the gauging in the sense that no fields are charged under them. The
only relevant moment map is therefore P x

0 , and thus the only relevant Killing vector of
quaternionic isometries is ku

0 , which we specify below. Moreover, by properties of special
geometry it holds that (U 00 − 3L̄0L0) ≡ 0 in the large radius limit, so the last terms in the
potential (4.11) vanish.

Since we will perform a Scherk-Schwarz twist with respect to the R-symmetry, and the
scalars in the vectormultiplet have noR-charge, the corresponding four-dimensional spec-
trum shouldhave scalars in the vectormultiplets that remainmassless anduncharged. This
is simply achieved by choosing the gauging of a compactU (1) isometry in the hypermul-
tiplet scalar manifold only, thus implying k i

Λ
= 0 for every Λ = 0, 1, .., nv . The potential

we consider in this work is then of the no-scale form
Vg = 2g2 (4ℎuvku

0 k
v
0
)
L̄0L0 = 8g2ℎuvku

0 k
v
0 e

K , (4.12)
and is positive definite. Using the relations, in the conventions of [151],

e−K = 8R3 ,
√−g(5) =

√−g(4)
R

, (4.13)

7We use the conventions of [151], which differ from [164] by factors of two in the potential and gauge
kinetic terms. One can switch between the conventions by rescaling our four-dimensional metric g →
1
2 g and then multiplying the action by 2. This has the effect of rescaling our potential with an overall
factor of 1

2 and our gauge kinetic terms with an overall factor of 2, while the scalar kinetic terms and
Einstein-Hilbert term, normalized as L = 1

2
√−gR(g ), remain the same.
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one can interpret this as a potential coming from the dimensional reduction of the hyper-
multiplet scalars’ kinetic terms [150]. Indeed, using (4.9), we find

√−g(5)ℎuv∂zqu∂zqv g zz =
√−g(4)Vg =

√−g(4)
g2

R3 ℎuvk
u
0 k

v
0 . (4.14)

From this, one can see two possible types of vacua, both of which are Minkowski. The
first one is to have the Killing vectors finite and non-zero in the vacuum; the potential
is then of the runaway type and the theory decompactifies. We are not considering this
option since in our case, the Killing vectors of the R-symmetry will have fixed points
and vanish in the vacuum. R is then a flat direction, and the potential is called no-scale.
Therefore, we can freely take the radius to be large, such that R6 � V olCY3 .

Themasses of the particles in the spectrum follow from expanding fluctuations around
the vacuum to quadratic order, and involve the derivatives of the Killing vectors which
need not vanish in the vacuum. We refer to [164] for general expressions of the mass
matrices. Furthermore, the Scherk-Schwarz reduction also generates terms proportional
to the Kaluza-Klein vector A0, from which one can determine that the charge8 is equal
to the mass, m2 = q2. Finally, for (4.14) to hold, we identify the Scherk-Schwarz twist
parameter with the gauge coupling constant

α = g =⇒ g =
ρ

2 . (4.15)

It is important to notice that in the vacuum, the bosonic part of the Lagrangian
becomes that of ungauged supergravity. Indeed, in the vacuum, the potential vanishes
and all covariant derivatives on the hypermultiplet scalars become ordinary ones since the
covariant derivatives involve Killing vectors that vanish in the vacuum. The hypers can
therefore be frozen to their vevs. The scalars in the vector multiplets remain neutral. As a
consequence, any bosonic solution of the equations of motion in ungauged supergravity
without hypermultiplets can be imported into the R-gauged supergravity theory. This
observation will be important when we discuss black hole solutions in Section 4.2.

Example
The derivation of the scalar potential in the four-dimensional theory holds for any choice
ofU (1) Scherk-Schwarz gauging from five to four dimensions, gauged by the graviphoton
8In computing the charge, one must take care of the correct normalization of the Kaluza-Klein vector. In
the conventions of [151], the kinetic term for A0 is L = − R3

8 Fµν F µν , so one needs to rescale the gauge
fields A0 →

√
2

R3/2 A0 to have a canonically normalizedMaxwell field.
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(Kaluza-Klein vector A0), for a generic CY3-compactification. To exemplify our strategy
further, we now choose a particular model, namely the case in which the CY3 has ℎ1,1 =
ℎ1,2 = 1, as discussed at the beginning of this section. Such a compactification gives a
five-dimensionalN = 2 supergravity theory with no vector-multiplets and nℎ = 2 hyper-
multiplets whose scalar manifold is the c-map of SU (1, 1)/U (1). This has been extensively
studied in [165] and [166], for example. A result of these studies is that the quaternionic
manifold isG2(2)/SO(4)where SO(4) = SU (2)R × SU (2). We parametrize it by introdu-
cing coordinates

qu = (φ, ϕ, χ, a, ξ0, ξ 1, ξ̃0, ξ̃1) . (4.16)

Here, ϕ and χ form a complex structure modulus, the ξ and ξ̃ come from the periods
of three-form in eleven dimensions restricted to the CY3, and a is the dual of the three-
form, restricted to five dimensions. Finally, the (dimensionless) volume-modulus of the
CY3—measured in terms of eleven-dimensional Planck units—is given by

VolCY3 = e−2φ . (4.17)

In these coordinates, the metric is

ℎuvdqudqv = dφ2 + 3(dϕ)2 + 3
4 e

4ϕ(dχ)2

+ 1
4 e

4φ [da + ξ0d ξ̃0 + ξ
1d ξ̃1 − ξ̃0dξ0 − ξ̃1dξ 1]2

+ 1
2 e

2φ−6ϕ(dξ0)2 + 1
2 e

2φ−2ϕ
[
dξ 1 −

√
3χdξ0

]2

+ 1
2 e

2φ+2ϕ
[
d ξ̃1 −

√
3χ2dξ0 + 2χdξ 1

]2

+ 1
2 e

2φ+6ϕ
[
d ξ̃0 +

√
3χd ξ̃1 − χ3dξ0 +

√
3χ2dξ 1

]2
; (4.18)

see equation (5.4) of [167] for a similar parametrisation.

The scalar potential can be found from the Killing vector belonging to the U (1)R ⊂
SU (2)R ⊂ SO(4) isometry. The explicit form for this Killing vector is given in the
appendix, using the parametrization (4.18) for the metric on the coset G2(2)/SO(4). A
Minkowski vacuum is then obtained for the values of the fieldswhich are a vanishing locus
for the Killing vector ku

0 = 0, and thus, for the choice (A.3) in appendix A,

χ = a = ξ0 = ξ 1 = ξ̃0 = ξ̃1 = 0 , e4φ = γ2δ4 , e4ϕ = 3γ2 . (4.19)

The parameters γ and δ specify the choice of the Killing vector as seen insideG2(2)—this
may be seen from (A.1) and (A.1). The volume, therefore, may be chosen to be large by
specifying an appropriate Killing vector with large δ, for example.
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Expanding around the vacuum, one can determine the masses of the hypermultiplet
scalars. In four-dimensional Planck units9 , they are found to be

m2
(0) =

g2

R3 , (4.20)

and are fully degenerate, i.e. all eight hyperscalars have the same mass. In the fermionic
sector, all the fields are charged underU (1)R ⊂ SU (2)R. The gravitini undergo a super-
Higgs mechanism and become massive by eating up the gaugini. Their mass eigenvalues
can be computed from the moment maps (see e.g. [164] for more details on the gravitino
mass matrix). In four-dimensional Planck units, we again find

m2
(3/2) =

g2

R3 . (4.21)

The gravitini mass sets the supersymmetry breaking scale. It is very small in the regime we
are working in, namely large radius R and small coupling g . This provides an argument
why radiative corrections might be suppressed.

The fermionic sector in the hypermultiplets contains two Dirac spinors, one for each
hypermultiplet. Equivalently, there are four chiral components ζα; α = 1, ..., 4. Their
Dirac masses are found to be

m(1/2) = 0 , and m(1/2) = m(3/2) . (4.22)

The chiral components in each hypermultiplet then have the same masses, but with
double degeneracy.

4.2 Black holes in R-gauged supergravity
The example and general considerations in the previous subsection illustrate the follow-
ing: After freezing the hypermultiplets to their expectation values, the Killing vectors
vanish and so does the scalar potential. Turning to the bosonic sector described by the
action (4.10), the resulting supergravity Lagrangian after freezing the hypers (4.19) is
precisely that of ungauged supergravity. The covariant derivatives on the hypermultiplet
scalars become ordinary derivatives, and so the hypermultiplets decouple classically.
We have already mentioned that the scalar of the vector multiplet is a flat direction in
the Minkowski vacuum obtained by Scherk-Schwarz twist on the U (1)R isometry. In
particular, the vector multiplet equations of motion decouple from the hypermultiplet
9The scalar potential in (4.12) contains a κ−2

4 , so all masses scale with the four-dimensional Planck mass in
our model. The gauge coupling constant g is dimensionless.
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ones, and are totally insensitive to the Scherk-Schwarz twist: they are effectively the
same as the equations of ungauged supergravity. Therefore, every solution of the
ungauged supergravity bosonic Lagrangian for the metric and the scalars of the vector
multiplets is also automatically a solution of the Scherk-Schwarz reduced theory around
theMinkowski vacuumwhere the hypermultiplets are stabilized. This has been discussed
in the context of near-horizon supersymmetry already in [168] and more recently in the
context of near-horizon dimensional reduction in [169]. Constructions of black hole
solutions in gauged supergravities with maximal supersymmetry preserving vacua can be
found in [170]. The black holes we consider here live in supersymmetry breaking vacua.
The energy scale set by the temperature of the black hole is supposed to be larger than
the supersymmetry breaking scale, yet still low enough such that the specific heat remains
positive. For black hole temperatures lower than the supersymmetry breaking scale, the
massive modes first need to be integrated out.

We then consider a non-extremal black hole—a solution of the theory (4.10) around
the Minkowski vacuum coupled to nv = 1 vector multiplet. This corresponds to the
dimensional reduction of five-dimensional minimally coupled supergravity. We further
truncate to zero axions and consider the case of one electric charge q0, and one magnetic
charge, p1, with the scalar field t being the coordinate of SU (1, 1)/U (1). The black hole is
a solution of the Einstein, scalar andMaxwell equations10

Rµν −
R
2 gµν = gµν

(
−γt t̄∂µ t∂µ t̄ +

1
4IΛΣF

Λ
µν F Σ µν

)
− IΛΣF ΛαµF Σ αν + 2γt t̄∂µ t∂ν t̄ ,

γ t t̄∂t (IΛΣ)F Λµν F Σ µν = −
1
√−g ∂µ

(√−g∂µ t̄ ) − γ t t̄∂t̄γt t̄ ∂µ t̄∂µ t , (4.23)

γt t̄ =
3

4Im(t )2
= (γ t t̄ )−1 ,

∂µ

(√−gIΛΣF Λ µν
)
= 0 ,

where there is no summation on the t and t̄ indices since the scalar manifold is of complex
dimension 1. The setup of this solution corresponds to a particular case of [171].

The metric of the black hole solution in the region outside the horizon is given by

ds2
(4) = −e2U (r )dt2 + e−2U (r )dr 2 + e−2U (r ) f (r )dΩ2

(2) , (4.24)

with f (r ) = (r − r+)(r − r−) and dΩ2
(2) = dθ2+ sin θ2dφ2. We have denoted the inner and

10Here we switch back to the conventions used in [164] that are most commonly used in the black hole
literature.
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outer black hole horizons by r± = r∗ ± r0, while r 2
∗ = 2

√
|q0(p1)3 | refers to the radius of

the extremal solution obtained by taking the limit r0 → 0. The warp factorU (r ) and the
purely imaginary scalar field—parametrized as t (r ) = −iλ(r )—are determined in terms
of two harmonic functions as

e−2U (r ) =
r − r−
r − r+

4
√
I0(I1)2 , λ(r ) =

√
I0
I1
, (4.25)

where

I0 =
R3/2

2

r − r∗ + r0

√
1 + 2q2

0
R3r 2

0

r − r∗ + r0
,

I1 =
1

2
√
R

r − r∗ + r0

√
1 + 2(p1)2R

r 2
0

r − r∗ + r0
. (4.26)

We note that the scalar field at infinity becomes the dilaton of the Minkowski vacuum
discussed in the previous section, R, which is a free parameter. The gauge fields of the
theory are—with F Λ = 1

2 F
Λ
µνdx µ ∧ dx ν—

F 0 =
q0

R3
1(

r − r∗ + r0

√
1 + 2q2

0
R3r 2

0

)2 dt ∧ dr ,

F 1 = p1 sin θdθ ∧ dφ . (4.27)

One then finds the entropies associated to the inner and outer horizons to be

S±
π
=

©­«r0 ±

√
r 2

0 +
2q2

0
R3

ª®¬
1/2 (

r0 ±
√
r 2

0 + 2(p1)2R
)3/2

. (4.28)

The non-extremal parameter is related to the thermodynamic quantities of the black hole
by r0 = 2S+T , with the temperature being T = κ

2π =
r+−r−
4πr 2

+

. In the extremal case, r0 = 0,
the radius R drops out of the entropy formula and we obtain the well-known result

S = 2π
√
q0(p1)3 , (4.29)

that has been reproduced microscopically for BPS black holes in ungauged supergravity.
The mass of the non-extremal black hole is

M = 1
4

3
√
r 2

0 + 2(p1)2R +

√
r 2

0 +
2q2

0
R3

 . (4.30)
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This solution has a smooth T → 0 limit but, in the absence of supersymmetry, its
stability is no longer guaranteed. Therefore, on physical grounds, we choose to work with
a non-extremal black hole.

4.3 Upli� to 5 dimensions
Turning the circle reduction to the four-dimensional theory (4.10) around, the 4D black
hole (4.24)—(4.27) can be uplifted to a five-dimensional black string. We will now
demonstrate that, close to extremality, the near horizon region of this black string displays
a BTZ factor. In this 5D near-horizon region, the scalar λ(r ) supporting the back string
becomes independent of the radial variable r . For simplicity of presentation, we set the
scalar to constant already in four-dimensions before uplifting. We have verified that this
gives the same result as uplifting the full black hole solution (4.24)—(4.27) and then
taking the scalars to be constant, since every correction to the near-horizon physics from
the running scalars starts at higher orders.

We thus set the scalar λ in (4.25) to its attractor value, λ = R =
√

q0
p1 , everywhere.

It seems that this choice fixes the dilaton of the Minkowski vacuum; however, one must
remember that the constant scalars case is just a shortcut to identify the 5d near horizon
region. So, in this case, fixing the value of R has no physical meaning and one should
simply treat this as a calculational trick. Trading the non-extremality parameter r0 for the
mass M through (4.30) and changing to a new radial variable

r̃ = r − r∗ + M , (4.31)

the solution (4.24)—(4.27) becomes Reissner-Nordström,

ds2
(4) = −

(
1 − 2M

r̃ +
r 2
∗
r̃ 2

)
dt2 +

dr̃ 2

1 − 2M
r̃ +

r 2
∗
r̃ 2

+ r̃ 2dΩ2
(2) ,

F =
2r∗
r̃ 2 dt ∧ dr̃ , (4.32)

where F ≡ λ3/2F 0 = 1√
3
λ1/2 ∗ F 1. Using the formulae (4.1) and (4.2) for a single vec-

tor multiplet, this solution uplifts on the circle parametrised by the angle z to the five-
dimensional black string

ds2
(5) =

√
p1

q0

(
−

(
1 − 2M

r̃ +
r 2
∗
r̃ 2

)
dt2 +

dr̃ 2

1 − 2M
r̃ +

r 2
∗
r̃ 2

+ r̃ 2dΩ2
(2)

)
+

q0
p1

(
dz +

√
2(p1)3
q0

1
r̃ dt

)2
, (4.33)
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F(5) =
√

6p1 sin θ dθ ∧ dφ ,
where F(5) is the field strength of the gauge field in (4.2).

Let us now exhibit how the announced BTZ factor arises from the solution (4.33) in
the near horizon region, close to extremality. To this end, we rescale

r̃ → r∗ + ε ρ ,

M → r∗ + ε2 ρ
2
0

2r∗
,

t → 1
ε
r 2
∗ τ ,

z →
(
p1

q0

)3/4 (
r∗ ϕ − t

)
(4.34)

following e.g. [172] and then let ε → 0. In this near horizon, near extremal limit, the
five-dimensional metric (4.33) becomes

ds2
(5) = 2(p1)2

(
−(ρ2 − ρ2

0)dτ
2 +

dρ2

(ρ2 − ρ2
0)
+ (dϕ − ρ dτ)2

)
+ 2(p1)2 dΩ2

(2) , (4.35)

which is the direct product of a BTZ metric and a two-sphere S2, of radius 2(p1)2. To see
this more explicitly, we identify ρ0 =

r+ + r−
2` and make a further change of coordinates

ρ =
1

`(r+ − r−)

(
r 2 − 1

2 (r
2
+ + r 2

−)
)
,

τ = 2
(
− t
`
+ φ

)
, (4.36)

ϕ =
r− − r+

`

( t
`
+ φ

)
,

with r+ and r− being the outer and inner horizons respectively and `2 = 8
(
p1)2 being the

square of the radius of AdS , to rewrite the metric (4.35) as

ds2
(5) =

(
−(r

2 − r 2
+)(r 2 − r 2

−)
`2r 2 dt2 +

`2r 2dr 2

(r 2 − r 2
+)(r 2 − r 2

−)
+ r 2

(
dφ − r+r−

`r 2 dt
)2

)
+2(p1)2 dΩ2

(2) . (4.37)

The contribution in brackets can now be recognised as the standard non-extremal, rotat-
ing BTZmetric with radius fixed by `, mass and angular momentum given by

MBTZ =
r 2
+ + r 2

−
`2 , JBTZ =

2r+r−
`

. (4.38)
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Our results are consistent with the general black string solutions discussed in [173]. The
total entropy of the uplifted, five-dimensional solution is now

S =
1

4G5
Area(S2) 2πr+

=
1

4G3
2πr+. (4.39)

The metric (4.37) can be written entirely in terms of MBTZ and JBTZ as

ds2
(5) =

(
− f (r ) dt2 + f −1(r )dr 2 + r 2 (dφ + Nφdt

)2
)
+ 2(p1)2 dΩ2

(2) , (4.40)

where

f (r ) = −MBTZ +
r 2

`2 +
J 2
BTZ
4r 2 Nφ = −

JBTZ
2r 2 . (4.41)

This is written in conventions where the AdS3 mass is −1, as opposed to − 1
8G3

. One may
restore the factors ofG3 by

f (r ) = −8G3MBTZ +
r 2

`2 +
16G2

3 J
2
BTZ

r 2 , Nφ = −
4G3 JBTZ

r 2 , (4.42)

and is now identical (up to a shift in the radial variable) to the metric written in [146].

Given that the BTZ geometry arises in the bulk supergravity, following the results of
[146] and [174], it is clear that the entropies of the macroscopic solution and the micro-
scopic field theory match with each other. In fact, the central charges cL and cR of the
CFT do not feel the boundary conditions, so they can be used again in the Cardy formula.
However, the conventional argument—in [19, 20], for instance—is that given a macro-
scopic black hole with certain (electric) charge, one may choose a conformal field theory
with states carrying the same momentum that reproduces the macroscopic entropy. It is
crucial, therefore, that the quantization conditions on the black hole charge and the field
theory momentum are the same. In the case of supersymmetric black holes, both were in-
tegers and consequently consistent with each other. We saw in (3.12) that the momentum
along the string is quantized; this becomes the four-dimensional electric charge,

q0 = nL −
(
NR +

cR
6

(
ρ

2 −
ρ2

4

))
. (4.43)

To leading order in g = ρ/2, this is a + b ρ
2 = a + b g , where a and b are integers11.

Therefore, it is important that our macroscopic black hole satisfies this condition. Wewill
11As shown in [175], cR

6 is an integer.
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now present a quick argument why the black hole (4.24) does satisfy this quantization
condition.

For the black hole under consideration to be a physically reasonable one, it needs to
have been formed by a collapse of particles within the theory. Elementary zero-mode
particles in our theory have charges proportional to the gauge coupling constant12 g .
The most general black hole in this theory could conceivably be formed by a collapse of
Kaluza-Klein particles with integer charges and Scherk-Schwarz particles with charges
proportional to g . Picking a black hole formed by nL − NR Kaluza-Klein particles and
cR
6 Scherk-Schwarz particles, it has an electric charge that is exactly consistent with the
quantization condition on the microscopic momentum (3.12), to leading order in ρ. It
would be interesting to understand the macroscopic origin of the term in (3.12) that is
quadratic in g . For black hole temperatures larger than the supersymmetry breaking scale,
this term is irrelevant. For lower temperatures, this correction can perhaps be understood
after integrating out the hypermultiplets in a one-loop approximation. We leave this
interesting point for future work.

5 Extensions to supersymmetric vacua
The construction we have presented so far needs attention to one further detail. We have
considered a non-extremal black hole in a vacuum that spontaneously breaks supersym-
metry. It is, therefore, important that the vacuum is at least sufficiently stable to allow for
the formation of such a large black hole.To avoid possible problems with instabilities, we
now present an alternative example in which supersymmetry is only partially broken in
the vacuum. Since the discussion is very similar to the previous section, we will be rather
brief and sketchy, only concentrating on the main steps.

Let us consider Type IIB Superstring theory on a K3 surface, preserving sixteen super-
charges. This yields a six dimensional chiral (0, 4) supergravity theory supplemented with
a moduli space, parametrized by the scalar fields,

M =
SO(5, 21)

SO(5)R × SO(21) , (5.1)

where the SO(5)R ' USp(4)R is the R-symmetry. This R-symmetry group contains two
compactU (1) subgroups, labelled by say,U (1)ρL andU (1)ρR ,

U (1)ρL ×U (1)ρR ⊂ SO(5)R . (5.2)
12The factors of R3 in the charges arise from issues of canonical normalization of the four-dimensional

vectors. These are clearly not present in the five-dimensional ‘normalizations’.
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One may now repeat the construction we have presented in this chapter, and compac-
tify further on a circle with a Scherk-Schwarz twist, this time down to five dimensions.
This procedure leads to a Scherk Schwarz reduced gaugedN = 4 supergravity in five di-
mensions. For toroidal compactifications that result in maximal supersymmetry in six di-
mensions, such partial supersymmetry breaking flat vacua have been shown to exist[176].
For theories arising fromK3 compactifications, a similar feature has been shown in [177].
Applied to the case at hand, one can twist the six-dimensional supercharges with respect
toU (1)ρL ×U (1)ρR ⊂ SO(5)R, with twist parameters ρL and ρR. If both parameters are
switched on, supersymmetry is completely broken in the vacuum. However, if we set, say
ρL = 0, supersymmetry is only partly broken—and two of four gravitinos remain mass-
less:

SO(5)R ' USp(4)R −→ USp(2)R ' SU (2)R . (5.3)

Further details on the spectrum can be found in [177].

Therefore, setting ρL = 0 leaves us with an N = 2 preserving Minkowski vacuum in
five dimensions. Given that a stable vacuum is now guaranteed, it is no longer problematic
to consider a non-extremal black hole excitation above this vacuum. In fact, one may even
stick to the extremal case. Following up on the spectrum computed in [177], for example,
it is straightforward to check that the appropriate quantization condition on the electric
charge of these black holes is consistent with the expectation from the ρ-algebras.

In such a set up, an extension of the Rholographic picture is simple too. A black
string solution of the six dimensional supergravity theory has an AdS3 × S3 horizon.
In fact, this was the set up considered in the classic example of [19]. Its Rholographic
counterpart would be the ρL/R-twisted non-extremal excitation on the AdS

ρL/R
3 vacuum.

The field theory living on its boundary is a (4, 4) D1-D5 CFT. It contains two chiral
N = 4 superconformal algebras in two dimensions. For the Rholographic exten-
sion of which, as discussed at the end of Section 3, one may consider a ρL/R-algebra
extension on either of the chiral components of this CFT. Therefore, a ρL/R-twisted
D1-D5CFT is conjecturally dual to Type IIB Superstring theory on an AdS ρL/R3 ×S3×K3.

It is worth noting that the D1-D5 CFT has local gauge symmetry that leads to spectral-
flow, much like in the case of the MSWCFT.While there was one set of Kac-Moody cur-
rents corresponding to the SU (2) gauge symmetry in the MSW CFT (corresponding to
rotational symmetry on the S2 of the AdS3 horizon), the D1-D5 CFT has two such cur-
rent algebras corresponding to rotational symmetry on the S3, with an isometry group
SO(4) ' SU (2) × SU (2). It must be stressed that the Scherk-Schwarz twist on the world-
sheet does not involve the current algebras. Rather, it uses the outer automorphismgroups
of the left and rightmoving sectors, which we call SU (2)ρL × SU (2)ρR . It is clear then that



5 Extensions to supersymmetric vacua 79

the twists on the worldsheet supercharges is with respect to the subgroups

U (1)ρL ×U (1)ρR ⊂ SU (2)ρL × SU (2)ρR , (5.4)

and if we want to preserve some supersymmetry in the bulk, we set one of the twist para-
meters to zero, e.g. ρL = 0. The concerned reader may consider this example to be on
more firm ground, as far as stability of the vacuum is concerned. In fact, it would be in-
teresting to compute black hole discharge rates andR-charged particle scattering processes
using conformal field theory techniques for the ρ-algebras. It would also be interesting to
explore the consequences of, and find more evidence for, the Rholographic picture. We
leave these interesting questions for future research.
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A Compact gauging of G2(2)/SO(4)
Here we identify the relevant U (1)R of the model discussed in the main text and then
compute its associated Killing vector and moment map. Let H1, H2 be the two Cartans
and Ei , Fi , i = 1, . . . , 6, the positive and negative root generators of the split real form
G2(2). The maximally compact subgroup SO(4) is generated by

K1 = E1 − δ2γ−2 F1 , K2 = E2 − γ2 F2 , K3 = E3 − δ2 F3 ,

K4 = E4 − γ2δ2 F4 , K5 = E5 − γ4δ2 F5 , K6 = E6 − γ2δ4 F6 ,

for any non-zero real constants γ and δ. Indeed, the further combinations

J1 =
1
2δ
−1 (γ−2K5 −

√
3K3

)
,

J2 =
1
2γ
−1 (δ−2K6 +

√
3K2

)
,

J3 =
1
2γδ

−1 (K1 − γ−2√3K4
)

(A.1)

and

L1 =
1
2δ
−1 (3γ−2K5 +

√
3K3

)
,

L2 =
1
2γ
−1 (3δ−2K6 −

√
3K2

)
,

L3 =
1
2γδ

−1 (3K1 + γ
−2√3K4

)
(A.2)

can be checked to generate two copies of SU(2), for any γ and δ. This is most straightfor-
wardly seen using an explicit matrix realisation of the G2(2) generators, like e.g. the one
given in appendix C of [178]. A calculation similar to that of that appendix allows us to
establish that the SU(2)R ≈Sp(1) corresponding to the R-symmetry is generated by Jx ,
x = 1, 2, 3. Any of the Jx can thus be picked up as the relevant U(1)R to gauge our model
with. For definiteness, we choose13 J3.

