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Omics for prediction of 
environmental health effects: 
Blood leukocyte-based cross-omic 
profiling reliably predicts diseases 
associated with tobacco smoking
Panagiotis Georgiadis1, Dennie G. Hebels2, Ioannis Valavanis1, Irene Liampa1, 
Ingvar A. Bergdahl3, Anders Johansson4, Domenico Palli5, Marc Chadeau-Hyam6, 
Aristotelis Chatziioannou1, Danyel G. J. Jennen2, Julian Krauskopf2, Marlon J. Jetten2, 
Jos C. S. Kleinjans2, Paolo Vineis6, Soterios A. Kyrtopoulos1 & The EnviroGenomarkers 
consortium#

The utility of blood-based omic profiles for linking environmental exposures to their potential health 
effects was evaluated in 649 individuals, drawn from the general population, in relation to tobacco 
smoking, an exposure with well-characterised health effects. Using disease connectivity analysis, we 
found that the combination of smoking-modified, genome-wide gene (including miRNA) expression 
and DNA methylation profiles predicts with remarkable reliability most diseases and conditions 
independently known to be causally associated with smoking (indicative estimates of sensitivity and 
positive predictive value 94% and 84%, respectively). Bioinformatics analysis reveals the importance 
of a small number of smoking-modified, master-regulatory genes and suggest a central role for altered 
ubiquitination. The smoking-induced gene expression profiles overlap significantly with profiles present 
in blood cells of patients with lung cancer or coronary heart disease, diseases strongly associated with 
tobacco smoking. These results provide proof-of-principle support to the suggestion that omic profiling 
in peripheral blood has the potential of identifying early, disease-related perturbations caused by toxic 
exposures and may be a useful tool in hazard and risk assessment.

The relative insensitivity of epidemiological investigations for the detection of environmental and other health 
hazards and the quantification of associated risks underlines the need for novel in vitro and in vivo tools that 
enable the identification of early biological signals which can be used to predict future disease. Ongoing efforts 
in this direction focus on the characterization through in vitro testing, including toxicogenomic profiling, of 
biological pathways whose perturbation by chemicals leads to the manifestation of toxicity1, in combination 
with the search for relationships between gene expression profiles induced by chemicals with profiles associated 
with human diseases (disease connectivity mapping)2. A complementary approach towards the same goal which 
could be exploited in the context of population-based studies, including population biomonitoring, involves the 
identification of perturbations induced by environmental exposures in readily accessible human tissues and the 
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characterisation of their relationship with disease pathogenesis. In this context a number of studies have examined 
the impact of various environmental exposures on different types of blood-based omic profiles in human popula-
tions, and their results in many cases support the notion that such profile changes reflect to some degree perturba-
tions related to known or suspected toxic hazards associated with the exposures concerned (for review see ref. 3).  
For example, an important series of studies among benzene-exposed subjects identified several differentially 
expressed genes in blood leukocytes which were related to immune function and leukemogenesis, an established 
outcome of benzene exposure4. However, the potential of blood-based omic profiles to reflect the impact of toxic 
exposures on cell function and associated disease pathogenesis processes in solid tissues is less well understood.

Exposure to tobacco smoke is one of the best studied examples of a common exposure with proven 
causal association with a variety of human diseases5,6. On this basis it provides an opportunity for the evalua-
tion of the potential of blood-based omics (including cross-omics) profiling to reveal changes of relevance to 
exposure-related diseases and hence to predict corresponding disease hazards1,7. The impact of tobacco smoking 
on gene expression and CpG methylation profiles in blood leukocytes has been examined in a number of recent 
studies (see for example refs 8–11), which have reported partly overlapping lists of features which are altered in 
smokers. Most of these studies focused primarily on the identification of biomarkers of tobacco smoke exposure, 
although the association of the altered profiles with particular cellular processes and diseases was discussed in 
some. Here we report on the impact of tobacco smoking on transcriptomic (including miRNA) and epigenomic 
(DNA methylation) profiles in buffy coats of apparently healthy subjects drawn from the general population, 
focusing in particular on the assessment of the observed changes in relation to diseases known to be associated 
with tobacco smoke. For this purpose we have identified smoking-induced profile changes, characterized them 
in terms of their biological information content and conducted disease connectivity analysis to identify diseases 
with which they are associated.

Results
Smoking-induced omic profile changes.  We examined the impact of smoking on genome-wide gene 
expression and CpG methylation profiles in blood leukocytes of a total of 649 current, former and never smokers 
within two general population-based prospective cohorts, the Northern Sweden Health and Disease Study and 
EPIC Italy (Table 1). Our analysis of the resulting data and their relevance to tobacco-induced disease is diagram-
matically outlined in Fig. 1.

Expression differed between current and never smokers for a total of 350 transcripts (FDR <  0.10; 231 
FDR <  0.05) corresponding to 271 differentially expressed genes (DEGs) (information on cohort-stratified anal-
yses is given in Supplementary Information). In agreement with previous studies8,9, we found most DEGs to be 
downregulated in current smokers and LRRN3 to be the most affected gene (upregulated) (Supplementary Table 
S1). No transcript showed a significant expression change in former smokers (smallest FDR >  0.99).

DNA methylation differed between current and never smokers at 1,273 CpG sites (FDR <  0.05; 184 at 
Bonferroni-corrected p <  0.05), the majority showing loss of methylation in current smokers (Supplementary 
Table S2). In agreement with previous studies10,11, we found the AHRR gene to be the most common epige-
netic target, with 27 CpG sites significantly affected (FDR <  0.05). The affected CpG sites are associated with 725 
differentially methylated genes (DMGs) or are located in intergenic regions. In former smokers, 17 CpG sites 
(FDR <  0.05; including 9 at Bonferroni-corrected p <  0.05) with reduced methylation relative to never smokers 
were observed, all of which were also significantly modified in current smokers (Supplementary Table S3).

