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We discuss the implications of a PIXIE-like experiment, which would measure μ-type spectral
distortions of the cosmic microwave background (CMB) at a level of σμ ¼ ð1=nÞ × 10−8, with n ≥ 1

representing an improved sensitivity (e.g. n ¼ 10 corresponds to PRISM). Using Planck data and
considering the six-parameter ΛCDM model, we compute the posterior for μ8 ≡ μ × 108 and find
μ8 ¼ 1.57þ0.11

−0.13 (68% C.L.). This becomes μ8 ¼ 1.28þ0.30
−0.52 (68% C.L.) when the running αs of the

spectral index is included. We point out that a sensitivity of about 3 × PIXIE implies a guaranteed
discovery: μ distortion is detected or αs ≥ 0 is excluded (both at 95% C.L. or higher). This threshold
sensitivity sets a clear benchmark for CMB spectrometry. For a combined analysis of PIXIE and
current Planck data, we discuss the improvement on measurements of the tilt ns and the running αs
and the dependence on the choice of the pivot. A fiducial running of αs ¼ −0.01 (close to the Planck
best fit) leads to a detection of negative running at 2σ for 5 × PIXIE. A fiducial running of
αs ¼ −0.02, still compatible with Planck, requires 3 × PIXIE to rule out αs ¼ 0 (at 95% C.L.). We
propose a convenient and compact visualization of the improving constraints on the tilt, running and
tensor-to-scalar ratio.
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I. INTRODUCTION

The recent measurements of cosmic microwave back-
ground (CMB) anisotropies made by the Planck satellite
experiment [1] have provided, once again, a spectacular
confirmation of the ΛCDM cosmological model and
determined its parameters with an impressive accuracy.
Also, numerous new ground-based or balloon-borne CMB
telescopes are currently gathering data or under develop-
ment. Moreover, several proposals for a new satellite
experiment like PIXIE [2], PRISM [3,4], CORE [5], and
LiteBIRD [6] are under discussion.
In summary, two main lines of investigation are currently

pursued: CMB polarization and spectral distortions.
Improving current measurements of CMB polarization is
partially motivated by the inflationary paradigm. As it is
well known, the simplest models of inflation predict a
nearly scale-invariant (red-tilted) spectrum of primordial
scalar perturbations, in perfect agreement with the latest
experimental evidence. Inflation also predicts a stochastic
background of gravitational waves: a discovery of this
background (e.g. through measurements of CMB B-mode
polarization [7,8]) with a tensor-to-scalar ratio r ∼ 10−2

would correspond to inflation occurring at the grand unified
theory (GUT) scale. Planned and/or proposed CMB experi-
ments could detect this background, and measure the
tensor-to-scalar ratio r ∼ 0.01 × ðEinflation=1016 GeVÞ4 with
a relative error of order 10−2, if inflation occurs at these
energies [9,10]. This would be a spectacular confirmation
of the inflationary theory. However, the energy scale of

inflation could be orders of magnitude lower than the GUT
scale. In this case, the stochastic background would be out
of the reach of upcoming or planned experiments.
On the other hand, CMB μ-type spectral distortions are

an unavoidable prediction of the ΛCDM model, since they
are generated by the damping of primordial fluctuations
[11,12] with an amplitude of order μ ¼ Oð10−8Þ (for this
reason, it will be useful to define the parameter
μ8 ≡ μ × 108, that will be used in the rest of the paper).
While a measurement of CMB spectral distortions could

shed light on several aspects of physics beyond ΛCDM
such as, e.g., gravitino decay [13], cosmic strings [14],
magnetic fields [15], hidden photons [16], and dark matter
interactions [17], just to name a few, we stress that spectral
distortions could provide significant information on infla-
tion through the contribution coming from primordial
perturbations [18–22].
Indeed, in a typical inflationary model, the spectral index

ns of scalar perturbations is expected to have a small (and
often negative) running, of order jαsj ∼ ð1 − nsÞ2 [23–25].
State-of-the art CMB observations by the Planck experiment
[1,26] are fully compatible with an exact power-law spec-
trum of primordial fluctuations PζðkÞ, with αs ¼ −0.006�
0.007 at 68% C.L. (Planck TT, TE, EEþ lowP data set). A
more than tenfold improvement in sensitivity is therefore
needed to reach the typical slow-roll values with CMB
experiments. However, CMB anisotropies can probe PζðkÞ
only up to k ≈ 0.1 Mpc−1, since at shorter scales primordial
anisotropies are washed away by Silk damping [27–29] and
foregrounds become dominant. There is, then, a limit in the
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range of multipoles that we can use to test the scale
dependence of the power spectrum.1 Moreover, CMB
measurements will soon be limited by cosmic variance:
recent analyses have shown that for upcoming experiments
(COrEþ or CMB Stage IV), which are close to being cosmic
variance limited, one can expect σαs ≈ 10−3 [31–33].
The CMB μ-type spectral distortion is sensitive to the

amount of scalar power up to k of order 104 Mpc−1 because
of the damping of acoustic modes. The strong lever arm
makes this observable an ideal probe to improve the bounds
on the running from large-scale CMB anisotropies. In
addition, the cosmic variance of the μ monopole and
of the higher multipoles is minuscule (see Ref. [34] for
a discussion). With a sufficiently broad frequency cover-
age, instrumental noise will be the main source of uncer-
tainty for the foreseeable future, leaving ample room for
improvements.
In this context, we address several questions:
(i) Is there a benchmark sensitivity for CMB spectrom-

etry, i.e. which should be the target of the next-
generation experiments? How can we design an
experiment to ensure a discovery even in the absence
of a detection?

(ii) What sensitivity to the spectrum is needed to detect
μ distortions when accounting for the prior knowl-
edge from Planck?

