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CHAPTER

INTRODUCTION

In this thesis we use theoretical and numerical methods to study Soft Matter sys-
tems where fluid-fluid interfaces are involved. The term Soft Matter in general
refers to all those fields of science and technology that deal with soft materials,
i.e. deformable by stimulations with the energy scale of thermal energy at room
temperature. The typical characteristic length scale for Soft Matter systems is
between a few nanometers and a few millimeters, so quantum effects are negligible
in these systems, and classical physics can be used to investigate them. Usually,
a Soft Matter system involves at least two different phases, mixed together at a
certain length scale (molecular, mesoscopic or macroscopic), and at least one of
these phases is fluid, i.e. in a liquid or gas state.

In this thesis, more particularly, we consider Soft Matter systems where at least
two phases are fluid, and therefore a fluid-fluid interface between these two phases
exists. This is actually a very common situation in Soft Matter, and a wide range
of examples for this kind of systems can be found e.g. in Ref. [1]. Two different
approaches can be used to analyze fluid-fluid interfaces: a microscopic approach,
i.e. modeling the two fluid phases with density fields, or a macroscopic approach,
i.e. treating the fluid-fluid interface as a possibly curved 2D surface with zero
thickness and which separates the two homogeneous fluid phases. In this thesis,
we always follow the second approach. Also, we always study these systems at
equilibrium, i.e. following a minimum (free) energy approach, without including
fluid-dynamic effects, as not relevant for the experimental equilibrium systems we
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intend to model. The key element to investigate the behavior of these systems is
the equilibrium shape of the fluid-fluid interface. This shape is fixed by the Young-
Laplace Equation, together with Young’s Law as a boundary condition. These
equations, usually proved through mechanical force-balance arguments, e.g. see
Refs. [2-4], can be obtained using a variational principle, e.g. see Refs. [5,6].
For completeness, in Sec. 2.5 of Chapter 2 we prove this, reporting a compact
derivation, partially new to the best of the author’s knowledge, in which we min-
imize the (free) energy of a fluid-fluid-solid system with respect to the fluid-fluid
interface shape, and we show that this is equivalent to solving the Young-Laplace
Equation and Young’s Law.

Typical examples of problems involving fluid-fluid interfaces are those works
where fluid droplets are studied, see e.g. Refs. [7-14]. Another very relevant
example is given by systems of colloidal particles' adsorbed at fluid-fluid inter-
faces. Over a century ago it was already observed that sub-millimeter sized
particles strongly adsorb at fluid-fluid interfaces [15, 16], and the bonding po-
tential is usually strong enough to allow stable monolayers of particles [17-19].
Since a pioneering study by Pieranski [20], a lot of interest has been devoted to
these quasi-2D systems, which have many applications, e.g. emulsions [21-29],
coatings [30,31], optics [32], and new material development [33]. Because of the
contact angle constraint imposed by Young’s Law, an adsorbed particle in gen-
eral induces deformations in the shape of the fluid-fluid interface. These so-called
capillary deformations are responsible for capillary interactions between the ad-
sorbed particles [34—41], and therefore they regulate the particle self-assembly at
the interface [42-50]. These interactions can be tuned by varying e.g. the particle
shape and chemistry [51-54], or the curvature of the fluid-fluid interface [55-60].
A primary step to understand adsorbed-particle systems is the study of an iso-
lated particle at a macroscopically flat fluid-fluid interface. Important issues are
the equilibrium configuration of the particle at the interface [61-65] and the ad-
sorption energy [17,18,66,67], which depend on the particle shape and chemical
properties. A common approximation (following Pieranski [20]) is to assume the
fluid-fluid interface to be flat even when the particle is adsorbed, i.e. to ignore the
capillary deformations induced by the particle. In this approximation, which is
geometrically far from trivial for non-spherical particles, the (free) energy of the
particle configuration follows from the particle surface areas below and above the
interface plane, and from the intersection area of the particle with the interface
plane. Numerical techniques employed for these calculations are e.g. the Triangu-
lar Tessellation method [68-72], and a hit and miss Monte Carlo method [73,74].
However, we show in this thesis (see Chapter 5 in particular) that neglecting
capillary effects can lead to significant overestimates of the energy, and even to
erroneous equilibrium configurations for the single-adsorbed particle.

In this thesis, we first provide, in Chapter 2, a theoretical introduction to fluid-

{The term colloid, or colloidal particle, indicates a solid, and possibly soft, particle with size
between a nanometer and a millimeter.
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fluid interfaces, where we introduce and derive by a variational principle the
basic equations that regulate their equilibrium shape, and we show illustrative
examples for their application. Then, in Chapter 3, we introduce an approximate
theory to analytically solve the Young-Laplace Equation, and we prove with many
examples its applicability to a wide range of problems involving fluid-fluid inter-
faces. The main aim of Chapter 3 is to provide an analytical framework to test
and validate our new numerical method for calculating the equilibrium shape of
fluid-fluid interfaces by energy minimization. In Chapter 4, which is the core of
this thesis, we introduce such a new numerical method, and we provide several
illustrative examples to prove the correctness and accuracy of the method for 2D
and 3D systems. In particular, with these examples we point out the applica-
bility of the method to study systems of possibly odd-shaped colloidal particles
adsorbed at fluid-fluid interfaces, and droplets in contact with solid surfaces,
possibly curved and with heterogeneous chemical properties. Finally, in Chap-
ters 5 and 6, we present the most important and innovative results contained
in this thesis, obtained through the numerical method introduced in Chapter
4. In particular, in Chapter 5 we show results for the capillary interactions and
self-assembly of cubic colloidal particles adsorbed at fluid-fluid interfaces, proving
that they self-assemble into thermodynamically-stable honeycomb and hexagonal
lattices, as observed experimentally [75,76]. In Chapter 6, we present results for
the equilibrium position of droplets attached to rod-like colloidal particles with
non-trivial curvatures, pointing out the fundamental role of the particle geome-
try, and then results for the equilibrium shape of droplets wetting solid surfaces
with heterogeneous chemical properties.






CHAPTER

EQUILIBRIUM SHAPE OF
FrLuiD-FLUID INTERFACES

In this Chapter, the concept of a fluid-fluid interface is introduced. The equa-
tions that determine its equilibrium shape, i.e. the Young-Laplace Equation and
Young’s Law, are derived by minimizing the energy of the system with respect to
the fluid-fluid interface shape, and the physical implications of such equations are
discussed with some examples. Finally, the analytic solution of these equations
is calculated in two illustrative problems with a simple geometry: a meniscus
close to a vertical wall, and the shape of a 2D droplet in contact with a flat solid
surface and in the limit of negligible gravity.
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2.1 INTRODUCTION

The main ingredient of this thesis is the interface that separates two immiscible
fluids in contact with each other. We study such an interface from a macroscopic
point of view, i.e. treating it as a 2D possibly curved surface with null thickness
and separating two homogeneous and incompressible' fluids. Only the equilibrium
shape of such interface is considered, i.e. we do not address problems where
dynamic effects are involved. However, in principle, quasi-equilibrium dynamics
could be extracted from our minimum-energy approach, for example following
the approach in Ref. [77]. We neglect capillary waves, i.e. thermal fluctuations of
the fluid-fluid interface from its equilibrium profile. Capillary waves can induce
Casimir-like forces between particles adsorbed at the fluid-fluid interface [78], but
these forces are negligible for the experimental systems of interest, as shown in
Section 5.8. When the fluid-fluid interface is in contact with a solid surface, the
line tension contribution due to the three-phase contact line is not taken into
account, as usually negligible in typical experiments.
Given two fluids, say fluid 1 and fluid 2, if they do not mix (so a fluid-fluid
interface separating them forms), it means that the molecules of fluid 1 prefer to
interact between themselves rather than with the molecules of fluid 2, and vice
versa. At the fluid-fluid interface, however, the molecules of the two fluids are
forced to interact with each other, and therefore an energy cost is associated to
the formation of the fluid-fluid interface. Given the energy cost E necessary to
form a fluid-fluid interface of surface area A, the surface tension between fluid 1
and fluid 2 is defined as
vy=E/A, (2.1)

and therefore has the units of an energy over a surface area. This macroscopic
parameter y takes into account the molecular interactions of the two fluids and
it is of fundamental importance for the macroscopic description of the fluid-fluid
interface. A force interpretation is also possible for the surface tension. From
Eq. (2.1) it follows that the work dW to increase the surface area of a fluid-fluid
interface by an infinitesimal square of side dx is dW = ~ydx?. That is, a force
of modulus dF' = dW/dx = ~ydx is exerted to move one side of the infinitesimal
square by a displacement dzx. So v = dF'/dx is the (modulus of the) force per unit
length necessary to extend the fluid-fluid interface area. The existence of such
cohesion forces in fluid-fluid interfaces is the reason why, for example, insects
manage to walk on the water surface.
Let I be the 2D surface corresponding to the fluid-fluid interface equilibrium
shape, and (z,y, z) a generic point belonging to I, where a Cartesian coordinate
system is introduced with the versor z anti-parallel to the gravity acceleration g,
the so-called Young-Laplace Equation states that
AP  z-(x,y,z2)

02 ’

V-n(z,y,2) = (2.2)

iTherefore, the fluid mass density is treated as a constant.
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where V = (a%, 8%7 %), n(z,y, z) is the normal to I" in (z,y,2), AP = P, — P,
is the difference between the bulk pressures’ P; and P of the two fluids, and

\/E (23

is the capillary length, with g = |g|, Ap = p2—p1, and p1, p2 the mass densities of
fluid 1 and fluid 2, respectively. The capillary length ¢ sets the length scale for the
decay of the fluid-fluid interface deformations due to gravity effects, i.e. due to
Ap (see for example the decay of a meniscus from a vertical wall in Section 2.6.1).
If ¢ — 0, then the capillary effects on the system are negligible, and this is the
regime Bo > 1, where the Bond number Bo is introduced as Bo = L?//2, with
L a characteristic length of the system. If instead Bo < O(1), then capillarity is
relevant, and this is the regime considered in the whole thesis. Often the limit
¢ — oo (i.e. Bo — 0) will be applied, that is when gravity effects on the fluid-fluid
interface equilibrium shape become irrelevant. Equation (2.2) will be studied in
detail in the rest of the thesis, deriving it by minimizing the energy with respect
to the fluid-fluid interface shape, see Section 2.5, and showing analytical and
numerical solutions in many different problems.

When the fluid-fluid interface is in contact with a solid surface, the boundary
conditions for the interface shape at the three-phase contact points are imposed
by Young’s Law, as shown in Section 2.3. But first, in the next Section, the
concept of surface mean curvature is introduced.

14

2.2 MEAN CURVATURE OF A SURFACE

Given a curved line in 2D, the curvature in a point v of this curve is kK = £1/R,
where R is the radius of the osculating disc in v, i.e. the disc that best approxi-
mates the curve in a neighborhood of v (see Fig. 2.1). The sign of x depends on
the parametrization of the curve, i.e. on whether R rotates clockwise or counter-
clockwise when moving along the curve in v. For a curved surface I' in 3D, the
curvature in a point v = (x,y, 2) of I' can be evaluated for a normal section of
I, i.e. the intersection of I' with a plane containing the normal vector n to I’

Figure 2.1: (Left) Curvature
k = 1/R in the point v of a
r curved line in 2D. (Right) Nor-
mal section (shown with a red
curve) through the point v of a
curved surface I' in 3D, where n
is the normal vector to I' in v.

With the term bulk pressure we refer to the pressure P; that the fluid ¢ has at the reference
level z = 0. So, at a height z, the fluid pressure is P; — z g p;, with p; the fluid mass density. If
gravity is negligible, then the fluid has pressure P; everywhere.
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in (z,y,z), see Fig. 2.1. In general, infinite choices for this plane are possible,
which result in different values for the curvature. The maximum x; = +1/R; and
minimum kg = £1/Rs of all the possible values for the curvature in (x,y, z) are
called principal curvatures, and Ry, R are the principal radii of curvature. The
mean curvature H in (x,y, z) is defined as the average of the principal curvatures,
that is
z,Y, Z) + Iig(l’, Y, Z)
5 .

H(z,y,z2) = aal (2.4)

An equivalent definition [79] for the mean curvature H of the surface I' in the
point (x,y, z) is

1
H(x,y,z) = §V‘fl($,y,2), (25)
by which the Young-Laplace Equation [Eq. (2.2)] can be rewritten as

AP - z- (l',y,Z)
gl e

2H(z,y,2) = (2.6)

Note that the mean curvature of a certain surface depends on its shape, but
surfaces with different shapes can have the same mean curvature. In Section 2.4
the physical implications of Eq. (2.6) are discussed in more detail. Here we derive
some equations for H(x,y, z) which will be useful later on. Just for mathematical
simplicity, we assume that I' can be expressed as a function h = h(z,y), so also
H = H(z,y) and n = n(x,y). Then, the normal to the surface h(x,y) can be
expressed as

VI =z, y))
Using V[z — h(z,y)] = (—%, —g—;‘, 1), from Eq. (2.5) it follows
9%h oh 2 0%h dh\2 Oh Oh _9%h
| 02 [1+ (67;) } + o2 [1+(37) } — 252 6y Bady
H.y) = (2.5)

IRCOR ()]

If the system has translational invariance along the y axis, i.e. 9h/dy = 0, then
H = H(z), and Eq. (2.8) becomes

2 2 _%
H(z) = —% % [1+ (gg) ] | (2.9)

This case corresponds to the limit where one of the principal radii of curvature
is infinity. Therefore, for a curved line h = h(zx) in 2D, the curvature is given by
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k(x) = 2H(z), with H(z) given in Eq. (2.9).
The total surface area of h(x,y) is

= [ (2) (B ww. e

with D the domaln of h(z,y). The functional derivative of S[h(x,y)] with respect
to h(z,y) is"

6S[h(z,y)]
Sh(z,y)

where H(z,y) is expressed by Eq. (2.8).

If h(x,y) is a surface of revolution, i.e. it has rotational invariance around a
vertical axis, then it can be written as h = h(r), with r = /22 + y2 the dis-
tance from such a vertical axis, and Eq. (2.12) assumes a simpler expression.
Indeed, using cylindrical coordinates (r,¢,z) in Eq. (2.5) and n = n(r) =
Viz = h(r)]/|V[z = h(r)]], with V[z — h(r)] = (- g’;,O 1), the mean curvature
H = H(r) of h(r) results'

=2H(z,y), (2.12)

oh
H(r)= _QL (98 o > (2.13)
R RVERRC
The surface of h(r) is
on\?
Slh(r))=27m [ ry/1+ a0 dr, (2.14)
from which it follows 5S [ ()]
”
T(T) = 47T7"H(7“) y (215)

that is Eq. (2.12) expressed in cylindrical coordinates for a surface of revolution,
with H(r) given by Eq. (2.13). Note, from Eq. (2.13), that H(r) can also be
written as

H(r) = % [K1(r) + Ka(r)] (2.16)

iGiven a function h : R — R and a functional F[h] defined as F[h] = [ dzf[z, h(z), Vh(z)],

with £ = (z1,...2z5) € RY and V = (611, .. %), then the functional derivative of F' with
respect to h is given by
SF  Of of of
— =V ) e . (2.11)
A TR

VIn cylindrical coordinates (r, ¢, z), given a function f and a vector field v = (v, vg, vs), it

holds Vf = (91,12 90 and Vv = L20oe) 4 1000 4 Ove
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where k1(r) and ko(r) are

3
d2h dh\ 2| 2 1 dh dh\?
Fir) =——3 [1+ (dr) ] y ra(r) =—— -y /14 (dr) , (217)

and it can be shown [80] that they are the principal curvatures of h(r). Precisely,
k1(r) is the curvature in a plane containing the vertical axis of symmetry, and
ko(r) is the curvature in a plane orthogonal to the vertical axis of symmetry".

2.3 YOUuUNG’S LAW AND CONTACT ANGLE

When a fluid-fluid interface is in contact with a solid surface, three surface ten-
sions are involved: the fluid-fluid surface tension -, and the surface tensions 1
and 79 of the fluid 1-solid and fluid 2-solid surfaces, respectively. These surface
tensions impose at the three-phase contact point a fixed angle 6 (called contact
angle and by convention measured inside fluid 2, see Fig. 2.2) between the tan-
gent to the fluid-fluid interface and the tangent to the solid surface, by Young’s
Law

cos = L2 (2.18)

gl

Equation (2.18) is valid in the assumption that the solid is undeformable, and
that the solid surface, locally at the three-phase contact points, can be considered
flat. If instead the solid is deformable, then three different contact angles appear
(for example see the limit case of a fluid-fluid-fluid contact point in Section 2.4),
but we do not consider this case. In Section 2.5, Young’s Law is derived using a
minimum-energy principle. However, Eq. (2.18) can also be proved by a simple
force-equilibrium argument. Using the force interpretation for the surface ten-
sion (see Section 4.1), one realizes that the three-phase contact point must be
subjected to three different forces, proportional in modulus to the three surface
tensions 7, 71, 72, and with direction tangent to the respective interface (see Fig.
2.2). Then, imposing that the total force acting on the three-phase contact point
is zero, as the equilibrium condition requires, trivially leads to Eq. (2.18). Note
that Young’s Law holds also when gravity is relevant for the system. Indeed
the force argument used here applies microscopically at the three-phase contact
point, without regard of gravity effects on the fluid-fluid interface shape.

Figure 2.2: Contact angle 6 of a fluid-

fluid interface with a solid surface, h(x,y) Fluid 1 Fluid 1
where 7, 71 and 7» are the fluid-fluid,

solid-fluid 1 and solid-fluid 2 surface  Fluid 2 0 Fluid 2\ y
tensions, respectively. Force balance N e 9 ]/]
in the three-phase contact point im- - -
plies Young’s Law [Eq. (2.18)]. Solid Solid 7>

VIndeed x2 — 0 in the limit r — oo.
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2.4 YOUNG-LAPLACE EQUATION

The Young-Laplace Equation [Eq. (2.6)] implies that in any point of a fluid-fluid
interface there is a jump AII in the pressure between the two fluids determined
by the mean curvature H [Eq. (2.5)] of the interface in that point. Indeed, in
hydrostatic equilibrium, any fluid has constant pressure at a constant level z.
By definition (see note ii at page 11), the pressures of fluid 1 and fluid 2 at the
reference level z = 0 are P, and Ps, respectively, such that, at a generic height z,
fluid 2 has pressure Py = P> — z g p2 and fluid 1 has pressure P = P — 2z g p1.
Therefore, across a point (z,y,z) of the fluid-fluid interface there must be a
pressure difference given by [see Fig. 2.3(a)]

AH(ZL’,y,Z):PQ*—Pl*ZAP—i(l’,y,Z)gAp, (219)

with Ap = po — p1 and AP = P, — P;. Note that AP and z depend on the
choice of the reference level z = 0, but AII does not, as expected, because it is
a physical observable. Using /=2 = g Ap/v, we can rewrite the Young-Laplace
Equation [Eq. (2.6)] as

All(z,y, 2) = 2y H(2,y, 2), (2.20)

which proves that the pressure jump AII across the fluid-fluid interface is deter-
mined by the mean curvature of the interface surface. A trivial implication of Eq.
(2.20) is that across a flat fluid-fluid interface there is no jump in the pressure,
i.e. AIl = 0, because the mean curvature H of a planar surface is zero.

Note that different surface shapes can have the same mean curvature, therefore
Eq. (2.20) alone does not univocally fix the shape of the interface. The solution of

A Fluid 1 1 @—==) ((>=)
™ x A Fluid 1
z g : . P P
o : P
Py |
Fluid 2 P
Y P P Fluid 1 Solid

Figure 2.3: (a) For the hydrostatic equilibrium, each fluid has constant pressure at
constant heights. We call P; and P, the pressures at the reference level z = 0 of fluid 1 and
fluid 2, respectively. At a generic height z, the two fluids have pressures P = Pi —hgp1
and Py = P, — hgps, with p; and p2 the respective mass densities of the two fluids.
Therefore, at the fluid-fluid interface there is a pressure jump AIl = Py — P;. The
Young-Laplace Equation [Eq. (2.6)] relates AIT with the mean curvature of the interface.
(b) Droplet of fluid 2 inside fluid 1. In the limit of no gravity (¢ — o), the Young-Laplace
Equation [Eq. (2.21)] implies a spherical droplet, and that the pressure jump between
inside and outside the droplet is fixed by the surface tension v and the droplet volume
V [see Eq. (2.22)]. (¢) Sketch of a droplet in contact with a curved solid surface.
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the Young-Laplace Equation is unique only if we impose the boundary conditions,
given by the fluid volumes and by the Young’s contact angle between the fluid-
fluid interface and the solid surface. However, given such boundary conditions,
typically it is not easy at all, even in problems with very simple geometries, to
determine a priori the position of the three-phase contact points, i.e. where the
fluid-fluid interface touches the given solid surface. For this reason, a much more
convenient approach to calculate the equilibrium shape of a fluid-fluid interface
is by minimizing the (free) energy of the system with respect to the interface
shape. In this way, the solution of the Young-Laplace Equation is obtained, for
the given fluid volumes and Young’s contact angle of the solid surface, without
imposing a priori the position of the three-phase contact points (see Section 2.5).
A relevant limit is when gravity is negligible, i.e. ¢ — co. In this limit, fluid 1
and fluid 2 have, respectively, constant pressure P; and P, also in the z direction,
and AIl = AP everywhere. The Young-Laplace Equation becomes

e (2.21)

2y

implying that the mean curvature H of the fluid-fluid interface surface is constant.
Therefore, if two fluids are separated by a flat interface, which has null mean
curvature, then AP = 0. A droplet completely surrounded by another fluid
must have a spherical shape [see Fig. 2.3(b)], because this has constant mean
curvature’!. The mean curvature of a sphere is H = 1/R, with R = {/3V /4r the
sphere radius and V' its volume, so Eq. (2.21) implies that the pressure difference
AP between the inside and the outside of the droplet is given by

AP = 2v¢/ ;l , (2.22)

that is AP is fixed by v and the droplet volume V. If the external fluid surround-
ing a spherical droplet is changed, then in general the surface tension v changes,
so the AP between the droplet and the external fluid also changes accordingly
to Eq. (2.22), assuming that the volume V' of the droplet does not vary (i.e.
the fluids are incompressible). Note, however, that the solution of the no-gravity
Young-Laplace Equation [Eq. (2.21)] is not necessarily a spherical surface, but
just a surface with constant mean curvature. For example, if the droplet is in con-
tact with a curved solid surface, in general it has a non-spherical shape because
of the Young’s Law boundary conditions [see a sketch in Fig. 2.3(c)]. The AP,
however, is not affected by the fact that the droplet is completely surrounded
by fluid 1 or also in contact with a solid (undeformable) surface. So AP can be
calculated using Eq. (2.22) also for non-spherical droplets.

ViFor symmetry reasons, all the other possible shapes with constant mean curvature are ruled
out, because, as gravity is negligible, the system should be invariant by rotating a Cartesian
coordinate system with origin in the droplet center of mass. Alternatively, another argument is
that the sphere is the closed surface with minimal surface area.
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An interesting case is a droplet adsorbed at a flat fluid-fluid interface (say fluid 1
and fluid 2 are the fluid phases forming the flat interface, and fluid 3 is the fluid
phase forming the droplet, see Fig. 2.4). Fluid 1 and fluid 2 have the same pres-
sure, as the interface is flat, so the pressure difference inside-outside the droplet is
AP with both fluid 1 and fluid 2, assuming gravity negligible. However, the sur-
face tension of the droplet with fluid 1 and fluid 2 is different, so, for Eq. (2.21),
the droplet spherical curvature has a different radius of curvature in fluid 1 and
fluid 2. The resulting shape of the droplet, see Fig. 2.4, is given by two attached
spherical caps with the same base and placed, respectively, inside fluid 1 and
fluid 2. At the three-phase contact point Young’s Law does not hold anymore,
because here there are three fluid phases in contact and no solid phase, and three
contact angles 61, 02, and 03 appear (see Fig. 2.4). Using a force-balance argu-
ment for the three-phase contact point, like we did for Young’s Law in Section
2.3, it follows that 61, 02, and 03 are fixed by the so-called “Neumann triangle”
equations

v+ 1 cosby +y2cosby =0,
~v1 + ycosby + 2 cosf3 =0, (2.23)
Yo + 1 cos s +vycosbhy =0 .

where v is the fluid 1-fluid 2 surface tension, and =1, o are the surface tensions
of the droplet with fluid 1 and fluid 2, respectively. Fluid droplets adsorbed at
fluid-fluid interfaces can be considered as the limit case of adsorbed soft (i.e.
deformable) solid particles, which are a current active field of research [81-83].

. Figure 2.4: For Eq. (2.21), a droplet ad-
Fluid 1 sorbed at a flat fluid-fluid interface has a
spherical curvature with different radius
9 1 of curvature above and below the inter-
4 face. At the three-phase contact point
there are three different contact angles,
defined by the “Neumann triangle” rule
[see Eq. (2.23)].

2.5 DERIVATION OF YOUNG-LAPLACE EQUATION AND
YOUNG’S LAW BY ENERGY MINIMIZATION

In this Section we derive the Young-Laplace Equation and Young’s Law by min-
imizing the (free) energy of a fluid-fluid system in contact with a solid at a fixed
position. Although such a proof is widely known and accepted (a first version
is due to Gauss [84], and more recent versions are shown, e.g., in Refs. [5, 6]),
here we present a concise and partially new version for completeness. We con-
sider (see Fig. 2.5) a fixed volume V that contains two demixed fluids, fluid 1
and fluid 2, with fluid 1 lighter than fluid 2. Such volume V is surrounded by
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a solid surface with fixed position. We assume the solid to be non-deformable.
The volume and mass density are respectively V1 and p; for fluid 1, V5 and ps for
fluid 2, with V4 + V5 = V. The fluids are in contact with a heat bath that keeps
constant the temperature 1. We ignore the T' dependence from now on, as it is
not relevant in our derivation. We introduce a Cartesian coordinate system with
the z axis anti-parallel to the gravity acceleration g. For simplicity we assume
that the fluid-fluid interface can be written as a function h = h(z,y), although
our derivation can be easily extended for more general surfaces (e.g. with over-
hangs). The surface area of the solid surface in contact with fluid 1 is Wjlh],
and that with fluid 2 is W5[h|, where [h] means a functional dependence with
respect to h. The surface tensions associated to the three interfaces fluid 1-fluid
2, solid-fluid 1 and solid-fluid 2 are 7, v1 and -9, respectively. We neglect in
our analysis the energy contribution due to the three-phase contact line tension,
although our derivation can be easily extended to include it. The (free) energy
E of this system, hereinafter called energy, is"!

Elh] = v S[h] + i Wilh] + 72 Walh] + Eglh] + @ (Vi[h]) + Qa(Va[h]) ,  (2.24)

where S[h| is the surface area of the fluid-fluid interface, Q1 (V1[h]) and Q9 (V3]A])
are the bulk (free) energies of fluid 1 and fluid 2 respectively, and Ey[h] is the
gravitational energy of the system, given by

z drdydz + g p2 / zdrdydz, (2.25)
Va[h]

B, [h] —gm/

Vi[h]

with ¢ = |g|. Note that the integration domains over V;j[h] and V3[h| are func-
tionals of h.
The total area of the fluid 1-fluid 2 interface is

S[h] :/D\/l—l— (ZZ>2+ (g;)Qda:dy, (2.26)

Figure 2.5: Sketch of a fluid-fluid
interface. The fluids are bounded
by a fixed solid surface. In blue and
red are highlighted the fluid 1-fluid
2 and solid-fluid 2 interfaces, which
play an important role in the deriva-
tion of the Young-Laplace Eq. and
Y

Young’s Law shown in Section 2.5.

Fluid 1 h(x,p)

Solid

Vil general E depends on the volumes Vi and Vs of fluid 1 and fluid 2, respectively, on the
solid surface position and on the fluid/fluid, solid/fluid 1 and solid/fluid 2 surface tensions. Here,
however, these parameters are considered fixed, so F depends only on the fluid-fluid interface
shape h.
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where D is the domain of h. The functional derivative of S with respect to h (see

Section 2.2) is
sS

6h(z,y)

where n(z,y) [see Eq. (2.7)] is the unit normal to the surface h(z,y) in the point
[z, y, h(z,y)], pointing from fluid 2 toward fluid 1.

We assume now that the solid-fluid 2 interface can be written as a function
f = f(z,y). As before, we do this for simplicity, although it is easy to extend the
derivation to more general surfaces. Note that f is a functional of h, since f and
h are connected at the three-phase contact line. The areas of the solid surfaces
in contact with the fluids can be written as

Wg[h]—/Ddxdy\/l—l— <§£>2+ (gi)Q S WAR = W —Walh],  (2.28)

where W is the total surface area of the solid in contact with the fluid-fluid
system, and it does not depend on h. Note that the domain of f coincides with
that of h. The functional derivative of the solid-fluid surface energy with respect
to h is

=V -n(z,y), (2.27)

6 (W1 + 72 Wa) / Wa  éf(u,v)
=A du dv =
5h(z.y) T T 67 (ww) h(a,y)
% 6f(u7v)
=A /dude'N U, U = Ay ®(z,y) , 2.29
7 ( )M(%y) 7@ (z,y) (2.29)
where we defined the integral as ®(x,y) for later convenience, Ay = v9 — 71, and
NACEIER)

is the unit normal to the f surface in [z, y, f(x,y)], pointing from the solid toward
fluid 2. The functional derivative § f/0h is explicitly written as

0f(u,v) _ J oz —wu)d(y—wv), if (z,y)€{t},
Oh(z,y) 0, otherwise ,

(2.31)

where §(z) is the Dirac delta function and {t} is the set of all the points (x,y)
where f(x,y) = h(z,y), i.e. such that [x,y, h(z,y)] is a three-phase contact point.
Equation (2.25) can be written as

A
E [l =gm / » dedydz + % (h? — £2) dx dy (2.32)
1% D
with Ap = pa — p1. The functional derivative of E, with respect to h is

SE,
Sh(z,y)

=gAph(z,y) . (2.33)
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Here the § f/dh term does not appear because its contribution is canceled by the
h? term.
The bulk (free) energies of fluid 1 and fluid 2 can be written as'il

Ql(Vl) + QQ(VQ) =-PWV [h] — PQVQ[h] , (2.34)

where P; and P, are the bulk pressures of fluids 1 and 2, i.e. their pressures at
the reference level z = 0. Using that

Vilhl = V — Valh] x@[h]szda:dyw—f), (2.35)

we find that
81 (V1) + Q2(V2)]

Sh(z,y)

with AP = P, — P;. The term §f/5h does not appear here because its contribu-
tion is canceled by the A term.

Finally, we use the minimum energy principle to state that the functional deriva-
tive with respect to h of the energy F [Eq. (2.24)] is zero at equilibrium, that
is

= _AP, (2.36)

dE[h)
Sh(z,y)
Using Eqs. (2.27), (2.29), (2.33), (2.36) we obtain from Eq. (2.37) that

=0 . (2.37)

YV -i(2,y) + Ay B(z,y) + g Aph(z,y) — AP =0, (2.38)

with ®(x,y) defined in Eq. (2.29). First we consider this equation for all the
(x,y) € {t}, i.e. where the fluid-fluid interface is not in contact with the solid
surface. Here ®(x,y) = 0, so it follows

vV -n(z,y) = AP —gAph(z,y), (2.39)

which is the Young-Laplace Equation introduced in Eq. (2.2).
To derive Young’s Law, we take Eq. (2.38) for any (x,y) € {t}, i.e. in a three-
phase contact point, obtaining

YV -h(z,y) + Ay V- N(z,y) = AP — g Aph(z,y) . (2.40)

We now consider an infinitesimal volume dV located inside fluid 2 and in contact
with the three-phase contact line. The volume dV is delimited at one face by the
fluid 1-fluid 2 interface, at another face by the fluid 2-solid interface, and at the
remaining three faces by planes orthogonal to the fluid 2-solid interface (see Fig.
2.6). We take dV small enough to assume h(z,y) and f(x,y) to be linear, and

Vi"We are considering homogeneous and incompressible fluids, at fixed temperature and vol-
ume.
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integrate Eq. (2.40) over dV. The right-hand side of Eq. (2.40) is constant over
dV, so its integration gives zero contribution in the limit dV' — 0. Hence we find

/dv V- [ﬁ(x, y)+ ?N(w,y)} dr =0, (2.41)

which, upon applying the divergence theorem, yields

A~ A~
W) [ale.0) + S NG| =0, (.42
where
w(z,y) = n(z,y)dS — N(z,y) dW + adH + bdA + &¢dA, (2.43)

with n, —N, a, b and ¢ the normals towards outside of the various faces of dV
(see Fig. 2.6). The areas of these faces are, respectively, dS, dW, dH, dA and
dA. By definition of dV, we have n - b=n-¢=N-a=N-b=N-.¢&=0.
We call 0 the angle formed by the fluid 1-fluid 2 interface with the solid-fluid
interfaces, and measured inside fluid 2 (so inside dV'). Therefore n-a = —siné,
n-N = cosé. Then, by definition of the normal, n-n = N-N = 1, and hence
from Eq. (2.42) it follows that

ﬂ __cos@dW +sinfdH — dS
v cos@dS — dW

(2.44)

If we use now that dH = sin 6 dS, we obtain Young’s Law [Eq. (2.18)].

We have thus proven that minimizing the energy F of a fluid-fluid-solid system
[Eq. (2.24)] with respect to the fluid-fluid interface shape is equivalent to solving
simultaneously the Young-Laplace Eq. and Young’s Law.

h(x’y) Fluid 1 a ds
Fluid 2 n
oo N 7
d
Fy) <
Solid \I/ .8

Figure 2.6: Profile and 3D view of the infinitesimal volume dV on which we integrate
Eq. (2.40). We chose dV small enough to consider h(z,y) and f(z,y) linear within
it. One face of dV is the fluid 1-fluid 2 interface (colored in blue in the picture on the
right), and it has normal n and area dS. Another face of dV is the solid-fluid 2 interface,
with normal —N and area dW. The remaining three faces of dV are orthogonal to the
solid-fluid 2 interface, and have respectively normal a, b and ¢ and area dH , dA and dA.
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2.6 ANALYTIC SOLUTIONS OF THE YOUNG-LAPLACE EQUA-
TION

In this Section, we study simple-geometry problems where the Young-Laplace
Equation can be solved analytically, to illustrate with practical applications the
concepts introduced in this Chapter.

2.6.1 SHAPE OF A MENISCUS CLOSE TO A VERTICAL WALL

Here we calculate the equilibrium shape of a fluid-fluid interface, i.e. the menis-
cus, close to a vertical wall. Far from the vertical wall the meniscus is assumed to
be flat. First, the energy of the system is minimized with respect to the meniscus
height profile, obtaining as a result the 2D Young-Laplace Equation, with Young’s
Law as boundary condition. Then, such differential equation is explicitly solved,
and an analytical expression for the height profile of the meniscus is obtained.
Given a Cartesian coordinate system (z,y, z), with the z direction anti-parallel
to the gravity acceleration g, a solid vertical surface coinciding with the plane
x = 0 is introduced. The two coexisting fluids are in the half space x > 0, with
the fluid-fluid interface described by the height profile z = h(z,y), the fluid 1
placed at z > h(z,y), and the fluid 2 placed at z < h(x,y). The system has
translational invariance in the y direction, so h = h(x). Note that gravity can-
not be neglected in this problem, otherwise the meniscus could not be infinitely
extended for x — co. With v the fluid-fluid surface tension, and ~;, 2 the sur-
face tensions of the solid with fluid 1 and fluid 2, respectively, the energy E [Eq.
(2.24)] of the system is

E[h] =~ S[h] +v1 Wi[h] + v2 Walh] + E4[h], (2.45)

where the —P; Vi [h], —P» Va[h] terms can be neglected, because we impose a flat
meniscus far from the vertical wall, so P; = P, and therefore their sum does not
depend on h(z).

With &, the length of the system in the y direction, the wetting energy contribu-
tion can be written as

+oo

Y1 Wilh] + 2 Walh] = (2 — 1) & / hé(z)de 4+ C (2.46)
with C a constant not depending on h(z), and d(x) the Dirac delta function. The
fluid-fluid surface energy contribution is

+oo

2
YS[h] =~& 3 O(x)(/1+ <8h> dx | (2.47)

ox

[e.9]

where ©(x) is the step function, defined by

if
o@ =40 <o, (2.48)
1, ifx>0.
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The gravitational energy contribution is

—+00
E,[h] = ;—[‘% O(z) h? dz , (2.49)

with ¢ the capillary length [Eq. (2.3)].
The equilibrium height profile of the meniscus has minimum energy FE[h] [Eq.
(2.45)], from which 6E[h]/0h = 0. Therefore, see note iii at page 13, it follows

) a< 1+(32)2> O(z) h

TN
olr)—— — — |O(z + =0 2.50
02 g 0w = . (2.50)
Integrating Eq. (2.50) between x = 0~ and = = 0T gives
o |
SE A L (2.51)
2 ’ '
! L+ (52 lo+)

where the integral over the gravitational term gives a negligible contribution.
Introducing, in Eq. (2.51), a new parameter 6 by the relation cos 6 = (v1 —2)/7,

we obtain
on| \? oh
04/1 — = — — 2.52
Ccos + (836 0+> o o ( )
oh| \? 1 oh 1
(&E 0+> T tand oz o tanf ’ (253)

and Eq. (2.53)™ proves that such parameter @ is actually the contact angle formed
by the height profile h(z) of the meniscus with the vertical wall (see Fig. 2.7).
Therefore, we have proved Young’s Law [Eq. (2.18)] for a meniscus close to the

- 0 A0-90°
Gl =tan(@+909)= L h(x) Fluid I

Fluid 2

X

h(x)

oh| _ _onoy_ 1
9 a‘(ﬁ_tan(é’ 90%)= tan@

Figure 2.7: Relation between the derivate of the meniscus height profile i(z) in 0T and
its contact angle 6 with the vertical wall.

