
Chapter 3

Microtubule Organization and Microtubule-

Associated Proteins (MAPs)

Elena Tortosa, Lukas C. Kapitein, and Casper C. Hoogenraad

Abstract Dendrites have a unique microtubule organization. In vertebrates, den-

dritic microtubules are organized in antiparallel bundles, oriented with their plus

ends either pointing away or toward the soma. The mixed microtubule arrays

control intracellular trafficking and local signaling pathways, and are essential for

dendrite development and function. The organization of microtubule arrays largely

depends on the combined function of different microtubule regulatory factors or

generally named microtubule-associated proteins (MAPs). Classical MAPs, also

called structural MAPs, were identified more than 20 years ago based on their

ability to bind to and copurify with microtubules. Most classical MAPs bind along

the microtubule lattice and regulate microtubule polymerization, bundling, and

stabilization. Recent evidences suggest that classical MAPs also guide motor

protein transport, interact with the actin cytoskeleton, and act in various neuronal

signaling networks. Here, we give an overview of microtubule organization in

dendrites and the role of classical MAPs in dendrite development, dendritic spine

formation, and synaptic plasticity.
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3.1 Introduction

Microtubules (MTs) are cytoskeletal structures that play essential roles in all

eukaryotic cells. MTs are important not only during cell division but also in

non-dividing cells, where they are critical structures in numerous cellular processes

such as cell motility, migration, differentiation, intracellular transport and organelle

positioning. MTs are composed of two proteins, α- and β-tubulin, that form

heterodimers and organize themselves in a head-to-tail manner. MTs are dynamic

and they can rapidly switch between cycles of growth and shrinkage. This MT
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behavior is known as dynamic instability (Desai and Mitchison 1997; Howard and

Hyman 2003; Mitchison and Kirschner 1984). Due to the head-to-tail polymeriza-

tion, MTs are polar structures, designated by “plus” and “minus” ends, each with

distinct characteristics. The two MT ends grow and depolymerize at very different

rates; the “plus end” is the preferred site for MT assembly and disassembly, while

the “minus end” is generally more stable in cells. Although MT minus ends can

grow in vitro, minus ends are usually attached and stabilized at the centrosome or

MT organizing center (MTOC) in cells (Jiang and Akhmanova 2011). The centro-

some is also the primary site for MT nucleation in many cell types. Alternative sites

for MT nucleation have been recently described (Bornens 2008). In addition to de

novo MT nucleation, new MT ends can also be formed by breakage of preexisting

MTs by severing proteins like spastin and katanin (Salinas et al. 2007).

The precise organization of MTs, including their composition, stability, orien-

tation, and spacing, is essential for the correct development, morphology, and

function of the neuron. The MT organization depends on several regulatory factors

such as various tubulin isoforms, posttranslational modifications, and

MT-associated proteins (MAPs). Largely based on their mode of action, the differ-

ent MAPs can be roughly divided into five groups. The first group contains the

MT-based motor proteins that are important for neuronal transport, such as kinesin

and dynein motors (Hirokawa et al. 2010; Kardon and Vale 2009; Karki and

Holzbaur 1999). The second set consists of regulators of MT dynamics, such as

plus-end tracking proteins (+TIPs) and MT depolymerizers (Akhmanova and

Steinmetz 2008; Brouhard and Rice 2014; Walczak et al. 2013). The third group

contains proteins that modulate MT number, such as regulators of nucleation

(Luders and Stearns 2007), enzymes that sever preexisting MTs (Roll-Mecak and

McNally 2010; Sharp and Ross 2012), and minus-end targeting proteins (-TIPs),

stabilizing minus ends (Akhmanova and Hoogenraad 2015). The fourth set com-

prises tubulin-modifying enzymes that, through posttranslational modifications, can

generate distinct MT subtypes (Hammond et al. 2008; Janke and Bulinski 2011).

The fifth group includes cross-linking proteins that align filaments and form MT

bundles, such as classical MAPs and some kinesin motors that drive MT sliding

(Bratman and Chang 2008; Dehmelt and Halpain 2005; Maccioni and Cambiazo

1995). The actions of many different MAPs together provide the mechanism to

spatiotemporal control the architecture of the neuronal MT cytoskeleton during the

different steps of development. It is therefore not surprising that, given the impor-

tance of these MT regulators, compensation mechanisms exist among different

MAPs. This phenomenon is shown in the viability and the absence of strong

phenotype in many MAP knockout mice (Table 3.1). However, more severe

phenotypes have been observed in double knockouts for MAPs like MAP1B/

MAP2 or MAP1B/tau. Double-knockout mice for MAP1B/tau or MAP1B/MAP2

show defects in brain layered structures and fiber track formation (Takei et al. 2000;

Teng et al. 2001). Here, we give an overview of the MT organization in neurons and

focus on the role of classical MAPs in dendrite development, dendritic spine

formation, and synaptic plasticity.

32 E. Tortosa et al.



Table 3.1 Animal models – phenotypes associated with classical MAPs

MAP Knockout animal model phenotypes References

MAP1A Perturbation of learning processes

Reduced LTP and LTD

Takei et al. (2015)

MAP1B/

MAP5

Body and brain weight loss Takei et al. (2000), (1997), Edelmann

et al. (1996), Gonzalez-Billault

et al. (2000, 2005), Meixner

et al. (2000), and Benoist et al. (2013)

Delayed nervous system development

Reduced myelination

Corpus callosum absent

Impaired neuronal migration

Altered brain commissures and lami-

nated structures

Smaller retina size

LTP enhanced and LTD disrupted

Motor system abnormalities and lack of

exploring activity

Reduced motor nerve conduction

velocity

MAP8/

MAP1S

No major defect Xie et al. (2011)

MAP2 No major defect Harada et al. (2002), Teng et al. (2001),

and Khuchua et al. (2003)Decrease in dendritic microtubule

(MT) density

Disrupted dendritic morphology from

CA1 neurons

Contextual memory altered

MAP3/

MAP4

Not reported

MAP6 Depleted synaptic vesicle pool Andrieux et al. (2002), Brun

et al. (2005), Bouvrais-Veret

et al. (2007), (2008), Powell

et al. (2007), Fradley et al. (2005),

Fournet et al. (2010, (2012b), and

Daoust et al. (2014)

Impaired synaptic plasticity

Severe behavioral disorders

Abnormalities of glutamatergic, dopa-

minergic, acetylcholinergic/nicotinic,

serotonergic, and noradrenergic

neurotransmissions

Sensorimotor gating impairment

Defects in neuronal transport

MAP7 Viable. Defects in spermatogenesis Komada et al. (2000), Sung

et al. (2008), Barlan et al. (2013), and

Metzger et al. (2012)
Reduced viability (in Drosophila)

Myonuclear positioning altered

(in Drosophila)

MAP9 Severe developmental defects and

embryonic lethality (in zebra fish)

Fontenille et al. (2014)

Tau Viable Harada et al. (1994), Dawson

et al. (2001), Ikegami et al. (2000), Lei

et al. (2012), and Ma et al. (2014)
Muscle weakness

Small caliber axons

Behavioral impairments and motor

deficits
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3.2 Organization of Axonal and Dendritic Microtubules

The MT cytoskeleton in neurons differs from many other cell types. Even within a

single neuron, different compartments have distinct MT properties and organization

(Conde and Caceres 2009). For instance, MTs in axon and dendrites differ in their

polarity orientations. In mammalian neurons, axons contain MTs with uniform

orientation, directed away from the cell body (plus-end out), whereas in dendrites

MT orientation is mixed, with about half plus-end out and half minus-end out MTs

(Baas et al. 1988; Burton 1988) (Fig. 3.1). In Drosophila and C. elegans neurons,
MTs in axons are arranged with their plus ends distal to the cell body, as in

vertebrates. However, in dendrites most MTs are arranged with their minus ends

distal to the cell body, although some mixed MTs have also been observed (Stone

et al. 2008; Maniar et al. 2011). It is thought that differences in the MT cytoskeleton

in axons and dendrites can facilitate polarized cargo trafficking (Kapitein and

Hoogenraad 2011; Rolls 2011).

