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Substance addiction is a chronic relapsing brain disorder,

characterized by loss of control over substance use. In recent

years, there has been a lively interest in animal models of loss of

control over substance use, using punishment paradigms. We

provide an overview of punishment models of addiction, that

use quinine, histamine, lithium chloride and footshocks as

aversive stimuli, and we discuss the merits and drawbacks of

these approaches. Importantly, many studies have

demonstrated that under certain conditions, animals are willing

to endure punishment during the pursuit of substances of

abuse, which captures an essential component of addictive

behavior. We conclude that punishment models of addiction

represent a valuable contribution to the study of addiction.
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Introduction
Addiction to substances of abuse remains an enormous

global health problem. It has been estimated that 76 mil-

lion people worldwide are addicted to alcohol [1], 29 mil-

lion people are addicted to illicit drugs, such as opiates,

psychostimulants and cannabis [2] and 1.1 billion people

smoke tobacco [3], a substantial proportion of which can

be considered addicted. Alongside the suffering inflicted

by the addictive behavior itself, substance addiction dra-

matically increases the risk for a wide range of communi-

cable and non-communicable diseases, including lethal

conditions such as cardiovascular problems, liver failure

and cancer. Indeed, substance addiction is considered to

be one of the leading causes of premature death worldwide

[1–3]. Remarkably, only 1 in 6 addicts are estimated to be
www.sciencedirect.com
in treatment [2], and the treatment options available are

modest in terms of number and efficacy [4�,5,6]. In order

to develop improved treatment strategies for addiction, we

think that a profound understanding of the neural under-

pinnings of addictive behavior is essential.

For more than half a century, animal models have been

used to investigate the behavioral and neural mechanisms

of addiction. The positive affective, reinforcing proper-

ties of substances of abuse have been widely studied

using place conditioning [7,8] and intracranial self-stimu-

lation methods [9,10]. Arguably the greatest progress in

understanding addictive behavior using animal models

has come from oral and intravenous self-administration

studies, that derive considerable validity by virtue of the

fact that they employ voluntary, active intake of drugs of

abuse [11,12]. Moreover, self-administration setups have

shown to be a versatile method to investigate addictive

behavior, in the sense that variants of this paradigm have

been developed to study the incentive motivational

properties of substances of abuse [13,14], the role of

drug-associated cues in addictive behavior [15,16], and

relapse to extinguished drug seeking [17,18].

The most recent development in animal models of addic-

tive behavior constitutes models that explicitly study loss

of control over substance seeking and taking. Inspired by

the realization that the majority of the diagnostic criteria

for addiction in DSM-IV [19] and DSM5 [20] comprise

behaviors that signify a lack of control over substance use,

researchers have started to develop models that capture

these compulsive aspects of addictive behavior. Many of

these studies have focused on the DSM criterion of

continued substance use despite negative consequences,

and have operationalized this as resistance to punishment

[21�,22]. In the paradigms that have been used, the pursuit

of substances was associated with aversive events or

circumstances, and the willingness of animals with a

certain predisposition or substance taking history to en-

dure this adversity when access to substance is at stake was

assessed. In this overview, we will present punishment

models of compulsive substance use, highlight their merits

and drawbacks, and discuss challenges for future research.

Punishment models of addictive behavior
Quinine

Perhaps the first use of a punishment setup in the context

of addiction research is the work of Wolffgramm and
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colleagues, who studied alcohol addiction-like behavior

in rats [23,24]. The manipulation they used is to render

the taste of orally ingested alcohol aversive using the

bitter tastant quinine. They observed that the efficacy of

quinine to reduce alcohol intake substantially declined

after prolonged periods of alcohol drinking, interspaced

with periods of forced abstinence. This reduced sensitiv-

ity of alcohol intake to quinine was accompanied by a loss

of sensitivity to other factors that influence alcohol drink-

ing, such as social rank and social isolation. Comparable

findings were later reported for other substances of abuse,

including opiates and psychostimulants [24–26]. The

finding of reduced sensitivity of alcohol drinking to

quinine after prolonged alcohol intake has subsequently

been replicated in rats and mice [27,28��,29,30,31�,32,33].

In rats, this relative insensitivity to quinine was observed

after prolonged exposure to an intermittent (rather than

continuous) pattern of alcohol access [27,28��,32], and

sometimes in high alcohol consuming rats only [30]. In

these experiments in rats, quinine-containing alcohol was

the only source of alcohol during the test. Interestingly,

experiments in mice have shown comparable findings, for

example, willingness to drink bitter, quinine-containing

alcohol if water is the only alternative fluid [29,33].