We now turn to the calculation of theKilling vector associated to J3. TheKilling vectors
of hypermultiplet spaces in the image of the c-map have been given in terms of special
geometry data in [179] (see [180] for a recent update). Here, rather than using those
general formulae, we play the following trick, based on the homogeneity of G2(2)/SO(4),
to read off the Killing vector associated to a specific generator. IfV(qu) is the right, say,
coset representative and ] denotes the G2(2)-generalised transpose (see e.g. [178] for the
details), then P = 1

2

(
dVV−1 +

(
dVV−1)]) is a one-form valued on the Lie algebra g2(2)

of G2(2). For any real one-form A, the one-form P̂ = 1
2

(
DVV−1 +

(
DVV−1)]) , with

13We have explicitly verified that graviphoton gaugings along J1 only, along J2 only or along J3 only are
physically indistinguishable, as they should.
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DVV−1 ≡ (dV + gAV J3)V−1, is also g2(2)-valued. Here we have found it useful to
stick in a (coupling) constant g . We can then expand P̂ in the basis H1, H2, Ei , Fi of g2(2)
to read off the covariant derivative Dqu = dqu + gAku and the components of the ku

of the Killing vector associated to the generator J3. In fact, we have repeated this exercise
for all 14 generators of G2(2) to compute all Killing vectors of G2(2)/SO(4), and have
explicitly verified that these vectors do indeed leave the metric ℎuvdqudqv = 1

4 Tr(PP )
invariant. Obviously, the same process can be followed to compute the Killing vectors of
any (non-compact) homogeneous space.

Performing the suitable coordinate transformation that brings themetric ℎuvdqudqv =
1
4 Tr(PP ) obtained from the coset approach into the c-map form (4.18), we thus find that
the Killing vector k0 = ku

0 ∂u associated to theU (1)R generator J3 has the following com-
ponents ku

0 along the coordinates (4.16):

kφ0 = −2−
3
2 3−

3
4 γ−1δ

(
ξ0 + 3

√
3 δ2 ξ̃1

)
,

kϕ0 = 2−
3
2 3−

3
4 γ−1δ

(
ξ0 − 4

√
3 γ2 χ ξ 1 −

√
3 γ2 ξ̃1

)
,

k χ0 = −2−
1
2 3−

5
4 γ−1δ

(√
3 χ ξ0 −

(
1 − 6γ2e−4ϕ + 6γ2 χ2) ξ 1 + 3

√
3 γ2 ξ̃0

− 3χ γ2 ξ̃1
)
,

k a
0 = 2−

3
2 3−

11
4 γ−1δ−1

(
9δ2a

(
ξ0 + 3

√
3 γ2 ξ̃1

)
− 9δ2e−2φ−2ϕ χ ξ0 [9γ2 + 18γ2e4ϕ χ2 − e8ϕ χ2(1 − 9γ2 χ2)

]
+ 9
√

3e−2φ−2ϕ ξ 1 [3γ2δ2 +
√

3e2φ+2ϕ + 12γ2δ2e4ϕ χ2 − δ2e8ϕ χ2(1 − 9χ2)
]

− 9 ξ̃0
[
3
√

3γ2 + δ2e−2φ+6ϕ(1 − 9χ2)
]

+ 9
√

3 δ2e−2φ+2ϕ χ ξ̃1
[
6γ2 − e4ϕ(1 − 9γ2 χ2)

]
+ 9δ2ξ0 [ξ0 ξ̃0 + ξ

1 ξ̃1 − 3
√

3 γ2 ξ̃0 ξ̃1
]

− 9δ2ξ 1 [54γ2ξ0 ξ̃0 − 2
√

3(ξ 1)2 − 9
√

3 γ2(ξ̃1)2
] )
,

kξ
0

0 = 2−
3
2 3−

3
4 γ−1δ−1

(
2δ2(ξ0)2 − 6γ2δ2(ξ 1)2 + 3

√
3 γ2 − δ2e−2φ+6ϕ(1 − 9γ2 χ2)

)
,

kξ
1

0 = −2−
3
2 3−

3
4 γ−1δ

(
3
√

3 γ2 a − 2ξ0ξ 1 + 3
√

3 γ2 ξ0 ξ̃0 − 5
√

3 γ2 ξ 1 ξ̃1

− 6
√

3 γ2 χe−2φ+2ϕ +
√

3e−2φ+6ϕ χ(1 − 9γ2 χ2)
)
,

k ξ̃0
0 = 2−

3
2 3−

3
4 γ−1δ

(
a − ξ0 ξ̃0 − ξ 1 ξ̃1 + 6

√
3 γ2 ξ̃0 ξ̃1 + 9γ2 χe−2φ−2ϕ

+ 18γ2e−2φ+2ϕ χ3 − e−2φ+6ϕ χ3(1 − 9γ2 χ2)
)
,
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k ξ̃1
0 = −2−

3
2 3−

5
4 γ−1δ−1

(
2δ2(ξ 1)2 − 12

√
3 γ2δ2 ξ 1 ξ̃0 − 6 γ2δ2 (ξ̃1)2

− 3
√

3 + 9 γ2δ2 e−2φ−2ϕ + 36 γ2δ2 e−2φ+2ϕ χ2

− 3 δ2 e−2φ+6ϕ χ2(1 − 9γ2 χ2)
)
. (A.3)

It is now straightforward to doublecheck by standard methods that this vector leaves the
metric (4.18) invariant, and thus is indeed Killing, and that it vanishes at (4.19).

We have also computed the moment map P x
0 , x = 1, 2, 3, corresponding to this iso-

metry. Since the full expression is not very illuminating, we only give its value at the va-
cuum (4.19), which is the only quantity needed for all our analyses. With the normalisa-
tion of [164], we obtain

P x
0 = (0, 0, 2) , (A.4)

independent of γ and δ. Since the moment map is independent of these factors, so is the
mass (charge) spectrum.



Chapter IV

Dynamics of the Schwarzschild horizon

The emergence of string theory, holography [21, 31, 32] and gauge-gravity duality
[33–35] has shed significant light on the information-loss problem. In fact, it is

often claimed that if one were to believe gauge-gravity duality, the paradox is solved
‘in-principle’ as the boundary theory is unitary by construction and the duality states an
equivalence (at the level of partition functions) between the gravitational and boundary
field theories. Nevertheless, the strength of this claim is questionable [181, 182] and
even within the best understood examples of gauge-gravity duality, there is no general
consensus on the exact process of information retrieval. Furthermore, the best understood
examples of the said duality, while providing for a very useful toolbox, typically involve
bulk space-times with a negative cosmological constant and are far from the real world.
Technology at this stage is far from established to reliably understandmore realistic space-
times. Additionally, why intricate details of string theory or the duality may be absolutely
necessary for our understanding of the evolution of general gravitational dynamics is
not apparent. While the fuzzball program [183–187] provides some arguments for why
stringy details may be important, it is fair to say that there is no general consensus on the
matter.

Years before gauge-gravity duality was proposed and was seen as a possible resolution
to the information paradox, there was an alternative suggestion by ’t Hooft [31, 188, 189].
The proposal was to consider particles of definite momenta ‘scattering’ off a black-hole
horizon. These particles were to impact the out-going Hawking quanta owing to their
back-reaction on the geometry. With the knowledge that the black hole is made out of
a large, yet finite, number of in-states, one may scatter particles of varying momenta re-
peatedly, until all in-states thatmayhavemadeup theblackhole have been exhausted. This
led to a construction of an S-Matrix that maps in to out states. This matrix was shown to
be unitary. A further advancement for spherically symmetric horizons was made recently
[190–192], where a partial wave expansion allowed for an explicit writing of the S-Matrix
for each spherical harmonic. However, this construction has its own short-comings. It
presumes that the S-Matrix can be split as

Stotal = S−∞ Shorizon S+∞ , (0.1)
where S±∞ correspond to matrices that map asymptotic in-states to in-going states near
the horizon and outgoing states near the horizon to asymptotic out-states respectively.

83
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And Shorizon is the S-Matrix that captures all the dynamics of the horizon. Whether such
an arbitrarily near-horizon region captures all the dynamics of the black hole is not entirely
clear. The construction is also done in a ‘probe-limit’ in that the back-reaction is not taken
to impact the mass of the black hole. Only its effect on outgoing particles is captured.
Furthermore, throwing a particle into a black hole is not an exactly spherically symmetric
process. While a non-equilibrium process initiated by the in-going particle does break
spherical symmetry, it may be expected that the black hole settles down into a slightly
larger, spherically symmetric solution after some characteristic time-scale that depends on
the interactions between the various degrees of freedom thatmake up the black hole. This
scattering can be decomposed into partial waves. And the different waves are assumed to
evolve independently. However, one expects that the partial waves are not independent
and that they indeed ‘interact’ in a generic evolutionary process; it is not clear how one
may incorporate this interaction in this construction. Furthermore, the scattering algebra
possibly would needmodification in a more general setup. Another important limitation
is that the back-reaction calculations ignore transverse effects [193, 194] which grow in
increasing importance as we approach Planckian scales. Finally, while it may not be a fun-
damental difficulty, the splitting of the wave function via (0.1) needs further investigation.

As is evident from the above, it is surprisingly easy to criticize even the most promising
approaches to quantum black hole physics. In this chapter, we seek to address some of
the criticisms of the S-Matrix approach to quantum black holes. Inspired by old ideas
from non-critical 2d string theory [195–202], we construct a theory—of a collection of
quantum mechanics models with inverted harmonic oscillator potentials—that exactly
reproduces the S-Matrix of ’t Hooft for every partial wave; the inverted potentials arise
naturally to allow for scattering states, as opposed to bound states in a conventional
harmonic oscillator. The intrinsically quantum nature of the model dispenses with the
critique that the S-Matrix of ’t Hooft is a ‘classical’ one. With any toy model, it may be
hard to establish the validity of its applicability to black hole physics. However, in our
construction, all the observables (S-Matrix elements) are exactly identical to those of ’t
Hooft’s S-Matrix; thereby avoiding any ambiguity of its validity. Furthermore, we observe
that in-states must contain an approximately constant number density over a wide range
of frequencies in order for the scattered out-states to appear (approximately) thermal; this
condition was also noted in the 2d string theory literature. Finally, and perhaps most sig-
nificantly, we show that ourmodel captures an exponentially growingdegeneracy of states.

It may be added that aside from the approaches mentioned earlier, there have been
many attempts to construct toy-models to study black hole physics [203–208]. The hope
being that ‘good’ toy models teach us certain universal features of the dynamics of black
hole horizons.

This chapter is organized as follows. In Section 1, we briefly review gravitational back-



1 Back-reaction and the Black Hole S-Matrix 85

reaction and ’t Hooft’s S-Matrix construction along with its partial wave expansion. Our
derivation is slightly different to the one of ’tHooft [190] in that our derivation relies only
on the algebra associated to the scattering problem. Therefore, the ‘boundary conditions’
of the effective bounce, as was imposed in ’t Hooft’s construction is built in from the start
via the back-reaction algebra (1.13). In Section 2, we present our model and compute the
corresponding scattering matrix to show that it explicitly matches the one of ’t Hooft. In
Section 3, we make an estimate of the high energy behaviour of the total density of states
to argue that the model indeed describes the existence of an intermediate black-hole state.
We conclude with a discussion and some future perspectives in Section 4.

A brief summary of results There are two main results of this chapter: one is a re-
writing the degrees of freedom associated to ’t Hooft’s black hole S-Matrix in terms of
inverted harmonic oscillators; this allows us to write down the corresponding Hamilto-
nian of evolution explicitly. The second, related result is an identification of a connection
to 2d string theorywhich in turn allows us to show that there is an exponential degeneracy
of how a given total initial energy may be distributed amongmany partial waves of the 4d
black hole; much as is expected from the growth of states associated to black hole entropy.
At various points in Sections 2 and 3, we review some aspects of matrix models and 2d
string theory in detail. While we expect some consequences for these theories based on
our current work, we do not have any new results within the framework of 2d black holes
or matrix models in this chapter.

1 Back-reaction and the Black Hole S-Matrix
Consider a vacuum solution to Einstein’s equations of the form:

ds2 = 2A
(
u+, u−

)
du+ du− + g

(
u+, u−

)
ℎ(Ω)dΩ2 , (1.1)

where u+, u− are light-cone coordinates, A(u+, u−) and g (u+, u−) are generic smooth func-
tions of those coordinates and ℎ(Ω) is the metric tensor depending on only the (d − 2)
transverse coordinates Ω. It was shown in [194] that an in-going massless particle with
momentum p− induces a shock-wave at its position specified byΩ and u− = 0. The shock-
wave was shown to change geodesics such that out-going massless particles feel a kick—of
the form u− → u− + 8πG p−in f̂ (Ω,Ω′)—in their trajectories at u− = 0, where f̂ depends
on the spacetime in question. If we were to associate a putative S-Matrix to the dynamics
of the black hole, the said back-reaction may be attributed to this S-Matrix in the follow-
ing manner. Consider a generic in-state |in0〉 that collapsed into a black hole and call the
corresponding out-state after the complete evaporation of the black hole |out0〉. The S-
Matrix maps one into the other via: S |in1〉 = |out1〉. Now the back-reaction effect may be
treated as a tiny modification of the in-state as |in0〉 →

��in0 + δp−in(Ω)
〉
, where δp−in(Ω) is
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the momentum of an in-going particle at position Ω on the horizon. Consequently, the
action of the S-Matrix on themodified in-state results in a different out-statewhich is acted
upon by an operator that yields the back-reacted displacement:

S
��in0 + δp−in(Ω)

〉
= e−iδp

+
out(Ω′)δu−out |out0〉 , (1.2)

where the operator acting on the out-state above is the ‘displacement’ operator written in
Fourier modes. Now, wemay repeat this modification arbitrarily many times. This results
in a cumulative effect arising from all the radially in-going particles with a distribution
of momenta on the horizon. Therefore, writing the new in- and out-states—with all the
modifications included—as |in〉 and |out〉 respectively, we have

〈out|S |in〉 = 〈out0 |S |in0〉 exp
[
−i8πG

∫
dd−2

Ω
′ p+out(Ω′) f̂ (Ω,Ω′) p−in(Ω)

]
.

Should we now assume that the Hilbert space of states associated to the black-hole is
completely spanned by the in-going momenta and that the Hawking radiation is entirely
spanned by the out-state momenta, we are naturally led to a unitary S-Matrix given by〈

p+out
��S ��p−in〉 = exp

[
−i8πG

∫
dd−2

Ω
′ p+out(Ω′) f̂ (Ω,Ω′) p−in(Ω)

]
. (1.3)

There is an overall normalization factor (vacuum to vacuum amplitude) that is undeter-
mined in this construction. The assumption that the black hole Hilbert space of states
is spanned entirely by the in-state momenta p−in is equivalent to postulating that the said
collection of radially in-going, gravitationally back-reacting particles collapse into a black
hole. While this may seem a reasonable assumption, it is worth emphasizing that there is
no evidence for this at the level of the discussion so far. We have not modeled a collapsing
problem. We will see in Section 3 that our proposed model in Section 2 provides for a
natural way to study this further. And significantly, we give non-trivial evidence that the
derived S-Matrix possibly models a collapsing black-hole.

1.1 Derivation of the S-Matrix
We now return to the back-reaction effect at a semi-classical level in order to derive an
explicit S-Matrix using a partial wave expansion in a spherically symmetric problem. For
the back-reacted metric—after incorporating the shift u− → u− + f (Ω,Ω′) into (1.1)—to
still satisfy Einstein’s equations ofmotion, the following conditions need to hold at u− = 0
[194]:

8 π p−in A
(
u+,−

)2
δ(d−2)(Ω,Ω′) = A(u+,−)

g (u+,−) 4Ω f (Ω,Ω′)
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−
(
d − 2

2

)
∂u+∂u− g (u+,−)

g (u+,−) f (Ω,Ω′) (1.4)

∂u−A
(
u+,−

)
= 0 = ∂u− g

(
u+,−

)
,

where 4Ω is the Laplacian on the (d − 2)-dimensional metric ℎ(Ω). We concern ourselves
with the Schwarzschild black-hole, written in Kruskal-Szekeres coordinates as

ds2 = −32G3 m3

r
e−r/2Gmdu+ du− + r 2dΩ2 . (1.5)

For the above metric (1.5), at the horizon r = R = 2Gm, the conditions (1.4) were shown
[194] to reduce to

4S (Ω) f (Ω,Ω′) B (4Ω − 1) f (Ω,Ω′) = −κ δ(d−2)(Ω,Ω′) , (1.6)

with the implicit dependence of r on u+ and u− given by

u+ u− =
(
1 − r

2Gm

)
e−r/2Gm , (1.7)

and κ = 24 π e−1 G R2 p−in. These seemingly ugly coefficients may easily be absorbed into
the stress-tensor on the right hand side of the Einstein’s equations. Now, the cumulative
shift experienced by an out-going particle, say u−out, is given by a distribution of in-going
momenta on the horizon

u−out(Ω) = 8πGR2
∫

dd−2
Ω
′ f̃ (Ω,Ω′) p−in(Ω′) , (1.8)

where κ f̃ (Ω,Ω′) = f (Ω,Ω′). Similarly, we have the complementary relation for the mo-
mentumof the out-goingparticle, say p+out given in termsof theposition u+in of the in-going
particle:

u+in(Ω) = −8πGR2
∫

dd−2
Ω
′ f̃ (Ω,Ω′) p+out(Ω′) (1.9)

The expressions (1.8) and (1.9)may be seen as ‘boundary conditions’ of an effective bounce
off the horizon. However, this intuition is rather misleading and we will refrain from this
line of thought. Nevertheless, what is striking to note is that themomentumof the in-state
is encoded in the out-going position of the Hawking radiation while the position of the
in-state is encoded in the momentum of the out-going Hawking state! However, so far,
the quantities u±in/out are dimensionless while p

∓
in/out are densities of momenta with mass

dimensions four. Therefore, to appropriately interpret these as positions and momenta,
we rescale them as u±in/out → Ru±in/out and p∓in/out → R−3p∓in/out [191]. Notwithstanding
this rescaling, we continue to use the same labels for the said quantities in order to avoid
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clutter of notation. Now, using the canonical commutation relations, respectively, for the
out and in particles1[

û−(Ω), p̂+(Ω′)
]
=

[
û+(Ω), p̂−(Ω′)

]
= i δ(d−2)(Ω −Ω′) , (1.10)

we may derive the algebra associated to the black hole scattering. We do this in a partial
wave expansion—in four dimensions—as

û±(Ω) =
∑
lm

û±lm Ylm(Ω) and p̂±(Ω) =
∑
lm

p̂±lm Ylm(Ω) . (1.11)

Workingwith these eigenfunctions of the two-sphere Laplacian and using 1.6we canwrite
the back-reaction equations (1.8) and (1.9) as

û±lm = ∓
8πG

R2 (l 2 + l + 1
) p̂±lm C ∓λ p̂±lm . (1.12)

In terms of these partial waves, we may now write the scattering algebra as[
û±lm, p̂

∓
l ′m′

]
= iδl l ′δmm′ (1.13)[

û+lm, û
−
l ′m′

]
= i λ δl l ′δmm′ (1.14)[

p̂+lm, p̂
−
l ′m′

]
= − i

λ
δl l ′δmm′ (1.15)

A few comments are now in order. Since the different spherical harmonics do not couple
in the algebra, we will drop the subscripts of l andm from here on. Furthermore, we see
that the shift-parameter λ ‘morally’ plays the role of Planck’s constant ~, but one that
is now l dependent. Moreover, we see that wave-functions described in terms of four
phase-space variables are now pair-wise related owing to the back-reaction (1.12). Finally,
it is important to note that each partial wave does not describe a single particle but a
specific profile of a density of particles. For instance, the s-wave with l = 0 describes a
spherically symmetric density of particles.

Since the operators û± and p̂± obey commutation relations associated to position and
momentumoperators, we see that the algebramay be realizedwith û− = −iλ∂u+ in the u+
basis and û+ = iλ∂u− in the u− basis. A similar realization is evident for the momentum
operators. Moreover, we may now define the following inner-products on the associated
Hilbert space of states that respect the above algebra:〈

u±
�� p∓〉 = 1

√
2π

exp
(
iu±p∓

)
(1.16)

1To avoid clutter in notation, we drop the in/out labels on positions andmomenta of particles. u+ and u−
always refer to ingoing/outgoing positions, respectively. Consequently, p− and p+ are always associated
with ingoing/outgoing momenta, respectively.
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〈
u+

�� u−〉 = 1
√

2πλ
exp

(
i
u+u−

λ

)
(1.17)

〈
p+

�� p−〉 = √
λ

2π exp
(
iλp+p−

)
(1.18)

Using (1.17), for instance, we may write the out-going wave-function—travelling along
the coordinate u− after scattering—in terms of the in-going one travelling along u+ as

〈u− | ψ〉 C ψout(u−) =
∫ ∞

−∞

du+
√

2πλ
exp

(
−i u

+u−

λ

)
ψin (u+) . (1.19)

One can immediately see that this mapping is Unitary just being a fourier transform. To
derive another useful form of the S-Matrix associated to the scattering, we first move to
Eddington-Finkelstein coordinates:

u+ = α+ e ρ
+

, u− = α− e ρ
−

p+ = β+ eω
+ and p− = β− eω

− (1.20)

where α± = ±1 and β± = ±1 to account for both positive and negative values of the phase
space coordinates u+, u−, p+ and p−. The normalization of the wave-function as

1 =
∫ ∞

−∞

��ψ (
u+

) ��2 du+
=

∫ 0

−∞

��ψ (
u+

) ��2 du+ + ∫ ∞

0

��ψ (
u+

) ��2 du+
= −

∫ −∞

∞

���ψ+ (−e ρ+ )���2e ρ+ dρ+ + ∫ ∞

−∞

���ψ+ (+e ρ+ )���2e ρ+ dρ+
=

∑
α=±

∫ ∞

−∞

���ψ+ (αe ρ+ )���2e ρ+ dρ+
suggests the following redefinitions for the wave-function in position and momentum
spaces

ψ±
(
α±e ρ

±
)
= e−ρ

±/2 φ±
(
α±, ρ±

)
& ψ̃±

(
β±eω

±
)
= e−ω

±/2 φ̃±
(
β±, ω±

)
.

Therefore, using (1.19), we may write φout(α−, ρ−) as:

φout(α−, ρ−) = 1
√

2πλ

∫ ∞

−∞
du+ e

ρ++ρ−
2 exp

(
−i u

+u−

λ

)
φin

(
α+, ρ+

)
=

∑
α+=±

∫ ∞

−∞

du+
√

2π
e
ρ++ρ−−log λ

2 exp
(
−iα+α−e ρ++ρ−−log λ

)
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φin
(
α+, ρ+

)
(1.21)

=
∑
α+=±

∫ ∞

−∞

dx
√

2π
exp

( x
2 − iα

+α−e x
)

φin
(
α+, x + log λ − ρ−

)
,

where in the last line, we introduced x B ρ+ + ρ− − log λ. This equation may be written
in matrix form as(

φout(+, ρ−)
φout(−, ρ−)

)
=

∫ ∞

−∞
dx

(
A(+,+, x) A(+,−, x)
A(−,+, x) A(−,−, x)

)
(
φin

(
+, x + log λ − ρ−

)
φin

(
−, x + log λ − ρ−

) )
(1.22)

where we have defined the quantity

A(γ, δ, x) B 1
√

2π
exp

( x
2 − i γ δ e

x
)
, (1.23)

with γ = ± and δ = ±. This integral equation may further be simplified by moving to
Rindler plane waves:

φout(±, ρ−) = 1
√

2π

∫ ∞

−∞
dk− φout

(
±, k−

)
e ik− ρ

− (1.24)

φin
(
±, x + log λ − ρ−

)
=

1
√

2π

∫ ∞

−∞
dk x̃ φin

(
±, k x̃

)
e−ik x̃(x+log λ−ρ−) (1.25)

A(γ, δ, x) = 1
√

2π

∫ ∞

−∞
dkx A

(
γ, δ, kx

)
e ikx x (1.26)

This allows us to write the above matrix equation (1.22) as(
φout

(
+, k

)
φout

(
−, k

) )
= e−ik log λ

(
A
(
+,+, k

)
A
(
+,−, k

)
A
(
−,+, k

)
A
(
−,−, k

) ) (
φin

(
+, k

)
φin

(
−, k

) )
(1.27)

where A
(
γ, δ, k

)
can be computed from the inverse Fourier transform of (1.23) using a

coordinate change y = e x and the identity∫ ∞

0
dy e iσyy−ik−

1
2 = Γ

(
1
2 − ik

)
e iσ

π
4 ekσ

π
2 , where σ = ± . (1.28)

Carrying out this computation, we find the following S-Matrix:

S
(
kl , λl

)
= e−ikl log λl

(
A
(
+,+, kl

)
A
(
+,−, kl

)
A
(
−,+, kl

)
A
(
−,−, kl

) )
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=
1
√

2π
Γ

(
1
2 − ikl

)
e−ikl log λl

(
e−i π4 e−kl π2 e i π4 ekl π2
e i π4 ekl π2 e−i π4 e−kl π2

)
(1.29)

In this expression, we have reinstated a subscript on k and λ to signify that they depend
on the specific partial wave in question. One may additionally diagonalize this matrix by
noting that

A
(
+,+, k

)
= A

(
−,−, k

)
and A

(
+,−, k

)
= A

(
−,+, k

)
. (1.30)

With this observation, we see that the diagonalization of the S-Matrix is achieved via the
redefinitions

φ+1
(
k
)
= φ+

(
+, k

)
+ φ+

(
−, ρ+

)
, φ+2

(
k
)

= φ+
(
+, k

)
− φ+

(
−, k

)
A1

(
k
)
= A

(
+,+, k

)
+ A

(
+,−, k

)
, A2

(
k
)

= A
(
+,+, k

)
− A

(
+,−, k

)
.