Total 
population EPIC Italy NSHDS

N

total 649 250 (38.5% of 
total)

399 (61.5% 
of total)

male 236 (36.4% of 
total)

65 (26.0% of 
EPIC Italy)

171 (42.9% 
of NSHDS)

female 413 (63.6% of 
total)

185 (74.0% of 
EPIC Italy)

228 (57.1% 
of NSHDS)

age; mean (SD) 52.1 (7.8) 53.3 (8.1) 51.4 (7.6)

BMI; mean (SD) 25.8 (3.9) 25.8 (3.5) 25.8 (4.1)

smoking status, N

current smokers 143 (22.0% of 
total)

61 (24.4% of 
EPIC Italy)

82 (20.6% of 
NSHDS)

never smokers 311 (47.9% of 
total)

120 (48.0% of 
EPIC Italy)

191 (47.9% 
of NSHDS)

former smokers 195 (30.0% of 
total)

69 (27.6% of 
EPIC Italy)

126 (31.6% 
of NSHDS)

duration of smoking N* 130 60 70

smoking intensity (pack-years)#

years (SD) 31.0 (15.2) 29.5 (7.0) 32.2 (9.6)

N* 59 59

pack-years (SD) 410.3 (323.1) –

Table 1.  Population study data. *number of subjects for whom information was available; # available only for 
EPIC Italy.
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Comparison of the miRNA profiles (only measured in 226 subjects from the Swedish cohort) showed 26 miR-
NAs to be overexpressed and 8 underexpressed in current smokers (FDR <  0.10; 8 at FDR <  0.05) (Supplementary 
Table S4). No significant change was observed in former smokers (smallest FDR >  0.99).

Disease connectivity analysis.  The Comparative Toxicogenomics Database12, which curates data 
describing relationships between chemicals, genes and diseases, was used to search for diseases related to the 
sets of DEGs and DMGs (individually or pooled) observed in current smokers and therefore predicted to be 
potentially associated with smoking. This search resulted in the identification of a total of 191 highly significant 
(Bonferroni-corrected p <  0.05) disease or condition MESH terms, presented in detail in Supplementary Table S5  
and summarized in Table 2), comprising multiple disease categories. Addition to the above gene lists of the dif-
ferentially expressed miRNAs had only a minor impact on the outcome (results not shown). On the other hand, 
as indicated in Supplementary Table S5 (last column), use of a subset of only 40 DEGs or DMGs, selected as 
described in the following section for their potential master-regulatory role (hub genes), predicted the majority 
of the above disease terms along with an additional 51 highly significant terms.

Table 2 shows that, for the great majority of the diseases or conditions predicted by the omic profiles, the 
epidemiological evidence of a causal association with tobacco smoking has been characterized as sufficient or, in 
a few cases, suggestive in the Report of the US Surgeon General on the health consequences of smoking5 or, for 
cancer, in the latest IARC Monograph on tobacco6. Notably this also holds for a few diseases (colitis, endome-
trial cancer) which show an inverse epidemiological association with smoking (decreased incidence in smokers). 
For a small number of predicted diseases, while no formal conclusion is given in the abovementioned major 
reports, evidence supportive of an association with smoking is mentioned therein (e.g. liver cirrhosis, Parkinson 
disease, demyelinating autoimmune disease such as multiple sclerosis) or they are well known to be associated 
with smoking-related diseases correctly predicted by omic profiling (e.g. cardiomegaly – a complication of heart 
disease; calcification of aortic valve – a precursor of aortic aneurism; liver cirrhosis – a late stage complication of 
liver fibrosis). Predicted diseases not discussed in the above reports, or for which the evidence of causal links with 
smoking is described as insufficient or clearly negative, include male genital, prostate and nerve tissue cancer, ven-
tricular outflow obstruction, nephritis/glomerulonephritis, schizophrenia and disorders with psychotic features, 
lymphoma and adnexal disease. Finally, specific diseases or conditions for which there is sufficient evidence of an 
association with smoking but were not predicted by omic profiling include erectile dysfunction, reduced fertility 
in women and a number of diseases related to pulmonary infection (influenza, pneumonia, tuberculosis).

Bioinformatics analyses.  - Pathways associated with DEGs/DMGs.  The mechanistic basis of the abil-
ity of DEGs and DMGs to predict smoking-related diseases was explored by conducting pathway analysis 
(ConsensusPathDB)13 using the two gene sets, separately as well as combined (totaling 894 unique genes). This 
resulted in 97 significantly (FDR <  0.05) overrepresented pathways, including multiple pathways related to 
TGF-β -, AhR- and NOTCH-signaling, blood coagulation, cell-cell and cell-matrix interactions, as well as path-
ways related to various diseases such as cancer and heart disease (Supplementary Table S6).

- Identification of hub DEGs/DMGs.  To reduce the complexity of the list of DEGs and DMGs, we searched for 
genes with potential master-regulatory roles using GORevenge14, a bioinformatics tool that maps gene sets on 

Figure 1.  Flow of data and bioinformatics analyses. Further information on the bioinformatics tools 
employed is given in Methods.
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Disease categories Disease/condition name

US Surgeon General’s Report5

Comments
Formal conclusion(s) regarding evidence 

of causal relationship with smoking
Other relevant 

remarks

cancer

acute myeloid leukemia sufficient IARC6, sufficient evidence

breast cancer suggestive IARC, positive association

bronchogenic carcinoma sufficient IARC, sufficient evidence

colorectal cancer sufficient IARC, sufficient evidence

esophageal cancer sufficient IARC, sufficient evidence

gastrointestinal cancer sufficient (stomach, colorectum) IARC, sufficient evidence 
(stomach, colorectum)

genital cancer, female
sufficient (cervix); sufficient (reduction of 

endometrial cancer risk in post-menopausal 
women)

IARC, sufficient evidence (cervix, 
ovary)

genital cancer, male not discussed IARC, no consistent association

germ cell neoplasms inadequate (ovarian cancer) IARC, sufficient evidence (ovary)

head and neck neoplasms sufficient (oral cavity, pharynx, larynx)
IARC, sufficient (oral cavity, naso-, 
oro-, hypo-pharynx, nasal cavity 

and accessory sinuses, larynx)

liver cancer sufficient IARC, sufficient evidence

lung cancer sufficient IARC, sufficient evidence

lymphoma not discussed

IARC, evidence inconclusive; 
IARC, positive association 

between parental smoking and 
childhood acute lymphocytic 
leukemia; limited evidence of 

association with risk of Hodgkin 
and non-Hodgkin lymphoma21,22

nerve tissue neoplasms suggestive of no causal link (brain) IARC, evidence inconclusive

pancreatic neoplasms; endocrine 
gland cancer sufficient (pancreas) IARC, sufficient evidence 

(pancreas)

prostate cancer suggestive of no causal relationship IARC, no consistent association

urinary bladder cancer sufficient IARC, sufficient evidence

urogenital neoplasms
sufficient (renal cell; renal pelvis; urinary 

bladder); sufficient (cervix); sufficient 
(reduction of endometrial cancer risk in 

post-menopausal women)

