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a b s t r a c t

Medical image interpretation is moving from using 2D- to volumetric images, thereby changing the
cognitive and perceptual processes involved. This is expected to affect medical students' experienced
cognitive load, while learning image interpretation skills. With two studies this explorative research
investigated whether measures inherent to image interpretation, i.e. human-computer interaction and
eye tracking, relate to cognitive load. Subsequently, it investigated effects of volumetric image inter-
pretation on second-year medical students' cognitive load. Study 1 measured human-computer in-
teractions of participants during two volumetric image interpretation tasks. Using structural equation
modelling, the latent variable ‘volumetric image information’ was identified from the data, which
significantly predicted self-reported mental effort as a measure of cognitive load. Study 2 measured
participants' eye movements during multiple 2D and volumetric image interpretation tasks. Multilevel
analysis showed that time to locate a relevant structure in an image was significantly related to pupil
dilation, as a proxy for cognitive load. It is discussed how combining human-computer interaction and
eye tracking allows for comprehensive measurement of cognitive load. Combining such measures in a
single model would allow for disentangling unique sources of cognitive load, leading to recommenda-
tions for implementation of volumetric image interpretation in the medical education curriculum.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades, cross-sectional image interpretation
in medicine has shifted from using 2D images to volumetric images
to diagnose patients. A volumetric image involves a volumetric
medical scan, e.g., computed tomography [CT] or magnetic reso-
nance imaging [MRI] that can be sliced up in many cross sections
(i.e., ‘slices’) forming a stack of images. The user can scroll through a
volumetric image from various angles and in various contrast set-
tings, creating a 3-dimensional representation of the scanned
structure. This shift has changed the task of medical image
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interpretation. A tiled set of 2D-images is static and contains less
information than a volumetric image (Krupinski, 2011; Krupinski
et al., 2012). Interpretation of volumetric images is more dy-
namic, involving an increase in both visual information processing
and human-computer interaction (HCI, Andriole et al., 2011;
Krupinski, 2010; Reiner, Siegel, & Siddiqui, 2003). Expert skill in
image interpretation, including volumetric image interpretation, is
crucial to avoid medical diagnostic errors (Donald & Barnard, 2012;
Pinto et al., 2011), and thus volumetric images are now increasingly
being used in medical education as well (Ravesloot, van der Gijp,
et al., 2015; Rengier et al., 2013; van der Gijp et al., 2015).

Recent research in medical education highlights the effects this
shift has had on students engaged in the image interpretation task.
Radiology clerks take more time, and engage in more and different
cognitive processes when interpreting volumetric images than 2D
images (van der Gijp et al., 2015). Medical students report volu-
metric images to be more representative of clinical practice and
perceive them to be easier to interpret than their 2D-counterparts.
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Interestingly though, performance of these students on interpre-
tation of volumetric images was lower than on 2D images
(Ravesloot, van der Gijp, et al., 2015; Ravesloot, van der Schaaf,
et al., 2015).

A little studied aspect that may be particularly affected by
volumetric image interpretation is students' cognitive load.
Cognitive load, i.e., demand on human working memory, plays a
pivotal part in the construction, elaboration, and automation of
knowledge structures (i.e., schemas; Chi, Glaser, & Rees, 1982) in
long-term memory (Sweller, van Merri€enboer, & Paas, 1998; van
Merri€enboer & Sweller, 2005). Human's working memory capac-
ity is limited and the cognitive load experienced is directly influ-
enced by the information that the student needs to process and the
schemas the student already possesses. A skilled student is better
able to ignore task-irrelevant information and integrate new in-
formationwith existing schemas and will therefore experience less
cognitive load in a complex task than an unskilled student.
Although cognitive load as a result from engagement in a learning
task can be beneficial as it involves processing of task-relevant in-
formation, cognitive overload has shown to be detrimental for
learning performance (Sweller, 2004; for an elaborate background
on cognitive load theory in medical education, see vanMerri€enboer
& Sweller, 2010). Previous research has identified relationships
between cognitive load and visual information, simulated 3D en-
vironments, and human computer interaction in digital learning
environments (e.g., Hollender, Hofmann, Deneke, & Schmitz, 2010;
Mayer & Moreno, 2003; Ruiz, Taib, & Chen, 2011; Ruiz, Taib, Shi,
Choi, & Chen, 2007; van der Land, Schouten, Feldberg, van den
Hooff, & Huysman, 2013); however, to our knowledge little
research is available in the context of medical image interpretation.

The present paper aims to shed light onto how volumetric image
interpretation affects cognitive load experienced by medical stu-
dents. Measures that indicate visual information processing and
human-computer interaction are combined, and their common
variance is used to predict cognitive load measures to: (1) investi-
gate whether these measures can be utilised as indirect objective
measures of cognitive load and, (2) to investigate how volumetric
image interpretation by medical students affects their cognitive
load.