Moreover, after two months of voluntary alcohol drinking,

mice continued to drink quinine-containing alcohol even

if non-adulterated alcohol was simultaneously available

[29]. Importantly, in these latter experiments, regardless

of experience with alcohol drinking, all mice avoided

quinine-containing water, indicating that the persistent

intake of quinine-containing alcohol was not the result of

altered taste perception [29].

Lithium chloride and histamine

In order to associate substance intake with interoceptive

malaise, post-ingestion treatment with lithium chloride

has been used. This approach is widely used to evoke

conditioned taste aversion, and to assess the ability of

animals to use a representation of the value of a reinforcer

to direct operant behavior [34]. The first of these studies

showed that taste aversion conditioning with lithium

chloride profoundly reduced the oral intake of alcohol

and cocaine solutions, yet did not alter responding in

extinction for alcohol and cocaine [35,36]. These findings

suggest that acts distal to substance use (i.e. attempts to

obtain the substance) are less sensitive to punishment

than the actual substance intake, as long as the taste

memory trace provides explicit feedback of the degraded

value of alcohol and cocaine after its association with

interoceptive malaise. Recently, also the sensitivity of

intravenous cocaine self-administration in rats to lithium

chloride-induced malaise was investigated [37�]. The

findings were comparable to those described above

[35,36], inasmuch as that cocaine taking was sensitive

to devaluation, whereas responding for a cocaine-associ-

ated cue was not. Importantly, the sensitivity to lithium

chloride was lost in animals with a history of lengthy
Current Opinion in Behavioral Sciences 2017, 13:77–84
cocaine self-administration sessions [37�]. Interoceptive

aversion has also been employed using intravenous hista-

mine as a punisher in rats and non-human primates [38–
40]. When histamine was added to the solution for intra-

venous cocaine self-administration, this reduced respond-

ing for cocaine, while at the same time increasing

responding for concurrently available food or unadulter-

ated cocaine [39,40]. Importantly, the aversive effects of

histamine, by intravenous infusion, are direct (as com-

pared to the delayed aversive effects of lithium chloride

treatment after self-administration). Indeed, when infu-

sion of histamine was delayed (i.e. for seconds to minutes

after cocaine infusion), its ability to reduce responding for

cocaine was found to decline [40].

Footshock

The most widely applied punisher in substance self-

administration studies is mild electric shock. Originating

from Jenkins’ obstruction box studies [41], initial studies

in primates showed that response-contingent shocks re-

duced cocaine self-administration, whereby shocks of

higher intensity were more effective, and delayed shocks

less effective [42,43]. In the last decade, this setup has

been widely used in rats [44–48]. In an influential

study, Deroche-Gamonet et al. described that response-

contingent footshocks suppressed responding for cocaine

in rats [45], but that in a subgroup of rats, the sensitivity to

footshock profoundly declined after a lengthy cocaine

taking history. This latter subgroup of animals was also

characterized by high levels of cocaine-induced reinstate-

ment of responding after extinction. Moreover, these rats

showed other signs of addictive behavior as well, such as

high motivation for cocaine under a progressive ratio of

reinforcement and persistence of non-reinforced respond-

ing, albeit that these different addiction-like behaviors

did not emerge simultaneously [45]. Subsequent experi-

ments showed that this addiction-like behavior could be

predicted on the basis of impulsive behavior (i.e. prema-

ture responses in the 5-choice serial reaction time task),

irregular patterns of cocaine self-administration and a high

preference for a novel environment, but not novelty-

induced hyperlocomotion [46–48].

In the studies described above, every substance taking

episode was punished, and in the studies by Deroche-

Gamonet, Belin and colleagues [45–48], the response

preceding the one that lead to cocaine infusion was

punished as well (i.e., the fourth and fifth response under

a fixed-ratio 5 schedule of reinforcement). Since in

humans, not every instance of substance taking has inev-

itable and direct negative consequences, other studies

have used somewhat different punishment procedures.

For example, footshock punishment was made probabi-

listic, whereby one in eight responses was punished with a

footshock, and one in three responses was reinforced with

alcohol [28��]. Thus, even though alcohol taking was

punished, delivery of alcohol was more frequent than
www.sciencedirect.com
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punishment. With this approach, a subgroup of rats was

shown to become insensitive to footshock punishment.