(iii) How much will a joint analysis of large-scale
CMB anisotropies and CMB spectral distortion
strengthen the bounds on the running? How does
this quantitatively depend on the improvement over
PIXIE sensitivity?2

To articulate the answers to these questions, we consider
the following three fiducial cosmologies:

(i) A ΛCDM cosmology with zero running: the best fit
for the μ amplitude, in this case, is of order μ8 ¼ 1.6.
We stress that for the sensitivities considered in this
work, this fiducial is indistinguishable from models
with running of order ð1 − nsÞ2, such as typical
slow-roll models.

(ii) A fiducial spectral distortion amplitude μðfidÞ8 equal
to the best fit of the Planck analysis for theΛCDMþ
αs model, i.e. μðfidÞ8 ¼ 1.06. This value of μ is
roughly correspondent to what one obtains for a
running αs ¼ −0.01which is close to the mean value
predicted by current Planck data.

(iii) αðfidÞs ¼ −0.02 (corresponding to μ8 ¼ 0.73), at the
edge of the 2σ bounds of Planck. We note that it is
possible to obtain such large negative runnings
in some models of single-field inflation like, e.g.,

extra-dimensional versions of natural inflation
[35,36] or recent developments in axion monodromy
inflation [37–39].

The paper is organized as follows. After a brief review of
photon thermodynamics in the early Universe and of
distortions from Silk damping (Sec. II), we compute the
μ-distortion parameter allowed by current Planck bounds
for a ΛCDM and ΛCDMþ αs model (Sec. III). We then
analyze what a PIXIE-like mission will be able to say about
the running, given these posteriors for μ. The discussion is
divided into three sections. We start with the predicted
bounds on μ distortions from current Planck data (Sec. III).
We proceed with a Fisher analysis (Sec. IV), discussing
also the optimal choice of pivot scale for a combined study
of CMB anisotropies and spectral distortions. The Markov
chain Monte Carlo (MCMC) analysis and forecasts are
carried out in Sec. V. Finally, Sec. VI studies the impli-
cations of these results for single-clock slow-roll inflation,
and we draw our conclusions in Sec. VII.

II. PHOTON THERMODYNAMICS

At very early times, for redshifts larger than
zdC ≈ 2 × 106, processes like double Compton scattering
and bremsstrahlung are very efficient and maintain thermo-
dynamic equilibrium: any perturbation to the system is
thermalized and the spectrum of the CMB is given to very
high accuracy by a black body. At later times the photon
number is effectively frozen, since photons can be created
at low frequencies by elastic Compton scattering but their
re-scattering at high frequencies via double Compton
scattering and bremsstrahlung is not efficient due to the
expansion of the Universe [11,40–44].
The end result is a Bose-Einstein distribution

1=ðexþμðxÞ − 1Þ (x≡ hν=kBT) with chemical potential μ.
Since photons can still be created at low frequencies, μ will
not be exactly frequency independent: it can be approxi-
mated as μ∞ expð−xc=xÞ, with xc ≈ 5 × 10−3. However, no
planned/proposed experiments will be able to probe such
low frequencies: for this reason we will take the chemical
potential to be a constant (and drop the subscript ∞).
For a given energy release dðQ=ργÞ=dz, one can write the

value of μ as (see Sec. VIII A)

μðzÞ ¼ 1.4
Z

zdC

z
dz0

dðQ=ργÞ
dz0

e−τdCðz0Þ; ð1Þ

where the distortion visibility function τdCðzÞ can be
approximated as ðz=zdCÞ5=2 [11,40–45].
Below redshifts around z ¼ zμ-i ≈ 2 × 105, Compton

scattering is not sufficient to maintain a Bose-Einstein
spectrum in the presence of energy injection. The dis-
tortions generated will then be neither μ type nor y type:
they will depend on the redshift at which energy injection
occurs [20,43,46], and must be calculated numerically by
solving the Boltzmann equation (known as the Kompaneets

1For this reason, we expect that E-mode polarization will be
better, in the long run, at constraining the scale dependence of
PζðkÞ, since CEE

l starts to become damped around l ≈ 2500 (see
Ref. [30] for a discussion).

2For example the PRISM imager [3,4] corresponds to approx-
imately 10 × PIXIE.
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equation [47], when restricted to Compton scattering).
Recently, in Refs. [20,46], a set of Green’s functions for
the computation of these intermediate distortions has been
provided3: they sample the intermediate photon spectrum
nðiÞ for a energy release Qref=ργ ¼ 4 × 10−5 in Oð103Þ
redshift bins from z ≈ 2 × 105 to z ≈ 1.5 × 104. The i-type
occupation number, for a generic energy injection history
dðQ=ργÞ=dz, will then be computed as [20]

IðiÞðνÞ ¼ 2hν3

c2
X
zk

nðiÞzk ðνÞ
4 × 10−5

dðQ=ργÞ
dz

����
zk

δzk

≡ 2hν3

c2
X
zk

nðiÞzk ðνÞ
4 × 10−5

× μðiÞzk : ð2Þ

At redshifts z≲ 1.5 × 104 elastic Compton scattering is
also not efficient enough: there is no kinetic equilibrium
and the distortion is of y type. The transition between μ and
y distortions can be modeled with a redshift-dependent
visibility function [48]. The information on the transition
is encoded in the residual r-type distortions. Since r
distortions are not degenerate with μ- and y-type distortions
(see Sec. VIII B), they can be useful for probing
the redshift dependence of different energy release
histories [20,49].4

The y-type distortions are expected to be dominated by
astrophysics at low redshifts (created when the CMB
photons are scattered in the clusters of galaxies by hot
electrons—the tSZ effect). While this signal is very
interesting by itself as a probe of the matter distribution
in the Universe [50–52], our goal is studying the contri-
bution due to dissipation of acoustic waves, and so we will
marginalize over it in our analysis (see Sec. VIII B).5