1.1. Image interpretation in medical education

Medical image interpretation involves detecting and interpret-
ing abnormalities in images of the human body for diagnostic
purposes (Krupinski, 2010; Norman, Coblentz, Brooks, & Babcook,
1992; Taylor, 2007). Traditionally, assessment of students' image
interpretation skills often involved interpreting single 2D images.
In volumetric images, students do not examine one image to find a
relevant structure, but must view a whole stack of slices, use an
appropriate contrast setting, and in some cases adjust the angle to
identify a structure. As a consequence they have to examine more
information, inherently make more considerations regarding the
relevancy of this information, while manipulating the image
(Krupinski, 2010; van der Gijp et al., 2015). During image inter-
pretation students have to cognitively link all the slices together in
order to create a mental 3D representation of the body, which re-
quires spatial skills and cognitive capacity of students (Krupinski,
2010; Stull, Hegarty, & Mayer, 2009). This increase in visual infor-
mation and human-computer interaction when using volumetric
images has been related to an increase in cognitive load in other
contexts (van Merri€enboer & Sweller, 2005).

Conversely, volumetric image interpretation may also decrease
cognitive load. The possibility of examining the anatomical struc-
ture and its relative position from multiple angles can arguably
provide the student with additional contextual information, i.e. the
student does not need to infer the shape, size and position of a
structure based on one 2D image (Ellis et al., 2006; Hegarty,
Keehner, Cohen, Montello, & Lippa, 2007; van der Land et al.,
2013). This contextual information allows for less specific prior
knowledge needed for image comprehension (van Merri€enboer &
Sweller, 2010). As a result, it is currently unclear how volumetric
image interpretation would affect cognitive load.

1.2. Measuring cognitive load in image interpretation

A wide variety of measures are utilised for measuring cognitive
load, such as dual-task methodology (Brünken, Steinbacher,
Schnotz, Plass, & Leutner, 2002), physiological measures
(Antonenko, Paas, Grabner, & van Gog, 2010; DeLeeuw & Mayer,
2008; Nourbakhsh, Wang, & Chen, 2013), and self-report ratings
(Kirschner, Paas, & Kirschner, 2009). However, these measures only
provide a quantitative indication of cognitive load (Sweller, Ayres,
& Kalyuga, 2011) but are uninformative of what causes this
cognitive load. Using indirect objectivemeasures that are specific to
the (volumetric) image interpretation task, and relate these to
validated subjective and physiological measures for cognitive load
(e.g., DeLeeuw & Mayer, 2008) may address this (Martin, 2014).
Indirect objective measures are direct reflections of task behaviour
that bear a relationship with cognitive load, but this relationship
may be mediated or moderated by other variables such as skill or
task-performance (Brünken, Plass, & Leutner, 2003). If common
variance of image interpretation task-specific objective measures
has a relationship with validated measures of cognitive load while
taking into account mediators and moderators, this would support
using these measures for disentangling cognitive load in image
interpretation. The nature of each of the contributing measures can
then highlight what aspects of the task are related to cognitive load.

1.3. Approach

In the first study, variables are calculated from recorded human-
computer interaction of participants engaged in volumetric image
interpretation tasks. Logging participants' interactions within the
learning environment reveals howmany slices are displayed due to
scrolling through the image, how many viewing angle changes are
made, how long it takes to locate the relevant slices, how much
time is spent on relevant vs. irrelevant slices, and how long a stu-
dent takes to finish a task (Vincken & Ravesloot, 2010). Although
time to finish a task has been previously related to various types of
cognitive load in other contexts, the usage of this data in this
context is new and effects on cognitive load are unknown (Brünken
et al., 2003). As human-computer interaction variables are only
conceptualised as indirect objective measures of cognitive load,
other potential factors in these relationships must be considered.
For example, it should be acknowledged that experts are better in
deciding which information is relevant than novices (Eva, Norman,
Neville, Wood,& Brooks, 2002; Lesgold et al., 1988; van Gog, Kester,
Nievelstein, Giesbers, & Paas, 2009), and are quicker to find ab-
normalities in medical images (Kok et al., 2015). Although the
medical students participating in the current study are all at similar
stages of their training, performance differences caused by differ-
ential skill development are likely. As a result, there is a potential
influence of performance on the relationship of information
exposure and cognitive load (Brünken et al., 2003). The first study
therefore includes a measure of test-performance in image inter-
pretation to control for this and to investigate a potential moder-
ation in the relationship between human-computer interaction and
cognitive load.

In a second study, eye tracking is used to provide more in-depth
information on what a medical student examines while
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interpreting a medical image and how this relates to cognitive load.
In previous studies, participants who took longer to locate relevant
areas in images experienced higher task-complexity, which is
associated with higher cognitive load (Corbetta & Shulman, 2002;
De Fockert, Rees, Frith, & Lavie, 2001). The human-computer
interaction and eye tracking measures are related to two well-
established measures of cognitive load; the self-reporting mental
effort scale and pupil-dilation (e.g., Bailey& Iqbal, 2008; Paas, 1992;
Palinko, Kun, Shyrokov, & Heeman, 2010; Zheng & Cook, 2012).

1.4. Hypotheses

To investigate how volumetric image interpretation affects
medical students' cognitive load using human-computer interac-
tion and visual information measures, Study 1 uses human-
computer interaction data to measure participants' behaviour in a
volumetric image interpretation task and investigates the following
hypotheses:

H1. Variables indicating human-computer interaction have com-
mon variance, resulting in the latent variable volumetric image
information.

H2. The latent variable volumetric image information predicts
self-reported mental effort as a measure of cognitive load.