*In Eq. (2.53) the solution with the plus sign that comes out after taking the square root
has been discarded, because, from Eq. (2.52), the sign of % ‘0+ is opposite to the sign of cos 6,
which has the same sign of tan@, as 0 € [0, 7].
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vertical wall using energy minimization.
To calculate the profile h(z), we consider Eq. (2.50) for x > 0, keeping Eq. (2.53)
as a boundary condition for x — 0%, obtaining

3
h o 02h on\?| ?
zz_aﬁ[1+<ax>] _0, (2.54)

which is the Young-Laplace Equation [Eq. (2.6)] for AP = 0 and H(x) given by
Eq. (2.9). Multiplying Eq. (2.54) by 0h/0z and integrating in x, it follows

1
h? on\?| °
. 1 - =’ 2.
£ @] e .
where the integration constant is C’ = 1, because in x — oo we impose the
boundary conditions
oh
h(+o0) -0 , — —0. (2.56)
or |, o

Then, evaluating Eq. (2.55) in z — 0" and using Young’s Law boundary condi-
tion, i.e. Eq. (2.53), we obtain

R2(07) = 20%(1 —sin#) . (2.57)

From Egs. (2.54) and (2.55) it follows that, if it exists an zg € [0, +00] such that
h(zo) = 0 or dh(z0)/0x = 0 or 9*h(xg)/02% = 0 , then h(zo) = Oh(zo)/0x =
0?h(x0)/0x? = 0. Consequently, either h(z) = 0 for any x, or h(x) # 0 for any
x. So, if h(0F) > 0, then h(z) > 0 for any x, and so Oh/dx < 0 for any =,
because h has to decrease to zero at infinity [see Eq. (2.56)] and h cannot have
local minima, i.e. Oh/0x = 0, otherwise h would be zero everywhere. Using
an analogous argument for the case h(0") < 0, we deduce, finally, that h and
Oh/Ox must have opposite and constant sign for any x. Exploiting this property
together with Eq. (2.53), we can now take the square root of Eq. (2.57) and
extract hg = h(0") with the correct sign choice, that is

+ /202 (1 —sinf), if 0<0<7w/2,
ho = (2.58)

— /202 (1 —sinf), if 7/2<60<m.

To calculate h(z), we rewrite Eq. (2.55) as

262—h22 2 1 2 _ 92
[ ] <6h> B h? —20%2 Oh (2.59)

- 4 (== = — _— =11
Zh2 (42 — h?) \ 9z 2 7 AR _2or
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where the sign choice, after taking the square root, assures that h and 0h/dx
have opposite signs*. Integrating Eq. (2.59) with respect to x, we obtain®

20 h? x
acosh (h\) —1/4- v c" = 7 (2.61)

By evaluating Eq. (2.61) in z — 07, the integration constant C” is

" __ _ (hO)Q _ 2L
C"=1/4 7 acosh < ol ) - (2.62)

In conclusion, the height profile h(x) of a meniscus near the vertical wall, with z
the distance from the wall, is given by the following analytic expression where x
is expressed with respect to |h|

D () - () < i i 07 gy

Here hg is given by Eq.(2.58). The input parameters fixing h(z) are 6 and ¢. If
0 <60 <m/2 then hg > 0 and 0 < h(z) < hy. If 7/2 < 0 < 7, then hy < 0 and
ho < h(x) < 0. Plots of h(x/f)/¢ are shown in Fig. 2.8 for several values of 6.

2.6.2 SHAPE OF A 2D DROPLET WITH NEGLIGIBLE GRAVITY

When gravity is negligible, a droplet has (see Section 2.4) a spherical shape
if completely surrounded by another fluid, while it has in general a different
shape when in contact with a solid surface, because of Young’s Law boundary
conditions. However, if the solid surface in contact with the droplet is flat,
then the droplet keeps a spherical curvature, because a spherical cap shape that
satisfies Young’s Law with the flat solid surface and that has the droplet volume
can always be found. In this Section, for illustrative purposes, we prove this
analytically for a 2D droplet, by minimizing the energy with respect to the
droplet shape and then solving the 2D Young-Laplace Equation.

A Cartesian coordinate system (z, z) is introduced in our 2D space, with the solid
surface in z = 0 and the 2D droplet on top of it (see Fig. 2.9). We take the z
axis passing through the droplet center of mass, and we consider the droplet for
x > 0, assuming the system symmetric for * — —z. For convenience, we study

*Note that [h(z)]* — 262 < 0 for any z, because |h(z)| < |ho| for any , with |ho| given by
Eq. (2.58).
*Note that acosh(h) =1In (h + vh? — 1) and

1 [ h* =20 20 \/442 \/ h2

*i'Which corresponds to a 3D system with translational invariance.
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— cosf@=-0.9
cos@=-0.7
— cosf=-0.5
— cosé=-10.3
cosd=0.0
cos@=0.2
— cosd=04
— cos@=0.6
12605 1 15 2 25 3 35 4| _ cosf=0.8

Figure 2.8: Equilibrium shape, as obtained from Egs. (2.58) and (2.63), of a meniscus
close to a vertical wall in & = 0, for several values of Young’s contact angle 6. The
capillary length [Eq. (2.3)] is ¢, and g is the gravity acceleration.

the profile z(z) of the droplet (see Fig. 2.9). The surface tension of the solid
surface with the droplet and with the external fluid is 72 and 1, respectively,
and +y is the surface tension of the droplet with the external fluid. The energy of
our 2D system expressed as a functional of z(z) is [see Eq. (2.24)]

Elz] = Eglz] + Ew|x] — V]z] AP, (2.64)
where the gravitational energy term is neglected as we assume ¢ — oo,

Bla] = 4 /_Z@(z)@(ho—z) 1+ <Zﬁ>2dz (2.65)

is the energy contribution due to the droplet surface in contact with the external
fluid, with ©(z) the step function [see Eq. (2.48)], and hg the height of the droplet
on the z axis, such that x(ho) = 0 (see Fig. 2.9),

+oo
Ewld] = (32— ) / 5(z)zds+C (2.66)
—0o0
z
hl Fluid 1 X
Fluid 1
x(z)
Figure 2.9: 2D droplet in .
contact with a flat solid sur- Fluid 2 Fluid 2
face in z = 0. The system is
assumed symmetric for z — >Z

1. Solid 0 > % 0 ho
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is the wetting energy contribution due to the solid surface, with C a constant
and 0(z) the Dirac delta function, and
“+oo
Viz] = O(2)O(ho — 2)xdz (2.67)
—0o0
is the volume of the 2D droplet. At the equilibrium, dE[x]/dz = 0, from which,
see note iii at page 13, for 0 < z < hg it follows

2
d( 1+ (%) )

-7 d ( dz AP
d0(z)———— |0(2)O(hy — = - =0. 2.68
@R~ e et~ ~ - (2.68)

By integrating Eq. (2.68) in z between 0~ and 0T, we obtain
2= |
2 dzlof ), (2.69)

2
7 1+ (9%],4)

where the AP term gives a negligible contribution. Introducing in Eq. (2.69) the
parameter 6 by the relation cos § = (1 —72)/7, we obtain, proceeding analogously
to the calculations in Egs. (2.52) and (2.53), that

dx
dz

1
= —— 2.
o+ tan6 ’ (2:70)

which proves®!! Young’s Law [Eq. (2.18)], i.e. that such a parameter 6 is actually
the droplet contact angle, see Fig. 2.10. To calculate z(z), we consider Eq. (2.68)
for 0 < z < hg, and keep Eq. (2.70) as boundary condition in z — 01, obtaining
g1-2
d*z dx > AP
N P _ 2 2.71
dz? + (dz) ] v (2.71)

tané

Figure 2.10: Relation between the
derivative of the 2D droplet profile
x(z) in z = 07 and the droplet con-
tact angle 8, where the droplet is in
contact with a flat surface in z = 0.

>Z

*iliNote that the same result would have held even if we had included the gravitational energy
in Eq. (2.64), because its contribution is negligible when integrating Eq. (2.68) in z between
0~ and 0.
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which is, as expected, the no-gravity Young Laplace Equation [Eq. (2.21)] in 2D,
so with hg expressed by Eq. (2.9). By multiplying Eq. (2.71) by dx/dz and
integrating in z, it follows
1 AP
=" g+C. (2.72)
d Y
1+ (2)

We impose the boundary conditions x(hg) = 0, by definition of this system, and

dx
— 0o 2.73
dz ’ ( )

ho

because the system is symmetric for + — —x, and d?z/dz? cannot change sign
[from Eq. (2.71)], i.e. the droplet profile cannot form cusps. Therefore, evaluating
Eq. (2.72) in hg gives C' = 0. Then, considering Eq. (2.72) for z — 0" and using
Eq. (2.70), we obtain:

xg = Rsind, (2.74)

with zo = z(0") and R = v/AP. We rewrite Eq. (2.72) as
2 2
(x/R) <dm> 1 z/R dx (2.75)

1— (z/R)? \dz - ,h—@uRPEEZS’

-1, ito<o<n/2,
N +1, ifn/2<0<m,

where

(2.76)

as implied by Egs. (2.70) and (2.74). By integrating Eq. (2.75) in z, it follows

—Ry\/1—(z/R)?* = sz + (' (2.77)

Calculating Eq. (2.77) for z — 07 and using Eq. (2.74), we obtain ¢’ = —R cos 6.
Then, by squaring both members in Eq. (2.77) and rearranging the terms, it

follows
2? + (2 — s R cos0)* = R?, (2.78)

which is the equation of a circumference with center in (z, z.) = (0, s R cos ) and
radius R, see Figure 2.11. The mean curvature is H = (2R)™!, because for a 2D
system the other principal radius of curvature is 0o, so, as we defined R = v/AP,
it follows H = AP/(2y), as expected from Eq. (2.21). Our 2D droplet is the
circular segment in the half-plane z > 0, so its volume*" is

v 9—Sin90089’}/2'

g (2.79)

*VThe area of a circular segment is R*(f —sin @ cos @), with R the curvature radius and 6 the
contact angle between the arc and the chord of the circular segment (see Fig. 2.11).
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N Rsing (1=cos@)R

(1—cos@)R
ReosoU-——-PFR )Y \ R 7 — R cos®
—R cos T
\_/ &
i
R sin@

Figure 2.11: Analytic solution [Eq. (2.78)] for the shape of a 2D droplet in the half-
plane z > 0 and in contact with a flat solid surface in z = 0, as obtained, in the limit
of no gravity, by minimizing the energy E of the system [Eq. (2.64)] and then solving
the Young-Laplace Equation [Eq. (2.71)] and Young’s Law [Eq. (2.70)]. The Young’s
contact angle is (left) § < 7/2 and (right) # > w/2. The droplet radius of curvature is
R =~/AP and the droplet volume V is given in Eq. (2.79).

2.7 CONCLUSION

In this Chapter, we discussed the relevant equations which determine the equilib-
rium shape of fluid-fluid interfaces, i.e. the Young-Laplace Equation and Young’s
Law. In Section 4.1, we gave an overview of the model we use for fluid-fluid in-
terfaces. Then, we introduced the Young-Laplace Equation and the macroscopic
parameters involved in it, i.e. the surface tension, the fluid bulk pressure differ-
ence, and the capillary length. In Section 2.2, we discussed the concept of mean
curvature of a surface, in relation to the Young-Laplace Equation, deriving some
relevant expressions. In Section 2.3, the Young’s contact angle is introduced,
and an equation for it, i.e. Young’s Law, is derived by a force-balance argument.
In Section 2.4, we showed that, across any point of the fluid-fluid interface, a
jump in the pressure proportional to the mean curvature of the interface in that
point must occur. Then, in the same Section, we discussed the Young-Laplace
Equation in the limit of negligible gravity, considering the case of a droplet when
completely surrounded by an external fluid, and when adsorbed at the interface
between two different fluids. In Section 2.5, we derived the Young-Laplace Equa-
tion and Young’s Law by minimizing the energy of a fluid-fluid-solid system with
respect to the fluid-fluid interface shape, for fixed fluid volumes and solid sur-
face position. Finally, in Sections 2.6.1 and 2.6.2, we considered two illustrative
problems with a simple geometry, a meniscus close to a vertical wall and a 2D
droplet with negligible gravity and wetting a solid flat surface, and for these we
derived, by energy minimization, and then solved analytically the Young-Laplace
Equation and Young’s Law.
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CHAPTER

LINEARIZED YOUNG-LAPLACE
EQUATION

In this Chapter, we consider the linear approximation of the Young-Laplace Equa-
tion, which holds in the limit of small deformations of the fluid-fluid interface
shape. To show the applicability of this approximated theory for a wide range of
problems involving fluid-fluid interfaces, we present illustrative results for study-
ing a multipole capillary deformation of an adsorbed particle, the wetting of a
vertical cylinder, the shape of a meniscus in a vertical cylindrical tube, the force
necessary to deform a flat interface by displacing an adsorbed pinned particle
orthogonally to the interface, and the capillary force between two vertical plates
at an interface. Finally, as main goal of this Chapter, we provide an analyti-
cal framework which is exploited in the next Chapter to compare and test the
correctness of our numerical results for the equilibrium shape of a fluid-fluid in-
terface.
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3.1 INTRODUCTION

In our model, we treat the fluids macroscopically, i.e. as a continuum, and the
fluid-fluid interface separating them as a curved surface with zero thickness. In
the previous Chapter we introduced the Young-Laplace Equation [Eq. (2.2)],
which determines the equilibrium shape of a fluid-fluid interface. The boundary
conditions of the fluid-fluid interface at the three-phase contact points, i.e. where
the fluid-fluid interface is in contact with solid surfaces, are given by Young’s Law
[Eq. (2.18)], which fixes the contact angle of the fluid-fluid interface with the solid
surface. Solving this Dirichlet problem analytically is usually very complicated,
and feasible only in problems with very trivial geometries (see for example Secs.
2.6.1 and 2.6.2, where a meniscus close to a vertical wall and a 2D droplet in
absence of gravity and wetting a flat solid surface are considered). Such an an-
alytical difficulty is driven mainly by two reasons: the free boundary problem
that arises at the three-phase contact points, whose position is in principle un-
known, and the non-linearity of the partial differential equation for the meniscus
height profile. In this Chapter we deal with the latter problem by applying the
linear approximation to the Young-Laplace Equation, i.e. by neglecting the non-
linear terms. We will show that, thanks to this approximation valid in the limit of
small deformations of the fluid-fluid interface shape, the linearized Young-Laplace
Equation can be easily applied in a much wider range of problems than by con-
sidering its exact form. However, note that the main purpose of this Chapter is
to introduce an analytical framework which will be exploited to test and validate
the correctness of the new numerical method we present in Chapter 4, where the
equilibrium shape of a fluid-fluid interface is computed by energy minimization.
As we will show, both the difficulties mentioned before are solved in this new
numerical method, as the equilibrium position of the three-phase contact line
is automatically found by minimizing the energy, and the computed shape of
the fluid-fluid interface corresponds to the solution of the exact Young-Laplace
Equation. Then, the most interesting and original results of this Thesis will
be presented in Chapters 5 and 6, where, using our new numerical method, we
predict the equilibrium configuration, capillary interactions and self-assembly of
cubic particles adsorbed at fluid-fluid interfaces, and the equilibrium shape of 3D
droplets in contact with complex substrates.

In Sec. 3.2, the linearized form of the Young-Laplace Equation is introduced.
In Secs. 3.3-3.8, we apply such an equation to study problems with different
boundary conditions, obtaining analytical results for the equilibrium shape of
the fluid-fluid interface which will be exploited in Chapter 4 to verify our nu-
merical results. Once the equilibrium shape of the fluid-fluid interface is known
analytically, with respect to the position of the solid surfaces in the problem,
then the capillary force acting on such solid surfaces can also be extracted ana-
lytically, and we will show some examples in Secs. 3.9-3.11, mainly for illustrative
purpose. In particular, in Sec. 3.9 we compute the capillary force necessary to



LINEARIZED YOUNG-LAPLACE EQUATION 33

displace an adsorbed sphere, pinned at a fluid-fluid interface, in the direction
orthogonal to the interface plane. In Ref. [85] experimental results are shown for
the case of a sliding three-phase contact line. Here, to stick to the illustrative
purpose of these calculations, we assume for simplicity that the three-phase con-
tact line remains fixed on the particle surface during its displacement. Finally,
in Secs. 3.10 and 3.11, we present for completeness the 2D linearized Young-
Laplace Equation, and we apply it to study the capillary interaction between two
vertical walls immersed in a fluid-fluid interface. Other similar applications of
the linearized Young-Laplace Equation can be found e.g. in Refs. [86-91], where
the capillary force between particles adsorbed at a fluid-fluid interface and with a
given pinned three-phase contact line is analytically computed from the meniscus
shape. However, note that in these works the position of the three-phase contact
line is required as an input parameter. This limits the applicability of such a the-
ory for studying adsorbed particles at fluid-fluid interfaces, equilibrium shapes
of droplets in contact with complex substrates, and other similar free boundary
problems, which instead can be easily treated by our new numerical method, as
we will show in Chapters 4, 5, and 6.

3.2 LINEAR APPROXIMATION

In this Section we introduce the linear approximation of the Young-Laplace Equa-
tion, valid when the fluid-fluid interface shape is weakly curved. Given a Carte-
sian coordinate system with z anti-parallel to the gravity acceleration g, and
assuming that the fluid-fluid interface equilibrium shape can be expressed as an
height profile h(x,y), the Young-Laplace Equation [Eq. (2.2)] can be written as

_ AP h(z,y)
== 2,

2H(z,y) (3.1)

where H(z,y), given in Eq. (2.8), is the mean curvature of h(x,y). We remind
that (for details see Chapter 2) ~ is the fluid-fluid surface tension, AP is P» — P,
with P, P» the bulk pressures of, respectively, fluid 1 (the lightest fluid, and
above the interface with respect to z) and fluid 2 (the heaviest fluid, and below

the interface with respect to z), and ¢ is the capillary length [Eq. (2.3)].
We consider now the linear approximation, that is

oh\ 2 oh\2 Ohoh
— ] 2= ) ~ —— 1. 2
(m) (ay> oz oy S (3.2)

Applying this, Eq. (3.1) becomes

h AP
2

that is the linearized Young-Laplace Equation.



34 CHAPTER 3

3.3 MULTIPOLE EXPANSION

Here we apply the linearized Young-Laplace Equation [Eq. (3.3)] to an isolated
adsorbed particle at a fluid-fluid interface. The fluid-fluid interface is flat and
coincides with the plane z = 0 when there is no particle, so AP = 0. For
convenience, we use the cylindrical coordinate (7, ¢, z), with r = /22 + y2, ¢ the
azimuthal angle, and the z-axis anti-parallel to the gravity and passing through
the particle center of mass. So, the fluid-fluid interface height profile is h =
h(r,$), and Eq. (3.3) becomes'

LPh b P, h

e T =0. 4
Tt ot e (3:4)

Assuming we can use variable separation, i.e. that
h(r,¢) = ¥(r) ®(¢), (3.5)

we can rewrite Eq. (3.4) as

20?0 rov  ? 1 9%*®
— s T A 5= Emaa- (3.6)
v Or v or ¢ 0 N0)
The two members in Eq. (3.6) depend on different variables, therefore they must
be equal to the same constant, that is

1 9%®
2 92 2
9o TEOW  r v
R S T (38)

with m € R. From Eq. (3.7), the case —m? can be excluded, because" a periodic
solution for ®(¢) is required, as ®(¢ + 27) = ®(¢). The solution of

10°® 5
for a given m, is
®,,(¢) = Cy, cos(m ¢ — Byy,) (3.10)

where B,,, C, are integration constants. The periodicity condition ®(¢ + 27) =
®(¢) imposes that m € NIl Therefore, considering in Eq. (3.8) the case +m?
and m € N, we obtain
0% ov r?
2 2 _

n polar coordinates (r, ¢), given a function f(r,$), it holds V*f = gig + %% + %2%12‘
The solution of (—1/®) (°®/0¢*) = —m? is ®(¢) = Ae®/™ + Be */™, which is not
periodic.
indeed cos(m¢ + B) = cos[m(¢ + 27) + B] only if m € N.
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which is the modified Bessel equation of order m,"v and its solution for a given m
is

U, (1) = Dy Iy (7/0) + Epy, Ky (1/0) (3.12)

where [,,, and K, are the modified Bessel functions of the first and second kind
respectively, and D,,,, E,, are integration constants. So, the solution of Eq. (3.6)
for a given m € N is h(r,¢) = U, (1) pu(¢). As any m € N holds, the general
solution of Eq. (3.6) is a linear combination of all these, that is

[e.9]

h(r,¢) = Z (D I (/) + Epy Ky (1/0)] Cpy cos(m ¢ — Byy,) . (3.13)

m=0

As the fluid-fluid interface is flat for r — 0o, we impose the boundary condition
h(r — o0, ¢) = 0, implying D,,, = 0 for any m, because I,,,(r — c0) = cc.

In conclusion, defining A,, = C,, E,, in Eq. (3.13), the fluid-fluid interface equi-
librium shape h(r, ¢) around an adsorbed particle, using the linear approximation
[Eq. (3.2)], is

h(r,¢) = Ao Ko(r/€) + > Am K (r/l) cos(me — By,) . (3.14)

m=1

The integration constants A,, and B,,, for any m € N, are to be determined by
the boundary conditions on the particle surface. In analogy with the electromag-
netism, Eq. (3.14) is often referred to as multipole expansion of the fluid-fluid
interface height profile, with the m =0, m =1, m = 2, m = 3, etc. terms being,
respectively, the monopole, dipole, quadrupole, hexapole, etcetera. Note, however,
that for adsorbed particles at fluid-fluid interfaces opposite charges repel each
other and equal charges attract each other, oppositely to electric charges. This
phenomenon, which induces capillary interactions between adsorbed particles,
will be discussed in details in Chapter 5, where in particular we will present re-
sults for hexapolar interactions between adsorbed cubes.

In Chapter 4, Sec. 4.4.4, we present results for an adsorbed sphere with a pinned
undulated three-phase contact line that generates capillary deformations given
by Eq. (3.14), and we compare these analytical results with the numerical pre-
dictions obtained by the method introduced in Chapter 4.

3.4 WETTING OF A VERTICAL CYLINDER

We consider here the same system of the previous section, i.e. a particle adsorbed
at a flat fluid-fluid interface, but assuming that the height profile of the fluid-fluid

VThe modified Bessel equation of order m is x2fT£ +x% —(a® 2% +m?)f = 0, with 2 > 0, and
its solution is given by f = A-I,,(z/a)+ B - Kp(z/a), with I, and K, the m-th order modified
Bessel function of the first and second kind, respectively. The ordinary Bessel equation, instead,
is :EQZ%I +x% +(a?2? +m?)f = 0, with « > 0, and has solution f = A-J,u(z/a)+ B-Ym(z/a),
with J,, and Y,, the m-th order Bessel function of the first and second kind, respectively.
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Figure 3.1: Sketch of an infinitely-high vertical solid
cylinder (black grid), with radius p, in contact with a
fluid-fluid interface (blue grid) with height profile h(r),
where r is the distance from the cylinder symmetry
axis. The gravity is in the direction opposite to z.

interface deformations induced by the particle is invariant with respect to ¢, i.e.
h = h(r). Therefore, Eq. (3.4) becomes

d*h  1dh h

e e (315)

which is the modified Bessel equation of order zero. The solution of Eq. (3.15) is

where Iy and Ky are the 0-th order modified Bessel functions of the first and
second kind respectively. As the interface is flat for r — oo, and Ip(r — o) = oo,
we impose the boundary condition A = 0.

We assume now that the adsorbed particle is a solid cylinder in vertical position
and infinitely high, with symmetry axis coinciding with the z axis, and with
radius p (see Fig. 4.11). The integration constant B can be evaluated using
Young’s Law as a boundary condition on the cylinder surface. By geometrical
consideration, we would impose for h(r) the condition dh/dr|,—, = —1/tan6, in
analogy to Eq. (2.53) for the height profile of a meniscus close to a vertical wall,
see Fig. 2.7. However, as we are using the linear approximation for h(r) [Eq.
(3.2)], also Young’s Law holds in an approximated form, that is

dh

o = —cosf. (3.17)

p

This is proved in Section 3.5, using energy minimization. Applying Eq. (3.17) to
Eq. (3.16), it follows
B dKo(r/?)
dr

= —cosf. (3.18)
r=p

Using that dKy(ax)/dx = —a K1(ax), we obtain
cos 0

B= Wé. (3.19)

Therefore, the solution h(r) of Eq. (3.15) is given by

h  Ko(r/f) cos
T Ko < (320
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Calculating Eq. (3.20) in r = p, and defining hg = h(p), we obtain
¢
— = ——~ cosf . (3.21)

In Fig. 4.13 of Chapter 4, the analytic behavior of ho/¢ [Eq. (3.21)] is shown
with respect to p/¢, for cosf = 0.9 and several values of p, and compared with
the numerical results from the method introduced in Chapter 4.

3.5 YOUNG’S LAW IN THE LINEAR APPROXIMATION

Considering the same system of the previous section, see Fig. 4.11, we show here
that the linear approximation for h(r) [Eq. (3.2)] implies that Young’s Law holds
in the approximated form given in Eq. (3.17).

The energy E [Eq. (2.24)] of our fluid-fluid-cylinder system is

Ty [T 2 e
E[h(r)] = = (r—p)rh*dr — 27~ cosf ; rho(r—p)dr+

+oo dh\ 2
+ 21y O(r—p)r{/1+ () dr, (3.22)
0 dr

where the terms are, respectively, the fluid-fluid interface gravitational energy,
the solid-fluid wetting energy, and the fluid-fluid surface energy, with ~ the fluid-
fluid surface tension, ¢ the capillary length, d(x) the Dirac delta, ©(z) given by
Eq. (2.48), and cosf given by Eq. (2.18). At the equilibrium 0E/dh = 0, from
which (see note iii at page 13) it follows

= 0. (3.23)

Integrating Eq. (3.23) with respect to r between p~ and p™ gives

2
__d
p dr

which is an analogous equation to Eq. (2.52) for the meniscus close to the vertical
wall, so it would imply for h(r) that dh/dr|,—, = —1/tan#, in analogy to Eq.
(2.53). However, as we are using the linear approximation [Eq. (3.2)], then Eq.
(3.24) implies (3.17), that is Young’s Law in the linear approximation.

(3.24)

dh
0.1 —
CcoSs + ( dar

)
ot
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3.6 FINITE-S1ZE EFFECTS

In this Section we study the effects of having a finite-size system, rather than
a fluid-fluid interface infinitely extended and flat far from the center. For this
purpose, we consider the system described in Sec. 3.4, i.e. a vertical cylinder
adsorbed at a fluid-fluid interface, but now we introduce a cylindrical vertical
wall, with radius R, contact angle «, and with the same symmetry axis of the
solid vertical cylinder, that externally surrounds the fluid-fluid interface, see Fig.
3.2. Therefore, we cannot impose AP = 0 like in the previous Sections”, so, from
the linearized Young-Laplace Equation [Eq. (3.3)], for an axisymmetric system
it follows that
d*h  1dh h+C B AP

- — — — 1 = 2
02 +r I 72 0 ,with C= 5 . (3.25)

which is the more general version of Eq. (3.15) for non-zero AP, and its solution

iSVI

h(r) = A Iy(r/l) + B Ko(r/t) — C'. (3.26)

Here we cannot set A = 0, like in Sec. 3.4, because the system is extended only
until » = R. The linearized Young’s Law [Eq. (3.17)] in r = R gives

dh(r)

_dIy(r/0)
o | T T

R dr

. B dKo(r/f)
R dr

=cosa. (3.27)
R

Note that in Eq. (3.27) the sign of cos« is opposite than the sign of cosf in
Eq. (3.17), because here the derivative of h(r) is taken on the inner side of the
wall with respect to r. The other boundary condition is given by the linearized
Young’s Law [Eq. (3.17)] in r = p, that is

dh(r)
dr

_ 4 dly(r/e)
o dr

dKo(r/0)
dr

+B = —cos¥b, (3.28)

p

Figure 3.2: Sketch of a meniscus in a verti-
cal cylindrical tube with radius R and Young’s
contact angle «, with a vertical solid cylinder
of radius p and Young’s contact angle 6 placed
in the center. The system is axisymmetric with
respect to the z axis.

\l/g

Fluid 1

YNote that imposing AP = 0 for an infinitely-extended system with a flat fluid-fluid interface
far from the center is equivalent to fix the volume of the two fluids such that h(r — co) = 0.

ViNote that, if a function h* is solution of a differential equation with the form
F[d*h/dx? dh/dx] + ah = 0, with F generic functional, then h* — C is solution of the dif-
ferential equation F[d*h/dx?, dh/dz] 4 a (h + C) = 0, with C' a constant.
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with 6 the Young’s contact angle of the solid cylinder. Using dKy(ax)/dx =
—a Ki(ax) and dlp(ax)/dx = ali(ax), from Egs. (3.27) and (3.28) we obtain

A _ Ki(p/t) cosa+ K1(R/{) cosf (3.29)
¢ L(R/C) K1 (p/t) — I (p/l) Ki(R/L) '
B L(p/f) cosa+ Li(R/) cosb (3.30)

¢ “T(R/0) Ky (p/0) — I (/D) Kr(RJE)

If R — oo, using Kj(oo) = 0 and I;(0c0) = oo, we correctly obtain A = 0 and
that Eq. (3.30) reduces to Eq. (3.19), as found in Sec. 3.4.

The integration constant C' is to be determined by setting the volume of the
fluids. We impose the fluid volumes such that, if the fluid-fluid interface is flat,
it corresponds with the plane z = 0, that is

27 /R h(r)rdr =0, (3.31)

from which we obtain"

o R cosa+ p cost

C=20==p0

(3.32)

Some illustrative results of the height profile h(r), as obtained by Eq. (3.26),
with A, B, C given by, respectively, Eq. (3.29), (3.30), (3.32), are plotted in Fig.
3.3, for p = 0.1¢4, R = 2/ and various Young’s contact angles a and 6. In the
limit case of cosaw = cos 6, Eq. (3.32) becomes

cos
C = 27* : (3.33)

R—p
Note that C can also be interpreted as the capillary rise of the meniscus'i! inside

the vertical cylindrical tube, of radius R and Young’s contact angle cos o, with a
solid vertical cylinder in its center (i.e. with the same symmetry axis) of radius
p and Young’s contact angle cosf. As a matter of fact, if p = 0, i.e. no vertical
cylinder in present inside the vertical cylindrical tube, then Egs. (3.32) and (3.33)
reduce to Jurin’s Law [92], as discussed in Sec. 3.8.
Applying Eq. (3.26) in r = p and r = R, we obtain

ho = A [olp/) = Io(R/O) + B [Ko(p/0) — Ko(R/O],  (3.34)

ViEquation (3.31) is Apr Io(r/€)rdr + prR Ko(r/t)rdr — Cprrdr = 0, from which
R

Aler Li(r/O)R + B [~er Ki(r/O)F - C [;] = 0. Then, writing explicitly A [Eq. (3.29)]
and B [Eq. (3.30)], it follows Eq. (3.32).

YIndeed, if we set AP = 0, we are imposing that the fluid-fluid interface must be flat at
z =0, and so z = 0 becomes the level of the fluid-fluid interface far outside from the tube. Also,
if AP = 0 is set, then the meniscus profile h(r) is shifted by C above z = 0, because Eq. (3.16)
holds for h(r), instead of Eq. (3.26), and this explain why C' in Eq. (3.32) is the capillary rise
of a meniscus in a vertical cylindrical tube with a solid vertical cylinder in its center.
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Figure 3.3: Height profile lg

h(r) [Eq. (3.26)] of a menis- 0.2¢

cus in a cylindrical tube with /
Young’s contact angle o and 0

radius R = 2/¢, and with a §
vertical cylinder in the cen- -0.2} .

ter of Young’s contact angle
6 and radius p = 0.1/¢ (see —0.4 s .

Fig. 3.2). In (a) cosae = 0.5, |5 02 — cosO=— 0.7 ' ' (b)
and in (b) cosa = 0. The | lg ‘
volumes of the two fluids are \

such that a flat interface cor- 0
responds to z = 0. The sys- /

tem is axisymmetric with re- ‘cosa =0
spect to the z axis, i.e. 7 = 0. -0.2 !

The capillary length is /. '

1
r/f

with hg = h(p) — h(R). In Fig. 4.12 of Chapter 4, we show the full height profile
h(r) [Eq. (3.26)] and the capillary rise hy [Eq. (3.34)] for various R and p, for
cosf = 0.9 and cosa = 0, and we compare them with the numerical predictions
obtained by the method introduced in Chapter 4.

3.7 AXISYMMETRIC-MENISCUS DIVERGENCES DUE TO IN-
VERSE GRAVITY

Mainly for mathematical curiosity, in this Section we consider the same system
treated in the previous Section, see Fig. 3.2, but now we invert the direction
of gravity.® We will show that, in this (in principle unstable) situation, the
height profile of the interface is characterized by undulations which diverge for
certain values of R//. Note that, as we are using the linear approximation of the
Young-Laplace Equation, these predictions become less reliable when substantial
perturbations of the fluid-fluid interface height profile arise. In our model, fluid
2, i.e. the heaviest fluid, is below the interface (with respect to z), and fluid 1,
i.e. the lightest fluid, is above the interface. However, by inverting the gravity
direction, which is now parallel to z, the Young-Laplace Equation [Eq. (2.2)]
becomes
AP  z-(x,y,2)

V-1 = 3.35
A(r.y.2) = =+ TG (335)

XExperimentally, this situation in principle can be achieved by placing the heaviest fluid
above the lightest fluid in a container. This would be a metastable situation of course, as at the
equilibrium the heaviest fluid prefers to be lower, with respect to the gravity, than the lightest
fluid. However, if the energy barrier to be overcome for shifting the positions of the two fluids
is high enough, then the system remains in this metastable state.
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that is, the term proportional to =2 has changed sign. Consequently, the system
sketched in Fig. 3.2 is now described, rather than by Eq. (3.25), by

&h 1dh h—C . AP,

Equation (3.36) is the 0-th order Bessel equation, whose solution is (see note iv
at page 35 and vi at page 38)

h:A~Jg(r/€)+B~Yg(r/€) + C, (3.37)

with Jy and Y{ the O-th order Bessel functions of the first and second kind re-
spectively. With 6 and a the contact angles of h(r) with the central cylinder in
r = p and with the external wall in r = R, respectively, the boundary conditions
to fix A and B, analogously to the previous Section, are

dh(r) —A M +B M =cosa, (3.38)
dT‘ R dT R dr R

dh(r)| _ 4 dho(r/O| | p d¥o/O) _ (3.39)
dr p dr P dr p

Using dJo(az)/dx = —a Ji(az) and dYy(ax)/dx = —aY1(ax), we obtain

A _ Yi(p/l) cosa+ Y1(R/¢) cosf (3.40)
¢ Yi(p/0) J1(R/C) — Y1(R/€) i(p/0) '
B _ Ji(p/t) cosa+ Ji(R/¥) cos @ (3.41)
t o Yi(p/0) W(R/O) = YA(R/) Ji(p/€) - '

As boundary condition to determine C, we fix the fluid volumes by Eq. (3.31),
obtaining that C' is given by Eq. (3.32).%

Some illustrative results of the height profile h(r), as obtained by Eq. (3.37),
with A, B, C given by, respectively, Eq. (3.40), (3.41), (3.32), are plotted in Fig.
3.4, for p = 0.14, and (a) cosf = 0.9 and cosa = 0, (b) cosf = 0 and cosa =
0.9. As shown, in this (unstable) situation of reversed gravity, the equilibrium
height profile of the meniscus is characterized by (static) undulations. Also, the
amplitude of these undulations depends on R/¢, and diverges for certain values
of R/ (see for example the case R = 7/ in Fig. 3.4, where the predicted capillary
rise on the vertical cylinder supposedly should be of the order of 1007¢). Clearly,
this intriguing behavior of the meniscus equilibrium height profile is connected
with the fact that we are dealing with an unstable system, as the gravity is
reversed, and so the heaviest fluid, which is below the fluid-fluid interface, would

*Equation (3.31) is Apr Jo(r/€) rdr + prR Yo(r/€)rdr + Cprrdr = 0, from which
R
Aler L(r/O) + B [erYi(r/0)® + C [7] = 0. Then, writing explicitly A [Eq. (3.40)] and B
P
[Eq. (3.41)], it follows Eq. (3.32).
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Figure 3.4: Height profile
h(r) [Eq. (3.37)] of a menis-
cus in a cylindrical tube with
Young’s contact angle a and
radius R, and with a verti-
cal solid cylinder in the cen-
ter with Young’s contact an-
gle 6 and radius p = 0.1 ¢ (see
Fig. 3.2). In (a) cosé = 0.9,
cosa = 0 and in (b) cosf =0,
cosa = 0.9. The fluid below
the interface is the heaviest,
however the gravity direction
is inverted, i.e. g is parallel
to the z axis (see note ix at
page 40). Note that the solu-
tions diverge for certain val-
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prefer to stay above it. This phenomenon is known as Rayleigh-Taylor instability
[93], and dynamic effects need to be included to describe it more accurately.
Note, also, that the quality of the linear approximation for the Young-Laplace
Equation is poorer when substantial deformations of the fluid-fluid interface shape
arise. The main aim of this Section was just to explore the consequences of
inverting the sign of the gravitational force term in the Young-Laplace Equation,
mainly for mathematical interest. For the same purpose, in Sec. 3.11 we consider
the inverted-gravity case for a meniscus with translational symmetry, instead of
rotational symmetry, obtaining analogous physical predictions to this Section.