Additional spectral distortions are the ones created during
recombination [45,54] and reionization [45,55,56]. Previous
work on recombination spectra has been carried out in
Refs. [57–62], and recently the authors of Ref. [54] have
shown that spectral distortions from recombination can be
computed with high precision. Therefore we are not going to
include them in our analysis, assuming they can be sub-
tracted when looking for the primordial signal.
In this work we will not consider these intermediate

distortions, and take the transition between the μ and y eras
to be instantaneous at a redshift zμ-y ≈ 5 × 104 [12]: in the
case of an energy release that does not vary abruptly with
redshift, we do not expect the inclusion of r distortions to

alter significantly the constraints on the parameters describ-
ing dðQ=ργÞ=dz. We leave the analysis of their effect on
combined CMB anisotropies–CMB distortions forecasts
for cosmological parameters for future work (we refer to
Refs. [20,49,53] for forecasts involving CMB spectrom-
etry alone).
While there are many nonstandard potential sources of

spectral distortions, e.g. decaying or annihilating dark
matter particles [13,43,46], a source of heating that is
present also in the standard picture is the dissipation of
perturbations in the primordial plasma due to Silk damping.
Even before recombination, when the tight-coupling
approximation holds, photons are random-walking within
the plasma with a mean free path λmfp ¼ ðneσTÞ−1. In the
fluid description, this amounts to anisotropic stresses that
induce dissipation. One can compute the (integrated)
fractional energy lost by these acoustic waves δγ: in the
tight-coupling approximation Eq. (1) reduces to [63,64]

μ ≈
1.4
4

hδ2γðz; xÞipjzdCzμ-y

≈ 2.3
Z

dk1dk2
ð2πÞ3 eikþ·xζk1ζk2e

−ðk2
1
þk2

2
Þ=k2D jzdCzμ-y ; ð3Þ

where h…ip indicates the average over a period of
oscillation and ζ is the primordial curvature perturbation.
The diffusion damping length appearing in the above
formula, instead, is given by [27–29]

kDðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ∞

z
dz

1þ z
HneσT

�
R2 þ 16

15
ð1þ RÞ

6ð1þ RÞ2
�s
: ð4Þ

If we consider the ensemble average of μ, we see that it is
equal to the log-integral of the primordial power spectrum
multiplied by a window function

WμðkÞ ¼ 2.3e−2k
2=k2D jzdCzμ-y : ð5Þ

Since the tight-coupling approximation is very accurate at
redshifts much before recombination we expect this to be a
good approximation for the μ-distortion amplitude. This
window function and the analogous one for y distortions
are shown in Fig. 1.
This simplified picture allows us to obtain a qualitative

understanding of the possible constraints coming from an
experiment like PIXIE [2].
We also account for adiabatic cooling [43,65], namely

the fact that electrons and baryons alone would cool down
faster than photons. Because of the continuous interactions,
they effectively extract energy from the photons to maintain
the same temperature, leading to an additional source of
distortions of the CMB spectrum. During the μ era, this
energy extraction results in a negative μ distortion of order

3We refer also to Ref. [48] for an alternate derivation.
4As the authors of Ref. [43] have shown, they can be used to

put constraints on observables like the lifetime of decaying dark
matter particles.

5We note that in Ref. [53], the authors carried out this
marginalization by taking into account also r distortions: this
results in slightly higher μ detection limits, but does not affect the
main results of this paper.
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μBEC ≈ −2.7 × 10−9 (for the Planck 2015 best-fit values of
cosmological parameters).

III. EXPECTATIONS FROM LARGE SCALES

As we discussed in the previous section, the expected
primordial spectral distortion μ is a function of cosmo-
logical parameters that play a role during the early Universe
epoch (like the scalar spectral index ns, its running αs, the
cold dark matter energy density, etc.). Since most of these
parameters are now well constrained by the recent mea-
surements of CMB anisotropies (both in temperature and
polarization) made by the Planck satellite, one could, albeit
indirectly, constrain the expected value of μ assuming a
ΛCDM model or one of its extensions (see also Ref. [22]
for a recent analysis).
Spectral distortions in the μ era can be computed in terms

of six or seven parameters (which we will call θ):
(i) The baryon and cold dark matter density parameters

Ωbh2 ≡ ωb and Ωch2 ≡ ωc, together with the num-
ber of effective relativistic degrees of freedom Neff .
These enter in the computation of the expansion
history: from them we compute the Hubble constant
H0 and the helium mass fraction YP that enter in the
computation of the dissipation scale kD.

(ii) The CMB temperature TCMB.
(iii) The parameters describing the primordial spectrum,

PζðkÞ ¼
2π2

k3
ΔζðkÞ ¼ As

�
k
k⋆

�
ns−1þαs

2
log k

k⋆
; ð6Þ

namely the amplitude logð1010AsÞ and tilt ns for the
ΛCDM case, with the addition of the running αs for
the ΛCDMþ αs case.

We performed an analysis of the recent Planck TT, TE,
EEþ lowP likelihood [66], which includes the (temper-
ature and E-mode polarization) high-l likelihood together

with the TQU pixel-based low-l likelihood, through
Monte Carlo Markov chain sampling, using the publicly
available code COSMOMC [67,68]. We have varied the
primordial parameters, along with ωb, ωc, the reionization
optical depth τ, and finally the ratio of the sound horizon to
the angular diameter distance at decoupling 100θMC. For
each model in the MCMC chain we compute, as a derived
parameter, the value of μ8 using the IDISTORT code developed
by Khatri and Sunyaev [20,46]. For this purpose we fix the
CMB temperature to TCMB ¼ 2.7255 K, the neutrino effec-
tive number to the standard value Neff ¼ 3.046, and we
evaluate the primordial helium abundance YP assuming
standard big bang nucleosynthesis.
Processing the chains through the getdist routine