H3. Overall test performance has a negative relationship with
self-reported mental effort.

H4. Overall test performance has an interaction effect with
volumetric image information on mental effort.

In Study 2, eye tracking is employed in a new sample, to
investigate more specifically the relationship between the nature of
the examined visual information and cognitive load:

H5. The time to locate a relevant structure is positively related to
self-reported mental effort and pupil dilation, as measures of
cognitive load.
2. Method Study 1

2.1. Sample

The sample consisted of second-year medical students taking a
radiology test, which was one of the components of an end of
second year practical examination. The complete test-group con-
sisted of 92 students, of which 67 approved of usage of their data
for scientific purposes. The resulting sample (N ¼ 67) had age
ranging from 19.30 to 56.19 years (M ¼ 22.57, SD ¼ 5.14) and
included 40 females. Twenty-two students were new to the test;
the remaining 45 took a similar test three months earlier. Reasons
for retaking the test: (1) One student required a retake due to failing
the previous radiology test, (2) 44 students required a retake due to
failing another part of the practical examination. An independent
samples t-test (equal variances not assumed) on the current test
scores showed that the two subsamples (n1 ¼ 22, n2 ¼ 45) did not
significantly differ in their achievements: DM ¼ �0.12,
t(69.82) ¼ �0.30, p ¼ 0.77 and thus repeating the test did not in-
fluence the homogeneity of sample performance.

2.2. Materials

2.2.1. Radiology test
The radiology test consisted of 40 items, of which 20 were 2D

image interpretation items, and 20 were volumetric image inter-
pretation items. Both could contain a question of one of the
following types: (1) locate and mark a structure mentioned in the
question, or (2) identify a highlighted structure.

2.2.2. Assessment tool
The test was digitally administered using VQuest (Vincken &

Ravesloot, 2010). VQuest is a software package developed at Uni-
versity Medical Centre Utrecht that can display 2D and volumetric
images. VQuest runs in full-screen mode and the medical image
covers 64% of the screen. The image is scaled, meaning there is no
need to scroll in the horizontal and vertical directions. To navigate
through different slices of the volumetric image the student can
either: use the scroll wheel on a mouse, move a mouse while
pressing the left mouse-button, or use the Page Up/Down-keys on a
keyboard. Left of the image buttons are available to change the
viewing angle (i.e., axial, sagittal, or coronal), and underneath that
questions and answer possibilities are displayed. Above the image,
a percentage is displayed, indicating the student's progression
through the test. Also above the image a button is available through
which a student can access different items within the test.

2.2.3. Task-description
The item used for main analysis in this study (Task 1) was the

final item in the test and concerned the volumetric image of a CT-
scan of a human's abdomen. Students were asked to locate the
portal vein, which is a blood vessel from the intestines to the liver.
To complete the item students had to navigate through the volu-
metric image and find a slice with the portal vein present. When
located, students had to place a digital marker in the portal vein.
The marker could be replaced at any time during the whole test,
with only the last marker being scored. The task score, which
contributed to the overall test performance, was dichotomous: the
marker was placed correctly or not. Directly after final marker
placement, students indicated the mental effort required to com-
plete this specific image interpretation task. Task 1 was of reason-
able difficulty with a p-value of p ¼ 0.72, (i.e., proportion of
students answering the task correctly) and sufficiently discrimi-
nating with an item-total correlation of r ¼ 0.24 (Evers, Lucassen,
Meijer, & Sijtsma, 2010).

A second item provided data to validate results of the analysis
(Task 2). The item's appearance in the test was randomised for each
student, but always preceded Task 1. This task was similar to the
primary task, and involved a CT-scan of the thorax. Students were
asked to mark the right erector spinae muscle (i.e., long back
muscle). It differed from task 1 as no mental effort rating was
administered. Task 2 was of reasonable difficulty with a p-value of
p ¼ 0.76, and well discriminating with an item-total correlation of
r ¼ 0.35 (Evers et al., 2010).

2.3. Measures

2.3.1. Cognitive load
Cognitive load was operationalised using a self-reported one-

item mental effort scale (Paas, 1992). The item was formulated in
Dutch and slightly altered to fit the context of the study, and
translates into ‘Please indicate, on the scale depicted below, how
much effort it took you to complete the task?’ Students answered
the item on a 9-point scale, ranging from (1) very very low mental
effort to (9) very very high mental effort. The scale is a frequently
used and reliable measure for cognitive load (Paas, Tuovinen,
Tabbers, & van Gerven, 2003; Paas, van Merri€enboer, & Adam,
1994) that has previously demonstrated discriminant validity
(Sweller et al., 2011). The measure was chosen given its sensitivity
and non-invasive nature in comparison with other measures of
cognitive load (Sweller et al., 2011).