It may be additionally checked that this matrix is unitary. As already mentioned, while
it may not be clear whether this matrix is applicable to the formation and evaporation
of a physical black hole, a conservative statement that can be made with certainty is the
following: all information that is thrown into a large black hole is certainly recovered in its
entirety, at least when the degrees of freedom in question are positions and momenta. It
would be interesting to generalize this to degrees of freedom carrying additional conserved
quantities like electric charge, etc. On the other hand, there is a certain property of the
S-Matrix that may be puzzling at first sight. Positive Rindler energies k imply that the off-
diagonal elements in the S-Matrix are dominant with exponentially suppressed diagonal
elements. While negative Rindler energies reverse roles. One way to interpret this feature
is to think of an eternal black hole where dominant off-diagonal elements suggest that
information about in-going matter from the right exterior is carried mostly by out-going
matter from the left exterior. However, in a physical collapse, there is only one exterior.
It has been suggested by ’t Hooft that one must make an antipodal mapping between the
two exteriors to make contact with the one-sided physical black hole; we discuss this issue
in Section 4.

2 The model
Asking two simple questions allows us to almost entirely determine a quantum mechan-
ical model that corresponds to the black hole scattering matrix of the previous section.
The first question is ‘what kind of a quantum mechanical potential allows for scattering
states?’ The answer is quite simply that it must be an unstable potential. The second
question is ‘what quantummechanical model allows for energy eigenstates that resemble
those of Rindler space?’ The answer, as we will show in this section, is a model of waves
scattering off an inverted harmonic oscillator potential. Using this intuition, we will now
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construct the model and show that it explicitly reproduces the desired S-Matrix. Having
constructed the model, we will then proceed to compare it to 2d string theory models.
The construction of our model and intuition gained from a comparison to 2d string
theory/matrix quantummechanics models [196, 199, 202] allows us to study time delays
and degeneracy of states in the next section.

Inverted quadratic potentials, at a classical level, fill up phase space with hyperbolas as
opposed to ellipses as in the case of standard harmonic oscillator potentials. Since we have
a tower of 4d partial waves in the black hole picture, each of them results in a phase space of
position and momentum and consequently a collection of inverted harmonic oscillators,
one for each partial wave. Since the black hole scattering of ’t Hooft mixes positions and
momenta, we are naturally led to consider the description of scattering in phase space.

2.1 Construction of the model
We first start with a phase space parametrized by variables x lm and plm . To implement
the appropriate scattering off the horizon, we start with the same black hole scattering
algebra: [x̂ lm, p̂l ′m′] = iλδmm′δl l ′ , with λ = c/

(
l 2 + l + 1

)
with c = 8πG/R2. We will

return to how this parameter might naturally arise in a microscopic setting in Section 4.
Standard bases of orthonormal states are |x ; l ,m〉 and |p; l ,m〉; these are coordinate and
momentum eigenstates respectively, with

〈l ,m; x |p; l ,m〉 = 1
√

2πλ
e ipx/λ δmm′δl l ′ . (2.1)

Since our interest is in the scattering of massless particles, it will turn out to be conveni-
ent to use light-cone bases |u±; l ,m〉 which are orthonormal eigenstates of the light-cone
operators:

û±lm =
p̂lm ± x̂ lm√

2
and

[
û+lm, û

−
l ′m′

]
= iλδl l ′δmm′ . (2.2)

While they look similar to creation and annihilation operators of the ordinary harmonic
oscillator, û± are in truth hermitian operators themselves; and are not hermitian conjug-
ate to each other. Therefore, the states |u±; l ,m〉 are reminiscent of coherent states. These
plus and minus bases will be useful in describing the in and outgoing states of the up-
side down harmonic oscillator. For definiteness, we will choose for the ingoing states to
be described in terms of the u+l ,m basis while for the outgoing ones to be in terms of the
u−l ,m basis. As in the previous section, we will work in the simplification where different
oscillators (partial waves) do not interact and will therefore omit the partial wave labels
in all places where they do not teach us anything new. Furthermore, as before, from the
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commutation relations we may define the following inner product on the Hilbert space
of states

〈u+ |u−〉 = 1
√

2πλ
exp

(
iu+u−

λ

)
, (2.3)

that expresses the Fourier transform kernel between the two bases. We may again realize
the algebra if û− acts on 〈u+ |u−〉 and 〈u+ |x〉 as −iλ∂u+ while û+ acts on 〈u− |u+〉 and
〈u− |x〉 as iλ∂u− . To endow the model with dynamics, we now turn to the Hamiltonian
for each oscillator/partial wave

Hlm =
1
2

(
p2
lm − x2

lm

)
=

1
2 (u

+
lmu

−
lm + u−lmu

+
lm) . (2.4)

which may also be written as

H = ∓ i λ
(
u±∂u± +

1
2

)
(2.5)

in the u± bases where we drop the l ,m indices. Physically the wave-function can be taken
to correspond to awave coming from the rightwhich after scattering splits into a transmit-
ted piece that moves on to the left and a reflected piece that returns to the right. The other
wave function can be obtained from this one by a reflection x → −x . The light-cone co-
ordinates describe these left/right movers and simplify the description of scattering since
the Schrödinger equation becomes a first order partial differential equation. Moreover,
the energy eigenfunctions are simply monomials of u± while in the x representation the
energy eigenfunctions are more complicated parabolic cylinder functions. In particular,
for each partial wave the Schrödinger equation in light-cone coordinates is:

i λ ∂tψ±
(
u±, t

)
= ∓i λ

(
u±∂u± + 1/2

)
ψ±

(
u±, t

)
(2.6)

with solutions

ψ±
(
u±, t

)
= e∓t/2 ψ0

±
(
e∓t u±

)
. (2.7)

This can also be written in bra/ket notation as:

〈u± |ψ±(t )〉 = 〈u± |e i
λ Ĥ t |Ψ±0 〉 = e∓

t
2 〈e∓t u± |Ψ±0 〉 . (2.8)

The time evolution for the basis states is given by

e
i
λ H t |u±〉 = e±

t
2 |e±t u±〉
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p
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Figure 1. The scattering diagram.

〈u± |e i
λ H t = e∓

t
2 〈e∓t u± |

〈u+ |e i
λ H t |u−〉 = 1

√
2πλ

e−
t
2 exp

(
i
λ
u+u−e−t

)
(2.9)

In the conventions of Figure 1, it is easy to see that ingoing states can be labelled by the
u+ axis while the outgoing ones by the u− axis. Since the potential is unbounded, the
Hamiltonian has a continuous spectrum. In the u+ representation the energy eigenstates
with eigenvalue ε are

1
√

2πλ
(u+)i ελ − 1

2 .

The singularity at u+ = 0 leads to a two fold doubling of the number of states. This is
understood to be arising from the existence of the two regions (I - II) in the scattering
diagram. From now on we use |ε, α+〉in and |ε, α−〉out for the in and outgoing energy ei-
genstates with the labels α+ = ± , α− = ± to denote the regions I and II. While we have
four labels, we are still only describing waves in the two quadrants (I-II) with two of them
for ingoing waves and two for outgoing ones. The in-states may be written as

〈u+ |ε,+〉in =


1√
2πλ
(u+)i

ε
λ −

1
2 u+ > 0

0 u+ < 0

〈u+ |ε,−〉in =


0 u+ > 0
1√

2πλ
(−u+)i

ε
λ −

1
2 u+ < 0
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describing left and right moving ingoing waves for the regions I and II respectively. Simil-
arly, the natural out basis is written as

〈u− |ε,+〉out =


1√
2πλ
(u−)−i

ε
λ −

1
2 u− > 0

0 u− < 0

〈u− |ε,−〉out =


0 u− > 0
1√

2πλ
(−u−)−i

ε
λ −

1
2 u− < 0

to describe the right and left moving outgoing waves for the regions I and II respectively.
Therefore, time evolution of the energy eigenstates

〈u+ |ε,+〉in(t ) =
1

√
2πλ

e−i
ε
λ t (u+)i

ε
λ −

1
2 =

1
√

2πλ
e−

ρ+

2 e−i
ε
λ t e i

ε
λ ρ
+ (2.10)

implies that they correspond to the Rindler relativistic plane-waves2 moving with the
speed of light in the tortoise-coordinates if we identify the quantum mechanical time
with Rindler time t = τ and the inverted harmonic oscillator energy with the Rind-
ler momentum via κλ = ε . This means that the energy of the eigenstates of the non-
relativistic inverted oscillator, when multiplied by λ, can also be interpreted as the en-
ergy/momentum of the Rindler relativistic plane waves of the previous section. This al-
lows us to write down any ingoing state in terms of these Rindler plane waves. As we have
seen, the unitary operator relating the u± representations is given by the fourier kernel
(2.3) on the whole line that acts on a state as

ψout(u−) =
[
Ŝψin

]
(u−) =

∫ ∞

−∞

du+
√

2πλ
e
−iu+u−

λ ψin(u+). (2.11)

It is now clear that repeating the calculations of the previous section results in the same
S-Matrix, rather trivially. However, tomake the connection to the eigenstates of the inver-
ted harmonic oscillator transparent, we will derive it in a more conventional manner. To
represent the action of the kernel on energy eigenstates, we split it into a 2× 2 matrix that
relates them as follows: (

|ε,+〉out
|ε,−〉out

)
= Ŝ

(
|ε,+〉in
|ε,−〉in

)
(2.12)

The fastest method to find each entry is to compute the in-going energy eigenstates in the
out-going position basis and vice versa using the insertion of a complete set of states of the
form

〈u− |ε 〉in =
∫ ∞

−∞
du+〈u− |u+〉〈u+ |ε 〉in . (2.13)

2Normalised in the u± basis.
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The results are

〈u− |ε,±〉in = λ
iε
λ e

∓iπ
4 e±

πε
2λ Γ

(
1
2 + i

ε

λ

)
(α− |u− |)−i

ε
λ −

1
2

√
2πλ

(2.14)

〈u+ |ε,±〉out = λ
−iε
λ e

±iπ
4 e±

πε
2λ Γ

(
1
2 − i

ε

λ

)
(α+ |u+ |)i

ε
λ −

1
2

√
2πλ

. (2.15)

Each of these equations gives two results for each sign3 to yield:

S = 1
√

2π
exp

(
−i ε

λ
log λ

)
Γ

(
1
2 − i

ε

λ

) (e−i π4 e− πε2λ e i π4 e πε
2λ

e i π4 e πε
2λ e−i π4 e− πε2λ

)
= e iΦ(ε ) exp

(
−i ε

λ
log λ

)©­«
e−iπ/4√

1+e2πε/λ
e iπ/4√

1+e−2πε/λ
e iπ/4√

1+e−2πε/λ
e−iπ/4√

1+e2πε/λ

ª®¬ , (2.16)

with the scattering phaseΦ(ε ) being defined as

Φ(ε ) =

√√√√√√Γ

(
1
2 − i

ε
λ

)
Γ

(
1
2 + i

ε
λ

) . (2.17)

Identifying parameters as kl λl = ε l , we see that this precisely reproduces the S-Matrix
derived in the previous section for every partial wave. In this model, it is clear that the
competition between reflection and transmission coefficients is owed to the energy of the
waves being scattered being larger than the tip of the inverted potential.

2.2 A projective light-cone construction
Although we had good reason to expect such an inverse harmonic oscillator realization of
the black hole S-Matrix, there is, in fact, another way to derive it—using what is called
a projective light-cone construction. This construction was first studied by Dirac and
[209, 210] provide a good modern introduction to the topic. The essential idea is to em-
bed a null hyper-surface inside Minkowski space to study how linear Lorentz symmetries
induce non-linearly realized conformal symmetries on a (Euclidean) section of the embed-
ded surface. This allows us to relate the Rindler Hamiltonian -which can then be related
directly to theHamiltonianof thequantummechanicsmodel that describes the scattering-
with theDilatation operator on the horizon. In a black hole background this construction
3For negative signs, one makes use of (−1)iε/λ−1/2 = e−iπ/2e−πε/λ .
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is of course expected to hold only locally in the near horizon region. We first introduce
X = (x µ, xd−1, xd )with µ = 1, .., d − 2 (note that µ is a Euclidean index), where the light-
cone coordinates are defined as x± = xd ± xd−1. Here, xd serves as the time coordinate 4.
TheMinkowski metric ηMN in these coordinates is given as

ds2 = −dx+dx− + dx µdx µ , (2.18)

which has an SO(d − 1, 1) Lorentz symmetry. There is an isomorphism between the cor-
responding Lorentz algebra and the Euclidean conformal algebra in d − 2 dimensions. To
state this isomorphism, we first label the d − 2-dimensional Euclidean conformal group
generators as:

Pµ = i∂µ corresponding to translations,
Mµν = i

(
x µ∂ν − xν∂µ

)
to rotations,

D = i x µ∂µ to dilatations, and

Kµ = i
(
2x µ(x ν∂ν ) − x2∂µ

)
to special conformal transformations .

The identification is now given as follows:

Jµν = Mµν , Jµ+ = Pµ , Jµ− = Kµ , J+− = D , (2.19)

where the SO(3, 1) Lorentz generators JMN are given by

JMN = xM pN − xN pM . (2.20)

These satisfy the SO(3, 1) w SL(2,C) algebra. In particular the Dilatation operator on the
two dimensional horizon is

D = J+− = x+p− − x−p+ =
1
λ

(
u+u− + u−u+

)
=

1
λ
H , (2.21)

where in the second equality we used u± = x± to connect to the light-cone coordinates
of the previous sub-section and in the third equality, we made use of the back-reaction
relations (1.12). Interestingly enough, we see that an appropriately scaled Dilatation
operator together with the back-reaction relations gives us exactly the Hamiltonian of the
inverted oscillator. The scaling is also neatly realized in the relation between the quantum
mechanical energy ε and the Rindler energy κ to relate the two S-Matrices.

This construction via the light-cone projection could possibly shed more light on the
relation between the black hole S-Matrix and string theoretic amplitudes. In the early
4The null cone is described by the equation X 2 = 0 and a Euclidean section can be given as x+ = f (x µ).
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papers on black hole scattering [31, 188, 189], a striking similarity between the S-Matrix
and stringy amplitudes was observed. The role of the string worldsheet was attributed to
the horizon itself. It was noted that the string tension was imaginary. In the construction
above, we found that the induced conformal symmetry on the horizon is Euclidean
and that the Dilatation operator is mapped to the time-evolution operator (Rindler
Hamiltonian) of the 4d Lorentzian theory. This led us to the unstable potential of the
inverse harmonic oscillator. It may well be that the apparently misplaced factors of i in
the string tension is owed to the Euclidean nature of conformal algebra on the horizon.
It would also be interesting to understand the role of possible infinite-dimensional local
symmetries on the horizon/worldsheet [211, 212] from the point of view of the quantum
mechanicsmodel, elaborating on the null cone construction. We leave this study to future
work.

While the model is seemingly very simple, this is not the first time that such a model
has been considered to be relevant for black hole physics [201, 213]. However, previous
considerations have found that thesemodels donot correspond to2dblackhole formation
owing to an insufficient density of states in the spectrum. Refining these considerations
with the intuition that each oscillator as considered in this section corresponds to a partial
wave of a 4d black hole, we find that our model may indeed be directly related to 4d black
holes formed by physically collapsingmatter. We provide evidence for this in Section 3. In
order to move on to which, however, it will be very useful for us to review the 2d string
theory considerations of the past; this is what we now turn to.

2.3 Relation to matrix models and 2-d string theory

Hermitian Matrix Quantum Mechanics (MQM, henceforth) in the inverted harmonic
oscillator was studied in connection with c = 1 Matrix models and string theory in two
dimensions. For more details, we refer the reader to [195, 214]. Here, we briefly review
these results in order to point out various similarities and differences with our work. The
Lagrangian of MQM is of the form

L =
1
2Tr

[
(DtM )2 + M 2] with Dt = ∂t − iAt , (2.22)

where At is a non-dynamical gauge field. TheN ×N HermitianMatrices transformunder
U (N ) as M → U †MU . The role of the non-dynamical gauge field is to project out the
non-singlet states in the path integral. Diagonalization of the matrices results in a Vander-
monde factor in the path integral measure:

DM = DU
∏
i

dx i
∏
i< j
(x i − x j )2 . (2.23)
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This indicates a natural fermionic redefinition of the wave-functions into Slater determ-
inants (in a first quantised description). The Hamiltonian of the system is, therefore, in
terms of N free fermions:

Ĥ Ψ̃ = −
(
~2

2

N∑
i=1

∂2
x i +

1
2 x2

i

)
Ψ̃ with Ψ̃(x i) =

∏
i< j
(x i − x j )Ψ(x i) . (2.24)

with Ψ̃(x i) being the redefined fermionic wave-functions. Filling up the ‘Fermi-sea’ up
to a level µ, allows for a definition of the vacuum. Clearly, all fermions are subject to the
same chemical potential µ that is typically considered to be below the tip of the inverted
oscillator. A smooth string world-sheet was argued to be produced out of these matrices
in a double-scaling limit µ → 0, ~ → 0 with a fixed inverse string-coupling defined by
the ratio µ/~ ∼ 1/gs . In this double-scaling limit, this theory describes string theory on a
2d linear dilaton background with coordinates described by time t and the Liouville field
φ. The matrix model/harmonic oscillator coordinate x is conjugate to the target space
Liouville field via a non-local integral transformation [215]. In contrast to this picture,
owing to a one-one correspondence between the 2d harmonic oscillators and 4d partial
waves in our model, this integral transform is unnecessary. However, it has been argued
in string theory that only the quadratic tip is relevant in this double-scaling limit, even in
the presence of a generic inverted potential, emphasizing the universality of the quadratic
tip. Whilst we do not have a similar stringy argument, we expect the ubiquitous presence
of the quadratic potential to persist in our construction owing to the ubiquitous presence
of the Rindler horizon in physical black holes formed from collapsing matter. A modern
discourse with emphasis on the target space interpretation of the matrix model as the ef-
fective action of N D0 branes may be found in [216]. A natural second quantized string
field theory description of the system where the fermionic wave-functions are promoted
to fermionic fields may be found in [195, 217, 218] and references therein. A satisfactory
picture of free fermionic scattering in thematrixmodelwas given in [196] via the following
S-Matrix relation:

Ŝ = ib→ f ◦ Ŝ f f ◦ i f→b (2.25)

where even though the asymptotic tachyonic states are bosonic, one is instructed to first
fermionize, then scatter the fermions in the inverted quadratic potential and then to bo-
sonize again. The total S-matrix is unitary if the fermionic scattering is unitary and the
bosonization spans all possible states. The logic of this expression resembles that of ’t
Hooft’s S-matrix, where one first expands a generic asymptotic state into partial waves,
expresses them in terms of near horizon Rindler parameters, scatters them with the given
S-matrix that is similar to the one of 2d string theory before transforming back to the ori-
ginal asymptotic coordinates. At the level of the discussion now, it may already be noted
that one important difference between the 2d string-theoretic interpretation of thematrix
model and our 4d partial wave one is the nature of the transformations that relate asymp-
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totic states to the eigenstates of the inverted harmonic oscillator. Additionally, and per-
hapsmore importantly, in our construction, we have an entire collection of such harmonic
oscillators/matrix models parametrised by l ,m that conspire to make up a 4d black hole.
We present concrete evidence for this by studying time-delays and degeneracy of states in
Section 3. There are further differences between the 2d string theories and our construc-
tion, in order to present which, we need to proceed to a study of the spectrum of states
in our model; this enables us to study growth of states in the two models. Finally, we also
comment on a possible second quantization and appropriateMQM interpretation of our
model in Section 4.

3 Combining the oscillators (partial waves)
On the side of the macroscopic black hole in Section 1, the calculation was done in an
approximation where there is a pre-existing black hole into which degrees of freedom
are thrown (as positions and momenta). It was then evident that the information that
was sent into the black hole is completely recovered since the S-Matrix was unitary.
Furthermore, the back-reaction computation told us exactly how this information is
retrieved: in-going positions as out-going momenta and in-going momenta as out-going
positions. However, a critical standpoint one may take with good reason would be to say
that this is not good enough to tell us if a physical collapse of a black hole and complete
evaporation of it is a unitary process. The calculation has not modeled a collapsing
problem.

The picture to have in a realistic collapse is that of an initial state that evolves in time
to collapse into an intermediate black hole state which then subsequently evaporates to
result in a final state that is related to the initial one by a unitary transformation. Natur-
ally, the corresponding macroscopic picture is that of a strongly time-dependent metric.
Heuristically, one may think of the total S-Matrix of this process as being split as

Ŝ = ŜI −→hor− Ŝhor−→hor+ Ŝhor+→I + (3.1)

where ŜI −→hor− corresponds to evolution from asymptotic past to a (loosely defined)
point in time when gravitational interactions are strong enough for the collapse to begin,
Ŝhor−→hor+ to the piece that captures all the ‘action’—insofar as collapse and evaporation
are concerned—take place and finally Ŝhor+→I + represents the evolution of the evapor-
ated states to future infinity. The horizon—being a teleological construction that can be
defined only if one knows the global structure of spacetime—has a time dependent size
and location in a collapse/evaporation scenario but for us will nevertheless comprise the
locus of spacetime points where the backreaction effects are important. Therefore, we
use subscripts hor± to refer to it, at different points in time, in the above heuristic split.
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Thought of the total evolution this way, it is clear that the most important contribution
arises from the part of the matrix that refers to the region in space-time where gravita-
tional back-reaction cannot be ignored. The other pieces are fairly well-approximated
by quantum field theory on an approximately fixed background. Nevertheless, in the
intermediate stage, the metric is strongly time-dependent.

At the outset, let it be stated that we will not get as far as being able to derive this metric
from the quantummechanics model. Wemay ask if there are generic features of the black
hole that we have come to learn from semi-classical analyses that can also be seen in this
model. We will focus on two important qualitative aspects of (semi-classical) black holes:

Time-delay A physical black hole is not expected to instantaneously radiate informa-
tion that has been thrown into it. There is a time-delaybetween the time atwhich radiation
begins to be received by a distant observer and the time at which one may actually recover
in-going information. Inparticular, given an in-state that collapses into a black hole, we ex-
pect that the time-scale associated to the scattering process is ‘long’. In previous studies of
2d non-critical string theory, it was found that with a single inverted harmonic oscillator,
the associated time-delay is not long enough to have formed a black hole [197, 200, 201].
However, with the recognition that each oscillator corresponds to a partial wave and that
a collection of oscillators represents a 4d black hole, we see that the black hole degeneracy
of states arises from the entire collection while the time-delay associated to each oscillator
is the time spent by an in-going mode in the scattering region; the latter being more re-
miniscent of what one might call ‘scrambling time’.

Approximate thermality As Hawking famously showed [18], the spectrum of
radiation looks largely thermal for a wide range of energies. One way to probe this feature
is via the number operator—which, for a finite temperature system, can be written as
〈N̂ (ω)〉 = ρ(ω) f (ω) with ρ(ω) being the density of states and f (ω) the appropriate
thermal distribution for Fermi/Bose statistics. Given that the S-Matrix is unitary, we
know that this notion of temperature and thermality of the spectrum is only approximate.
Notwithstanding this, a detector at future infinity should register this approximately
thermal distribution for a large frequency range.

In what follows, we will study whether the S-Matrix corresponding to our collection of
oscillators in the model presented in Section 2 displays both these properties.

3.1 Time delays and degeneracy of states
We have seen that the total scattering matrix associated to four-dimensional gravity can
be seen as arising via a collection of inverted harmonic oscillators, each with a different al-
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gebra differentiated by λl in, say, (1.13). One canonical way to study life-times in scattering
problems in quantummechanics is via the time-delay matrix, which is defined as:

∆tab = Re
(
i
∑
c

S†(kl , λl )ac
(
dS(kl , λl )

dk

)
cb

)
. (3.2)

Eachmatrix element above encodes the time spent by a wave of energy kl in the scattering
region in the corresponding channel. The trace of this matrix, called Wigner’s time delay
τl , captures the total characteristic time-scale associated to the entire scattering process.
Said another way, should we start with a generic in-state that undergoes scattering and is
then retrieved in the asymptotic future as some out-state, the trace of the above matrix
associates a life-time to the intermediate state [219, 220]. For large energies kl , using
S
(
kl , λl

)
in (1.29), the Wigner time-delay associated to the scattering of a single oscillator

can be calculated to scale as τ ∼ log
(
λl kl

)
. This is the same result as was found in the

2d string theory literature [197, 200, 201] and was argued to not be long-enough for
black hole formation. Based on these black hole non-formation results in the matrix
quantum mechanics, it was suggested that studying the non-singlet sectors would shed
light on 2d black hole formation[205, 221]. Despite some efforts in relating the adjoint
representations with long-string states [213], a satisfactory Lorentzian description is
still missing. Anticipating our result prematurely, our model does not suffer from these
difficulties as it is to describe a 4d black hole with a collection of oscillators. Merely
the s-wave oscillator in our model would mimic the singlet sector in matrix quantum
mechanics5.