(included in the COSMOMC package), and marginalizing
over all the nuisance parameters, we obtain for the ΛCDM
case (no running) the indirect constraint μ8 ¼ 1.57þ0.108

−0.127 at
68% C.L. Including the possibility of a running, the Planck
constraint on μ is weakened to μ8 ¼ 1.28þ0.299

−0.524 (68% C.L.).
The marginalized posterior distributions for μ8 are shown in
Fig. 2. Notice that the “the balanced injection scenario,”
namely the possibility that the negative contribution to μ
from adiabatic cooling cancels precisely the positive con-
tribution from the dissipation of adiabatic modes [63,65],
leaving μ8 ¼ 0, is excluded at extremely high significance
(i.e. ≈15σ) for the ΛCDM model, and at 97.4% C.L.6 if we
allow the running to vary.
Figure 3 shows the dependence of μ distortion on the tilt

ns and the running αs.
(i) In the left panel we see that μ8 is not very degenerate

with ns. The reason is twofold. First and most
importantly, for nonzero running of order 10−2, as

FIG. 2. The figure shows the one-dimensional posteriors for μ8
predicted by Planck TT, TE, EEþ lowP data, for the ΛCDM
model (orange curve) and the ΛCDMþ αs model (purple curve).
The posteriors have been obtained through the IDISTORT code
developed by Khatri and Sunyaev [20,46].

FIG. 1. This cartoon plot shows the scales which are probed by
μ- and y-type spectral distortions, using the “window function”
approximation of Eq. (5).

6We quote the confidence level, in this case, because the
posterior for μ8 is non-Gaussian (as can be seen from Fig. 2).
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allowed by Planck, a change in the tilt of order 10−2

is a small correction to the power spectrum at the
short scales that are responsible for μ distortions [αs
appears in Eq. (6) with a factor of ðlog k=k⋆Þ=2–5 for
k ∼ 103 Mpc−1]. Second, Planck constraints on ns
are tighter than those on αs by roughly a factor of 2.

(ii) The right panel, on the other hand, shows that μ8 is
strongly dependent on αs (increasing αs increases the
power at short scales and hence leads to a larger μ8,
and vice versa). We also note that the two
dimensional-contour in the αs-μ8 plane is not ellip-
soidal, but banana-shaped. The reason is that at large
negative running, the contribution to spectral dis-
tortions from dissipation of acoustic waves will go to
zero asymptotically, and the net μ amplitude will be
the one from adiabatic cooling (which for the tightly
constrained values of cosmological parameters can
be practically considered a constant).

Having discussed the current (indirect) limits on μ dis-
tortions from Planck measurements of CMB temperature
and polarization anisotropies, we move to the forecasts for
a PIXIE-like spectrometer.

IV. FORECASTS FOR PIXIE: FISHER ANALYSIS

Considering only μ distortions, and using the approxi-
mation in terms of a window function from z1 ¼ 5 × 104 to
z2 ¼ 2 × 106 (with the amplitude of the scalar spectrum
fixed at As ≈ 2.2 × 10−9), we can perform a simple Fisher
forecast to see how the constraints on tilt and running are
improved by combining PIXIE with the Planck prediction
for μ8.

This allows us also to discuss, mirroring what has been
done for CMB anisotropies alone in Ref. [69], what is the
optimal choice of pivot scale (that maximizes the detection
power for these two parameters) for the combined analysis,
as a function of the sensitivity of a PIXIE-like mission.
We stress that the choice of pivot has no impact on the
detectability of μ distortions themselves: it is just a
particular way to parametrize the spectrum. Whether or
not μ distortions will be seen is only dependent on the
amount of scalar power at small scales (which is captured
by the fiducial μ8 that we consider).
Finally, we point out that an improvement of a factor of

3 over PIXIE implies a guaranteed discovery.
We add to the Planck bounds the detection limits for μ

distortions from the PIXIE white paper [2], i.e.

Lðns; αsÞ ∝ Lðns; αsÞPlanck

× exp

�
−
ðμ8ðns; αsÞ þ μ8;BEC − μðfidÞ8 Þ2

2σ2μ8

�
; ð7Þ

with σμ8 ¼ 1 (0.5 and 0.2) for (2× and 5×) PIXIE, and
μ8ðns; αsÞ given by

FIG. 3. This figure shows the 68% C.L. and 95% C.L. contours in the ns-μ (left panel) and the αs-μ8 plane (right panel) for the Planck
TT, TE, EEþ lowP data set for ΛCDMþ αs, together with the 1σ detection limits for PIXIE and possible improvements.

TABLE I. Mean and standard deviation for spectral index and
running used in Eq. (9), from the Planck TT, TE, EEþ lowP
analysis.

n̄s 0.9639
ᾱs −0.0057
σns 0.0050
σαs 0.0071
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μ8ðns; αsÞ ¼ 2.3 × 108

× As

Z
kDðz2Þ

kDðz1Þ

dk
k

�
k
k⋆

�
ns−1þαs

2
log k

k⋆
: ð8Þ

The results of this Fisher analysis are just an approxima-
tion of the full MCMC sampling of the joint likelihood
that we will present in the next section. We can then
safely consider only two fiducial values for μ8, which
approximate well the choices we will make later (see
Table II):

(i) μðfidÞ8 ¼ 0, i.e. a cosmology with zero μ-type
distortions;

(ii) μðfidÞ8 ¼ 1.3, i.e. the mean-fit value from Planck data
(for the ΛCDMþ αs case).