B.G. Stuijfzand et al. / Computers in Human Behavior 62 (2016) 394e403 397
2.3.2. Human-computer interaction
VQuest logs activities performed within the above-described

tasks. The information from these logs was used to construct the
latent variable volumetric image information. The following vari-
ables were extracted from the logs per task: (1) Total time spent in
the task, measured in seconds (min: 0, max: inf.). This was calcu-
lated by subtracting time taken to start scrolling from time of fin-
ishing the task to achieve that only information forthcoming from
the volumetric nature of the task was included (i.e., time taken to
read the question, and time necessary to load the images, was
excluded). (2) Standardised amount of slices displayed; a calculated
Z-score on the amount of slices that have been displayed due to
scrolling through the volumetric image. Standardising was
considered necessary as amount of task-required scrolling differed
between tasks. (3) Number of angle changes (min: 0, max: inf.). (4)
Proportion of time spent on relevant slices (min: 0, max: 1), with
respect to total time in the task. A relevant slice was defined as one
that displays the structure mentioned in the question. (5) Time
taken to locate first relevant slice, in seconds (min: 0, max: inf.).
This variable was measured from the moment a participant started
scrolling.

2.3.3. Overall test performance
Overall test performance was operationalised by the obtained

grade of a student on the radiology test (min: 1, max: 10). The test
was sufficiently reliable with Cronbach's alpha ¼ 0.74 (Evers et al.,
2010), indicating that test-performance was a consistent measure
for high- and low-test performers.

2.4. Procedure

2.4.1. Data-collection
The data was collected in the summer of 2012 at Utrecht Uni-

versity, The Netherlands. Before data collection commenced, ethical
approval was obtained from the Ethical Review Board of the
Netherlands Association for Medical Education and all participants
signed informed consent forms. Participationwas voluntary and no
compensation was offered.

2.4.2. Test-environment
Students were asked to read and sign the informed consent form

a priori. During the test, instructors were present for technical
assistance. Students had been able to practice with the assessment
tool VQuest previously, and paper-instructions on how to use the
VQuest programme were available for each student at the time of
the test. Students had 90 min to complete the test.

2.5. Data analysis

2.5.1. Assumptions
Included variables were screened for missing values, presence of

outliers and normality. Number of angle changes was not assumed
to be normal, given that the usage of this functionality was optional,
i.e. not every participant used this, hereby creating a bottom-effect.
Due to this expected non-normality, in all analyses maximum
likelihood estimation with robust standard errors was used, and
chi-square difference testswere corrected following Satorra (2000).
Interpretation of model fit indices, resulting from maximum like-
lihood estimation, followed Hu and Bentler (1999). Given the small
sample size model fit indices should be interpreted with care. The
CFI index is relatively independent from sample size, and SRMR is
only positively biased with large sample sizes. Therefore these
indices were given priority in assessing model fit (Byrne, 2012; Fan,
Thompson, & Wang, 1999).
2.5.2. Hypothesis 1
To establish whether an underlying latent variable volumetric

image information could be identified from human-computer
interaction data, an exploratory factor analysis (EFA) was con-
ducted on the following variables from Task 1: Total time spent in
the task, standardised amount of slices displayed, number of angle
changes, proportion of time spent on relevant slices, and time taken
to locate first relevant slice. Items with a sufficient factor loading
(i.e., >0.30) were included in the latent variable. The reliability of
the latent variable was assessed using standardised Cronbach's
alpha, due to differing variable scales. Subsequently, a confirmatory
factor analysis (CFA) was conducted to establish whether one latent
variable, emerging from the EFA, fitted the data of Task 1.

Next, Task 1 data was merged with Task 2 data to investigate
measurement invariance. This assessed whether the latent variable
could be found in different volumetric image interpretation tasks
within the test, which would provide support for the validity of the
latent variable. Measurement invariance is tenable when the re-
lations between the variables and the latent variable are the same
across tasks (Koh & Zumbo, 2008). To assess this, a chi-square
difference test compared two models: (1) a model in which factor
loadings were constrained to be the same between tasks, and (2) a
model where factor loadings were allowed to vary between tasks.
An insignificant chi-square would indicate the model does not
deteriorate by adding constraints; hence, these constraints are
permissible and measurement invariance is supported.

2.5.3. Hypothesis 2e3
Using Task 1 data, hypotheses 2 and 3 were tested. A structural

equation model was specified with self-reported mental effort as
dependent variable and the latent variable volumetric image in-
formation and overall test-performance as independent variables.
The model was used to assess significance of relationships between
volumetric image information and self-reported mental effort, as
well as between overall test performance and self-reported mental
effort.

2.5.4. Hypothesis 4
An interaction between volumetric image information and

overall test performance was added to the previous model to test
hypothesis 4. Significance of the interaction effect would provide
evidence for differing effects of the latent variable volumetric im-
age information on self-reported mental effort for students of
varying levels of proficiency in image interpretation.

3. Results Study 1

3.1. Assumptions

No missing values were present. Two identified extreme cases
showed long periods of non-activity in VQuest's log-files and were
deleted from the sample as outliers. All but three variables were
normally distributed. Square root transformations were applied to
time in the task and time taken to locate first relevant slice to
comply with normality. Identified non-normality of number of
angle changes was not transformed since this was expected.

3.2. Descriptive statistics

Descriptive statistics for task 1 are presented in Table 1.

3.3. Hypothesis 1

3.3.1. Exploratory factor analysis
The EFAwas conducted on the five human-computer interaction



Table 1
Descriptive statistics Study 1 for variables in task 1.