The above time delay τ may also be interpreted as a density of states associated to
the system. The inverted potential under consideration implies a continuous spectrum.
In order to discretize which, to derive the density of states, the system must be stabil-
ized—by putting it in a box of size Λ, for instance. Demanding that the wavefunctions
vanish at the wall and regulating the result by subtracting any cut-off dependent quant-
ities, the density of states may be computed from the scattering phase Φ defined via
S

(
kl , λl

)
= exp

[
i Φ

(
kl , λl

) ]
as ρ(ε l ) = dΦ/dε l [222]. The result is exactly the same

as what we get from computing the time delay using the scattering matrix (1.29) and the
time-delay equation (3.2) to find a Di-Gamma function ψ(0)

ρ(ε l ) = τl =
2
λl

Re
[
ψ(0)

(
1
2 − i

ε l
λl

)
+ log(λl )

]
= Re


∞∑
n=0

2

iε l − λl
(
n + 1

2

) + 2
λl

log(λl )
 . (3.3)

5It would be very interesting if higher l modes can be described as non-singlets of a matrix model.
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This density of statesmay be used to define a partition function for each partial wave (with
Hamiltonian Ĥlm), where the energy eigenstates contributing to the partition function
will have been picked out by the poles of the density ρ(ε l ). However, in our model, we
see that there are many oscillators in question. Should we start with an in-state made of
a collection of all oscillators instead of a single partial wave, we may first write down the
total S-Matrix as a product of the individual oscillators as

Stot =
∞∏
l=0
S

(
kl , λl

)
, (3.4)

assuming that different partial waves do not interact. One may correct for this by adding
interaction terms between different oscillators. To compute the time-delay associated to
a scattering of some in-state specified by a given total energy involves an appropriately
definedWigner time-delay matrix as

τtot = Tr
[
Re

(
−i

(
S†tot

)
ac

(
dStot
dEtot

)
cb

)]
. (3.5)

where this equation makes sense only if we have defined a common time evolution and
unit of energy for the total system/collection of partial waves. We will elaborate on this
in a while. Now, even in the spherically symmetric approximation, to write the total S-
Matrix as a function of merely one coarse-grained energy Etot is not a uniquely defined
procedure. However, our intuition that each partial wave may be thought of as a single-
particle oscillator allows us to compute the density of states in a combinatorial fashion.
We will see that the degeneracy of states associated to an intermediate long-lived thermal
state arises from the variousways inwhich onemight distribute a given total energy among
the many available oscillators. Given a total energy Etot, we now have the freedom to de-
scribe many states, each with a different distribution of energies into the various available
oscillators. From the poles in the density defined in (3.3), we see that each oscillator has
energies quantized as6

ε l = iλl
(
nl +

1
2

)
. (3.6)

This allows us to measure energies in units of c , where c is defined implicitly via
λl

(
l 2 + l + 1

)
= c . Therefore, in these units, the energies are ‘quantized’ as

ε l
i c
=

1
l 2 + l + 1

(
nl +

1
2

)
. (3.7)

6The seemingly disconcerting factor of i is just owed to the fact that we have scattering states as opposed
to bound ones.
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Now, given some total energy Etot, we see that any oscillator may be populated with a
single particle state carrying energy such that nl = Etot

(
l 2 + l + 1

)
, where we leave out the

half integer piece for simplicity. Importantly, we see that there exist ‘special’ states coming
from very large l -modes even for very small energies. For example, an energy of 1 could
arise from a very large l -mode with the excitation given by nl =

(
l 2 + l + 1

)
. This is rather

unsatisfactory for one expects that it costs a lot of energy to create such states. Moreover,
there is an interplay between the log term in the growth of states and the behaviour of
the DiGamma function that we are unable to satisfactorily take into account. There is an
additional problem which is that the energy of each partial wave is measured in different
units that are l dependent; this means that they also evolve with different times. We thus
conclude that this is not the correct way to combine the different oscillators.

There is a rather beautiful way to resolve all these three problems via a simple change
of variables that we turn to next. It will allow us to interpret the above cost of energy
as relative shifts of energies with respect to a common ground state. Additionally these
relative shifts also cure the above interplay; there will simply be no log term in the density
of states. Finally, this will also introduce a canonical time evolution for the entire system,
resulting in one common unit of energy.

3.2 Exponential degeneracy for the collection of oscillators
In order to combine the different oscillators and define aHamiltonian for the total system
we need to get rid of the l dependence in the units of energy used for different oscillators.
It turns out that this is possible by rewriting the black hole algebra. Moreover using these
new variables, the relation between ’t Hooft’s black hole S-Matrix for an individual partial
wave and the one of 2d string theory of type II [196] can be made manifest. To make this
connection transparent, we again start with a collection of inverse harmonic oscillators
and the following Hamiltonian for the total system

Htot =
∑
l ,m

1
2

(
p̃2
lm − x̃2

lm

)
=

∑
l ,m

1
2

(
ũ+lm ũ

−
lm + ũ−lm ũ

+
lm

)
, (3.8)

but this time imposing the usual λ-independent commutation relations [ũ+lm ũ
−
l ′m′] =

iδl l ′δmm′ . The λ dependence will come through via an assignment of a chemical potential
µ(λ) for each oscillator; this assignment is to be thought of as a different vacuum energy
for each partial wave. Following [196], onemay then derive an S-Matrix for this theory. To
match this to the one of ’tHooft for any given partial wave, onemust identify the chemical
potential and energy parameters as µ = 1/λ and the Rindler energy k = ω + µ = ω + 1/λ.
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It is worth noting that in the reference cited above, only energies below the tip of the inver-
ted potential were considered, resulting in a dominant reflection coefficient. In contrast
’t Hooft’s partial waves carry energies higher than the one set by the tip of the potential.
Consequently, to make an appropriate identification of 2d string theory with the partial
wave S-Matrix, an interchanging of the reflection and transmission coefficients is necessary.
From a matrix quantum mechanics point of view, it may additionally be noted that the
partial wave parameter λ may be absorbed in either the Planck’s constant or the chemical
potential to leave the string coupling of each partial wave fixed as gs ∼ ~/µ ∼ c/(l 2+ l +1).
This indicates that as we increase the size of the black hole or we consider higher l partial
waves the corresponding string coupling becomes perturbatively small.
Writing out the energies of the various partial waves with the above identification, we have

kl = ωl +
l 2 + l + 1

c
, and ERindler

tot =
∑
l

kl . (3.9)

At this stage, the labelsωl are continuous energies. However, discretizing the spectrum as
before, by putting the system in a box, we arrive at discrete energies7

c Etot =
∑
l

[
i c

(
nl +

1
2

)
+ l 2 + l + 1

]
, (3.10)

for every individual oscillator. Without a detour into this 2d string theory literature, we
may have alternatively arrived at this spectrum from the quantum mechanics model in 2
via the following identifications:

ε l −→ 1 + λl ωl and λl −→
1
µl
. (3.11)

While the model presented in Section 2 makes the algebra manifest, the above iden-
tification of parameters to relate to the model with a λ-independent algebra makes the
physical interpretation of the relative shifts in energies between the partial waves mani-
fest and allows for a consistent definition of time and energy for the total system. This
allows us to rewrite our S-Matrix S(ε l/λl ) as a function of two variables ωl and µl as
S(ωl , µl ). With this change of variables, we recover exactly the S-Matrix of the 2d matrix
models discussed in the literature and therefore, now allows us to interpret µ as a chem-
ical potential of the theory. However, since µl is now l dependent in our collection of
models, it gives us a natural way to interpret how the combined system of oscillators be-
have. To excite a very large l oscillator, one first has to provide sufficient energy that is
equal to µl ∼

(
l 2 + l + 1

)
. Therefore, we naturally see that exciting a large l -oscillator

7Note again the relative factor of i that indicates that the harmonic oscillator levels have to do with decay-
ing/scattering states while l ’s are bound states.
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costs energy! The physical spectrum may be depicted as in Figure 2, where we depict an
arbitrarily chosen ground-state energy with E = 0, each oscillator labelled by l and excit-
ations above them by nl . The various oscillators are shifted by a chemical potential. And
the vacuum is defined to be the one with all Rindler energies kl set to zero. Now, given an
initial state carrying a total energy of Etot, we are left with a degeneracy of states that may
be formed by distributing this energy among the many available oscillators. The larger
this energy, the more oscillators we may distribute it into and hence the larger the degen-
eracy. The degeneracy associated to equation (3.10), without the chemical potential shift,
is merely asking for the number of sets of all integers {nl } that add up to Etot. These are
the celebrated partitions into integers that—as Ramanujan showed—grow exponentially.
Clearly, for large total energy, our degeneracy grows similarly at leading order. However,
the chemical potential shift slows down the growth polynomially compared to the par-
titioning into integers owing to the fact that for a given Etot, only approximately

√
Etot

number of oscillators are available. It is worthwhile to note that, in this simplistic ana-
lysis, we have ignored the degeneracy arising from the m quantum number; accounting
for which clearly increases the growth of states. Therefore, we already see that the model
allows for collapse in that it supports an exponential growth of density of states! This
shares striking resemblance to the Hagedorn growth of density of states in black holes.

Figure 2. Spectrum of the collection of oscillat-
ors. The red curve is indicative of the potential
with the horizontal solid lines indicating the vari-
ous energy levels available.

As a conservative estimate, wemay start
with some total energy Etot and a fixed set
of oscillators that are allowed to contribute
to it. This allows us to sum over the con-
tribution arising from the

(
l 2 + l + 1

)
c−1

piece in (3.10) to be left with some subtrac-
ted total energy Ẽtot that is to be distrib-
uted among the nl excitations over each of
the available oscillators. Clearly, this grows
exponentially much as the partitions into
integers does, with the subtracted energy
Ẽtot. This is given by the famous Hardy-
Ramanujan formula for the growth of par-
titions of integers:

p(n) ∼ exp
(
π

√
2 n
3

)
. (3.12)

Identifying n with the integer part of Ẽtot,
we see the desired exponential growth.
And considering that the same total energy
may be gained from choosing different sets
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of oscillators to start with, increases this degeneracy further, in equal measure. While
imposing the antipodal identification of ’t Hooft—which we discuss in Section 4—re-
duces this degeneracy, the exponential growth of states remains. How one may derive the
Schwarzschild entropy from this degeneracy requires a truly microscopic understanding
of the parameter λ. We suggest a way forward towards the end of this chapter but leave a
careful study to future work.

4 Discussion
In this chapter, we have constructed a quantum mechanics model that reproduces ’t
Hooft’s black hole S-Matrix for every partial wave using which, we provided non-trivial
evidence that it corresponds to a black hole S-Matrix; one that can be formed in a
time-dependent collapsing process owing to the appropriate density of states. Several
questions, though, remain unanswered. The only degrees of freedom in question were
momenta and positions of ingoing modes. One may add various standard model charges,
spin, etc. to see how information may be retrieved by the asymptotic observer.

Dynamically speaking, gravitational evolution is expected to be very complicated in
real-world scenarios. We have merely approximated it to one where different spherical
harmonics do not interact. While incorporating these interactions may be very difficult
to conceive in gravity, they are rather straightforward to implement in the quantum
mechanical model; one merely introduces interaction terms coupling different oscillators.
Exactly what the nature of these interactions is, is still left open.

The complete dynamics of the black hole includes a change in mass of the black hole
during the scattering process. In this chapter, we chose towork in an approximationwhere
this is ignored. The corresponding approximation in the inverted oscillators is that the po-
tential is not affected by the scattering waves. In reality, of course, the quadratic potential
changes due to the waves that scatter off it. The change in the form of the inverted po-
tential due to a scattering mode can be calculated [223]. We hope to work on this in the
future and we think that this gives us a natural way to incorporate the changes to themass
of the black hole. Another possible avenue for future work is to realise a trulymicroscopic
description of the S-matrix, either in the form of amatrixmodel or a non-local spinmodel
having a finite-dimensionalHilbert space from the outset, where the inverse harmonic po-
tential or emergent SL(2,R) symmetries are expected to arise after an averaging over the
interactions between the microscopic degrees of freedom. Some models with these prop-
erties can be found in [224–227].

Antipodal entanglement Unitarity of the S-Matrix demands that both the left and
right exteriors in the two-sided Penrose diagram need to be accounted for; they capture
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Figure 3. The Penrose diagram. Each point in the conformal diagram originally cor-
responds to a different sphere. After antipodal identification, the points (u+, u−) and
(−u+,−u−) correspond to antipodal points on a common sphere as given in (4.1). The
red lines indicate the arrows of time.

the transmitted and reflected pieces of the wave-function, respectively. In the quantum
mechanics model, there appears to be an ambiguity of how to associate the two regions
I and II of the scattering diagram in Fig. 1 to the two exteriors of the Penrose diagram.
We saw, in the previous section, that the quantum mechanical model appears to support
the creation of physical black holes by exciting appropriate oscillators. Therefore, in this
picture there is necessarily only one physical exterior. To resolve the issue of two exteriors,
it was proposed that one must make an antipodal identification on the Penrose diagram
[191]. Unitarity is arguably a better physical consistency condition than a demand of the
maximal analytic extension. The precise identification is given by x → J x with8

J : (u+, u−, θ, φ) ←→
(
−u+,−u−, π − θ, π + φ

)
. (4.1)

Note that J has no fixed points and is also an involution, in that J 2 = 1. Such an identific-
ation implies that spheres on antipodal points in the Penrose diagram are identified with
each other. In particular, this means

u±(θ, φ) = −u±(π − θ, π + φ) and p±(θ, φ) = −p±(π − θ, π + φ) .

Therefore, noting that the spherical harmonics then obey Yl ,m(π − θ, π + φ) =

(−1)lYl ,m(θ, φ), we see that only those modes with an l that is odd contribute. However,
owing to the validity of the S-Matrix only in the region of space-time that is near the ho-
rizon, this identification is presumably valid only in this region. Global identifications of
8Note that the simpler mapping of identifying points in I , I I via (u+, u−, θ, φ) ↔ (−u+,−u−, θ, φ) is sin-
gular on the axis u+, u− = 0.
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the two exteriors have been considered in the past [228–230]. The physics of the scatter-
ing, with this identification is now clear. In-goingwave-packetsmove towards the horizon
where gravitational back-reaction is strongest according to an asymptotic observer. Most
of the information then passes through the antipodal region and a small fraction is re-
flected back. Turning on quantum mechanics implies that ingoing position is imprinted
on outgoing momenta and consequently, an highly localised ingoing wave-packet trans-
forms into two outgoing pieces—transmitted and reflected ones—but both having highly
localised momenta. Their positions, however, are highly de-localised. This is how large
wavelengthHawking particles are produced out of short wavelength wave-packets and an
IR-UV connection seems to be at play. Interestingly, the maximal entanglement between
the antipodal out-going modes suggests a wormhole connecting each pair [231]; the geo-
metric wormhole connects the reflected and transmitted Hilbert spaces. Furthermore, as
the study of the Wigner time-delay showed, the reflected and transmitted pieces arrive
with a time-delay that scales logarithmically in the energy of the in-going wave. This be-
haviour appears to be very closely related to scrambling time (not the lifetime of the black
hole) andwe leave amore detailed investigation of this feature to the future. Onemay also
wonder why transmitted pieces dominate the reflected ones. It may be that the attractive
nature of gravity is the actor behind the scene.

Approximate thermality Wenow turn to the issue of thermality of the radiated spec-
trum. Given a number density, say N in(k) as a function of the energy k, we know that
there is a unitary matrix that relates it to radiated spectrum. This unitary matrix is pre-
cisely the S-Matrix of the theory. The relation between the in and out spectra is given by
N out(k) = S†N in(k)S . Using the explicit expression for the S-Matrix (1.29), we find

N out
++ (k) =

N in
++(k)

1 + e2πk
+

N in
−−(k)

1 + e−2πk
(4.2)

N out
−− (k) =

N in
−−(k)

1 + e2πk
+

N in
++(k)

1 + e−2πk
, (4.3)

where N in
++ and N in

−− are the in-going number densities from either side of the potential.
We see that indeed the scattered pulse emerges with thermal factors 1+ e±2πk . For most of
the radiated spectrum to actually be thermal, we see that N in

++ and N in
−− must be constant

over a large range of energies. This was observed to be the case in the context of 2d string
theory, starting from a coherent pulse, seen as an excitation over an appropriate Fermi-sea
vacuum[197, 200, 201]. In our context, sincewedonot yet have a first principles construc-
tion of the appropriate second quantised theory, this in-statemay be chosen. For instance,
a simple pulse with awide-rectangular shapewould suffice. Onemay hope to create such a
pulse microscopically, by going to the second quantised description and creating a coher-
ent state. Alternatively, one may hope to realize a matrix quantummechanics model that
realizes a field theory in the limit of large number of particles. After all, we know that each
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oscillator in our model really corresponds to a partial wave and not a single particle in the
four dimensional black hole picture.

Second �antization v/s Matrix �antum Mechanics Given the quantummech-
anical model we have studied in this chapter, we may naively promote the wave-functions
ψlm into fields to obtain a second quantized Lagrangian:

L =
∑
l ,m

∫ ∞

−∞
du± ψ†lm

(
u±, t

) [
i∂t +

i
2
(
u±∂u± + ∂u±u±

)
+ µl

]
ψlm(u±, t ) .

With a change of variables to go to Rindler coordinates,

ψ
(in/out)
lm (α±, ρ±, t ) = e ρ

±/2ψlm(u± = α±e ρ
±
, t ) ,

the Lagrangian becomes relativistic

L =
∑
l ,m

∫ ∞

−∞
dρ±

∑
α±=1,2

Ψ
†(in/out)
lm

(
α±, ρ±, t

) (
i∂t − i∂ρ± + µl

)
Ψ
(in/out)
lm

(
α±, ρ, t

)
,

where the label ‘in’ (out) corresponds to the + (−) sign. The form of the Lagrangian be-
ing first order in derivatives indicates that the Rindler fields are naturally fermionic. In
this description we have a collection of different species of fermionic fields labelled by the
{l ,m} indices. And the interaction between different harmonics would correspond to in-
teracting fermions of the kind above. The conceptual trouble with this approach is that
each “particle” to be promoted to a field is in reality a partial wave as can be seen from the
four-dimensional picture. Therefore, second quantizing this model may not be straight-
forward [192]. It appears to be more appealing to think of each partial wave as actually
arising from an N -particle matrix quantum mechanics model which in the large-N limit
yields a second quantized description. Since N counts the number of degrees of freedom,
it is naturally related to c via

1
N 2 ∼ c =

8πG
R2 ∼

l 2
P
R2 .

Therefore, N appears to count the truly microscopic Planckian degrees of freedom that
the black hole is composed of. The collection of partial waves describing the Schwarzschild
black holewould then be a collection of suchN -particlematrix quantummechanicsmod-
els. Another possibility is to describe the total system in terms of a singlematrixmodel but
including higher representations/non-singlet states to describe the higher l modes. This
seems promising because if one fixes the ground state energy of the lowest l = 0 (or l = 1
after antipodal) oscillator, the higher l oscillators have missing poles in their density of
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states compared to the l = 0, much similar to what was found for the adjoint and higher
representations in [232]. Finally we note that we can combine the chemical potential with
the oscillator Hamiltonian to get

Ĥtot =
∑
l ,m

[
1
2

(
p̂2
lm − x̂2

lm

)
+

R2

8πG

(
L̂2 + 1

)]
,

with L̂2 =
∑

i L̂2
i giving the magnitude of angular momentum of each harmonic. One

can then perform a matrix regularisation of the spherical harmonics following [233, 234]
which replaces the spherical harmonics Ylm(θ, φ) with N × N matrices Ylm where l ≤
N − 1. This naturally sets a cut-off on the spherical harmonics from the onset. To sharpen
any microscopic statements about the S-matrix, one might first need to derive an MQM
model that regulates Planckian effects.





Chapter V

Exploring the principles of semi-holography

Field theory duals appear to count states corresponding to various black holes aswe saw
in Chapters I, II and III. On the other hand—as we saw in Chapter IV—dynamics

of black holes appear to be better captured by their event horizons which were easier
to study in the Schwarzschild background; where even the existence of an appropriate
field theory dual is a challenging open question. Bottom-up holography provides for an
interesting middle ground to bridge this gap. Several examples of renormalization group
(RG) flows between fixed points (CFTs) have been studied in the literature. Studying
these UV-IR flows at intermediate scales facilitates an ideal ground for two purposes.
Firstly, it allows us to understand gravitational dynamics in various states (including the
thermal ones corresponding to black holes) as radial evolutions in the bulk. After all,
the physics of the horizon is expected to kick in, not arbitrarily close to the horizon, but
at a scale that is set by the size of the horizon; there is emergent physics at this scale, if
one were to approach it from the vacuum at infinity. Secondly, the converse problem of
understanding QCD-like theories at intermediate scales using the bulk becomes more
tractable via classical gravity equations, in the large N limit. As advertised in the Preface,
we will largely focus on the field theoretic aspects in this chapter, using semi-holography.

The organisation of this chapter is as follows. In Section 1, we will review the present
formulation of semi-holography and then argue for the need for generalising it in order for
it to be an effective theory in a wide range of energy scales. In particular, we will advocate
that we need a more democratic formulation where we do not give precedence to either
the perturbative or to the non-perturbative degrees of freedom. Although we will call the
perturbative sector as the ultraviolet sector and non-perturbative sector as the infrared
sector, it is to be noted that non-perturbative effects are present even at high energy
scales although these are suppressed. In principle, both sectors contribute at any energy
scale although one of the sectors may give dominant contributions at a specific energy
scale. Since semi-holography is a framework that is constructed at intermediate energy
scales, it better treats both the ultraviolet and infrared sectors, or rather the perturbative
and non-perturbative sectors in a democratic manner. Eventually the parameters of
the non-perturbative sector should be determined (perhaps not always uniquely) by
the perturbative sector or vice versa. We will argue this democratic formulation is actu-
ally necessary since otherwise we cannot perform non-perturbative renormalisation of

113
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the effective parameters. Wewill also sketchhow the democratic formulation shouldwork.

In Section 2, we will show how the requirement that there exists a local and conserved
energy-momentum tensor constrains the effective parameters and semi-holographic
coupling between the perturbative and the non-perturbative sectors. Thus we will realise
a concrete democratic formulation of semi-holography at arbitrary energy scales.

In Section 3, we will illustrate the construction of semi-holography with a bi-
holographic toy model in which the perturbative UV dynamics of semi-holography will
be replaced by a strongly coupled holographic theory that admits a classical gravity de-
scription on its own. The infrared sector will be even more strongly coupled and also
holographic. We will explicitly demonstrate the following features.

• Some simple consistency conditions can determine the hard-soft couplings between
the two sectors and the parameters of the IR theory as functions of the parameters
of the UV theory.

• The behaviour of the hard-soft couplings in the limit Λ→ ∞ is state-independent
and can be obtained from the construction of the vacuum state. However, the run-
ning of the hard-soft couplings with the scale is state-dependent.

• Theparameters defining the holographic IR classical gravity theory is fixed once and
for all through the construction of the vacuum state of the full theory. However,
the gravitational fields of this IR classical gravity theory undergo state-dependent
field redefinitions in excited states.

• TheUVand IR classical gravity theories are both sick in the sense that the respective
geometries have edge singularities (not naked curvature singularities though) arising
from geodesic incompleteness. The possibility of smooth gluing of their respective
edges that removes the singularities in both plays a major role in determining the
full theory.

We will also examine how we can define RG flow in the bi-holographic theory.

In Section 4, we will indicate how the steps of the construction of the bi-holographic
toy theory can be applied also to the construction of the semi-holographic framework for
QCD and also discuss the complications involved. Finally, we will conclude with discus-
sions on the potential phenomenological applications of the bi-holographic framework.
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1 Democratising semiholography

1.1 A brief review

Let us begin by sketching a first construction of a semi-holographicmodel for pure largeN
QCD based on a similar model [48, 55, 235] for the quark-gluon plasma (QGP) formed
in heavy-ion collisions. The effective action for pure large N QCD at a scale Λ can be
proposed to be:

SQCD[Aa
µ,Λ] = SpQCD[Aa

µ,Λ]

+W hQCD
[
g̃µν [Aa

µ,Λ], δ g̃YM[Aa
µ,Λ], θ̃[Aa

µ,Λ]
]
, (1.1)

where the exact Wilsonian effective action of QCD denoted as SQCD at a scale Λ is
composed of two parts: (i) the perturbative QCD effective action SpQCD at the scale
Λ obtained from Feynman diagrams, and (ii) non-perturbative terms (leading to con-
finement) which cannot be obtained from Feynman diagrams but can be described by
an emergent holographic strongly coupled QCD-like theory. The latter part of the full
action is then given byW hQCD, the generating functional of the connected correlation
functions of the emergent strongly coupled holographic QCD-like theory whose mar-
ginal couplings—namely g̃YM and θ̃ (or rather, their expansions around infinity and zero
respectively) and the effective background metric g̃µν in which it lives are functionals
of the perturbative gauge fields Aa

µ and the scale Λ. In order that a holographic theory
can capture non-perturbative effects at even high energy scales, it must have a large
number of fields as we will discuss in Section 4. Nevertheless, at high energy scales the
non-perturbative contributions are insignificant. We will argue that the semi-holographic
construction can be useful at intermediate energy scales where the non-perturbative
effects can also be captured by a few gravitational field via holography to a good degree of
approximation.

It is to be noted thatW hQCD should be defined with an appropriate vacuum sub-
traction so that it vanishes when the modifications in the couplings δ g̃YM and θ̃ vanish,
and when1 g̃µν = ηµν . Asymptotically when Λ → ∞, the sources for the emergent
holographic QCD are also expected to vanish, so that the full action receives perturbative
contributions almost exclusively. In the infra-red, however, the holographic contributions
are expected to dominate.

