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Abstract: This paper reports on an automated and openly available
tool for automatic acoustic analysis and transcription of primate calls,
which takes raw field recordings and outputs call labels time-aligned
with the audio. The system’s output predicts a majority of the start
times of calls accurately within 200 milliseconds. The tools do not
require any manual acoustic analysis or selection of spectral features by
the researcher.
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1. Introduction

A central topic in bioacoustics is the description of animal call repertoires, including
what the calls are and how they are combined and used. However, traditional acoustic
analysis of calls requires a significant amount of manual work, which means that only a
fraction of the data collected in the field is actually used, and the majority of the other-
wise useful data does not serve its role in answering scientific questions (Kobayasi and
Riquimaroux, 2012). Recently, techniques from speech processing have been applied to
animal vocalizations. The key advance they offer is to bypass a step where researchers
extract preselected acoustic features, such as durations or peak frequencies. Standard
speech processing tools represent signals using rich, general purpose spectral representa-
tions, with no hand selection of acoustic features. Previous analyses automatically
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Fig. 1. Spectrograms of calls. Left: Blue monkey Hack (top) and Pyow (bottom) calls; center: Titi A (top) and B
(bottom); right: Colobus Roar sequence (top) and Snort (bottom).

classified isolated calls by call type, species, and caller using such representations (Mielke
and Zuberbuhler, 2013). Our system, in addition to labeling isolated calls, detects and
labels calls in raw field recordings. We apply it to three primate species with acoustically
diverse calls (see Fig. 1): Blue monkeys (Cercopithecus mitis), Titi monkeys (Callicebus
nigrifrons), and Colobus monkeys (Colobus guereza).

2. Data sets

Recordings of three species were taken from several field researchers for a total of 5.58 h
of audio. A trained primatologist marked the start and end times (calls typically do not
overlap), and labeled each Blue monkey call Hack (also called Ka) or Pyow (Papworth
et al., 2008), Colobus calls as Roar or Snort (Marler, 1972), and Titi calls as A or B
(Casar et al., 2012). Table 1 documents the length of the audio recordings for each data
set, the percentage of that time taken up by calls, and the token count for each type of
call. Estimated signal-to-noise ratios for these data sets (Vondrdasek and Pollak, 2005)
were low (between 0.5 and 5.3), typical of field recordings in primatology.

Acoustic features were automatically extracted from the audio recordings
using a standard speech feature extraction pipeline, adapted minimally. Since the
recordings had non-zero mean and varying average amplitudes within each recording
due to recording conditions and manual adjustment of the gain levels by field scien-
tists, we removed the DC component with a notched high pass filter. We increased the
ratio between calls and noise with a five-point temporal median filter (i.e., averaging
windows of five consecutive samples in the time domain) followed by a two-
dimensional three-point median filter pass in the spectral domain. The first enhances
the ratio of the amplitude of the calls to noise, and the second flattens the spectrum
for low transient noise passages and enhances the contrast with calls. We then esti-
mated a noise signature based on the spectral components of the first half second of
each audio file (which never included a call) and subtracted this noise signature from
the rest of the audio stream. We calculated spectral representations of the signal using
short-term Fourier transforms on overlapping windows of 25ms shifted by 10 ms, and

Table 1. Length of recordings, source, % of signal with calls present, counts of labeled calls.

Species Source (Location) Recorder ~ Microphone  Duration (% calls)  Types N
Blue Murphy (Budongo Reserve, Marantz Sennheiser 1:56:45 Hack 145
Uganda) PMD660 ME66-K6 (0.33%) Pyow 108

Blue Fuller (Kakamega Marantz Sennheiser 0:59:15 Hack 510
Forest, Kenya) PMD660 MEG67 (4.31%) Pyow 364

Titi César (Serra Marantz Sennheiser 0:11:58 A 125
do Caragca, Brazil) PMD660 ME66-K6 (3.24%) B 539

Colobus Schel (Budongo Sony Sennheiser 2:27:02 Roar 739
Reserve, Uganda) TCD D8 MEG66-K6 (5.09%) Snort 141
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transformed the frequency components through a set of 40 filters evenly spaced on the
Mel scale. This filter distribution is common in speech processing and is copied here
for generality. Finally, each filter was mean-variance normalized independently.