Variable Min Max M SD

Mental effort 1.00 9.00 5.26 1.59
Grade 3.30 9.70 6.18 1.28
Total time spent in the task 3.32 17.75 7.78 3.22
Standardised amount of slices displayed �1.02 1.95 �0.09 0.81
Number of angle changes 0.00 8.00 1.20 2.16
Proportion of time spent on relevant slices 0.00 0.79 0.44 0.18
Time taken to locate first relevant slice 0.00 5.57 2.08 1.32

Note. n ¼ 65.

Table 3
Model fit and chi-square statistics for the measurement invariance analysis.

Model c2 df CFI TLI RSMEA SRMR Dc2

Free model (Task 1 & Task 2) 1.04 2 1.00 1.06 <0.001 0.02
Constrained factor loadings 3.36 5 1.00 1.04 <0.001 0.08 2.32

Note. n ¼ 65. All c2 are p > 0.05.
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variables. All variables correlated> 0.3with at least one of the other
variables, suggesting an underlying latent variable. Inspection of
time to locate first relevant slice showed a negative residual vari-
ance and a factor loading of �1.65. Such figures indicate data-
issues, leading to exclusion of this variable. Rerunning analysis
with the remaining four variables resulted in a one-factor model
with satisfactory model fit of c2(2) ¼ 1.76, p ¼ 0.42, RSMEA < 0.001,
SRMR ¼ 0.03 and a factor determinacy of 0.94. On this factor, three
out of four variables had factor loadings > 0.3, shown in Table 2.
Proportion of time spent on relevant slices did not show a sufficient
factor loading (�0.03), and thus was not considered a good indi-
cator of the factor. This variable was not included in further ana-
lyses. Reliability analysis, using standardised Cronbach's alpha, was
conducted on the latent variable consisting of three variables. As
shown in Table 2 the latent variable was sufficiently reliable (Evers
et al., 2010).
3.3.2. Confirmatory factor analysis
The CFA was conducted to test the measurement model of the

latent variable from the EFA. All factor loadings were significant,
andmodel fit was good: c2(1)¼ 0.84, p¼ 0.36, CFI¼ 1.00, TLI¼ 1.02,
RSMEA < 0.001, SRMR ¼ 0.03. The good fit of the measurement
model supports hypothesis one, that an underlying latent variable
volumetric image information can be identified from the data.
3.3.3. Measurement invariance
Next, Task 2 data was added to the dataset to test for mea-

surement invariance. This assessed whether the latent variable
volumetric image information is task-dependent, or can be iden-
tified in different volumetric image interpretation tasks within this
test. Good model fit was retained after inclusion of Task 2 data, as
shown in Table 3. Second, adding constraints on factor loadings
across Task 1 and Task 2 did not significantly deteriorate the model,
as indicated by the insignificant chi-square difference (see Table 3).
This shows that in both tasks, variables have the same relationship
with volumetric image information, hereby supporting measure-
ment invariance.
Table 2
Factor Loadings and Reliability of the latent variable.

la ab (standardised)

Factor 0.70
Total time spent in the task 0.84
Standardised amount of slices displayed 0.91
Number of angle changes 0.33

Note. n ¼ 65.
a l ¼ factor loadings.
b a ¼ Cronbach's alpha.
3.4. Hypothesis 2e3

3.4.1. Structural equation model
To test whether volumetric image information and overall test-

performance predicted self-reported mental effort, a structural
equation model was fitted on the Task 1 data. The structural model
had good model fit: c2(6) ¼ 3.61, p ¼ 0.63, CFI ¼ 1.00, TLI ¼ 1.07,
RSMEA < 0.001, SRMR ¼ 0.04. Within the model volumetric image
information significantly predicted self-reportedmental effort with
b ¼ 0.40, SE ¼ 0.18, p ¼ 0.03. There was no significant relation be-
tween test-performance and self-reported mental effort with
b ¼ �0.03, SE ¼ 0.02, p ¼ 0.11. The explained variance of self-
reported mental effort was insignificant with R2 ¼ 0.10, SE ¼ 0.07,
p ¼ 0.16.
3.5. Hypothesis 4

To test hypothesis 4, an interaction effect between volumetric
image information and overall test-performance was added to the
structural model. The interaction effect on self-reported mental
effort was not significant (B ¼ 0.00, SE ¼ 0.01, p ¼ 0.61) however
inclusion of this effect in the model rendered the previously
identified direct effect of volumetric image interpretation to self-
reported mental effort insignificant (B ¼ 0.37, SE ¼ 0.46,
p ¼ 0.43). The direct effect of test-performance on self-reported
mental remained insignificant (B ¼ �0.03, SE ¼ 0.02, p ¼ 0.06).
4. Method Study 2

4.1. Sample

Participants were ten second year medical students. In the case
of two students, data of the eye tracker could not be synchronised
with VQuest logfile data due to calibration issues, reducing the
sample to eight participants. Seven were female, and age ranged
from 19 to 29 (M ¼ 22.20, SD ¼ 3.52). All participants had previ-
ously passed a radiology test required for their curriculum.
4.2. Materials

4.2.1. Radiology test
The tasks used for data-analysis were extracted from a similar

radiology test as in Study 1. In contrast to Study 1 however, the test
was administered only for scientific purposes, results were of no
academic importance to the students.
4.2.2. Eye tracking instrument
For measuring students' eye-movements, a Tobii T60 was used.