IARC, sufficient evidence (cervix, 
ovary, kidney, ureter, urinary 

bladder; inverse association with 
endometrial cancer risk)

uterus sufficient (cervix) IARC, sufficient evidence (cervix)

cardiovascular diseases and related 
conditions

aortic aneurysm; calcification of 
aortic valve sufficient (abdominal aortic aneurysm); calcification of aortic valve is 

associated with aortic aneurysm

arterial occlusive diseases; coronary 
artery disease; arteriosclerosis; 

reperfusion injury
sufficient (subclinical atherosclerosis)

reperfusion injury is caused when 
blood supply returns to a tissue 
after ischemia; associated with 

microvascular dysfunction

cerebrovascular disorders sufficient (stroke)

embolism and thrombosis; blood 
coagulation disorders; hypertension sufficient (stroke; cardiovascular disease)

p. 430: evidence 
that exposure to 

secondhand smoke 
may increase the risk 

of hypertension

positive association of smoking 
with higher risk of mortality from 

hypertensive heart disease52

myocardial ischemia; myocardial 
infarction; ventricular remodeling; 

cardiomegaly
sufficient (coronary heart disease, heart 

failure)

congenital abnormalities and 
related conditions

cardiovascular abnormalities suggestive (atrial septal heart defects)

craniofacial abnormalities; 
mucoskeletal abnormalities

sufficient (smoking in early pregnancy and 
orofacial clefts); suggestive (other types of 

abnormalities)

ventricular outflow obstruction not discussed

p. 476: reports of 
association between 
maternal smoking 
and outflow tract 

defects

limited supportive evidence53

connective tissue disease rheumatoid arthritis sufficient

digestive system disease
colitis suggestive (reduction of risk)

Crohn’s disease sufficient

Continued
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Disease categories Disease/condition name

US Surgeon General’s Report5

Comments
Formal conclusion(s) regarding evidence 

of causal relationship with smoking
Other relevant 

remarks

gastroenteritis not discussed

p. 62: sufficient 
evidence 

that smoking 
compromises immune 
homeostasis; smoking 

is a determinant 
of the incidence 

of a large number 
of diseases related 
to immunologic 
dysregulation, 

including diverse 
viral and bacterial 

infections, especially 
but not exclusively of 

the lungs

liver cirrhosis not discussed
p. 569: smoking is a 
risk factor for liver 

fibrosis
cirrhosis is a late stage of liver 

fibrosis

rectal diseases sufficient (colorectal cancer) IARC, sufficient evidence (rectal 
cancer)

stomach diseases
sufficient (stomach cancer; gastric ulcer 
in persons who are Helicobacter pylori 

positive)

endocrine system disease; 
metabolic disease

diabetes mellitus, type 2; 
glucose metabolism disorders, 

hyperinsulinism
sufficient (diabetes type 2)

ovarian diseases not discussed
sufficient evidence 
of reduced female 

fertility

evidence of increase in follicle 
death and altered hormone 

output26; IARC, sufficient evidence 
(ovarian cancer)

eye disease eye diseases sufficient (neovascular and atrophic forms of 
age-related macular degeneration; cataract)

immune system disease and 
related conditions

asthma; respiratory hypersensitivity; 
berylliosis

suggestive (asthma); suggestive (nonspecific 
bronchial hyperresponsiveness)

berylliosis is a chronic allergic-
type lung disease with symptoms 
overlapping with those of asthma

autoimmune diseases; calcinosis sufficient (rheumatoid arthritis); suggestive 
(Crohn’s disease)

calcinosis is associated with 
autoimmune diseases, e.g. 

rheumatic arthritis54

demyelinating autoimmune diseases, 
CNS; neuromuscular diseases; gliosis not discussed

p. 569: smoking 
is a risk factor for 
multiple sclerosis; 
sufficient evidence 

of causal links 
of smoking with 

compromised 
immune homeostasis 
and altered immunity 

associated with an 
increased risk for 
several disorders 

with an underlying 
immune diathesis

astrogliosis is associated with 
neuroinflammatory disorders55

immunoproliferative disorders; 
lymphoproliferative disorders not discussed

limited evidence of association 
with risk of lymphoma21,22; IARC, 

positive association between 
parental smoking and childhood 

acute lymphocytic leukaemia

mental disorder; nervous system 
disease; brain diseases

mental disorders diagnosed in 
childhood

suggestive (maternal prenatal smoking 
and disruptive behavioral disorders, and 

attention deficit hyperactivity disorder, in 
particular among children)

sufficient evidence 
that nicotine 

exposure during 
fetal development 
has lasting adverse 
consequences for 

brain development

schizophrenia and disorders with 
psychotic features

insufficient to infer the presence or absence 
of a causal relationship between maternal 

prenatal smoking and schizophrenia in her 
offspring

p. 124: nicotine-
induced release of 
dopamine could 

improve attention and 
processing symptoms 

and sensory-
gating deficits in 

schizophrenia

evidence of positive, causal 
association of smoking with risk of 

schizophrenia23–25

substance-related disorders; 
neurotoxicity syndrome; heavy 

metal poisoning
sufficient (nicotine-addiction and related 

conditions)

Continued
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to the hierarchical structure of the Gene Ontology graph tree and prioritizes them according to the number of 
GO terms to which they are linked. Fourty hub genes were thus identified which were linked to at least 30 (and 
upto 102) GO terms and included 12 DEGs and 30 DMGs, in their great majority underexpressed or/and under-
methylated in smokers (Table 3). A large number of GO terms (derived using the Comparative Toxicogenomics 
Database) are highly significantly overrepresented in the set of hub genes, including multiple terms related to 
apoptosis, response to various endogenous and exogenous stimuli and protein metabolism (Supplementary Table 

Disease categories Disease/condition name

US Surgeon General’s Report5

Comments
Formal conclusion(s) regarding evidence 

of causal relationship with smoking
Other relevant 

remarks

epilepsy not discussed
evidence of positive association 

of smoking with risks of epileptic 
seizure56

hyperalgesia; pain; somatosensory 
disorders not discussed evidence of altered pain sensation 

in smokers57

Parkinson disease; basal ganglia 
disease; movement disorders; 

manganese poisoning

p. 123: evidence of 
protective effect 

(Parkinson disease)

manganese poisoning is associated 
with increased risk of Parkinson 

disease58

mouth disease stomatognathic diseases sufficient (periodontitis); suggestive (dental 
caries)

musculoskeletal disease

osteoporosis; calcium metabolism 
disorders sufficient (osteoporosis)

psoriatic arthritis not discussed
complication of psoriasis; evidence 
of positive association of smoking 

with psoriasis59

pathology (anatomical condition) hypertrophy; hyperplasia not discussed
associated with heart disease 