Three different techniques have been used to establish MT orientations in axons

and dendrites: the hook-decoration method; fluorescently labeled plus-end tracking

proteins, such as GFP-EB3; and second-harmonic generation (SHG) microscopy. In

the hook method, exogenous tubulin is added to permeabilized cells and forms

curved sheets (“hooks”) on existing neuronal MTs. These hooks are visualized in

cross section by electron microscopy and provide information about the orientation

of axonal and dendritic MTs. This method provides sufficient resolution for

counting individual MT orientations. However, the results are usually ambiguous

because of the small sample size and the large fraction of non-marked MTs (Baas

and Lin 2011). The use of fluorescently labeled plus-end tracking proteins as

markers of growing MTs is a relatively easier technique (Stepanova et al. 2003).

This method also has limitations because it only detects dynamic MTs and not the

stable MT population. Recently, in vivo imaging of growing MTs has confirmed the

presence of a mixed MT organization in mature dendrites (Kleele et al. 2014; Yau

et al. 2016). SHG microscopy allows label-free imaging without the addition of

exogenous probes, but is hard to interpret quantitatively. SHG was used in hippo-

campal slices to visualize the neuronal MT organization in axon and dendrites

(Dombeck et al. 2003; Kwan et al. 2008).

How are the mixed MT arrays in dendrites generated and stabilized? It has been

suggested that dendritic MTs are generated by (i) centrosomal nucleation and

subsequent release from the centrosome, (ii) breakage of preexisting MTs by

katanin or spastin, or (iii) nucleation at noncentrosomal sites, such as cortical

γ-tubulin complexes, intracellular membranes, or preexisting MTs (Kuijpers and

Hoogenraad 2011). Although the centrosome is the main nucleating point in

non-polarized neurons, it loses its function as MTOC during early neuronal devel-

opment, and only a few MTs emanate from the centrosome in mature neurons

(Stiess et al. 2010). Consistently, it has been shown that noncentrosomal MTs are

abundantly present in neurons (Yau et al. 2014). Recently, CAMSAP/Patronin/

Nezha family proteins have been characterized and found to specifically recognize
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Fig. 3.1 Cytoskeletal organization in neurons. Axons and dendrites present different MT polarity

orientations. Axonal MTs are uniformly orientated, whereas MTs in dendrites have mixed

orientations. Axonal and dendritic MTs also contain distinct MAPs and differ in their posttrans-

lational modifications. Motor proteins carry out ATP-dependent movements along MTs and either
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MT minus ends and stabilize free minus ends against depolymerization

(Akhmanova and Hoogenraad 2015). By forming stable CAMSAP stretches at

the MT minus ends, these short MT fragments may also serve as “seeds” for new

MT regrowth. Indeed, repetitive MT plus-end growth was observed from

CAMSAP2 stretches in neurons (Yau et al. 2014). CAMSAP2 is required for

neuronal polarity, axon specification, and dendritic branch formation in vitro and

in vivo (Yau et al. 2014). The Golgi has also been proposed as a potential site of

noncentrosomal MT nucleation (Efimov et al. 2007). In neurons, Golgi outposts

have been found in the dendrites and may not only provide local membrane delivery

but also act as local MT nucleation points (Horton et al. 2005; Ori-McKenney

et al. 2012; Ye et al. 2007). Several other factors are known to regulate MT bundle

formation in nonneuronal cells and may play a role in setting up mixed MT

organizations in dendrites. For instance, motor proteins, such as MKLP1 (kinesin-

6), Eg5 (kinesin-5), and KIF15 (kinesin-12, also called HKLP2), are known to

organize antiparallel MT organizations in other systems. Indeed, depletion of each

of these factors has been shown to disturb dendrite morphology (Kahn et al. 2015;

Lin et al. 2012). In Drosophila neurons, EB proteins and kinesin-2 motors are

important factors in setting up the uniform minus-end out MT network in dendrites

(Mattie et al. 2010). It has been suggested that the minus-end out MT organization

in neurons is maintained by steering of polymerizing MTs along the stable MTs by

kinesin-2 motors bound to growing MT plus ends (Chen et al. 2014; Doodhi

et al. 2014). Other motor proteins, such as kinesin-1, might also be able to cross-

link antiparalleled MTs and are critical in forming the characteristic minus-end out

MT organization of C. elegans dendrites (Yan et al. 2013).

Axonal and dendritic MTs not only differ in their organization but also in their

stability. It has been demonstrated that axonal MTs are more resistant to the MT

depolymerizing drug nocodazole compared to the dendritic MT population (Baas

et al. 1991; Witte et al. 2008). Recently, a new posttranslational modification of

tubulin has been identified that directly confers stability to MTs (Song et al. 2013).

Biochemical characterization of stableMT fractions demonstrated that polyamination

of tubulin is directly involved in stabilizing neuronal MTs. The most commonly

studied posttranslational modifications are either acidic (phosphorylation and

glutamylation) or charge neutral (acetylation and detyrosination), and they do not

directly confer stability to MTs but, rather, accumulate on long-lived MTs (Janke and

Kneussel 2010). There is a clear correlation between MT acetylation/detyrosination

and stableMTs, andMT tyrosination with dynamicMTs. The different MT posttrans-

lationalmodifications show a polarized distribution in neurons (Hammond et al. 2010;

Kollins et al. 2009; Witte et al. 2008). In growing axons, the ratios of acetylated and

Fig. 3.1 (continued) drive cargo transport toward the minus end (dynein) or toward the plus end
(kinesin). Dynamic MTs can enter dendritic spines and may deliver specific cargos to individual

spines. Golgi outposts are present along dendrites and may serve as sites of noncentrosomal MT

nucleation. CAMSAP binds to MT minus ends and is required for the stabilization of

noncentrosomal MTs
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detyrosinated tubulin are higher than in the developing neurites, whereas the ratio of

glutamylated tubulin does not show differences between these two compartments

(Hammond et al. 2010). On the other hand, tyrosinated MTs are more abundant at the

tip of the axon and in developing dendrites (Kollins et al. 2009). It has been suggested

that the local diversity of posttranslational modifications is due to the specific local-

ization or activity of the modifying enzymes (Hammond et al. 2010). Some posttrans-

lational modifications seem to be essential for proper neuronal development. For

example, lack of tyrosinated tubulin in tubulin-tyrosine ligase (TTL) null neurons

caused extensive defects in neurite outgrowth and axon development (Erck

et al. 2005). The MT posttranslational modifications may also regulate the interaction

of other factors with MTs. For example, acetylation of MTs increases the severing

activity of katanin (Sudo and Baas 2010). Moreover, posttranslational modifications

have been implicated in the regulation of severalmotor proteins. For instance, kinesin-

1 has been reported to prefer stable (acetylated/detyrosinated) MTs (Dunn et al. 2008;

Konishi and Setou 2009; Liao and Gundersen 1998; Reed et al. 2006). Additional

in vitro studies showed that kinesin-1 motility is increased by polyglutamylation and

that detyrosination of α-tubulin promotes kinesin-2 motility (Sirajuddin et al. 2014). It

has been hypothesized that posttranslational modifications, together with specific

MAP patterns, form a “tubulin code” that can be “read” by factors that interact with

MTs, such as motor proteins (Janke and Bulinski 2011; Tischfield and Engle 2010;

Verhey and Gaertig 2007). In this way, distinct “tubulin codes” in axons and dendrites

may drive polarized cargo sorting of various organelles and proteins into axons and

dendrites (Kapitein and Hoogenraad 2011; Rolls 2011).