In the large N limit, the emergent holographic QCD is expected to be described by a

1More generally, the subtraction should ensure thatW hQCD vanishes when g̃µν is identical to the fixed
background metric where all the degrees of freedom live.
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classical gravitational theory. Therefore,

W hQCD
[
g̃µν [Aa

µ], δ g̃YM[Aa
µ], θ̃YM[Aa

µ]
]
= Son−shell

g r av

[
g̃µν = g (b)µν ,

δ g̃YM = φ
(b), θ̃ = χ(b)

]
, (1.2)

i.e. W hQCD is to be identified with the on-shell action Son−shell
g r av of an appropriate five-

dimensional classical gravity theory consisting of at least three fields, namely the metric
GMN , the dilaton Φ and the axion X. Furthermore, the leading behaviour of the bulk
metric is given by its identificationwith the boundarymetric g (b)µν , whilst δ g̃YM is identified
with the boundary value φ(b) of the bulk dilaton Φ and θ̃ is identified with the boundary
value χ(b) of the bulk axion X. For reasons that will soon be elucidated, one may now
postulate that:

g (b)µν = ηµν + γt
pQCD
µν , with tpQCD

µν =
2
√−g

δSpQCD[Aa
µ,Λ]

δ gµν
|gµν=ηµν (1.3a)

φ(b) = βℎpQCD, with ℎpQCD =
δSpQCD[Aa

µ,Λ]
δ gYM[Λ]

, (1.3b)

χ(b) = αapQCD, with apQCD =
δSpQCD[Aa

µ,Λ]
δθ

. (1.3c)

The couplings α, β and γ have been called hard-soft couplings. These of course cannot
be new independent parameters, but rather of the functional forms (1/Λ4) f (ΛQCD/Λ)
which should be derived from first principles. Furthermore, f (0)must be finite so that the
non-perturbative contributions to the full action vanish in the limitΛ→∞ reproducing
asymptotic freedom. If SpQCD were just the classical Yang-Mills action, then [55]:

tpQCD
µν =

1
Nc

tr
(
FµαF α

ν −
1
4ηµν FαβF

αβ

)
,

ℎpQCD =
1

4Nc
tr

(
FαβF αβ

)
,

apQCD =
1

4Nc
tr

(
Fαβ F̃ αβ

)
. (1.4)

It can be readily shown that in consistency with the variational principle, the full semi-
holographic action (1.1) can be written in the following form:

S[Aa
µ,Λ] = SpQCD[Aa

µ,Λ] +
1
2

∫
d4x T µν

g (b)µν +
∫

d4xHφ(b) +
∫

d4x A χ(b) , (1.5)
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where

T µν
= 2

δSon−shell
g r av

δ g (b)µν
, H =

δSon−shell
g r av

δφ(b)
, A =

δSon−shell
g r av

δ χ(b)
, (1.6)

are the self-consistent expectation values of the holographic operators which are non-
linear and non-local functionals of the sources2 g (b)µν , φ(b) and χ(b).

The reason for postulating the hard-soft interactions to be of the forms given by equa-
tions (1.3a) to (1.3c) can now be readily explained. We need to solve for the full dynamics
in an iterative fashion (assuming that the iteration indeed converges). This means that
the dynamics of the perturbative sector is modified by the holographic operators which
appear as self-consistent mean fields as in (1.5). The holographic operators are in turn ob-
tained by solving classical gravity equations with sources given by (1.3a), (1.3b) and (1.3c),
which are determined by the perturbative gauge fields. It should therefore be guaranteed
that both sectors must be solvable at each step in the iteration including perturbative
quantum effects. Therefore, both the perturbative and non-perturbative sectors should
be renormalizable at each step of the iteration so that one can solve for the dynamics of
both without introducing any new coupling. The modified perturbative action (1.5) in
the limit Λ → ∞ is indeed a marginal deformation of the standard perturbative QCD
action since the added terms involve t cl

µν , ℎcl and acl which are all possible (scalar and
tensor) gauge-invariant operators of mass dimension four. Furthermore, this is also why
the gravitational theory contains sources for only the dimension four operators as in
(1.2), despite the possible existence of many other (massive) gravitational fields generating
(non-perturbative) condensates of higher dimensional operators without additional
sources.

Finally, it is important to reiterate that the importance of the hard-soft couplings given
in (1.3a), (1.3b) and (1.3c) relies on the emergence of an intermediate scale ΛI > ΛQCD
between the energy scales where we can rely exclusively on either perturbative QCD
or chiral Lagrangian effective field theories which can be reproduced from holographic
models such as [37–39]. This intermediate scale ΛI is most likely where the perturbative
gauge coupling is of order unity but not too large. At this intermediate scale itself, the
hard-soft couplings should give significant modifications to perturbative dynamics.

In the context of an application to QGP, SpQCD can be replaced by the glasma effective
action, i.e. a classical Yang-Mills action for the small-x saturated gluons (which form a
weakly coupled over-occupied system) with colour sources provided by the large-x3 (x >
2It is assumed here that the full theory lives in flatMinkowski space withmetric ηµν . It is easy to generalise
the construction to any metric on which the full degrees of freedom live. For details, see [55].

3Here x denotes the fraction of hadronic longitudinal momentum carried by the partonic gluon.
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x0) gluons (frozen on the time-scale of the collisions) with a distribution function whose
evolution with the cut-off x0 can be followed perturbatively [236–238]. In this case, one
can show that (i) the full system has a well-defined local energy momentum tensor that is
conserved in flat space, and (ii) the iterative method of solving the full dynamics indeed
converges at least in some simple test cases [55].

1.2 Why and how should we democratise semi-holography?
The present formulation of semi-holography as discussed above makes two central as-
sumptions which are:

1. The perturbative sector and the holographic theory dual to the non-perturbative
sector are both deformed marginally with scalar and tensorial couplings which are
functionals of the operators of the other sector.

2. The full action (as for instance (1.1) in the case of pure large-N QCD) can bewritten
as a functional of the perturbative fields only.4

Inwhat follows, wewill argue that if semi-holography needs towork in the sense of a non-
perturbative effective framework, wemust replace the second assumptionwith the simple
assertion that:

• The full theory must have a conserved and local energy-momentum tensor which
can be constructed without the need to know the explicit Lagrangian descriptions
of the effective ultraviolet or infrared dynamics.

It is to be noted that the formulation discussed above already leads to a local and conserved
energy-momentum tensor of the combined system which can be constructed explicitly.
As shown in [55], this can be obtained from the complete action (1.1) by differentiating
it with respect to the fixed background gµν on which the full system lives. One can
prove that this energy-momentum tensor is conserved in the fixed background gµν
when the full system is solved, i.e when the Ward identity of the CFT in the dynamical
background g̃µν and the modified dynamical equations of the perturbative sector are
satisfied simultaneously. The crucial point is that we must not insist that we can derive
the full energy-momentum tensor from an action such as (1.1) which is a functional of
the ultraviolet fields only. We will argue that such a demand automatically arises from a
democratic formulation of semi-holography where the full energy-momentum tensor can
be constructed directly from the Ward identities of the perturbative and non-perturbative
4Note thatW hQCD in (1.1) is after all a functional of the sources alone which in turn are functionals of the
perturbative gauge fields. Furthermore, the term perturbative fieldsmay also seem problematic because
after their coupling with the non-perturbative sector, these do not remain strictly perturbative. Never-
theless, if we solve the two sectors via iteration as discussed before, we can treat the dynamics of these
fields perturbatively (with self-consistently modified couplings) at each step of the iteration as discussed
before.
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sectors in respective background metrics and sources that are determined by the operators of
the other sector. This full energy-momentum tensor should be conserved locally in the fixed
background metric where the full system lives.

We lay out our reasons for advocating democratic formulation of semi-holography.
The first one is somewhat philosophical. In the case we are assuming that the strongly
coupled non-perturbative sector is described by a holographically dual classical gravity
theory, we are not making any explicit assumption of the Lagrangian description of this
dual holographic theory. It could be so in certain situations we do not know the explicit
Lagrangian description of the perturbative sector as well.5 We should be able to formulate
an explicit semi-holographic construction in such a situation also. Furthermore, the basic
idea of semi-holography is to take advantage of dualities. It is quite possible that the
ultraviolet is strongly coupled instead of the infrared and we should take advantage of a
weakly coupled (perhaps holographic) dual description of the ultraviolet. In that case, the
original Lagrangian description of the UV even if known will not be useful. Therefore,
we better have a broader construction which can work without the need of knowing
an explicit Lagrangian description of the perturbative sector or that of the holographic
theory dual to the non-perturbative sector. This implies we need to treat both on equal
footing.

The second reason for advocating democratic formulation is more fundamental. Let us
take the example where in the infrared the theory flows to a strongly coupled holographic
conformal field theory (IR-CFT) from a weakly coupled fixed point (UV-CFT) in the ul-
traviolet. There will be a specific UV-IR operator map in such a theory relating operators
in the UV fixed point to those defined at the IR fixed point via scale-evolution as expli-
citly known in the case of RG flows between minimal-model two-dimensional conformal
field theories [240–242]. Typically a relevant operator in the UV will flow to an irrelev-
ant operator in the IR. In fact the entire flow will be generated by a relevant deformation
of the UV fixed point – the operator(s) generating such a deformation will become ir-
relevant at the IR fixed point. Let the UV deformation be due to a coupling constant g
multiplying a relevant operatorOUV which will flow to an irrelevant operatorO IR of the
strongly coupled holographic IR-CFT that is represented by a bulk field Φ. A naive way
to formulate semi-holography in such a case will be:

S = SUV−CFT + g
∫

d4x OUV + Sgrav[φ(b) = λOUV], (1.7)

5Note that by assuming that we have a weakly coupled perturbative description we do not necessarily
commit ourselves to a Lagrangian description also. Such a perturbation series can be obtained by a
chain of dualities without a known Lagrangian description as in the case of some quiver gauge theories
[239].
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where φ(b) is the coefficient of the leading asymptotic term of the bulk field Φ, λ is a di-
mensionful hard-soft coupling constant and we have suppressed the scale dependence.
The immediate problem is that we have turned on an irrelevant deformation of the dual
holographic theory as

Sgrav[φ(b) = λOUV] = λ
∫

d4x OUVO IR (1.8)

represents an irrelevant deformation of the IR-CFT since O IR is an irrelevant operator.
This contradicts our assumption that both sectors should be renormalizable after being
mutually deformed by the operators of the other. Furthermore, turning on non-trivial
sources of irrelevant operators leads to naked gravitational singularities in holography and
the removal of asymptotic anti-de Sitter behaviour of the spacetime. We can therefore
argue that the formulation of the full semi-holographic theory in terms of an action
which is a functional of the UV variables as in (1.7) should be abandoned as it leads to
such a contradiction. As we will show later in the democratic formulation, we will be able
to generate a non-trivial expectation value 〈O IR〉 without sourcing it.

Similarly, in the case of QCD where the infrared dynamics has a mass gap, non-
perturbative vacuum condensates of operators of highmass dimensions are crucial for the
cancellation of renormalon Borel poles of perturbation series [243–245]. This implies
that we need to couple irrelevant operators of the infrared holographic theory with the
gauge-invariant marginal operators of perturbative QCD as we will discuss in Section 4.
This is not quite possible within the present formulation for the same reasons mentioned
above.

Let us then sketch how the democratic formulation should be set-up. Let us denote
S (1) as the quantum effective perturbative action and S (2) as the quantum effective action
of the holographic theory dual to the non-perturbative sector both defined at the same
energy scale Λ. Furthermore, for simplicity let us assume that the two sectors couple via
their energy-momentum tensors and a scalar operator in each sector. The democratic for-
mulation postulates that the individual actions are deformed as follows:6

S (1) = S (1)[g (1)µν, J (1)], S (2) = S (2)[g (2)µν , J (2)] (1.9)
6Note that we have not turned on sources for the elementary fields. Therefore, S (i) can denote eitherW ,
the generating functional of the connected correlation functions, or Γ, the 1-PI (one-particle irreducible)
effective action, which is the Legendre transform ofW . In absence of sources for elementary fields,
W = Γ. Below, the effective actions of both theories have been defined in specific background metrics
and with specific couplings (denoted as J (i) and corresponding to specific composite operator vertices)
which are functionals of the operators of the two sectors. These effective actions can be defined even
when the Lagrangian descriptions (i.e. representations of the two sectors via some elementary fields) are
unknown.
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with
g (i)µν = ηµν + ℎ(i)µν [t (i)µν,O (i)],
J (i) = F (i)[t (i)µν,O (i)], (1.10)

where i denotes 1, 2. Thismeans that the two sectors couple only via their effective sources
and backgroundmetrics. Furthermorewe should not allow redundant dependenciesmean-
ing that ℎ(1)µν and F (1) can depend on t (1)µν andO (1) only such that when t (2)µν = O (2) = 0,
then it should also follow that ℎ(1)µν = F (1) = 0. The aims will be:

1. To determine the functional forms of ℎ(i)µν and F (i) by requiring the existence of
a local energy-momentum tensor of the full theory conserved in the background
metric ηµν where the full theory lives and disallowing redundant dependencies, and

2. To determine the theory S (2) and the hard-soft coupling constants appearing in ℎ(i)µν
and F (i) as functions of the parameters of the perturbative sector, i.e. the parameters
in S (1).

Remarkably, we will see in the following section that the requirement of the existence
of a local and conserved energy-momentum tensor of the full system along with some
other simple assumptions constrains the functional forms of ℎ(i)µν and F (i) such that we
can only have a few possible hard-soft coupling constants relevant for physics (including
non-perturbative effects) at given energy scales. The scale (Λ−)dependence of ℎ(i)µν and
F (i) should be only through the hard-soft coupling constants. If the operator O (2) in the
holographic theory dual to the infrared is an irrelevant operator then we should demand
J (2) = 0. The functional form of F (2) will then play a major role in determining how the
hard-soft coupling constants and parameters of the holographic theory (i.e. parameters in
S (2)) are determined by the parameters in S (1). In order to demonstrate howwe can achieve
the second task of determining the hard-soft coupling constants and the parameters in
S (2) in principle, we will construct a toy model in Section 3. Later in Section 4 we will
outline how we can achieve this in the case of QCD. This of course will be a difficult
problem in practice, and therefore we will postpone this to the future.

Aswill be clear in the next section, even ifwe can choose an arbitrary backgroundmetric
gµν instead of ηµν for the full system, we can construct the combined local and conserved
energy-momentum tensor. Furthermore, it will be trivial to generalise the construction
to the case where there are multiple relevant/marginal scalar operators in the perturbative
sector. We will not consider the case when the perturbative sector has relevant/marginal
vector operators and tensor operators other than the energy-momentum tensor. We will
postpone such a study to the future. The phenomenological semi-holographic construc-
tions discussed in the previous subsection will turn out to be special cases of the more
general scenario to be described below.
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2 Coupling the hard and so� sectors
In what follows, we will study how we can determine the most general form of couplings
between the hard and soft sectors following (1.9) and (1.10) such that there exists a local
and conserved energy-momentum tensor of the full system in the fixed background
metric. We will not assume any Lagrangian description of either sector in terms of
elementary quantum fields and therefore we will only use the local Ward identities of
each sector. Furthermore, we will disallow redundant dependencies in the coupling func-
tionswhich simply redefine the respective effectiveUV and IR theories as discussed above.

For themoment, wewill assume that theUV theory (perturbative sector) has one relev-
ant operatorO (1) which couples to a relevant/marginal/irrelevant operatorO (2) in the IR
theory (the holographic non-perturbative sector). Furthermore, we should also take into
account the energy-momentum tensor operatorsT (1)µν andT (2)µν in the coupling of the
UV and IR theories. As mentioned earlier, it will be clear later how we can generalise our
results to the case of multiple relevant and marginal scalar operators in the perturbative
sector each coupling to multiple operators in the non-perturbative sector.

2.1 Simple scalar couplings
The simplest possible consistent couplingof theUVand IR theories leading to a conserved
local energy-momentum tensor of the full system is given by:

g (1)µν = g (2)µν = gµν, J (1) = α0O (2), J (2) = α0O (1). (2.1)

Above α0 is once again a scale-dependent dimensionful hard-soft coupling constant. In
the case we have a fixed point both in the UV and in the IR, we can postulate

α = A0
1

Λ∆
UV+∆IR−d

I

+
1

Λ∆
UV+∆IR−d

f
(
Λ

ΛI

)
, (2.2)

where A0 is a dimensionless constant, ∆UV is the scaling dimension of the UV operator
O (1) at the UV fixed point, ∆IR is the scaling dimension of the IR operatorO (2) at the IR
fixed point and d is number of spacetime dimensions. Furthermore, ΛI is an emergent
intermediate energy-scale (but different from ΛQCD in case of QCD). If the UV and/or
IR limits are not conformal, then the Λ−dependence of α0 should be more complicated.
At present we will not bother about Λ−dependence of the hard-soft couplings although
we should keep in mind that the effective Λ−dependence of the couplings of the two
sectors arises via them.

Both the UV and IR theories will have their respective Ward identities:

∇µT (1)µν = O (1)∇ν J (1) and ∇µT (2)µν = O (2)∇ν J (2), (2.3)
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where ∇ is the covariant derivative constructed in the fixed background metric gµν ,
T (1)µ

ν
= T (1)µρ gρν , etc. These identities will be satisfied once we have solved the full

dynamics self-consistently.

It is clear that these Ward identities together with J (1) and J (2) specified via (2.1) imply
the existence ofT µ

ν defined as

T µ
ν := T (1)µ

ν
+T (2)µ

ν
− αO (1)O (2)δ µν (2.4)

which satisfies the combinedWard identity

∇µT µ
ν = 0. (2.5)

Therefore, T µν = T µ
ρ g ρν can be identified with the local conserved energy-momentum

tensor of the full system. The crucial point is that the forms of the sources specified via
(2.1) imply that the respective Ward identities (2.3) add to form a total derivative and thus
results in a conserved energy-momentum tensor (2.4) for the full system.

Of course, we can make other choices for (2.1). One example is

g (1)µν = g (2)µν = gµν, J (1) = αO (2) +
1
2 α̃1O (1), J (2) = αO (1) +

1
2 α̃2O (2). (2.6)

In this case, we would have obtained

T µ
ν = T (1)µ

ν
+T (2)µ

ν
−

(
αO (1)O (2) − α̃1O (1)

2
+ α̃2O (2)

2)
δ
µ
ν . (2.7)

This would have led to redundancies as α̃i simply lead to redefinitions of the UV and IR
theories. Therefore, without loss of generalitywewill not allow such parameters. Another
possibility is:

g (1)µν = g (2)µν = gµν, J (1) = α1O (2)
2O (1), J (2) = α1O (1)

2O (2), (2.8)

with α1 being an appropriate scale-dependent constant. In this case,

T µ
ν = T (1)µ

ν
+T (2)µ

ν
− 3

2α1
(
O (1)O (2)

)2
δ
µ
ν . (2.9)

In fact, one can more generally choose7

g (1)µν = g (2)µν = gµν,
7It is easy to see that the general class of such simple scalar couplings should be such that
O (1)[J (1), J (2)] dJ (1)+O (2)[J (1), J (2)] dJ (2) shouldbe a total differential inwhichwehave inverted the func-
tions J (1)[O (1),O (2)] and J (2)[O (1),O (2)] to obtain O (1)[J (1), J (2)] and O (2)[J (1), J (2)]. If J (1)[O (1),O (2)]
and J (2)[O (1),O (2)] are analytic inO (1) andO (2) atO (1) = O (2) = 0, we obtain the general expressions
below.
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J (1) =
∞∑
k=0

αkO (2)
k+1O (1)k, (2.10)

J (2) =
∞∑
k=0

αkO (1)
k+1O (2)k .

and this will lead to a conserved energy-momentum tensor for the full system given by

T µ
ν = T (1)µ

ν
+T (2)µ

ν
−
∞∑
k=0

2k + 1
k + 1

αk

(
O (1)O (2)

)k+1
δ
µ
ν . (2.11)

satisfying:
∇µT µ

ν = 0. (2.12)

Our general expectation is that in QCD, 〈O (i)〉 ≈ Λκ
QCD whereas αk ≈ Λκ′

I (for appropri-
ate κ and κ ′), where ΛI is a state-dependent scale such that ΛQCD � ΛI. In case of the
vacuum, ΛI could be the scale where the strong coupling is order unity (i.e. neither too
small nor too large) and in case of QGP formed in heavy ion collisions ΛI could be the
saturation scale. If this assumption is true, one canmake a useful truncation in k in (2.10),
as the terms neglected will be suppressed by higher powers of ΛQCD/ΛI. In this case,
semi-holography will turn out to be an useful effective non-perturbative framework. Of
course the hard-soft couplings αks and the condensates 〈O (i)〉s are both scale-dependent.
However, as long as their scale dependence do not spoil the above justification for the
truncation of terms that appear in the couplings of the two sectors, semi-holography can
be used as an effective framework at least for a class of processes.

It is to be noted that only in the simplest case, i.e. when αk = 0 for k , 0, we may be
able to reproduce the full energy-momentum tensor (2.11) and the sources (2.10) from an
action. In this case, the action is given by:

S = S (1) + S (2) + α0

∫
dd x O (1)O (2) . (2.13)

For other cases, one can reproduce the energy-momentum tensor but cannot reproduce
the right sources. However, even in the case αk = 0 for k , 0, the action (2.13) can repro-
duce the energy-momentum tensor onlywhenO (1) andO (2) are composites of elementary
scalar fields with no derivatives involved. This observation has been made earlier in [246]
in a different context. The lesson is that an action of the form (2.13) does not exist in the
general semi-holographic formulationof non-perturbative dynamics. In fact, if such an ac-
tion existed, it would have been problematic as it would have implied doing a naive path
integral over both UV and IR fields. This would not have been desirable because the IR
degrees of freedom are shadows of theUVdegrees of freedom in the sense that they do not
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have independent existence. After all, the IR theory and hard-soft couplings should be
determined by the coupling constants of perturbation theory governing the UV dynam-
ics. Since the hard-soft couplings are state-dependent, these and the parameters of the IR
theory, generally speaking, should be determined by how perturbative dynamics describe
the state or rather participate in the process being measured. We will examine this feature
in our toy model illustration in the following section.

2.2 More general scalar couplings
So far, we have considered the cases in which the effective backgroundmetrics for the UV
and IR theories are identical to the fixed background metric gµν in which all degrees of
freedom live. Here, we will examine the cases when the effective background metrics g (1)µν
and g (2)µν of theUVand IR theories are different and have operator-dependent scale factors.
In this case, we will consider

g̃ (1)µν = gµν e2σ(1)[O (i),T (i)] ,

g̃ (2)µν = gµν e2σ(2)[O (i),T (i)] , (2.14)
J (i) = J (i)[O ( j),T ( j)] .

Above, T (i) ≡ T (i)µν g (i)µν is the trace of the energy-momentum tensors in the respective
effective background metrics. Once again, we will disallow redundant dependencies of
the sources on the operators.

Let us first establish a useful identity. The Ward identity for the local conservation of
energy and momentum in the background metric g̃µν = gµν e2σ , i.e.

∇̃µT µ
ν = O∇̃ν J , (2.15)

where ∇̃ is the covariant derivative constructed from g̃ can be rewritten as

∇µ
(
T µ

ν edσ
)
− 1
d
(TrT ) ∇ν edσ − edσO∇ν J = 0 , (2.16)

where ∇ is built out of gµν and d is the number of spacetime dimensions. The Ward
identity in this form will be useful for the construction of the energy-momentum tensor
of the full system which should be locally conserved in the background gµν .

The general consistent scalar-type couplings which give rise to a conserved energy-
momentum tensor of the full system then are of the form:

edσ
(1)
= 1 + dβ

(
T (2) +O (2)

)
, (2.17a)
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edσ
(2)
= 1 + dβ

(
T (1) +O (1)

)
, (2.17b)

J (1) =
1
d

ln
(
1 + dβ

(
T (2) +O (2)

))
+

∞∑
k=0

αkO (2)
k+1 (1 + dβ

(
T (1) +O (1)

))k+1
O (1)k

(
1 + dβ

(
T (2) +O (2)

))k
, (2.17c)

J (2) =
1
d

ln
(
1 + dβ

(
T (1) +O (1)

))
+

∞∑
k=0

αkO (1)
k+1 (1 + dβ

(
T (2) +O (2)

))k+1
O (2)k

(
1 + dβ

(
T (1) +O (1)

))k
. (2.17d)

Clearly when β = 0 we revert back to the case (2.10) discussed in the previous subsection.
Using (2.16), we can rewrite theWard identities in the respective UV and IR theories in

the form:

∇µ
(
T (1)µ

ν
edσ

(1)
)
− 1
d
T (1) ∇ν edσ

(1) − edσ(1)O (1)∇ν J (1) = 0,

∇µ
(
T (2)µ

ν
edσ

(2)
)
− 1
d
T (2) ∇ν edσ

(1) − edσ(2)O (2)∇ν J (2) = 0, (2.18)

where T (i)µ
ν
≡ T (i)µν g (i)µν . Substituting (2.14), and then (2.17a), (2.17b), (2.17c) and

(2.17d) in the above equations, we find that

T µ
ν = T (1)µ

ν

(
1 + dβ

(
T (2) +O (2)

))
+ T (2)µ

ν

(
1 + dβ

(
T (1) +O (1)

))
− β

(
T (1) +O (1)

) (
T (2) +O (2)

)
δ
µ
ν

−
∞∑
k=0

2k + 1
k + 1

αk

[
O (1)O (2)

(
1 + dβ

(
T (1) +O (1)

))
(
1 + dβ

(
T (2) +O (2)

))]k+1
δ
µ
ν, (2.19)

satisfies the combinedWard identity:
∇µT µ

ν = 0. (2.20)
Therefore,T µν ≡ T µ

ρ g ρν is the energy-momentum tensor of the combined system.