(hypertrophy) and cancer 
(hyperplasia)

respiratory tract disease and 
related conditions

obstructive lung diseases; bronchial 
diseases; fibrosis;

sufficient (COPD); suggestive (idopathic 
pulmonary fibrosis); sufficient (all major 

respiratory symptoms among adults, 
including coughing, phlegm, wheezing and 

dyspnea)

signs and symptoms overweight; obesity sufficient (maternal active smoking and fetal 
growth restriction and low birth weight)

smoking is independently 
associated with an increased risk 

of central obesity and lower BMI60

urogenital disease 

female urogenital diseases and 
pregnancy complications

sufficient (ectopic pregnancy, premature 
rupture of the membranes, placenta previa, 

placental abruption, preterm delivery 
and shortened gestation, maternal active 

smoking and fetal growth restriction 
and low birth weight; reduced risk for 

preeclampsia); suggestive (spontaneous 
abortion)

nephritis/glomerulonephritis IGA not discussed

p. 569: smoking 
is a risk factor for 
multiple sclerosis; 
sufficient evidence 

of causal links 
of smoking with 

compromised 
immune homeostasis 
and altered immunity 

associated with an 
increased risk for 
several disorders 

with an underlying 
immune diathesis

associated with immune system 
malfunction;

kidney disease sufficient (kidney cancer) IARC, sufficient evidence (kidney 
cancer)

adnexal diseases not discussed no supportive evidence

pathology (process)

postoperative complications
sufficient (adverse surgical outcomes 

related to wound healing and respiratory 
complications)

hemorrhage

pp. 419, 423: 
associated with 

stroke, intracerebral 
hemorrhage, 

ischemia, thrombosis 
(sufficient evidence)

Table 2.  Summary of diseases predicted by cross-omics profiling and the Comparative Toxicogenomics 
Database (Bonferoni-corrected p < 0.05; full list shown in Supplementary Table S5) and comparison 
with the conclusions of the US Surgeon General’s Report5 and the IARC Monograph on tobacco6; disease-
related terms from Supplementary Table S5 have been grouped by disease category after excluding generic 
categories and repetitions.
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S7). As already mentioned, disease connectivity analysis using these 40 hub genes resulted in the prediction of the 
majority of smoking-related diseases also predicted by the full sets of DEGs and DMGs (Supplementary Table S5).

To obtain a more global view of the organization of the smoking-related hub genes, we looked for networks 
of interactions between them using the online resource Search Tool for the Retrieval of Interacting Genes 
(STRING)15 which maps and integrates physical and functional protein-protein interactions. This revealed an 
extended network of interactions, including sub-networks centered on SMAD2 and SRC and tightly linked to a 
UBC node (Fig. 2).

- Hub genes in specific diseases.  We examined further the role of the hub genes in smoking-related diseases 
by first selecting those DEGs/DMGs identified by the Comparative Toxicogenomics Database as being asso-
ciated with a specific disease (lung cancer) or with two disease categories (cancer and cardiovascular disease), 
all well known to be strongly linked to smoking (34, 178 and 105 DEGs/DMGs, respectively). Subsequent use 
of ConsensusPathDB and Cytoscape to identify and visualize the interactions between these genes showed 
(Fig. 3 and Supplementary Fig. S3) that hub genes AKT1 and CDKN1A serve as the main nodes linking multi-
ple networks in all three cases, while SRC and PRKCA are additional major nodes in the two disease categories 

Gene No. of links to GO terms Fold change, expression Change in methylation of affected CpG sites (%)

NOTCH1 102 − 1.36

TNF 93 − 1.32; − 0.93; − 0.89; − 0.71; − 0.65; − 0.62; − 0.37

AKT1 90 − 1.31

SMAD3 69 − 1.81

NOD2 67 − 1.75; − 1.02

UBC 61 − 1.87

DAB2IP 59 − 0.22

PRKCA 52 − 1.48

ITGB1 50 1.37

TCF7L2 49 0.83

RARA 46 − 5.01; − 1.60; − 1.36; − 0.93; 1.29

STAT5A 46 − 0.92; − 0.51

PTK2 45 0.85 − 3.16

GPX1 45 − 1.51

TP63 44 1.26

SRC 42 1.27; 1.29

LRP5 41 − 3.01; − 2.32; − 1.40; − 1.03; − 0.90

HTT 41 − 1.98

ADM 40 1.30

SMAD2 39 − 0.84

BCL2L1 39 − 1.38

HMOX1 39 0.84

ID2 39 0.85

CDKN1A 38 − 2.42; − 1.82; − 1.28; − 0.74

ITGA2 38 − 1.71

ADRA2A 38 0.82 − 3.25

ARRB2 37 − 0.36

SKI 36 − 1.43; − 0.55; 3.16

ACVRL1 34 − 0.92

STRA6 34 − 1.78

ARRB1 34 − 2.95

FYN 33 − 0.60

HIPK2 33 − 1.61

EGF 33 1.47

NEDD4L 33 1.18

MAPK7 32 0.92

ERBB2 31 0.89

AKR1C3 31 0.81

TGFBR3 31 0.83

ANXA1 30 − 0.87

Table 3.  Hub genes: DEGs and DMGs associated with 30 or more GO terms as derived in GoRevenge; 
sorted by decreasing no. of links to GO terms; when fold change data from multiple expression probes 
related to the same gene were available, the mean value is shown; settings: Distance = graph, Relaxation = 0.
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examined. Furthermore, the networks were extended with five DE-miRNAs to reveal that the differentially 
expressed miRNAs miR-20a-5p, miR-20b-5p and miR-98-5p are directly linked to the hub gene CDKN1A.

Comparison of smoking-induced omic profiles with disease profiles.  The ability of the DEGs and 
DMGs to predict smoking-related diseases results from the fact that these gene sets overlap significantly with lists 
of genes known independently to be linked with these diseases. Because our disease-predictive profiles reflect 
perturbations caused by tobacco smoke in apparently healthy smokers, the presence in them of genes also dif-
ferentially altered in patients with smoking-related disease would provide a possible basis for linking exposure 
with early steps of disease pathogenesis. To explore this possibility, we went on to compare our smoking-related 
profiles with profiles reported to be differentially modified in blood cells of patients with two diseases strongly 
associated with smoking, namely lung cancer and coronary heart disease. In relation to lung cancer we used two 
published gene expression signatures observed in patients with non− small cell lung cancer16 and stage I lung ade-
nocarcinoma17. In these studies, RNA extracted from whole blood was used to establish gene expression profiles 
optimally distinguishing between cases and controls. In both studies, the differential expression profiles had been 
derived while controlling for smoking status at the time of sampling and are therefore unlikely to include signals 
directly caused by recent exposure to tobacco smoke. As shown in Table 4, among 427 genes reported in the first 
study as being differentially expressed in subjects with lung cancer are included 11 of our smoking-related DEGs 
and 18 DMGs, including hub genes ADM and SMAD3. The probabilities, based on the hypergeometric distribu-
tion test, of a chance overlap of this magnitude are p =  0.024 and p =  0.25, respectively. In the case of the second 
study, which reported 49 differentially expressed genes, the corresponding overlaps are 5 DEGs (p =  4.22 ×  10−3), 
including hub gene TGFBR3, and 5 DMGs (p =  0.028).