Other studies have moved punishment of responding

forward in time, for example, to the acts directed at

obtaining cocaine. To achieve this, Pelloux, Everitt

and colleagues [49,50,51�] have used a seeking-taking

chain schedule of reinforcement, in which rats were

trained to respond on one lever (‘seeking lever’) in order

to gain access to a second, ‘taking’ lever, responding on

which produced an intravenous infusion of cocaine. After

training, half of the seeking episodes did not lead to

presentation of the taking lever, but was punished with

a mild electric footshock. Whereas the majority of animals

showed profoundly reduced cocaine seeking when the

punishment contingency was introduced, a subgroup of

animals did not, albeit after a prolonged cocaine taking

history [49]. Comparable findings were reported by

others, in setups in which seeking, when punished, did

[52], or did not allow for subsequent cocaine taking [53��].
Further analysis of this behavior showed that insensitivity

to punishment was the result of excessive drug exposure

rather than experiencing a large number of cocaine-cue

associations [50]. In a subsequent study, punishment of

seeking (i.e. footshock after fulfilling the response re-

quirement on the seeking lever) or taking (i.e. footshock

after responding on the taking lever) was compared. The

data showed that rats were more willing to endure pun-

ished taking than seeking [51�], suggesting that punish-

ment of distal substance seeking acts is more effective in

reducing addictive behavior than punishment of the

actual use of the substance. Importantly, the availability

of response-contingent sucrose increased the effective-

ness of punishment to reduce cocaine seeking. Threat of

adversity has also been used in the context of addictive

behavior, as an alternative to immediate and inevitable

punishment. To this aim, auditory cues previously asso-

ciated with mild electric footshocks were used to influ-

ence cocaine seeking [54–56]. These experiments

revealed that presentation of a footshock-associated cue

suppressed cocaine seeking, but after limited drug taking

experience only. Thus, after an extended cocaine self-

administration history, the effectiveness of the footshock-

associated cue to alter cocaine seeking profoundly de-

clined [54,56]. A different threat model has been used in

studies on eating disorders, in which rats or mice have to

enter an aversive, brightly lit environment in order to get

access to a preferred food [57,58]. This approach has as

yet not been used in the context of self-administration of

substances of abuse.

Punishment of cocaine and heroin self-administration has

recently also been performed in studies in which Jenkins’

obstruction box [41] was revisited. Thus, in these experi-

ments, rats had to cross an electrified grid to reach the

lever, pressing which produced an infusion of the drug

[59–62]. For each individual animal, the shock intensity

that completely suppressed responding for the drug was
www.sciencedirect.com
determined, after which reinstatement of responding for

drug-associated cues was assessed. Interestingly, rein-

statement of responding for cocaine was only observed

in about half of the rats, whereas in the case of heroin, all

rats showed cue-induced reinstatement of responding

[60,61]. Last, footshock-induced punishment of alcohol

and methamphetamine self-administration has also been

used as a method to make rats cease responding for the

respective substance, in order to assess context- [63] or

cue-induced reinstatement of responding [64].

Punishment models of addictive behavior:
merits and drawbacks
The studies discussed above describe approaches aimed

at emulating persistent substance use despite negative

consequences. Clearly, these have substantially moved

the preclinical addiction field forward by demonstrating

that aversive stimuli of different modalities, including

gustatory (quinine), interoceptive (lithium chloride, his-

tamine) and tactile (footshock) ones, can inhibit behavior

directed at substances of abuse. More importantly, a

substantial proportion of these studies also reports that

animals with a certain predisposition and/or self-admin-

istration history display reduced sensitivity to aversive

interference [23,24,27,28��,29,30,35,36,37�,45–50,51�,52,

53��,54,56], which resembles the aberrant, unflagging

pursuit of substances of abuse in human addicts

[19,20]. These contemporary setups of addiction-like

behavior hold great promise to increase our understand-

ing of the neural and behavioral structure of substance use

disorders. Indeed, recent years have seen explicit prog-

ress in the study of the neural underpinnings of addiction

using punishment models [28��,31�,52,53��,65–71].

Quinine and histamine

An issue that needs to be considered with care is which

aspect of substance use is being punished in these mod-

els. Indeed, gustatory, interoceptive and tactile punishers

have all been scrutinized for their validity to study human

addictive behavior. The bitter taste of quinine is a gusta-

tory punisher, that is immediately apparent following

ingestion of alcohol (as well as other substances of abuse

in oral consumption experiments [24–26]). As such, it is

an immediate punisher of alcohol drinking, and the

sensation of its bad taste actually precedes the perception

of the subjective effects of alcohol. It is useful to realize

that taste is an important aspect of alcohol ingestion, and

that one of the behavioral characteristics of alcohol ad-

diction is the ingestion of unpalatable (cheap, but with

high alcohol content) liquors, in order to maximize alco-

hol intake at minimal financial cost. In extreme cases,

alcohol addicts even ingest unsavory alcohol-containing

products not intended for human consumption, such as

mouthwash and aftershave [72,73], whereby taste has

obviously become less important than alcohol content.