For the Planck likelihood, we take (disregarding for
simplicity the normalization)

logLðns;αsÞPlanck ¼ −
ðαs − ᾱsÞ2

2σ2αs

−
ðns þ αs

2
logðk⋆=kð0Þ⋆ Þ − n̄sÞ2

2σ2ns
; ð9Þ

where
(i) the tilt is written at an arbitrary pivot k⋆ in terms of

the running and the reference scale kð0Þ⋆ (note that the
Jacobian of the transformation is 1 so it can be
neglected);

(ii) kð0Þ⋆ ¼ 0.05 Mpc−1 is the scale where ns and αs
decorrelate: for this reason we take n̄s, ᾱs to be the
marginalized means from the Planck TT, TE,
EEþ lowP analysis. σns and σαs are the correspond-
ing marginalized standard deviations. The values are
listed in Table I.

FIG. 4. ð1 − nsÞ=σns (left panel) and jαsj=σαs (right panel) as a function of the pivot scale k⋆, for a vanishing fiducial distortions
μðfidÞ8 ¼ 0. A dependence on the pivot scale is always present for ns (left panel), while for αs the dependence becomes appreciable
only for significant improvements over PIXIE’s sensitivity. The optimal choice of k⋆ shifts towards k < 0.05 Mpc−1 for ns and
k > 0.05 Mpc−1 for αs, when the information from spectral distortions is included.

FIG. 5. Same as Fig. 4, but in this case we consider a fiducial μ8 amplitude of 1.3 (see Sec. IV for details). The behavior is qualitatively
similar to the case of a vanishing fiducial μ8.
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Figure 4 shows ð1 − nsÞ=σns and jαsj=σαs as a function of
the pivot scale for vanishing μðfidÞ: we see that, as we
increase the sensitivity of PIXIE, the k⋆ that maximizes the
detection of the tilt is shifted towards values smaller than
kð0Þ⋆ ¼ 0.05 Mpc−1. The best pivot for the running moves
in the opposite direction, towards values larger than
0.05 Mpc−1. Figure 5 shows that the same qualitative
behavior is reproduced in the case of a fiducial μ8 different
from zero.
These plots show that the effect of changing the pivot on

the detection power for ns and αs is not very relevant, if we
increase 1=σμ8 up to 5 × PIXIE. At 10× the choice of k⋆
can lead to a small improvement on σαs : this is an
interesting result, that could open up the possibility of
choosing the pivot outside of the CMB window in the
future, as σμ8 becomes even smaller.7 However, since we
will stop at 10 × PIXIE (i.e. the expected error on μ8
achievable by PRISM) in this work, we will keep k⋆ ¼
0.05 Mpc−1 in the following sections.
For vanishing μðfidÞ8 , Fig. 4 shows that the improvement

for σαs can be greater than the case with nonzero fiducial.
However, it is important to stress that the assumption of
having zero distortions starts to become incompatible with
the Planck indirect constraints on μ8 (as one can see, e.g.,

from Fig. 2) for σμ8 ≈ 0.3, making a combination of the two
likelihoods inadvisable (this is also the reason why we have
decided to not consider, in Sec. I, a fiducial running so
small that spectral distortions from Silk damping are
absent). For fiducial μ8 different from zero we see that
this does not happen: the combination of the likelihoods,
which wewill explore throughMCMC sampling in the next
section, is therefore justified in this case.
Finally, it is interesting to ask whether there exists any

threshold value for sensitivity to the μ amplitude such that,
by reaching it, we are guaranteed to learn something about
the early Universe, irrespective of what the running might
actually be. The right panel of Fig. 4 suggests the answer to
this question (which we will confirm in the next section
with a detailed calculation). Within the uncertainty of
Planck, a vanishing running implies a distortion of order
μ8 ∼ 1.4, as we have seen in Sec. III: therefore a meas-
urement of the CMB spectrum at a sensitivity of
σμ8 ∼ 1.4=4 ¼ 0.35, corresponding to about 3 × PIXIE,
must lead to8 a first detection of μ distortions or a detection
of negative running, or both. In fact, any central value
μ8 ≲ 1.4=2 ∼ 0.7 at this resolution would exclude αs ≥ 0,
while any larger μ8 would exclude μ8 ≤ 0 at 95% C.L.

TABLE II. 68% C.L. constraints on the scalar spectral index ns, its running αs and the μ-distortion amplitude from
a future combined analysis of the Planck 2015 release in temperature and polarization and a PIXIE-like spectrometer

as a function of different experimental configurations and fiducial values for μ8. Notice that for αðfidÞs ¼ −0.01,
5 × PIXIE is needed to exclude αs ¼ 0 at 95% C.L., while for αðfidÞs ¼ −0.02, 3 × PIXIE suffices.