3.3 Functions of Axon and Dendritic Microtubules

MTs are essential structures in axons and dendrites because they serve as major

tracks for long-distance transport and form the basis for stable neuronal morphol-

ogy. However, MTs are not just passive elements, they also confer plasticity to the

neuron and have an active role during different phases of neuronal development.

MTs participate in the morphological changes during neuronal migration and

differentiation, for instance, by regulating axonal outgrowth, organelle positioning,

and dendritic spine dynamics (Hoogenraad and Bradke 2009). Recent studies have

found that defects in many MT-related genes lead to a range of nervous system

abnormalities and several neurological and neurodegenerative diseases (Gupta

et al. 2002; Jaglin and Chelly 2009; Manzini and Walsh 2011; Tischfield

et al. 2011). For instance, mutations in genes encoding α- and β-tubulin subunits

alter MT dynamics and show defects in axon guidance, neuronal migration, and

synaptic connectivity (Jaglin et al. 2009; Keays et al. 2007; Tischfield et al. 2010).

In addition, recent studies highlight MTs as a potential target for therapeutic

interventions for axon regeneration and neurodegenerative diseases (Baas and

Ahmad 2013; Gerdes and Katsanis 2005). Therefore, control of MT organization

is of key importance for proper neuronal development and function.
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MTs have been extensively studied with respect to axon formation, axon growth,

and axon guidance (Hoogenraad and Bradke 2009; Poulain and Sobel 2010). It is

known that MTs are also required for dendritic development and dendritic tiling

(Grueber and Sagasti 2010; Koleske 2013; Rolls 2011). In many different organ-

isms, proper dendrite morphology depends on MAPs, which regulate MT stabili-

zation, bundling, spacing, and dynamics. MAPs also regulate intracellular transport

or link MTs to the actin cytoskeleton, which is another important player in dendrite

development (Lansbergen and Akhmanova 2006; Poulain and Sobel 2010; Siegrist

and Doe 2007). For instance, classical MAPs like MAP1A and MAP2 are important

for dendrite morphogenesis, and upregulation of their expression is correlated with

dendrite outgrowth (Harada et al. 2002; Szebenyi et al. 2005; Vaillant et al. 2002).

MAP2 knockout mice show altered MT spacing and reduced dendrite arbor size

(Harada et al. 2002; Teng et al. 2001). Other MT-related proteins, such as the plus-

end binding proteins CLIP-170 and CLASP2, and the minus-end binding protein

CAMSAP2, are also involved in dendrite development (Beffert et al. 2012; Swiech

et al. 2011; Yau et al. 2014). Moreover, the MT-destabilizing proteins stathmin and

SCLIP, or MT-severing proteins, like spastin and katanin p60-like 1, have been

reported to regulate dendrite development (Jinushi-Nakao et al. 2007; Lee

et al. 2009; Ohkawa et al. 2007; Poulain et al. 2008; Stewart et al. 2012; Ye

et al. 2011). In addition, motors that drive dendritic transport are crucial for dendrite

morphology (Kapitein et al. 2010; Satoh et al. 2008; Zheng et al. 2008). Therefore,

many MT-related factors regulating MT organization, dynamics, and remodeling

are critical for proper dendritic development.

In addition to the growth and development of dendrites, MTs are needed for

spine morphology and various synaptic processes, including spine formation

(Shirao and Gonzalez-Billault 2013), dendritic and synaptic pruning (Kage

et al. 2005; Lee et al. 2009; Luo and O’Leary 2005), and synaptic plasticity

(Conde and Caceres 2009; Hoogenraad and Bradke 2009). MTs are abundantly

present in the dendritic shaft; however, dynamic MTs can also enter actin-rich

dendritic spines and regulate synaptic processes (Gu and Zheng 2009; Hu

et al. 2008; Jaworski et al. 2009). MT entries in spines may directly regulate

spine morphology or provide a way to selectively transport organelles, receptors,

and other regulatory factors necessary for synaptic function (Hoogenraad and

Bradke 2009). In addition, some classical MAPs like MAP1B and MAP2 have

been found in dendritic spines and may regulate their development (Caceres

et al. 1983; Collins et al. 2005; Kawakami et al. 2003; Peng et al. 2004; Tortosa

et al. 2011). Several other MT regulatory factors such as collapsin response

mediator protein (CRMP) members, doublecortin family member DCLK1, and

spinophilin/neurabin control dendritic spine maturation (Ryan et al. 2005; Shin

et al. 2013; Terry-Lorenzo et al. 2005; Yamashita et al. 2007). Moreover, MAP1B,

MAP6, CLASP2, and CRMP family proteins have been implicated to influence

synaptic plasticity processes (Andrieux et al. 2002; Beffert et al. 2012; Benoist

et al. 2013; Su et al. 2007; Yamashita et al. 2011).
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3.4 Classical Maps

Classical MAPs, also called structural MAPs, were isolated more than 20 years ago

from mammalian brains by copurification with MTs (Schoenfeld and Obar 1994). A

general overview of domain structure of classical MAPs is given in Fig. 3.2. In vitro

studies showed that most MAPs bind along the MT lattice and regulate MT

polymerization and stabilization. However, the binding characteristics and effect

on MTs are different among all MAPs. For instance, MAP2 only needs a single

protofilament for MT binding, while other MAPs like MAP4 interact with adjacent

protofilaments (Al-Bassam et al. 2002; Kawachi et al. 2003). Some of them, like tau

or MAP2, induce MT bundling, whereas others like MAP4 do not have bundling

activity (Burgin et al. 1994; Kanai et al. 1989, 1992; Nguyen et al. 1997; Olson

et al. 1995). In addition, MAP1B has been shown to control MT dynamic, while

MAP4 alters MT surface properties and affects motor protein activity (Bulinski

et al. 1997; Samora et al. 2011; Semenova et al. 2014; Tokuraku et al. 2007; Tortosa

et al. 2013; Utreras et al. 2008). Interestingly, many of these MAPs not only bind

MTs but also interact with actin and participate in numerous signal pathways.

Tables 3.2 and 3.3 give an overview of the various phenotypes observed in cultured

cells caused by MAP downregulation or overexpression. Given the importance of

MAPs for neuronal development and function, it is not surprising that many MAPs

are associated with neurological and neurodegenerative diseases. For example,

pathological aggregation of tau protein in the human brain leads to neurodegener-

ative diseases called tauopathies (Zempel and Mandelkow 2014). The best-known

tauopathy is Alzheimer’s disease, where tau protein is deposited within neurons in

the form of neurofibrillary tangles (Avila et al. 2004). Moreover, the deletion of

MAP6 in mice leads to severe phenotypes reminiscent of schizophrenia-like symp-

toms (Andrieux et al. 2002; Fournet et al. 2012b).

3.4.1 MAP1 Family of Microtubule-Associated Proteins

In mammals, MAP1 family proteins include three members: MAP1A, MAP1B, and

MAP1S, which are all encoded by different genes. MAP1A and MAP1B are

predominantly expressed in neurons and important for the formation and develop-

ment of axons and dendrites. MAP1S is widespread in murine tissues, and little is

known about its function. In Drosophila, the single MAP1 homolog is called

Futsch, which has been shown to be important in dendritic and axonal development,

and regulates synaptic growth. All MAP1 members are multiprotein complexes,

formed by a heavy chain and one or two light chains. They are translated as

polypeptides and processed by proteolytic cleavage, which leads to the generation

of distinct heavy chains (MAP1A-HC, MAP1B-HC, and MAP1S-HC) and light

chains (LC2 from MAP1A, LC1 from MAP1B, and MAP1S-LC). Later, HC and

LC are assembled together with LC3, which is encoded by a separate gene. Both
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Fig. 3.2 Schematic diagram of classical microtubule-associated proteins (MAPs). The major

structural motifs in classical MAPs are illustrated in the diagram. The MAP family proteins

contain different MT-binding domains. In MAP2, MAP4, and tau, the MT-binding regions are
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HC and LC can bind MTs, filamentous actin, and many other cellular components.