3.8 MENISCUS IN A VERTICAL CYLINDRICAL TUBE

In Sec. 3.4 we applied the linearized Young-Laplace Equation [Eq. (3.3)] to
study a vertical solid cylinder in contact with an infinitely extended flat fluid-
fluid interface. Then, in Secs. 3.6 and 3.7, we introduced an external vertical
cylindrical wall enclosing our system. In this Section we remove the solid vertical
cylinder in the center, but we keep the external vertical cylindrical wall. In this
way, we study the shape of a meniscus in a vertical cylindrical tube, as sketched
in Fig. 3.5.

The height profile h(r) of the meniscus, with r the distance from the symmetry
axis, is given by Eq. (3.26). Said R the cylindrical tube radius and « its Young’s
contact angle, the boundary condition in r = R is given by Eq. (3.27). Then, in
r = 0 we impose, for symmetry reason, the boundary condition

dh(r)
dr

r=0

0, (3.42)
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L E g Figure 3.5: Sketch of a meniscus in a vertical
Fluid 2 \l/ p cylindrical tube with radius R and Young’s con-
) 0 R tact angle . The system is axisymmetric with
Fluid 1 respect to the z axis.
which gives
AL(0)—BK;(0)=0. (3.43)
From Eq. (3.27) and (3.43), using I;(0) = 0, we obtain
A cos B
— = , — =20. 3.44
l Ii(R/?) l ( )
As boundary condition for the fluid volume, we use
R
277/ h(r)rdr=20, (3.45)
0
from which*!
C L
7= 2 R cose (3.46)

Note that Eq. (3.46) is Jurin’s Law [92], with C representing the capillary rise in a
vertical cylindrical tube, of Young’s contact angle o, immersed in a flat fluid-fluid
interface (for the same argument presented in note viii at page 39). This proves
that the approximation of a spherical curvature for the meniscus in a cylindrical
tube, used to derive Jurin’s Law, is equivalent to the linear approximation, i.e.
Eq. (3.2). Some illustrative results of the height profile h(r), as obtained by Eq.
(3.26), with A, B, C given by Eqgs. (3.44) and (3.46), are plotted in Fig. 3.6(a),
for R = 2/¢ and various Young’s contact angles «.
Finally, analogously to Sec. 3.7, we consider, mainly for mathematical interest,
the metastable situation in which the gravity direction is inverted (see note ix
at page 40). The equilibrium profile h(r) of the fluid-fluid interface is given by
Eq. (3.37), and the boundary conditions for A and B are given by Eq. (3.38) for
r = R and by Eq. (3.42) for r = 0. So, using that .J1(0) = 0, we obtain

A cos « B

T ThED =0. (3.47)
As boundary condition to determine C, we fix the fluid volumes by Eq. (3.45),
obtaining that C'is given by Eq. (3.46).% Some illustrative results of the height
profile h(r), as obtained by Eq. (3.37), with A, B, C given by Egs. (3.47)

*Equation (3.45) for h(r) given by Eq. (3.26) is AfOR Io(r/€)rdr — CfOerr = 0, from
which A¢RI1(R/¢) — C R*/2 = 0. Then, writing explicitly A [Eq. (3.44)], it follows Eq. (3.46).
*Fquation (3.45) for h(r) given by Eq. (3.37) is AfOR Jo(r/€) rdr + CfOerr = 0, from
which A¢ R Ji(R/€)+C R?/2 = 0. Then, writing explicitly A [Eq. (3.47)], it follows Eq. (3.46).
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Figure 3.6: Height profile h(r) of a

\cosaz—— 0.8;——04;-0.5 ;—0.9\
T T

meniscus in a vertical cylindrical tube with | 0.4 T

radius R and Young’s contact angle o, (a) (¢ g:g'

for R = 2 and various values of cos «, and 0.1

(b) for cos @ = 0.5 and various values of R. _0_? i i
The fluid below the interface is the heav- -0.2F \l/g E
iest. However, while in (a) the gravity is :g'i‘_ | . L r
antiparallel to the z axis, in (b) the case 0 05 ! 1> 24
of inverse gravity, i.e. g parallel to the |A& o[ T T T 7 h 120_'_'_'_'_'_'_@
z axis, is considered (see note ix at page £ 4 £ 1007 T
40). As shown, (static) undulations in the 2 8o ]
meniscus height profile arise in (b), with 0 eor /l\ ]
their amplitude diverging for certain val- 2r 01 & -
ues of R. This mathematical behavior of * 208 ]
h(r) is due to the unstable physical situ- :Z -2:=5| | _22: i
ation we are dealing with, as the heaviest 1o 8; —10]| | o |
fluid, which is below the interface, prefers N AN ol T
to stay above it when gravity is reversed. 0 2 46 8u,/p 012345674

and (3.46), are plotted in Fig. 3.6(b), for cosa = 0.5 and various values of R.
Analogously to Sec. 3.7, we observe that the equilibrium height profile of the
meniscus is characterized by (static) undulations, with a diverging amplitude for
certain values of R/{. A more appropriate study of such a fluid-fluid system
should take into account also dynamic effects, and this only-equilibrium analysis
of the inverse-gravity case was done mainly for mathematical curiosity.

3.9 CAPILLARY ELASTIC ENERCGY BY DISPLACING A PINNED
SPHERE

We consider in this Section an isolated spherical particle adsorbed at a flat fluid-
fluid interface. At the equilibrium, the sphere adjusts the height of its center of
mass to form a contact angle 6 with the flat interface, see Fig. 3.7(a), as imposed
by Young’s Law [Eq. (2.18)]. In this configuration (which has minimum energy,
as we numerically prove in Sec.4.5.1) the sphere manages to fulfill Young’s Law
without deforming the flat fluid-fluid interface, for any Young’s contact angle 6.x11
We now assume that the three-phase contact line is pinned on the sphere surface
at its equilibrium position. Therefore, if the sphere is displaced in a direction
orthogonal to the fluid-fluid interface plane, the three-phase contact line moves
together with the sphere, inducing deformations in the interface [see a sketch
in Fig. 3.7(b)]. In this Section, we use the linearized Young-Laplace Equation
to predict the shape of these deformations, and then we calculate the force to

*iNote that, instead, an anisotropic particle adsorbed at a fluid-fluid interface in general
needs to deform the interface, to fulfill Young’s Law along the whole three-phase contact line.
And the same is true for a spherical particle adsorbed at a curved fluid-fluid interface.
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displace the sphere orthogonally to the interface plane.
At the equilibrium, the height z. of the sphere center on mass on the z = 0 plane,
corresponding to the flat fluid-fluid interface, is given by [see Fig. 3.7(a)]

Ze = —p cosb , (3.48)

with p the sphere radius. By changing the height of the sphere center of mass
from z. [Eq. (3.48)] to z.+ Az, we induce capillary deformations with cylindrical
symmetry with respect to the axis orthogonal to the z = 0 plane and passing
through the sphere center of mass. Using the linear approximation, the height
profile h(r) of these capillary deformations, with r the distance from the sym-
metry axis, is given by Eq. (3.16), which is the solution of the axisymmetric
linearized Young-Laplace Equation [Eq. (3.15)], where AP = 0 because we are
assuming a flat fluid-fluid interface far from the sphere. Using that h(oo) = 0, it
follows A =0 in Eq. (3.16), obtaining

h=B-Kyr/l). (3.49)

The boundary condition to determine B in Eq. (3.49) is the position of the
three-phase contact line, that is

h(p sinf) = Az . (3.50)

where r = psinf is the distance from the symmetry axis of the three-phase
contact line [see Fig. 3.7(a)]. Using Eq. (3.50), from Eq. (3.49) it follows that

Az
B= AR (3.51)

z psind z Fluid 1 L
Fluid 1 ‘_’ A
Zc+AZ -----
AT et | |l N
qum Fluid 2

Figure 3.7: (a) Equilibrium position of a spherical particle, with radius p and Young’s
contact angle 6, adsorbed at a flat fluid-fluid interface. (b) Deformations induced in the
interface by displacing the sphere of Az in the direction orthogonal to the interface. The
three-phase contact line is assumed to be pinned at its equilibrium position. Note that, to
keep the sphere in this out-of-equilibrium configuration, we are exerting a force, therefore
in this situation the contact angle between the sphere surface and the fluid-fluid interface
does not fulfill Young’s Law. The z axis, here for convenience shown at the side, passes
through the sphere center of mass.
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In Fig. 3.8 the height profile h(r) is shown for various Az, for p = 0.001¢ and
0 = 7/2. The energy E [Eq. (2.24)], with respect to the displacement Az of the
sphere, is

E(Az) =~ [S(Az) =T + Wi cosf] + E4(Az), (3.52)

with v the fluid-fluid surface tension, S(Az) the total surface area of the fluid-
fluid interface, T the area of the z = 0 plane (which represents the fluid-fluid
interface when no sphere is adsorbed), W; the sphere surface area wet by the
fluid above the interface given by *i¥

Wy = 2m p* (1 — cosd) , (3.53)

and E4(Az) the gravitational energy of the fluid-fluid interface. Note that the
reference level E' = 0 is shifted with respect to Eq. (2.24) such that here E(Az)
is zero when the sphere is desorbed from the interface and immersed in the fluid
below the interface. The pressure terms in Eq. (2.24) do not contribute to Eq.
(3.52) because AP = 0. In Eq. (3.52) the particle position varies, so in principle
the particle weight contribution should be added to E, but here we consider that

the particle weight negligible.*¥ Explicitly, S ) and E4(Az) are:
S(Az) = 27r/ ry/1 —l— dr (3.54)
sin 6
Ey(Az) = 72 / rh%dr (3.55)
sin 6

where h(r) [Eq. (3.49)] depends on Az through B [Eq. (3.51)]. Using the linear
approximation, S(Az) can be written as XVi

> > dh\”
S(Az) ~ 271'/ rdr+ 7T/ r <) dr, (3.56)
p sin 6 p sinf dr

Figure 3.8: Height profile h(r) /%Z SR ' ' ' ' ' '
[Eq. (3.49)] of the capillary de- T |Az=—pl2;—pi=2pi—4p;—8p|
formations induced by displac- 61 g
ing a sphere, pinned at the in- sk |
terface, by Az along the z axis, \Lg
orthogonal to the interface and i )
passing through the sphere cen- 3T .
ter of mass, with r the distance ] -
from z. The sphere has Young’s 1 -
contact angle § = /2 and ra- N - - . : . :

dius p = 0.0014. 2 4 6 8 10 12 1'4 lp

*VNote that W) is a constant, as we are assuming a pinned triple contact line.
*¥In Sec. 4.5.1 we discuss this approximation in detail, showing its range of validity.
*iNote that 1 + 22 = 14 2%/2 + O(z*).
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and using that the first term at the second member of Eq. (3.56) is '— (p sin )2,
we can express AS(Az) = S(Az) — T as

fe'e) 2
AS(Az) =7 / r <dh> dr — 7 (p sin@)? . (3.57)
p sin@ dr

Using Eqgs. (3.49), (3.51), (3.53), (3.55), (3.57), and that dKy(az)/dx = —a K1 (z),
we can rewrite Eq. (3.52) as

E(Az) = %32 /Oo T [KZ(r/0)+ K§ (r/0)] dr +~p%c, (3.58)
p sin

where we defined
¢ = 21 (1 —cosh)cosh —m sin?h . (3.59)

Eq. (3.58) has the form of a parabola in the [E, Az] space, that is
A\ 2

v <Z> +c
p

T 00 ) ,
LG 2 Ko (p sin@/ﬁ)]Q /psine r [K1 (r/0) + Kq (r/é)] dr, (3.61)

E(z) =y p? : (3.60)

where we defined

that is *Vil
K (psinf/¢) p sinf

" Ko(psinoje) ¢
Finally, from Eq. (3.60) we obtain the force F' = dE/d(Az) necessary to move
the particle center of mass with a displacement Az in the z direction, that is

(3.62)

F(Az) =kAz. (3.63)

Therefore F(Az) is an elastic force, because linear in Az, with spring constant
given by
k=2yV. (3.64)

Figure 3.9: Spring constant k [Eq. (3.64)],
with respect to p/¢, of the elastic force F =
k Az [Eq. (3.63)] necessary to move a sphere,
pinned at the interface, by Az orthogonally
to the interface plane. The sphere has ra-
dius p and Young’s contact angle 7/2, v is the
0.6 e SEm— P fluid-fluid surface tension, and ¢ is the capil-
p/€ lary length.

i [ o [K@(x/a) + K2 (z/a)] de = —ax Ko(az) Ky (ax).
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Note that, as expected, F(Az) = 0 when Az = 0, i.e. when the sphere is at its
equilibrium configuration, with its center of mass height given by z. = —p cos¥.
In Fig. 3.9, the spring constant k [Eq. (3.64)] of the elastic force F(Az) [Eq.
(3.63)] is plotted with respect to p/¢, for a sphere with Young’s contact angle
/2.

3.10 CAPILLARY INTERACTIONS BETWEEN VERTICAL PLATES

In this Section we apply the linearized Young-Laplace Equation to calculate the
capillary force between two vertical plates adsorbed at a fluid-fluid interface, see
Fig. 3.10. First, we calculate the equilibrium shape of the meniscus between the
plates. Then, by analogous procedure to the previous Section, we compute the
energy of the system with respect to the distance between the two vertical plates,
and from this we extract the capillary force acting between the plates.

Using a Cartesian coordinate system with the 2z axis antiparallel to the gravity
g, the two solid surfaces in contact with the meniscus are in = 0 and z = D,
respectively, see Fig. 3.10. The system has translational invariance along the y
axis. Therefore, the linearized Young-Laplace Equation [Eq. (3.3)] becomes

*h _ h+C
- = 3.65
2 (3.65)
where we defined AP
S (3.66)
v
The solution of Eq. (3.65) is (see note ii at page 34 and vi at page 38)
h=Ae"' + Be @/t - C, (3.67)

where A and B are constants to be determined by the boundary conditions of
Young’s Law in 2 = 0 and z = D. Analogously to Eqs. (3.27), (3.28), such
boundary conditions are

dh dh
(z) = —cosf (z) =cosa, (3.68)
dr |, dr |p
Figure 3.10: Sketch of two vertical plates, z
with surface-to-surface distance D, at a fluid- N D —

fluid interface. The system has translational

invariance orthogonally to the [z,z] plane. Fluid 2 P 4 \Lg

Plots of the meniscus between the plates, with

respect to the Young’s contact angles 6 (in /
xz = 0) and o (in ¢ = D), are shown in Fig.

3.11. The capillary force F' [Eq. (3.83)] with . L [0 D{ |
respect to D is shown in Fig. 3.12(b). Fluid 1

N
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where 0 and « are Young’s contact angles of the solid surface in x = 0 and x = D,
respectively (see Fig. 3.10). From Eq. (3.68), it follows

Aicosa—kcosee_D/e Bicosoz—i—cosﬂeD/z
¢ eD/t _ ¢—DJt ' ¢ D/t _o-D/t (3.69)

To determine C', we impose that the volumes of the fluids between the two plates
are such that a flat meniscus would correspond to the z = 0 plane, that is

D
/ h(z)dz = 0, (3.70)
0

from which*V!

L
% = (cos @ + cos o) D (3.71)

Plots of h(x) [Eq. (3.67)], for A, B, C given by Egs. (3.69) and (3.71), are shown
in Fig. 3.11 for D = ¢ and some values of  and a. Note that C' [Eq. (3.71)]
represents the capillary rise of a meniscus between two vertical plates, for the
same argument presented in note viii at page 39. As a matter of fact, Eq. (3.71)

in the limit 8 = o becomes 2
2
C= - cos 6 (3.72)

which is the capillary rise of a meniscus between two vertical plates in the ap-
proximation of a cylindrical shape for the meniscus (see Sec. 4.3.3), proving that
such an approximation is equivalent to linearize the Young-Laplace Equation.
To calculate the capillary force between the two plates, it is more realistic to fix
the fluid bulk pressures, rather than fixing the volume by Eq. (3.70). Assuming
that the fluid-fluid interface is flat and coincides with z = 0 for x — do00, see
Fig. 3.10, it follows AP = 0, which implies C' = 0 in Eq. (3.67). The energy E

h 0.4 T T T T
¥ sl _222226892(;232:82 . Figure 3.11: Height profile h(z) of
02k —cosO= 0.9 :cosa=09 i a meniscus between two solid vertical
i | surfaces in * = 0 and x = D, with
o \ d Young’s contact angles # and «, re-
0 e ~ spectively, as obtained by Eq. (3.67),
o1k 4 with A, B, C given by Egs. (3.69)
\Lg and (3.71). The fluid volumes are such
0.2 7 :
that a flat meniscus would correspond
037 0.2 0.4 0.6 0.8 1x/¢ to z=0. The capillary length is .

Vil quation (3.70) for h(z) given by Eq. (3.67) is A fOD e*/*dz+B fOD e/t dac—CfOD dx =0,
D
from which [Afe‘"”/l — Béefz/z] = C'D. Then, writing explicitly A and B [Eq. (3.69)], it
0
follows Eq. (3.71).
** Analogously, in Sec. 3.8 we noted, about Jurin’s Law, that the spherical shape approxima-
tion for a meniscus in a vertical tube corresponds to linearize the Young-Laplace Equation.
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[Eq. (2.24)] of the system given by the fluid-fluid interface with the two adsorbed
vertical plates depends on the surface-to-surface distance D between the vertical
plates, and explicitly is™*

E =&y [So+S—hocos —hp cosal + Eg, (3.73)

where &, is the length of the system in the y direction, + is the fluid-fluid surface
tension, hg = h(0) and hp = h(D) explicitly are

ho=A+B, hp=Ael/t+Be P/, (3.74)

S, is the (1D) surface area of the fluid-fluid interface outside the plates (i.e. for
x < 0and x > D), S is the (1D) surface area of the meniscus between the plates

and given by
S= / ,/1+ Cir (3.75)

and FEj is the gravitational energy and given by

&y [P
E, = %;’/O h%dx . (3.76)

As we are assuming a flat fluid-fluid interface for x — +oo, the shape of the
meniscus outside the plates does not depend on D, so its surface area can be
written as

S,=T—-D, (3.77)

with I' a constant not depending on D. Using the approximation of small per-
turbations, we can write S as (see note xvi at page 46)

dh
D — ] d .
S~ +2/0 <dm) x, (3.78)
which, writing h(z) explicitly [Eq. (3.67)] for C =0, is
S A%/ oap B? / _ap D AB
=) () £<1_62>‘ (3:79)

The gravitational energy E, [Eq. (3.76)], writing h(x) explicitly [Eq. (3.67)] for
C=0,is

v%z:f; (¢ - )‘f; (67%_1%%%3'

So, using Egs. (3.74), (3.77), (3.79), (3.80), it follows that E [Eq. (3.73)] with

(3.80)

**Note that here the reference level E = 0 is shifted by a constant with respect to Eq. (2.24).
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respect to A, B, D is

E A? /2 B2
vE, 0 202 (7 -1) - 202 (7 -1)+
D
r A+B A Be 7
7 —; cosf — ai +€ ¢’ cos « . (3.81)

Then, writing explicitly A and B [Eq. (3.69)], we obtain®

FE B _c082a+cos2¢9 _cosa cosf
v& ¢ 2tanh(D/f)  sinh(D/f)’

(3.82)

where we neglected the I'/¢ term, as it is just an additive constant. Plots of E
[Eq. (3.82)] are shown in Fig. 3.12(a), with respect to D, for some values of

== cosa=—0.5; cosf=—0.9 [ mm cosf= 0.9;c0sa=0.9] = cosf=09 ; cosa=—0.5
E '04 1 1 1 1 1 T _02 T 1 1 T 1 1 1
75t 06 | 03F .
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o7 | 00 i .
1.4 . -60H -
1.6 0.8 | 80 it vt . -
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Figure 3.12: Plot of (a) the energy E [Eq. (3.82)] and (b) the capillary force F = dE/dD
[Eq. (3.83)] for two vertical plates adsorbed at a fluid-fluid interface and at a surface-
to-surface distance D (see Fig. 3.10). The insets show the close-range D < ¢, with D/¢
in logarithmic scale. Note that the two plates attract each other if F' is positive, repel
if F' is negative, and are at equilibrium if F' = 0. The Young’s contact angle of the two
plates are, respectively, # and «, the fluid-fluid surface tension is 7y, the capillary length
is £, and the length of the system in the translational invariant direction is &,.

ginh(z) = (e — e~ ") /2, cosh(z) = (e + e~ *) /2, tanh(z) = sinh(z)/ cosh(z).
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and a. Finally, from Eq. (3.82), we calculate the capillary force F' = dE/dD
between the two vertical plates, obtaining™
F cos? o + cos? f coth(D/?)

) 0. 3.83
v &y 2 SinhQ(D/f) + sinh(D/?) COS (¢ COS ( )

Plots of F' [Eq. (3.83)] with respect to D, for some values of § and «, are shown
in Fig. 3.12(b). As shown, the two plates attract each other when cos# and cos «
have the same sign, and the higher their modulus, the stronger the attraction.
Instead, for cos@ and cosa with opposite signs, there is a maximum in F [Eq.
(3.82)] for a certain distance D* between the plates, therefore the plates repel
each other if D > D*  and they attract each other if D < D*. In the limit case
cos ) = — cos «, the maximum in the energy F [Eq. (3.82)] is in D = 0, therefore
the plates repel each other for any D.

3.11 2D-MENISCUS DIVERGENCES DUE TO INVERSE GRAV-
ITY

Inspired by the results in Section 3.7, in this Section we verify if the fluid-fluid
interface of a system with translational invariance has divergent undulations if
we invert the direction of the gravity force (see note ix at page 40), analogously
to the axisymmetric case. We consider the same system of the previous section,
i.e. a meniscus between two vertical plates at a surface-to-surface distance D and
with Young’s contact angle 6 and «, respectively (see Figure 3.10). However, here
we impose the gravity force to be parallel to the z axis. As the fluid below the
fluid-fluid interface (with respect to z) is the heaviest, this situation is in principle
unstable. A more accurate analysis of this system should include the dynamics
of the fluids. Also, note that the linear approximation becomes less precise when
the fluid-fluid interface shows substantial deformations. The study we report in
this Section is mainly for mathematical curiosity, to explore the consequences of
changing the sign of the gravity term in the Young-Laplace Equation.
Since we inverted the gravity direction, the Young-Laplace Equation is expressed
by Eq. (3.35) and not by Eq. (2.2). Therefore, its linearized 2D version [Eq.
(3.65)] becomes

d’h _ h-C

de? 2
with C defined by Eq. (3.66). The solution of Eq. (3.84) is **iil (see also note vi
at page 38)

(3.84)

h=Ae*t + Be ®/t 4 C . (3.85)

*icoth(z) = 1/ tanh(z).

**iliThe solution of d?h/dz? = —h/#? is h(x) = a cos(b+xz/£). Using Euler’s formula exp(i z) =
cos(z) +1 sin(z), it follows cos(x) = [exp(i ) + exp(—i x)]/2, from which we can rewrite h(z) as
h(z) = A exp(iz/l) + B exp(—ix/f). Here a, b, A, B, are all integration constants.
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The boundary conditions to determine A and B, obtained imposing Young’s Law
inz =0 and x = D, are expressed by Eq. (3.68), and, for h(x) given by Eq.
(3.85), they imply

A _cosa + cosfe D/t B _cos o 4 cos et D/t

7T VT gD/ _g=iDjt 0 g T ' T gD _g—iDjt - (3.86)

As boundary condition to determine C, we fix the fluid volumes by Eq. (3.70),
obtaining that C is given by Eq. (3.71).XV The height profile h(z) [Eq. (3.85)],
with A and B [Eq. (3.86)] explicitly written, is™V

h C cos & T cos 6 z—D
¢ 7 sin(Dje) (Z) " sin(D/0) C°S< ] > ‘ (3:87)
Plots of h(z) [Eq. (3.85)], for A, B, C given by Eqgs. (3.86) and (3.71), are
shown in Fig. 3.13 for several values of D/¢ and for (a) cos@ = cosa = 0.2, (b)
cos = 0.2, cosa = —0.2. As speculated, the meniscus equilibrium height profile
h(z) shows (static) undulations, analogously to the axisymmetric case presented
in Section 3.7. Such an intriguing behavior is clearly connected to the unstable
situation considered, because the heaviest fluid, below the interface with respect
to z, would prefer to stay above, as the gravity is parallel to the z axis. Note that
h(z) is not defined for D = nr ¢, with n any integer, because of the 1/sin(D/¢)
term in Eq. (3.87).

We are interested now in calculating the capillary force between the vertical
plates, for this reversed-gravity system. Therefore, we impose AP = 0 to have a
flat interface far outside the plates, implying C' = 0 in Eq. (3.85). Analogously to
Section 3.10, where we considered the capillary force between two vertical plates
with the usual direction of the gravity (i.e. antiparallel to z), the energy E of
the system is given by Eq. (3.73). However, in the present case, the meniscus
height profile is given by Eq. (3.85), with C' = 0. So, by analogous calculations
to Section 3.10, the various terms of E [Eq. (3.73)] result

70 = A/l + B/, (3.88)
hp A ipnw B _ipp

D _ Ly D, 7 (3.89)
S,+S A%/ . .B? / ;2 DAB T

7 _z@(e 7 —1)—2@(6 ‘ —1)4‘?5724‘?7 (390)
Eg ,A2 3 2D .BQ _; 2D DAB
’Y‘Syg_—zrgz (e [ —1)—|—Zm (e ‘ —1)—}—7672 (391)

Using Egs. (3.88), (3.89), (3.90), (3.91), it follows that E [Eq. (3.73)] with

>V Fquation (3.70) for h(x) given by Eq. (3.85) is AfOD e'®/*dz+ B fOD e" i/t dr 4+ C fOD dx =
) _ D

0, from which [Z'Bﬁe_“”/Z —iAée”/[} = —CD. Then, writing explicitly A and B [Eq.
0

(3.86)], it follows Eq. (3.71).
**¥Using cos(z) = [exp(i ) + exp(—ix)]/2 and sin(x) = i[exp(—ix) — exp(i z)]/2.
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Figure 3.13: Height profile h(x) of a meniscus between two vertical solid surfaces in
xz=0and z = D (see Fig. 3.10), as obtained by Eq. (3.85), with A, B, C given by Egs.
(3.86) and (3.71). The Young’s contact angles, 6§ in x = 0 and « in © = D, are given
by (a) cosf = cosa = 0.2, (b) cosf = 0.2, cosa = —0.2. The fluid volumes are such
that a flat meniscus corresponds to z = 0. The capillary length is ¢. Here the gravity
is inverted, i.e. g is parallel to the z axis (see note ix at page 40), with the fluid below
the interface being the heaviest. The dotted vertical lines indicate 7/¢ and its multiples.
Note that h(x) is not defined in D = n ¢, with n any integer [see Eq. (3.85)].

respect to A, B, D is

B _,PAB (4 By o (2e? Bt + L a2
7€y£ = E £2 g e COS g (& e e COS ¥ g . .

Then, writing explicitly A and B [Eq. (3.86)], we obtain

'nyf - [2815(/12)/@ +C°t(D/€)} (cos? a + cos® ) +
e <Z{1€()DC/O;)(D/£> cosa cosf (3.93)

where we neglected I'/¢, as just an additive constant. Plots of E [Eq. (3.93)] are
shown in Fig. 3.14, where we report also the capillary force F' = dE/dD obtained
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from Eq. (3.93), and explicitly given by

F 14+2(D/?) cot(D/¢) 9 9
Z 0
e [ 25in?(D)0) (cos Q + cos ) +
cot(D/l)  cos(D/E) [ D/t } D/t }
- 2 — 6. (3.94
R brrer it vl 7] ) S D
As shown in Fig. 3.14(a), for cosf = 0.1 and cosa = —0.2 the energy F

[Eq. (3.93)] positively diverges for D — nn{, with n any integer, because for
such a D this theory predicts a divergent meniscus height profile. In the cases
cosf = cosa = 0.2 and cos § = — cosa = 0.2, instead, the meniscus height profile,
and consequently the energy E, diverges only for D — 27/ and D — (2n+ 1) ¢,
respectively. As shown in Fig. 3.14(b), the capillary force F' [Eq. (3.94)] drives
the two plates at equilibrium distances D, corresponding to the energy minima,
and recurring once every ¢ in the case cosf = 0.1 and cosa = —0.2, and once
every 27 £ in the cases cos = 4+ cosa. We remark, however, that we are deal-
ing with an unstable system, because the heaviest fluid, below the interface with
respect to z, would prefer to stay above, as the gravity is parallel to z. This phe-
nomenon is known as Rayleigh-Taylor instability [93], and dynamic effects need

E 0.4 T T 0.4 T T T 7 0.4 T T Vv
eyt \/ 0.3} j 4 o03f \} U :
0.3 1
0.2 1 0.2 B
0.2 1
0.1F 4 01 K B
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Figure 3.14: Energy E [Eq. (3.93)] and capillary force F = dE/dD [Eq. (3.94)] for two
vertical plates adsorbed at a fluid-fluid interface and at a surface-to-surface distance D.
This system is sketched in Fig. 3.10, but here the case with inverse gravity, i.e. g parallel
to the z axis, is considered (see note ix at page 40). Note that the two plates attract
each other if F' is positive, repel if F' is negative, and are at equilibrium if F = 0. The
Young’s contact angles, 6 in x = 0 and « in = D, are given by (a) cos = cosa = 0.2,
(b) cosf = 0.2, cosaw = —0.2. The fluid-fluid surface tension is v, the capillary length is
¢, and the length of the system in the translational invariant direction is &,. The dotted
vertical lines indicate 7/¢ and its multiples.
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to be included to describe it more accurately. In addition, we are using the linear
approximation of the Young-Laplace Equation, which holds for small deforma-
tions of the meniscus height profile, while here non-linear effects of the meniscus
shape seem important. The main aim of this Section, and alike of Section 3.7,
was just to explore the consequences of inverting the sign of the gravitational
force in the Young-Laplace Equation, mainly for mathematical interest.

3.12 CONCLUSION

In this Chapter we presented the linearized Young-Laplace Equation [Eq. (3.3)],
which is an approximated and easier-to-solve version of the Young-Laplace Equa-
tion [Eq. (2.2)] for small deformations of the fluid-fluid interface shape.

In Sec. 3.3, we derived a solution of such an equation in the form of a multipole
expansion [see Eq. (3.14)], to describe the deformation field induced in the height
profile of a fluid-fluid interface by an adsorbed particle with a pinned three-phase
contact line of given position. This result is at the base of several theoretical
works in the literature, e.g. Refs. [86-91], where the capillary force between ad-
sorbed particles generating a given deformation field is analytically computed.
In Sec. 3.4 we studied the wetting of a vertical solid cylinder at a flat fluid-fluid
interface infinitely extended, and in Sec. 3.6 we investigated the finite-size effects
due to an external vertical wall enclosing the system. In Sec. 3.8, we studied
the height profile of a meniscus in a cylindrical vertical tube, and showed that
the linearized Young-Laplace Equation implies Jurin’s Law. These results will be
exploited in the next Chapter, where we introduce a new numerical method for
the equilibrium shape of a fluid-fluid interface, to test and verify the correctness
of our numerical predictions.

From the analytical expression of the meniscus height profile, the capillary force
acting in a system can also be analytically derived. To show an illustrative ap-
plication of this, in Sec. 3.9 we compute the force necessary to deform a flat
fluid-fluid interface by displacing an adsorbed sphere, pinned at the interface,
in the direction orthogonal to the interface plane. As shown, such a force [Eq.
(3.63)] is elastic in nature, with spring constant k [Eq. (3.64)]. In Ref. [85] ex-
perimental results are shown for the case of a sliding three-phase contact line.
Here, as the purpose of these calculations was mainly illustrative, we assumed for
simplicity a fixed three-phase contact line on the particle surface. Then, in Sec.
3.10, also for illustrative purpose and for completeness, we calculated the capil-
lary force between two vertical plates adsorbed at a flat fluid-fluid interface, and
possibly with different contact angles. According to the sign of the deformations
induced by the plates in the interface, i.e. if they are depressions or rises, the
two plates can attract or repel each other.

Finally, in Secs. 3.7, 3.8, and 3.11, we explored the consequences of inverting the
sign of the gravity force in the Young-Laplace Equation. As a result, the equilib-
rium shape of the meniscus is characterized by (static) undulations, which diverge
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in amplitude for certain sizes of the system. As we mentioned, this analysis was
done mainly for mathematical curiosity, and more accurate physical predictions,
which go beyond the purpose of this Thesis, should include also the dynamics of
the fluids, as the treated system is unstable (Rayleigh-Taylor instability [93]).
The main goal of this Chapter was to provide an analytical framework to compare
the numerical results for the equilibrium shape of fluid-fluid interfaces obtained
from the method we will introduce in the next Chapter. Indeed, despite the
simplification introduced by the linear approximation, a major complication still
remains in solving the Young-Laplace Equation for many applications, e.g. ad-
sorbed particles at a fluid-fluid interface, that is the position of the three-phase
contact points is in principle unknown. This free boundary problem will be solved
by the numerical approach introduced in the next Chapter.
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CHAPTER

A NEwW NUMERICAL METHOD
FOrR MINIMUM-ENERGY
SURFACES

In this Chapter, we introduce a new numerical method to calculate the equi-
librium shape of a fluid-fluid interface by minimizing the (free) energy of the
system. First, we illustrate the basic mechanism of the method (leaving a more
detailed description of its implementation to the Appendixes at the end of the
Chapter), then we present illustrative results in 2D and 3D to validate the cor-
rectness and precision of the method, and show its applicability to a wide range of
problems involving fluid-fluid interface. In particular, we prove the applicability
of our method for studying capillary deformations induced by colloidal particles
adsorbed at flat fluid-fluid interfaces.
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4.1 INTRODUCTION

Explicit knowledge of the fluid-fluid interface shape is required in many differ-
ent problems of Soft Matter or related fields. For example, to study the capillary
interactions between particles adsorbed at a fluid-fluid interface, the capillary de-
formations induced by the particles in the interface shape need to be predicted.
As shown in Chapter 2, the equilibrium shape of a fluid-fluid interface is fixed by
the Young-Laplace Equation [Eq. (2.2)], with Young’s Law [Eq. (2.18)] imposed
as boundary condition in the three-phase contact points, i.e. where the fluid-fluid
interface is in contact with a solid surface. Analytical solutions of such an equa-
tion are possible only in problems with very trivial geometries, e.g. a meniscus
close to a vertical wall, or a 2D droplet wetting a flat substrate and in absence
of gravity, see Secs. 2.6.1 and 2.6.2. By applying the linear approximation to the
Young-Laplace Equation, as shown in Chapter 3, analytic solutions in terms of
Bessel functions can be obtained in a wider range of problems. However, even in
this approximation, a main issue remains for practical applications to particles
adsorbed at the interface, that is the position of the three-phase contact line, i.e.
where Young’s Law boundary conditions are applied, is not known a priori. To
approach this free boundary problem [94], an alternative route arises from Sec.
2.5, where we showed that calculating the shape of a fluid-fluid interface that
minimizes the energy E [Eq. (2.24)] is equivalent to solving the Young-Laplace
Equation and, simultaneously, the boundary conditions given by Young’s Law.
In this Chapter, we introduce a new numerical method to calculate such a shape,
given as input parameters the volume of the two fluids and the shape, position
and Young’s contact angle of the solid surfaces in the system.

Other numerical methods to calculate the equilibrium shape of a fluid-fluid inter-
face as a minimum-energy surface already exist. A widely used software in the
Soft Matter community is Surface Evolver [95]. A hybrid energy-minimization
method specifically developed to study equilibrium shapes of droplets wetting
hydrophilic-hydrophobic patterned surfaces was recently introduced in Ref. [96].
However, the choice of developing independently a new numerical method, with a
home-made code written from scratch, allowed us to easily adapt the method for
studying all the problems presented in this thesis, involving in particular one or
many particles with various shapes adsorbed at fluid-fluid interfaces, or droplets
wetting non-trivially-curved (and, possibly, chemically heterogeneous) solid sur-
faces. The method is simply implementable, and an illustrative algorithm for its
implementation in 2D and 3D is reported at the end of this Chapter, in Appendix
A and B, respectively.