For the corresponding analysis of coronary heart disease we used the data from the most recent and largest 
published study18, in which RNA from total blood of subjects with or without disease was used to derive differ-
ential expression profiles. Comparison of a list of 592 unique genes which, after controlling for smoking status, 
were reported to be differentially expressed in subjects with disease (Supplementary Table 6 in ref. 18) with our 
lists of DEGs/DMGs showed an overlap of 21 DEGs (p =  3.3 ×  10−5), including hub genes NEDD4L and TGFBR3, 
and 27 DMGs (p =  0.10), including hub genes BCL2L1 and CDKN1A. Furthermore, comparison with a list of 59 
genes highlighted in the same report as having been found significantly associated with the coronary heart disease 
case/control status in this and 4 other comparable studies (Supplementary Table 3 in ref. 18), showed an overlap 
of 4 DEGs (p =  7.19 ×  10−3) including hub gene NEDD4L and 3 DMGs (p =  0.34).

The above observations demonstrate that genes (including genes with major regulatory roles) differentially 
expressed in blood leukocytes of subjects with diseases causally associated with tobacco smoke exposure are 
found with high statistical significance to be also differentially expressed in smokers without these diseases. 

Figure 2.  STRING-generated interaction network among the hub genes; the intensity of the edges reflects 
the strength of evidence; prediction methods: co-expression, experimentally observed interactions and 
curated databases; confidence score “high” (>70% probability of terms being found together in a metabolic 
map in the KEGG database). 
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Analogous overlaps were also found, albeit at lower statistical significance, for genes with smoking-induced CpG 
methylation changes.

Discussion
We agnostically examined in blood leukocytes of apparently healthy subjects the effects of tobacco smoke expo-
sure on multiple types of genome-wide (omic) profiles and their association with disease. Given the extensive 
amount of independent epidemiologic knowledge available regarding the health effects of tobacco, our analysis 
serves as a proof-of-principle evaluation of the utility of blood-based omic profiles in relation to the identification 
of health hazards potentially associated with exposure to environmental and other toxic agents. In addition, as 
regards the health effects of smoking per se, the use of omic profiling as in the present study may provide new 
evidence for diseases not previously linked with smoking, as well as support for the identification of individuals 
with high susceptibility to tobacco-associated diseases.

In agreement with many previous studies we identified LRRN3 and AHRR as the top expression and methyl-
ation gene targets, respectively (Supplementary Tables S1 and S2). The AHRR gene has been previously reported 
to be upregulated as well as epigenetically modified in the lungs of smokers10,19. We found that AHRR expression 
was also upregulated in blood leukocytes of smokers despite its very low basal level in this tissue relative to the 
lung20 (Supplementary Table S1). To take this comparison further we compared the changes we observed in 
CpG methylation in blood leukocytes to those previously reported for lung alveolar macrophages19. As shown 
in Fig. 4, of the 27 AHRR-associated CpG sites significantly (FDR  <  0.05) modified by smoking in blood leu-
kocytes, 17 overlap with 39 sites reported to be modified (FDR  <  0.05) in alveolar macrophages (p for chance 
overlap =  1.31 ×  10−5). Furthermore, the methylation changes at the 49 CpG sites modified by smoking in either 
tissue are highly correlated (Pearson r =  0.59; p <  10−5). While these observations relate to just one gene, they 
imply that DNA methylation changes under the influence of an external exposure may be qualitatively similar 
across tissues regardless of the tissue-specific basal expression levels, thus providing a biological justification for 
the use of blood-based CpG methylation data in the prediction of effects in other tissues.

Smoking-induced blood omic profiles and disease prediction.  We conducted disease connectivity 
mapping using as input the DEG/DMG lists obtained with the pooled cohort dataset, rather than the smaller lists 
of genes replicating between the two cohorts, having in mind the significant overlap of the former with previous 
reports8–11. In deriving these lists we adjusted for cohort, age, sex and BMI (additional adjustment for educa-
tion, physical activity and alcohol consumption had only a minor impact). While the possibility that additional 
parameters might have confounded these lists cannot be completely excluded, it is highly unlikely that other 
confounders (i.e. exposures that both modify the expression/methylation profiles and are associated with tobacco 
smoking) are relevant.

Figure 3.  Interactions between DEGs, DMGs and miRNAs related to lung cancer as derived 
using ConsensusPathDB and Cytoscape; node shapes: diamonds = DEGs, rectangles = DMGs, 
triangles = miRNAs; node colours: red = down-regulated (the darker the more down-regulation), 
green = up-regulated (the darker the more up-regulation); the colours of the node borders indicate the 
number of connecting edges (the darker the more connecting edges). 
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The combination of DEGs and DMGs shows a remarkable ability to predict almost all diseases or conditions 
for which there is sufficient or suggestive epidemiological evidence of a causal link with smoking, as well as dis-
eases or conditions known to be closely associated, as precursors or late-stage complications, with such diseases 
(Table 2 and Supplementary Table S5). The set of DMGs alone was able to correctly predict a large fraction of 
smoking-related diseases despite the fact that only few of these genes had their expression also altered by smok-
ing, reinforcing the suggestion that exposure-induced epigenetic changes in blood cells may extend to additional 
tissues and contribute to the initiation and progression of disease therein.