TT, TE, EEþ lowP ns αs μ8

ΛCDM 0.9645þ0.0048
−0.0049 ≡0 1.57þ0.11

−0.13

ΛCDMþ αs 0.9639� 0.0050 −0.0057þ0.0071
−0.0070 1.28þ0.30

−0.52

“slow-roll” 0.9644þ0.0051
−0.0052 ∼ − ð1 − nsÞ2 1.49þ0.12

−0.13

αðfidÞs ¼ −0.01 (μðfidÞ8 ¼ 1.06) ns αs μ8

Planckþ 1 × PIXIE 0.9637þ0.0050
−0.0049 −0.0064þ0.0065

−0.0064 1.22þ0.28
−0.45

Planckþ 2 × PIXIE 0.9634þ0.0049
−0.0048 −0.0074þ0.0061

−0.0053 1.15þ0.25
−0.34

Planckþ 3 × PIXIE 0.9632� 0.0048 −0.0079þ0.0053
−0.0045 1.11þ0.22

−0.27

Planckþ 5 × PIXIE 0.9631þ0.0048
−0.0047 −0.0083þ0.0040

−0.0035 1.08þ0.17
−0.18

Planckþ 10 × PIXIE 0.9631� 0.0047 −0.0085þ0.0025
−0.0024 1.06� 0.09

αðfidÞs ¼ −0.02 (μðfidÞ8 ¼ 0.73) ns αs μ8

Planckþ 1 × PIXIE 0.9635þ0.0050
−0.0049 −0.0071þ0.0065

−0.0063 1.18þ0.27
−0.43

Planckþ 2 × PIXIE 0.9628þ0.0049
−0.0048 −0.0094þ0.0061

−0.0052 1.04þ0.23
−0.31

Planckþ 3 × PIXIE 0.9624þ0.0049
−0.0048 −0.0111þ0.0055

−0.0045 0.95þ0.19
−0.24

Planckþ 5 × PIXIE 0.9618þ0.0049
−0.0047 −0.0131þ0.0046

−0.0037 0.85þ0.16
−0.15

Planckþ 10 × PIXIE 0.9613þ0.0048
−0.0047 −0.0149þ0.0033

−0.0029 0.77� 0.09

7However, from the left panels of Figs. 4 and 5 we see how this
improvement would be at the expense of an increased error on
the tilt ns.

8This assumes that we interpret the data within ΛCDM plus
running. Given our theoretical understanding of the early
Universe, this is indeed perhaps the most natural choice.
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V. FORECASTS FOR PIXIE: MCMC

This section contains the main results of the paper,
summarized in Table II and Fig. 6 (which shows the
contours in the αs-μ8 plane).
We start with a discussion of the detectability of μ-type

distortions by PIXIE in the context of the ΛCDM model,
i.e. with zero running of the spectral index. We stress that,
in this case, Planck bounds imply that with only a small
2× improvement over PIXIE’s noise, the exclusion of μ8 ≤
0 at ≈3σ is guaranteed, given the narrow posterior for μ8.
On the other hand, as we have seen in Sec. III, for the

ΛCDMþ αs case a value of μ8 ∼ 0.7 is fully compatible
with Planck data, and it will be only marginally detectable
by PIXIE in the case of a minimal configuration. Assuming
the Planck constraint on μ8, the minimal value of μ8
compatible with Planck in between two standard deviations
is μ8 ∼ 0.25. Clearly, given this value, a safe experimental
direct detection of μ-type distortions can be obtained only
with an experimental sensitivity of σμ8 ∼ 0.2, i.e. a 5×
improvement over PIXIE.
However, in the presence of running, the argument can

be reversed: now it becomes interesting to see how precise
the measurement performed by a PIXIE-like spectrometer
should be in order to translate a nondetection of μ
distortions into a detection of αs < 0, pursuing the marginal
(below one standard deviation) indication for negative
running coming from Planck (whose posterior, while
compatible with αs ¼ 0, peaks at a negative value of
αs ¼ −0.006; see Table II). For this purpose, we reprocess

the MCMC chains by importance sampling, multiplying
the weight of each sample by [see also Eq. (7)]

LPIXIE ¼ exp

�
−
ðμ8ðθÞ þ μ8;BECðθÞ − μðfidÞ8 Þ2

2σ2μ8

�
; ð10Þ

focussing on the two fiducial models for the running
described in Sec. I:

(i) αðfidÞs ¼ −0.01, corresponding to a spectral distortion
μ8 ¼ 1.06 (close to the Planck best fit for μ8);

(ii) αðfidÞs ¼ −0.02 corresponding to a spectral distortion
μ8 ¼ 0.73, which is at the limit of two standard
deviations from the Planck mean fit.

As in Sec. IV, we take σμ8 ¼ 1=n for a n × PIXIE
experimental configuration. The results of this importance
sampling are also reported in Table II.

Considering that from the Planck data set alone one
obtains σns ≈ 0.005 and σαs ≈ 0.007, we see that the
minimal configuration of 1 × PIXIE or the upgraded 2 ×
PIXIE will produce minimal effects on the Planck bounds,
even when the fiducial model deviates significantly from
the Planck best fit.
If, instead, the experimental sensitivity will reach the

level of 5 × PIXIE (10 × PIXIE) then the constraints on the
running of the spectral index can be improved by ∼30%
(∼50%): this improvement could be extremely significant.
More precisely, we see that if αðfidÞs is ∼ − 0.01, then the
addition of 5 × PIXIE to Planck bounds could yield a
detection of negative running at two standard deviations

FIG. 6. Left panel: 68% C.L. and 95% C.L. contours in the αs-μ8 plane, for Planck alone (yellow contour) and including in the analysis
the likelihood with αðfidÞs ¼ −0.01 (i.e. μðfidÞ8 ¼ 1.06) for a 2× and 3× improvement over PIXIE (orange and purple contours). Right
panel: Same as left panel, but with the fiducial αs equal to −0.02.
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(three for 10 × PIXIE). If we allow an even more negative
fiducial value for the running, i.e. αðfidÞs ∼ −0.02 then the
negative running will be probed at two standard deviations
by 3 × PIXIE (five standard deviations by 10 × PIXIE).
Table II also shows that the constraints on the tilt are left
basically untouched, in agreement with the results of
Sec. III, where we have seen that μ8 is only mildly
dependent on it.
Finally, we comment on the possibility of discriminating

between no-running ΛCDM and slow-roll inflation, where
the running is second order in the slow-roll expansion. An
order-of-magnitude prediction for αs, that arises in many
models, is αs ∼ −ð1 − nsÞ2 [23–25]: Table II shows that the
predictions for μ8 in these two cases are indistinguishable at
PIXIE’s sensitivity, and that a massive improvement in
sensitivity by a factor of order 102 is needed to probe the
differences between them.