For each pair of scalar operators in the UV and IR theories, we can then have the more
general scalar couplings β and αk . It should already be evident at this stage how the exist-
ence of a local energy-momentum tensor of the full system restricts the hard-soft couplings
via the functional forms of the effective sources and backgroundmetrics. In practice, for a
wide range of energy scales, we should only require a finite number of hard-soft couplings
for reasons mentioned previously.
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2.3 Tensorial couplings
To explore how the effective backgroundmetric can be tensorially modified as opposed to
being modified by an overall scale factor, we will exploit another identity. Let gµν and g̃µν
be two different metric tensors such that one can be smoothly deformed to the other and
z µν ≡ g µρ g̃ρν . Then we can show that the Levi-Civita connections Γ constructed from g
and Γ̃ constructed from g̃ are related by the identity:

Γ̃
ρ
µν = Γ

ρ
µν +

1
2
(
∇µ (ln z)ρν + ∇ν (ln z)ρµ − ∇ρ (ln z)µν

)
. (2.21)

In order to prove this, one can substitute g̃µν by gµν + δ gµν in the above equation, expand
both sides of the equation in δ gµν , and finally confirm that the identity indeed holds to
all orders in this expansion.
Using the above identity, one can show that the Ward identity,

∇̃µT µ
ν = O∇ν J , (2.22)

in the background g̃ can then be rewritten as

∇µ
(
T µ

ν

√
det z

)
− 1

2T
α
β

√
det z ∇ν (ln z)βα −

√
det z O ∇ν J = 0 (2.23)

in the background metric g .

The tensorial couplings then turn out to be given by the following form of the effective
sources8

z (1)µ
ν
= exp

[(
2γ1

(
T (2)µ

ν
− 1
d
T (2)δ µν

)
+ 2γ2T (2)µν

)√
det z (2)

]
(2.24a)

z (2)µ
ν
= exp

[(
2γ1

(
T (1)µ

ν
− 1
d
T (1)δ µν

)
+ 2γ2T (1)µν

)√
det z (1)

]
(2.24b)

J (1) = J (2) = 0. (2.24c)

In order to define z (i)µ
ν
≡ g µρ g (i)ρν above, we have chosen a fixed background metric g

on which the full system lives. Furthermore, T (i)µ
ν
≡ T (i)µν g (i)µν . The above tensorial

couplings arise from essentially two available tensor structures, namely the traceless
part of the energy-momentum tensor and the energy-momentum tensor itself of the
complementary theory, giving rise to the two hard-soft coupling constants γ1 and γ2. We
call these couplings tensorial because these do not involve any scalar operator.

8As before,T (i)µ
ν
= T (i)µρ g (i)ρν .
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The determinants det z (1) and det z (2) can be obtained by first evaluating the left and
right hand sides of eqs. (2.24a) and (2.24b) which yields:

detz (1) = exp
[
2γ2T (2)

√
detz (2)

]
,

detz (2) = exp
[
2γ2T (1)

√
detz (1)

]
. (2.25)

Clearly then, det z (1) and det z (2) are solutions of 9

detz (1) = exp
[
2γ2T (2) exp

[
γ2T (1)

√
detz (1)

] ]
,

detz (2) = exp
[
2γ2T (1) exp

[
γ2T (2)

√
detz (2)

] ]
(2.26)

These solutions must be substituted in (2.24a) and (2.24b) to finally obtain the complete
expressions of the effective background metrics as functionals of the energy-momentum
tensors of the two sectors.

As a consequence of the above tensorial couplings, we now find that the energy-
momentum tensor of the full system takes the form

T µ
ν = T (1)µ

ν

√
det z (1) + T (2)µ

ν

√
det z (2)

− γ1
√

det z (1)
√

det z (2)
(
T (1)α

β
− 1
d
T (1)δαβ

) (
T (2)β

α
− 1
d
T (2)δ βα

)
δ
µ
ν

− γ2
√

det z (1)
√

det z (2)T (1)α
β
T (2)β

α
δ
µ
ν . (2.27)

satisfying the combinedWard identity (2.20) in the fixed background g .

2.4 Combining general scalar and tensorial couplings
Having independently identified the scalar and tensorial hard-soft couplings, we can put
them together to obtain a general class of scalar plus tensorial couplings and the resulting
combined energy-momentum tensor of the full theory. In order to do so, we begin by
define two functionsU andV as below (with z (i)µ

ν
≡ g µρ g (i)ρν ):

U B dβ
(
T (1) +O (1)

)√
detz (1) and V B dβ

(
T (2) +O (2)

)√
detz (2) . (2.28)

Analogous to (2.14), we impose that the scale factors edσ(1) and edσ(2) in the UV and IR
theories should assume the forms:

edσ
(1)
= 1 + e−dσ(2) V and edσ

(2)
= 1 + e−dσ(1)U , (2.29)

9It is easy to check that real and positive solutions of these equations exist at least perturbatively in γ2.
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Equivalently, we can impose:

edσ
(1)
=

1 +V −U
2 +

√
U +

(
1 +V −U

2

)2
, (2.30a)

edσ
(2)
=

1 +U −V
2 +

√
V +

(
1 +U −V

2

)2
. (2.30b)

to relate the scale factors with det z (1). As an aside, it may be worth noting that the two
terms under the square-roots in (2.30a) and (2.30b) can be checked to be equal. Finally, we
demand that the effective background metrics and sources are given by the expressions:10

z (1)µ
ν
= exp

[(
2γ1

(
T (2)µ

ν
− 1
d
T (2)δ µν

)
+ 2γ2T (2)µν

)√
det z (2)

]
e2σ(1),

z (2)µ
ν
= exp

[(
2γ1

(
T (1)µ

ν
− 1
d
T (1)δ µν

)
+ 2γ2T (1)µν

)√
det z (1)

]
e2σ(2),

J (1) = σ(1) +
∞∑
k=0

αkO (2)
k+1 (detz (2)

) k+1
2 O (1)k

(
detz (1)

) k
2
,

J (2) = σ(2) +
∞∑
k=0

αkO (1)
k+1 (detz (1)

) k+1
2 O (2)k

(
detz (2)

) k
2
, (2.31)

whereσ(1) andσ(2) are given by (2.28), (2.30a) and (2.30b). As in the case discussed in the
previous subsection, we need to solve detz (i)s self-consistently by evaluating the determ-
inants of the left and right hand sides of the first two equations above.11 It may readily be
checked that when the tensorial couplings are turned off by setting γ1 = γ2 = 0, we revert
back to the case discussed in Section 2.2 where we have obtained:√

detz (1) = 1 + dβ
(
T (2) +O (2)

)
= edσ

(1) and√
detz (2) = 1 + dβ

(
T (1) +O (1)

)
= edσ

(2)
.

The total conserved energy-momentum tensor is given by:

T µ
ν = T (1)µ

ν

√
det z (1) + T (2)µ

ν

√
det z (2)

− γ1
√

det z (1)
√

det z (2)
(
T (1)α

β
− 1
d
T (1)δαβ

) (
T (2)β

α
− 1
d
T (2)δ βα

)
δ
µ
ν

10As before,T (i)µ
ν
= T (i)µρ g (i)ρν .

11Once again we can check that sensible solutions exist at least perturbatively in the hard-soft couplings.
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− γ2
√

det z (1)
√

det z (2)T (1)α
β
T (2)β

α
δ
µ
ν

− β
(
T (1) +O (1)

) (
T (2) +O (2)

)√
det z (1)

√
det z (2)e−d(σ(1)+σ(2))δ µν

−
∞∑
k=0

2k + 1
k + 1

αk

(
O (1)O (2)

√
(detz (1))(detz (2))

)k+1
δ
µ
ν . (2.32)

which satisfies the Ward identity (2.20) in the fixed background gµν . We note that
for each pair of scalar operators in the UV and IR theories, we can then have the
more general tensor and scalar couplings γ2, γ1, β and αk . In the following section,
we will present a toy example to demonstrate how we can determine the hard-soft
couplings and the parameters of the IR theory as functionals of the perturbative coup-
ling constants. In particular, the sources for irrelevant scalar operators in the IR theory
should vanish – thiswill play amajor role in determining the hard-soft coupling constants.

Finally, we would like to emphasise that the special phenomenological semi-
holographic constructions [48, 55, 235] discussed in Section 1.1 are special instances of
the general hard-soft coupling scheme discussed in this section. These special instances
naturally follow if the hard-soft couplings are small and we retain only such leading
coupling terms.12 As discussed before, such phenomenological constructions can be well
justified in a certain range of energy scales.

At the end of Section 3.3, we will show how the general coupling rules are modified
when the full theory couples to external scalar sources. In fact, this investigation will al-
low us to define all scalar operators in the full theory as appropriate weighted sums of the
effective UV and IR operators.

3 A bi-holographic illustration
In this section, we construct a complete toy theory to illustrate the principles of the semi-
holographic framework. In our toy theory, we will see how the UV dynamics determines
both the hard-soft couplings and the IR theory. We will also see why the bulk fields of
the dual IR holographic theory should undergo state-dependent field-redefinitions in the
semi-holographic construction although the classical gravitational theory dual to the IR
is itself not state-dependent. Furthermore, we will find that Λ → ∞ behaviour of the
hard-soft couplings can be obtained from the vacuum but their runnings with the scale
can be state-dependent.

12In the model for heavy-ion collisions discussed in Section 1.1, we have two pairs of scalar operators. The
first pair are the perturbative and shadow glueball condensates, and the second pair are the perturbative
and shadow Pontryagin charge densities.
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The basic simplification in our toy theory consists of replacing the perturbative UV
dynamics by a strongly coupled holographic theory admitting a dual classical gravity
description on its own. The IR dynamics will be given by a di�erent even more strongly
coupled holographic theory with a di�erent dual classical gravity description. The
advantage of this biholographic set-up will be that the UV-IR operator map can be
simplified by construction. As we will see in the following section, this map will be
immensely complex in QCD which is asymptotically free (although we can still proceed
systematically). Our bi-holographic construction is designed to establish the conceptual
foundations of semi-holography.

The spirit of our bi-holographic construction is captured in Fig. 1. The UV dynam-
ics is represented by the blue (d + 1)−dimensional holographic emergent universe which
covers the radial domain −∞ < u < 0 and the IR dynamics is represented by the
red (d + 1)−dimensional holographic emergent universe which covers the radial domain
0 < u < ∞, with u being the holographic radial coordinate denoting the scale. Each of
these geometries is asymptotically AdS and their individual conformal boundaries are at
u = ±∞ respectively. Although the bulk fields are governed by different classical gravity
theories in the two different universes, these transit smoothly at the gluing surface u = 0.
In each universe, we can use the standard rules of holographic duality [33–35] to extract
the effective UV and IR sources and expectation values of the operators from the beha-
viour of the bulk fields in the respective asymptotic regions. However, the boundary con-
ditions of the two asymptotic regions u → ±∞ are correlated by the general consistent
coupling rules of the previous section which leads to the existence of a conserved local
energy-momentum tensor of the full dual quantummany-body system.13

Crucially, the UV and IR theories cure each other. Individually, the UV and IR
universes are singular (in a specific sense to be discussed later) if extended in the regions
13This feature distinguishes our construction from those described in [246–248] where two or more holo-

graphic CFTs are coupled by gluing the boundaries of their dual asymptotically AdS geometries. In our
case, the AdS spaces are glued in the interior reflecting that the dual theories glue together to form a
complete and consistent theory. The AdS boundaries in our case are then coupled non-locally in the
sense that the sources specified at the boundaries should be correlated by the rules found in the previ-
ous section. Such type of non-local couplings (related to multi-trace couplings of operators in future
and past directed parts of the Schwinger-Keldysh contour in the dual theory) have been also recently
discussed in [249] in the context of eternal AdS black holes which have two distinct conformal bound-
aries. It has been shown that such couplings lead to formation of traversable wormholes leading to a
concrete realisation of the ER= EPR conjecture [231] stating that quantum entanglement of degrees of
freedom (i.e. Einstein-Podolsky-Rosen pairs) leads to formation of Einstein-Rosen bridges (i.e. worm-
holes) between distinct space-time regions. In our case, this wormhole is perhaps engineered by our
coupling rules as suggested by the construction in [249] reflecting the entanglement between UV and
IR degrees of freedom of the dual system. It is worthwhile to note in this context that although the
coupling of the boundaries is non-local, it is strongly constrained in our construction by the existence
of a local and conserved energy-momentum tensor in the full dual many-body system.
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Figure 1. Our biholographic toy theory is described by two different holographic UV
(blue) and IR (red) universes with different classical gravity laws. However these are
smoothly glued at u = 0. A scale Λ in the full theory in a certain RG scheme is rep-
resented by data on the two appropriate hypersurfaces Σ1 and Σ2 belonging to the two
universes as described in the text. In theUV,most contributions come from theUVblue
universe. This explains the nomenclature.
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u > 0 and u < 0 respectively. However the smooth gluing at u = 0 implies that the full
holographic construction giving the dynamics of the quantummany-body system has no
singularity. Therefore, the IR theory indeed completes the UV theory almost in the same
manner in which non-perturbative dynamics cures the Borel singularities of perturbation
theory. We can also view the IR Universe extending along 0 < u < ∞ as a second cover
the UV universe −∞ < u < 0 which thus becomes bi-metric. We will discuss this point
of view later.

As mentioned above, the leading asymptotic behaviour of bulk fields giving the
effective sources and effective background metric of the respective theories are coupled,
or rather correlated by the general semi-holographic construction rules established
in the previous section. Therefore, the full theory admits a local energy momentum
tensor conserved in the actual fixed background metric where all the degrees of freedom
live.Here, we will take this fixed background metric to be ηµν .

At this stage, we should clarify in which sense we are using the terms UV theory and
IR theory. After all, the full energy-momentum tensor constructed in the previous
section receives contributions from both UV and IR theories at any scale. In our case, it
means that the microscopic energy-momentum tensor of the dual many-body quantum
system will be a complicated combination of the energy-momentum tensors and other
data obtained from the sub-leading asymptotic modes of both UV and IR universes.
Nevertheless, we will see that the contribution to the the energy-momentum tensor at
Λ = ∞ coming solely from the IR universe is zero in the vacuum state. Furthermore, the
scale factors of the effective UV and IR metrics (identified with the boundary metrics
of the UV and IR universes) will turn out to be dynamically determined such that the
effective UV metric will be slightly compressed and effective IR metric will be slightly
dilated compared to the fixed backgroundMinkowski space. This explains ourUVand IR
nomenclatures. Note these feature are also present in the semi-holographic constructions
as discussed before – the vanishing of the scale-dependent hard-soft couplings in the UV
ensures that perturbative contributions dominate in the UV as should be the case in
asymptotically free theories like QCD. In our bi-holographic construction, although the
contributions of the UV universe will dominate, the hard-soft couplings will be finite in
the limitΛ→∞.

Furthermore, in our bi-holographic construction, a scale Λ in the full theory is
represented by the data on the union of two appropriate hypersurfaces Σ1 and Σ2 in the
UV and IR universes respectively in a specific type of RG scheme as shown in Fig. 1. We
will discuss this issue in more details later. The IR hypersurface u = 0 will represent an
endpoint of the RG flow. In fact the geometry near u = 0 can be described as an infrared
AdS space with zero volume, and so we will argue that it is a fixed point. More generally,
however u = 0 could be a wall representing confinement in the dual theory.
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Conceptually, our bi-holographic construction is thus very different fromhowRG flow
is represented in standard holographic constructions such as that described in [250]. In
these cases, the full emergent spacetime is described by a single gravitational theory and it
also has a single conformal boundary. Furthermore, although the spacetime has another
AdS region in the IR (deep interior), this matches with the rear part of a pure AdS geo-
metry, i.e. the part that contains the Poincare horizon and not the asymptotic conformal
boundary. Physically these geometries represent deformation of the UV fixed point in the
dual field theory by a relevant operator as a result of which it flows to a different IR fixed
point – a geometric c−function can also be constructed [250] reproducing the central
charges of the UV and IR fixed points. Our bi-holographic construction however should
not be thought of as a flow from an UV to an IR fixed point driven by a relevant deform-
ation.14 Rather the UV region in our case represents a strongly coupled version of usual
perturbative dynamics, and the IR region represents the non-perturbative sector that ex-
ists as a shadow of the perturbative degrees of freedom inmany-body quantum systems. In
our case, the shadow IR theory and the hard-soft coupling constants will be determined
by the parameters of the UV gravitational theory via:

1. the general coupling rules of the previous section ensuring the existence of a con-
served energy-momentum tensor of the full system,

2. the vanishing of the sources for irrelevant IR operator(s), and

3. the continuity of bulk fields and their radial derivatives up to appropriate orders at
the matching hypersurface u = 0.

3.1 A useful reconstruction theorem

We can readily proceed with some simplifying assumptions. The first assumption is that
both the UV and IR holographic classical gravity descriptions are provided by Einstein-
dilaton theories consisting of a scalar field with (different) potentials and minimally
coupled to gravity. The gravitational theories are then individually described by the re-
spective actions:

SUV,IR
grav =

1
16πGN

∫
dd+1x

√
−G

(
R −GMN ∂MΦ∂NΦ − 2V UV,IR(Φ)

)
, (3.1)

with d denoting the number of spacetime dimensions of the dual quantum many-body
system. NoteΦ is dimensionless in the above equation.

14The general semi-holographic construction can of course apply to such a case particularly if the UV fixed
point is weakly coupled.
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To describe the dual vacuum state, it will be convenient to use the domain-wall coordin-
ates in which the bulk metric and scalar fields assume the forms:15

ds2 = du2 + e2ρ(u)ηµνdx µdx ν, Φ = Φ(u). (3.2)

The conformal boundaries are at u = ±∞. We choose d = 4. In the domain-wall coordin-
ates, the gravitational equations of motion for ρ andΦ in the domain −∞ < u < 0 can be
written in the form:

ρ ′′ = − 1
3Φ
′2, (3.3)

3
2 ρ
′′ + 6ρ ′2 = −V UV(Φ). (3.4)

The equations of motion for ρ and Φ in the domain 0 < u < ∞ are exactly as above but
withV UV replaced byV IR.

Instead of choosing V UV(Φ) and V IR(Φ) in order to specify the UV and IR gravita-
tional theories, we will take advantage of the so-called reconstruction theoremwhich states
that there exists a unique map between a choice of the radial profile of the scale factor, i.e.
ρ(u) and the bulk scalar potential V (Φ) which supports it.16 The proof of this theorem
is straightforward. Suppose we know ρ(u). We can then first use eq. (3.3) to construct
Φ(u). However, this requires an integration constant. If the spacetime has a conformal
boundary, at u = −∞ for instance, the behaviour of ρ near u = −∞ should be as follows:

ρ(u) = ρ0 −
u
L
− ρδ exp

(
2δ u

L

)
+ subleading terms, (3.5)

with δ > 0 and ρδ > 0. The latter restriction results from the requirement that ρ ′′
should be negative in order for a solution forΦ to exist as should be clear from (3.3). One
can readily check from (3.3) that the asymptotic behaviour ofΦ should be:

Φ(u) = Φ0 ± 2
√

3ρδ exp
(
δ
u
L

)
+ subleading terms. (3.6)

If δ , d , then 2
√

3ρδ should correspond to the non-normalisable mode or the normalis-
able mode ofΦ. The constantΦ0 is merely an integration constant.

We can then invert this function Φ(u) to obtain u(Φ). Furthermore, from eq. (3.4),
we can readily obtain V (u) substituting u(Φ) in which yields V (Φ). Thus we construct
15It has been observed that the domain-wall radial coordinate u can be directly related to the energy-scale

of the dual theory [54, 251, 252].
16As far as we are aware of, this theorem was first stated in the context of cosmology in [253].
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the V (Φ) corresponding to a specific ρ(u). This ends the proof of the reconstruction
theorem. Note this proof assumes that the inverse function u(Φ) exists. We have to
ensure that this is indeed the case.

The crucial point is that one can readily see from (3.4) that asymptotically (i.e. near
u = ∞ or equivalently nearΦ ≈ Φ0),V (Φ) should have the expansion

V (Φ) = − 6
L2 +

1
2m

2(Φ − Φ0)2 + O(Φ − Φ0)3, (3.7)

when d = 4 with
m2L2 = δ(δ − 4). (3.8)

This implies thatV (Φ) should have a critical point at Φ = Φ0 in order that the geometry
can become asymptotically anti-de Sitter. Furthermore, the field Φ − Φ0 and not Φ cor-
responds to the dual operatorO with scaling dimension δ or 4 − δ when δ , 4. There-
fore, without loss of generality when δ , 4, we can always employ the field redefinition
Φ → Φ − Φ0 and set the integration constant to be zero. When δ = 4, Φ is massless and
we need to use the holographic correspondence to figure out what the integration con-
stant should be sinceΦ0 then corresponds to a marginal coupling of the dual field theory.
Usually, it is put to zero even in this case. We will not deal with the massless scalar case
here.

3.2 The bi-holographic vacuum
We first focus on constructing the bi-holographic vacuum state. Let us begin by individu-
ally choosing an ansatz for the UV and IR gravitational theories. We take the advantage
of the reconstruction theorem described above by making an ansatz for ρ(u) in the
respective domains instead of doing so for the potentials V UV,IR(Φ). For the sake of
convenience we also put 8πGN = 1. We will set d = 4.

Since both the UV and IR gravitational theories have the same GN as clear from (3.1)
and their AdS radii will turn out to be of the same order if not equal, we can take the large
N limit in both sectors simultaneously. Therefore, we can not only suppress quantum
gravity loops in each gravitational theory, but also hybrid ones. This justifies our assump-
tion that quantum gravity effects can be ignored in both gravitational theories.

The UV domain

To take advantage of the reconstruction theorem, we choose the scale factor profile in the
(dual UV) domain −∞ < u < 0 to be:

ρUV(u) = A0 −
u

LUV
− A1 tanh

( u
LUV

)
+ A2 tanh

(
2 u
LUV

)
. (3.9)
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We canmotivate the choice of the tanh functions as follows. These lead to right exponen-
tially subleading asymptotic behaviour at u = −∞ and leads to ρ ′′ = 0 at u = 0. Crucially,
if we choose our parameters A1 and A2 such that ρ ′′ < 0 for u < 0, then typically ρ ′′ > 0
should follow for u > 0. This does not lead to a curvature singularity, however (3.3)
implies that Φ has no real solution for u > 0, i.e. it signals the end of UV spacetime at
u = 0. This leads to a singularity in the sense of geodetic incompleteness, because any freely
falling observer can reach the edge u = 0 from a finite value of u in finite proper time.
This singularity is eventually cured by the emergence of the IR universe.

The above choice for ρUV(u) leads to a unique solution for ΦUV(u) whose asymptotic
(i.e. u → −∞) behaviour is:

Φ
UV(u) = U1 exp

( u
LUV

)
+ · · · +V1 exp

(
3 u
LUV

)
+ · · · , (3.10)

with17

U1 = −2
√

6
√
A1 , V1 = 4

√
2
3
A1 + A2√

A1
. (3.11)

We can readily obtainV UV(Φ) too from (3.4) as described above but it’s complete explicit
form will not be of much importance for us. The only information in V UV(Φ) which
is significant for us is that the mass of ΦUV which is given by m2LUV2

= −3 which also
implies that the corresponding operator O (1) has scaling dimension ∆UV = 3 at the UV
fixed point, and is therefore a relevant operator. Furthermore,U1 , 0 implies that the UV
fixed point is subjected to a relevant deformation andU1LUV−1 is the relevant coupling18
as will be clear once we transform to the Fefferman-Graham coordinates. The Fefferman-
Graham radial coordinate z in which the metric assumes the form:

ds2 =

(
LUV2

z2

) (
dz2 + e ρ̃

UV(z)ηµνdx µdx ν
)

(3.12)

is related to u by z = LUV exp(u/LUV). In the Fefferman-Graham coordinates we obtain:

e2 ρ̃UV(z) = e2(A0+A1−A2)
(
1 − 4A1

z2

LUV2 + 4
(
A1 + 2A2

1 + A2
) z4

LUV4 + · · ·
)
,

Φ
UV(z) = −2

√
6
√
A1

z
LUV + 4

√
2
3
A1 + A2√

A1

z3

LUV3 + · · · . (3.13)

17U1 is determined up to a sign. We make a choice of sign here.
18Although the full theory is not a relevant deformation of a UV fixed point as discussed before, the UV

holographic theory individually can be described in such terms. This is owing to the fact that the holo-
graphic geometry will be asymptotically AdS.
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We can readily perform holographic renormalisation in the Fefferman-Graham coordin-
ates to extract the sources and the expectation values of the operators in theUVdescription
[254–258]. The scale factor σ(1) in the boundary metric g (1)µν = e2σ(1)ηµν and the source
J (1) for the scalar operatorO (1) are given by:

σ(1) = A0 + A1 − A2, J (1) = −2
√

6
√
A1LUV−1

. (3.14)

The expectation values of the trace of the energy-momentum tensor T (1) (defined as
T (1) := T (1)µν g (1)µν as in the previous section) andO (1) are given by:19

T (1) = 16(A1 + A2)LUV−4
, O (1) = −4

√
2
3
A1 + A2√

A1
LUV−3

. (3.15)

As a consistency check, we note that the CFT Ward identity T (1) = J (1)O (1) which is
scheme-independent is indeed satisfied by the above values. We also note that when∆ = 3,
we also have the possibility of alternative quantisation in which case the field Φ corres-
ponds to an operator with ∆ = 1 (which saturates the unitarity bound on lowest possible
dimensions of scalar primary operators in a CFT) and the roles of J (1) and O (1) can be
interchanged. Here, we perform the more usual quantisation.