Alternatively, more general approaches which include also the dynamics of the
fluids can be used to compute fluid-fluid interface shapes, for example numeri-
cal methods which solve the two-phase Navier-Stokes Equation for sharp inter-
faces [97-99] or diffuse interfaces [100], Lattice-Boltzmann simulations [18,101—
104], Molecular Dynamics [105-108] and Dissipative Particle Dynamics [109] ap-
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proaches, and various Diffuse Interface models [110-112]. Each of these methods
has its own pros and cons. In general, compared to energy minimization ap-
proaches, they all require much more computational time, and they are more
imprecise and less reliable in calculating the fluid-fluid interface shape in the
equilibrium limit, as they are focused on the dynamics of the fluids. Therefore,
as in this thesis we do not include fluid dynamic effects and we are interested only
in equilibrium shapes of fluid-fluid interfaces, we will follow a minimum-energy
approach.

4.2 NUMERICAL METHOD DESCRIPTION

In this Section we describe the basic mechanism of our new numerical method to
predict the equilibrium shape of a fluid-fluid interface. An illustrative algorithm
to implement this method is reported in Appendix A for 2D systems (i.e. with
translational symmetry, such that the fluid-fluid interface can be represented by
a curved line in a 2D space), and in Appendix B for 3D systems (i.e. such that
the fluid-fluid interface is a curved surface in a 3D space).

The basic idea of the method is to find the shape of the fluid-fluid interface
that minimizes the (free) energy E [Eq. (2.24)]. This is done by numerically
calculating the interface shape that minimizes the potential

B0 = 75+’71W1+’72W2+QP1/

zdxdydz +gp2/ zdxdydz, (4.1)
%1

Vo

with the constraint that the volumes V7 and V5 of fluid 1 and fluid 2 have a fixed
input value. Here S, Wi and W5 are the area of the fluid 1-fluid 2, solid-fluid
1 and solid-fluid 2 interface, respectively. Note that S, Wy, Ws, Vi, Vo and =g
are functionals of the fluid-fluid interface shape. From the Lagrange multipliers
theorem, it follows that we are minimizing, with respect to the interface shape,

the energy
==Z0—PVi—P Vs, (4.2)

with the Lagrange multipliers P, and P, depending on the choice of V; and V5.
The energy F in Eq. (4.2) is, indeed, the energy potential E defined in Eq.
(2.24), with P, and P» the bulk pressure of fluid 1 and fluid 2, respectively.
As proved in Sec. 2.5, the shape that minimizes E is the solution of the Young-
Laplace Equation and Young’s Law, i.e. is the equilibrium shape of the fluid-fluid
interface. For convenience, instead of Z¢ [Eq. (4.1)], we numerically minimize,
by keeping the fluid volumes constant, the potential = = Zy — =¢, with Z¢ =
Y12+ gp1 fvzd:vdydz, YX=Wi1+ Wy and V =V 4 Vo, that is

E = |S—Wycosf+ (2 g zdr] , (4.3)
2

where cos 6 is defined using Young’s Law [Eq. (2.18)] and ¢ is the capillary length
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[Eq. (2.3)]. Note that Z¢ does not depend on the fluid-fluid interface shape, so
minimizing = or =y with respect to the interface shape is equivalent. Therefore,
given the fluid volumes and the position of the solid surfaces, the input param-
eters that determine the equilibrium shape of the fluid-fluid interface are ¢ and
cosf.!

To focus on the basic mechanism of the method, we now describe its operating
principles for systems with translational invariance along the Cartesian coordi-
nate y, so that the fluid-fluid interface can be represented by a 2D profile. An
illustrative algorithm to implement our method for more general 3D systems
without symmetries is reported in Appendix B. We represent the interface profile
using a set of points forming a 1D grid, as shown in Fig. 4.1. We indicate the
two extreme points of the grid with C; and Cs, which are constrained to stay
on the imposed solid boundaries of the fluid-fluid system. We call free points
the remaining points P;, with ¢ = 1,... N, and these are allowed to be wherever
outside the solids in the (z, z)-plane. The interface is given by the set of segments
linking any two consecutive points (by definition P;; is consecutive to P;, Py
to C; and Cy to Py). The fluid volume is set by the initial positions of the grid
points. The interface equilibrium shape follows from the positions of the points
that minimize = [Eq. (4.3)] fulfilling the constraint of a fixed volume for the fluids.
To find these positions, we apply a Simulated Annealing algorithm [113], that is
an adaptation of a Monte Carlo method where a temperature-like parameter is
introduced and gradually lowered during the simulation. This drives the system
toward its minimum energy configuration in a way that resembles an annealing
process, from which the name of the method. In our model we change randomly
the point positions, keeping the fluid volumes Vi and Vb constant and not al-
lowing unphysical configurations (for details see Appendixes A and B). Every
configuration change is then accepted with probability

- 1, if AZ <0 (4.4)
N exp(—é—%), it A= >0 '

Figure 4.1: Sketch of a fluid-fluid
interface represented by a set of Solid
points Py, Ps,... Py and attached | gy/id
to the solid walls in C7 and Cs.
In the simulation, these points are

moved until the configuration that z
minimizes E [Eq. (4.3)], for the I
fixed volumes Vi and V5 of the flu- X s

ids, is found. Y

By definition, see Eq. (2.18) and Fig. 2.2, the Young’s contact angle 6 is taken inside fluid
2, which is by convention the heaviest of the two fluids and stays below the interface.
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where AE is the variation of = [Eq. (4.3)] between the old and the new con-
figuration of the points, T is the temperature-like control parameter, and kg
is the Boltzmann constant. In the simulation, these configuration changes are
performed continuously while T is gradually lowered starting from an initial Tg.
When T reaches zero, the simulation ends. Thanks to the randomness involved,
the Simulated Annealing has the advantage of providing escape routes out of
metastable states, unlike energy-gradient methods. However, the speed of the T’
decrement and the initial value Ty must be chosen slow and high enough, respec-
tively, to ensure the minimum is found. To avoid metastable states, kg Ty needs
to be much bigger than the energy barrier of these states. An adequate choice of
Ty and its decrement speed depend also on the discrepancy between the initial
configuration of the points and the final solution. As a general rule: the slower is
the decrement of T, the better is the approximation of the final solution. If dif-
ferent equivalent global minima of the energy are present, then the method finds
randomly only one of these. A detailed description of an illustrative algorithm
to implement our method for 2D and 3D systems is reported in Appendix A and
B, respectively. Note that, in principle, our method can be adapted to work at
constant pressure instead of at constant volume, by removing the constraint of
a fixed volume, and by minimizing the potential E [Eq. (4.2)], instead of Z [Eq.
(4.3)]. This can be useful, for example, for studying particles adsorbed at curved
fluid-fluid interfaces.

4.3 TESTS AND ILLUSTRATIVE RESULTS FOR 2D SYSTEMS

In this Section we illustrate results obtained from our method for 2D systems,
using the algorithm described in Appendix A. The main aim is to validate our
method with simple tests and show that it is applicable to a wide range of physical
problems involving the equilibrium shape of fluid-fluid interfaces. All the systems
shown here have translational invariance in the y direction, i.e. in the direction
pointing out of the paper. The simulation parameters (N, Ty, etc.) used in the
algorithm of Appendix A for all the calculations in this Section are reported in
Table 4.1.

4.3.1 MENISCUS CLOSE TO A VERTICAL WALL

First, to prove the accuracy of the method, we consider the case of a fluid-fluid
interface in the half-space x > 0 close to a vertical wall located in the plane = = 0.
As shown in Sec. 2.6.1, the height profile h(x) of the meniscus is expressed by the
inverse relation in Eq. (2.63). In Fig. 4.2 we show the interface profiles obtained
from our numerical method with N = 28 free points of the grid for different values
of cos 0. For comparison, we also plot the corresponding analytical solutions of Eq.
(2.63), which are indistinguishable from our numerical curves. To reproduce the
flatness of the meniscus for x — oo, we placed another vertical wall with contact
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Figure 4.2:  Height profiles h(z)
of fluid-fluid menisci with capillary /€
length /¢ close to a vertical wall in the 1.5 \Lg

plane x = 0, for different contact an-
gles 6. The full lines are obtained 1
numerically from our algorithm and
shifted in z to have the same asymp- 05|
totic height for  — co. The dotted
lines are the analytical solutions from of —
Eq. (2.63), indistinguishable from the
numerical curves. In the inset, the 05|

= oS0 = 0
== cosf = —0.5
e COS 0 = —0.9

numerical values of the capillary rise /

ho (black crosses) are compared with — “1[{ ‘ , ‘ ‘ ‘ ‘ ' 1
the analytic result (full line) of Eq. 0 05 1 15 2 25 3 35 4
(2.58). x/€

angle 7/2 at © = 20/¢ (i.e. far beyond the scale of Fig. 4.2). All the numerical
and analytical solutions shown are slightly shifted in z such that h(20¢) = 0. The
inset of Fig. 4.2 also shows excellent agreement between our numerical results
and the analytic expression Eq. (2.58) of the contact height.

In Fig. 4.3 we study the influence of the number of points on the solution. We
consider the system of Fig. 4.2 for the case cosf = 0.9, and we show in Fig. 4.3
the numerical solutions we obtain using a grid with (a) N =3, () N =8, (¢) N =
18, (d) N = 38 free points, respectively. For convenience the solution is shown
for 0 < z < 104, while the right limit of the system is in z = 20/, so not all the
points of the solution are visible in the figure. We see that even for a few points
our numerical solution matches fairly well with the analytical one (dotted line).
It is interesting to note that the density of points is higher where the interface
is curved and lower in the flat region. The initial configuration, however, was an
equally-spaced grid on the x—axis. Therefore during the simulation the points
have spontaneously migrated to increase their density on the curved part of the
interface. This disposition allows the points to optimize the energy and in this
way to find the deepest minimum. In the insets of each graph of Fig. 4.3 we
plot the energy = [Eq. (4.3)] of the system with respect to the number of cycles'!
performed in the simulated annealing process. The energy converges towards
a minimum value in all the simulations, with a lower energy at higher number
of grid points N, i.e. the approximation of the numerical solution improves by
increasing N. Therefore, a good way to choose a proper value for N is to repeat
the simulation using higher values of IV, until the energy of the final solution does
not vary anymore (within the desired precision). The relatively small number of
points needed to describe the interface here is important to generalize to 3D
systems, where a 2D grid is required to represent the interface.

Ty the algorithm reported in Appendix A, one cycle is completed every time the step “1)”
is executed.
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Figure 4.3: Height profile h(z) of a fluid-fluid meniscus close to a vertical wall in z = 0
with contact angle # and cosf = 0.9. We show the numerical solutions obtained using
a grid with varying number of free points [(a): N = 3; (b): N =8; (¢): N = 18; (d):
N = 38] and the points are plotted in the graph. On the right in the half-space z > 20 ¢
the fluid-fluid system is limited by a vertical wall with contact angle 7/2. For convenience
we show the solution only in the region 0 < x < 10¢. The dotted lines are the analytical
solutions from Eq. (2.63) shifted in z to match our solutions at z = 20¢. The initial
configuration of the points is an equally-spaced grid on the x—axis. The final profiles
indicate migration of the points during the simulation to pack more on the curved part of
the interface. The insets show the behavior of the energy = [Eq. (4.3), with &, the length
of the system in y] with respect to the number of cycles performed in the simulation.
These graphs prove that during the simulation the system evolves toward configurations
with lower energy, the more so for a larger number of grid points N.

4.3.2 MENISCUS BETWEEN FLAT AND/OR CURVED SURFACES

Our numerical method is very general and allows to consider solid boundaries of
any shape, which is important for future studies of odd-shaped colloidal particles.
Here we provide some examples, presenting results for fluid-fluid menisci located
between inclined walls and/or curved solid surfaces. In Fig. 4.4 we show some
numerical solutions for the shape of a meniscus between two inclined walls. The
two walls are symmetric with respect to a central vertical axis, and, as expected,
also the solutions fulfill this symmetry. Another indication of the correctness
of our method is given by the contact angle that each numerical solution forms
with the two solid surfaces. The geometrical value, say 6%, of the contact angle
of the meniscus with each solid surface is calculated from the positions of the
point of the interface grid constrained on that surface and its first neighbor (Py
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Figure 4.4: Height profiles h(z) of fluid-fluid menisci between two inclined walls, with
{ the capillary length. Each line is a solution obtained numerically from our algorithm
using a certain value of cos 6 in the potential = [Eq. (4.3)]. The volumes of the fluids are
the same for every solution.

for C; and Py for Cy, see Fig. 4.1). The obtained values of cos#* for each
solution match very well with the input parameter cosf in E [Eq. (4.3)]. In
particular, we find that | cos 0* — cosf| < 0.05 in all cases. A higher precision can
be achieved by increasing the number of points N of the interface. In Fig. 4.5 we
present analogous results for fluid-fluid menisci located (a) between a solid curved
surface and an inclined wall, and (b) inside a cylindrical cavity with symmetry
axis pointing out of the paper. In both these systems the numerical solutions
are obtained using different values of cos#, and different volumes for fluid 2 (the
fluid below). We see that, as expected, the meniscus adapts its shape upon
changing the fluid volume to keep its contact angles with the external surfaces
constant. We point out, again, that we are not imposing a priori this constraint
for the contact angles of the meniscus, but this is automatically obtained upon
minimizing the energy = [Eq. (4.3)] of the system.

Figure 4.5: Height profiles h(x) cosd hit 4 (@]
of fluid-fluid menisci (a) between | —09 ; —0 ; ——0.9 2| ,

a solid curved surface and an in- | /p @) 0

clined wall, and (b) inside a cylin- 1

drical cavity with symmetry axis 0
pointing out of the paper. Each 1
line is a solution obtained numer-
ically from our algorithm using a V=4
certain value of cosf in the po- T -
tential = [Eq. (4.3)], with ¢ the
capillary length. In each graph,
the solutions are obtained by as-
signing a different volume Vs to
fluid 2, i.e. the one below the
interface, with (a) A < B <
C, and (b) from top to bottom h=C
Vo/V = 0.23, Vo/V = 0.5, and 11 12 13 14 15 16
V2/V = 0.83. x/t
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4.3.3 CAPILLARY INTERACTIONS

Here we present results on the capillary interaction between two vertical and
parallel walls, although solid surfaces with any other shape can be taken into
account as well. In Fig. 4.6 we consider a system of two vertical walls, each of
width ¢, immersed in the fluid-fluid interface and at a surface-to-surface distance
D from each other. The origin of the z axis is in the middle between the two
walls. The whole fluid-fluid system is enclosed between two external vertical walls
in the half-planes x < —15¢ and = > 15/, respectively, far beyond the scale of
the graphs in Fig. 4.6. Three one-dimensional grids of points are necessary to
represent the interface: one set between the two inner central walls and the other
two between the external walls and the central walls. During the simulation,
fluid 2 can exchange volume between these three regions, but the sum of the
volumes below the three interfaces is kept constant. The central wall on the left
has contact angle 6;, the one on the right 6,,. We assign a contact angle § = 7/2
to the two external walls, to induce a flat meniscus far from the two central walls
in order to mimic an infinitely extended system. To consider in our model the
presence of solid surfaces with different contact angles, we generalize = [Eq. (4.3)]
as

E = S—ZWg(k:) cos O, + £2 /szdl'] ; (4.5)
k

where the k-sum is over all the walls, 6 is the contact angle of the k — th solid
surface and Wa(k) is its surface area in contact with fluid 2. In Fig. 4.6 we
have k = 2, with the two walls referred to as left (I) and right (r). The shape
of the fluid-fluid interface is calculated for several surface-to-surface distances
between the left and right wall, using as contact angles (a) cos@; = cos 6, = 0.8,
(b) cost; = cosb,. = —0.5, and (¢) cosf; = 0.8, cosf, = —0.5. In Fig. 4.6(a)
we see the capillary rise of the interface obtained by decreasing D, and in Fig.
4.6(b) we see the capillary drop. The height of the capillary rise is greater than
the depth of the capillary drop - at the same D - because in the former case the
contact angle has a larger absolute value. In case (c), we see the interface shape
due to the interplay between a capillary rise and drop. For each of the cases (a),
(b), (c) of Fig. 4.6, we report on the very right the effective potential Z(D) and
the force F'(D) of the capillary interaction between the two central walls, defined
as F' = d=/dD. Here Z(D) [Eq. (4.5)] is computed from the equilibrium shape
of the fluid-fluid interface as described in Appendix A. In the insets we show
=(D) shifted to be zero at D = 5¢. We consider F' only for D < 5/, such that
the minimum distance between the central walls and the external walls always
exceeds 10£. So we can reasonably assume that the effects of the external walls
on F are negligible. For both the cases (a) and (b) we see an attractive force.
In (a) the force is stronger than in (b) because the absolute value of the contact
angle is greater. In (c¢) we observe a repulsive force at large separations due to the
fact that cos#; and cos 6, have different signs. However, there is a maximum in
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Z(D) for D ~ 0.5¢ and so an attractive force between the walls exists when they
are closer than about 0.5¢. This is caused by the different absolute value of cos 6;
and cos 0, which generates a slight capillary rise for small D, as we can see in Fig.
4.6 (¢). In Fig. 4.7 we report the D dependence of the capillary rise h, between
the two walls at = 0, for the cases (a) and (b) of Fig. 4.6. The reference level
z = 0 is the height of the interface at x = £15¢. Our numerical values (symbols)
are compared with the approximate analytical result (line) given by
202

he = ) cosf . (4.6)

Eq. (4.6) follows from the approximation that the meniscus between two narrow
vertical walls has a cylindrical shape'l. To check this, use that the mean curvature
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Figure 4.6: (Left) Height profile of a horizontal fluid-fluid interface in contact with two
vertical walls of width equal to the capillary length /. The system has translational
invariance in the y direction, i.e. perpendicularly to the plane, and it is limited by two
external walls with contact angles 7/2 in the half-spaces x > 15¢ and = < —15¢, beyond
the scale of the plot. The central wall on the left has contact angle 6;, the one on the
right 0,.. The interface shape is calculated numerically by our method and it is shown for
different surface-to-surface distances D between the walls, for (a) cos 6 = cos 6, = 0.8, (b)
cos B = cosf, = —0.5, (¢) cos; = 0,8, cosf, = —0.5. (Right) The effective interaction
potential Z(D) [Eq. (4.5)] of the system, with + the fluid-fluid surface tension and &,
the length of the system in the y direction. The capillary force F(D) = d=/dD acting
between the walls is plotted in the insets.

iTndeed, if the distance between the two walls is much smaller than the capillary length,
then gravity effects are small and so the mean curvature of the meniscus is almost constant.
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V - 10/2 of a surface can be written as —(R; ' + Ry')/2, where Ry and Ry are
the two principal radii of curvature. For the central point of a meniscus with
cylindrical shape Ry = R, with R the radius of the circular section of the cylinder,
and Ry = oo. Then applying Eq. (2.2) for x — £15¢, it follows AP = 0, because
here V - n = 0, as the interface is flat, and h = 0 for the choice of the reference
level. So the Young-Laplace Equation [Eq. (2.2)] for the central point of the
meniscus becomes: 1/R = h./(?. Eq. (4.6) follows using that D = 2R cos  [see
Fig. 4.6 (c), right panel]. The agreement of our numerical values with Eq. (4.6)
is quite good for D < £, confirming that the approximation of a cylindrical shape
for the meniscus is good for small D.

ke iay 2 0) ©
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Figure 4.7: Capillary rise h. of the central point of a meniscus between two vertical
walls for (a) cos§ = 0.8 and (b) cosf = —0.5, with respect to the surface-to-surface
distance D between the walls (the meniscus equilibrium shape is shown for some values
of D in Fig. 4.6). The symbols are our numerical values, the line is the analytical result
from Eq. (4.6), obtained by approximating the meniscus with a cylindrical shape. Our
results confirm that the larger is D, the poorer is this approximation. In (¢) a meniscus
with a cylindrical shape is sketched.

4.3.4 2D SESSILE AND PENDANT DROPLETS

In this Section we show that our numerical method is usable also for studying
equilibrium shapes of droplets wetting flat or curved solid surfaces, including,
possibly, the effects of gravity. Note that here we consider only 2D droplets,
while results for 3D droplets are presented in Chapters 7 and 8. In Fig. 4.8(a) we
report the equilibrium shape of a 2D sessile droplet on a flat solid surface. The
droplet is formed by fluid 2, which is the heavier of the two fluids. The numerical
solutions are computed using different values of the capillary length ¢ and the
contact angle 6 in = [Eq. (4.3)]. For a fixed v, decreasing ¢ means increasing
Ap [see Eq. (2.3)]. Indeed, in each graph of Fig. 4.8, for droplets with the same
volume and contact angle, the effect of the gravity on the droplet shape increases
by lowering £. As shown, our method is able to treat also cases with very low
wettability [see the case cosf = —0.9 in Fig. 4.8(a)]. As another indication of
the correctness of the method, the equilibrium shapes are symmetric with respect
to a central symmetry axis (in the figure the solutions are shifted in z to align
their symmetry axes). In Fig. 4.8(b) we show analogous results, but obtained

Note, however, that gravity is not negligible in this system.
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Figure 4.8: Equilibrium height profile h(x) of a 2D sessile droplet on a flat solid surface.
The fluid forming the droplet is heavier than the fluid outside. The solutions are obtained
numerically from our method using different values of cosf in Z [Eq. (4.3)]. (a) The
capillary length ¢ is varied, while the 2D volume V of the droplet is kept fixed. As
expected, our solutions show, for a fixed cosf, an increasing flattening of the droplet
shape with decreasing ¢. (b) The capillary length ¢ is kept fixed, and V' is tuned.
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using a fixed value of ¢ and tuning the volume of the droplet. Note that, as
analytically proved in Sec. 2.6.2, a 2D droplet wetting a flat solid surface has a
circular segment shape in the limit £ — oo (or, equivalently, V' — 0).

In Fig. 4.9 we show equilibrium shapes of 2D droplets pending (a)-(b) from a flat
horizontal solid surface and (c¢) from a highly curved solid surface. Here, fluid 2
forms a droplet that is located above the lighter fluid 1. The droplet does not
fall down because it is wetting an upper solid surface that keeps it in mechanical
and thermodynamical metastable equilibrium. Such a situation is obtained in
our model by changing the sign of the gravity vector, i.e. expressing = as

E =4 S—WQCose—N/

; zdr] , (4.7)

instead of using Eq. (4.3). Note that also a sessile droplet formed by a fluid
lighter than the surrounding fluid has an energy given by Eq. (4.7), with the
minus sign multiplying 2 due to a negative Ap [see Eq. (2.3)]. Therefore, the re-
sults we present for pendant droplets are likewise valid for sessile droplets lighter
than the surrounding fluid.

In Fig. 4.9(a) the equilibrium shapes of pendant droplets from a flat solid surface
are numerically obtained using different values of ¢ and cos 6, for a fixed droplet
volume V. In Fig. 4.9(b) analogous results are shown, but varying the 2D vol-
ume V of the pendant droplet and keeping constant ¢. As an indication of the
correctness of our method, the equilibrium shapes are symmetric with respect to
a central symmetry axis (in the plots, the solutions are shifted in = to align their
axes). As expected, these results show that by decreasing ¢ in (a) and increasing
V in (b), the effect of gravity on the droplet shape becomes stronger. If ¢ is too
low, or V' too big, then all the free points of the interface grid, instead of going
toward an asymptotic shape, keep going in the direction of g until the simulation
stops. This corresponds to the physical situation in which gravity is too strong,
so the pendant droplet is not stable and prefers to detach itself or partially fall
down. Note, however, that unstable pendant droplets could still seem stable using
our method, if the simulated annealing is not slow enough or 7y not high enough,
because the grid points get frozen in a metastable state before they manage to
fall down. For a 2D droplet pending from a flat solid surface the stability condi-
tion can easily be found analytically. Indeed, see Fig. 4.9(c), the modulus of the
total surface tension force keeping the droplet attached to the solid is 2 sin 6,
while Fy = gV Ap =~V/ £? is the modulus of the gravitational force pulling the
droplet down. So the 2D pendant droplet is unstable if V' > 2¢%sin 6"V,

In Fig. 4.9(d) we show analogous results, but for the equilibrium shape of droplets
pending from a highly curved solid surface. The solid surface is symmetric with
respect to a central symmetry axis, and indeed - for fixed cos @, ¢, and droplet
volume - two different solutions exist, one being the mirror image of the other

VFor a 3D droplet pending from a flat surface, this condition becomes V > d £2 sin 0, with
d the diameter of the circular solid surface wet by the droplet.
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Figure 4.9: Equilibrium height profile h(z) of 2D pendant droplets. The fluid forming
the droplet is heavier than the fluid outside. The solutions are obtained numerically from
our method using different values of cosf in = [Eq. (4.7)]. (a)-(b) 2D pendant droplets
from a flat solid surface. In (a) the capillary length ¢ is varied, while the 2D volume V of
the droplet is kept fixed. As expected, our solutions show, for a fixed cos 6, an increasing
flattening of the droplet shape with decreasing ¢. In (b) the capillary length ¢ is kept
fixed, and V is tuned. (c) Sketch of a droplet pending from a flat surface. The droplet
is unstable if the gravitational force pulling it down is stronger than the surface tension
force keeping it attached to the solid. (d) 2D droplets pending from a highly curved solid
surface. Here the droplet volume is constant and £ is tuned. As shown, by tuning cos ),
the droplet prefers to wet a solid surface with different curvature.

with respect to this axis (in a single simulation our method finds randomly one of
these two solutions, and in the graphs we show only the solutions on one side of
the solid surface). Note that the minimum-energy equilibrium shape of the pen-
dant droplet changes its position on the curved surface by tuning cos €. For high
contact angles the droplet prefers a lowly curved convex surface, for low contact
angles it prefers a highly curved convex surface. This allows the droplet to have a
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shape as close as possible to a circle, while fulfilling Young’s Law. Therefore the
final position of the droplet on the heterogeneously curved solid surface is given
by an interplay between gravitational force, fluid-fluid and fluid-solid interactions.

4.4 TESTS AND ILLUSTRATIVE RESULTS FOR 3D SYSTEMS

Our primary goal is to apply our numerical method to study micro and nano-sized
colloidal particles adsorbed at a fluid-fluid interface. In Appendix B we report a
detailed description of an illustrative basic algorithm to implement our method
for the equilibrium shape of a fluid-fluid interface, flat if no particles are present,
when in contact with an isolated 3D colloidal particle with a given position and
orientation. In this Section we present results obtained through this algorithm,
to validate and verify the correctness and accuracy of the method for 3D systems,

N x/l 5\‘1"5‘;\,?_,1?:1'5’?5//0

5 6 7 sd/@ 9 io0 11 5 6 7 8 d/ﬁ 9 10 11 12

Figure 4.10: (a) 3D view, (b) profile view and (¢) contour plot of the height profile of
the fluid-fluid interface (blue grid), as obtained from our numerical method, close to a
parallelepiped-shaped solid particle (black grid) with fixed position and Young’s contact
angle 6 (cosf = 0.9). (d) 2D height profiles of the fluid-fluid interface along the red lines
shown in the insets, where the red dots are the interface grid points. With d we indicate
the distance from the z axis. The system is externally surrounded by a vertical cylindrical
wall, at a distance 15 £ from the central axis, with Young’s contact angle /2. The dotted
line is the analytical solution of Eq. (2.63), shifted in z to match our numerical solution
ind=15¢.
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and to show its applicability to adsorbed solid particles at fluid-fluid interfaces.

4.4.1 'TEST OF THE VERTICAL WALL

To test the correctness of our method, we calculate here the deformations of a
fluid-fluid interface close to a vertical wall. As proved in Sec. 2.6.1, the height
profile of the fluid-fluid interface with respect to the distance from the wall can
be expressed analytically by the inverse relation in Eq. (2.63). To obtain this
situation in our model, we consider (see Fig. 4.10) a parallelepiped-shaped solid
particle with center of mass in (0,0, 0), in horizontal position, with height 4 ¢ and
sides of length 10/ aligned to the z and y directions respectively, where ¢ is the
capillary length [Eq. (2.3)], and a Cartesian coordinate system (z,y,2) with z
anti-parallel to the gravity g is introduced. The particle has a fixed position, and
the deformation of the fluid 1-fluid 2 interface is computed, using our method,
with respect to the desired Young’s contact angle . The fluid volumes are defined
by the initial position of the fluid-fluid interface in the simulation, which is the
z = 0 plane. Each vertical face of the particle is large enough with respect to £
to be considered as a vertical wall, at least toward its center, far from the edges.
Therefore, we expect that the meniscus along the x and y axes follows Eq. (2.63).
The whole particle-fluid-fluid system is enclosed by a vertical cylindrical wall at
distance R = 15/ from the origin, and with Young’s contact angle 7/2. In Fig.
4.10 we show the equilibrium shape of the fluid-fluid interface for cosf = 0.9. In
Fig 4.10(d) we compare the height profiles of the meniscus along the x and y axes
with Eq. (2.63), showing an excellent agreement.

4.4.2 FINITE-SIZE EFFECTS

To exploit our method for studying colloidal particles adsorbed at flat fluid-fluid
interface, we consider a fluid-fluid interface surrounded by an external vertical
wall with Young’s contact angle 7/2, and then we compute the equilibrium shape
of the interface when colloidal particles with a certain position and orientation
are placed at the interface (see Appendix B for details). As we want to model
a flat fluid-fluid interface far from the particles, it is important to estimate how
far the external wall is to be placed from the particles to avoid that its presence

Figure 4.11: Sketch of the system considered in Sec.
4.4.2: a infinitely-high vertical solid cylinder (black
grid), with radius p and Young’s contact angle 6, in
contact with a fluid-fluid interface (blue grid) with
height profile h(r), with r the distance from the cylin-
der symmetry axis. FExternally, the fluid-fluid inter-
face is surrounded in 7 = R by a vertical wall (not
shown in the picture) with Young’s contact angle /2.
The gravity direction is opposite to z.
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Figure 4.12: (a) Capillary rise ho [Eq. (4.8)] of a meniscus on a vertical cylinder
with radius p and Young’s contact angle 6 (with cosf = 0.9), with respect to
the radius R of the vertical wall enclosing the system and with Young’s contact
angle /2. The dotted line is the analytical prediction [Eq. (3.34)] obtained using
the linear approximation for the Young-Laplace Equation, which matches fairly
well our numerical results (circles) for p = 107/ and p = 1073 /. Instead, for
p =L, Eq. (3.34) is less accurate, because here the amplitude of the capillary
deformations is of the order of ¢, so the linear approximation is poorer. (b)-(c)
Height profile h(r) of the fluid-fluid interface between the external wall in r = R,
and the vertical cylinder of radius (b) p = 107/, and (c) p = £. The circles are
the grid points as obtained by our numerical method, while the dotted line is
the analytical prediction of Eq. (3.26), obtained by the linearized Young-Laplace
Equation.
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affects the results. For this purpose, we consider here (see Fig. 4.11) a solid
(infinitely-high) vertical cylinder of radius p with symmetry axis coinciding with
the z axis. The fluid-fluid interface, described by the height profile h(r), with
r = y/x? + y?, externally is in contact with a vertical cylindrical wall in r = R,
and with Young’s contact angle 7/2. By our numerical method, we calculate the
equilibrium shape of the fluid-fluid interface for cos @ = 0.9, with 6 the Young’s
contact angle of the vertical solid cylinder in the center. In Fig. 4.12(a), the
capillary rise hg, given by

ho = h(p) = h(R) , (4.8)

is plotted with respect to R.¥ Our numerical results (circles) are compared with
the analytical prediction of Eq. (3.34) for hg, obtained using the linear approxi-
mation for the Young-Laplace Equation (see Sec. 3.6). The analytical prediction
matches fairly well our numerical results for p = 107> ¢ and p = 1073 /. Instead,
for p = £, Eq. (3.34) is less accurate, because in this case the amplitude of the
capillary deformations is of the order of ¢, so the linear approximation is poorer.
Figure 4.12(a) shows that for R 2 5/ the effects of the external wall on the sys-
tem are negligible, because the capillary rise hg is constant in this regime. This
is true for all the values of p considered, i.e. p=/¢, p=10"3¢, and p = 1075/, so
¢ is the characteristic length that sets the interaction range between the external
wall and the solid cylinder in the center. Note, however, that here we consider
an infinitely-high solid cylinder, allowing hg to be much bigger than p, while
the capillary deformations close to colloidal particles adsorbed at the interface
are necessarily limited by the particle size."! In Fig. 4.12(b)-(c) we show, for
p =107°¢ and p = ¢, the height profile h(r) for several values of R, as obtained
by our numerical method (circles) and by the analytical prediction of Eq. (3.26).
As shown, in the case p = £ the linear approximation is less precise in predicting
h(r) than in the case p = 10~°¢, where the exact solution, neglecting the numer-
ical approximations, is given by the minimum energy solution obtained by our
numerical method.

YNote that is the fluid-fluid interface height profile h(r) that changes by tuning R.

ViTn the limit of negligible gravity, i.e. £ — oo, the particle size is the characteristic length
that sets the amplitude of the capillary deformations induced by the adsorbed particles, and
so it also sets the range of the capillary interactions between the particles. In Chapter 5, this
situation is studied in detail.
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4.4.3 CAPILLARY RISE vs PARTICLE CURVATURE

In this Section we study the capillary rise of a meniscus on a vertical cylinder
with respect to the cylinder radius of curvature. The system considered is the
same of the previous Section, see Fig. 4.11, with 6 the Young’s contact angle
of the vertical cylinder, p the radius of the cylinder and R the radius of the
external vertical wall (with Young’s contact angle 7/2) surrounding the system.
We set R = p + 10¢, which is, as proved in the previous Section, big enough to
avoid finite-size effects on the system. In Fig. 4.13, we show, for cosd = 0.9,
the capillary rise hog = h(p), as obtained by our numerical method (red dots),
and as obtained by the analytical prediction of Eq. (3.21) (black line), from
the linearized Young-Laplace Equation.V' As shown, the agreement between our
numerical results and the analytical predictions is excellent for p < 0.1¢, while
it becomes slightly worse for bigger p, as here the linear approximation of the
Young-Laplace Equation is poorer.

0.1+

=0 g0t}
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0=001¢ 107}

104 L il
10° 10 1030.01 0.1 1 10
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Figure 4.13: In (a), (b), (¢), (d), we show a 3D view of the fluid-fluid interface equilibrium
shape (blue grid) close to a vertical cylinder (black grid) with Young’s contact angle 6
and radius p, as obtained by our numerical method, for cos# = 0.9 and p = 104, p = ¢,
p = 0.014, and p = 1075/, respectively, with £ the capillary length. In (e) we show the
capillary rise hy (i.e. the height of the meniscus in contact with the cylinder on the
level of the interface far away from the cylinder) as obtained by our numerical method
(red dots), and as obtained by Eq. (3.21) (black line). The horizontal dotted line is the
capillary rise of a meniscus on a vertical wall with cosé = 0.9, as obtained by Eq. (2.58),
and corresponds to the case p/{ — oo.

p=10"¢

ViiNote that here, as we are choosing R big enough to avoid finite size effects, we obtain from
our numerical method that h(R) = 0, and therefore the capillary rise is hg = h(p) —h(R) = h(p).
For this reason, to compare our numerical results with the analytical predictions of the linearized
Young-Laplace Equation, we can use Eq. (3.21), which holds for R = cc.
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4.4.4 MULTIPOLE EXPANSION

In this Section we study the multipole expansion [Eq. (3.14)] introduced in
Chapter 3 to describe the height profile h(r,¢) of the capillary deformations
induced by a particle adsorbed at a flat fluid-fluid interface. For this purpose, we
consider a spherical particle at the interface, and a pinned undulated three-phase
contact line on the sphere surface. Given the position of the pinned three-phase
contact line, we calculate by our numerical method the equilibrium shape of
the fluid-fluid interface, using the algorithm described in Appendix B, and we
compare these numerical results with the analytical predictions of Eq. (3.14).
In our model, the sphere center of mass height is z. = 0, with the z = 0 plane
corresponding to the flat fluid-fluid interface. The z axis is antiparallel to the
gravity and passes through the sphere center of mass, r is the radial distance
from the z axis, and ¢ is the azimuthal angle with respect to the z axis. The
sphere has radius p = 0.01¢, with ¢ the capillary length. The pinned three-phase
contact line height profile h(r, ¢) is described by

4
h(ro, @) = Ao Ko(ro/0) + Y Am Kpm(ro/€) cos(m ¢ — B) , (4.9)
m=1

where r( is the radial distance of the three-phase contact line, and we assume
it as a constant not depending on ¢.V'' In Figs. 4.14, 4.15, 4.16, 4.17, 4.18,
4.19, and 4.20, we show h(r, ¢), as obtained numerically from our method, for
different values of A; and B; (for i =0,...4, j =1,...4) in Eq. (4.9). We also
compare these numerical results with the analytical predictions of Eq. (3.14),
obtained from the linearized Young-Laplace Equation. In Eq. (3.14) we use the
coefficients A; and B; used in Eq. (4.9) for i =0,...4, j = 1,...4, and we set
to zero the coefficients for ¢ > 4, j > 4. In the left and central panels of such
figures, we show the height profile h(r,¢) for a fixed r and with respect to ¢,
where the red circles are the numerical results from our method, and the black
dotted line is the analytical prediction of Eq. (3.14). In the right panels of such
figures, we show a contour plot and a 3D view of interface equilibrium shape
close to the particle, as obtained by our numerical method. In Figs. 4.14, 4.15,
4.16, 4.17, and 4.18, is shown, respectively, a monopolar, dipolar, quadrupolar,
hexapolar and octapolar capillary deformation field induced by the sphere in the
flat fluid-fluid interface. In Figs. 4.19 and 4.20, the capillary deformation field
is defined by combining different multipoles. As shown, a multipole with a lower
order decays slower than a multipole with a higher order. Therefore, far away
from the sphere, the height profile of the interface, with respect to ¢ and at a
constant r, corresponds to the multipole with lowest order appearing in Eq. (4.9).