For a number of omics-based disease predictions, the epidemiological evidence is negative or too limited 
to support a causal link with tobacco smoking5,6, meaning that these diseases may represent false positive pre-
dictions (male genital, prostate and nerve tissue cancer, lymphoma, ventricular outflow obstruction, nephritis/
glomerulonephritis, adnexal disease, schizophrenia and disorders with psychotic features). While for lymphoma 
there is some epidemiological evidence of links with smoking21,22, most of the remaining possible false positives 
may reflect the fact that they are linked to, and share genes with, other conditions known to be caused by smok-
ing. This is supported by the results of hierarchical clustering analysis of the associations between diseases and 

Lung cancer Cardiovascular disease

Zander et al.16 Rotunno et al.17 Joehannes et al.18

common to 
Joehannes et al.18 
and other studies 
(Suppl. Table 6, 

ref. 18)

no. of genes 
differentially 
expressed in 
cases (disease 
profile)

427 49 592 59

smoking-
related DEGs 
also found in 
disease profile

number: 11 (p =  0.024)* 
list: ADM, CEACAM1, 
DSC2, FEZ1, GPBAR1, 
IL2RB, LGR6, PLOD2, 

PPBP, RARRES3, SYT17

number: 5 
(p =  4.22 ×  10−3)* 

list: CYP1B1, 
F13A1, GZMB, 

RUNX3, TGFBR3

number: 21 (p =  3.4 ×  10−5)* list: ACRBP, ARG2, 
C15orf26, C1orf21, CA2, CDK2AP1, CTSW, 

FGFBP2, GPR56, GZMA, GZMB, KLRF1, 
NEDD4L, NKG7, PRF1, RBX1, SAMD3, 
SLAMF7, SUCNR1, TGFBR3, XPNPEP1

number: 4 
(p =  9.53 ×  10−3)* 

list: LRRN3, 
NEDD4L, PDGFD, 

SLAMF7

smoking-
related DMGs 
also found in 
disease profile

number: 18 (p =  0.25)* 
list: ABLIM1, CACHD1, 

CD58, CD96, CNTNAP2, 
E2F1, EWSR1, LSM4, 

MLL, MORC2, NFE2L2, 
NT5C2, PABPC4, PHF15, 
PHF19, S100P, SMAD3, 

UBE2C

number: 5 
(p =  0.028)* list: 
AUTS2, CD96, 

GNB2L1, RUNX3, 
STAT4

number: 27 (p =  0.12)* list: ASAP1, BAMBI, 
BCL2L1, C13orf15, CD9, CDKN1A, EPB49, 
GPR56, HIST1H2BJ, HK1, HOMER2, JAZF1, 
LNX2, MKRN1, MYLK, PARD3, PHOSPHO1, 
RILP, RNF182, SGIP1, SH3BGRL3, SLC1A5 , 

SLC24A3, ST3GAL1, STOML2, TFDP1, TTPAL

number: 3 
(p =  0.38)* list: 

KIAA0319L, 
LRRN3, TFDP1

Table 4.  Overlap of smoking-related DEG/DMG profiles with reported differential expression profiles in 
blood leukocytes of patients with lung cancer or cardiovascular disease; bold characters indicate hub genes. 
*hypergeometric distribution test p for over-representation of smoking-related hub genes among the genes 
reported to be differentially expressed in cases.

Figure 4.  Comparison of smoking effects on the methylation of 49 AHRR CpG sites in blood leukocytes 
(this study) and lung alveolar macrophages19 at which the effects of smoking are significant (FDR <  0.05) in 
either tissue.
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smoking-modified genes (Supplementary Fig. S4) which shows that, for example, nephritis-related conditions 
and adnexal diseases cluster close to immune system-related and ovarian diseases, respectively, both known to 
be caused by smoking.

The identification of schizophrenia and disorders with psychotic features as a disease category potentially 
associated with tobacco smoking is of particular interest. This could possibly reflect an inverse causation effect, 
i.e. subjects with undiagnosed disease tending to smoke more as a result of nicotine-induced release of dopamine 
leading to relief of symptoms5 (see relevant note in Table 2). In this context it is notable that in Supplementary 
Fig. S4 schizophrenia clusters with substance-related disorders. On the other hand, a series of recent reports from 
large epidemiological studies, including prospective cohort studies and meta-analyses, consistently suggests the 
possibility of a positive causal association between tobacco smoking and this disease category23–25. Seen in the 
latter context, our finding highlights the potential of omic profiling to provide independent molecular evidence 
in support of weak epidemiological observations.

Finally, a small number of specific diseases for which the evidence of a causal association with smoking has 
been characterized as sufficient was not predicted by omic profiling and therefore they may be considered as 
false negatives. These diseases include erectile dysfunction, reduced female fertility as well as a number of con-
ditions related to pulmonary infection (influenza, pneumonia, tuberculosis). For the first of these diseases the 
most common cause is arteriosclerosis, which is correctly predicted to be associated with smoking, and a likely 
explanation for the failure to predict it may be related to the fact that only 9 genes are currently linked by the 
Comparative Toxicogenomics Database to this disease. As regards reduced female fertility, it is possible that this 
condition may result from the known ability of cigarette smoke to cause increased follicle death and altered hor-
mone output26, conditions which may be reflected in the prediction of ovarian diseases. Finally, while pulmonary 
infection-related diseases were not predicted by our omic profiling analysis, it is notable that use of the list of hub 
genes derived without adjustment of the epigenetic profiles for the variation in white blood cell sub-populations, 
and hence reflecting changes in the proportions of immune cells, resulted in the prediction of most disease terms 
described in Supplementary Table S5 and, in addition, of multiple terms related to bacterial and viral infection 
(results not shown).

The partly overlapping nature of many of the health conditions involved precludes a proper quantitation of 
the predictive ability of omics profiling. However an indicative estimate can be obtained by taking as the total 
number of predictions the conditions represented by the number of rows of Table 2 (59), of which, according 
to the preceding discussion, 8 may be considered as false positives (including lymphoma and schizophrenia in 
accordance with the conclusions of the two major reference evaluations employed5,6) and 51 as correctly pre-
dicted. By subtracting from this number the 8 false positives and adding the 3 false negatives discussed above, the 
total number of  “true”  smoking-related conditions can then be estimated as 54. This leads to indicative estimates 
of sensitivity (= correctly predicted/ “true” ) and positive predictive value (= correct predictions/all predictions) 
of omics profiling-based prediction of 94% and 86%, respectively (specificity cannot be estimated). While these 
estimates are only indicative, they provide strong support to the conclusion that omics profiling is remarkably 
reliable in predicting smoking-related health conditions.

Effects of smoking on biological pathways.  Pathway analysis (Supplementary Table S6) using the DEG 
and DMG sets provides mechanistic support for the potential exposure-effect associations identified. This is illus-
trated in Supplementary Table S8 which summarizes the changes in component genes of 6 pathways with central 
role in smoking-related diseases and shows that nearly 1 in 3 of the genes involved was among those found in our 
study to be modified in smokers.