VI. IMPLICATIONS FOR SLOW-ROLL
INFLATION

In this section, we discuss the implications of the value of
the running within single-clock inflation. Observations tell
us (see Ref. [1] and Table II)

1 − nsðk⋆Þ≡ −
∂ logΔ2

ζðk⋆Þ
∂ log k ð11Þ

¼ 0.0361� 0.0050 ð68% C:L:Þ;
αs ¼ −ns;N ð12Þ

¼ −0.0057þ0.0071
−0.0070 ð68% C:L:Þ;

r < 0.08 ð95% C:L:Þ; ð13Þ

where �;N refers to a derivative with respect to the number
of e-foldings from the end of inflation, decreasing as time
increases, namely Hdt ¼ −dN (we refer to Ref. [70] for a
comprehensive review). The standard slow-roll solution for
the primordial power spectrum gives (for an inflaton speed
of sound cs)

1 − ns ¼ 2ϵ −
ϵ;N
ϵ

−
cs;N
cs

ð14Þ

¼ r
8cs

−
r;N
r
; ð15Þ

αs ¼ 2ϵ;N −
r;NN

r
þ
�
r;N
r

�
2

; ð16Þ

where the tensor-to-scalar ratio is given approximately
by r ¼ 16ϵcs.
It is convenient to reexpress the running by making

explicit its dependence on the tilt, which is relatively well
constrained, i.e.

αs ¼ ð1 − nsÞ2 − 6ϵð1 − nsÞ þ 8ϵ2 −
�
rs
8cs

þ r;NN

r

�
: ð17Þ

Here, ϵ can be extracted from r if we know the speed of
sound cs from the equilateral bispectrum, or if we assume
standard slow-roll single-field inflation, namely cs ¼ 1.
On the other hand, the last term r;NN=r makes its first
appearance in the running αs; also the penultimate term
s≡ cs;N=cs is degenerate with ϵ;N=ϵ in ns and so it is also
considered unknown. In this precise sense, we can think of
the running as a measurement of the yet unknown next-to-
leading-order (NLO) slow-roll parameters

NLO≡ rs
8cs

þ r;NN

r
→
cs¼1 ϵ;NN

ϵ
: ð18Þ

In Fig. 7, we show a contour plot of αs as a function of
ϵ for different values of the NLO slow-roll parameters.
We point out that for NLO ¼ 0 one finds α ≥
− 1

8
ð1 − nsÞ2 ≃ −2 × 10−4. Any evidence that the running

is sizable and negative therefore implies NLO > 0, i.e. the
discovery of a new higher-order slow-roll parameter. In a

FIG. 7. This contour plot shows αs as a function of ϵ for
different values of the NLO slow-roll parameters. Notice that the
uncertainty in ns is smaller than the thickness of the lines in the
plot. In red we show αðϵÞ of Eq. (17) for NLO ¼ 0, while the blue
line is its asymptotic value ð1 − nsÞ2 ≈ 0.0013. The black line
shows the predictions of the Starobinsky model [71] (with N
going from 20 to 70), with the yellow dot being its prediction for
N ¼ 56 (chosen to reproduce the observed value of ns). The gray
bands show the values of αs excluded (at 95% C.L.) by Planck
TT, TE, EEþ lowP data, while the gray dashed vertical line
shows the current bound on ϵ ¼ r=ð16csÞ from Eq. (13), con-
sidering cs ¼ 1.
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typical slow-roll model, one indeed expects the NLO terms
to be of the same order as ð1 − nsÞ2. For example, consider
cs ¼ 1 and ϵ ¼ 3=ð4N2Þ,9 i.e. the Starobinsky model [71].
Then we have

ð1 − nsÞ2 ≃ 4

N2
; ð19Þ

r;NN

r
¼ 6

N2
: ð20Þ

One hence finds

αs ≃ −
2

N2
≃ −

1

2
ð1 − nsÞ2: ð21Þ

VII. CONCLUSION

In this work, we have considered how a measurement of
the CMB spectrum by an experiment like PIXIE would
extend our knowledge of the very early Universe. Using
Planck data, we have derived the predicted likelihood for
the size of the μ-type distortions generated by the dis-
sipation of acoustic waves in the photon-baryon-electron
plasma. As shown in Fig. 2, both ΛCDM and ΛCDMþ αs
predict μ8 ≃Oð1Þ, and exclude μ8 ¼ 0, a.k.a. the “the
balanced injection scenario” [43,63,65] at high confidence
(at 15σ for ΛCDM, and at 97.4% C.L. for ΛCDMþ αs).
While this means that we will be eventually able to measure
μ distortions, it is important to determine whether this will
already be possible with the next satellite experiment. Here
we point out that, irrespective of the actual value of αs [and
its respective μ8, according to Eq. (8)], a meaningful
sensitivity target is σμ8 ≃ 0.35, namely about a 3×
improvement over the current PIXIE design (but still less
sensitive than the proposed PRISM). This is in fact the
threshold for a guaranteed discovery: either μ8 is large
enough that it will be detected (at 95% C.L.), or else αs ≥ 0
will be excluded (at 95% C.L.) and with it our current
standard model, namely the six-parameter ΛCDM. The
absence of a detection of μ8 for a 3 × PIXIE improvement
would exclude most slow-roll models as well, since
typically jαsj ∼ ð1 − nsÞ2, which is indistinguishable from
αs ¼ 0 at these sensitivities.
We have further considered the constraining power of

CMB spectral distortions combined with the current Planck
data. We have discussed how to optimize this analysis by
choosing an appropriate pivot for the parametrization of the
primordial power spectrum (see Fig. 4 and Fig. 5). In
Table II, we present the improved constraints on the
spectral tilt and its running from Planck plus an n-fold

improvement over PIXIE sensitivity. For a fiducial
αs ¼ −0.01, close to the fit for Planck, one expects a
detection of μ8 at 95% C.L. already with 2 × PIXIE.
Conversely, for a fiducial αs ¼ −0.02 (which is at the
low 95% C.L. end of the Planck constraint), 3 × PIXIE will
already provide evidence (at 2σ) of a sizable negative
running. This would put pressure on the standard slow-roll
paradigm, which leads to the typical expectation αs≃
ð1 − nsÞ2 [see, e.g., Eq. (17)]. Finally, we proposed
Fig. 7 as a convenient and compact way to visualize the
improving constraints on the tilt, running and tensor-to-
scalar ratio.
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APPENDIX A: μ DISTORTION FROM ENERGY
RELEASE E → Eþ δE