Furthermore, their activity is controlled by upstream signaling mechanisms, such as

the MAP kinase and glycogen synthase kinase-3 pathways (Halpain and Dehmelt

2006).

MAP1C was originally described as a MAP1 family member with ATPase

activity, and further characterization revealed that it represents the microtubule-

based motor protein cytoplasmic dynein (Johnson et al. 1984; Paschal et al. 1987;

Paschal and Vallee 1987; Vale et al. 1985; Vallee et al. 1988). Dynein is involved in

a variety of basic cellular functions, such as the movement of organelles; transport

of vesicles, proteins, and mRNA; maintenance of the Golgi apparatus; endosome

recycling; cytoskeletal reorientation; and the positioning of the mitotic spindle

(McNally 2013; Vallee et al. 2004; Yadav and Linstedt 2011). In neurons, it has

a role in neuronal migration, retrograde axonal transport, and polarized trafficking

into dendrites (Chevalier-Larsen and Holzbaur 2006; Kapitein and Hoogenraad

2011; Vallee et al. 2009). Mutations in dynein have been directly linked to various

neurological and neurodegenerative diseases (Lipka et al. 2013). Here, we will give

a general overview of the other three MAP1 family members (MAP1A, MAP1B,

and MAP1S) and briefly discuss their role in neuronal development.

3.4.1.1 MAP1 Family Member MAP1A

MAP1A is predominantly expressed in neurons, where it is enriched in dendrites

(Schoenfeld et al. 1989) (Fig. 3.1). MAP1A expression increases between 4 and

7 days in hippocampal cultures in vitro and around the second week after birth in

the developing mouse brain. During this time, dendrites elongate, branch, and start

to make contact with other neurons (Schoenfeld et al. 1989; Szebenyi et al. 2005).

MAP1A is a weak MT stabilizer and is important for the functional maintenance

and plasticity in mature neurons (Faller and Brown 2009; Takei et al. 2015).

MAP1A interacts with actin and postsynaptic components like PSD93/PSD95,

and anchors NMDA receptors to the cytoskeleton, supporting their transport

along the dendrites (Brenman et al. 1998; Pedrotti et al. 1994b; Reese et al. 2007;

Takei et al. 2015). Loss of the MAP1A-PSD95 interaction has been associated with

hearing loss, due to defects in synaptic function (Ikeda et al. 2002). MAP1A also

⁄�

Fig. 3.2 (continued) conserved and well defined (see tubulin-binding domain: pfam00418). Most

of the MAPs also contain a coiled-coil region and binding sites for actin. The light-blue boxes in
the MAP structure indicate repeat domains contributing in some cases to MT binding (amino

terminal repeats in MAP1B or repeats in MAP6) or with unknown function in other cases

(carboxyl terminal repeats in MAP1B or MAP6). The yellow lines indicate the projection domain

of some MAPs (MAP2 projection domain: pfam08377). The following rat protein sequences were

used for the drawings: MAP1A (NP_112257.1), MAP1B (NP_062090.1), MAP1S

(NP_001099540.1), HMWMAP2 (P15146.1), LMWMAP2 (P15146.4), MAP4

(NP_001019449.1), tau (XP_008766496.1), MAP6 (NP_058900.1), MAP7 (NP_001099740.2),

and MAP9 (NP_001129188.1)

3 Microtubule Organization and Microtubule-Associated Proteins (MAPs) 41



Table 3.2 Cell culture – alterations caused by classical MAP downregulation

MAP Inhibition in culture References

MAP1A Activity-induced remodeling of the den-

dritic arbor (dendritic length and

branching) blocked

Szebenyi et al. (2005), Takei et al.

(2015) and Leenders et al. (2008)

Dendritic growth inhibited (in mature

cultures)

Retraction of existing branches

Density of active synapses reduced

Synaptic surface density of Ca(V)2.2

decreased

Enhanced activity-dependent degrada-

tion of PSD-93

Reduced surface expression and trans-

port of NR2A/2B

MAP1B/

MAP5

Axon formation delayed Gonzalez-Billault et al. (2001, 2002b),

DiTella et al. (1996), Bouquet

et al. (2004), Del Rio et al. (2004),

Tortosa et al. (2011, 2013), and Benoist

et al. (2013)

Reduced neurite and axonal length

Increased axonal branching

Axon guidance altered

Formation and maturation of dendritic

spines disrupted

AMPA receptor-mediated synaptic cur-

rents diminished

MT dynamics altered

Tyrosinated MTs decreased

MAP8/

MAP1S

Accumulation of dysfunctional mito-

chondria and autophagosomes

(in cardiomyocytes)

Xie et al. (2011)

MAP2 Neurite and axon outgrowth inhibited Caceres et al. (1992), Gonzalez-Billault

et al. (2002a), Sharma et al. (1994),

Harada et al. (2002), Dehmelt

et al. (2003), and Iriuchijima

et al. (2005)

Reduction in dendritic length

cAMP-dependent protein kinase

reduced in the dendrites

KAP expression reduced

MAP3/

MAP4

Transport altered (Xenopus

melanophores)

Semenova et al. (2014), Samora

et al. (2011), and Nguyen et al. (1999)

Spindle misorientation (epithelia cells)

Decreased content of total tubulin (HeLa

cells)

MAP6 Neurite formation impaired (in PC12

cells)

Guillaud et al. (1998), and Andrieux

et al. (2002)

MT loss to cold or nocodazole

MAP7 Transport altered (in Drosophila
neurons)

Barlan et al. (2013) and Sung

et al. (2008)

Kinesin-1 recruitment to MTs and

motility impaired (ovary extracts and S2

cells, in Drosophila)

MAP9 Severe mitotic defects and cell death

(U2OS cells)

Saffin et al. (2005)

(continued)
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Table 3.2 (continued)

MAP Inhibition in culture References

Tau Reduced neurite number and length Liu et al. (1999), Yu et al. (2008),

Caceres and Kosik (1990), Caceres

et al. (1991), Dawson et al. (2001), and

Zempel et al. (2013)

Decreased axonal elongation and

increased axonal branching

Neuronal migration inhibited

Delayed axonal extension

Dendritic length decreased

MTs and synapses resistant to Aβ
toxicity

Table 3.3 Cell culture – alterations caused by classical MAP overexpression

MAP Overexpression in culture References

MAP1A MT dynamic altered Faller and Brown (2009) and Gupta and

Yarwood (2005)Enhances Rap1 activation by

EPAC1

MAP1B/

MAP5

Cell death Allen et al. (2005), Tortosa et al. (2013),

Tymanskyj et al. (2012), and Opal

et al. (2003)
Altered MT dynamics

Delayed neuritogenesis (in PC12

cells)

MAP8/

MAP1S

Neurite degeneration and cell death Ding et al. (2006a)

MT alterations

Axonal transport disruptions

MAP2 Increased axonal branching Fukata et al. (2002) and Dehmelt

et al. (2003)Neurite formation in N2A

MAP3/

MAP4

Transport altered (Ltk cells and

Xenopus melanophores)

Semenova et al. (2014) and Bulinski

et al. (1997)

MAP6 Reduced dendritic arborization Schwenk et al. (2014)

Accelerated retrograde transport

MAP7 Formation of noncentrosomal MTs

(Vero cells)

Masson and Kreis (1993)

MAP9 Aberrant spindles in mitosis

(HEK-293 cells)