ViliThis is actually not true. The radial distance ro(¢) of the three-phase contact line on the
sphere surface in general depends on ¢ (it would be constant if we had a vertical cylinder).
However, defining ro as the average value of ro(¢) with respect to ¢, we will consider only
three-phase contact lines where 7¢(¢) varies of max 2% — 3% from ro, so we can approximate
ro(¢) with ro.
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Figure 4.14: Height profile h(r, ¢) of a fluid-fluid interface induced by a sphere with
a pinned three-phase contact line given by h(rg,¢) = 0.5p, which is Eq. (4.9) using
AO = 05,0/K0(7’0/£), A1 = 0, A2 = 0, A3 = 0, A4 = 0, Bl = 0, BQ = 0, Bg = 0, B4 = 0,
and 7o = 0.864 p.
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Figure 4.15: Height profile h(r, ¢) of a fluid-fluid interface induced by a sphere with a
pinned three-phase contact line given by h(rg, @) = 0.5 p cos(¢), which is Eq. (4.9) using
AO = 0, A1 = 05/)/}'(1(7’0/6)7 Ag = 0, A3 = 0, A4 = 0, Bl = 0, B2 = 0, Bg = 0, B4 = 0,
and ro = 0.864 p.
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Figure 4.16: Height profile h(r, ¢) of a fluid-fluid interface induced by a sphere with
a pinned three-phase contact line given by h(rg, ¢) = 0.5 p cos(2¢), which is Eq. (4.9)
using Ao = 0, A1 = 0, A2 = 05p/K2(’}"0/€), Ag = 0, A4 = 0, B1 = 0, BQ = 0, B3 = 0,
By =0, and r¢g = 0.864 p.
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Figure 4.17: Height profile h(r, ¢) of a fluid-fluid interface induced by a sphere with
a pinned three-phase contact line given by h(rg,¢) = 0.5 p cos(3¢), which is Eq. (4.9)
USiIlg AO = 0, A1 = 0, A2 = 0, Ag = 05p/K3(7"0/€), A4 = 0, B1 = 0, BQ = 0, Bg = 0,
By =0, and ro = 0.864 p.
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Figure 4.18: Height profile h(r, ¢) of a fluid-fluid interface induced by a sphere with
a pinned three-phase contact line given by h(rg,¢) = 0.5 p cos(4¢), which is Eq. (4.9)
using AO = 0, A1 = 0, A2 = 0, Ag = 0, A4 = 05p/K4(7"0/£), Bl = 0, BQ = 0, Bg = 0,
B4y =0, and r¢g = 0.864 p.
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Figure 4.19: Height profile h(r, ¢) of a fluid-fluid interface induced by a sphere with
a pinned three-phase contact line given by h(rg, @) = 0.25p[cos(¢) + cos(2¢ — w/2)],
which is Eq. (4.9) using Ay = 0, A1 = p/[4 K1(ro/?)], A2 = p/[4 K2(ro/l)], A5 = 0,
Ay =0,B;=0,By=7/2, B3 =0, By =0, and ro = 0.968 p.



82 CHAPTER 4

h 03 T T T 0.3 T T T 1.5 T T T T T 0.15
2p r=r - i ]
2003, I L [r=00152] || s o1

le]
k 0.5 -H 0.05
b 4 L ]
of ¢ ] 0.1 ' ' p
o i S | i o
0 o 5 S o ¢ - i 3
o O S5 & 4 p
S W 05 ~|1-0.05
0.1F ‘s & | - .
1 -§-0.1
0.21 1 0.2F 4
15 I T [ 015
0.3 ' L L 03 . L L 5 -1 05 0 05 1 15
20 0.5 1 15 2 20 0.5 1 15 2 yip

h 0.3 0.03

Figure 4.20: Height profile h(r,¢) of a fluid-fluid interface induced by
a sphere with a pinned three-phase contact line given by h(rg,¢) =
0.1p[cos(¢) + cos(2¢ — 7/2) + cos(3¢p — 7/4) + cos(4¢ — 27/7)], which is Eq. (4.9)
using 4o = 0, A1 = 0.1p/Ki(ro/l), Az = 0.1p/Kz(ro/l), Az = 0.1p/K3(ro/f),
Ay =0.1p/Ky(ro/t), BL =0, By = 7/2, Bs =7/4, By = 2x/7, and 19 = 0.975 p.

4.4.5 ROTATION CAPILLARY FORCES

As an additional illustrative application of our numerical method, we calculate
here the capillary forces preventing a sphere, adsorbed at a fluid-fluid interface
and with a pinned three-phase contact line, to rotate its vertical axis from the
equilibrium configuration. This situation can be studied experimentally, for ex-
ample, by considering adsorbed spherical particles with a rough surface and a
magnetic dipole. Because of the rough surface, the three-phase contact line is
likely to be pinned, and, by switching on and off a magnetic field, the sphere
rotates to align its magnetic dipole axis. However, as the three-phase contact
line is pinned, the sphere rotation induces capillary deformations in the fluid-
fluid interface, therefore the magnetic force necessary to rotate the particle has
to compensate the capillary forces preventing such deformations.

To study this situation, we apply the algorithm described in Appendix B to cal-
culate the equilibrium shape of a fluid-fluid interface around a sphere with radius
p = 0.0057¢ and center of mass height z. at the interface reference level z = 0.
At the equilibrium the fluid-fluid interface is undeformed by the sphere, and the
three-phase contact line corresponds to the intersection of the sphere with the
flat interface plane z = 0. Assuming that the Young’s contact angle is 7/2, the
three-phase contact line is a circle of radius p. We use the algorithm described
in Appendix B to calculate the equilibrium shape of the fluid-fluid interface ob-
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tained by keeping a pinned three-phase contact line on the sphere while rotating
the sphere by a polar angle a. The energy E [Eq. (2.24)] of the fluid-fluid-particle
system, computed from the equilibrium configuration of the fluid-fluid interface
(see details in Appendix B), is reported in Fig. 4.21 with respect to the particle
rotation a. Note that here we shifted the reference level of E such that £ = 0
corresponds to the equilibrium configuration of the sphere.
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Figure 4.21: Given a sphere adsorbed at a fluid-fluid interface, with Young’s contact
angle 7/2, radius p = 0.005¢, surface area %, and three-phase contact line pinned at
the sphere equilibrium configuration, we show here the energy E to rotate the sphere
by tilting its vertical axis by an angle «. In the central and right panels we show a 3D
view and a contour plot of the equilibrium shape of the fluid-fluid interface close to the
sphere, for each «, as obtained by our numerical method. The energy F [Eq. (2.24)] is
computed by the equilibrium shape of the fluid-fluid interface, with reference level £ = 0
shifted in o = 0.
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4.5 EQUILIBRIUM CONFIGURATION OF A SINGLE ADSORBED
PARTICLE

An important application of our numerical method is the prediction of the equi-
librium configuration for a (3D) colloidal particle, possibly odd-shaped, adsorbed
at a flat fluid-fluid interface. In this Section, first it is explained how the algo-
rithm described in Appendix B is exploited for this purpose, and then we present
illustrative results for spheres, ellipsoids and cylinders.

In our model, the fluid-fluid interface is flat and coincides with the plane z = 0
when no particle is adsorbed™, and it is delimited at its boundary by a vertical
wall with Young’s contact angle 7/2. This vertical wall is placed far enough from
the adsorbed particle to not affect the system, such that our results hold for a
fluid-fluid interface that is infinitely extended and flat far from the particle. Once
a particle with a given shape is placed at the interface and the equilibrium shape
of the interface is computed, the energy FE [Eq. (2.24)] of this fluid-fluid-particle
system can be extracted, and its value depends on z., ¢ and 1, where z. is the
height of the particle center of mass on the interface reference level z = 0, ¢ is the
polar angle of the particle vertical axis with the interface, and 1 is the particle
internal Euler angle around its vertical axis (see Fig. 4.22). For convenience,
we shift by a constant the reference level of E [Eq. (2.24)] to be zero when
the particle is desorbed in fluid 2 (i.e. the heaviest fluid, below the interface),

obtaining
1
E:fy(S—A—l—chosG+€2/ de) , (4.10)
Va

where the volume-pressure terms in Eq. (2.24) are neglected in Eq. (4.10), as we
are considering a flat fluid-fluid interface, so AP = 0. Here, y is the fluid-fluid
surface tension, ¢ is the capillary length [Eq. (2.3)], S and A are the surface
areas of the fluid-fluid interface with and without particle, respectively, W7 is
the portion of the particle surface area in contact with fluid 1, # is the particle

Figure 4.22: Configuration of a colloidal parti- z
cle (black grid) adsorbed at a fluid-fluid interface
(blue grid). The height of the particle center of
mass on the interface reference level z = 0 (here
indicated by the blue line) is 2., and the polar an-
gle of the particle vertical axis with the interface
plane is (. The insets shows the internal Euler
angle 1 around the vertical axis of a cubic particle
adsorbed at a fluid-fluid interface (blue grid).

*Note that this defines the fluid volumes, which are kept constant during the minimization
of the potential = [Eq. (4.3)] with respect to the fluid-fluid interface shape (for details see
Appendix B).
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Young’s contact angle [Eq. (2.18)], and V3 is the volume of fluid 2. If the particle
is desorbed in fluid 2, then W7 = 0, S = A, and fV2 2dV = 0, because without
particle the interface coincides with the z = 0 plane, so E [Eq. (4.10)] is 0. In-
stead, if the particle is desorbed in fluid 1, it follows £ = v ¥ cos 6, with ¥ the
particle total surface area.

To sum up, the algorithm described in Appendix B is used to calculate the equi-
librium shape of the fluid-fluid interface, for a given configuration (z., ¢, 1) of the
particle. Then, from the interface equilibrium shape, the energy E(z., ¢, ) [Eq.
(4.10)] is calculated, as described in Appendix B. We repeat this procedure for all
the possible different configurations (z., ¢, ) of the particle, and the minimum
value of F(z., ¢,1) indicates the particle equilibrium adsorption configuration.*

4.5.1 HEAVY SPHERE

In the expression for the fluid-fluid-particle energy F [Eq. (4.10)], the position
of the solid surfaces in the system is assumed constant. However, if the particle
configuration (z., ¢, 1) at the interface is changed, then the gravitational energy
contribution due to the particle weight should in principle be included in E. In
this Section we study the influence of the particle weight, by showing results for
an heavy sphere.

With respect to the model described in Sec. 4.5, the gravitational potential
energy I, of the solid particle at the fluid-fluid interface is

E,=mpgz, (4.11)

with z. the height of the particle center of mass on the interface reference level,
m,, the particle mass, and g the gravity acceleration modulus. For convenience,
we write g = v/(¢? Ap), and m,, = V}, p,, with V,, and p, the particle volume and
mass density, respectively, obtaining

_ 1P

Ey = 2 Ap

V2 . (4.12)
Therefore, by adding E, to the total energy E [Eq. (4.10)] of the system, we
obtain

E=~(S—A+W,; c059)+7<pz)‘/},zc—|—/ de> . (4.13)

2\ Ap Va
For simplicity, we consider here a spherical particle with diameter o, such that
the energy E [Eq. (4.13)] depends only on z., and not on ¢ and 1. Using the
algorithm in Appendix B, we compute the energy E(z.) [Eq. (4.13)] from the
equilibrium shape of the fluid-fluid interface for many values of z. in the interval
[—V30/2, V30 /2], and we assume the sphere desorbed from the interface for z.

*Numerically it is, of course, not possible to consider continuously all the possible values of
Ze, , ¥, so one needs to sample them discretely, with intervals small enough to not miss energy
minima.
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outside this interval.®

First, we consider the case where the particle weight is negligible, i.e. E, [Eq.
(4.12)] is zero, and therefore the energy E is given by Eq. (4.10). In Fig. 4.23(a),
we show the energy F(z.) [Eq. (4.13)] for a sphere with radius ¢ /2 = ¢ and cos § =
0.5. To show the effects of capillary deformations, we plot for the same system
also the energy as obtained through the Triangular Tessellation Technique (TTT),
a numerical method [114] where the energy for the given particle configuration
is computed in the approximation of no capillary deformations, i.e. assuming
the interface flat everywhere, even when the particle is adsorbed. As shown,
the energy through our method is lower, for a given z., than as computed by the
TTT, because the capillary deformations allow the system to optimize the energy
at the most. Indeed the approximation of a flat interface everywhere, used in the
TTT, in general breaks Young’s Law [Eq. (2.18)]. However, a spherical particle
at a height z. = — (0/2) cosf on the interface plane keeps with a flat fluid-fluid
interface a contact angle 6 along the whole three-phase contact line [see Fig.
3.7(a)]. The results in Fig. 4.23 show that such a z. corresponds to the minimum
E. The TTT predictions for the minimum energy configuration coincide with
the results of our method, obviously, as in the minimum energy configuration
the sphere does not deform the interface, so the flat interface approximation
becomes exact in this particular case. In Fig. 4.23(b) we show analogous results,
but for cosd = —0.5, i.e. with the sphere preferring to wet the fluid above the
interface. X" To study how the capillary deformation effects on the energy depend
on ¢, in Fig. 4.23(c) we show the energy E(z.) [Eq. (4.10)] for a sphere with radius
0/2=0.14,0/2 = 0.014, /2 = 0.001¢, and o/2 = 10~%¢, and for cos@ = 0.5 and
cosf = —0.5. As shown, by decreasing o /2 until 0.001¢, the energy E, in units
of ¥~ and for a given z., also decreases, in agreement with the idea that the flat
interface approximation used by the TTT corresponds to the limit ¢ — 0.

*iSo we are assuming that the sphere is desorbed in fluid 1, i.e. above the interface, if
2e > v/30/2, and it is desorbed in fluid 2, i.e. below the interface, if z. < —v/30/2. In principle,
the energy E [Eq. (4.13)] should be checked also for z. outside this interval, by calculating the
equilibrium fluid-fluid interface shape for such a z., and then the particle should be considered
desorbed from the interface only if E is higher than the energy of the particle desorbed in,
respectively, fluid 1, i.e. E =~X cosf, and in fluid 2, i.e. E =0.

*iWith E*(z.) the energy [Eq. (4.10)] of a particle with Young’s contact angle @, the energy
E(z.) [Eq. (4.10)] of the same particle but with Young’s contact angle 7—@ is E(z.) = Et(—z.)—
cos X ny.
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Figure 4.23: (a) Energy E(z.) [Eq. (4.10)], of a spherical particle with radius o/2 = ¢
and cos§ = 0.5 adsorbed at a flat fluid-fluid interface, with respect to the sphere center of
mass height z. on the interface plane, with ¢ the capillary length, 6 the Young’s contact
angle, ¥ the sphere total surface area, v the fluid-fluid surface tension, and o* = v/3 /2.
The results obtained by the TTT, i.e. neglecting capillary deformations, are compared
with the results obtained by our numerical method (see Appendix B), i.e. calculating the
fluid-fluid interface equilibrium shape for each z. considered. In the energy minimum, the
predictions of the two methods coincide, as for such a z. the sphere keeps the interface
flat. In the gray areas we assume the particle desorbed from the interface (see note xi at
page 86). In the inset, we show 3D views of the fluid-fluid interface shape close to the
particle, as obtained by our method (left) and in the TTT (right). (b) Analogous results
to (a), but for cosd = —0.5. (c¢) The results of (a) and (b) are here compared with the
energy E(z.) [Eq. (4.10)] of a sphere with o/2 = 0.1¢, ¢/2 = 0.01¢, ¢/2 = 0.001¢, and
0/2 = 10~%¢, respectively.
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Now we study the influence of the sphere weight on its equilibrium configuration.
Therefore, we need to add the term E, [Eq. (4.12)] to the energy E(z.) shown
in Fig. 4.23. In Figs. 4.24, 4.25, 4.26, the energy E(z.) [Eq. (4.13)] of a
spherical particle with radius 0/2 = ¢, 0/2 = 0.1¢, and 0/2 = 0.01¢, respectively,
is plotted for cos = 0.5 and cos@ = —0.5, and for some values of p,/Ap. As
shown, the sphere equilibrium configuration, i.e. the z. corresponding to the
minimum F, changes by tuning p,/Ap. In particular, we obtain, as expected,
that, by increasing py,, the z. with minimum energy decreases, i.e. the particle
prefers to stay lower with respect to the interface plane. ¥l Note that, as we
introduced the particle weight contribution E, [Eq. (4.12)], the plots of E(z.) for
cosf and — cos 6 are not specular anymore. Indeed, for cos@ = —0.5 the sphere
prefers to wet the fluid above, therefore it needs a higher weight to desorb from
the interface than for cosf = 0.5, as the graphs show. These results show that,
for 0/2 = 0.1¢, we need p,/Ap > O(10) to see significant effects of the particle
weight on the minimum-energy configuration, while, for p = ¢, important effects
are observed for p,/Ap > O(1). Finally, for /2 = 0.01¢, particle weight effects
on E(z.) appears totally negligible for p,/Ap < O(100).

In conclusion, we have shown that p,/Ap is the parameter that determines if
the particle weight can be neglected or not in the energy E [Eq. (2.24)] of
a fluid-fluid-particle system, given the particle size with respect to £. For a
typical experimental system of solid particles at a liquid-liquid interface, we can
estimate a mass density p; = 900 kg/m? for fluid 1, py = 1000 kg/m? for fluid
2, and p, = 2500 kg/m? for the solid particles, implying p,/Ap ~ 25. If instead
we consider a liquid-air interface, we can estimate p; = 1 kg/m? for fluid 1,
i.e. the air, obtaining p,/Ap ~ 2.5. The capillary length ¢ is typically a few
millimeters. Therefore on an order-of-magnitude base we can conclude that, to
determine the particle equilibrium configuration in such experimental systems
(ie. 2.5 S pp/Ap < 25), the particle weight is negligible for a particle size
o < O(10 um), while there is an interplay between particle weight and wetting
energy for o = O(100 um), and the particle weight becomes completely dominant
over the wetting energy for ¢ > O(1 mm).

*Op the other hand, it seems also that the lower Ap, the more important the weight of the
particle, and, in the limit Ap — 0, the parameter p,/Ap diverges. However, note that the Ap
is fixed by the capillary length ¢ [Eq. (2.3)], and Ap = 0 implies £ = co.
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Figure 4.24: Energy FE(z.) [Eq. (4.13)] of an adsorbed sphere with radius ¢/2 = ¢, and
including its weight contribution E, [Eq. (4.12)], for (a) cosf = 0.5 and (b) cos§ = —0.5,
with respect to the sphere center of mass height z. on the interface plane, for some values
of p,/Ap. Here p, is the particle mass density, Ap = pa — p; is the difference of the
mass densities of the two fluids, £ is the capillary length, 6 is Young’s contact angle, X is
the sphere total surface area, v is the fluid-fluid surface tension, and o* = v/30/2. On
the right, 3D and profile views of the interface equilibrium shape close to the sphere, as
obtained by our numerical method, are shown for some values of z..
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Figure 4.25: The same results of Fig. 4.24 are shown here, but for a sphere radius
/2 =0.1¢.
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4.5.2 ELLIPSOIDS AND CYLINDERS

As shown in the previous Section, a spherical particle adsorbed at the equilibrium
at a flat fluid-fluid interface does not generate, if the particle weight is negligible,
capillary deformations, regardless of the Young’s contact angle 6, because the
sphere can adjust the height of its center of mass to match the desired contact
angle with the flat interface along the whole three-phase contact line.

Now we consider, instead, the equilibrium adsorption configuration of an ellipsoid
of aspect ratio 3 and minor axis o = 0.02¢ [see Fig. 4.27(a)], with ¢ the capil-
lary length. We assume the particle weight negligible. The predictions obtained
from our numerical method are reported in Fig. 4.28, and they show that, for
this shape, the particle does generate capillary deformations at the interface, if
Young’s contact angle is different from 7 /2.

Analogously, we consider the equilibrium adsorption configuration of a cylinder
of aspect ratio 2 and diameter o = 0.02¢ [see Fig. 4.27(b)]. We assume again the
particle weight negligible. The predictions obtained from our numerical method
are reported in Fig. 4.29. Also in this case, they show that the cylinder does
generate capillary deformations at the interface, if Young’s contact angle is dif-
ferent from /2.

The reason why ellipsoids and cylinders deform the interface is Young’s Law. In-
deed, the contact angle between the particle surface and the fluid-fluid interface
needs to match along the whole three-phase contact line the Young’s contact an-
gle given in Eq. (2.18), and for such particle shapes this is not possible with a flat
interface. Only when the Young’s contact angle is 7/2, cylinders and ellipsoids
adsorb at the interface without inducing capillary deformations. Interestingly, if
adsorbed particles with a cubic shape are considered, then it is for a Young’s con-
tact angle close to w/2 that the particle, at the equilibrium, generates capillary
deformations in the interface, while for a Young’s contact angle far from 7/2 the
interface remains basically undeformed. This will be shown in Chapter 5, where
we will also see that such capillary deformations induced by the cubic particles
have an hexapolar geometry, and we will study the induced capillary interactions
and self-assembly. Note that in this Section we showed that ellipsoids and cylin-
ders, instead, generate capillary deformations with a quadrupolar geometry, see
Figs. 4.28 and 4.29.

Figure 4.27: (a) Ellipsoid with aspect ratio 3 and minor axis o. (b) Cylinder with aspect
ratio 2 and diameter o.
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Figure 4.28: Left panels: adsorption energy E(z., ¢) [Eq. (4.10)] for an ellipsoid of
aspect ratio 3 and minor axis o = 0.02¢, with Young’s contact angle 6, for (a) cosf =0
and (b) cosf = 0.5, as obtained by our numerical method. Central panels: same, but
as obtained by the Triangular Tessellation Technique (TTT), i.e. neglecting capillary
deformations effects. Right panels: E,,;,(¢), obtained by minimizing E(z., ¢) over z.,
with the minimum-z. path highlighted in the contour plots with a black line. The blue line
represents the results from our numerical method, while the dotted black line represents
the results from the TTT. Here X is the total surface area of the particle, and v the
fluid-fluid surface tension. In a and b we show a 3D view, profile view, and contour
plot of the equilibrium shape of the fluid-fluid interface close to the particle, as obtained
numerically by our method, for the particle configuration indicated by the labels on the
left graph of E(z.,¢). Note that these are the minimum energy configurations of the
particle.
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Figure 4.29: Left panels: adsorption energy E(z., ¢) [Eq. (4.10)] for a cylinder of
aspect ratio 2 and diameter o = 0.02¢, with Young’s contact angle 6, for (a) cosf = 0
and (b) cosf = 0.5, as obtained by our numerical method. Central panels: same, but
as obtained by the Triangular Tessellation Technique (TTT), i.e. neglecting capillary
deformations effects. Right panels: E,,;,(¢), obtained by minimizing E(z., ¢) over z,
with the minimum-z. path highlighted in the contour plots with a black line. The blue line
represents the results from our numerical method, while the dotted black line represents
the results from the TTT. Here X is the total surface area of the particle, and v the
fluid-fluid surface tension. In a, b, and ¢ we show a 3D view, profile view, and contour
plot of the equilibrium shape of the fluid-fluid interface close to the particle, as obtained
numerically by our method, for the particle configuration indicated by the labels on the
left graph of E(z., ¢). Note that a and b are the minimum energy configurations of the
particle, while ¢ is a metastable state.
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4.6 (CONCLUSION

In this Chapter, we introduced a new numerical method to calculate the equilib-
rium shape of a fluid-fluid interface in the presence of external solid surfaces and
possibly gravity, describing it and showing illustrative results in 2D and 3D.
Firstly, in Sec. 4.2, we explained the basic mechanism of our method, providing
in Appendix A and B a detailed description of an illustrative algorithm to imple-
ment the method in 2D and 3D, respectively.

In Sec. 4.3, we presented illustrative results in 2D, to validate our method, and to
show its applicability to a wide range of problems. In Sec. 4.3.1, we proved the
correctness of our numerical method, showing an excellent agreement between
numerical and analytical solutions for a meniscus close to a vertical wall. In Sec.
4.3.2, we reported the shape of menisci in contact with vertical or inclined walls
and solid curved surfaces, to show the possibility of considering any kind of shape
for the solid surfaces in contact with the interface. In Sec. 4.3.3, we exploited
our method to study the capillary rise and the capillary interactions between two
vertical plates adsorbed at a flat fluid-fluid interface. In Sec. 4.3.4, we applied
our numerical method to study the equilibrium shape of 2D droplets. Results for
3D droplets, as obtained by our numerical method, will be shown in Chapter 6.
In Sec. 4.3, we presented illustrative results in 3D, to validate our method also
in 3D, and, in particular, to prove its applicability for studying colloidal particles
adsorbed at fluid-fluid interfaces. In Sec. 4.4.1, we proved the correctness of the
method in 3D by comparing the analytical and numerical predictions for a menis-
cus close to a parallelepiped particle with sides large enough (with respect to the
capillary length /) to be considered as vertical walls. In Sec. 4.4.2; we studied the
finite-size effects in our model, to estimate which size we need for our interface
to reproduce a flat and infinitely extended one. In Sec. 4.4.3, we studied the
wetting of a vertical cylinder adsorbed at a flat fluid-fluid interface, calculating
the capillary rise of the meniscus and comparing our numerical results with the
analytical predictions of the linearized Young-Laplace Equation. In Sec. 4.4.4,
we computed the height profile of the capillary deformations in a flat fluid-fluid
interface induced by an adsorbed particle with a pinned three-phase contact line,
showing that it can be described as a superposition of multipoles with different
orders. In Sec. 4.4.5, we computed the energy necessary to deform a flat fluid-
fluid interface by rotating the vertical axis of a sphere with a pinned three-phase
contact line.

Finally, in Sec. 4.5, we applied our numerical method to compute the equilibrium
adsorption configuration of an adsorbed particle at a flat fluid-fluid interface.
In Sec. 4.5.1, we studied the influence of the particle weight on the equilib-
rium height of a sphere adsorbed at the interface, and in Sec. 4.5.2 we reported
the equilibrium adsorption configuration for ellipsoids and cylinders with various
Young’s contact angles.
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4.7 APPENDIX A

Here we report a detailed description of an illustrative algorithm to implement
our numerical method in 2D. The basic mechanism of the algorithm is explained
in Sec. 4.2. Results obtained through this algorithm are presented in Sec. 4.3.
The physical system of interest has translational invariance along ¥y, with the
gravity anti-parallel to z. Therefore we consider a (z, z)-plane and we minimize
the potential ¢ = =/(y§,) with respect to the fluid-fluid interface shape, where =
is defined by Eq. (4.3), and &, is the length of the system along y. The algorithm
is the following:

a) Assuming we have two solid surfaces that enclose our system, we introduce
the two parametric functions s;(u) and sy(v) [with w,v scalars, and si,s2
belonging to the (x,z)-plane] to define these surfaces. Between the two
solid surfaces there is the fluid-fluid system, outside a solid, as shown in
Fig. 4.1.

b) We set the initial positions of the free points P; (i = 1,... N) in the space
between sj(u) and s3(v), and of the extreme points C; and Cg on the
surface of the solid 1 and solid 2 respectively. The interface is given by the
set of segments linking any two consecutive points. By definition P;1 is
consecutive to P;, P1 to C; and Cs to Py. These initial positions define
also the volume of the two fluids.

¢) The annealing temperature T, introduced in Eq. (4.4), is set to its initial
value Tj.

d) A point is randomly selected. If the selected point is a free point, say
P;, it is moved in the (z, z)-plane by the displacement (d,,0,) to its new
position P} [see Fig. 4.30(a)], where ¢, . are randomly selected within
[—0maz/2, Omaz/2]. If the segment P;P; crosses a solid surface or the inter-
face, then the move is rejected and the program goes to step “1)”. If the
selected point is Cy, (k = 1,2), it is moved along s (in one of the two pos-
sible directions, randomly chosen) until it covers a path of length §, where
§ is randomly chosen within [0, d,,4./2]. Given its new position Cj, if the
segment C|P; or PyCj crosses the interface, then the move is rejected and
the program goes to step “l)”.

e) The variation de4 of the gravitational term of € due to the point move in step
“d)” is calculated. If the point moved is a free point, say P;, then: de, =
a G(AP;B) +bG(AP!B), where A and B are the two closest neighbors of
P; on the interface, and G (ABQC) is the gravitational energy of the triangle
ABC, scaled with ¢, and «, and it is computed as

i A(ABC) (A+B+C) 2
G(ABC) = (62 ) { ; )%

(4.14)
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Figure 4.30: (a) Movement of a free
point; (b) decomposition in triangles of
the area between s;, C| P, and C, P; (c)
free point movement to generate the de-
sired variation in the volume of fluid 2.

where A(ABC) is the area of the triangle ABC. Then a,b = +1, where
[see Fig. 4.30 (a)] b is equal to the sign of [(A — B) x (A — P})] - y, with
y the normal in the y direction (i.e. pointing out of the paper). Then
a = b if the segment P;P/ intersects the line passing through the segment
AB, otherwise a = —b. If the point moved is Cy, (k = 1,2), then the area
between s1, C|P; and C1P; (or so, C,Px and CoP ) is decomposed into
a certain number of triangles Ty [see Fig. 4.30 (b)], and deg = £3 7, G(Tf),
with the sign “+” positive if fluid 2 is gaining volume (moving Cy in C}),
otherwise negative.

The interface surface variation §S due to the point move in step “d)” is
calculated as the length variation of the segments forming the interface
(and it is negative if the total length of the segments was decreased, positive
otherwise).

If the point moved in “d)” is Cy (k = 1,2), then the variation in the k —th
solid surface wet by fluid 2 is computed as dWs (k) = + fgk’“ sk(u)du‘, with

“+” positive if fluid 2 is gaining volume (moving Cy in C}), otherwise
negative. If the point moved in “d)” is a free point, then §Ws(k) = 0.

The volume variation 6V of the fluid 2 is calculated. If the point moved
in “d)” was a free point, say P, then: §V = a A(AP;B) + b A(AP/B),
where A and B are the two closest neighbors of P; on the grid, A(ABC)
is the area of the triangle ABC, and a,b = +1. The signs of a and b are
computed as described in step “e)”. If the point moved in “d)” was Cy
(k = 1,2), then the area between s;, C|P; and C1P; (or sy, C4Py and
C,Py) is decomposed in a certain number of triangles Ty [see Fig. 4.30
(b)] and 6V = £3, A(Ty), with “+” positive if fluid 2 is gaining volume
(moving Cy, in C},), otherwise negative.

Another point is randomly selected and it is moved to compensate the
volume variation calculated in step “h)”. Just for simplicity, in this step
we choose only free points. Say P is the selected point. Firstly the point
O at a distance [ = 2|6V|/|AB| from the segment AB is calculated [see
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Fig. 4.30 (c)], where A and B are the two closest neighbors of P, §V =
0V + AP, x AB/2. The side of O with respect to the segment AB is such
that AO x AB has the same sign as V. Then the new position P; is found
moving O by a random amount § € [0, d;a2/2] in one of the two directions
parallel to AB (which direction is randomly chosen). In this way the total
volume variation due to the moves in this step and in step “d)” is zero. If
the segment P;Pj crosses a solid surface or the interface, then the move is
forbidden and the program goes to the step “I)”.

j) The variations due to the move in step “i)” in the gravitational part of
e and in the fluid-fluid surface (respectively de;, and §5') are computed
as described in the steps “e)” and “f)”. Then the total variation in the
functional £ due to the moves in the steps “d)” and “i)” is calculated as:
0 = dey + 0y, + 0S5 + 35" — cos Oy 6Wa(k), where 6}, is the Young’s contact
angle of the k — th solid surface.

k) With a probability P [with A= = v§, d¢, see Eq. (4.4)] the new configura-
tion of the system is accepted, otherwise the two points moved respectively
in step “d)” and “i)” return to their previous positions.

) The program returns to step “d)”. Every M times this step is performed,
T is decreased by an amount 67. If T' < 0, then the simulation ends.

To efficiently run this algorithm and obtain the correct solution, it is necessary to
choose properly all the simulation parameters involved (7', Ty, N, dmaz, M, o1).
In principle a good choice of this set can be found only heuristically. However this
problem, which is intrinsic to the method, needs to be faced only in a first stage.
Then the method can be applied systematically to a certain class of problems by
keeping the same structure of parameters, with at most some minor adjustments.
In Table 4.1 we report all the simulation parameter values that we used for the
results of Sec. 4.3.

This algorithm can be adapted to simulate a system where two or more 1D grids of
points are necessary to represent the interface (like in Sec. 4.3.3). The necessary
modifications are: in step “b)” defining all the solid surfaces, grids of points, and
two constrained points for each grid, and in the step “i)” choosing the free point
randomly from every grid, to allow the exchange of volume between the regions
below the different grids.

For the results of Sec. 4.3.3 (Fig. 4.6), the energy = = ev¢, [Egs. (4.3) and
(4.5)] of the equilibrium shape of the fluid-fluid interface is computed as

e=cg+S5—Y Wa(k)costy (4.15)
k

where S, Wy(k) and €4 respectively are: the fluid-fluid surface, the k& — th solid-
fluid 2 surface and the gravitational part of e (all referred to the final solution,
i.e. the equilibrium shape of the meniscus). They are computed updating their



98 CHAPTER 4

initial values as S + 6.9 + 05", Wa(k) + 6Wa(k) and €4 + dey + ey, in step “k)”
every time a new configuration is accepted.

To obtain the results of Sec. 4.3.4 for the pendant droplets (Fig. 4.9), the
algorithm is modified to minimize Eq. (4.7) instead of Eq. (4.3). This is done
simply by changing the signs of de, and (55’9 in step “j)”.

Fig. N | T 258T M
4.2,4.4,.4.5(b) 28 107° 1077 10°
4.3 several | 107° 10~7 10°
1074 if
4.5(a) 28 0.01 T > 1074, 2-10°
otherwise 51077
10~ % if
4.6 13 0.11 T > 1074, 3-10°
otherwise 10~7
10~%if
4.8,4.9(a) 48 0.01 T > 1074, 2.10°
otherwise 5-10~7
10~%if
4.9(b) 38 0.01 T > 1074, 2-10°
otherwise 5-10~7

Table 4.1: Simulation parameters used in the various results shown in Sec. 4.3. In all
the simulations, 0,4, is set to 0.5£. About Fig. 4.6, N is referred to each one of the three
grids of points. Each simulation was performed on an ordinary office PC and required
few minutes to be completed.