The relation μ ≈ 1.4 × δE=E can be understood with the
following simple calculation, recalling that during the μ era
the total number of photons is conserved. Taking a Bose-
Einstein spectrum with energy Eþ δE and small chemical
potential μ, and expressing the temperature T in terms of
energy and chemical potential as

T ¼
ffiffiffiffiffi
154

p ffiffiffiffi
E4

pffiffiffi
π

p
�
1þ 1

4

δE
E

þ 45ζð3Þ
2π4

μ

�
þO2; ðA1Þ

one can find the relation between δE and μ by requiring that
the increase of energy is not accompanied by an increase in
the number of photons, which remains equal to that of the
original Planck spectrum, i.e.

NB-EðTðEþ δE; μÞ; μÞ ¼ NPlanckðEÞ: ðA2Þ

Solving for μ, one finds [11,72]

9Note that the relation ϵ ¼ 3=ð4N2Þ holds at first order in slow
roll: it is accurate enough, however, for the values of N that
reproduce a scalar spectral index ns within the current Planck
bounds.
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μ ¼ 9π4ζð3Þ
2ðπ6 − 405ζð3Þ2Þ

δE
E

≈ 1.4 ×
δE
E

: ðA3Þ

APPENDIX B: SPECTRAL SHAPES AND
S=N FOR PIXIE

If we consider Eq. (2), we see that we can write down
the observed photon spectrum in terms of shapes Ia and
corresponding amplitudes μa where, for example [11,72]

(i) a ¼ 1 corresponds to a μ-type occupation number,
i.e. (recalling that x≡ hν=kBT)

I1 ¼
2hν3

c2
ex

ðex − 1Þ2
�

x
2.19

− 1

�

≡ 2hν3

c2
× nðμÞðνÞ; ðB1Þ

(ii) a ¼ 2 corresponds to a y-type occupation number,
i.e.

I2 ¼
2hν3

c2
xex

ðex − 1Þ2
�
x

�
ex þ 1

ex − 1

�
− 4

�

≡ 2hν3

c2
× nðyÞðνÞ ðB2Þ

and so on. Besides μ-, i- and y-type distortions, that we
have discussed in Sec. II, one must also consider the fact
that the uniform part of temperature perturbations Θ is not
known a priori and must be fit simultaneously with the
spectral distortions: for this reason we also consider the
t-type occupation number, i.e. [20]

I t ¼
2hν3

c2
xex

ðex − 1Þ2

≡ 2hν3

c2
× nðtÞðνÞ: ðB3Þ

We do not include foregrounds in our analysis since, for
PIXIE, the noise penalty for rejecting foregrounds is
only 2%, and this noise penalty has been included
in all the estimates of CMB sensitivity by the PIXIE
Collaboration [2].
We can then write down the signal-to-noise, in terms of

amplitudes μa and spectra Ia as (dropping factors of 2 for
simplicity)

�
S
N

�
2

¼
X
c

½PaIaðνcÞ × ðμa − μ̄aÞ�2
ðδIðνcÞÞ2

; ðB4Þ

where μ̄a are the fiducial values of the amplitudes, and
δIðνcÞ is the noise at each frequency channel c.

(i) PIXIE will have 400 channels (15 GHz wide) from
30 GHz to 6 THz; however, we see from Fig. 8 that
the signals that we consider go quickly to zero
beyond ν ≈ 1000, so the sum over channels in
Eq. (B4) will stop there.

(ii) δI for PIXIE, as from Fig. 12 of Ref. [2], is expected
to be 5 × 10−26 Wm−2Hz−1 sr−1.

If we want to marginalize over some of the amplitudes μa
(see Ref. [73], for example), we can use the fact that for a
Gaussian with inverse covariance matrix (Fisher matrix) F
given by

F ¼
�

~F S

ST M

�
; ðB5Þ

where ~F is the submatrix that spans the parameters that we
are interested in, the marginalized Fisher matrix will be
equal to

Fmarg ¼ ~F − SM−1ST: ðB6Þ

For Eq. (B4), we will want to marginalize over t and y, so
M will be the 2 × 2 matrix

Mab ¼
X
c

IaðνcÞ
δIðνcÞ

IbðνcÞ
δIðνcÞ

; ðB7Þ

with a; b ¼ y, t. Similar expressions can be derived for S
and its transpose, while ~F is simply given by Eq. (B4) with
a running on all components except y and t. If we had
instead supposed that the two y and t amplitudes were
known, we could just have taken ~F as the Fisher matrix
for Eq. (B4).

FIG. 8. This plot shows the spectral shapes (normalized at the
maximum) IðνÞ for μ and y distortions, together with the spectra
for i-type distortions at redshifts z ¼ Oð2 × 105Þ, z ¼ Oð1 ×
105Þ and z ¼ Oð5 × 104Þ and the spectral shape of the monopole
of temperature anisotropies Θ. We see that for increasing redshift,
the maximum, minimum and zero of the occupation numbers are
moved towards lower frequencies.
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In this work we have not considered i distortions, so F
will be a 3 × 3 matrix with a; b; c ¼ μ, y, t: marginalizing
over y and t amplitudes, as described in Eqs. (B6) and (B7),
we obtain σμ8 ¼ 1 for the standard PIXIE configuration.
The increments in PIXIE sensitivity that we considered in

the text, then, can be interpreted as either an increase in the
number N of frequency channels (that would decrease σμ8
by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPIXIE=Nnew

p
), or a decrease in the instru-

mental noise δI (which instead gives a linear improve-
ment δInew=δIPIXIE).
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