The IR domain

In the infrared domain 0 < u < ∞, we choose the scale factor ρIR(u) to be:

ρIR(u) = B0 −
u
LIR
− B1 tanh

(
5 u
LIR

)
+ B2 tanh

(
10 u

LIR
)
, (3.16)

with LIR < 0 so that the conformal boundary is indeed at u = ∞. The choice of t anℎ
functions can be motivated by similar arguments presented in the UV case – we need an
edge singularity at u = 0 which is cured by the gluing to the UV universe. This choice
then implies thatΦ(u) has the asymptotic expansion:20

Φ
IR(u) = V2 exp

(
5 u
LIR

)
+ · · · , with V2 = −2

√
6
√
B1. (3.17)

19We have used the minimal subtraction scheme in which we do not obtain any new parameter from the
regularisation procedure as no finite counterterm is invoked. In this case, the scheme dependence arises
only from a finite counterterm proportional to J (1)4. It is dropped in the minimal subtraction scheme.
There is a beautiful independent justification of the minimal subtraction scheme [251, 259] (see also
[54] for an yet another perspective) as only in this scheme one can define holographic c−function and
beta functionswhich satisfy identities analogous to those in the field-theoretic localWilsonianRG flows
constructed by Osborn [260].

20Once againV2 is determined up to a sign. We make a choice of sign here.
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Therefore Φ in the IR region corresponds to an irrelevant operator with ∆ = 5. We can
now define a new Fefferman-Graham coordinate via u = LIR log(z̃) suitable for the IR
asymptotia which is at z̃ = 0. The asymptotic expansions are:

z̃2e2ρIR(z̃) = e2(B0+B1−B2)
(
1 − 4B1

z̃ 10

LIR10 + · · ·
)

(3.18)

φIR(z̃) = V2
z̃5

LIR5 + · · · . (3.19)

With our choice of ρ in the IR theory, the scalar source is vanishing while the scalar vev is
parametrisedbyV2. Indeed if the scalar sourcewouldnothave vanished, itwouldhave lead
to a runaway asymptotic behaviour causing a curvature singularity. As the dual operator
is irrelevant, its source should vanish as otherwise we cannot find the corresponding state
in the holographic correspondence as well. The effective IRmetric, which is the boundary
metric of the IR asymptotic region is given by e2(B0+B1−B2)ηµν , while the IR stress-tensor
is vanishing. Thus, we obtain

σ(2) = B0 + B1 − B2, J (2) = 0, (3.20)

and
T (2) = 0, O (2) = 2

√
6
√
B1LIR−5

. (3.21)

Gluing and determining the full theory

For the full construction, we need to consider the hard-soft couplings. We make a
simplistic assumption that the tensorial hard-soft couplings γ1 and γ2 are zero. We also
make another assumption that we can set all scalar hard-soft couplings αk to zero except
for α0. Therefore, α0 and β are the only non-vanishing hard-soft couplings in our con-
struction. In what follows, we will denote α0 by α for notational convenience. Our coup-
ling rules thus (resulting from setting αk = 0 for k , 0 and d = 4 in (2.17c) and (2.17d))
are:

e4σ(1) = 1 + 4β
(
T (2) +O (2)

)
, (3.22a)

e4σ(2) = 1 + 4β
(
T (1) +O (1)

)
, (3.22b)

J (1) =
1
4 ln

(
1 + 4β

(
T (2) +O (2)

))
+ αO (2), (3.22c)

0 = 1
4 ln

(
1 + 4β

(
T (1) +O (1)

))
+ αO (1) . (3.22d)

In the final equation above we have used J (2) = 0, i.e. the source of the irrelevant IR
operator must vanish.
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Furthermore, we impose that the UV and IR geometries can be smoothly glued along
their edges which coincide at u = 0. This matching should cure the respective edge singu-
larity (resulting from geodetic incompleteness) as discussed above. Therefore, the metric
and the bulk scalar field, and also their radial derivatives up to appropriate orders should
be continuous at u = 0. There is one subtle point we need to take into account during the
gluing procedure. The asymptotic region u = ∞ in the IR domain naturally corresponds
to UV rather than IR, however in the full theory it represents IR contributions. It is then
natural to reverse the scale (radial) orientation of the IR geometry while gluing it to the
UV geometry at u = 0. Equivalently, we should set ρ to −ρ in the IR geometry before we
glue it to the IR. One can then also think that the ρ travels back to −∞ from 0, so that the
IR geometry gives another cover of the spacetimewhose full extension is−∞ < u < 0 and
an observer simply can pass smoothly from the UV cover to the IR cover. The spacetime
is thus bi-metric. The smooth gluing of the two Universes is ensured if at u = 0:21

ρUV = ρIR, ρUV ′ = −ρIR ′, Φ
UV = ΦIR, Φ

UV ′ = −ΦIR ′. (3.23)

By our choices of ρ, ρ ′′ = 0 at u = 0 whether we approach from the UV side or the IR
side and therefore we automatically obtain from (3.3) that Φ′ = 0 from both ends and is
hence continuous. Effectively we thus have only two matching conditions, namely

ρUV = ρIR and ρUV ′ = −ρIR ′ at u = 0. (3.24)

The matching of Φ is ensured via a field redefinition. As discussed in Section 3.1,
we can always redefine Φ as Φ − Φ0 with Φ0 being the asymptotic value of Φ (which
after the redefinition becomes zero) so that the potential V (Φ) has no tadpole term
at Φ = 0. However, if there are two asymptotic boundaries, as in our construction,
we can do this redefinition in one asymptotic region only. In this case, the integration
constant Φ0 in the other asymptotic region should be set by continuity. We will choose
Φ0 = 0 in the IR end and obtain the value of Φ0 at the UV end. We need to check that
Φ0 which canbeobtainedby integrating (3.3) shouldbe finite. Thiswill indeedbe the case.

It is fairly obvious that LUV sets the dimensions of all dimensionful parameters in the
field theory including α and β, the hard-soft couplings. Without loss of generality, we
can set LUV = 1. The (dimensionless) parameters which determine our UV theory are A0,
A1 and A2. However, A0 only contributes to the scale factor (σ(1)) of the effective metric
of the UV theory and does not play any role in determining V UV. So we can regard A1
and A2 as the true UV parameters. The other parameters are α and β (the hard-soft
21A more diffeomorphism invariant statement is that on the hypersurface u = 0, the induced metric ob-

tained from theUVand IR sides shouldmatch, and theBrown-York stress tensors should alsomatchbut
with a flipped sign of the IR term. Such a type of gluing with reversed orientation of one manifold has
also been considered in [261] in the context of constructing holographic bulk analogue of Schwinger-
Keldysh time contour (which reverses and flows back in time.)
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couplings) which are dimensionful and δ ≡ LIR/LUV, B0, B1 and B2 (determining the IR
theory) which are dimensionless. Including all parameters of the UV and IR theories and
the hard-soft couplings we have in total 9 parameters.

The set of parameters should be such that we must satisfy the 4 coupling equations
(3.22a), (3.22b),(3.22c) and (3.22d), and the 2 matching equations in (3.24). Since our 9
parameters should satisfy 6 equations, we can determine 6 of our parameters from 3. We
choose the 3 parameters which determine the rest to be the UV parameters A0, A1 and
A2. In practice, it is easier to choose A1, B2 and δ which gives the ratio of the UV and IR
scales instead as the set of independent parameters. Nevertheless, we can check that it is
equivalent to making the right choices for Ais and then determining B2 and δ. We will
proceed by choosing A1 = B2 = 1 and δ = −4.91 (recall that our parametrisation (3.16)
require LIR to be negative). |δ | > 1 implies that the IR theory is more strongly coupled.
It is convenient to first utilise the matching equations (3.24) to obtain:

B0 = A0 , B1 = −
1
5 (1 + 10B2 + δ(1 + A1 − 2A2)). (3.25)

We then utilise (3.22b) and (3.22c) to note that α and β should be given by:

α =
4J (1) − ln(1 + 4β(T (2) +O (2)))

4O (2)(1 + 4β(T (2) +O (2)))
, and β =

e4σ(2) − 1
4(T (1) +O (1))

. (3.26)

The right hand sides above are given by the parameters of theUV and IR theory via (3.14),
(3.15), (3.20) and (3.21). Therefore we obtain α and β in terms of other parameters,
namely Ais, Bis and δ. Since B0 and B1 are given by (3.25), and the values of A1, B2 and δ
have been fixed, α and β are now functions of A0 and A2.

Substituting (3.25) and (3.26) in (3.22a) and (3.22d), and using the fixed values of A1,
B2 and δ, we can determine the values of A0 and A2 numerically. These numerical values
are then used to obtain B0 and B1 from (3.25). Finally, we can use (3.26) to determine α
and β.

Doing so, we obtain A2 = −0.25. As discussed above, we can now also claim that
we have actually set A1 = 1, A2 = −0.25 and δ = −4.91 and have determined all other
parameters in terms of these. In the end, we obtain A0 = −1.25, B0 = −1.25, B1 = 0.25
and B2 = −1. Furthermore, the hard-soft couplings in units LUV = 1 are

α = 5.7 × 103, and β = 1.2 × 10−4. (3.27)

Of course we have determined these values of α and β in the limit Λ → ∞ of the dual
field-theoretic system. It is indeed a bit surprising that α is so enormously large and β is so
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tiny. This completes determining all parameters of the IR theory and hard-soft couplings
in terms of the dimensionless UV parameters A0, A1 and A2. It is also interesting to note
that as a result of our solutions we obtain

σ(1) = −1.03 × 10−7, and σ(2) = 1.16 × 10−3. (3.28)

This implies the effective UV metric is slightly compressed and the effective IR metric is
slightly dilated compared to the background flat Minkowski space as claimed before.

Finally the other non-vanishing effective sources and vevs in units LUV = 1 turn out to
be:

T (1) = 12.06, J (1) = −2
√

6, O (1) = −2.46, O (2) = −8.6 × 10−4. (3.29)

It is also reassuring to see that the effective IR vev is small in units LUV = 1 compared to
the effective UV vev.

The most interesting feature is the behaviour of ρ ′′ which has been plotted in Fig. 2.
It is clear from the figure that the gluing cures the edge singularities of each component
Universe arising from the geodetic incompleteness – if extended to u > 0 and u < 0, ρ ′′
becomes positive in the UV and IR universes respectively.
We plot the scale factor ρ(u) in Fig. 3 andΦ(u) in Fig. 4. Φ(u) is obtained by integrating

(3.3). The integration constant Φ0 in the UV region which is simply Φ(u = ∞) can be
determined to be about 6.91.

Finally, we plot V (Φ) in units LUV = 1 as a function of Φ in Fig. 5. We find that V
is V −shaped. The asymptotic values of V (Φ) in each component Universe is −6 where
V (Φ) has critical points. The critical point in the UV universe is at Φ = 0 and that in the
IR universe is at Φ = Φ0 ≈ 6.91. Crucially,V (Φ) has a minima at u = 0 where Φ ≈ 3.43.
HereV (Φ) is not differentiable, but still it is kind of a critical point as in the asymptotic
regions. Furthermore, as clear from Figs. 2 and 4 that at u = 0, ρ ′′ = 0 andΦ′ = 0 like in
the two asymptotic regions also. Therefore, we can think of the region u = 0 as an AdS
space of zero volume. This hints that our full theory flows to an infrared fixed point. We
leave a more detailed analysis to the future.

If we take the perspective mentioned before that the UV (blue) and IR (red) universes
are two covers of −∞ < u ≤ 0 joined smoothly at u = 0, then clearly the two covers do
not only have two different metrics but also two different potentials for the scalar fieldΦ.

One final remark regarding determining all parameters of the IR theory and the hard-
soft couplings as functions of the parameters of the UV theory is that we have assumed
that the irrelevant IRoperator coupling to theUVoperator has dimension 5. Clearly, if we
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Figure 2. Plot of ρ ′′(u); the blue curve refers to the UVwhile the red one refers to the
IR. The dashed lines indicate the regions where ρ ′′ > 0 – here the solutions to Φ do
not exist and hence these regions should be discarded. It is clear then how the gluing
cures the edge singularities arising from the geodetic incompleteness in each individual
component Universe.

change the dimension of the IR operator to 6 as for instance andmodify our ansatz (3.16)
accordingly, wewill still be able to repeat the same exercise to obtain thenew IRparameters
and the hard-soft couplings. Thus the IR theory that completes the UV theory is unique
up to certain assumptions of which the most crucial one is the scaling dimension of the
irrelevant IR operator. In the case of semi-holographic framework for QCD, it will turn
out that the dimensions of the IR operators to which the UV operator couples to will be
fixed by perturbation theory itself. We will discuss this in the next section.

3.3 Excited states

As we have defined the bi-holographic theory and have explicitly constructed the vacuum
state, we can proceed to compute physical observables of excited states. Let us first see
how we can compute small fluctuations about the vacuum state. The parameters of the
IR theory and the hard-soft couplings α and β (at Λ = ∞) have been determined once
and for all in terms of the parameters of the UV theory. In fact these parameters together
define the biholographic theory. Let us first consider scalar fluctuations, i.e. δ ρUV,IR(u, x)
and δΦUV,IR(u, x) in theUV and IR universes. As a result of the fluctuations, we generate
δσ(1)(x), δσ(2)(x), δT (1)(x), δO (1)(x) and δO (2)(x). As discussed before, we should have
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Figure 3. Plot of the ρ(u); the
blue curve refers to theUV region
while the red one refers to the IR
region. ρ ′ is continuous at u = 0
if we flip the sign of ρ ′ on the IR
side.
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Figure 4. Plot of the scalar field
φ(u); the blue curve refers to
the UV region while the red one
refers to the IR region. Note that
Φ′ = 0 at u = 0 where Φ ≈ 3.43.
The integration constant Φ0 (see
text) at u = ∞ is simplyΦ(u = ∞)
which is approximately 6.91.

δ J (2)(x) = 0, and the CFTWard identity then implies that δT (2)(x) = 0. In any case, we
should solve the fluctuations so that perturbations of both sides of the semi-holographic
coupling equations (3.22a), (3.22b), (3.22c) and (3.22d) match. Crucially, we note that
we are neither perturbing the fixed background metric ηµν where the conserved energy-
momentum tensor of the full system lives, nor adding any external source to the system.
Individually in each Universe, we get two conditions each for each of the two sources
(boundary metric and scalar source) from the coupling equations. The remaining con-
ditions that we should impose will be that the perturbations must not affect the smooth
gluing of the two Universes at u = 0. To this end, we will demand that at u = 0

δ ρUV(x) = δ ρIR(x),
δ ρ ′UV(x) = −δ ρ ′IR(x) and (3.30)
δΦ′UV(x) = −δΦ′IR(x) .

Note that we have reversed the orientation of the radial direction in the IR universe
before gluing as before.22 In order to ensure the continuity of Φ at u = 0, we have
to readjust the integration constant for Φ in the IR, i.e introduce an appropriate
δΦ0(x) ≡ δΦ(u = ∞, x). This means that the potential V IR(Φ − Φ0 − δΦ0(x)) is the

22Amore diffeomorphism invariant statement is that the induced metrics and the Brown-York tensors on
both sides should match at u = 0 after we flip the sign of the Brown-York tensor on the IR side.
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Figure 5. Plot ofV (Φ) (in units LUV = 1) as a function of Φ; the blue curve refers to
the UV region while the red one refers to the IR region. The kink in the middle where
V (Φ) has a minima corresponds to u = 0 whereΦ = 3.43 approximately. HereV (Φ) is
not differentiable. The two asymptotic values ofV (Φ) at the critical points Φ = 0 and
Φ ≈ 6.91 respectively are -6.

same function as in the vacuum although the IR field Φ has now been redefined.23 This
redefinition means that V IR has no tadpole term. However, this field-redefinition thus
affect the definition of the IR theory in a subtle but concrete way. One can check that
with these conditions, we can completely determine any fluctuation about the vacuum
state and compute the perturbation of the full energy-momentum tensor of the dual
system, etc.

It is easy to generalise the above discussion to the case of tensor and vector fluctuations
of the vacuum state. Furthermore, we can similarly consider fluctuations of other bulk
fields which vanish in the vacuum solution. In order to generalise our construction
of excited states which are not small departures from the vacuum, we can still use the
general coupling conditions (3.22a), (3.22b), (3.22c) and (3.22d). However, we cannot
use u = 0 as the matching hypersurface as the domain-wall coordinates in which we
have constructed the vacuum solution will be ill-defined beyond some patches of the UV
and IR components individually. In the general case, we postulate that the UV and IR
universes should be glued at their edge hypersurfaces where there is no curvature singularity

23Note this canonicalV IR which remains state invariant is different from the red curve in Fig. 5. In order
to see this form we simply need to computeV (Φ − 6.91) in the red region.
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but beyond which solutions for the matter fields cease to exist. This gluing will then
remove the edge singularities in each individual component which arises from geodetic
incompleteness as in the vacuum case. In order for the postulate to make sense, we would
require that edge singularities should appear in each component Universe much before any
curvature singularity can occur. Although the matter fields will not exist beyond the edge
singularities, the individual UV and IR metrics can also be continued in the unphysical
regions as we have seen in the case of the vacuum. Event horizons can lie either in the
physical or in the unphysical parts of each component Universe system. At this stage, we
are not sure what should be the general thermodynamic description of bi-holographic
thermal states, although armed with our well-defined full energy-momentum tensor
we can in principle study this question. It will be also fascinating to understand non-
equilibrium behaviour of bi-holographic systems. We leave such investigations for the
future.

Weneed todiscuss thoughhowwe can couple external sources to the full bi-holographic
system. Since we have already considered the case of consistent coupling rules when the
fixed background metric is an arbitrary curved metric in the previous section, we need to
understand only how to introduce other external scalar sources and external gauge poten-
tials. We consider the case of external scalar sources only, as we have not studied the case
of vector-type couplings. In presence of an external scalar source J ext, we need to modify
the general coupling rules (3.22a), (3.22b), (3.22c) and (3.22d) to:

e4σ(1) = 1 + 4β
(
T (2) +O (2)

)
, (3.31a)

e4σ(2) = 1 + 4β
(
T (1) +O (1)

)
, (3.31b)

J (1) =
1
4 ln

(
1 + 4β

(
T (2) +O (2)

))
+ αO (2) + J ext, (3.31c)

0 = 1
4 ln

(
1 + 4β

(
T (1) +O (1)

))
+ αO (1) + J ext . (3.31d)

One can readily check that as a result of the above, theWard identity of the full systemwill
be modified to:

∂µT µ
ν = O∂ν J ext, (3.32)

whereT µ
ν will be given by the more general expression (2.19) (with gµν = ηµν and d = 4)

and
O = O (1)e4σ(1) +O (2)e4σ(2) . (3.33)

In fact, this gives as a way to define the full operatorO of the biholographic (or semiho-
lographic) system as a combination of the individual operators of the two sectors. More
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generally,O will be24

O = O (1)
√

detz (1) +O (2)
√

detz (2), (3.34)

i.e. the sum of the individual operators weighted by the individual volume density factors
of the effective metrics (recall

√
detz (i) =

√
detg (i)/

√
detg ). Thus J ext couples demo-

cratically also to both sectors – the relative strengths of the couplings being determined
dynamically by the compression/dilation factors of the volume densities of the individual
effective metrics as compared to the fixed background metric. With the coupling rules
now set by (3.31a), (3.31b), (3.31c) and (3.31d), we can repeat the discussion before about
how to compute small perturbations of the biholographic vacuum state and also other
states far away from the vacuum.

3.4 The highly e�icient RG flow perspective
Anatural question to ask is howwe can achieve aRG flowdescription of the biholographic
theory. The right framework is indeedhighly efficient RG flow as introduced in [53, 54] (for
a recent short review see [56]) which has been shown to reproduce the traditional holo-
graphic correspondence. In particular, this framework will allow us to define a conserved
energy-momentum tensor of the full system at each scalewithout the need for introducing
an action formalism. One of the key points of construction of highly efficient RG flow is
that we should allow also the backgroundmetric gµν (Λ) and sources J (Λ) evolve with the
scale Λ as a state-independent functionals gµν [T αβ(Λ),O(Λ),Λ] and J [T αβ(Λ),O(Λ),Λ]
of the scale and effective operators so that at each scaleΛ, the Ward identity

∇(Λ)µT µ
ν (Λ) = O(Λ)∇(Λ)ν J (Λ) (3.35)

is satisfied in the effective background gµν (Λ). Thus the effective background metric
preserves the Ward identity. Such a RG flow can be non-Wilsonian and an explicit
construction can be achieved in the large N limit by defining single-trace operators via
collective variables (instead of the elementary quantum fields) which parametrise their
expectation values in all states. A highly efficient RG flow leads to a (d + 1)−dimensional
spacetime with gµν (Λ) being essentially identified with Λ−2γµν , with γµν being the
induced metric on the hypersurface r = Λ−1 at a constant value of the radial coordinate
that is identified with the inverse of the scale. Furthermore, the dual (d + 1)− dimensional
metric will follow diffeomorphism invariant equations with a specific type of gauge
fixing that can be decoded from a deformed form of Weyl invariance associated with the
24We can readily verify that in the most general case we need to add J ext both to J (1) and J (2) in (2.31) to

obtain the general consistent coupling rules in the presence of an external source J ext. It does not affect
the general expression (2.32) of the full energy-momentum tensor, however the Ward identity that it
satisfies now should be ∇µT µ

ν = O∇ν J ext in the fixed background metric g .
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corresponding highly efficient RG flow.

In the bi-holographic case, the highly efficient RG flow construction should work by
choosing correlated hypersurfaces Σ1 and Σ2 in the UV and IR universes for each scale Λ
as shown in Fig. 1. These hypersurfaces should be given by the two equations:

Σ1 := uUV = uUV(Λ, x), Σ2 := uIR = uIR(Λ, x). (3.36)

Furthermore, we can invoke new hypersurface coordinates via diffeomorphisms defined
on each hypersurface

x ′UV,IR
= x ′UV,IR(Λ, x). (3.37)

Choosing these 2(d + 1) functions we may be able to define the two hypersurfaces Σ1 and
Σ2 and also hypersurface coordinates in the UV and IR universes such that there exists
a reference metric γµν (Λ) at each Λ with respect to which the induced metrics γ(i)µν and
γ
(2)
µν on Σ1 and Σ2 respectively will be correlated with the general coupling rules (2.31) so

that the existence of a conserved energy-momentum tensor of the full system at each scale
taking the form (2.32) in the e�ective background γµν (Λ) is ensured. The latter follows
from the coupling rules because di�eomorphism invariance of the classical gravity equations
in each Universe implies that the Brown-York stress tensors (renormalised by covariant
counterterms) on each hypersurface is conserved in the background metrics γ(1)µν (Λ) and
γ
(2)
µν (Λ) respectively. 25

This highly efficient RG flow construction is clearly possible only for d ≤ 4 because
otherwise with the 2(d + 1) functions specifying the hypersurfaces and hypersurface
coordinates we may not be able to solve for the right background metric γµν (Λ) which
has d(d + 1)/2 independent components. Furthermore, the e�ective hard-soft coupling
constants featuring in the general coupling rules (2.31) should not only be scale but
also be state-dependent except for the case Λ = ∞. At Λ = ∞, the hypersurfaces Σ1
and Σ2 are the conformal boundaries of the UV and IR universes respectively. Here
the hard-soft couplings remain same as in the vacuum state and indeed these are used
to then construct all excited states of the theory as mentioned above. Furthermore,
at Λ = ∞, γµν (Λ) simply coincides with the background metric on which the full
system and it’s energy-momentum tensor lives by construction. It is not clear if such a RG
flowperspectivemakes sense for d > 4, i.e. in bi-AdS spaces withmore than 5 dimensions.

25Note that actually we also need to define a reference effective source J ext(Λ) along with the reference
metric γµν (Λ) and consider modified coupling rules (3.31a)-(3.31d) between γ(i)s and J (i)s on the two
hypersurfaces (3.37). We have kept this implicit in this discussion to avoid over-cluttering ofwords. Also
note that J ext(Λ) need not vanish at finiteΛ even when it vanishes atΛ = ∞.
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The highly efficient RG flow perspective gives a very coherent view of the full
biholographic construction. In particular, by construction it breaks the apparent inde-
pendent (d + 1)−diffeomorphism invariance of the two Universes into only one kind
of (d + 1)−diffeomorphism invariance. The invariance of the conservation equation for
the full energy-momentum in a reference metric background gives d−constraints. An
additional Hamiltonian constraint arises naturally in order to form a first class constraint
system. These (d + 1)−constraints result in having (d + 1)−diffeomorphism symmetry
instead of twice the number.

Onemore attractive feature of the highly efficient RG flow construction is that one can
take the point of view that spacetime emerges from the endpoint of the RG flow corres-
ponding to the horizon of the emergent geometry rather than from the boundary. Impos-
ing that the end point of the RG flow under an universal rescaling of the scale and time
coordinate (corresponding to zooming in the long time andnear horizon limits of the dual
spacetime) can be mapped to a fixed point with a few parameters, we obtain bounds for
the first order flows of effective physical observables near the end point such that at the
boundary they take the necessary physical values which ensures absence of naked singu-
larities in the dual spacetime [53, 54, 262]. This has been explicitly demonstrated in the
context of the hydrodynamic limit of the dynamics in the dual quantum system specially.
Taking such a point of view is natural in the bi-holographic context, because it is only at
the matching hypersurface (u = 0) of the two Universes corresponding to the endpoint
of the highly efficient RG flow the two Universes physically overlap and share common
data. Therefore, the two Universes naturally emerge from the u = 0 hypersurface. In the
future, we will like to investigate the RG flow reconstruction of bi-holography and also
investigate if one can define c−functions for such RG flows.

4 Concluding remarks

4.1 How to proceed in the case of QCD?

The bi-holographic construction provides an illuminating illustration of how the
semi-holographic framework can be derived from first principles, particularly regarding
how some simple consistency rules can be used to determine the parameters of the IR
holographic theory and the hard-soft couplings in terms of the parameters of the UV
theory. Let us discuss briefly how the steps of the construction of bi-holography can be
generalised to the case of the semi-holographic framework for QCD.