Smoking-modified hub genes.  Among the genes significantly modified in smokers we identified 40 hub 
genes (Table 3) which play a central regulatory role in the cellular changes induced by smoking and can predict 
most tobacco-related diseases (Supplementary Table S5). The key role of these hub genes in the cellular perturba-
tions caused by smoking is illustrated in Fig. 3 and Supplementary Fig. S3, where the interactions between DMGs/
DEGs/DE-miRNAs associated with lung cancer or the disease categories cancer and cardiovascular diseases, 
respectively, are shown. In all three cases, two hub genes (AKT1 and CDKN1A) function as nodes linking multi-
ple interacting networks, both also being known to play an important role in these diseases and to be modulated 
by cigarette smoke exposure27–29. Strikingly, CDKN1A, which was significantly undermethylated at 4 CpG sites in 
smokers (Table 3), is targeted by 3 DE-miRNAs (Fig. 3 and Supplementary Fig. S3). In the case of the two disease 
categories cancer and cardiovascular disease, in addition to AKT1 and CDKN1A, central regulatory roles appear 
to be played by hub genes SRC and PRKCA which are also known to be related to the diseases and modulated by 
cigarette smoke exposure30–34. While we did not detect a significant effect of smoking on the expression of these 
genes in blood leukocytes, CpG methylation was significantly affected in all cases.

The smoking-modified hub genes appear to be organized primarily around two sub-networks of major impor-
tance in multiple cellular functions, namely TGF-β  (centred on SMAD2) and EGFR/ERBB2 (centred on the 
EGFR-SRC axis) signaling, which are in turn highly linked to a UBC node (Fig. 2). The UBC gene, which codes 
for a polyubiquitin precursor, was significant undermethylated in smokers. Furthermore it was represented in our 
transcriptomics dataset by 4 expression probes, all of which were underexpressed in smokers (average decrease 
3.41%). While this change was not statistically significant, it suggests a probable downregulation of expression of 
the gene. The central location of UBC in the network of interactions between the hub genes suggests that altera-
tions in ubiquitination may mediate many of the cellular effects of smoking, in line with the evidence described 
in the preceding paragraph in relation to cancer and cardiovascular diseases. Ubiquitination is intimately related 
to protein catabolism via the ubiquitin-proteasome system, but it can also affect cellular processes by altering 
the activity of proteins. In addition, free polyubiquitin has distinct roles in the activation of protein kinases and 
in signaling35. Existing evidence indicates that changes in the ubiquitin system play an important role in the 
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development of smoking-related diseases including cancer, cardiovascular, neurodegenerative, respiratory and 
immune system diseases36. Our suggestion of a central role of ubiquitination in cellular signaling changes in 
smokers is in line with reports that the ubiquitination pathway protects cells from the detrimental effects of 
proteins damaged by exposure to cigarette smoke37 and that the protein ubiquitination pathway is one of the top 
pathways perturbed in human peripheral blood mononuclear cells treated in vitro with cigarette smoke extract38.

The above discussion indicates that hub genes altered in blood cells of apparently healthy smokers play impor-
tant roles during the pathogenesis of smoking-related diseases in target tissues other than blood. This in turn 
suggests that such hub genes form part of adverse outcome pathways1 which constitute early events in disease 
pathogenesis and may therefore be particularly appropriate candidate «meet-in-the-middle» biomarkers linking 
toxic exposures to related diseases and potential tools for use in risk assessment7. This suggestion is supported by 
the fact that hub genes form part of the highly significant overlaps between our smoking-induced gene expres-
sion profiles and profiles observed in patients with two diseases strongly associated with smoking, namely lung 
cancer and coronary heart disease (Table 4). These overlaps include hub genes ADM and TGFBR3, the second of 
which was observed in relation to gene expression profiles in lung cancer17 and coronary heart disease18 patients. 
TGFBR3 is known to behave as a suppressor of the progression of multiple types of cancer including lung can-
cer39, which is in harmony with our observation that its expression is significantly reduced in smokers (Table 3). 
Other smoking-related hub genes found to overlap with coronary heart disease-related expression profile include 
NEDD4L, BCL2L1 and CDKN1A. A genetic variant of NEDD4L has been reported to be associated with postural 
change in systolic blood pressure, a risk factor for cardiovascular and coronary heart disease40. It is also notable 
that the overlap also includes LRRN3, top target for smoking in relation to gene expression (overexpressed) in 
blood leukocytes. We have also found that 2 CpG sites associated with LRRN3 suffer significant (FDR <  0.05) loss 
of methylation in smokers (result not shown). LRRN3 appears to be involved mainly in neurodevelopment and 
its possible role to heart disease is currently unclear. Nevertheless, its presence in the differential gene expression 
profiles of patients with coronary heart disease suggests that it may serve as a marker linking past tobacco smoke 
exposure with disease.

Concluding remarks.  Our study demonstrates that the combination of changes in gene expression (includ-
ing miRNA) and CpG methylation in blood leukocytes of smokers is able to predict with high sensitivity and 
specificity diseases which occur in tissues other than blood or hematopoietic tissues and whose incidence is 
affected by tobacco smoking. We have also shown that there is a close similarity in the effects of cigarette smoke 
on the expression and CpG methylation of the AHRR gene in blood leukocytes and the lung of smokers. Taken 
together, these observations are compatible with the reported operation of common gene regulation networks 
across different tissues which are more highly connected than within-tissue networks41,42. They also suggest that 
blood cells may respond to toxic exposures in a manner similar to solid tissues, thus extending to early steps of 
disease pathogenesis the implications of the reported observation that the molecular signature of a given dis-
ease tends to be robust across different tissues and more prominent than the signature of each tissue or other 
influences43. Finally, an additional factor which may contribute to the concordance of early disease signatures in 
blood and other tissues relates to the possibility that the genomic profiles of blood cells reflect interactions with 
metabolites or signaling molecules released by solid tissues. The overall outcome of the combined operation of 
these mechanisms is that blood-based omic profiles of environmental or other types of toxic exposure may also 
contain signatures of early disease-related perturbations occurring in distant tissues and therefore be useful in the 
derivation of intermediate biomarkers which reflect etiological exposure-disease links.