The device consists of a 2400 TFT screen, displaying a screen reso-
lution of 1280 � 1024. The inbuilt eye tracker measures partici-
pants' eye movements at a rate of 60 Hz with accuracy of
approximately 0.5�. This study utilised the software accompanying
the instrument (Tobii Studio 3.2) for processing fixations and sac-
cades (Tobii technology, 2010).



Table 4
Descriptive statistics Study 2.

M SD Valid n

Mean pupil dilation (all participants) 2.72 1.05 58
Participant 1 2.20 0.93 7
Participant 2 2.30 0.88 8
Participant 3 2.95 0.99 7
Participant 4 3.65 1.16 7
Participant 5 2.64 1.09 8
Participant 6 3.31 0.69 8
Participant 7 2.12 0.49 8
Participant 8 2.59 1.28 5

Time to locate relevant structure (all participants) 0.40 0.36 58
Participant 1 0.31 0.25 7
Participant 2 0.43 0.37 8
Participant 3 0.36 0.33 7
Participant 4 0.43 0.41 7
Participant 5 0.24 0.25 8
Participant 6 0.46 0.44 8
Participant 7 0.57 0.46 8
Participant 8 0.39 0.35 5
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4.2.3. Assessment tool
For running the test, as in Study 1, VQuest (Vincken & Ravesloot,

2010) was used.

4.2.4. Task-description
Eight items in the test were available for data analysis. Four of

the items were 2D image interpretation questions, and four of the
items were volumetric image interpretation questions. In both
types, students had to mark anatomic structures, similar to the task
in Study 1. Of the 2D questions, task difficulty in p-values ranged
from 0.22 to 0.99 and discrimination in itemetotal correlations
ranged from �0.13 to 0.25. Of the volumetric questions pevalues
ranged from 0.36 to 0.94, and item-total correlations ranged from
0.22 to 0.48. Thus, difficulty between 2D and volumetric tasks was
approximately the same though the discriminative value differed.

4.3. Measures

4.3.1. Cognitive load
As in Study 1, cognitive load was operationalised by the self-

reported one-item mental effort scale (Paas, 1992). The self-
reporting scale could become intrusive for the student if pre-
sented after all 40 items in the test and it was therefore decided to
only administer the scale after eight selected items. The items
appeared in random order during the test.

As a secondmeasure on these eight items, average pupil dilation
during a task was included as an indicator of cognitive load. Pupil
dilation has shown to be a sensitive measure for cognitive load,
although its sensitivity decreases with age (Paas et al., 2003; van
Gerven, Paas, van Merri€enboer, & Schmidt, 2004). Considering the
young sample usage here was deemed appropriate.

4.3.2. Time to locate relevant structure
This variable was operationalised by the percentage of time in

the task spent before locating the relevant structure. Locating a
relevant structure is defined as the first gaze-coordinates falling
within the coordinates of the structure in which the marker should
be placed. Sometimes a participant might not locate the relevant
structure; given that this is still considered relevant information for
the hypothesis, in that case the total time in the taskwas used (i.e., a
participant spent 100% of the time in the task without locating the
relevant structure).

4.4. Procedure

4.4.1. Data-collection
The data was collected in the summer of 2012 at Utrecht Uni-

versity, The Netherlands.
The same procedures regarding ethical approval and informed

consent were followed as in Study 1. Students were approached for
voluntary participation by email and students were compensated
for their participation with a voucher.

4.4.2. Test-environment
Students took the test individually in a closed, dimly lit room.

Before the radiology test started, students signed an informed
consent form and were instructed by a researcher how to use the
VQuest software in combination with the eye tracker. They were
then seated in a chair fixed in its position to the eye tracker. Par-
ticipants' eyes were located approximately 80 cm from the screen,
and participants were asked to keep their head as stable as possible
in order to make optimal eye tracking possible. After this, the eye
tracker was calibrated and subsequently the test commenced.
During the test, only the student was present in the room, but a
researcher was available in an adjacent room for technical
assistance. There was no time limit, but no student exceeded the
time limit in Study 1 (90 min).
4.5. Data analysis

4.5.1. Assumptions
Data was screened for missing values and outliers. Indepen-

dency of the observations was violated due to inclusion of eight
tasks in the analysis for each participant, which was addressed by
conducting multilevel analyses for both dependent variables. Par-
ticipants (n ¼ 8) were specified as grouping variable (level 2). Self-
reported mental effort per task (n ¼ 8) and mean pupil dilation per
task (n¼ 8) were specified as level 1 dependent variables (i.e., tasks
within participants design).
4.5.2. Hypothesis 5
To investigate whether time to locate relevant structure predicts

cognitive load, for both dependent variables the same approach
was taken. First an intercept only model was specified to establish
the variance in the dependent variable explained by individual
differences (level 2 variance) and variance explained by task dif-
ferences (level 1 variance). Subsequently time to locate relevant
structure was entered as a level 1 predictor of the dependent var-
iable and its significance examined. Subsequently, the decrease in
level 1 variance in the secondmodel compared to the intercept only
model was examined to gain insight into the explained variance in
cognitive load measures by time to locate relevant structure.
5. Results Study 2

5.1. Assumptions

On six occasions, the eye tracker did not measure participants
correctly, resulting in missing values. Examination of the occur-
rence of erroneous measurement showed that the six cases were
spread over the tasks and the participants. No outliers were
identified.
5.2. Descriptive statistics

Descriptive statistics are reported in Table 4 concerning the
eight participants.
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5.3. Hypothesis 5

To examine whether time to locate relevant structure predicted
self-reported mental effort two multilevel models were specified
with participants as the second-level grouping variable (see
Table 5). The intercept only model (Model 1) had an intraclass
correlation of <1%. This indicates that very little of the variance in
self-reported mental effort could be attributed to differences be-
tween participants; most variance was attributed to task-
differences. Subsequently, time to locate relevant structure was
added to the model as a level 1 predictor (Model 2). The predictor
approached significance (p ¼ 0.059) and explained 5% of the level 1
variance.