Saffin et al. (2005)

Tau Reduced axon elongation Fukata et al. (2002), Dubey et al. (2008),

Chee et al. (2006), Hoover et al. (2010),

Stamer et al. (2002), and Zempel

et al. (2013)

Synaptic responses impaired

(mutant tau)

Dendritic TTLL6 translocation

Decreased MT stability

Impaired axonal transport

Retraction of growing neurites

(NB2 cells)

Defective synaptic transmission

(in Drosophila neuromuscular

junctions)
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has a presynaptic function. LC2 interacts with the voltage-dependent calcium

channels Ca(V)2.2 and mediates its surface localization at presynaptic boutons

(Leenders et al. 2008). In addition, MAP1A has been found to localize to

clathrin-coated vesicles and to the cargo-adaptor protein AP2 complex (Murakami

et al. 2012; Praefcke et al. 2004). Many MAP1A binding partners have been

described as signaling factors, suggesting that MAP1A functions as an adaptor to

link signaling molecules to MTs. For example, MAP1A can interact with proteins

EPAC (exchange protein directly activated by cAMP) (Gupta and Yarwood 2005),

the disrupted-in-schizophrenia 1 protein (DISC1) (Morris et al. 2003), the kinase

CK1δ (Wolff et al. 2005), BKCa potassium channel (Park et al. 2004), tubby-like

protein-1 (Tulp1) (Grossman et al. 2014), the small GTPases RhoB (Lajoie-Mazenc

et al. 2008), and a component of the dystrophin-associated protein complex, α1-
syntrophin (Fuhrmann-Stroissnigg et al. 2012). Interestingly, disruption of MAP1A

could be a very early manifestation of amyloid β-mediated synaptic dysfunction

since sublethal doses of soluble Aβ species induce degradation of MAP1A

(Clemmensen et al. 2012).

3.4.1.2 MAP1 Family Member MAP1B

In the 1980s, different labs described MAP1B and named the protein MAP1.2,

MAP1(x), and MAP5 (Asai et al. 1985; Bloom et al. 1985; Calvert and Anderton

1985; Riederer et al. 1986). MAP1B is strongly expressed in the nervous system

during early embryonic development and downregulated during later developmen-

tal stages (Diaz-Nido et al. 1990; Garner et al. 1989; Schoenfeld et al. 1989; Tucker

et al. 1988b; Tucker and Matus 1988; Viereck et al. 1989). In the mature brain,

MAP1B is present in regions with high plasticity, such as the hippocampus

(Schoenfeld et al. 1989; Tucker et al. 1989; Viereck et al. 1989). MAP1B is mainly

expressed in neurons; however, it is also detected in neuronal progenitors, oligo-

dendrocytes, and astrocytes (Cheng et al. 1999; Fischer and Romano-Clarke 1990;

Ulloa et al. 1994a). In developing neurons, MAP1B is present at high levels in

growing axons, whereas in mature neurons MAP1B is also present in dendrites and

postsynaptic densities (Fig. 3.1) (Black et al. 1994; Collins et al. 2005; Kawakami

et al. 2003; Peng et al. 2004; Tortosa et al. 2011). Posttranslational modifications

can affect both MAP1B distribution and function. MAP1B can be phosphorylated

by many kinases such as casein kinase II (Diaz-Nido et al. 1988; Ulloa et al. 1993),

the serine/threonine protein kinase GSK3 (Garcia-Perez et al. 1998; Tymanskyj

et al. 2012), the cyclin-dependent kinase 5 together with its regulatory subunit p35

(Kawauchi et al. 2005; Paglini et al. 1998; Pigino et al. 1997), the dual-specificity

tyrosine phosphorylation-regulated kinase DYRK1 (Scales et al. 2009), cdc2 (Ulloa

et al. 1994b), and members of the mitogen-activated protein kinase family like

ERK1/ERK2 (Loeb et al. 1992) and JNK1 (Chang et al. 2003). MAP1B can bind

both actin and MTs, and has been suggested to link the two cytoskeletal elements

together (Garcia Rocha and Avila 1995; Mansfield et al. 1991; Pedrotti and Islam

1995; Pedrotti et al. 1996). MAP1B, compared with other MAPs, is a weak MT

stabilizer (Takemura et al. 1992). Recent studies suggest that MAP1B preferably
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associates to dynamic, tyrosinated MTs (Tortosa et al. 2013; Tymanskyj et al. 2012;

Utreras et al. 2008). MAP1B also interacts with other MT-interacting proteins,

including tubulin-tyrosine ligase and EB1/EB3, dynein regulators like LIS1, scaf-

folding proteins such as dystonin-α2, and motor protein KIF21A (Cheng et al. 2014;

Villarroel-Campos and Gonzalez-Billault 2014).

The role of MAP1B in axon formation has been studied for many years (Gordon-

Weeks and Fischer 2000). Suppression of MAP1B with antisense oligonucleotides

inhibits laminin-enhanced axon growth (DiTella et al. 1996). In addition, hippo-

campal neurons from MAP1B-deficient mice show a significant delay in axon

outgrowth and a decreased axonal elongation (Gonzalez-Billault et al. 2001; Takei

et al. 2000). MAP1B is involved in dendritic spine formation and synaptic matura-

tion by regulating the actin cytoskeleton, and has a role in AMPA receptors endo-

cytosis and long-term depression (LTD) in mature neurons (Benoist et al. 2013;

Davidkova and Carroll 2007; Lebeau et al. 2011; Tortosa et al. 2011). Moreover,

MAP1B can interact with many neurotransmitter receptors such as GABAc recep-

tor, NMDA receptor subunit NR3A, glycine receptor α1 subunit, mGluR receptors,

serotonin receptors, and various channels, including the voltage-gated Ca2+ channel

Ca(V)2.2 and the sodium channel Nav1.6. It can also interact with receptor regula-

tory proteins such as glutamate receptor-interacting protein GRIP1 and the AMPA

receptors regulating protein stargazin (Villarroel-Campos and Gonzalez-Billault

2014). It is widely believed that MAP1B could act as a scaffold for many of the

above mentioned factors by anchoring them to the MT cytoskeleton or controlling

their activity and localization.MAP1B has been linked to various neurodegenerative

disorders, including Parkinson’s disease (Chan et al. 2014; Jensen et al. 2000),

Alzheimer’s disease (Gevorkian et al. 2008; Good et al. 2004; Hasegawa

et al. 1990), giant axonal neuropathy (Allen et al. 2005; Ding et al. 2002),

spinocerebellar ataxia type 1 (Opal et al. 2003), fragile X syndrome (Brown

et al. 2001; Lu et al. 2004; Zalfa et al. 2003), and the eye-related muscular disorder

congenital fibrosis of the extraocular muscles type 1 (CFEOM) (Cheng et al. 2014).

3.4.1.3 MAP1 Family Member MAP1S

MAP1S (also named MAP8, VCY2IP1, and C19ORF5) is the shortest MAP1

protein. MAP1S is expressed in various tissues, including the brain, where it is

predominately present in neurons. Compared to other MAPs, this protein has

relatively low expression levels (Ding et al. 2006b; Orban-Nemeth et al. 2005).

The light chain of MAP1S not only binds and stabilizes MTs but also contains an

actin-binding site, suggesting that it may act as a cross-linker between the MT and

actin cytoskeletal networks (Ding et al. 2006b; Orban-Nemeth et al. 2005). Recent

evidences suggest that MAP1S can also link mitochondria and autophagosomes to

MTs (Xie et al. 2011). In the mammalian brain, interaction between NMDA

receptor subunit NR3A and MAP1S has been described, and a role in the trafficking

and localization of NR3A-containing NMDAR has been proposed (Eriksson

et al. 2007). Another neuronal interactor for MAP1S is the WD40 repeat protein

nemitin (Wang et al. 2012). No developmental or behavioral defects have been
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observed in MAP1S-deficient mice (Xie et al. 2011). However, high levels of

MAP1S cause excessive MT stabilization, disrupt axonal transport, and lead to

neuronal death (Ding et al. 2006a).