Methods
The study was conducted in the context of the European EnviroGenomarkers project (www.envirogenomark-
ers.net) and involved subjects from the European Prospective Investigation into Cancer and Nutrition study 
(EPIC-ITALY) and the Northern Sweden Health and Disease Study (NSHDS) (Table 1)44,45. Both studies used 
population-based recruitment with standardized lifestyle (including smoking) and personal history question-
naires, anthropometric data and blood samples collected at recruitment (1993–1998 for EPIC-ITALY; 1990–2006 
for NSHDS). Subjects were categorized as current, former or never smokers on the basis of their declared smok-
ing status at the time of recruitment. The duration of smoking for current smokers ranged 2.1–46.5 years (mean 
31.0 years) years while time since quitting for former smokers ranged 4 months to 38 years (mean 14.3 years), 
with no significant dfferences between the two cohorts. Data on smoking intensity (pack-years) were available 
only for the EPIC Italy cohort.

The EnviroGenomarkers project was originally designed as two nested case-control studies, one for B-cell 
lymphoma and one for breast cancer. The participants included 93 incident cases with breast cancer, 229 incident 
cases of B-cell lymphoma and 327 controls. No participant was diagnosed with disease within less than 2 years of 
blood sample collection and for this reason all participants were treated as apparently healthy at recruitment. In 
order to minimize effects on the omic profiles, subjects were included in the current study only if the processing 
of their blood samples had been completed within 2 hours of collection46. The EnviroGenomarkers project and 
its associated studies and protocols were approved by the Regional Ethical Review Board of the Umea Division 
of Medical Research, as regards the Swedish cohort, and the Florence Health Unit Local Ethical Committee, as 
regards the Italian cohort, and all participants gave written informed consent. The studies were conducted in 
accordance with the approved guidelines.

Analytical procedures and data processing.  RNA and DNA extraction from buffy coats, genome-wide 
analysis of gene expression (Agilent 4 ×  44K human whole genome microarray platform) and CpG methyla-
tion (Illumina Infinium HumanMethylation450 platform), miRNA expression profiling [Agilent Human 
miRNA Microarray (Release 19.0, 8 ×  60K), representing 2006 human miRNAs], and the corresponding data 

http://www.envirogenomarkers.net
http://www.envirogenomarkers.net
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quality assessment and preprocessing, were conducted as described previously46,47. Missing values imputation 
was applied (k-nearest neighbor). Methylation data, expressed as M-values corresponding to the logarithmic 
ratio of the methylated versus the unmethylated signal intensities, were preprocessed initially with GenomeStudio 
(version 2011.1) Methylation module (version 1.9; Illumina). Subsequently, data normalization to address the 
issue of unwanted technical variation was performed, using scripts written and run in MATLAB environment 
(Mathworks, Release 2012b), by making use of the DNA methylation measured in multiple replicates of a tech-
nical control sample randomly distributed among the study samples as previously described48 by a procedure 
involving two successive steps of intensity-based correction (a) within-chip and b) across all probes). Probes giv-
ing mean methylation for all samples in the range 0%–4% or 96–100% were omitted from further analyses. From 
the resulting subset, 410,987 probes targeting autosomal CpG loci in the 22 chromosomes (sex chromosomes 
excluded) were selected for statistical analysis. CpG loci containing SNPs at a distance less than 3 nucleotides 
from the corresponding cytosine and minor allele frequency > 10% were omitted from the significant CpG hit 
lists.

Statistical analyses.  Linear mixed models were used for all statistical analyses, using M values for DNA 
methylation or log2intensities of mRNA or miRNA expression as dependent variables, with the Array Studio 
software package (Omicsoft, Cary, NC, USA, version 8.0.1.32) and R software (version 3.0.2). Date of isolation, 
labeling, and hybridization for RNA expression, date of analysis for methylation and batch number for miRNA 
expression were also included in the models as random variables to account for technical variation. All analyses 
additionally adjusted for sex, age, BMI and cohort (the inclusion, in addition, of education, physical activity 
and alcohol consumption was also checked but rejected as having a minor impact). Owing to the design of the 
EnviroGenomarkers project, described above, future disease (breast cancer, B-cell lymphoma) and case-control 
status were also included as fixed variables. Inclusion of these incident cases did not appear to bias the resulting 
lists of smoking-related signals (see Supplementary Information). In the case of DNA methylation data, the mod-
els were also adjusted for blood cell composition estimated using the algorithm developed by Houseman et al.49. 
For this purpose, cell count predictions were obtained using cell-sorted DNA methylation data, publicly available 
in the FlowSorted.Blood.450k Bioconductor package, as previously described50. Multiple testing was accounted for 
with high stringency by using Bonferroni or FDR Benjamini-Hochberg correction.

Selection of hub genes using GoRevenge.  In order to select genes with potential master-regulatory 
roles, the list of DEGs and DMGs was submitted to GORevenge14, a web application that maps gene sets on to the 
Gene Ontology graph tree, exploiting its hierarchical structure in order to assess their functional relevance but at 
the same time efficiently corrects for semantic annotation bias resulting from the unbalanced level of description 
of the various cellular processes. This is done through the use of appropriate graph-based semantic similarity 
measures which finally let the tool yield a sorted list of genes prioritized according to the final number of GO 
terms to which they are linked.

Disease connectivity analysis.  Diseases or conditions enriched with smoking-modified genes were identi-
fied using the “set analyzer” tool of the Comparative Toxicogenomic Database (http://ctdbase.org) which provides 
manually curated information about chemical-gene/protein interactions, chemical-disease and gene-disease rela-
tionships. The lists of genes (DEGs, DMGs, DE-miRNAs, hub genes) were introduced into tool (gene names not 
recognized were replaced by synonyms selected from GeneCards) and the returned list of enriched diseases with 
Bonferoni-corrected p <  0.05 collected.

Pathway analysis and visualisation.  Pathways associated with the combined sets of DEGs and DMGs 
was performed by an “over-representation analysis” in ConsensuspathDB13 (Release 30) using standard param-
eters and FDR <  0.05. A background list consisting of all genes measured (either transcriptomic or epigenomic) 
was used in the analysis and the default pathway selection option consisted of a minimum overlap of 2 genes with 
the input list of DEGs and/or DMGs. Furthermore, DEGs, DMGs and DE-miRs identified by the Comparative 
Toxicogenomics Database as being associated with a specific disease or disease category were subjected to an 
“induced network module” analysis also provided by ConsensuspathDB. The induced networks thus obtained 
were exported to Cytoscape (v3.2.0) where, using the CyTargetLinker plugin (v3.0.1)51, validated microRNA-gene 
interactions (based on the regulatory interaction networks of DE-miRs identified by means of miRTarBase release 
4.4) were obtained. Multiple edges between nodes were bundled and self-loops were removed. Finally, the expres-
sion changes of the DEGs, DMGs and DE-miRs were visualised on the gene-gene/gene-miRNA interactions 
network.
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