4.8 APPENDIX B

Here we report a detailed description of an illustrative algorithm to implement
our numerical method for studying a single adsorbed 3D solid particle adsorbed at
a fluid-fluid interface. The fluid-fluid interface is flat when there are no particles.
As usual, we call fluid 2 the heavier fluid, i.e. the fluid below the interface, and
fluid 1 the fluid above. The basic mechanism of the algorithm is explained in Sec.
4.2. Results obtained through this algorithm are presented in Sec. 4.3. In our
model, we introduce a Cartesian coordinate system with z axis anti-parallel to
the gravity direction. The solid particle is placed approximately in the center of
the system, and the particle surface is approximated using a grid of triangles, see
Fig. 4.31. The fluid-fluid interface is also represented by a grid of triangles, whose
vertexes form a 2D grid of points which is disposed around the particle like it is
shown in the example of Fig. 4.32. Each point of this grid is labeled as p(h, k),
with h = 1,2,... Ny, k = 1,2,... Ni, where the indexes h and k vary along the
two directions of the grid (see Fig. 4.32). The points with h = N}, are constrained
to move on the particle surface. The points with h = 1 are constrained to move
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Figure 4.31:  Triangular
2D grid used to represent
the surface of a 3D particle.
In this example, a 5x 10 grid
is used.
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on the external vertical wall, that has a cylindrical shape with radius R and
it encloses the fluid-fluid-particle system. So, R is the distance of the system
boundary from the origin. To reproduce a flat and infinitely extended interface
far from the particle, this external wall has Young’s contact angle 7/2. During
the simulation, each p(h, k) point of the fluid-fluid interface grid is constrained
to move along a given radial direction with respect to the center of the grid. This
direction is the same for all points with the same k. In detail, the algorithm is
the following:

a) The particle surface is defined using a grid of triangles (see Fig. 4.31)
with N, x N,, points. For simplicity we assume here convex particle shapes
only. We use a super-quadratic equation to define the particle surface for a
particle with center of mass in the origin and with ¢ = ¢ = z, = 0, where
zc is the height of the particle center of mass on the interface reference level,

(hk)y——>h
1 2 34 5 6

Nele N Ko RV, IR S US R NS R

Figure 4.32: Top view of the initial 2D grid representing the fluid-fluid interface at
which a colloidal particle (in the center) is adsorbed. Each point of the grid is in the
plane z = 0 in the initial configuration, with the gravity direction perpendicular to such
a plane. In this example, the grid is 6 x 16, that is Nj, = 6, N = 16, and the colloidal
particle has a cylindrical shape.
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 is the polar angle of the particle vertical axis with the interface, and 1 is
the internal Euler angle that defines the particle rotation around its vertical
central axis (see Fig. 4.22). Then, the particle surface points are rotated
and shifted to obtain the desired configuration (¢, ), z.). For convenience,
the particle is also shifted in the x and y directions to match ¢ with the
origin, where c is the center of the intersection between the particle and
the z = 0 plane.

b) The grid of points representing the fluid-fluid interface is defined as shown
in Fig. 4.32. A generic point of this grid is p(h, k), with h = 1,2,... Np,
k = 1,2,...Ng. Firstly, each point p(/NVp, k) is defined on the particle
surface, i.e. in one of the triangles forming the particle surface grid. The
initial position of these points is chosen such that p,(Np, k) = 0, and such
that the distance |p(Np,j7) — p(Np,j + 1)| is (approximately) constant for
any choice of j. This initial position of each p(/Ny, k) defines also the radial
direction

ap = atan 2[py(Np, k) , pz(Np, k)] (4.16)

along which the other k—th points are constrained to move, where atan 2(y, x)
denotes the angle of the vector (z,y) with the x-axis, positive if counter-
clockwise. Then, the initial positions of the other points are defined as

p(h, k) = f(h) [cos(ay),sin(ay), 0] . (4.17)

Here f(h) is a monotonic function that decreases from the maximum value
R in h =1 to the minimum value of 7y, (k) in h = Nj — 1, where 7, (k)
is 1.05 times the distance of the initial position of p(Ny, k) from the origin.

¢) T is set to its initial value Tj.

d) A point p(h, k) is randomly selected. If h = 1, the random value §, €
[—0maz/2, Omaz/2] is chosen and the point is moved in the real space by the
displacement (0,0,4.). So p(1, k) moves only vertically along the external
solid wall. If 1 < h < Np, the random values 8, 0, € [—dmaz/2, Omaz/2]
are chosen and the point is moved in the real space by the displacement
(6 cosag,d sinay,d,). In this way, p(h, k) moves randomly in the three-
dimensional space, but it keeps the same radial direction «y, with respect to
the center of the grid. If A > 5, ¥V it is checked if the segment p(j, k)p(j +
1, k) intersects the particle.*V If so, the move is rejected and the program
goes to step “m)”. If h = Ny, the point p(NNy, k) is randomly moved on the

¥V A standard choice we use j = Nj, — 3. In general, the lower is j, the safer is the code, but
of course the slower is the simulation.

*YA way to do this is considering several points along the segment p(j,k)p(5 + 1,k), and
verifying that they all stay outside the particle. To check if a generic point p is outside the
particle, the closest triangle to p of the particle surface is selected, and a point t belonging to
this triangle is chosen. If the sign of (t — p) - n is opposite to the sign of (t — ¢) - n, with n the
normal to the triangle and c the center of mass of the particle, then p is considered outside the
particle, otherwise inside. This method works only for convex particle shapes.
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particle surface. For doing this, firstly, a triangle belonging to the particle
surface grid is selected randomly among the following 18 triangles:

(1—1,7-1),(—-1,7),(, )(— J = 1), 05— 1), (6, 4);
(1,5 = 1), (0, 5), (i +1,5); (6,5 = 1), (i + 1,5 = 1), (i + 1, 7);
(i+1,7-1),G+1,79),0¢+2,7); G+1,7—-1),(i+2,5—1),(@+2,j);
(1—=1,5),(0 =17 +1),(6,5+1); (i = 1,7),(27), (&7 +1);

(4,5), (6,7 +1), (i + 1,5 +1); (¢,7), (i + 1,5), (i + 1,7 + 1);
(G+1,75),60+1,j+1),0+2,7+1); (t+1,5),0@+2,5),0E+2,7+1);
(—1,7+1),6G—-1,7+2),(6,7+2); (t—1,7+1),075+1),0G7+2);

(6, 7+ 1),0,7+2),6E+1,74+2); (4,5+ 1), +1,5+1),GE+ 1,7+ 2);
(t+1,74+1),06+1,74+2),E+2,7+2); (i+1,7+1),(@+2,7+1),(i+2,5+2);

where each triangle is indicated by the coordinates of its three vertexes on
the particle surface grid (see Fig. 4.31), and where the position of p(Ny, k)
before being moved is located inside the triangle (i, ), (¢,j+1), (i4+1,7+1)

r(,7),(t+1,7),(i+ 1,5+ 1). Then, given the real space positions A, B,
C of the vertexes of the selected triangle, the point p(Np, k) is moved in
A+(1—r1) B4+ (1—rg) C, where ry, o are random numbers between 0 and
1, and such that r; + ro < 1. If the projection on the x,y plane of the new
position of p(Ny, k) is outside the angle A« on the z,y plane, with vertex
in the origin, and centered around the ¢4, radial direction, then the move is
rejected and the program goes to step “m)”. This check is done to keep the
points on the particle surface aligned (approximately, within the angle A«)
along the same line of the other points of the grid with the same k. Also, it
is checked if the segment p(Np, k)p(Np, — 1, k) intersects the particle, and,
if it does, the move is rejected and the program goes to step “m)”.

The fluid-fluid interface surface variation §S due to the move of p(h, k)
in step “d)” is calculated as the sum of the area variations of the six grid
triangles with respectively vertexes: p(h,k)-p(h,k — 1)-p(h — 1,k — 1),
p(h, k)—p(h -1, k)—p(h -1k - 1)7 p(h, k‘)—p(h -1, k)—p(h, k + 1)7 p(h, k)'
p(h,k + 1)-p(h + 1,k + 1), p(h,k)-p(h + 1,k)-p(h + 1,k + 1), p(h,k)-
p(h + 1,k)-p(h,k — 1). For the points p(h,k) on the boundary of the
grid (i.e. h =1 or h = Nj) only the three existing triangles are considered.

The volume variation 0V of fluid 2 induced by the move of p(h, k) in step
“d)” is computed. We refer from now on with p, to the old real space
position of p(h, k), i.e. before the move in step “d)”, and with p,, to its
new position. To compute 0V, the following procedure can be used

> The volumes Qq, o, Q3 and 4 of the four tetrahedrons with one
vertex given by p, and the other three vertexes given respectively by

p(h,k—1)-p(h—1,k—1)-p(h—1,k), p(h,k—1)-p(h—1,k)-p(h,k+1),
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are computed.

> The volumes ), 5, Q4 and ) of the same four tetrahedrons consid-
ered before, but using p,, instead of p, as one of their vertexes, are
computed *V.

> 0V = Z?:l (a; U + b; ), with a;,b; = £1. To calculate the signs of
a; and b; for the i — th tetrahedrons €; and €}, we firstly define the
normal vector n; to the triangular face opposite to the p,, or p, vertex
of Q; and €. The direction of n; is from fluid 2 toward fluid 1. Note
that Q; and Q) have a common triangular base and the fourth vertex
different and given in one case by p,, and in the other case by p,. We
call w one of the common vertexes that €; and €2, have. Then b; is
given by the sign of n; - (p,, — w;). If n; - (p,, — w;) has the same sign
of n; - (p, — w;), then a; = b;, otherwise a; = —b;.

If the point p(h, k) moved in step “d)” is on the boundary of the grid (i.e.
h =1 or h = Np,), then only the two existing tetrahedrons are considered
in the procedure described above.

The variation 6 £, induced by the move of p(h, k) in step “d)” in the fluid-
fluid interface gravitational energy is computed. This procedure can be im-

plemented analogously to the previous step, i.e. 0E, = Z?Zl (ai Gi +b; G’;),

with a;,b; = +1. Here G; is the gravitational energy of the tetrahedrons
with one vertex given by p,, and the other three given, respectively for each
i, by p(h,k—1)-p(h—1,k—1)-p(h—1,k), p(h,k—1)-p(h—1,k)-p(h,k+1),
p(h+ 1, k)-p(h,k —1)-p(h,k+ 1), p(h,k+ 1)-p(h+ 1,k + 1)-p(h + 1, k).
Then, é; is the gravitational energy of the same tetrahedrons, but with one
vertex given by p,, instead of p,. To calculate the signs of a; and b;, the
same method described in step “f)” can be used. The gravitational energy
G of a tetrahedron is given by

N0
G = ﬁ Q C,,

with € the volume of the tetrahedron and ¢, the z component of the tetra-

hedron center of mass c.

If the point p(h,k) moved in step “d)” has h = N, i.e. it is a point
constrained on the surface on the particle, then the variation 6W = +(A; +
Ay) in the particle surface area wet by fluid 2 in calculated. Here A; is the
area of the triangle with vertexes p,, p,, and p(Np, k — 1), while As is the

*ViFor a generic tetrahedron with vertexes A, B, C, D, its volume V is given by V =
|a- (b xc)|/6, where: a=A—-B,b=A—-C,c=A-D.
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area of the triangle with vertexes p,, p,, and p(Np, k + 1).*"! The sign is
positive if, by moving p, to p,,, the fluid 2 is increasing the particle surface
area that it is wetting, otherwise the sign is negative XVl

Another point p(l, m), different from the point p(h, k) of step “d)”, is ran-
domly selected. For simplicity, we take here only 1 < < Nj. This point is
moved to compensate the volume variation 0V of fluid 2 generated by the
displacement of p(h, k) in step “d)” and computed in “f)”. We call q, the
old position of p(l,m), and q,, its new position. To calculate q,, we impose

that
6

OV = ¢ (an — Q) - > (Ai—q,) x (A1 —q,) (4.18)
i=1
where A, Az, A3, Ay, A5 and Ag are respectively the positions of p(l —
1,’/TL - 1)7 p(l¢m - 1)7 p(l + 17 m)a p(l + 17 m + 1)7 p(lvm + 1)a p(l - 17m)a
and A7 = A;. So Eq. (4.18) implies

(QO(x) — Qn(x)) V(LU) + (QO(y) — Qn(y)) V(y) + 66V
V(2) ’
(4.19)
where V = Z?:I(Al - qo) X (Ai+1 - qo)v V = (V(%),V(y),V(Z)), q, =
(gn(2),¢n(y), qn(2)) and q, = (o(2), ¢o(), ¢o(2)). Therefore, a random
number § € [—0maz/2, dmaz/2] is chosen, then q,, is obtained moving q, by
the displacement

an(2) — qo(2) =

[0 cos ag, 0 sinag, qn(z) — ¢o(2)] , (4.20)

where ¢,(2) — ¢o(2) is given in Eq. (4.19). If [ > j, it is checked if the
segment p(j,m)p(j + 1,m) intersects the particle [analogously to the pro-
cedure described in step “d)”], and, if it does, then the move is rejected and
the program goes to step “m)”.

The fluid-fluid interface surface variation 65" due to the move of p(l,m) in
step “i)” is computed as described for the calculation of 4.5 in step “e)”
(just with [ and m in place of h and k).

The variation ¢y induced by the move of p(l,m) in step “i)” in the fluid-
fluid interface gravitational energy is computed as described in step “g)”
(just with [ and m in place of h and k).

*ViiNote that, using this procedure to compute §W, we are approximating the particle surface
area using a set of triangles that is not the same we used in step “a)” to define the particle
surface. However, as we move the points on the particle surface from one triangle only to its
closest neighbors, the order of the approximation involved is the same. The higher is the number
of triangles used in step “a)” to define the particle surface, the better is the approximation
involved in the calculation of the particle surface wet by fluid 2.

*ViiiThis can be checked simply by verifying which is the higher between p, and p,,, with
respect to z. However, this procedure needs to be adapted if the particle has a not-convex
shape, or if one expects the interface to overstep the particle.
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I) The variation 0= = 7 (0.5 4 6.5 — cos § 6W) 4 0 Ey 4 0 E, in the potential =
[Eq. (4.3)] is computed. Then, with a probability

P 1, if 02 <0 191
- exp{—k‘;—ET}, if 6= >0 (421)

the new configuration of the system is accepted, otherwise the two points
moved respectively in step “d)” and “7)” return to their previous positions.

”

m) The program returns to step “d)”. Every M times this step is performed,
T is decreased by an amount 67. If T' < 0, then the simulation ends.

Possibly, this algorithm can be used to calculate the equilibrium shape of a fluid-
fluid interface for a pinned three-phase contact line. In this case, the only adap-
tations consist in choosing only points with h < Nj in step “d)”, and in defining
the initial position of the points constrained on the particle surface with the de-
sired position for the pinned three-phase contact line.

Once the equilibrium shape of the fluid-fluid interface is obtained, the energy E
[Eq. (2.24)] of the fluid-fluid-particle system can be computed. For convenience,
we shift the reference level of E such that F = 0 corresponds to the particle
desorbed in fluid 2, and we compute E as defined in Eq. (4.10). The various
terms of Eq. (4.10) are computed, from the obtained equilibrium shape of the
fluid-fluid interface at the end of the simulation, as it follows

e A=rmR2

e S is computed, at the end of the simulation, as the sum of the areas of all
the triangles forming the fluid-fluid interface grid, plus the sum of the areas
of the circular segments formed by each segment p(1, k) p(1, k+1) with the
vertical cylindrical wall of radius R enclosing the system. **

e To compute Wy, we check, at the end of the simulation, if the center of
mass of each triangle of the particle surface grid is higher or lower (in z)
with respect to its closest interface grid point constrained on the particle
surface, i.e. to its closest p(Np, k) (with & = 1,... Ni). Then W is obtained
summing all the areas of the triangles that have resulted higher. **

*XTo be precise, we use the projection of the segment p(1, %) p(1,k + 1) on the z = 0 plane
to do this calculation. The approximation involved in this way is negligible because close to the
external wall the fluid-fluid interface is almost flat.

**There is of course an approximation involved in this procedure, but it can be reduced
by using a high-enough number of triangles to define the particle surface and a high-enough
number of fluid-fluid interface grid points constrained on the particle surface. Possibly, more
sophisticated calculations can be introduced to improve the approximation. Also, for particles
almost completely immersed in one of the two fluids, this procedure may cause mistakes, and
therefore requires adjustments.
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e At the beginning of the simulation, E is set to its initial value zero, because
the interface is flat.®*i. Then, to calculate its final value (i.e. corresponding
to the equilibrium shape of the fluid-fluid interface), we simply update
E, during the simulation by adding, each time a new point configuration
is accepted in step “I)”, the contributions 6F, and 5E; calculated in the
steps “g)” and “k)” of the algorithm™*i,

**There is a small approximation in this assumption, because we are neglecting the presence
of the particle that removes a small portion of volume from both fluids. The real EF;, = 0
configuration would be a flat interface without the particle. However, the approximation is very
small, especially for ¢ much greater than the particle size, and it affects only the reference level
of the energy we measure.

*¥iNote that this method would not have work, for example, to compute Wi, because each
contribution 6W computed in step “h)” during the simulation is approximated. Its approxima-
tion is negligible for the computation of §F in step “l1)”, however, if W1 is calculated updating
its initial value by using W each time a new configuration is accepted, then the approximation
involved on the final value of §W is, in general, not negligible, due to the high number of cycles
performed in a simulation (generally from O(10°) to O(107)). For Eg, this problem does not
hold, because the calculation of §E4 and §E;, does not involve approximations.
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CHAPTER

CAPILLARY INTERACTIONS AND
SELF-ASSEMBLY OF ADSORBED
CUBES

In this Chapter we exploit the numerical method introduced in Chapter 4 to study
the capillary interactions and self-assembly of cubic particles adsorbed at a fluid-
fluid interface. Firstly, we predict the capillary deformations induced by the cubes
for various Young’s contact angles, showing that capillarity is crucial not only for
quantitative but also for qualitative predictions of the equilibrium configurations
of a single cube. For a Young’s contact angle close to 7/2, we show that a single-
adsorbed cube generates a hexapolar interface deformation with three rises and
three depressions. Thanks to the 3-fold symmetry of this hexapole, strongly
directional capillary interactions drive the cubes to self-assemble into hexagonal
or graphene-like honeycomb lattices. By a simple free-energy model, we predict a
density-temperature phase diagram in which both the honeycomb and hexagonal
lattice phases are present, as stable states.
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5.1 INTRODUCTION

In the previous Chapter we introduced a new numerical method to calculate the
equilibrium shape of a fluid-fluid interface in contact with solid surfaces in a given
position, and, in particular, we pointed out its applicability to study adsorbed
particles at fluid-fluid interfaces, showing results for the equilibrium configuration
of adsorption for a sphere, a cylinder, and an ellipsoid, respectively. In this Chap-
ter, we delve deeper into adsorbed particles at fluid-fluid interfaces, by studying
their capillary interactions and self-assembly. At the equilibrium, as shown in
Chapter 4, a particle adsorbed at the interface may induce capillary deforma-
tions in the fluid-fluid interface height profile, as a consequence, for example,
of gravity (see Sec. 4.5.1), or of its anisotropic shape (see Sec. 4.5.2). These
capillary deformations induce capillary interactions between the adsorbed parti-
cles [34-38,40,41], regulating the particle self-assembly at the interface [42-50].
In this Chapter, in particular, we exploit our numerical method to study particles
with a cubic shape. Very recent experiments (see Refs. [75,76,115]) have shown
that adsorbed nanocubes with truncated corners can assemble into hexagonal and
graphene-like honeycomb lattices. The origin of these structures is unknown, al-
though ligand adsorption and van der Waals forces between specific facets of the
truncated cubes have been suggested [75]. Here, however, we show that generic
cubic particles with homogeneous surface properties generate hexapolar capil-
lary deformations which can be largely responsible for the observed structures,
as we argue. Therefore, cubes of other materials or dimensions could also form
similar structures. Firstly, we will investigate the equilibrium configuration of a
single-adsorbed cubic particle, for various Young’s contact angles. Then, we will
study for many adsorbed cubes the capillary interactions and self-assembly, due
to the capillary deformations induced by the cubes in the interface height profile,
obtaining finally a temperature-density phase diagram for the adsorbed cubes at
the interface, where both the honeycomb and hexagonal lattice phases appear as
thermodynamically stable states.

5.2 METHOD

In this Section, we briefly illustrate the method exploited for the numerical cal-
culations reported in this Chapter (for a more detailed description, see Chapter
4). In our model, we consider a fluid-fluid interface which is flat and coincides
with the plane z = 0 when no particle is adsorbed. Then, we introduce a rigid
particle with a fixed position and orientation defined by the polar angle ¢ of
the particle’s vertical axis with the interface normal, the internal Euler angle 1)
around the particle’s vertical axis, and the height z. of the particle’s center of
mass on the z = 0 level (see Fig. 5.1). Possibly, more than one particle can be
introduced. In such a case, for each i-th particle, also the coordinates x; and
y; of the particle’s center of mass in the z = 0 plane, and the azimuthal angle
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Z,

Figure 5.1: Configuration of a cubic particle (black
grid) at a fluid-fluid interface, which corresponds to the
plane z = 0 when no particle is adsorbed. The height
of the cube center of mass is z., the polar angle of the
cube vertical axis with the interface plane is ¢, and the
internal Euler angle around the cube vertical axis is 1.

«; of the particle’s vertical axis with respect to the z = 0 plane, need to be
specified. The whole particle(s)-fluid-fluid system is surrounded by an external
vertical wall at a distance much larger than the particle size, to avoid finite size
effects, and with Young’s contact angle 7/2, to induce a flat interface far from the
particles. Given the fixed position(s) and orientation(s) of the particle(s), defined
by @ = {z¢;, vi, Vi, Ti, Yi, ai}fil, with N the number of particles, we numerically
calculate (for details see Chapter 4) the fluid-fluid interface equilibrium shape
by representing the interface by a grid of points, and exploiting a Simulated An-
nealing algorithm [113] to calculate the positions of these points that minimize
the energy E [Eq. (2.24)] of the fluid-fluid-particle(s) system, given the fixed
volumes of the two fluids. For convenience, in this Chapter we use Ey, with N
the number of adsorbed particles at the interface, to indicate the energy E of
the fluid-fluid-particle(s) system expressed in Eq. (2.24), and we shift it by a
constant such that Eny = 0 when all the particles are desorbed from the interface
and completely immersed in the fluid below it, with respect to z. Also, we neglect
the fluid-fluid interface gravitational energy and the particle weight, as they both
are not relevant for the experimental systems of interest.! Therefore, from Eq.
(2.24) we obtain

En(Q)=~[S(2) — A+ W(Q) cosb] , (5.1)

where S(£2) and A are the total areas of the fluid-fluid interface with and with-
out particle(s), respectively, W (€2) is the total surface area of the particle(s) in
contact with the fluid above the interface, and € is Young’s contact angle, defined
by Eq. (2.18) from the three surface tensions in the system, i.e. v (fluid-fluid),
~v1 (particle-fluid 1), vo (particle-fluid 2), and taken inside fluid 2 (i.e. the fluid
below the interface, with respect to z). The pressure-volume terms of the energy
do not appear in Eq. (5.1), because here AP = 0, as the fluid-fluid interface is flat
when no particles are adsorbed. Note that v and 6 are input parameters in Eq.
(5.1). As proven in Sec. 2.5 of Chapter 2, the interface shape that minimizes Ey,
for the given volume of the fluids, is the solution of the Young-Laplace Equation
[Eq. (2.21)], with Young’s Law [Eq. (2.18)] as boundary condition, i.e. it is the
equilibrium shape of the fluid-fluid interface. Note that the equilibrium position
of the three-phase contact line is automatically found by the minimization of

"However, they can be easily included in our numerical method, as we showed in Chapter 4.
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Ey, i.e. it is not imposed a priori. The fluid-fluid interface equilibrium shape,
as numerically obtained by our method, forms an angle with the particle surface
that matches the input angle 6 introduced in Eq. (5.1). Such a geometrical con-
straint is also not imposed a priori in the method, but automatically found by
minimizing the energy Ey.

5.3 SINGLE-ADSORBED CUBE

In this Section, we show results for a single-adsorbed cubic particle with smooth
edges (see Fig. 5.1) and side length L < ¢, where typically the capillary length
£ is of the order of 1 mm. Since we are using a macroscopic fluid-fluid model, we
are also assuming that L is much larger than the fluid-fluid interface thickness.
So, the results we present generally hold for micron-to-nanometer sized cubes.
To define the shape of the cubic particle, we use a super-quadratic equation.
Precisely, the position of each point p(u,v) = [pz(u,v), py(u,v),p.(u,v)] of the
grid defining the cube surface is obtained by varying the parameters u, v in the
interval [0, 1], with

_cos(um —m/2) cos(2
" cos(um — m/2) cos(2
s

s

( |cos(2v7r)|% |cos(u7r—7r/2)|% ,
cos(um — m/2) sin(
(

2 1 1
Dy 5 |sin(2v7r)|110 |cos(u7r—7r/2)|110 ,

V)
V)
_ V)
|cos(um — m/2) sin(2v )]
_ sin(um —7/2) sin(um — m/2) |5
b= = |sin(um — 7/2)| jsin /2o . (5.2)

Then, the set of all the points p is rotated and translated to obtain the desired
position and orientation of the cube at the interface. In Fig. 5.2, we show E; [Eq.
(5.1)], minimized over z., with respect to ¢ and v, for various Young’s contact
angles 0. The coordinates z., ¢, 1 which locally minimize E(z., ¢, 1) correspond
to an equilibrium or metastable configuration of the cube. We found that these
are (slight perturbations of) the three configurations defined in Fig. 5.3: {100},
when one face of the cube points upward (i.e. ¢ = 0); {110}, when one edge be-
tween two faces of the cube points upward (i.e. ¢ = m/4, 1 = 0); {111} when one
corner between three faces of the cube points upward (i.e. ¢ = w/4, ¢ = 7/4).
To point out the importance of capillarity even for these single particle calcula-
tions, in Fig. 5.5(a) we compare the energy Ej, with respect to ¢ and minimized
over z. and 1, as obtained by our numerical method, with the same predictions
but obtained from the Triangular Tessellation technique (TTT) [116], in which
capillary deformation effects are neglected. For a given configuration (z., ¢, )
of the cube, the energy F; calculated by the TTT is always higher, as expected.
More interestingly, we found that neglecting capillarity leads, for cos @ < 0.2, to
the wrong equilibrium orientation of the cube: the TTT predicts the {110} as
equilibrium orientation, whereas our method finds the {111}. For cosf = 0.3 and
cosf = 0.5, i.e. for a larger affinity of the cube with the heaviest fluid, both our
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Figure 5.2: Energy E; [Eq. (5.1)] of a single adsorbed cube with side L, minimized
over z. and with respect to ¢ and ¢ (see Fig. 5.1), for various Young’s contact angles
0. We plot F; in units of 73, with X the cube’s total surface area. For a typical fluid-
fluid surface tension v = 0.01 N/m, we have Yy ~ 350kgT for L = 5 nm, and Xy ~
1.5-107 kT for L = 1 um. The minima in the energy corresponds to the equilibrium and
metastable configurations z., ¢, ¢ of the cube. The {100}, {110}, {111} marks indicate
the orientations of the cube at the interface, corresponding to (slight perturbations of)
the definitions in Fig. 5.3.
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Figure 5.3: Definitions of the {100}, {110}, and {111} orientations for a cube (black
grid) adsorbed at a flat fluid-fluid interface, with the red grid representing a plane parallel
to the flat interface, i.e. to z = 0. The polar angle of the cube vertical with the z = 0
plane is ¢, and the internal Euler angle of the cube around its vertical axis is v, see Fig.
5.1.
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numerical method and the TTT predict that the {100} becomes the minimum
energy orientation, with the cube almost completely immersed in the lower fluid.
Interestingly, we find for cosd < 0.2 that the cube, which has the {111} ori-
entation at the equilibrium, generates a hexapolar capillary deformation in the
fluid-fluid interface, with three rises and three depressions in a 3-fold symmetric
disposition [see Fig. 5.5(b)]. Instead, for cosé > 0.3, where the cube has the
{100} orientation at the equilibrium, no significant capillary deformations are
induced in the fluid-fluid interface [see Fig. 5.5(b)]. Note that, for cosf = 0.3,
the {111} still appears as a metastable configuration, though.

In Fig. 5.4(a) we report, for a single adsorbed cube with one of the three ori-
entations {100}, {110}, {111} as defined in Fig. 5.3, the energy E; computed
through our numerical method and minimized over z., with respect to the parti-
cle contact angle 6. As confirmed by the results in Fig. 5.2, between cosf = 0.2
and cos@ = 0.3 there is a cross-over in the energy E; for the {100} and {111}
orientation, such that the {111} shifts with the {100} as the minimum energy
orientation. We also see that the {111} remains energetically more favorable than
the {110}, although their energies are very close. In 5.4(b) we show the same
results, but obtained by neglecting capillary deformations, i.e. using the TTT.
In this approximation, the {110} appears energetically more favorable than the
{111} for cos# < 0.3, in contradiction with the results from our method, as shown
in Fig. 5.4 (a). This proves that neglecting capillary deformation effects can lead
to erroneous equilibrium configurations of the particle.
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Figure 5.4: Energy E;,(cos®), which is F; [Eq. (5.1)] minimized over z. of a sin-
gle adsorbed cube with side L at a fluid-fluid interface, with a fixed orientation (i.e.
fixed ¢ and %) given, respectively, by the three orientations defined in Fig. 5.3, i.e.
{100} (green line), {110} (red line), and {111} (blue line). The total surface area of
the cube is ¥, and the fluid-fluid surface tension is v. In (a) the results are obtained
through our numerical method, i.e. including capillary deformations. In (b) the re-
sults are obtained by the TTT [116], i.e. neglecting capillarity. The top insets, in both
graphs, show 2, i.e. the z. corresponding to the minimum F;, for the three cube
orientations considered, with respect to cosf. The bottom insets, in both graphs, show
A = [Enin({111}) — Epin({110})] /2, ie. the difference of E,,;y, for the cube in the
{111} and in the {110} orientation, with respect to cos . As shown, neglecting capillarity
(see graph on the right) leads to a completely different prediction.
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Figure 5.5: (a) Energy E,uin(¢), which is Eq [Eq. (5.1)] minimized over z. and 1, of a
single adsorbed cube with side L, for various Young’s contact angles 8. We plot E,,;, in
units of X, with ¥ the cube’s total surface area and ~ the fluid-fluid surface tension (see
also Fig. 5.2). The minima in the energy corresponds to the equilibrium and metastable
configurations z., ¢, 1 of the cube. The {100}, {110}, and {111} marks indicate the
orientations of the cube at the interface, corresponding to (slight perturbations of) the
definitions in Fig. 5.3. The blue lines are the results obtained through our numerical
method, i.e. including capillary deformation effects. The red lines are the results obtained
through the TTT [116], i.e. neglecting capillarity. In the insets we show, for the particle
equilibrium and metastable configurations, a 3D view of the interface shape (blue grid)
close to the particle (black grid), as calculated by our method. (b) Contour plots, for
the global minimum energy configuration of the cube for the various 6 considered, of the
interface height profile deformed by the particle, as obtained by our numerical method.
For cosf = 0 and cosf = 0.2, a hexapolar capillary deformation emerges, while for
cos @ = 0.3 the interface is essentially undeformed. The case cosf = 0.5, not shown, is
basically identical to the case cos@ = 0.3. The plane z = 0 corresponds to the fluid-fluid
interface when no particle is adsorbed.
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5.4 PAIR INTERACTION

Having established, in the previous Section, the equilibrium configuration of a
single-adsorbed cube, we study in this Section the pair interaction between two
cubes adsorbed at a fluid-fluid interface.

To study capillary interactions between adsorbed particles, we define the capillary
interaction energy per particle

. E
En = WN . (5.3)

where N is the number of adsorbed particles at the fluid-fluid interface, and En
[Eq. (5.1)] is the energy of the fluid-fluid-particle(s) system, and it is calculated
numerically from the equilibrium shape of the fluid-fluid interface, which is com-
puted through our numerical method for the given input parameters [position(s)
of the particle(s), Young’s contact angle 6, and volume of the fluids]. Note that

é O@HQ ___‘&HE B 7'7 ] Di}]:ole-Dipole Attraction
-0.001 \ Qea 117 2 ¥
-0.002 X REEIN Tripole-Tripole Attraction
o |
-0.003F 5 <& 1 i é H%
-0.004f o | ZI o
15 2 25 3 35 4| | ] &e}é
00055775 3 35 4L

Figure 5.6: (a): Interaction energy per particle Ey (Eq. (5.3)) of two {111}-oriented
adsorbed cubes with side L and Young’s contact angle § = 7/2, as a function of the
distance D between their centers of mass, for five relative azimuthal orientations of their
hexapolar capillary deformations in the interface plane, indicated by the sketches, where
blue spots are depressions and red spots are rises of the interface height profile. The
energy is plotted in units of v 3, with 3 the cube’s total surface area and « the fluid-fluid
surface tension. The main graph shows the two attractive configurations, where a red-
blue dipole approaches another red-blue dipole (violet curve), and a red-blue-red tripole
approaches another red-blue-red tripole (green curve). The inset shows the two repulsive
counterparts and an almost neutral dipole-tripole pair. The violet and green vertical
dotted lines represent the cube contact distance for the dipole-dipole and tripole-tripole
attachments, respectively. As cos @ = 0, the system is invariant under exchange of red and
blue. (b)-(c¢): Sketch of the two possible relative orientations of the hexapoles generated
by the two cubes that induce attraction between them: (i) dipole-dipole orientation, such
that a set of two spots (one red and one blue) of one cube overlaps with the same set of
two spots of another cube, (ii) tripole-tripole orientation, such that a set of three spots
(blue-red-blue or red-blue-red) of one cube overlaps with the same set of three spots of
another cube.
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Eyn = 0 when only one particle is adsorbed (N = 1), or when N adsorbed parti-
cles do not interact with each other, such that Ex = N Ej.

For cubes with cos§ > 0.3, which are adsorbed in the {100} configuration
and induce negligible deformations [see Fig. 5.5(b)], we do not expect capil-
lary interactions, in agreement with experiments of cubes with cosf ~ 0.3 and
L ~ 1um [117]. Therefore, cubes with such a contact angle tend to assemble into
tetragonal possibly closed-packed structures [118].

More interesting is the case cosf < 0.2, where cubes are adsorbed in the {111}
configuration and induce a hexapolar deformation in the height profile of the in-
terface, with 3 depressions and 3 rises' [see Fig. 5.5(b)]. In Fig. 5.6(a) we study,
for two adsorbed cubes (N = 2) with cos @ = 0, the interaction energy per particle
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Figure 5.7: Energy FE5 [Eq. (5.1)] for a system of two adsorbed cubes with side L, surface
area Y., Young’s contact angle § = 7/2, adsorbed at the interface with the equilibrium
configuration (i.e. the values of ¢, ¥ and z., see Fig. 5.1) computed for a single cube. The
cubes have a distance D = 1.6 L between their centers of mass, i.e. close to their contact
distance. As shown in Fig. 5.5(b) for cosf = 0, each cube in this configuration induces
in the interface height profile a hexapolar capillary deformation. Here the reciprocal
azimuthal orientation of the hexapoles generated by the cubes is such that the cubes are
(a) dipole-dipole and (b) tripole-tripole interacting [see Fig. 5.6(b)-(c)]. The energy Es
plotted here (in units of ¥y, with v the fluid-fluid surface tension) is obtained by varying
the value of, respectively, ¢, 1 and z. for one of the two cubes, from its equilibrium
value for a single-adsorbed cube, represented by the dotted vertical line. As shown, the
equilibrium values of ¢, 1 and z. are still the same now that we are considering two
cubes close to each other. This proves that the capillary interactions between the cubes
do not affect the equilibrium configuration ¢, 1, z. of each cube, calculated for a single
adsorbed cube.

iSimilar predictions have also been made for cubes adsorbed at thin films [119].
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By [Eq. (5.3)], with respect to the center of mass distance D between the cubes,
for several relative azimuthal orientations of the hexapolar capillary deformations
generated by the two cubes in the fluid-fluid interface height profile. To illustrate
the azimuthal orientation of each hexapole in the interface plane, we indicate a
rise in the interface height profile with a red spot, and a depression with a blue
spot. Figure 5.6 shows that two cubes attract each other when their orientations
allow them to overlap spots with the same color, whereas the cubes repel each
other when spots of unlike color overlap. This was to be expected, because the
fluid-fluid surface area decreases by overlapping spots of identical color, while it
increases when a rise and a depression approach each other. In these calculations,
we kept z., ¢, ¥ of each cube fixed to their values for a single-adsorbed cube at
cos = 0, as we verified that these are hardly influenced by the presence of the
other cubes (see Fig. 5.7). From the behavior of Ey(D) in Fig. 5.6(a), we note
that there are two kinds of orientations that allow the two cubes to attract each
other: (i) a ‘dipole-dipole’ attraction [Fig. 5.6(b)], when a set of two spots (one
red and one blue) of one cube overlaps with the same set of two spots of another
cube, and (ii) a ‘tripole-tripole’ attraction [Fig. 5.6(c)], when a set of three spots
(blue-red-blue or red-blue-red) of one cube overlaps with the same set of three
spots of another cube. As shown in Fig. 5.6(a), the interaction strength Ey
for these two different orientations is essentially the same, for cos = 0. How-
ever, the contact distance for dipole-dipole interacting cubes is smaller than for
tripole-tripole interacting cubes. Therefore, two {111}-oriented cubes minimize
the interaction energy Ey by a dipole-dipole bond, while the tripole-tripole bond
is metastable.