The willingness of animals to endure the bitter taste of

quinine, if this is the only way of obtaining alcohol
Current Opinion in Behavioral Sciences 2017, 13:77–84
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[23,24,28��,29,30], reflects the reduced importance of

taste in alcohol addiction, which is perhaps even better

exemplified by the continued ingestion of quinine-con-

taining alcohol when non-adulterated alcohol is simulta-

neously available [29]. Comparable to quinine in terms

of its immediacy is the interoceptive discomfort induced

by intravenous histamine, which has been shown to be

an efficient punisher of cocaine self-administration [38–
40]. Resistance to histamine punishment has so far not

been demonstrated in an animal study, although this

may be a matter of histamine dose and/or cocaine self-

administration experience rather than histamine being a

stronger punisher than quinine, lithium chloride or foot-

shock.

Lithium chloride

Somewhat different to quinine and histamine, the aver-

sive effects of lithium chloride-induced malaise emerge

with a delay after substance taking. This delay stems both

from the slower onset (and probably longer duration) of

the lithium chloride-induced interoceptive effects com-

pared to the rapid subjective substance effects, but also

from the practical point that lithium is passively admin-

istered to the animal after drug exposure [35,36,37�]. In

this regard, lithium chloride may more closely emulate

the visceral discomfort that follows substance taking

episodes, such as the gastrointestinal pain that alcohol

addicts may suffer from, as well as the physical malaise

that characterizes an alcohol hangover or cocaine crash.

Remarkably, the studies that have employed lithium

chloride to punish addictive behavior have found that

it only reduces proximal substance taking acts (i.e. drink-

ing alcohol and cocaine solutions, intravenous cocaine

self-administration) but not behaviors distal to substance

use, such as responding for cocaine or alcohol in extinc-

tion (i.e. without immediate gustatory feedback about the

degraded reinforcer) and responding for cocaine cues

[35,36,37�]. This indicates that the effectiveness of pun-

ishment declines with increasing temporal distance, con-

sistent with the classic observation that the strength of a

learning process declines with the delay between action

and outcome [74].

Footshock

As is clear from the studies discussed here, mild electric

shocks are the most widely employed punisher in pre-

clinical addiction research [28��,41–50,51�,52,53��,54–64].

This has probably both scientific reasons, as the large

number of fear conditioning studies in the literature

yields an enormous database of methodological and neu-

ral background information, as well as practical reasons.

Thus, the intensity, quantity and probability of foot-

shocks can easily be varied, which renders this a very

versatile way of interfering with behavior. Comparable to

quinine and histamine, footshocks are often used as an

immediate punisher of substance use, but the manner in

which addictive behavior is punished is likely to be
Current Opinion in Behavioral Sciences 2017, 13:77–84
different. That is, the sensation of footshock is immedi-

ate, noxious, and brief, and the expectation of footshocks

generates a state of conflict and fear. This may emulate

the emerging adverse consequences of persistent sub-

stance use in humans, in which the user has to weigh the

immediate positive experience of substance use against

the possible adverse consequences, such as job loss,

relationship crisis or disease. Comparable to quinine

and lithium chloride, it has also been shown that under

certain conditions, animals are willing to endure mild

electric footshocks in order to obtain cocaine or alcohol

[28��,45–50,51�,52,53��]. From a naturalistic point of

view, the validity of footshocks for human addictive

behavior may be less than the other punishers discussed

here. Thus, the pursuit or use of substances in humans is

typically not followed by noxious, physical punishment,

whereas, as discussed above, addicts are confronted with

bad taste or interoceptive malaise as a result of their

substance use. That said, a recent study in humans has

shown that cocaine addicts are less proficient in the

avoidance of electric shocks, suggesting that reduced

sensitivity to physical punishment does play a role in

addictive behavior [75��].

The validity of immediate punishment

A limitation that is often noted for experimental

approaches as discussed here is the immediacy of pun-

ishment. Although the timing of its consequences

remains largely unclear, substance use in humans is

usually not punished immediately and inevitably. Rather,

the negative consequences of addictive behavior are often

delayed, probabilistic and difficult to trace back to single

substance use episodes. In fact, the observation that

delayed punishment (compared to immediate punish-

ment) is substantially less effective in interfering with

cocaine self-administration [40,43] perhaps illustrates the

very nature of addiction, in that substance abuse persists

despite negative, but often delayed consequences. In

order to use footshock punishment in a way that more

closely emulates the human situation where the adverse

sequelae of substance use can be rather unpredictable,

researchers have therefore also used probabilistic shocks

[28��,49,50,51�,52]. An alternative approach has used

threat of footshock punishment, rather than the shocks

themselves [54–56], to model seeking substances in a

situation where this entails danger (for example, trying to

buy drugs while there is police surveillance on the street).