Subsequently, two multilevel models were specified with par-
ticipants as the second-level grouping variable (see Table 5) to
assess whether time to locate relevant structure predicted pupil
dilation. The intercept only model (Model 1) had an intraclass
correlation of 0.20, indicating that 20% of the variance in pupil
dilation was observed between participants, whereas 80% was
attributed to task-differences. Subsequently, time to locate relevant
structure was added to the model as a level 1 predictor (Model 2).
The predictor showed to be significant (p < 0.01) and explained 17%
of the first level variance, indicating that time to locate relevant
structure contributed to variance in pupil dilation.
6. Discussion

Two studies were conducted to investigate how human-
computer interaction and eye movements relate to cognitive load,
and how cognitive load is affected in medical students engaged in
volumetric image interpretation. In Study 1, three measures of
human-computer interaction formed one latent variable volu-
metric image information that significantly predicted cognitive
load. Cognitive load increased with increased human-computer
interaction. Eye tracking results of students engaged in image
interpretation in Study 2 showed that when a student takes longer
to find a relevant structure, pupil dilation, as a proxy for cognitive
load, significantly increased. However on self-reported mental
effort, as another proxy for cognitive load, only a trend was
observed.

The positive relationship of volumetric image information with
self-reported mental effort in Study 1 suggests that human-
computer interaction can capture factors that influence cognitive
load, supporting its use as an indirect objective measure of cogni-
tive load. Examining the specific human-computer interaction
variables that volumetric image information is composed of (i.e.,
amount of slices displayed, number of angle changes, total time
spent in task) demonstrated what aspects of the image interpre-
tation task influence cognitive load. Higher scores on these vari-
ables point to more cognitive and perceptual processing of task
information; it implies that more effort is put in searching (e.g.,
Table 5
Results multi-level analysis self-reported mental effort and pupil dilation on time to loc

Self-reported mental effort

Model 1 Model 2

B SE B

Intercept 5.07*** 0.27 5.07***

Time to locate relevant structure 1.41*

Variance
Participant-level (2) <0.01 <0.01
Task-level (1) 4.28 4.07

***p < 0.001. **p < 0.01. *p < 0.10.
more scrolling, more angle changing, longer time to examine the
images) and therefore there is greater exposure to visual informa-
tion. That this relates to higher cognitive load is consistent with
studies showing that novices, as opposed to experts, have to
consciously consider separate features of medical images (Eva et al.,
2002; Kundel, Nodine, Conant, & Weinstein, 2007; van
Merri€enboer & Sweller, 2010). These findings also provide further
elaboration on research into simulated 3D environments and
cognitive load (Schrader & Bastiaens, 2012; van der Land et al.,
2013). van der Land et al. (2013) suggested that the increase in
visual cues and interactivity in 3D environments is beneficial for
individual understanding, but when additional factors come into
play this may lead to higher cognitive load. The current study
provides specific evidence for a positive relation between visual
information, the interactivity it results from, and cognitive load in
an individual setting, and shows how such measures could be used
to determine what exactly causes the increased load. The positive
relationship does not support the alternative expectation that more
image information coming from the volumetric image could reduce
students' cognitive load by providing more contextual information.
Perhaps students' spatial skills mediate the relationship between
cognitive load and volumetric image information. Stull et al. (2009)
showed that high spatial ability individuals perform better than
low spatial ability individuals in a 3D anatomy task. Interaction
with 3D visualisations can however attenuate differences in spatial
ability (Hegarty et al., 2007), highlighting the complexity of this
issue. Including spatial skills as a variable in subsequent research
could shed more light on the direction of this relationship and the
mechanisms involved.

Overall test-performance was included as a covariate in the
model to account for confounding variance in cognitive load caused
by the skill of the participant. However, the main effect of overall
test-performance on self-reported mental effort was insignificant,
suggesting that how well students performed on the full test did
not affect their cognitive load in Task 1. Consequently, the subse-
quently included interaction effect of overall test-performancewith
volumetric image information on self-reported mental effort was
insignificant as well. An explanation for the insignificant main ef-
fect of overall test performance may be that Task 1 was not
discriminative enough between high- and low-performers, owing
to the sample being too homogeneous as it only consisted of
second-year medical students.

Two human-computer interaction variables, time taken to
locate first relevant slice and proportion of time spent on relevant
slices, did not contribute to the latent variable volumetric image
information. This was unexpected as they indicate whether crucial
visual information is displayed. It is possible that these measures of
human-computer interaction do not provide enough information
on where specifically the students are looking on the slices, i.e.
spending time on a relevant slice does not imply that the relevant
structure is examined. This suggests that in order for these
ate relevant structure.