5.5 SELF-ASSEMBLY INTO HEXAGONAL AND HONEYCOMB
LATTICES

In the previous Section, we showed that two cubes adsorbed with the {111}
orientation, i.e. generating a hexapolar capillary deformation in the fluid-fluid
interface height profile [see Fig. 5.5(b)], attract each other only through two pos-
sible reciprocal azimuthal orientations of their hexapole in the interface plane,
namely dipole-dipole and tripole-tripole orientation, respectively (see Fig. 5.6).
In this Section we consider, for cosf = 0, many cubes (N > 2) adsorbed with
the {111} orientation at the interface, and we study the ordered structures they
can form. If the cubes bond to each other only through the dipole-dipole ori-
entation, then an hexagonal lattice is formed, with all the dipole-dipole bonds
satisfied, see Fig. 5.8(a). Instead, if the cubes bond to each other only through
the tripole-tripole orientation, then an honeycomb lattice is formed, with all the
tripole-tripole bonds satisfied, see Fig. 5.8(b). Note that the holes of this honey-
comb lattice are all filled with either depressions or rises, frustrating the inclusion
of another {111}-oriented hexapole-generating cube (see Fig. 5.9), and therefore
preventing this honeycomb lattice to become an hexagonal lattice. We consider
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i ool

Figure 5.8: Sketch (a) of the
honeycomb lattice formed by
tripole-tripole interacting cubes,
and (b) of the hexagonal lat-
tice formed by dipole-dipole in-
teracting cubes. The cubes, with
Young’s contact angle § = /2,
are adsorbed at the fluid-fluid
interface with the {111} equi-
librium orientation, therefore in-
ducing a hexapolar capillary de-
formation in the interface height
profile [see Fig. 5.5(b)]. Here,
each red spot represents a rise
induced by the cubes in the in-
terface height profile, and each
blue spot represents a depres-
sion in the interface height pro-
file. As cosf = 0, the sys-
tem is symmetric with respect
to z, i.e. by shifting red with
blue. Particle-particle distances
are only schematic. Note that, in
the hexagonal lattice, all cubes
have the same azimuthal orien-
tation of their vertical axis with
respect to the interface plane,
whereas in the honeycomb lattice
each neighbor is rotated by .
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now the limit N — oo for the {111}-oriented hexapole-generating cubes adsorbed
at the fluid-fluid interface. In Fig. 5.10(a) we show the interaction energy per
particle B, [Eq. (5.3)] for a periodic extension of the hexagonal and honeycomb
lattice, formed by dipole-dipole and tripole-tripole attached cubes, respectively,
with respect to the center of mass distance D between two closest-neighbor cubes
in the lattice. To perform this calculation, we apply our numerical method to
a lattice unit cell, which is rectangular with N = 2 for the honeycomb lattice,
and hexagonal with N = 1 for the hexagonal lattice. At the boundary of these
unit cells, instead of placing as usual a solid vertical wall with Young’s contact
angle /2, we impose periodic boundary conditions for the height profile of the
fluid-fluid interface. For the hexagonal lattice, the height profile of the interface is
the same on each couple of opposite sides of the hexagonal cell [see Fig. 5.10(b)].
For the honeycomb lattice, the height profile of the interface is the same on the
two short sides of the rectangular cell. Each long side of the rectangular cell is
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divided in two halves, and the height profile of the interface is the same on the
first half of one long side and on the second half of the other long side [see Fig.
5.10(c)]. Contour plots of the interface height profile, as obtained numerically
by our method, are shown in Fig. 5.11 for the hexagonal and honeycomb lattice
unit cells, for various values of D.

The results of Fig. 5.10(a) show that, for a given distance D, the hexagonal
lattice with dipole-dipole interacting cubes (called phase x) has a lower energy
per particle B than the honeycomb lattice with tripole-tripole interacting cubes
(called phase h). In addition, phase x can reach a smaller lattice spacing than
phase h, lowering even more the interaction energy per particle E., because the
contact distance is smaller for dipole-dipole attached cubes than for tripole-tripole
attached cubes. Hence, it is tempting to conclude that the equilibrium structure
consists of touching cubes in phase z, while the phase h of touching cubes is a
metastable state, because it locally minimizes E., (about the metastability of
phase h, see also Fig. 5.12). However, this reasoning on the basis of the capillary
energy is correct only if translational and rotational entropy contributions can be
ignored, which is only the case in the low-temperature or large-particle regime,
where 73 /kpT is sufficiently large (with v the fluid-fluid surface tension, ¥ the
cube total surface area, kg the Boltzmann constant and 1" the temperature of the
system). Given the interaction energy scale of about —0.02v% per particle in the
close-packed phase z, as shown in Fig. 5.10(a), and given a typical free-energy
scale of approximatively 10 kg1 per particle for hard disks at packing fractions
varying from rather dilute to close-packed, one arrives at a rough estimate of a
balance of capillary and entropic contributions for v /kgT =~ 500. Therefore,
we conclude that, for v¥ > 500 kgT we are in the regime where capillary inter-
actions dominate over entropic forces. Hence, in this limit the cubes assemble
in the close-packed phase x, because such a structure has the lowest capillary
interaction energy per particle. However, in the regime v% =~ 500kpT, we ex-
pect entropic forces to be of the same order of capillary interaction forces. So
the phase h, favored by entropy because, compared to phase x, it has a lower
density per unit area of adsorbed cubes at the interface, may become the phase
energetically most favorable in this regime, if entropic effects for the adsorbed
cubes are included. These conclusions are elaborated more quantitatively in the
next Section, where an approximated free-energy model is introduced to take into
account both capillary and entropic contributions to the energy of the = and h
phases, and a temperature-density phase diagram for the adsorbed cubes at the
fluid-fluid interface is obtained.
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Figure 5.9: (a): Interaction energy per particle Ex [Eq. (5.3)] for N = 6 and N = 7
cubes, adsorbed at the interface with the {111} orientation and tripole-tripole interacting,
with side L, surface area ¥, and Young’s contact angle 8 = w/2. As shown, Ey for the 6-
particle system [i.e. corresponding to the honeycomb assembly, see (b)] is lower than for
the 7-particle system [i.e. corresponding to the hexagonal assembly, see (c¢)]. Therefore,
tripole-tripole interacting cubes prefer to assemble into an honeycomb lattice instead
than into an hexagonal lattice. As a matter of fact, in the hexagonal assembly [see (c)]
the central cube cannot attach through an attractive tripole-tripole interaction with all
its six neighbors, but it is forced to experience repulsive interaction with some of them.
(b)-(c¢): Contour plots of the interface height profile, as obtained through our numerical
method, for N = 6 and N = 7 adsorbed cubes, respectively, for various distances D
between the centers of mass of two closest cubes. The azimuthal orientations of the
cubes are such that the cubes interact through the tripole-tripole orientation [see also
Fig. 5.6(c)]. The plane z = 0 corresponds to the interface when no particle is adsorbed.
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Figure 5.10: (a) Interaction energy per particle Ey, [Eq. (5.3)] for a periodic hexagonal
lattice formed by dipole-dipole interacting cubes (violet curve), and for a periodic hon-
eycomb lattice formed by tripole-tripole interacting cubes, with respect to D, i.e. the
distance between the centers of mass of two closest-neighbor cubes. (b)-(¢) Sketch of
the lattice unit cells considered in our numerical method to reproduce the lattices. The
periodic boundary conditions applied to these unit cells are indicated by the colors of the
sides of the cell, that is sides of the cell with the same color (yellow, green and brown)
have to the same interface height. Contour plots of the interface height profile in these
unit cells are shown in Fig. 5.11.
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Figure 5.11: Contour plots of the interface height profile, as obtained through our nu-
merical method, for the unit cells of the hexagonal and honeycomb lattices [see Fig.
5.10(b)-(¢)] formed by adsorbed cubes dipole-dipole and tripole-tripole interacting, re-
spectively, for different distances D between the centers of mass of two closest-neighbor
cubes in the lattice. FEach cube has side L, contact angle § = 7/2, total surface area
3, and it is adsorbed at its equilibrium configuration, i.e. with the {111} orientation,
generating a hexapolar capillary deformation in the interface height profile. The plane
z = 0 corresponds to the interface when no particle is adsorbed.
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Figure 5.12: (a) Interaction energy per particle E,, [Eq. (5.3)] for an honeycomb
lattice formed by adsorbed {111}-oriented tripole-tripole interacting cubes with side L,
contact angle § = 7/2, and total surface area Y., with respect to the rotation w of
the azimuthal angle of the vertical axis of each cube from its equilibrium value. Each
cube is rotated in the opposite angular direction with respect to its closest neighbors. By
tuning simultaneously w for each cube, the cubes shift from tripole-tripole to dipole-dipole
attachments. Each graph correspond to a different lattice spacing, with D the distance
between the centers of mass of two closest-neighbour cubes. The minima in E, with
respect to w, correspond to the tripole-tripole attachments, while the maxima correspond
to the dipole-dipole attachments (see the marks in the graph on the left). Therefore, the
honeycomb lattice formed by tripole-tripole interacting cubes is a metastable structure,
as an energy barrier prevent it to evolve into an honeycomb lattice with dipole-dipole
interacting cubes, which would in turn evolve into an hexagonal lattice with dipole-dipole
interacting cubes. (b) Contour plots of the interface height profile, as obtained through
our numerical method, for the unit cell of the honeycomb lattice, for D = 1.65 L and
different values of w, i.e. the rotation of the azimuthal angle of the vertical axis of each
cube from its equilibrium value, corresponding to tripole-tripole interacting cubes. The
plane z = 0 corresponds to the interface when no particle is adsorbed.
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5.6 TEMPERATURE-DENSITY PHASE-DIAGRAM

In the previous Section we calculated the capillary interaction energy per particle
Ey [Eq. (5.3)] for an honeycomb lattice of adsorbed tripole-tripole interacting
cubes, and for an hexagonal lattice of adsorbed dipole-dipole interacting cubes,
with respect to the lattice spacing. As a result, we obtained that the close-
packed hexagonal lattice has the lowest E., and therefore it is a candidate for
the equilibrium structure, while the close-packed honeycomb lattice is metastable,
as it locally minimizes Es. However, the close-packed honeycomb lattice has a
lower density of adsorbed cubes per unit area than the close-packed hexagonal
lattice. Therefore, for certain temperatures and densities, the cubes could pre-
fer the honeycomb arrangement, if the configurational entropy of the cubes is
also taken into account. To verify this, we define, for adsorbed {111}-oriented
hexapole-generating cubes with cosf = 0, a free energy expression, depending
on T (temperature), N (number of adsorbed cubes), and A (area of the unper-
turbed fluid-fluid interface), where both entropic and capillary contributions are
included. Assuming that the cubes adsorbed at the interface can be in three
possible phases, i.e. a 2D disordered fluid phase (phase f), a honeycomb lattice
phase with the cubes tripole-tripole interacting (phase h), and a hexagonal lattice
crystal phase with the cubes dipole-dipole interacting (phase z), in Secs. 5.6.1,
5.6.2, and 5.6.3, we define a free energy Fy, F} and F}, for each of these three
phases, respectively. Then, in Sec. 5.6.6, we show a temperature-density phase
diagram for the adsorbed cubes at the interface extracted from the free energy
of these three phases.

5.6.1 FREE ENERGY OF THE FLUID PHASE

We assume that, when the {111}-oriented adsorbed cubes are in the fluid phase
(phase f), they behave approximately like an hard-disk fluid. That is

Fy~ B (5.4)

where F}%)(N ,A,T) is the free energy of a fluid phase of N hard disks of radius
R in a 2D space of total area A and at a temperature T. Using the standard
Taylor expansion scaled-particle theory [120], we can write

FD N N N N (2R N/A)?
AksT) ~ A [m (A”R > - 1} A (1 Ak ) T (<R N/A)
(5.5)
where the first term is the entropic ideal-gas contribution and the rest is due to
the hard-disk interactions. In our approximated model, the area and perimeter of
the hard disk become the area and perimeter of the intersection between the flat

interface and a cube adsorbed at its equilibrium configuration. As numerically

W That is, as cosf = 0, the cube is {111}-oriented and with center of mass height at the
interface level, see Sec. 5.3.
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computed, these are

(2rR)? ~ 3.07 %, (5.6)
TR~ 023 %, (5.7)

with ¥ the cube total surface area. Note that Eq. (5.6) implies R ~ 0.279V/%,
while Eq. (5.7) implies R ~ 0.27 1vX. This slight inconsistence occurs because
we are treating our adsorbed cubes as hard disks. For convenience, we introduce
the normalized density

9
V= — .
o (5.8)
where the density ¥ per unit area of the adsorbed cubes is defined as
N
Y =3 — 5.9
R (5.9)

and U, ~ 3.24 is the closest packing value'V of ¥ for the phase z, as numerically
computed. Given the distance D between the centers of mass of two closest-
neighbor cubes of the lattice, for the hexagonal lattice with hexagonal unit cell
of side D/v/3 and N = 1 cube [see Fig. 5.10(b)], ¥* is related to D by 9* =
251 /(9,D?\/3). Instead, for the honeycomb lattice with rectangular unit cell of
long side D /3, short side 3D/2, and N = 2 cubes [see Fig. 5.10(c)], 9* is related
to D by ¥* = 4%/(39,V/3D?).

Finally, for a system of N adsorbed cubes in the f phase, we obtain

Fy kT 0.230* 3.07(0%)?
T =5V || e | =T . (51
Ay XEny [ " <1/19x — O.2319*> + 47 (1/9; — 0.2309%) (5-10)

In the free energy Fy [Eq. (5.10)] we are taking into account only the entropy of
the cubes, without including the contribution to the energy due to the capillary
interactions, which we assume to consist of positive and negative contributions
that cancel. Indeed, the fluid phase occurs for cubes with a rather low density"”
or with a random azimuthal orientation of their vertical axis'l. A 2D system
of N hard disks with radius R is in the fluid phase when its area A is greater
than 1.328 Ay [121], where Ag = 2N+/3R? is the closest packing area of the sys-
tem. In our approximate analogy for the {111}-oriented adsorbed cubes, where
Ap/A is given by ¥*, we obtain that the adsorbed cubes are in the fluid phase
for v* < 1/1.328. So, we estimate that the expression in Eq. (5.10) for the free
energy F; of the cubes in the disordered fluid phase is reliable for ¥* < 0.75.

VThat is, when the dipole-dipole interacting cubes are at their contact distance.

YSuch that particle-particle distances are, on average, large enough that the capillary inter-
actions are negligible.

ViTherefore, the hexapolar capillary deformations induced by the adsorbed cubes in the fluid-
fluid interface height profile have random reciprocal azimuthal orientations. Consequently, the
cubes exert both attractive and repulsive capillary interactions to each other, giving on average
a negligible contribution to the total free energy.
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5.6.2 FREE ENERGY OF THE HONEYCOMB PHASE

For the tripole-tripole interacting cubes assembled in the honeycomb lattice
(phase h), we assume the free energy F}, can be expressed as

Py~ NEY — NkgTz{ + ) (5.11)

where ENS\};) is the capillary interaction energy per particle [Eq. (5.3)] for the
phase h, and it is computed through our numerical method and reported in Fig.
5.10(a) for N — oco. The last term in Eq. (5.11), i.e. Ff(Lg), is the free energy of
an hard-disk fluid [Eq. (5.5)], and it takes into account the translational entropy
contributions to the energy of the adsorbed cubes in phase h. The second term
in Eq. (5.11), i.e. =N kgTIn Z((,ff), is the rotational entropy contribution to the
free energy due to the azimuthal orientation of the vertical axis of the cubes in
the interface plane. Indeed, in this lattice phase, any i-th cube (i = 1,...N)
has a fixed azimuthal orientation «; of its vertical axis. We assume that the
cubes can experience only small angular variations w in «;, with an energy cost
U(w) =~ Cn(9*)w?/2, where the rotational spring constant Cj,(9*) depends on
the honeycomb lattice density 9*, and it is computed in Sec. 5.6.4 and given in
Eq. (5.19). Using this approximation, the orientation partition function Zé?) of
a single cube can be written as

3 [/ 3 [ 2kgT
(h) — 2 ~Uw)/kgT 4, _ 3 | 2kl .
Zoy o /ﬂ3 e dw 1\ 7o) E[CR()], (5.12)
T [LCh(0T) By
3V 2 Xy kT

and Erf(z) is the error function. As shown in Fig. 5.13, for the whole range of
parameters that we consider, & [C}(9*)] = 2, such that the integral in Eq. (5.12)
is actually a Gaussian integral. In Eq. (5.12), the factor 3 and the integration
between [—m/3, /3| takes into account that, for any i-th cube, there are three
equivalent minimum energy azimuthal orientations, which are «;, a; +27/3, and

where

¢[CL(9")] = 2Erf

, (5.13)

ol Syl ksT
— 10
1.8 b 50
16 4 | — 100
Figure 5.13: Behavior of 500

¢[Ch] [Eq. (5.13)] for different 1.4
values of ¥v/kgT. As shown, 1.2
for Xv/kpgT > 100 we can con-
sider £ ~ 2 always.
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a; + 4w /3. So, from Eq. (5.11) we obtain

~(h) .
Fh -, g+ BN + 9, FpT [19*111 <W> — P+

A~y SR 1/0, — 0.239*
3.07(9%)? 9 (21 Cp(9%) T

Ly . 14

47 (1/0, —0.239%) T n( 9 Xy k:BT (5.14)

The close-packing value of ¥ for the honeycomb lattice, i.e. when the tripole-
tripole interacting cubes are at their contact distance, is 9, ~ 1.83, as computed
numerically, corresponding to ¥* ~ 0.56.

5.6.3 FREE ENERGY OF THE HEXAGONAL PHASE

For the dipole-dipole interacting cubes assembled in the hexagonal lattice (phase
x), we assume the free energy F, can be expressed as

Fy,~ NEY — NkgThz® + B (5.15)

where EE\J;) is the capillary interaction energy per particle [Eq. (5.3)] for the phase
x, and it is computed through our numerical method and reported in Fig. 5.10(a)

for N — oco. The second term in Eq. (5.15),i.e. —N kpT'In ng), is the rotational
entropy contribution to the free energy due to the azimuthal orientation of the
vertical axis of the cubes in the interface plane, and it is calculated analogously
to the honeycomb lattice case (see Sec. 5.6.2), with the rotational spring constant
for the hexagonal lattice Cy(9*) computed in Sec. 5.6.4 and given in Eq. (5.21).
The last term, i.e. F; }E?(N , A, T), is the entropic free energy of a solid phase of N
hard disks with radius R in a 2D space of total area A and at a temperature T,
and it takes into account the translational entropy contributions to the energy of
the adsorbed cubes in the phase x. Following Ref. [121], we have

2

() Ay Ay A A
F _NkBT[273ln<A>—21 <1—A)+233AO—075A2 1.475|
(5.16)

where Ay = 2v/3NR? is the closest packing area for a system of N hard disks
with radius R. For our cubes in the hexagonal phase, we replace Ag/A with ¥*,
obtaining finally for F, [Eq. (5.15)] that

F, Y

T = g
Axy Xy

0.75 0* (21 Co(9¥) Sy
2.33 — —> _ 1.4750* + —1In | — =1 1
+2.33 - 759" + (Q —— (5.17)

kgT
+19B[

2.739* Ind* — 20* In (1 — 9*) +
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Figure 5.14: (a) Energy E*. ") [Eq. (5.18)] for an honeycomb lattice unit cell [see Fig.
5.10(c)] with tripole-tripole interacting cubes, where the azimuthal orientation of the
vertical axis of one cube is rotated by w from its equilibrium value, for several values of
the distance D between the centers of mass of two closest-neighbor cubes. The Young’s
contact angle is /2, the cube total surface is ¥, and the cube side is L. The red dotted
curves represent the fit around each minimum of E* ") with aj, (9*) 4+ w? C, (9%)/2. (b)
Values of Cj,(9*), as obtained for the various D considered. The dotted curve is the fit
of these values using Ae??". The green vertical line corresponds to 1.83/9,, i.e. the
value of ¥* for the honeycomb lattice phase at its closest packing density. (¢) Contour
plots of the interface height profile, as obtained through our numerical method, for the
honeycomb lattice unit cell in the case D = 1.65 L, for different values of w. The plane
z = 0 correspond to the fluid-fluid interface when no cubes are adsorbed.
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5.6.4 ROTATIONAL ENERGY FOR CUBES IN THE HONEYCOMB AND
HEXAGONAL LATTICES

We consider in this Section {111 }-oriented hexapole generating cubes, with cos 6 =
0, adsorbed at the interface and arranged in honeycomb or hexagonal lattices,
and we study the energy to rotate the azimuthal angle of their vertical axis in
the interface plane from its equilibrium value.
Any i-th cube (i = 1,...N) in the h phase, i.e. the honeycomb lattice with
tripole-tripole interacting cubes, has a fixed azimuthal orientation «; of its ver-
tical axis in the fluid-fluid interface plane. Assuming that the cubes in this
phase can experience only small angular variations w in «;, with an energy cost
U(w) =~ Cp(9") w?/2, we calculate here the rotational spring constant Cj, with
respect to ¥*. For this, we compute

g =25 () — 28 (5.18)

o0

for a honeycomb lattice unit cell [see Fig. 5.10(c)], where the two cubes have
azimuthal orientation of their vertical axis given by «; and as + w, respectively.
With aq and ao we refer to the minimum energy azimuthal orientations that the
two tripole-tripole interacting cubes have in the unit cell of the honeycomb lattice

phase, and ES,Z) is the capillary interaction energy per cube [Eq.(5.3)] when the

two cubes have such orientations. With ES.Z) (w) we refer to Eg;) calculated when
the second cube has out-of-equilibrium azimuthal orientation given by as + w.
In Fig. 5.14(a) we show E* (M (w), as obtained by our numerical method, for
several values of the distance D between the centers of mass of two closest-
neighbor cubes, corresponding to different values of ¥* for the lattice. In Fig.
5.14(b), we show the values of Cj,(9*) obtained by fitting E* ") (w), for each 0*
considered, in a neighborhood of +7/10 around each minimum in w, with the
function Uy (w) = ap(9*) + w? Cy(¥*)/2. Finally, we can fit these values of C}, to
express C}, as a function of ¥*, obtaining

Cp(9*) = AeBY | (5.19)

with A = 0.021 Xy and B = 2.70.
Analogously, any i-th cube (i = 1,...N) in the x phase, i.e. the hexagonal lattice
with dipole-dipole interacting cubes, has a fixed azimuthal orientation «; of its
vertical axis in the fluid-fluid interface plane. Assuming that the cubes in this
phase can experience only small angular variations w in «;, with an energy cost
U(w) = Cy(9*)w?/2, we calculate now the rotational spring constant C, with
respect to ¥*. For this, we compute

BE® = 78 () — 7B (5.20)
for N = 7 adsorbed cubes, with 6 of them placed with their center of mass at the
vertexes of a side-D hexagon in the interface plane, and the 7th cube placed with
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center of mass at the center of this hexagon. The minimum energy azimuthal
orientation of the vertical axis of these cubes in the interface plane is such that

(z)

they dipole-dipole interact with each other, and Eﬁ is the capillary interaction
energy per cube [Eq.(5.3)] when the cubes are in their minimum energy orienta-

tion. Instead E‘7(x) (w) is the capillary interaction energy per cube [Eq.(5.3)] when
the azimuthal angle of the vertical axis of the cube in the center of the hexagon
is rotated by w from its equilibrium value. In Fig. 5.15(a) we show E% (@) (w), as
obtained by our numerical method, for several values of the distance D between
the centers of mass of two closest-neighbor cubes, corresponding to different val-
ues of ¥* for the lattice. In Fig. 5.15(b), we show the values of C,(9*) obtained
by fitting E;*(:”) (w), for each ¥* considered, in a neighborhood of +7/10 around
each minimum in w, with the function U, (w) = a,(9*) + w? C,(¥*)/2. Finally,
we can fit these values of C, to express C, as a function of ¥*, obtaining

Cp(9*) = Ae B/ (5.21)

with A = 55.30% and B = 6.71.

5.6.5 CoOMMON TANGENT CONSTRUCTION

In Fig. 5.16 we show the behavior of Fy/A~y [Eq. (5.10)], Fj,/Ay [Eq. (5.14)], and
F, /Ay [Eq. (5.17)], for {111}-oriented hexapole-generating adsorbed cubes with
cos® = 0, in the f, h, and = phase, respectively, with respect to ¥9* [Eq. (5.8)],
i.e. the normalized density per unit area of adsorbed cubes, for several values of
Yv/kpT (with ¥ the cube surface area and  the fluid-fluid surface tension).
This representation of the free energy, i.e. free energy density with respect to
the particle density, is useful to verify if the system phase separates for certain
densities. Indeed, given a system with global density ¥ = ¥ N/A and free energy
F(N, A), consider two subsystems 1 and 2 with density 1 = ¥N;/A; and 95 =
ENQ/AQ, respectively, with Ny+Ny = N (SO A1 +Ax99 = AQ?) and A1 +A; = A.
These definitions implies

Ay 9 —
— = . .22
A 93— (5.22)
Given f(¥) = F(N,A)/A, for a certain fixed T, we first note that, if
Af(0) > Arf(0h) + Az f (D) , (5.23)
then
F(N,A) >F(N1,A1)—|—F(N2,A2) . (524)

So, Eq. (5.23) implies that the free energy F(N, A) of the global system with N
particles and area A is higher then the sum of the free energies F'(Ny, A1) and
F (N3, Ag) of the two subsystems with, respectively, Ni particles and area Aj,
and Ny particles and area Ay. Therefore, if Eq. (5.23) holds, then the global
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Figure 5.15: (a) Energy E:® [Eq. (5.20)] for N = 7 dipole-dipole interacting cubes
disposed like in an hexagonal lattice, where the azimuthal orientation of the vertical axis
of the central cube is rotated by w from its equilibrium value, for several values of the
distance D between the centers of mass of two closest-neighbor cubes. The cube contact
angle is m/2, the cube total surface is 3, and the cube side is L. The red dotted curves
represent the fit around each minimum of E® with a,(9%) + w? Cp(9%)/2. (b) Values
of C,(9*), as obtained for the various D considered. The dotted curve is the fit of these
values using Ae=5/?". (c) Contour plots of the interface height profile, as obtained
through our numerical method, for D = 1.65 L and for different values of w. The plane
z = 0 correspond to the fluid-fluid interface when no cubes are adsorbed.
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system prefers to phase separate into the two subsystems. In this argument we
are, of course, neglecting the energy contributions due to the interface that would
form between the two subsystems. Equation (5.23) can be rewritten, using Eq.
(5.22), as
¥ —1h
f(0) > f(dh) + K [f(¥2) — f(91)] . (5.25)
Equation (5.25) shows that a system with density ¢ phase separates into two
subsystems with densities ¥; and 13, if the linear combination of f(¥;) and
f(¥2) in ¥ is lower than f(¢). By geometrical argument one can see that, for
any ¢ such that Eq. (5.25) holds, the two most convenient ¥; and 2 for phase
separating are the ones that ensure

f02) = f(¥1) _ Of| _ Of
Jo—01 9|, ddy,

Therefore, the tendency of a system, with a certain density ¢ and at a certain
temperature 7', to phase separate is indicated by the presence of the so-called
common tangents in the plot of its free energy density f(¢#). If in the system
there are, like in our case, phases with different structures which are described by
different free energy densities f;(¢), then the same argument illustrated above can
be applied also to the presence of common tangents between, say, fo () and fg(9):
if a common tangent exists between f (1) and fz(¥2), then for ¥ € [, 2] the
system phase separates into the phase with structure o and density ¥, and into
the phase with structure § and density 9J2. Of course if a common tangent can
be found, for example, for the single free energy density f, (1), then the system
phase separates into two phases with structure o and different densities. If more
than one common tangents exist for a given 1, then the system phase separates
accordingly to the common tangent with the lowest free energy density for such
a . For a 9 such that no common tangents exist, the system stays in a single
phase, which has density ¥ and structure corresponding to the lowest f;(19).

In Fig. 5.16, for each value of Yv/kpT considered, the common tangents be-
tween Fy(0*)/Avy, Fj,(9*)/Ay, and F,(9*)/A~, are shown with black dotted lines
when they lead to a lower free-energy state, more convenient than any of the
three phases, f, h and z. As we explained in this Section, when for a certain 9¥*
a common tangent exists, the cubes phase separates into the two phases corre-
sponding to the free energies at the contact points of the common tangent, and
the densities of these two coexisting phases are indicated by such contact points.
As shown in Fig. 5.16, for ¥/kpT > 500 the cubes form an almost close-packed
phase x coexisting with a very dilute phase f, which is indeed the result expected
in the limit of low T', where capillary interactions dominate over entropic forces.
However, in the regime 3v/kgT =~ 500, the presence of common tangents be-
tween Fp,(9*)/Ay and Fr(9*)/Ay or Fy(9*)/Av indicates, as we speculated, that
for certain densities the cubes prefer the phase h. These results are summed up
in the next Section, where we extract from Fig. 5.16 a temperature-density phase
diagram for the adsorbed cubes.

(5.26)
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Figure 5.16: Plots of Fy(0*)/Avy [Eq. (5.10)], Fr(0*)/Ay [Eq. (5.14)], and F,(9*)/A~y
[Eq. (5.17)], shown with a blue, green, and violet line, respectively, with respect to the
normalized density 9* [Eq. (5.8)], for different values of ¥v/kgT. The dotted vertical
blue line represents the value of ¥* for which the phase f can no longer occur. The
dotted vertical green line represents the value of ¥* corresponding to the closest packing
fraction for the phase h. The closest packing fraction for the phase x corresponds to
¥* = 1. With black dotted lines we show the common tangents, which indicate phase
coexistence.
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5.6.6 TEMPERATURE-DENSITY DIAGRAM FOR THE x, h AND f PHASES

In this Section we sum up the results obtained in the previous Section for the free
energy of the adsorbed {111}-oriented hexapole-generating cubes with Young’s
contact angle § = 7/2. Assuming that such cubes can be in three possible phases,
i.e. a disordered (2D) fluid phase (phase f), a honeycomb lattice with tripole-
tripole interacting cubes (phase h), and a hexagonal lattice with dipole-dipole
interacting cubes (phase ), in Fig. 5.17 we report the phase diagram, extracted
by the common tangents calculations shown in Fig. 5.16, for the adsorbed cubes
with respect to ¥* [Eq. (5.8)], i.e. the density per unit area of adsorbed cubes
normalized such that ¥9* = 1 for the close packed phase x, and with respect to
Yy/kpT (with ¥ the cube total surface area, v the fluid-fluid surface tension,
kp the Boltzmann constant, and 7" the system temperature). The temperature
range goes from >y = 1300 kT to ¥y = 300kpT, as this was the meaningful
part of the diagram. The blue, green and purple areas denote one-phase f, h, and
x regions, and the gray areas indicate two-phase regions of coexisting phases that
can be found by horizontal tie lines. For ¥+ /kpT < 350 and ¥v/kgT 2 650, the
phase behavior is in the high-temperature and low-temperature limit, where the
highest-density phase = coexists with the high-density and low-density phase f,
respectively. Interestingly, however, in the intermediate regime 350 < v /kpT <
650, that is bounded by an h — f — x and a f — h — x triple point, the phase h
is, as speculated, thermodynamically stable in a huge density regime, either in
coexistence with the phase f or with the phase x, or as an homogeneous phase
for a small density regime. Note that, for temperatures in this regime, cubes are
still strongly adsorbed at the interface, as the single particle adsorption energy

Figure 5.17: Temperature-density phase diagram for adsorbed {111}-oriented hexapole-
generating cubes with Young’s contact angle 8 = /2, extracted from the common tan-
gent calculations shown in Fig. 5.16. In colors we show the phase h (honeycomb lattice
with tripole-tripole interacting cubes), phase x (hexagonal lattice with dipole-dipole in-
teracting cubes) and phase f [disordered (2D) fluid phase]. The gray areas indicate
phase coexistence. The density ¥* of adsorbed cubes per unit area is normalized such
that 9* = 1 for the close packed phase . Going up along the y axis means to increase the
temperature of the system (X is the cube total surface area, «y is the fluid-fluid surface
tension, kp is the Boltzmann constant, and T is the system temperature).
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E; [Eq. (5.1)] is By = —0.25% for § = 7/2 (see Fig. 5.2 for cos§ = 0). To find
a stable phase h of cubes with side L = 5 nm, a typical tension v = 0.01 — 0.02
N/m is required at room temperature, which is indeed a reasonable estimate
for v in the experiments in Refs. [75,76], where both hexagonal and honeycomb
lattices of truncated nanocubes were observed. For cubes with L = 1 um, instead,
a much lower tension v &~ 0.2 — 0.5 uN/m is needed to obtain the h phase,
which could however be possibly achieved in the extreme case of e.g. water-water
interfaces [29].

5.7 EFFECTS DUE TO TRUNCATION OF THE CUBE SHAPE

In this Section, we study the effects of truncating the shape of a cubic particle
on its adsorption energy E; [Eq. (5.1)]. By tuning the parameter ¢, which
corresponds to the percentage of each cube side that is removed by the truncation
(see Fig. 5.18), we go from a cubic shape with sharp edges for ¢ = 0 to a
bypiramid shape with square base for ¢ = 1. We call L the side of the cubic
shape for ¢ = 0. So, L corresponds also to the height of the bypiramid shape. We
consider a single adsorbed particle with Young’s contact angle §# = 7/2, and with
a truncated-cube shape obtained for, respectively, ¢ = 0.01, ¢ = 0.25, ¢ = 0.50,
q = 0.75, and ¢ = 0.99 (see Fig. 5.18). As usual, the plane z = 0 corresponds
to the flat interface, i.e. when no particles are adsorbed. In Fig. 5.19 we show
the single-particle adsorption energy E; [Eq. (5.1)] with respect to the cube
configuration ¢, v at the interface (see Fig. 5.1). The center of mass height z.
is kept at the interface level for these calculations, because here we consider only

q=0.99

Figure 5.18: Profile and 3D view of the truncated-cube shapes (black grid) correspond-
ing to ¢ = 0.01, ¢ = 0.25, ¢ = 0.50, ¢ = 0.75, and g = 0.99, respectively, where ¢ is the
parameter we tune to go from a cubic shape with sharp edges and side L (¢ = 0) to a
bypiramid shape with square base and height L (¢ = 1).
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Figure 5.19: Energy F; [Eq. (5.1)] of a single-adsorbed truncated cube, for ¢ = 0.01,
g =0.25, ¢ = 0.50, ¢ = 0.75, and ¢ = 0.99, respectively (see Fig. 5.18), for z. = 0 and
with respect to ¢ and ¢ (see Fig. 5.1), for various Young’s contact angles §. We plot F;
in units of v X, with v the fluid-fluid surface tension and ¥ the particle total surface area.
The minima in the energy corresponds to the equilibrium and metastable configurations
©, 1 of the particle.

the case § = 7/2, and therefore we already know, by symmetry, that this is the
minimum energy value of z.. In Fig. 5.20 we report E; minimized over ¢ and
with respect to ¢, showing 3D views and contour plots of the equilibrium fluid-
fluid interface height profile close to the particle, for the particle’s equilibrium
and metastable configurations at the interface, i.e. corresponding to the minima
in F. As shown, the results for the cube with sharp edges (¢ = 0.01) and for the
slightly truncated cube (¢ = 0.25) are analogous to the results we shown in Sec.
5.3 for a cube with smooth edges. For all these three shapes, indeed, we obtain
that the equilibrium orientation of the cube at the interface is the {111} (see Fig.
5.3), which induce a hexapolar capillary deformation in the fluid-fluid interface
height profile. The only effects of truncation we note for the truncated cube with
q = 0.25 are a slight reduction of the hexapolar deformation amplitude in 2z, which
likely implies slightly weaker capillary interactions between these truncated cubes,
compared to the sharp-edge cubes. For the highly-truncated cubes, we find that
the minimum energy configuration of the particle at the interface is still given
by a tilted hexapole-inducing orientation. However, the hexapole generated by
these highly-truncated cubes in the interface height profile does not seem 3-fold
symmetric, while it was for ¢ < 0.25 and for the smooth-edge cube of Sec. 5.3.
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Figure 5.20: Energy E,.in(¢), which is E; [Eq. (5.1)] for z. = 0 and minimized over
1, of a single-adsorbed truncated cube, for ¢ = 0.01, ¢ = 0.25, ¢ = 0.50, ¢ = 0.75,
and ¢ = 0.99, respectively (see Fig. 5.18), for various Young’s contact angles 6. In the
insets and in the right panels we show a 3D view and a contour plot, respectively, of the
fluid-fluid interface height profile close to the particle, for its equilibrium and metastable
configurations, i.e. corresponding to the minima of E,,;;,.



136 CHAPTER 5

This could imply that the capillary interactions between such highly-truncated
cubes also lose their 3-fold symmetry, inducing in this way the particles to self-
assemble into tetragonal or chain-like structures (like experimentally observed
for truncated nanocubes in Ref. [75]), rather than into hexagonal or honeycomb
lattices. This hypothesis needs, of course, to be verified by calculations analogous
to Secs. 5.4 and 5.5, but we leave this study for future research. Note also that the
capillary deformations induced by such highly-truncated cubes are significantly
reduced in their amplitude in z, compared to the cases for ¢ < 0.25. Finally, for
the bypiramid shapes with square base (¢ = 0.99), we find that the equilibrium
orientation of the particle is no longer tilted, but the particle stands vertically
at the interface. In this configuration, the capillary deformations induced by
the particle in the height profile of the interface are negligible, therefore we do
not expect capillary interactions, and the self-assembly structures of many of
these particles adsorbed at the interface should be dictated by the close packing
fraction. It is interesting, though, to study if this behavior changes by varying
the Young’s contact angle from the value of /2 considered here, but we leave
also this study for future research.