Firstly, in the case of bi-holography the IR Universe was necessary to cure the edge
singularity of the UV Universe, and the smoothness of the gluing between the two
Universes was a key principle that determined the parameters of the gravitational theory
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of the IR Universe as well. In the case of QCD, an analogous issue is the cure the
non-Borel resummability of the perturbation series, i.e. we need the non-perturbative
(holographic) physics to cancel the renormalon Borel poles of perturbation theory that lie
on the positive real axis and control large order behaviour of the perturbation series in the
large N limit [245, 263]. It is known that each such renormalon pole that appears in the
perturbative calculations of the operator product expansion (OPE) of a product of two
gauge-invariant operators can be cancelled by invoking a non-perturbative condensate
of an appropriate gauge-invariant operator with the right mass dimension [243, 245] as
originally observed by Parisi. The further the renormalon pole is from the origin, the
larger the mass dimension of the operator whose condensate cancels this pole should
be. Furthermore, the non-perturbative dependence of this condensate on ΛQCD, or
equivalently on the perturbative strong coupling constant is completely determined by
pQCD (in particular by the location of the corresponding Borel pole that gets cancelled).

This observation of Parisi can be transformed into a physical mechanism via semi-
holography. In particular the non-perturbative condensate of a given operator with
given mass dimension should be reproduced by the dynamics of the dual holographic
bulk field. Since the condensate is determined by perturbation theory, the holographic
gravitational theory should be designed appropriately in order to reproduce the right
behaviour as a function of the confinement scale. Furthermore, the gravitational bound-
ary condition determined by the hard-soft coupling(s) with the corresponding operator
of the perturbative sector appearing in the perturbative expansion of the OPE must
also be specified in an appropriate way. Such a designer gravity approach for designing a
holographic gravitational theory and its boundary conditions in order to reproduce right
behaviour of the dual condensates has been studied in [264–266]. This approach can be
adapted to the semi-holographic construction to determine the holographic theory dual
to the non-perturbative sector, and also the hard-soft couplings between the perturbative
and the non-perturbative sectors as functions ofΛQCD.

It is clear that the construction of this semi-holographic framework should be far
more complicated than in the bi-holographic case. Multiple number of non-perturbative
condensates, i.e. operators of the emergent holographic theory should couple to each
gauge-invariant operator of the perturbative sector. However, we can proceed system-
atically by considering the cancellation of perturbative Borel poles in closer proximity
to the origin for which we would require non-perturbative condensates of lower mass
dimensions only.

The Borel poles of the (appropriately resummed) perturbation theory can shift at scales
intrinsic to a non-trivial state (as for instance the temperature). This naturally implies
that we need to invoke state-dependence in the running of the hard-soft couplings with
the scale. The bi-holographic construction further indicates that we need to do field-
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redefinitions in the holographic gravitational theory which could be state-dependent al-
though its parameters should be not vary with the state. We need to understand these is-
sues better in the future. However, the arguments presented above indicate that the semi-
holographic framework for QCD can indeed be constructed systematically in the large N
limit.

4.2 Possible applications of bi-holography
In this chapter, we have invoked bi-holography to illustrate semi-holography. However,
it should be worthwhile to pursue the biholographic framework and its applications
on its own right. In particular, the bi-holographic framework gives rise to a consistent
bi-metric gravitational theory as mentioned before. Such a construction when invoked in
the context of positive (instead of negative) cosmological constant, can perhaps also be
relevant for shedding light on the origin of darkmatter (in the form ofmatter in the ghost
Universe which gives the second covering of the full spacetime). It has also been pointed
out in the literature that the possibility that baryonic matter and dark matter can live
in different effective metrics can explain late time acceleration of the Universe without
invoking the cosmological constant [267]. The visible Universe with baryonic matter,
and the coexisting ghost Universe with dark matter and the second metric should be
joined at the beginning of time such that each can cure the other’s initial-time singularity.
It might be interesting to pursue such a cosmological model.

Finally, bi-holography can have applications which are more wide ranging than
holography. In particular the effective metrics on which the UV and IR sectors live
can have different topologies from the original background metric26 which should
be determined dynamically. This can then serve as examples of theories with hidden
topological phases which cannot be captured by local order parameters, and admitting
simple geometric descriptions. With such applications in view, it should be interesting
to study bi-holographic RG flows, and also thermal and non-equilibrium dynamics in
bi-holography.

We conclude with the final remark that wemust also pursue if bi-holography and semi-
holography can be embedded in the string theoretic framework. This direction of research
may extend the horizons of string theory, andmay also lead to a deeper andmore enriching
understanding of the field-theoretic implications of bi-holography and semi-holography.

26This is specially relevant when the tensorial hard-soft couplings γ1 , 0 and/or γ2 , 0. In non-relativistic
bi-holography, we will not be able to set these to zero even in the limitΛ→∞ in order to construct the
vacuum state.
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A summary for my curious friend

For as long as we can remember, humans have asked questions. Often about the
universe(s?) we find ourselves in. We want to know the ‘why’, the ‘what’ and the

‘how’. This thesis is not ambitious enough to answer any of these questions.

As disappointing as that may be for you, my reader, it is the aim of this thesis to set
these questions in a certain context. Using the ‘why’ as guiding direction, we answer
aspects of the ‘what’ and the ‘how’. We concern ourselves with the mathematical and
physical descriptions of the most fundamental of interactions that take place in nature, as
I write. And in fact, even as you read.

These interactions range from those occurring between the smallest building blocks we
know, of nature, to those between the largest astrophysical objects we have come to learn
of. The Standard Model of particle physics (built on Quantum Field Theory) has been
remarkably successful in describing the small. It has been extremely well tested and exper-
imental evidence continues to pour in, in support of its validity as a good description of
the fundamental interactions between the smallest of particles we are aware of, in nature.
The massive objects, on the other hand, are extremely well described by Einstein’s theory
of General Relativity. Putting the small and the large together, however, has turned out
to be a considerable challenge. Most glaringly when it came to the study of black holes;
these are solutions to Einstein’s theorywhich have been confirmed to exist in nature, albeit
through indirect detection.

Black holes Classically, a black hole is a massive ‘hole’—expected to be found at
the center of every galaxy in our universe—into which one could only fall in and never
escape. A few decades ago, however, it was discovered that black holes radiate heat; one
could escape after all, but not before being turned into heat. And in fact, that laws of
black holes could be reformulated as laws of thermodynamics! A box of gas, for instance,
can be characterized by only a few parameters like temperature, volume, density and
mass. Nevertheless, we know that the box contains many tiny particles with small masses
colliding against each other to generate the total mass and temperature. Through these
tiny particles, thermodynamic systems exhibit a quantum statistical structure. And
therefore, so must black holes.

These indicatives spurred extensive research on the so-called ‘information paradox’.
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The premise of which is that in a collapse of large amounts of matter forming a black
hole, a small number of physical parameters (like mass, charge, angular momentum,
etc.) characterize the black hole. However, it was found that these black holes radiate as
black bodies. That is, the heat coming from them does not appear to remember what
the black hole was made of. One formed by a collapsing shell of tables and another by a
shell of chairs could not be told apart! In stark contrast, quantum mechanics postulates
that no information can be lost in physical processes. There began the most fierce of
competitions: between General theory of Relativity and Quantum Mechanics. For this
reason, a microscopic study of black holes has received significant attention. There are
two obvious aspects that need scrutiny: the static and the dynamical. The former unveils
how big a black hole is and ‘how many tiny particles’ it takes to produce a massive one,
for instance. While the latter is concerned with how these tiny particles interact with each
other to produce mysterious dynamics that solve the information paradox.

Static aspects of black hole physics are often easiest to study when there is sufficient
symmetry in the game. Think of a balloon. Imagine we said a balloon was approximately
spherical. That would leave a child the freedom to poke it a little, see how it responds
and play around with it. Imagine we said that the balloon must be exactly spherical all
the time. Any touch is going to distort its shape (even if only ever so slightly) and so that
does not leave the child any room for play. Nevertheless, it is when nobody touches the
balloon that it is easiest to study! That is when we know exactly how to tell its shape; it is
spherical. Knowing just the radius of the sphere, we would know its precise surface area
and even the volume of air contained inside the balloon. In fact, demanding spherical
symmetry and fixing one additional parameter (say the size of the balloon) allows us to
completely determine how it behaves with time: exactly nothing would change and the
balloon would be a thousand years later just as it is now. Of course, the most fun might
be to pierce the balloon with a pin and see it explode! But that is arbitrarily far from
any symmetric process—unfortunately rendering it too difficult to write down, say, an
evolution equation for.

On account of similar logic, the more symmetric they are, the easier the black holes
are to study. The completely static ones often possess more symmetry and are called
‘supersymmetric black holes’. They are stable; in fact more so than the balloon. A little
poke does not disturb a supersymmetric black hole. The ones that may be disturbed a
little while still allowing us some control are often non-supersymmetric. But they tend to
retain most of their character upon disturbing them by, say, throwing a particle in; these
are called ‘large semi-classical black holes’ in technical jargon. To burst the balloon is to
watch a black hole evaporate entirely. In fact, the reverse process of creating a small black
hole is rather exciting too. But again, such fun does not come easy. And in this thesis, we
either let the black holes be or poke them a little, ever so slightly. For good or for bad, we
will neither create nor destroy them.
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String Theory has offered a spectacular framework to study static aspects of highly sym-
metric black holes. It postulates that the many vibrations of manymany little strings turn
out to produce large black holes! In the case where black holes are static and supersym-
metric, we use string theory to attempt a complete and precise understanding of the ‘tiny
particles’ that render them with a mass; this is presented in Chapter II. Further on, in
Chapter III with a view towards what happens when we throw particles into them, when
the black holes are large and semi-classical, we still aim at understanding their mass, but
admittedly with less precision. As patience catches up with us on how unwieldy study-
ing dynamics is, within a controlled string theoretic setting, we then turn the plate upside
down to move to our interest in understanding black holes that are closer to those found
in nature. These black holes, being far from supersymmetric, have rich dynamicswhichwe
study with the help of quantummechanics. We show, in Chapter IV, that black holes be-
have verymuch like some of the simplest quantummechanicalmodels that are often stud-
ied at an undergraduate level! These two contrasting approaches may neatly converge to
help us understand the complete underlying story in the long-run. Conveniently enough
for the impatient, however, an intermediate probe has emerged in recent decades, via a
study of ‘strongly coupled gauge theories’.

Strongly coupled gauge theories Some of the smallest particles that we know
nature is built out of, are quarks. They interact with each other via the Strong force.
Of the many remarkable successes of 20th century theoretical physics, the theory of
Quantum Chromodynamics (QCD) explaining these interactions is among the finest.
This theory was discovered to possess stunning features. At very short distances, quarks
behave like free particles, almost oblivious to each other. At large distances, however, they
behave rather collectively and can hardly do without each other! Much like the modern
world, one might wonder: up close, we are often oblivious to our fellow shoppers in the
supermarket but when viewed from far above, we appear to shop collectively as a group in
the same building. Experimentally tested descriptions for both extremes have since been
successfully developed. However, an understanding of this theory at all intermediate
distances has proven to be a big challenge. Studying the limit of large number of particles
(called the large N limit) has opened up an unprecedented set of tools to studyQCD-like
theories, even if in a simplified setting. It paved way for an entirely new way of studying
gravitational dynamics via field theoretic tools and vice-versa. It was discovered that some
QCD (like) theories often describe the physics of gravity at large distances. In fact, some
of the most incisive contributions to our modern understanding of the microscopics of
black hole physics are owed to the study of strongly coupled gauge theories in the large
N limit. This field of research goes by the name of gauge-gravity duality or holographic
duality. An obvious shortcoming of this field of study as it stands today is that the
gravitational universes we are able to explore are far from the real world. Nevertheless, it
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provides a fantastic framework to ask tractable conceptual questions.

One such outstanding question is, how or where does gravity emerge from? As it turns
out, this question is intricately linked to understand the gauge theories in various regimes,
not just at very short and large distances. In viewof addressing this question, inChapterV,
we construct a toy theory that captures physics corresponding to two different, interacting
gauge theories, one describing very short-distance effects while the other, very long-range
physics. An artist’s illustration of this theory may be seen in Fig. V.1 where the two grav-
itational theories live on both ends of the ‘tube’. They interact where the red and blue
universes meet! We see that asking why gravitational physics can emerge out of field the-
ories enables us to address how this happens in an illustrative toy-model.



Samenva�ing

Sindsmensenheugenis hebben we vragen gesteld. Vaak gaan deze vragen over het heelal
waarin we ons bevinden. Wewillen het ‘waarom’, het ‘wat’ en het ‘hoe’ doorgronden.

Dit proefschrift is niet ambitieus genoeg om deze vragen te beantwoorden.

Zo teleurstellend als dit wellicht is voor jou, mijn lezer, is het doel van dit proefschrift
om deze vragen in een bepaalde context te zetten. Met behulp van het ‘waarom’ als
leidraad beantwoorden we aspecten van het ‘wat’ en het ‘hoe’. We houden ons bezig met
de wiskundige en natuurkundige beschrijvingen van de meest fundamentele processen
die plaatsvinden in de natuur, altijd en overal, ook terwijl ik dit schrijf en wanneer u het
leest.

Deze variëren van de wisselwerkingen die zich voordoen tussen de kleinste bouwstenen
die in de natuur bekend zijn tot die tussen de grootste astrofysische objecten waar we van
weten. Het StandaardModel van de deeltjesfysica is een theorie die is gebaseerd op kwan-
tumveldentheorie en opmerkelijk succesvol is in het beschrijven van het allerkleinste. Het
is reeds zeer nauwkeurig getest, en er komt nog altijd meer experimenteel bewijs binnen
ter ondersteuning van haar geldigheid als een goede beschrijving van de fundamentele wis-
selwerkingen tussen de kleinste deeltjes waar we ons bewust van zijn in de natuur. De
allergrootste, zeer massieve voorwerpen worden daarentegen zeer goed beschreven door
Einstein’s algemene relativiteitstheorie, die eveneens wordt ondersteund door een hoop
experimenteel bewijs. Het verenigen van de theorieën van het allerkleinste en het allerg-
rootste is echter een geweldige theoretische uitdaging gebleken. Dit geldt al helemaal als
het gaat om zwarte gaten, astrofysische objecten die worden voorspeld door de theorie van
Einstein en ook daadwerkelijk zijn gevonden in het heelal, zij het via indirecte waarnemin-
gen.

Zwarte gaten Klassiek, dus niet kwantummechanisch, gezien is een zwart gat een
massief ‘gat’—waarvan men verwacht dat zich er een bevindt in het midden van elk
sterrenstelsel in ons universum—waar men alleen in kan vallen en zelfs licht nooit uit
kan ontsnappen. Enkele tientallen jaren geleden voorspelden natuurkundigen echter
dat zwarte gaten toch warmte uitstralen; men kon toch uit een zwart gat ontsnappen
maar helaas niet voordat men is omgezet in warmte. Bovendien werd ontdekt dat de
natuurkundige wetten die zwarte gaten beschrijven ook kunnen worden geformuleerd als
de wetten van de thermodynamica! Laten we kort bij die laatste stilstaan om te begrijpen
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wat dit impliceert. Een gas in een doos kan eenvoudig worden gekenmerkt door een klein
aantal parameters zoals de temperatuur, volume, dichtheid enmassa. Nietteminwetenwe
dat de doos in feite op ‘microscopisch’ niveau vele kleine kwantummechanische deeltjes
bevat, met kleine massa’s die tegen elkaar botsen en zo de totale massa, temperatuur en
andere statistische eigenschappen van het gas voortbrengen. Meer algemeen hebben ther-
modynamische systemen die uit kleine deeltjes bestaan eveneens een kwantum-statistische
structuur. Als we dit toepassen op de ideeën van Hawking dan moeten zwarte gaten ook
een kwantum-statistische structuur vertonen.

Deze theoretische aanwijzingen hebben geleid tot uitgebreid onderzoek naar de
zogenaamde ‘informatieparadox’. Het uitgangspunt daarvan is dat in de vorming van
een zwart gat een klein aantal fysieke parameters (zoals de massa, lading, impulsmoment,
etc.) volstaan om het zwarte gat te karakteriseren. Er werd vastgesteld dat deze zwarte
gaten warmte uitstralen als zwarte lichamen in de thermodynamica. Dat wil zeggen dat
de warmte van zwarte gaten niet lijkt te herinneren van welke ingewikkelde combinatie
van ingrediënten het zwarte gat oorspronkelijk gemaakt is. Het is dus niet mogelijk om
een zwart gat dat gevormd is door een ineenstortende schil van tafels te onderscheiden
van een die ontstaan is uit een schil van stoelen! Dit staat in schril contrast met de
kwantummechanica, die stelt dat er geen informatie verloren kan gaan in natuurkundige
processen. Deze paradox leidde tot een felle ‘oorlog’ tussen aanhangers van Einstein’s
algemene relativiteitstheorie en die van de kwantummechanica. Daarom heeft de micro-
scopische studie van zwarte gaten veel aandacht gekregen. Er zijn twee duidelijke aspecten
die toetsing nodig hebben: de statische en de dynamische. De eerste onthult bijvoorbeeld
hoe groot een zwart gat is en ‘hoeveel microtoestanden’ nodig zijn om één massief zwart
gat te produceren, terwijl de laatste betrekking heeft op hoe deze kleine deeltjes samen de
mysterieuze dynamiek produceren die de informatieparadox oplost.

Statische aspecten van zwarte gaten zijn vaak het gemakkelijkst te bestuderen als
er voldoende symmetrie in het spel is. Denk aan een ballon. Stel dat we zeggen dat
een ballon ongeveer, maar niet precies, bolvormig is. Dat zou een kind de vrijheid
laten om het een beetje te porren, te zien hoe het reageert en ermee te spelen. Stel nu
dat we zeggen dat de ballon de hele tijd precies bolvormig moet zijn. Elke aanraking
verandert de vorm, al is het maar een heel klein beetje, dus dit laat het kind geen ruimte
om ermee te spelen. Toch is de tweede situatie, wanneer niemand de ballon aanraakt,
het gemakkelijkst te bestuderen! Dat is zo omdat we precies weten hoe we de vorm
kunnen beschrijven: het is exact bolvormig. Wanneer we de straal van de bol weten
dan zouden we zijn precieze oppervlakte kennen en zelfs de luchtinhoud. In feite stelt
de veeleisende sferische symmetrie, samen met de vaststelling van een extra parameter
(zeg de omvang van de ballon), ons in staat om volledig te bepalen hoe de ballon zich
gedraagt in de tijd: er zou helemaal niets veranderen, en de ballon zou een duizend jaar
later net zo zijn als het nu is. Natuurlijk zou het het leukste zijn om in de ballon te prikken
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met een speld en het te zien ontploffen! Maar dat is helaas zeer ver van alle symmet-
rische processen—waardoor het temoeilijk is om te beschrijvenwat er dan precies gebeurt.

Uit zulke redeneringen volgt dat hoe meer symmetrie zwarte gaten hebben des te
makkelijker het is om ze te bestuderen. De compleet statische zwarte gaten beschikken
vaak over meer symmetrie en heten ‘supersymmetrische zwarte gaten’. In tegenstelling
tot de perfect bolvormige ballon zijn zulke geïdealiseerde zwarte gaten nog steeds erg
interessant omdat ze ons een inkijkje bieden in de informatieparadox. Ze zijn erg stabiel;
in feite nog meer dan de ballon. Een kleine por verstoort een supersymmetrisch zwarte
gat niet. De gaten die we nog steeds kunnen beïnvloeden zonder de controle te verliezen
zijn vaak niet-supersymmetrisch. Maar ze hebben de neiging om het grootste deel van
hun eigenschappen te behouden als we er, laten we zeggen, een deeltje in werpen. Deze
gaten worden ‘grote semiklassieke zwarte gaten’ genoemd in vakjargon. Het analogon
van het laten knallen van de ballon is hier het kijken naar het geheel verdampen van een
zwart gat. In feite is het omgekeerde proces, van het creëren van een klein zwart gat, ook
best wel spannend. Maar nogmaals: zulke leuke dingen zijn erg lastig om te bestuderen.
In dit proefschrift laten we de zwarte gaten ofwel met rust of we porren ze een heel klein
beetje: we zullen ze helaas niet maken of vernietigen.

Snaartheorie biedt een spectaculair kader om statische aspecten van zeer symmetrische
zwarte gaten te bestuderen. Het veronderstelt dat grote zwarte gaten op microscopische
schaal kunnen worden beschreven door vele kleine trillende snaren. In het geval dat de
zwarte gaten statisch en supersymmetrisch zijn gebruiken we snaartheorie om een com-
pleet en nauwkeurig inzicht te proberen te geven van de microscopische bouwstenen, de
‘kleine deeltjes’, die zwarte gaten hunmassa geven; dit wordt gepresenteerd in Hoofdstuk
II. Later, in Hoofdstuk III, waarin we bestuderen wat er gebeurt als we deeltjes in grote
en semiklassieke zwarte gaten gooien, zijn we eveneens gericht op het begrijpen van hun
massa, zij het op eenminder preciezemanier. Het is echter nog steeds een zeer ingewikkeld
vraagstuk om de dynamiek van grote semiklassieke zwarte gaten te doorgronden binnen
het zeer gecontroleerde snaartheoretisch kader. Omdat we hier te ongeduldig voor zijn
verleggen we vervolgens onze focus naar het begrijpen van meer realistische zwarte gaten
die meer lijken op astrofysische zwarte gaten. Deze zwarte gaten, die verre van supersym-
metrische zijn, hebben een rijke dynamiek die we bestuderen met de hulp van de kwan-
tummechanica. In Hoofdstuk IV laten we zien dat zulke zwarte gaten erg lijken op de
meest eenvoudige kwantummechanische systemen, zoals de situaties die studenten al in
hun eerste jaren van hun studie natuurkunde bestuderen! Deze twee contrasterende ben-
aderingenkunnen elkaarmooi aanvullen enons zohelpenopde lange termijnhet volledige
onderliggende verhaal te begrijpen. Gelukkig voor de ongeduldige is er in de afgelopen
decennia echter een tussenliggende route gekomen doormiddel van de studie van de ‘sterk
gekoppelde ijktheorieën’.
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Sterk gekoppelde ijktheorieën Quarks maken deel uit van de kleinst bekende
deeltjes waaruit de natuur is opgebouwd. Ze communiceren met elkaar via de sterke
kernkracht. Een van de mooiste theorieën van de vele opmerkelijke successen van de the-
oretische natuurkunde in de twintigste eeuw is de kwantumchromodynamica (quantum
chromodynamics, QCD) voor het beschrijven van deze wisselwerkingen. Deze theorie
bleek verbluffende eigenschappen te bezitten. Op zeer korte afstanden gedragen quarks
zich vrije deeltjes die zich bijna niet bewust zijn van elkaar. Op grotere afstanden gedragen
ze zich echter meer collectief en kunnen ze nauwelijks zonder elkaar! Men zou dit kunnen
vergelijken met de moderne wereld: als individuen, op kleine schaal, zijn we ons vaak niet
bewust van de andere mensen die winkelen in de supermarkt, maar van verder bovenaf
gezien lijken we collectief te winkelen als één groep in hetzelfde gebouw. Er zijn inmiddels
succesvolle beschrijvingen van deze twee uitersten vanQCDontwikkeld en experimenteel
getoetst. Maar het begrip van QCD op gematigde afstanden, tussen de uitersten, blijkt
nog steeds een grote uitdaging te zijn. Het bestuderen van de limiet van een groot aantal
deeltjes, de grote-N limiet genaamd, heeft echter een ongekende gereedschapsset gegeven
om QCD-achtige theorieën te bestuderen, zij het in een vereenvoudigde omgeving.
Verrassend genoeg heeft dit ook een geheel nieuwe manier mogelijk gemaakt om de
dynamische aspecten van zwaartekracht te bestuderen via veldtheoretische methodes, en
omgekeerd. Er werd ontdekt dat sommige QCD-achtige theorieën vaak de natuurkunde
van de zwaartekracht op grote afstand beschrijven. In feite zijn we sommige van de
meest inzichtelijke bijdragen aan ons moderne begrip van de microscopische aspecten van
zwarte gaten verschuldigd aan de studie van sterk gekoppelde ijktheorieën in de grote-N
limiet. Dit onderzoeksgebied staat bekend als de ‘ijktheorie-zwaartekracht dualiteit’ of
‘holografische dualiteit’. Een duidelijke tekortkoming van dit vakgebied in zijn huidige
vorm is dat de gravitationele universa die we in staat zijn te verkennen ver van de echte
wereld af staan. Toch biedt het een fantastisch kader om interessante conceptuele vragen
te stellen en beantwoorden.

Een voorbeeld van zo een uitstekende vraag is hoe of waar de zwaartekracht vandaan
komt. Het blijkt dat deze vraag onlosmakelijk verbonden is met het begrijpen van ijk-
theorieën op gematigde afstanden, en niet alleen in de uitersten van zeer korte en lange
afstanden. Met het oog op de aanpak van deze vraag construeren we in hoofdstuk V
een stuk ‘speelgoedtheorie’ dat de bijpassende natuurkunde die overeenkomt vangt aan
twee verschillende, interactie onderling ijktheorieën in zich draagt: een beschrijving van
zeer-korte-afstand effecten en de zeer-lange-afstand fysica. Een illustratie van deze theorie
kan worden gezien in Fig. V.1 waar de twee zwaartekracht(ijk)theorieën leven aan beide
uiteinden van de ‘buis’. De theorieën communiceren met elkaar waar de rode en blauwe
universa elkaar ontmoeten! We zien dat de vraag ‘waarom en hoe kan de natuurkunde
van de zwaartekracht ontstaan uit veldentheorie?’ ons in staat stelt om na te gaan hoe dit
precies gebeurt in een illustratief speelgoedmodel.
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