Pupil dilation

Model 1 Model 2

SE B SE B SE

0.27 2.64*** 0.21 2.64*** 0.20
0.73 0.99** 0.31

0.22** 0.25**

0.86 0.72
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variables to be meaningful for the model, more precise data is
needed. More precise data was available in Study 2; using eye
tracking it was investigated what students examine in a medical
image. In this study, time to locate a relevant structure was a sig-
nificant predictor of pupil dilation. Although conclusions should be
drawn with care as only a trend was observed on self-reported
mental effort, this seems in line with research in other contexts
where relevant information, and specifically the time taken to
locate it, was related to cognitive load (De Fockert et al., 2001; Lavie,
2005).

6.1. Implications for cognitive load research

The current research contributes to a growing body of research
using indirect and direct objective measures to measure cognitive
load such as EEG (Antonenko et al., 2010), skin response
(Nourbakhsh et al., 2013), speech (Khawaja, Chen, &Marcus, 2014),
eye movements (Chen & Epps, 2013) and human-computer inter-
action (Ruiz et al., 2011, 2007). The use of such measures is advo-
cated to gain a direct insight into what factors contribute to
cognitive load (Martin, 2014; Sweller et al., 2011). A next stepwould
be to integrate the relevant human-computer interaction and eye
movement variables established in the current research into one
model, to identify unique variance in perceived cognitive load
accounted for by each variable. An extension to the proposedmodel
would be to include a more discriminating measure of perfor-
mance. No evidence was found for a performance effect on cogni-
tive load in this study, but the use of a relatively homogeneous
sample here combined with theoretical as well as empirical work
strongly supporting a performance effect (Eva et al., 2002; van Gog
et al., 2009) suggests this may be a methodological issue. One
variable of specific interest in a model including performance is
time to locate relevant information. A relation between examina-
tion of relevant information with performance and expertise has
been firmly established (van Gog et al., 2009), and inclusion of such
a variable would allow exploration of any mediating and moder-
ating relationships between time to locate relevant information,
performance, and cognitive load.

Previous research into usability and human-computer interac-
tion on cognitive load has also focused on the load caused by the
interface of software (Hollender et al., 2010). I.e. a non-intuitive
interface requires an individual to direct cognitive resources away
from the task at hand and towards operating the interface. Such
cognitive load is not beneficial to learning (i.e. extraneous cognitive
load) and should therefore be avoided. A limitation of the current
study is that no distinction has been made between different types
of cognitive load, although it is conceivable that part of the cogni-
tive load experienced is in fact extraneous due to interaction with
the software. Disentangling different types of load has in the past
proved elusive (Martin, 2014), but there is evidence that different
objective measures tap into different types of load (Antonenko &
Niederhauser, 2010; Zheng & Cook, 2012). In the current context,
in particular eye tracking is promising as it indicates how much
attention is given to the task and how much to the software
interface, and therefore allows measures of each type to be
extracted from the data. As such, distinguishing between different
types of load in the current proposed model is a relevant avenue for
future investigation.

6.2. Implications for medical education

This research provides initial insights into how the volumetric
image interpretation task affects cognitive load. The increased
cognitive load due to more human-computer interaction may yield
a positive influence on the development of image interpretation
skills, as the measured activity suggests engagement with the task
and therefore task-relevant information is processed in working
memory (Hollender et al., 2010; Sweller, 2004). Too much cognitive
load however has proven to be detrimental to learning perfor-
mance in other contexts (van Merri€enboer & Sweller, 2010) and
should be avoided. When designing the curriculum a careful
consideration between volumetric images which are potentially
more demanding but better resembling medical practice, and 2D
images which are low in image information but can be useful in
teaching basic skills, should be made. Additionally, attention for
usability of the software used for volumetric image interpretation
as well as appropriate training in use of the software have proven to
be useful for managing cognitive load (Clarke, Ayres, & Sweller,
2005; Hollender et al., 2010). Finally, tailored guidance (i.e., scaf-
folding, see Grunwald & Corsbie-Massay, 2006) to support task
completion and comprehension could be employed in volumetric
image interpretation to assist in lowering cognitive load. The
established human-computer interaction and eye movement
measures of cognitive load could inform such interventions, but it is
important to note that an effect of learning image interpretation
skills was not investigated in this study. Previous research has
shown the benefits of volumetric image interpretation on the
development of image interpretation skills, but has also demon-
strated reduced performance of students when compared to 2D
image interpretation (Ravesloot, van der Gijp, et al., 2015;
Ravesloot, van der Schaaf, et al., 2015). Investigation of the rela-
tion between cognitive load and development of image interpre-
tation skills would be valuable to provide specific direction to the
aforementioned interventions.

6.3. Conclusion

This explorative study has contributed to evidence on how
human-computer interaction and eye movements are related to
cognitive load, and initial insights have been obtained into how
cognitive load is affected in volumetric image interpretation. It is
argued that by combining the human-computer interaction and eye
movement variables comprehensive indirect objective measure-
ment of cognitive load can occur. Combining such a model with
investigation of learning effects of volumetric image interpretation
in medical education may lead to relevant recommendations for
implementation in the curriculum.
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