3. Classification system

In this section, we describe three experiments classifying isolated calls using the generic
acoustic features just described. Each call was represented by concatenating the first 50
frames from the call onset (a 40 x 50 =2000-dimensional vector, corresponding to
515ms), capturing the full length of 84% of calls. In experiment 1, we assessed the abil-
ity to classify call types within each species based on these representations. In experi-
ment 2, we assessed classification of species. In experiment 3, we assessed the six-way
labeling of species and call type required when all three species are pooled.

To predict the calls, we used a sparse radial basis function support vector
machine (SVM) trained with block coordinate descent with squared hinge loss and
L1 regularization. This is a standard statistical approach to classification problems
that may not be amenable to classification using a linear model. Instead of comput-
ing the full Gram matrix of the kernel, we employ the Nystrom approximation to
significantly speed up the training time of our classifiers (Williams and Seeger,
2001). The approximation computes the eigendecomposition on a random small sub-
set of the Gram matrix and scales the results up to the original number of dimen-
sions (the number of samples). We achieved good results with a 500-component
approximation. Experiments 2 and 3 involve more than two classes, so we employed
a one-versus-rest strategy (training N individual binary classifiers, where N is the
number of classes). Training was on 80% of the data, with evaluation on the remain-
ing, unseen, 20%. Three hyperparameters (weight of the loss term, C, weight of the
penalty term, A, and kernel coefficient, y) were optimized using the sequential
model-based algorithm configuration (SMAC) technique (Hutter et al, 2011) by
fivefold cross-validation within the training set.

Table 2 shows the results of experiments 1-3. We give precision (positive pre-
dictive value: among the calls the classifier gives label x, the fraction that are actually
x and not false positives) and recall (sensitivity: among the calls that should be labeled
x, the fraction that are labeled x and not false negatives), and F; [2 precision recall/
(precision + recall)]. Classification was good, with average F; of between 0.91 and
0.99. Experiment 1 extends previous findings using different methodology and new

Table 2. Classification results for experiments 1 (call type, within species), 2 (species only), and 3 (species and
call type).

Labels Precision Recall F| score Test Support

Experiment 1

Blue Hack 0.97 0.99 0.98 131
Blue Pyow 0.99 0.96 0.97 95
Average 0.98 0.98 0.98

Colobus Roar 0.94 1.00 0.97 148
Colobus Snort 1.00 0.68 0.81 28
Average 0.95 0.95 0.94

Titi A 0.89 0.68 0.77 25
Titi B 0.93 0.98 0.95 108
Average 0.92 0.92 0.92

Experiment 2

Blue 0.99 0.98 0.98 226
Titi 0.99 0.98 0.98 176
Colobus 0.98 1.00 0.99 133
Average 0.99 0.99 0.99

Experiment 3

Blue Hack 0.99 0.95 0.97 131
Blue Pyow 0.95 0.95 0.95 95
Colobus Roar 0.86 0.97 0.91 148
Colobus Snort 0.92 0.43 0.59 28
Titi A 0.85 0.68 0.76 25
Titi B 0.88 0.94 0.91 108
Average 0.91 0.91 0.91
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Fig. 2. (Color online) Classification performance (y) by species, as a function of the number of annotated calls
provided in the training set (x).

species (Mielke and Zuberbiihler, 2013). Experiments 1 and 3 were repeated with sub-
sets of increasing sizes of the full (i.e., 80%) training set. Figure 2 shows the F; score
on the test set as a function of the number of annotated calls given for training.

4. Automatic transcription system

In experiment 4, we trained a call transcription system whose input is raw, unseg-
mented field recordings. It predicts call labels using a support vector machine and uses
a conditional random field (CRF) to correct unlikely sequences.