3.4.2 MAP2 Family of Microtubule-Associated Proteins

MAP2 is the most abundant structural MAP in the brain (Matus 1988; Olmsted

1986; Wiche et al. 1991). MAP2 is mainly expressed in neurons, but it is also

detected in nonneuronal cells such as oligodendrocytes and astrocytes

(Papasozomenos and Binder 1986; Vouyiouklis and Brophy 1995). All MAP2

isoforms are transcribed from a single gene. MAP2 isoform has been classified

into two groups: high molecular weight MAP2 (HMWMAP2), which includes

MAP2A and MAP2B, and low molecular weight (LMWMAP2), with MAP2C

and MAP2D. MAP2A is mainly present in the adult brain, whereas MAP2B is

expressed all along the development of the nervous system (Binder et al. 1984;

Burgoyne and Cumming 1984; Nunez 1988). MAP2C is mainly expressed at early

developmental stages, but also present in adult brain areas where neuritogenesis

occurs like the retina and olfactory bulb (Goedert et al. 1991; Hartel and Matus

1997; Nunez 1988; Przyborski and Cambray-Deakin 1995; Riederer and Matus

1985; Tucker and Matus 1988; Viereck et al. 1989). In contrast, MAP2D is detected

in rat brain early after birth and is present at all developmental stages (Doll

et al. 1993; Ferhat et al. 1998).

LMWMAP2 is widely distributed in all neuronal compartments (Albala

et al. 1995; Meichsner et al. 1993; Tucker et al. 1988a). In contrast, HMWMAP2

is selectively localized in the cell body and dendrites of neurons (Bernhardt and

Matus 1982; Caceres et al. 1984, 1986; Chung et al. 1996; Lev and White 1997;

Scheetz and Dubin 1994; Shafit-Zagardo and Kalcheva 1998) (Fig. 3.1). MAP2 has

also been found in dendritic spines and postsynaptic densities (Caceres et al. 1983;

Fifkova andMorales 1992; Hayashi et al. 1996; Langnaese et al. 1996). The specific

localization of MAP2 in dendrites is most likely due to a combination of several

mechanisms, including dendrite-specific localization of MAP2 mRNA, suppression

of MAP2 sorting into axons, and differential protein stability and turnover of MAP2

dendrites (Garner et al. 1988; Hirokawa et al. 1996; Kanai and Hirokawa 1995;

Okabe and Hirokawa 1989).

MAP2 forms bundles and determines MT spacing (Avila et al. 1994; Chen

et al. 1992; Cunningham et al. 1997; Dhamodharan and Wadsworth 1995; Felgner

et al. 1997; Itoh et al. 1997; Kalcheva et al. 1998; Kowalski and Williams 1993;

Kurz and Williams 1995; Vandecandelaere et al. 1996; Yamauchi et al. 1993).

MAP2 can also bind to actin and to neurofilaments (Bloom and Vallee 1983;

Papasozomenos et al. 1985; Pedrotti et al. 1994a; Selden and Pollard 1983). It is

highly phosphorylated and this phosphorylation controls the interaction with MTs

(Sanchez et al. 2000). MAP2 is thought to be a structural protein important for

neurite outgrowth and maintaining the overall MT architecture in dendrites. More-

over, MAP2 is likely to play a role during neuronal plasticity processes (Fanara
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et al. 2010; Harada et al. 2002; Teng et al. 2001). Interesting in this respect is the

observation that chemical LTD in cultured neurons induced the accumulation of

EB3 along MAP2-positive MT bundles in the dendritic shaft (Kapitein et al. 2011).

In addition, MAP2 is known to effect MT-based transport and has been involved in

the association of rough endoplasmic reticulum membranes with MTs (Farah

et al. 2005; Heins et al. 1991; Lopez and Sheetz 1993, 1995; Maas et al. 2009;

von Massow et al. 1989). MAP2 also participate in the somato-dendritic localiza-

tion of numerous signaling proteins, such as cAMP-dependent protein kinase

(PKA) and its regulatory subunit (Davare et al. 1999; Obar et al. 1989; Rubino

et al. 1989; Theurkauf and Vallee 1982), kinase-associated phosphatase (KAP)

(Iriuchijima et al. 2005), phosphatase PP2A/Bα (Sontag et al. 2012), calmodulin

(Kotani et al. 1985), and tyrosine-protein kinases Src and Fyn (Lim and Halpain

2000; Zamora-Leon et al. 2001). MAP2 can also bind other neuronal proteins,

including calcium channels (Davare et al. 1999), MAP2 RNA transacting proteins

(MARTA) (Rehbein et al. 2000), CRMP5 (Brot et al. 2010), neural cell adhesion

molecule L1 (L1CAM) (Poplawski et al. 2012), and the KIND domain containing

RasGEF, very-KIND (Huang et al. 2007). Changes in MAP2 expression levels have

been linked to numerous neurological and neurodegenerative diseases such as

schizophrenia (Rosoklija et al. 2005) and epilepsy (Jalava et al. 2007; Yan

et al. 2012), Alzheimer’s disease (Canas et al. 2009; Capetillo-Zarate et al. 2006;

Dziewczapolski et al. 2009; Moolman et al. 2004; Takahashi et al. 2013; Wu

et al. 2004), spinal cord injury (Abdanipour et al. 2014; Gonzalez et al. 2009),

stress (Yan et al. 2010), myotonic dystrophy (Velazquez-Bernardino et al. 2012),

and prion diseases (Zhang and Dong 2012).

3.4.3 MAP3/MAP4 Family of Microtubule-Associated
Proteins

MAP3 was originally described as a heat-stable protein in a variety of tissues,

including the brain, and was later found to be identical to MAP4 (Bulinski and

Borisy 1980; Kobayashi et al. 2000; Parysek et al. 1984). MAP4 is encoded by a

single gene from which multiple mRNAs are transcribed (Code and Olmsted 1992;

West et al. 1991). During development, MAP4 appears transiently in some neurons,

while persisting in others, suggesting that MAP4 could be involved in early

development. In the adult brain, MAP4 is present in both neurons and glia, but in

neurons it is restricted to neurofilament-rich axons (Bernhardt et al. 1985; Huber

et al. 1985; Matsushima et al. 2005; Matus et al. 1983; Tokuraku et al. 2010; Voss

et al. 1998). Therefore, MAP4 has been considered as a candidate to cross-link MTs

and neurofilaments (Huber et al. 1985). In cultures, MAP4 shows patchy staining

patterns and localizes at branching points (Tokuraku et al. 2010). In addition, a

shorter and neuron-specific isoform has been described, which is restricted to neural

ectoderm-derived tissues such as the brain and the adrenal medulla, and its
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expression is augmented by the addition of nerve growth factor (Matsushima

et al. 2005). The short MAP4 isoform still induces MT assembly, but is unable to

form bundles (Matsushima et al. 2005). MAP4 promotes tubulin polymerization

in vitro and co-localizes with MTs in vivo, binding both glutamylated and

tyrosinated MTs (Chapin and Bulinski 1994; Huber et al. 1986; West et al. 1991).