Likewise, these approaches have revealed conditions in

which animals endure shock or threat when seeking or

taking substances of abuse [28��,49,50,51�,54,56]. One

could therefore argue that models using threat of adver-

sity or unpredictable adversity more closely capture the

anticipation of adverse consequences at the time of

substance use, that probably better reflects the internal

conflict that human addicts experience. In any event,

understanding the relative timing between substance use

and adverse consequences, and how this impacts on use,
www.sciencedirect.com
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is one of the main challenges in the management of

addiction, and this knowledge should be incorporated

into the design of animal models of addictive behavior.

Understanding interventions

The overarching aim of the studies discussed here has

been to develop and use animal models to elucidate the

neural underpinnings of addictive behavior. Subsequent-

ly, these approaches can be used to test the effects neural

manipulations on addiction [28��,53��,67,68]. In addition,

they can also help understand the effectiveness of be-

havioral strategies to influence addictive behavior. For

example, the findings that behaviors proximal to sub-

stance use are more sensitive to punishment than distal

ones if substance intake is punished [35,36,37�] is very

informative about the structure of addictive behavior.

Thus, even if substance taking has negative conse-

quences, this may not alter their procurement, since the

temporal distance between seeking substances and the

sensation of punishment after substance intake may be

too long [74]. An important study in this regard has been

performed by Pelloux and colleagues [51�], who reported

that punishing distal behaviors (i.e., cocaine seeking) is

more effective than punishing cocaine taking, suggesting

that interfering with substance use in an early stage of the

chain of substance-directed behaviors may yield better

results. Also encouraging is the finding in this study [51�]
that the availability of an alternative source of reinforce-

ment (i.e., response-contingent sucrose) further reduces

cocaine seeking and taking, suggesting that positive (i.e.

an alternative source of reinforcement) and negative

incentives (i.e. punishment) can have additive beneficial

effects on addictive behavior.

Other aspects of addictive behavior

A limitation of punishment studies discussed here is that

they only model part of the addictive behavior in humans.

Thus, whereas one can argue that 9 out of 11 diagnostic

criteria in DSM5 comprise behaviors representing loss of

control over substance use [20], punishment setups emu-

late only two of those (i.e., recurrent use in situations in

which it is physically hazardous; continued use despite

knowledge of substance-related problems). Therefore, if

one aspires to generate an animal model that captures

multiple aspects of addiction, other signs of addictive

behavior should be incorporated as well [21�]. These

include high motivation to work for substances (as a

model of devoting a great deal of time to procuring,

consuming and recovering from use), responding in ex-

tinction (to model persistent desire or unsuccessful

attempts to restrict use), reinstatement of substance

seeking (as a model of craving), choosing substances over

natural reinforcers (to model the neglect of alternative,

social and professional, sources of reward), and the effects

of social isolation and social rank (as a model of continued

use despite persistent social problems caused by use and

giving up important social activities in favor of use)
www.sciencedirect.com
[18,45,46,76–80,81�,82,83]. The validity of these models

is beyond the scope of this paper, but we do acknowledge

the value of these approaches for the study of addictive

behavior. On the other hand, we think that employing

single-aspect models allows for the investigation of the

neurobiological underpinnings of distinct aspects of ad-

diction in isolation. In this regard, it is important to keep

in mind that addiction is a multi-faceted disorder, in

which different aspects, criteria or behavioral aberrations

may play a role, depending on, for example, the substance

abused, the history of the individual, or the environmen-

tal circumstances. Importantly, neurobiological studies in

which different aspects of addictive behavior have been

combined have provided evidence that exaggerated mo-

tivation, responding in extinction, reinstatement of extin-

guished responding and resistance to punishment rely on

distinct neural mechanisms [84–86].

Conclusion
The last two decades have seen a remarkable interest in

the use of punishment paradigms to model the persistent

aspects of substance use disorders. These models have

used punishments from different sensory modalities, and

methodological variations in these setups allow for the

assessment of distinct aspects of loss of control over

substance use. Although these punishment setups may

arguably still be in development, we expect that their

optimization and integration with other models, capturing

yet other aspects of addictive behavior such as exagger-

ated motivation for substances and relapse, will make a

valuable contribution to our knowledge about the neural

and behavioral structure of addiction. This may ultimate-

ly contribute to the development of more effective treat-

ments for this devastating disorder.
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