5.8 (CASIMIR-LIKE AND VAN DER WAALS FORCES

In this Chapter we studied capillary interactions and self-assembly of particles
adsorbed at fluid-fluid interfaces. However, in our analysis we did not include
other possible kinds of particle-particle interactions. In general, to study these
systems it is important be aware whether they are negligible or not, compared
to interactions due to capillary deformations. In this Section, we quickly address
this point for van der Waals interactions and Casimir-like forces.

In Fig. 5.21 we show the van der Waals potential ®,4,, between two spheres of
diameter 0 = 2R, with respect to the particle center-of-mass distance D = d + o,
calculated with a Hamaker-de Boer approach [122] as

A 2 R2 N 2 R? l d>+4Rd
—— n
6 |d24+4Rd  d2+4Rd+4R2 d?+4Rd+4R?) |’

Dy au (d) =

(5.27)
for a system with surface tension v = 0.02 N/m and Hamaker constant A = 0.15
eV (which is an estimation for a PbSe/Hexane/PbSe system [123]. These values
are an order-of-magnitude estimate for the experimental systems in Refs. [75,76],
and a more accurate estimation should take into account that the cubes are
adsorbed at a fluid-fluid interface and therefore the effective Hamaker constant
can be slightly different. We plot ®,4,,/2 in units of I'y, where I' = 4702, such
that I'y ~ 1.5 - 10° kgT for ¢ = 100 nm and I'y ~ 1.5 - 103kgT for o = 10
nm. Compared with capillary forces, see Fig. 5.6(a), van der Waals interactions
are completely negligible for spheres with ¢ = 100 nm, while they may become
relevant for spheres with ¢ = 10 nm, i.e. with size comparable to the nano-cubes
in Refs. [75,76]. Note however that the range of capillary interactions goes far
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beyond the range of van der Waals forces [compare Fig. 5.6(a) and 5.21]. So,
for such experiments, capillarity remains the leading driving force, while van der
Waals forces may come into play only when the particles get very close to each
other.

Do op 15103

2y Ty/kgT : . .
i 1510 Figure 5.21: van der Waals interaction
-0.0005 . ' potential ®,q4,, between two spheres of di-
ameter o and at a center-of-mass distance
GIODO D (see Eq. (5.27)), for a system with
-0.001 i — > Hamaker constant A = 0.15 eV, in units
| of 'y, with v = 0.02 N/m and I' = 4702

115 2 D/o the sphere surface area.

Another kind of particle-particle interactions that we did not include in our anal-
ysis are Casimir-like forces, which arise between adsorbed particles as a conse-
quence of the thermal fluctuations (called capillary waves) experienced by the
fluid-fluid interface equilibrium profile. We show here that these forces are in-
deed negligible compared to the capillary interactions induced by the hexapolar
deformations considered in our work. Following Ref. [124], we can express the
fluctuation-induced potential between two spheres adsorbed at a fluid-fluid inter-
face as
R4

Vfluc ~ _kBTﬁ ) (528)
with R the sphere radius and D the distance between the centers of mass of the
two spheres. For our cubes (with side L and total surface area ¥) adsorbed at a
fluid-fluid interface with surface tension ~y, we can use R ~ L/2 to rewrite this
expression, as an order-of-magnitude estimation, as

Vitwe _ kT L*
Sy Sy 16D4°

(5.29)

Using for example kpT /Yy ~ 350, which corresponds to the high-temperature
limit for the honeycomb-hexagonal phase-coexistence area in the phase diagram
of Fig. 3, and D = 1.5L, i.e. almost the contact distance for the cubes, we
obtain Vy;,. ~ 0.000035 X, which is definitely negligible compared to the cube-
cube attractive pair potential 2B, = O(0.01%7) [see Fig. 5.6(a)].
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5.9 (CONCLUSION

In this Chapter, we exploited our numerical method, introduced in Chapter 4,
to study systems of particles with cubic shape adsorbed at a fluid-fluid interface,
demonstrating the importance of capillarity for studying the behavior of a single
adsorbed cube, see Sec. 5.3, as well as the self-assembly of many adsorbed cubes,
see Secs. 5.4 and 5.5. In particular, we showed that cubes with contact angle close
to m/2 prefer the {111} orientation, defined in Fig. 5.3, generating a hexapolar
capillary deformation in the interface height profile which leads the cubes to self-
assemble into hexagonal and honeycomb lattices. Experiments [125-127] showed
that hexagonal platelets self-assemble into honeycomb or hexagonal lattices, de-
pending on whether 3 or 6 of the side facets were made hydrophobic. However
here we theoretically demonstrated that also adsorbed cubes with homogeneous
surface properties can self-assemble through capillary interactions into lattices
with hexagonal and honeycomb symmetries, rather than tetragonal. In addition,
in Sec. 5.6 with introduced a simple free-energy model, where both configura-
tional entropy and capillary interactions are included, and from this we predicted
a phase diagram that features both the honeycomb and hexagonal lattices as sta-
ble structures. Interestingly, in Refs. [75,76], where hexagonal and honeycomb
lattices of adsorbed cubes are actually observed, capillarity is not taken into ac-
count to justify such structures, rather ligand adsorption and van der Waals forces
between specific facets of the truncated cubes are suggested. Although we cannot
exclude other possible driving forces, our results strongly suggest that capillarity
could generate the observed structures. In fact, our phase diagram even features
a well-defined parameter range in which the honeycomb lattice is to be expected,
and this region is consistent with the experiments in Refs. [75,76]. Finally, in
Sec. 5.7 we explored the effects of shape truncation, for a cubic particle, on its
single-adsorbed behavior, observing, in particular, that an asymmetric hexapole
arises for highly-truncated cubes.
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CHAPTER

WETTING OF DROPLETS ON
COMPLEX SUBSTRATES

In this Chapter, we apply the numerical method introduced in Chapter 4 to study
the behavior of (3D) droplets wetting solid particles with a non-trivial shape, and
(3D) droplets wetting solid surfaces with heterogeneous chemical properties. In
particular, we will present results for the equilibrium position of droplets on
rod-like particles, and for the equilibrium shape of droplets wetting ellipsoidal
hydrophilic patches.
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6.1 INTRODUCTION

In Chapter 4, we introduced a new numerical method to calculate the equilib-
rium shape of fluid-fluid interfaces, given as input parameters the geometry and
Young’s contact angle of the solid surfaces in the system, and the volume of the
fluids. So far in this Thesis, we have focused mainly on applying this numerical
method for studying adsorbed particles at fluid-fluid interfaces. In this Chap-
ter, instead, we show its applicability to study droplets wetting complex solid
substrates. Firstly, we will briefly illustrate how we adapted the algorithm we
reported in Chapter 4 for adsorbed particles at fluid-fluid interfaces, to study
3D droplets wetting complex solid surfaces. Then, we will present results for the
equilibrium, i.e. minimum energy, position of a droplet on solid bullet-shaped
particles. These results are an important extension of the theoretical calculations
shown in Ref. [71], where the adsorption configuration of bullet-shaped particles
at flat fluid-fluid interfaces (i.e. corresponding to infinite-volume droplets) was
computed in the approximation of no capillary deformations. In Ref. [71], the
particle flat-end attachment, experimentally observed, was theoretically found to
be the equilibrium configuration only assuming heterogeneous chemical proper-
ties for the particle surface. Here, instead, where capillarity and finite-volume
droplet effects are included, we show that such a configuration can be equilibrium
also for particles with homogeneous chemical properties. In particular, we will
show how the specific geometry of the particle (wider or narrower flat base) influ-
ences the preferred position of the droplet on the particle, i.e. if attached to the
particle flat end or to the particle long side, and our predictions seem confirmed
by recent experimental results [128]. These results are important for the synthesis
of new odd-shaped colloidal particles, currently a very hot research field [129].
Finally, to point out the applicability of our method to study the wetting of solid
surfaces with heterogeneous chemical properties, we will present results for the
equilibrium shape of droplets wetting ellipsoidal hydrophilic patches, illustrating
in particular the different behavior of the droplet with respect to the ellipsoid
aspect ratio.

6.2 NUMERICAL METHOD

In this Chapter, we use the numerical method introduced in Chapter 4 to calculate
the equilibrium shape of 3D droplets in contact with complex substrates. The
algorithm used to implement our numerical method for this kind of calculations
is an adaptation of the algorithm presented in Appendix B of Chapter 4 for
the equilibrium shape of a fluid-fluid interface around an adsorbed 3D colloidal
particle. In this Section, we briefly describe the modifications introduced in the
algorithm to calculate the equilibrium shape of a 3D droplet (for more details,
see Appendix B of Chapter 4). The shape and position of the solid surface in
contact with the droplet is an input parameter of the simulation, and it is defined
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Figure 6.1: Sketch of a 16 x 7 triangulated grid of points to define the fluid-fluid
interface of the droplet. The points of the grid with A~ = 1 are constrained to
move only on the grid defining the solid surface in contact with the droplet. The
point in the center of the grid, i.e. corresponding to the highest value of h (h =7
here), moves only along the z axis, i.e. the direction pointing out of the paper
in this sketch. All the other points of the grid move freely in the 3D space, but
keeping constant their azimuthal angle with respect to the z axis.

by a triangulated grid of points. The fluid-fluid interface, i.e. the droplet surface,
is represented by another triangulated grid of points, as sketched in Fig. 6.1.
The basic mechanism of the method is the same described in Chapter 4, that
is a simulated annealing algorithm is used to find the position of the fluid-fluid
interface points which minimizes the energy functional = [Eq. (4.3)], with the
constraint of a given volume for the droplet. The desired volume V for the
droplet is defined by the initial position of the fluid-fluid interface grid points.
The points at the extremes of the fluid-fluid interface grid, i.e. corresponding to
h =1 in the sketch of Fig. 6.1, are constrained to move only on the grid defining
the solid surface, with a mechanism analogous to the one described in Appendix
B of Chapter 4 for moving the three-phase contact points on the solid particle
surface. The point in the center of the fluid-fluid interface grid, see sketch in
Fig. 6.1, is constrained to move only along the z axis. All the remaining points
of the fluid-fluid interface grid can move freely in the 3D space. However, to
have a higher control on the numerical solution, they are forced to move with
constant azimuthal angle in the [z,y] plane.! The Young’s contact angle 6, taken
inside the droplet, is also an input parameter required by the program, and
it appears in the expression of the energy functional = [Eq. (4.3)]. Possibly,

{Also, if required, during the simulation it is checked that their position satisfy the con-
straints imposed by the model, e.g. they are not allowed to move inside the solid.
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surfaces with heterogeneous chemical properties, i.e. different contact angles,
can be considered, as shown for example in Sec. 6.4. To perform this kind of
calculations, a certain Young’s contact angle, possibly different, is associated to
each triangle of the solid surface grid. Then, during the simulated annealing,
whenever a fluid-fluid interface grid point constrained on the solid surface is
moved, the Young’s contact angle used in the expression of A=, i.e. the variation
of the energy functional Z [Eq. (4.3)] due to the point move, is the contact angle
associated to the triangle of the solid surface grid where the new position of the
moved point is located. Of course, the triangles of the solid surface grid need
to be small enough to describe the heterogeneous properties of the solid surface
with the desired approximation. In the calculations presented in this Chapter,
we do not include the gravitational energy of the fluid-fluid interface, i.e. we
consider the limit £ — oo for the capillary length, as this is the case for the
experimental systems of interest. However, as shown in Chapter 4, gravity can
easily be included in the method.

6.3 DROPLETS WETTING NON-TRIVIALLY-CURVED SOLID
PARTICLES

In this Section, we study the wetting of a droplet on solid particles with non-trivial
curved surfaces. In particular, we consider the three particle shapes shown in Fig.
6.2, i.e. a nail-shaped particle with aspect ratio' m = 5.8, a bullet-shaped particle
with aspect ratio m = 6.0, and a bullet-shaped particle with aspect ratio m = 2.1.
As suggested by recent experiments [71,128], where droplets are nucleated on
solid particles with shapes similar to the ones in Fig. 6.2, the droplet can stay
attached at the particle flat end, or at the particle long side. Here we elucidate
this phenomenon, by predicting which of these two is the preferred position of the
droplet, for the three particle shapes considered, and with respect to the droplet
volume V' and Young’s contact angle 6 (assumed constant on the whole particle
surface). Using our numerical method, we calculate, for a given V and 6, the
droplet equilibrium shape when the droplet is placed at the particle flat end, and

L

@ W

Figure 6.2: (a) Nail-shaped particle with aspect ratio m = 5.8. (b) Bullet-shaped
particle with aspect ratio m = 6.0. (c) Bullet-shaped particle with aspect ratio
m = 2.1. The equations used to define these surfaces are reported in Sec. 6.3.1.

F
I

iThe aspect ratio is measured as height over width of the particle, where the height is the
distance between the two extrema of the particle along its long side, and the width is the particle
diameter measured in the center.
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when the droplet is placed at the particle long side. Then, the equilibrium shape
that minimizes the (free) energy E [Eq. (2.24)] of this solid-fluid-fluid system
corresponds to the preferred position of the droplet.! Explicitly written, the
energy F is

E=~(S—W cosb) -V AP, (6.1)

where «y is the fluid-fluid surface tension, S and W are the areas of the droplet-
external fluid interface and droplet-particle interface, respectively, and AP is the
difference between the bulk pressure of the droplet and the bulk pressure of the
external fluid. Note that, with respect to Eq. (2.24), F is shifted by a constant
in Eq. (6.1), to rewrite it in a more compact way. When the droplet is at the
particle flat end, we define its energy F. as

E.=v (S.— W, cosf) , (6.2)
and when the droplet is at the particle long side, we define its energy E; as
Es =~ (S5 — Ws cosb) . (6.3)

Here S., W,, and S;, W, are the areas S, W when the particle is at the flat end
and at the long side of the particle, respectively. Then, given

AE=E,—E,, (6.4)

the droplet prefers to stay in the position that minimizes £ [Eq. (6.1)], which
is at the particle long side if AE < 0, and at the particle flat end if AE > 0.
Note that in Es [Eq. (6.3)] and E. [Eq. (6.2)] we did not include the V AP
term of Eq. (6.1), because in AE [Eq. (6.4)] this is canceled out, as we are
comparing energies of droplets with the same volume, and so it is not relevant for
our analysis.V In Figs. 6.3, 6.4, and 6.5, we show, for the three particle shapes
shown in Fig. 6.2, the values of E; [Eq. (6.3)], E. [Eq. (6.2)] and AE [Eq. (6.4)]
with respect to the volume V' of the droplet, and for several values of cosf. For
each value of V and 6, the values of E; and E, are numerically computed from
the equilibrium shape of the droplet obtained from our numerical method. For
comparison, we plot also the energy E. [Eq. (6.11)] obtained analytically for a

il our algorithm for calculating the droplet equilibrium shape, the central point of the
droplet surface grid can move only in the vertical direction, and all the other points can move
only in directions with constant azimuthal angle with respect to the z axis (see Fig. 6.1). Given
the initial position of the droplet, the simulation finds the minimum energy shape of the droplet
that satisfies these constraints. So, the droplet cannot migrate, during the simulated annealing,
from the flat end to the long side of the particle, or viceversa, accordingly to which is the
minimum energy position. Therefore, we need to calculate the droplet equilibrium shape in
both positions, and then compare their energy.

VIf desired, the term V AP can be computed using the Young-Laplace Equation in absence
of gravity [Eq. (2.21)], from which AP = 2+/R, where R is the radius of curvature of the droplet
with a given volume V when forming a sphere, i.e. when not in contact to the particle, and
therefore is given by R = {/3V /4.
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droplet with a spherical cap shape, with respect to V and 6 (see Sec. 6.3.2). As
expected, for small volumes F. matches F.. Indeed, when the droplet is small
enough to stay within the edges of the particle flat base, it has a spherical cap
equilibrium shape, as it is in contact with a flat substrate. These results show
that, for a droplet volume V' such that 0.1V, < V < V,, with V,, the particle
volume, the droplet prefers to attach at the particle flat end rather than at the
particle long side, because AE > 0. The precise range of volumes V such that
AE > 0 depends, as shown, by the specific particle shape and by the Young’s
contact angle #. In the limit of very big droplets (V > V},), our results suggest
that the attachment at the long side of the particle is always preferred by the
droplet, for any particle shape and value of 6, in agreement with the theoretical
results presented in [71] and valid for flat interfaces, i.e. for V' — 00.¥ The energy
unit used in the graphs of Figs. 6.3, 6.4 and 6.5, is X, with 3 the particle total
surface area and ~ the fluid-fluid surface tension. Considering for example a
micron-sized particle with ¥ ~ 2um? and a typical surface tension v ~ 0.01
N/m, we obtain ¥y ~ 5 - 10% kgT, with kg the Boltzmann constant and T the
room temperature. In Fig. 6.6 we sum up these results in three phase diagrams,
one for each particle shape, where we indicate if AFE is positive of negative, with
respect to V' and 6. As shown, the nail-shaped particle and the shortest bullet-
shaped particle have a larger region, than the longest bullet-shaped particle, of
V-cos 6 combinations such that the droplet prefers to stay at the particle flat end.
This result seems in agreement with recent experimental findings [128], and it is
reasonably connected with the larger ratio between the particle flat-end diameter
and the particle length, proving how, just by slightly playing with the particle
geometry, it is possible to change the most favorable position for the attachment
of the droplet on the particle surface. Finally, in Figs. 6.7, 6.8, and 6.9, we show,
for the three particle shapes considered, a 3D view of the equilibrium shape of the
droplet, as obtained by our numerical method, attached at its preferred position
on the particle (i.e. flat end or long side), for some values of V' and 6.

VAlthough in [71] capillary deformation effects in the flat interface due to the particle are
neglected.
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Figure 6.3: Results for the nail-shaped particle of aspect ratio 5.8.
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Figure 6.4: Results for the bullet-shaped particle of aspect ratio 6.0 [see Fig. 6.2(b)].

(a) Energy Es [Eq. (6.3)] and E. [Eq. (6.2)] of a droplet in contact with the particle
long side and with the particle flat end, respectively, for various Young’s contact angles
6, and with respect to the droplet volume V', where V, is the particle volume, > the
particle total surface area, and - the fluid-fluid surface tension. For comparison, with
the dotted line we plot the energy E. [Eq. (6.11)], analytically obtained for a droplet
with a spherical cap shape of volume V and contact angle 8. In the insets, AE = F,— E,
is shown. (b)-(c)-(d) Plots of E., E5, and AE, respectively, for the various 8 considered.
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Figure 6.5: Results for the bullet-shaped particle of aspect ratio 2.1 [see Fig. 6.2(c)].
(a) Energy Es [Eq. (6.3)] and E. [Eq. (6.2)] of a droplet in contact with the particle
long side and with the particle flat end, respectively, for various Young’s contact angles
0, and with respect to the droplet volume V', where V,, is the particle volume, ¥ the
particle total surface area, and 7 the fluid-fluid surface tension. For comparison, with
the dotted line we plot the energy E. [Eq. (6.11)], analytically obtained for a droplet
with a spherical cap shape of volume V and contact angle 8. In the insets, AE = E;— E,
is shown. (b)-(c)-(d) Plots of E., Es, and AFE, respectively, for the various € considered.
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Figure 6.6: In this phase diagrams we sum up the results of Figs. 6.3, 6.4, and 6.5.
We indicate with red the cos@-V combinations such that the droplet prefers to attach
at the long side of the particle (i.e. AE < 0), and in green the cos§-V combinations
such that the droplet prefers to attach at the flat end of the particle (i.e. AE < 0). The
particle shape considered is (a) the nail-shaped particle with aspect ratio 5.8, (b) the
bullet-shaped particle with aspect ratio 6.0, (¢) the bullet-shaped particle with aspect

ratio 2.1.
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cos V=01Vp

Figure 6.7: 3D view of the equilibrium shape, as computed through our numerical
method, of the droplet attached at its preferred position (i.e. flat end or long side) of
the nail-shaped particle with aspect ratio 5.8, for a droplet volume V' = 0.1, 0.4, 0.8V},
with V}, the particle volume, and for cosf = —0.6, —0.4, —0.2, 0.0, 0.2, 0.4, with 6 the
Young’s contact angle.
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Figure 6.8: 3D view of the equilibrium shape, as computed through our numerical
method, of the droplet attached at its preferred position (i.e. flat end or long side) of the
bullet-shaped particle with aspect ratio 6.0, for a droplet volume V' = 0.1, 0.4, 0.8V,
with V,, the particle volume, and for cos§ = —0.6, —0.4, —0.2, 0.0, 0.2, 0.4, with 6 the
Young’s contact angle.
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cos V=01Vp V=04Vp

FLAT

—0.6

Figure 6.9: 3D view of the equilibrium shape, as computed through our numerical
method, of the droplet attached at its preferred position (i.e. flat end or long side) of the
bullet-shaped particle with aspect ratio 2.1, for a droplet volume V = 0.1, 0.4, 0.8V,
with V}, the particle volume, and for cosf = —0.6, —0.4, —0.2, 0.0, 0.2, 0.4, with ¢ the
Young’s contact angle.
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6.3.1 SHAPE OF THE SOLID PARTICLES

In this Section we report how we defined the surface of the solid particles shown
in Fig. 6.2. The triangular grid used to represent the particle surface is 400 x 400
points. The generic position p = (ps, py,p-) of each point of the particle grid is
defined using the following parametric equations

pz = asfcos(um —7/2) cos(2v )] |cos(2v )| |cos(um — 7/2)|°
py = aslcos(um — m/2) sin(2v )] [sin(2v )| [cos(um — 7/2)|
p. = bslsin(um — 7/2)] |sin(um — 7/2)| + m — 1 (6.5)

where u,v € [0, 1], and

1 if —7/2>0

b= , ifumr—m/ , (6.6)
2m — 1, otherwise ;
1.0 if —m/2>0

. , fumr—mn/ , 6.7)
0.05, otherwise ;

1 ifz>0
= ’ = 6.8
s(=) {—L ifz<0. 68)

For the bullet-shaped particles a = 1, while for the nail-shaped particle

1.3, if 0.4
a:{ y Hum< L, (6.9)

1, otherwise ;

The value of m is the aspect ratio of the particle, which is 5.8 for the nail-shaped
particle [Fig. 6.2(a)], 2.1 for the longest bullet-shaped particle [Fig. 6.2(b)], and
6.0 for the shortest bullet-shaped particle [Fig. 6.2(c)].
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6.3.2 ENERGY OF A SPHERICAL-CAP DROPLET

As already discussed in Chapter 2, when a droplet is in contact with a flat solid
surface, and gravity is negligible, the shape of the droplet is a spherical cap, see
Fig. 6.10, with contact angle determined by Young’s Law. The energy E. =
E — PAV [with E given in Eq. (6.1)] of a droplet with a spherical cap shape of
volume V and contact angle 6 is

E.(V,0) = ~ [S(V,0) —cos® W(V,0)], (6.10)

where S.(V,0) = 2m(1 — cos§)R?(V,0) is the fluid-fluid interface area of the
spherical cap-shaped droplet, and W, (V, 8) = 7(R sin #)? the solid-droplet inter-
face area. Therefore

E.(V,0) = v [2(1 — cosf) — cosf(sin0)?] 7 R*(V,0) . (6.11)

The volume V of a spherical cap is

2
V= (4—30089) (1 —cosf)*m R, (6.12)
from which
3V
_ 3
R(v.0) = \/77(2 +cos0)(1 —cosh)? (6.13)

(l—cosﬁ)RIm

— i Figure 6.10: Section of a spherical cap with cur-
Rsin® ; R vature radius R and contact angle 6.
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6.4 DROPLETS ON HYDROPHILIC ELLIPSOIDAL PATCHES

In the previous Section we applied our numerical method to study the wetting of
a droplet on a curved solid surface. In this Section, instead, we study the wetting
of a droplet on a flat solid substrate, but with heterogeneous chemical surface
properties, with the main aim of testing our numerical method for this kind of
calculations. In particular, we consider an ellipsoidal patch with Young’s contact
angle 1 = 30° with the droplet, while the external substrate has Young’s contact
angle 6o = 60° with the droplet (see Fig. 6.11). Therefore, the droplet prefers
to wet the ellipsoidal patch rather than the remaining solid surface. We study
the droplet equilibrium shape with respect to the droplet volume V', and with
respect to the aspect ratio b/a of the ellipsoidal patch, where b and a are the
minor and major semi-axis of the ellipsoid, respectively. In Fig. 6.12, we show
R(p) and 0(yp) for different volumes V' of a droplet wetting the ellipsoidal patch
with b = 0.3 a, where ¢ is the azimuthal angle (see Fig. 6.11) in the solid surface
plane. Here, R and 6 are numerically computed from the equilibrium shape of
the droplet, obtained by our numerical method, and they are, respectively, the
distance of the three-phase contact line from the droplet center (intended as the
average position of the three-phase contact line), and the droplet Young’s contact
angle (measured as the angle between the solid surface plane and the droplet
surface grid in contact with the solid). In Fig. 6.13, we show analogous results,
but for an ellipsoidal patch with b = 0.7a. For both patches, the droplet has
a spherical cap shape with contact angle 30°, when it has a small volume, such
that it is completely contained inside the patch, and a spherical cap shape with
contact angle 60°, when it has a big volume, such that it completely encloses the
patch. However between these two (trivial) regimes, the droplet deviates from the
spherical cap shape, due to the presence of two different Young’s contact angles
in the substrate. In particular, we observe two different behaviors for the droplet
wetting the two different patches. In the case of the more elongated ellipsoid,
b = 0.3 a, the droplet, while growing in volume, starts spreading outside the patch
from the ellipsoid long sides already before than the patch is completely wet, see
Fig. 6.12. Instead, for the ellipsoid with b = 0.7 a, first the droplet completely
wet the patch, and only after it starts spreading on the external substrate, again
from the ellipsoid long sides, see Fig. 6.13. Note indeed that, in Fig. 6.13(a),
R(p) exceeds the ellipsoidal patch rim for ¢ = 90° and ¢ = 270° (i.e. at the

Figure 6.11: Top view of a solid flat surface with an
ellipsoidal patch (dark red area) of major semi-axis a
and minor semi-axis b. The patch has Young’s con-
tact angle 6; = 30°, while the external surface (gray
area) has Young’s contact angle §; = 60°. There-
fore, a droplet on this solid surface has a higher wet-
tability with the patch.
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ellipsoid long side) only if R(0°) = R(180°) = a, that is only if the droplet has
spread already until the rim of the ellipsoidal patch short side. Instead, in Fig.
6.12(a), R(yp) exceeds the ellipsoidal patch rim for ¢ = 90° and ¢ = 270° (i.e. at
the ellipsoid long side) for R(0°) = R(180°) < a, that is when the droplet still
has not spread until the rim of the ellipsoidal patch short side. This different
behavior of the droplet for the two different patches is also clearly shown by the
3D plots of the droplet equilibrium shape shown in Figs. 6.12 and 6.13. The
behavior of Young’s contact angle 6 with respect to the azimuthal angle ¢, see
Figs. 6.12(b) and 6.13(b), shows that for small volumes the droplet has 6 ~ 30°
for any ¢, i.e. it is still in the spherical cap regime, with 30° the Young’s contact
angle of the patch. Then, by growing the droplet volume, the value of 6 starts
increasing first at the ellipsoidal patch long side, once the droplet has reached
the rim, and only after (i.e. for bigger droplet volumes) its value increases also at
the ellipsoidal patch short side. As shown, 6 increases, while growing the droplet
volume, until it reaches the maximum value of about 60°, corresponding to the
Young’s contact angle of the external substrate to the patch. The droplet is again
in the spherical cap regime when 6 is 60° for any . To sum up, outside from the
spherical-cap regime, there are four different possible phases for the droplet:

e phase A: the droplet is completely inside the patch, and does not wet the
patch completely;

e phase B: the droplet is partially outside the patch, and does not wet the
patch completely;

e phase C: the droplet is completely inside the patch, and does wet the patch
completely;

e phase D: the droplet is partially outside the patch, and does wet the patch
completely.

To sum up, while growing in volume, the droplet first it is a spherical cap with
contact angle 30° and completely inside the patch. Then, once it touches the
patch rim, the droplet goes into phase A. Then, depending on the ellipsoidal
patch aspect ratio, the droplet goes into phase B or C. Finally, the droplet
goes into phase D, before assuming again the shape of a spherical cap, now
with contact angle 60° and completely surrounding the patch. These results are
shown more in detail in the phase diagram of Fig. 6.14, where we indicated the
droplet phase, as obtained by calculating the droplet equilibrium shapes through
our numerical method, with respect to the droplet volume V' and the ellipsoidal
patch aspect ratio b/a. This phase diagram confirms that, for a certain value of
b/a between 0.3 and 0.7, there is a transition in the behavior of the droplet, such
that for the more elongated patches it goes from phase A to phase B and then
phase D, while for the less elongated patches the droplet goes from phase A to
phase C' and then phase D.
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Figure 6.12: Results for a droplet of volume V wetting a flat solid surface with Young’s
contact angle 60°, with an ellipsoidal patch, of aspect ratio b/a = 0.3, with Young’s
contact angle 30°. Below we show a 3D view of the equilibrium shape of the droplet (blue
grid) for different V', as computed by our numerical method, with the insets showing a
top view of the three-phase contact line (blue line). The black grid represents the solid
surface, with the red area indicating the ellipsoidal patch. In (a) we plot the distance
R of the three-phase contact line from the droplet center, with respect to the azimuthal
angle ¢, see Fig. 6.11. In (b) we report the droplet contact angle 6, with respect to ¢,
as numerically computed from our numerical solutions.
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Figure 6.13: Results for a droplet of volume V wetting a flat solid surface with Young’s
contact angle 60°, with an ellipsoidal patch, of aspect ratio b/a = 0.7, with Young’s
contact angle 30°. Below we show a 3D view of the equilibrium shape of the droplet (blue
grid) for different V', as computed by our numerical method, with the insets showing a
top view of the three-phase contact line (blue line). The black grid represents the solid
surface, with the red area indicating the ellipsoidal patch. In (a) we plot the distance
R of the three-phase contact line from the droplet center, with respect to the azimuthal
angle @, see Fig. 6.11. In (b) we report the droplet contact angle 6, with respect to ¢,
as numerically computed from our numerical solutions.

V=0.01 a3
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Figure 6.14: Phase diagram for a droplet wetting an ellipsoidal patch of Young’s contact
angle 30° and an external substrate of Young’s contact angle 60°, with respect to the
ellipsoid aspect ratio b/a and the droplet volume V. The gray areas indicate the spherical-
cap regime of the droplet, either with contact angle 30° and completely inside the patch,
or with contact angle 60° and completely outside the patch. The colored area indicates
the four possible phases for the droplet when it deviates from the spherical cap shape,
that is: the phase A, when the droplet is completely inside the patch and does not wet
the patch completely, the phase B, when the droplet is partially outside the patch and
does not wet the patch completely, the phase C, when the droplet is completely inside
the patch and does wet the patch completely, and the phase D, when the droplet is
partially outside the patch, and does wet the patch completely. The sketch above the
phase diagram shows the different droplet phases.
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6.5 (CONCLUSION

In this Chapter we studied the wetting of 3D droplets on complex solid substrates,
exploiting the numerical method introduced in Chapter 4. In particular, in Sec.
6.3 we presented results for a droplet attached to a solid bullet-shaped particle,
calculating its equilibrium configuration, i.e. if to the particle flat end or to the
particle long side, with respect to the Young’s contact angle and to the droplet
volume. These results are an important extension of the calculations presented
in Ref. [71], where the limit of flat fluid-fluid interfaces (i.e. infinite-volume
droplets) and the approximation of no capillarity were used. Here, we showed
that the attachment of the droplet to the flat end of the particle, rather than to
its long side, can be achieved just by slightly tuning the specific geometry of the
particle, even assuming homogeneous chemical properties for the particle surface.
Instead, in Ref. [71], the flat-end attachment of the droplet was theoretically
predicted to be the equilibrium one only if different Young’s contact angles for the
particle surface were assumed. Our predictions seem to be confirmed by recent
experimental results [128]. Then, in Sec. 6.4, with the main aim of pointing
out the applicability of our method to study the wetting of solid surfaces with
heterogeneous chemical properties, we studied the equilibrium shape of a droplet
on a flat solid surface with an ellipsoidal patch of higher wettability than the
external surface. As shown, the behavior of a droplet, nucleating inside the
patch and growing until the patch is completely covered, varies with respect to the
ellipsoid aspect ratio. Note that we considered an ellipsoidal patch for illustrative
purpose, however our method can be used to study the wetting on (possibly
curved) surfaces with patches of any shape and Young’s contact angle. See for
example in Fig. 6.15 the equilibrium shape of a droplet wetting a flat surface with
four circular patches with higher wettability than the external surface. As a final
remark, we point out that in this Chapter, and in the whole thesis in general,
we always considered undeformable solids. An interesting development for our
numerical method is to calculate the equilibrium shape of fluid-fluid interfaces
in contact with soft (i.e. deformable) solids, as this is a very important and
recurrent research problem in the Soft Matter field (e.g. see Refs. [83,130-135]).
We leave for future work the adaptation of our method for such calculations.

Figure 6.15: Equilibrium shape
of a droplet (blue grid), as com-
puted by our numerical method,
on a flat solid surface with four
circular patches (red area) of
higher wettability than the ex-
ternal surface (black grid). In
the inset, top view of the equi-
librium three-phase contact line
(blue line).
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SUMMARY /SAMENVATTING

Summary: In this thesis, first we provide a theoretical introduction about fluid-
fluid interfaces, and the mathematical models to describe them using a macro-
scopic approach. Then, we introduce a new numerical method for calculating the
equilibrium shape of fluid-fluid interfaces, proving its correctness and pointing
out its applicability to study systems of colloidal particles adsorbed at fluid-fluid
interfaces, and droplets in contact with solid surfaces, possibly curved and with
heterogeneous chemical properties.

A very important result presented in this thesis, and obtained through such a new
numerical method, is the prediction that capillary interactions can drive cubic
particles adsorbed at fluid-fluid interfaces to self-assembly into thermodynamically-
stable honeycomb and hexagonal lattices. The capability of experimentally pro-
ducing honeycomb (i.e. graphene-like) lattices of nanoparticles would be an ex-
tremely important achievement, and indeed it is currently a very hot research
topic, because of the semiconductor properties that these materials would have.
Other relevant results presented in this thesis, and obtained from our new numer-
ical method, regard the equilibrium shape of droplets in contact with complex
substrates. In particular, we study the equilibrium position of a droplet on a
bullet-shaped particle, predicting that the droplet position can shift from the
long side of the particle to its flat end just by slightly tuning the bullet geometry.
The ability of tuning the droplet position on the particle surface is an important
result for the synthesis of odd-shaped colloidal particles, which is a very active
field of research. Then, we also study the equilibrium shape of a droplet wetting
a flat solid substrate with an ellipsoidal patch with higher wettability than the
remaining substrate, showing the different behavior of the droplet with respect
to the aspect ratio of the patch shape.
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Samenvatting: Ten eerste geven we in deze thesis een theoretische introductie
over vloeistof-vloeistofgrensvlakken, en de wiskundige modellen om deze te om-
schrijven met het gebruik van een macroscopische benadering. Vervolgens intro-
duceren we een nieuwe numerieke methode om de evenwichtsvorm van vloeistof-
vloeistofgrensvlakken te berekenen, de juistheid te controleren en te wijzen op de
toepasbaarheid om systemen van colloidale deeltjes geadsorbeerd door vloeistof-
vloeistofgrensvlakken, en druppels in contact met solide oppervlakten, mogelijk
gebogen en met heterogene chemische eigenschappen, te bestuderen.

Een zeer belangrijk resultaat gepresenteerd in deze thesis, en door een zodanig
nieuwe numerieke methode verkregen, is de verwachting dat capillaire wisselw-
erkingen, kubieke deeltjes geabsorbeerd in vloeistof-vloeistofgrensvlakken, kun-
nen induceren tot zelfassemblage in thermodynamisch stabiele honingraat en
zeshoekige roosters. De capaciteit van het experimenteel produceren van hon-
ingraat (d.w.z. grafeen-achtige) roosters van nanodeeltjes zou een extreem be-
langrijke prestatie zijn en is momenteel een hot topic in de wetenschap, door de
halfgeleider eigenschappen die deze materialen zouden hebben.

Andere relevante resultaten in deze thesis, en verkregen van onze nieuwe nu-
merieke method, betreft de evenwichtsvorm van druppels in contact met com-
plexe substraten. In het bijzonder, bestuderen we de evenwichtspositie van een
druppel op een kogel-vormig deeltje, en voorspellen we dat de druppel positie
kan verschuiven van de lange zijde van het deeltje naar het platte uiteinde door
het enigzins afstemmen van de kogel vorm. De mogelijkheid van het afstemmen
van de druppel positie op het deeltjesoppervlak is een belangrijk resultaat voor
de synthese van vreemd gevormde colloidale deeltjes, wat een zeer actief veld van
onderzoek is.

Vervolgens, bestuderen we de evenwichtsvorm van een deeltje dat een platte
vaste substraat met een ellipsvormige plek met hogere bevochtigbaarheid dan het
resterende substraat bevochtigt, waarmee het verschillende gedrag van de druppel
met betrekking tot de beeldvorming van de vlekvorm aangetoond wordt.!

iThanks to Eline van der Drift for helping with the translation.
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