The SVM was trained on annotated data to predict call labels from individ-
ual frames. Input features consisted of a concatenation of MFCC features (13 ceps-
tral coefficients with first and second derivatives) with activations from a voice activ-
ity detection (VAD) system (Lee and Hasegawa-Johnson, 2007). The classifier was
trained within species to predict one of the two call types or a third class indicating
the absence of a call. The sequence of Platt-calibrated predictions of the SVM were
used as input to a linear chain CRF. The CRF’s predictions are also sequences of
frame labels, but the CRF takes into account statistical dependencies between adja-
cent frames and smoothes the predictions in the time domain. The hyperparameters
of the SVM and the CRF were optimized using SMAC. We evaluated on a 10% held
out test set. The third label (absence of any call) is removed from the output for
evaluation.

The system outputs call sequences, time-aligned with an audio file. We eval-
uate these transcriptions for the held-out test data. Considering the sequences of
calls (not the alignment with the audio), we evaluate using word error rate (WER)
and match error rate (MER), used in speech recognition (Morris et al., 2004).
Results are in Table 3. The majority of calls are correctly identified. Most errors are
deletions (missing calls) for Blue and Colobus monkeys and insertions (noise identi-
fied as calls) for Titis, perhaps because Titi calls are high frequency, similar to the
noise.

To evaluate how well the predicted calls are time-aligned, we match each call
in the gold transcription to the nearest predicted call whose onset and offset are within
a 200 ms tolerance of the real onset and offset, and count a gold call as having a true
positive only if it has such a match, and that match is correctly labeled; otherwise, it
counts as a false negative. Similarly, for each predicted call, we look for the nearest
such match among the calls in the gold transcription, and count a false positive if there
is no match or if the match is mislabeled. Since it is likely easier to accurately mark

Table 3. Evaluation of transcriber: word and match error rate (WER, MER), number of hits (H), deletions (D),
substitutions (S), insertions (I), and number of calls (N).

Species WER MER H D S 1 N
Blue 35.1% 32.1% 213 69 6 26 288
Colobus 34.4% 33.8% 106 47 4 3 157
Titi 32.9% 28.1% 68 8 6 14 82
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Table 4. Evaluation of predicted calls versus the nearest gold transcribed call with both its onset and offset (left)
or just its onset (right) within 200 ms.

Call detection Onset detection
Species Precision Recall F1 Precision Recall Fl1
Blue 0.76 0.65 0.70 0.85 0.72 0.78
Colobus 0.46 0.33 0.38 0.74 0.54 0.62
Titi 0.63 0.68 0.66 0.71 0.77 0.74

the onsets of calls than their offsets, both for our human annotator and for the tran-
scription system, we also compute an alternative scoring in which only call onsets need
to be matched within the 200 ms tolerance. For both scorings, we compute precision,
recall, and F;, as shown in Table 4. The results show that call onsets are indeed much
easier to match to the annotation than offsets, particularly for Colobus monkeys,
where performance is relatively poor when offsets are required to be correctly marked.

5. Conclusions

General purpose acoustic features and voice activity detection techniques, as used in
speech recognition, can automate the labeling of primate calls, both in isolation and in
unannotated recordings, using data representative of field recordings. The system needs
to be bootstrapped by a set of annotated examples. We showed that good isolated call
labeling requires less than 200 labeled examples. It accurately transcribes around 90%
of the frames in an audio file, vastly reducing the amount of manual work.

The results also imply that generic acoustic features, rather than specialized
acoustic measurements taken manually by the researcher, can be used for detailed
analysis. For example, there are competing descriptions of the call repertoires of cer-
tain species. Previous analyses have appealed to clustering analyses on hand-selected
acoustic features as evidence (Fuller, 2014; Keenan et al., 2013). The results here vali-
date an automated process of feature extraction that may be used as the input to these
analyses. Both results allow much larger data sets from the field to be used than are
currently being used for research and make it easier to create shared databases between
researchers. Our tools can be downloaded at http://github.com/mwv/mcr.
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