The binding of MAP4 to MTs induces conformational changes that promote the

overall MT stability (Xiao et al. 2012). MAP4 has also been reported to alter the

MT surface properties and affect kinesin-driven movement in vitro (Tokuraku

et al. 2007). In nonneuronal cells, overexpression of MAP4 inhibits organelle

motility and trafficking, and it inhibits kinesin-driven MT gliding (Bulinski

et al. 1997; Tokuraku et al. 2007). In addition, it has been described to interact

with p150Glued, part of the dynein-dynactin complex, and to inhibit dynein-

mediated MT sliding (Samora et al. 2011). In Xenopus melanophores, the binding

of XMAP4 to MTs negatively regulates dynein-dependent motility and positively

regulates kinesin-2-based cargo movements (Semenova et al. 2014). MAP4 can

also regulate the activity of MT-destabilizing factors, such as kinesin-related

protein MCAK/XKCM1 and the MAP stathmin (Holmfeldt et al. 2002). Moreover,

MAP4 has been suggested to inhibit katanin, by preventing its binding to MTs

(McNally et al. 2002). Little is known about the precise role of MAP4 and its

interaction partners in neuronal cells. MAP4 has been found upregulated by anti-

depressants in rat hippocampus and is linked to chronic stress (Yang et al. 2003). It

has also been shown that MAP4 can inhibit muscarinic receptor recovery after

agonist exposure in neuroblastoma cells (Cheng et al. 2002). MAP4 is regulated by

different kinases, such as protein kinase C (PKC) (Mori et al. 1991), mitogen-

activated protein kinase (MAPK) (Hoshi et al. 1992), and protein kinases MARK

(Ebneth et al. 1999; Illenberger et al. 1996). Alteration in MAP4 has been linked to

cardiac hypertrophy (Cheng et al. 2005; Kumarapeli and Wang 2004), different

types of cancer (Bash-Babula et al. 2002; Hait and Yang 2006; Holmfeldt

et al. 2003), and Alzheimer’s disease (Ray et al. 2008).

3.4.4 MAP6 Family of Microtubule-Associated Proteins

MAP6, also named STOP (stable tubule-only peptides), was discovered as the

major factor able to confer cold and nocodazole resistance to neuronal MTs

(Andrieux et al. 2002; Bosc et al. 1996; Guillaud et al. 1998). MAP6 is a

calmodulin-regulated protein (Job et al. 1981, 1983). Calmodulin-binding sites

partially overlap with the MT-binding domain, impairing the binding of MAP6 to

MTs. MAP6 also includes four consensus sites for phosphorylation by CaM kinase

II that regulates its binding to MTs (Bosc et al. 2003). MAP6 can also bind actin

(Baratier et al. 2006). Phosphorylated forms of MAP6 cannot bind MTs and

co-localize with actin along the neurites and at branching points. MAP6 is only

found in vertebrates and is expressed in several tissues like the brain, heart, muscle,

kidney, lung, and testis (Aguezzoul et al. 2003). In the brain, MAP6 is expressed in
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neurons, astrocytes, and oligodendrocytes (Denarier et al. 1998b; Galiano

et al. 2004; Guillaud et al. 1998; Ochoa et al. 2011). Two main splice isoforms

are described in neurons; MAP6-E and MAP6-N (Aguezzoul et al. 2003; Denarier

et al. 1998a). MAP6-E is the most abundant isoform in embryonic rodent brain and

persists in adult brain. MAP6-N appears at birth and its expression is maintained in

the adult brain (Bosc et al. 1996; Guillaud et al. 1998).

MAP6 has a strong preference for stable MTs (Bonnet et al. 2002; Slaughter and

Black 2003). In neurons from dorsal root ganglia, MAP6 is present in the cell body

and throughout the axon, but its expression is reduced in the distal portion of the

axon (Fig. 3.1) (Guillaud et al. 1998). MAP6 is also present in dendrites and there

are some evidences that localize MAP6 to synapses in mature hippocampal neurons

(Andrieux et al. 2002; Baratier et al. 2006; Peng et al. 2004). CaMKII phosphor-

ylation may promote MAP6 translocation from MTs to synaptic compartments

where it interacts with actin. This translocation could be important during synaptic

plasticity (Baratier et al. 2006). MAP6 is also important for neurite formation and

dendritic arborization, where it has been suggested to act as a molecular brake for

lysosomal trafficking in dendrites (Guillaud et al. 1998; Schwenk et al. 2014).

Initial studies showed that MAP6 knockout mice have reduced number of synaptic

vesicles and impaired synaptic plasticity (Andrieux et al. 2002). Later, it was shown

that, in addition to changes in glutamatergic synaptic transmission, these mice also

present alterations in dopaminergic, acetylcholinergic, nicotinic, serotonergic, and

noradrenergic neurotransmission (Bouvrais-Veret et al. 2007, 2008; Brun

et al. 2005; Delotterie et al. 2010; Fournet et al. 2010, 2012b; Fradley et al. 2005;

Kajitani et al. 2010; Powell et al. 2007). These alterations recapitulate some clinical

features observed in schizophrenia disorders (Andrieux et al. 2002; Fournet

et al. 2012b). Interestingly, chronic treatments with both typical and atypical

antipsychotics improve some defects in MAP6 knockout mice (Andrieux

et al. 2002; Begou et al. 2008; Brun et al. 2005; Delotterie et al. 2010; Fradley

et al. 2005; Merenlender-Wagner et al. 2010). In addition, treatments with

MT-stabilizing compounds like epothilone D and NAP (davunetide) also improved

some of the deficits (Andrieux et al. 2006; Fournet et al. 2012a; Merenlender-

Wagner et al. 2010). Neuronal transport alterations have also been described in

MAP6 knockout neurons, and epothilone D treatments can overcome these defects

(Daoust et al. 2014). These results suggest that MT-stabilizing drugs may restore

MT stability and subsequent transport functions in neurons.

3.4.5 MAP7 Family of Microtubule-Associated Proteins

MAP7, also called ensconsin and E-MAP-115 (epithelial MAP of 115 kD), was first

identified in HeLa cells and purified by its ability to tightly associate with MTs

(Bulinski and Bossler 1994; Masson and Kreis 1993). MAP7 is predominantly

expressed in epithelial cells where its expression correlates with the presence of

stable MTs (Masson and Kreis 1993). Subsequent experiments showed that its
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association with MTs is very dynamic, and modest expression does not directly

affect MT stability (Bulinski et al. 2001; Faire et al. 1999). The MT-binding domain

of MAP7 fused to GFP (GFP-EMTB) is used in many labs to label MTs in living

cells because it provides a non-perturbing label of the MT network (Bulinski

et al. 1999).

MAP7 is widely expressed in the adult mouse; it is predominantly expressed in

epithelial cells and in certain neuronal cell types, such as neurons of the trigeminal

and dorsal root ganglia (Fabre-Jonca et al. 1998). MAP7 has been suggested to

modulate MT functions and control the MT anchoring of other cellular factors

(Faire et al. 1999). It has also been demonstrated to be a regulator of kinesin motors.

MAP7 is a cofactor of kinesin-1 and required for organelle transport in Drosophila
neurons (Barlan et al. 2013). MAP7 mutants display defects in motor localization

without altering MT cytoskeleton (Sung et al. 2008). In addition, MAP7 has been

shown to recruit kinesin-1 to the MT and regulate nuclear positioning, which is

essential for skeletal muscle function in myoblasts (Metzger et al. 2012).

3.4.6 MAP9 Family of Microtubule-Associated Proteins

MAP9, also named ASAP (ASter-associated protein), has been characterized as a

novel human spindle protein with a role in the correct bipolar spindle assembly and

centrosome maintenance (Saffin et al. 2005). MAP9 is phosphorylated and regu-

lated by the mitotic kinases Aurora A and PLK1 (Eot-Houllier et al. 2010; Venoux

et al. 2008). It has also been demonstrated that, in response to DNA damage, MAP9

can interact and stabilize p53 (Basbous et al. 2012). In zebra fish, MAP9 is

expressed during early embryo development and localizes to the mitotic spindle

and centrosomes. MAP9 is expressed in the mammalian nervous system in various

brain regions and associates with the mitotic spindle. In addition, both MAP9

knockdown and overexpression produce several developmental defects, leading

to early embryonic lethality (Fontenille et al. 2014). However, the precise function

of MAP9 remains largely unknown.

3.4.7 Tau/MAPT Family of Microtubule-Associated Proteins

Tau was originally discovered as a MAP that decreases the concentration at which

tubulin polymerizes into MTs (Cleveland et al. 1977a, b; Fellous et al. 1977;

Weingarten et al. 1975). Tau has many functions; it stabilizes MTs (Bre and

Karsenti 1990; Drechsel et al. 1992; Drubin and Kirschner 1986), regulates MT

modifications (Perez et al. 2009), alters the mechanical properties of MTs by

enhancing their stiffness (Choi et al. 2009; Peck et al. 2011; Samsonov

et al. 2004), and functions as a spacer between adjacent MTs (Chen et al. 1992).

In neurons, the physiological function of tau is to support assembly and
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stabilization of axonal MTs to promote neuritogenesis (Caceres and Kosik 1990;

Cleveland et al. 1977a; Drubin and Kirschner 1986; Goode et al. 1997). Tau also

interacts with the neuronal plasma membrane and anchors enzymes to MTs (Brandt

et al. 1995; Lee et al. 1998; Liao et al. 1998; Sontag et al. 1999). Tau can also

associate with spectrin (Carlier et al. 1984), actin (Griffith and Pollard 1982), PP1

and PP2A (Liao et al. 1998; Sontag et al. 1999), kinases like CDK5 (Sobue

et al. 2000), presenilin 1 (Takashima et al. 1998), α-synuclein (Jensen

et al. 1999), phospholipase C (Hwang et al. 1996), the Fyn tyrosine kinase (Klein

et al. 2002; Lee et al. 1998), apolipoprotein E (Strittmatter et al. 1994), and

calmodulin (Baudier et al. 1987). It can also bind to chaperones such as Hsp70,

Hsp90, and Pin-1 (Dou et al. 2003; Lu et al. 1999). A recent study reveals how

Hsp90 binds to tau’s aggregation-prone MT-binding repeat region (Karagoz

et al. 2014). Another possible role for tau is the regulation of kinesin-based

transport (Ebneth et al. 1998; Sparacino et al. 2014; Terwel et al. 2002). Tau

reduces the attachment of kinesins to MTs and interferes with their transport

when is overexpressed, in both in vivo and in vitro experiments (Dixit

et al. 2008; Ebneth et al. 1998; Seitz et al. 2002; Stamer et al. 2002; Trinczek

et al. 1999; Vershinin et al. 2007).

Tau has several isoforms that are differentially expressed during development.

In addition, tau contains many different posttranslational modifications; it can be

modified by phosphorylation, glycosylation, ubiquitinylation, glycation,

deamidation, oxidation, and truncation (Avila et al. 2004). Tau is mainly present

in neurons (Arrasate et al. 1999; Chin and Goldman 1996) and specifically localizes

to axons (Binder et al. 1985; Drubin and Kirschner 1986; Kosik and Finch 1987;

Mandell and Banker 1996; Migheli et al. 1988), with a strong proximal to distal

gradient (Black et al. 1996; Kempf et al. 1996; Mandell and Banker 1996)

(Fig. 3.1). It is however unclear how the specific axonal localization of tau is

controlled (Scholz and Mandelkow 2014). Under pathological conditions, tau is

also present in dendrites, including dendritic spines (Ittner et al. 2010; Kremer

et al. 2011). Synaptic activation in cultured cortical neurons and induction of long-

term potentiation (LTP) in acute hippocampal slices trigger the translocation of

endogenous tau to the postsynaptic compartment. Exposure to amyloid-β oligomers

also induces mislocalization of tau to spines (Frandemiche et al. 2014). The

synaptic damage induced by amyloid-β oligomers is most likely triggered by the

missorting of newly synthesized tau into dendrites. In mouse models for

Alzheimer’s disease, mutant tau accumulates in dendritic spines, where it sup-

presses synaptic responses (Hoover et al. 2010). In addition, the expression of

mutant tau results in a significant loss of dendritic spines and synapses (Bittner

et al. 2010; Mocanu et al. 2008; Rocher et al. 2010). Indeed, in the human brain, tau

aggregation also affects dendritic spines (Merino-Serrais et al. 2013). Current

models suggest that tau mislocalization recruits the MT polyglutamylation enzyme

TTLL6 (tubulin-tyrosine ligase-like-6) into dendrites. Enhanced polyglutamylation

of dendritic MTs may subsequently recruit spastin and induces MT breakdown in

dendrites (Lacroix et al. 2010; Zempel et al. 2013).
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Several tau knockout lines have been generated; all of them are viable and do not

display strong phenotype (Dawson et al. 2001; Fujio et al. 2007; Harada et al. 1994;

Tucker et al. 2001). However, some muscle weakness and motor and cognitive

deficits have been described (Ikegami et al. 2000; Lei et al. 2012; Ma et al. 2014). In

addition, age-dependent brain atrophy and neuronal and synapse loss can be found

in tau knockout mice (Lei et al. 2012). At cellular level, tau knockout neurons

present a decrease in the axon caliber, together with a change in MT stability and

organization (Harada et al. 1994). Whereas some models show normal axonal

development in culture, a significant delay of the maturation of cultured neurons

has been described in others (Dawson et al. 2001; Harada et al. 1994). An increased

in MAP1A in tau knockout mice suggests a possible compensation effect in these

animal models (Dawson et al. 2001; Fujio et al. 2007; Harada et al. 1994; Ma

et al. 2014).

3.5 Discussion and Outlook

For a long time, MTs were considered as static structures distributed along the axon

and dendrites. However, many fundamental neurodevelopmental processes such as

differentiation, dendritic branching, and synapse formation require a continuous

reorganization of the MT cytoskeleton. Moreover, the organization of the MT

cytoskeleton largely depends on a tight regulation by many different extracellular

and intracellular signaling pathways. Axons and dendrites present different patterns

of MT organization that may underlie the different functions of these compart-

ments. The two compartments not only differ in MT orientation but also in stability

and posttranslational modifications. These biochemical variations generate distinct

MT patterns in neurons and may be directly responsible for sorting cargo transport

into axons or dendrites. It will be important to understand how variations in MT

patterns can generate MT diversity and drive polarized cargo transport. Future

research should help to resolve the basic mechanisms of MT assembly and

remodeling. This knowledge will aid us to better understand dendritic development

and the alterations that occur in neurological and neurodegenerative diseases.

In this chapter, we have discussed how classical MAPs regulate various MT

roles during neuronal development and function. Apart from their traditional role in

stabilizing and bundling MTs, MAPs have many additional functions in neurons.

Many of the classical MAPs have been described to interact with numerous cellular

components and participate in many different signaling pathways. Despite the

structural and functional complexity of the MAP family members, the rules

governing specific MT organization in axons and dendrites are slowly being

revealed. The difficult task ahead will be to sort out how these different MAPs

cooperate with each other in time and space to build specific MT arrays. In addition,

some very basic questions still remain unknown, such as how do MAPs bind to a

subset of dendritic MTs and how MAPs are specifically localized in different

compartments. Moreover, what is the spatiotemporal dynamics of MAPs in
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relationship to MTs dynamics itself and what is the percentage of MTs that is

occupied by MAPs. In addition, many different functions of MAPs remain still

unexplored. For example, their role in MT nucleation and organization is still

largely unknown. In this respect, recent developments in super-resolution imaging

are promising techniques to visualize the detailed subcellular localization patterns

in developing and mature neurons. The strong implications for MTs and MAPs in

many different neurological diseases will stimulate many new research efforts in

the near future.
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