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Abstract

In this paper a method to construct Kripke models for subtheories of
constructive set theory is introduced that uses constructions from classical
model theory such as constructible sets and generic extensions. Under the
main construction all axioms except the collection axioms can be shown
to hold in the constructed Kripke model. It is shown that by carefully
choosing the classical models various instances of the collection axioms,
such as exponentiation, can be forced to hold as well. The paper does not
contain any deep results. It consists of first observations on the subject,
and is meant to introduce some notions that could serve as a foundation
for further research.

Keywords: Kripke models, constructive set theory, constructible sets, generic exten-

sions, intuitionistic logic.

1 Introduction

Constructive set theory was introduced by John Myhill in 1975. It serves as a
foundation for constructive mathematics, in much the same way that Zermelo-
Fraenkel set theory serves as a foundation for classical mathematics. To obtain a
constructive set theory, the first naive idea would be to only restrict the logic of
classical set theory to intuitionistic logic but leave the axioms unchanged. This,
however, does not work since already the Axiom of Foundation implies the law
of the excluded middle. Therefore the set theoretic axioms have to be chosen
with care. Some classical axioms are severely restricted, such as the Separation
Axiom, that in a constructive setting allows the construction of extensions based
on bounded formulas only. For other axioms it suffices to replace them by a
classically equivalent form. Set Induction, for example, is classically equivalent
to Foundation and an accepted principle of constructive set theory.
Several systems have been proposed as a constructive set theory in the course
of time, but we will concentrate in this paper on one particular brand of con-
structive set theory called Constructive Zermelo Fraenkel set theory CZF. CZF,
which is based on Myhill’s system, was introduced by Peter Aczel, who also con-
firmed the constructivity of the theory by providing an interpretation of it in
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Martin-Löf type theory [1, 2, 3, 12]. Later Michael Rathjen constructed a real-
izability interpretation of the theory, and using this showed that CZF possesses
constructive properties such as the disjunction property and various existence
properties.
In this paper we study the Kripke models of Constructive Zermelo Fraenkel
set theory. Kripke models are a useful tool to study constructive theories and
because of their simplicity have been applied with great success to non-classical
logics in general, and intuitionistic logic and Heyting Arithmetic in particular.
Although nowadays there exist various models of CZF, such as the two interpre-
tations discussed above, as well as others in topos theory [10] and in the form of
Heyting algebras [5], Kripke models have been less investigated. In [7] Robert
Lubarsky constructed two beautiful Kripke models of CZF that refute classical
principles such as the Power Set Axiom.
In this paper the aim is to construct, given a frame, a model of CZF on that frame
by using constructions from classical model theory such as the constructible sets
and generic extensions. The idea is to attach classical models (the so-called local
models) to the nodes of the frame and see how far, by carefully choosing the
local models, the axioms of CZF can be forced to hold in the Kripke model.
This paper is just a small first step in that direction. We introduce the frame-
work and provide requirements on the local models under which the model con-
structed on a given frame is indeed a Kripke model. Then we proceed to show
that under certain natural conditions such as transitivity, the Kripke models
thus constructed satisfy the axioms of CZF minus the collection axioms, al-
though certain instances of the latter can be shown to hold as well. These
results are straightforward: they follow easily from the definition of the models.
The conditions on the local models for which this subtheory of CZF is satisfied in
the final model are quite general, and there are many ways to construct Kripke
models that satisfy the necessary requirements.
Finally we show how to produce Kripke models for various forms of collection
by using specific properties of certain generic extensions. Given a frame we
attach generic extensions of a certain ground model to the leaves of the frame,
and the model itself to all interior nodes. We will see that several instances and
variations of the collection axioms can be recovered via requirements on the
partial orders on which the generic extensions are based, such as the countable
chain condition. In particular, a bounded form of Exponentiation and weak
forms of Replacement can be forced to hold.
These are modest results, but we do hope that the method presented in this
paper, in particular the relation between properties of Kripke models and the
generic extensions on which they are based, can be pushed further, and lead to
models of full CZF.
I thank an anonymous referee for useful and supportive comments.
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2 CZF

Constructive Zermelo Fraenkel set theory CZF consists of the axioms and rules
of intuitionistic logic with equality extended by the following axioms.

Extensionality a = b↔ ∀x(x ∈ a↔ x ∈ b).

Empty Set ∃x∀y(y 6∈ x)

Pairing ∃c∀x(x ∈ c↔ x = a ∨ x = b).

Union ∃b∀x
(
x ∈ b↔ ∃y ∈ a(x ∈ y)

)
.

Bounded Separation ∃b∀x
(
x ∈ b↔ x ∈ a ∧ ϕ(x)

)
(ϕ bounded).

Strong Infinity ∃ω∀x
(
x ∈ ω ↔ x = ∅ ∨ ∃y ∈ ω(x = y ∪ {y})

)
.

Set Induction ∀x
(
∀y ∈ xϕ(y)→ ϕ(x)

)
→ ∀xϕ(x).

Strong Collection ∀x ∈ a∃yϕ(x, y)→
∃b

(
∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)

)
.

Subset Collection ∃c∀z
(
∀x ∈ a∃y ∈ bϕ(x, y, z)→

∃d ∈ c
(
∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, z)

))
.

Bounded formulas are formulas in which every quantifier is bounded, thus of the
form ∀x ∈ y or ∃x ∈ y. CZFc is CZF minus the collection axioms, CZFic is CZFc

minus Set Induction. IZF is CZF in which the collection axioms are replaced by
the Power Set Axiom,

Power Set ∃b∀x
(
x ∈ b↔ x ⊆ a

)
,

and Replacement,

Replacement ∀x ∈ a∃!yϕ(x, y)→ ∃b∀x ∈ a∃y ∈ bϕ(x, y).

Note that Set Induction is the constructive variant of Foundation, to which it
is classically equivalent. It resembles the situation in Heyting Arithmetic, for
which induction is one of the axioms, while the least number principle, which
is classically equivalent to it, does not hold. Also note that Strong Collection
is formulated in the way it is above since only full Separation would make it
equivalent to the form most commonly used:

∀x ∈ a∃yϕ(x, y)→ ∃b∀x ∈ a∃y ∈ bϕ(x, y).

Bounded Strong Collection is Strong Collection in which the ϕ is a bounded
formula. Below we will define what it means when a term is set-bounded in a
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formula. Given these notions, Set-bounded Subset Collection is Subset Collection
in which the ϕ(x, y, z) is a bounded formula in which z is set-bounded.
The following two axioms are equivalent (over the other axioms) to respectively
Bounded Separation and Subset Collection [4].

Binary Intersection ∃c∀x(x ∈ c↔ x ∈ a ∧ x ∈ b)

Fullness ∃c∀r ∈ mv(ab)∃r′ ∈ mv(ab)(r′ ⊆ r ∧ r′ ∈ c)

In Fullness mv(ab) stands for all multi-valued relations from a to b, i.e. all
r ⊆ a × b such that ∀x ∈ a∃y ∈ b 〈a, b〉 ∈ r. The property r′ ⊆ r expresses
that r′ is a refinement of r. Thus Fullness expresses that there is a set that
contains at least one refinement for every r ∈ mv(ab). Note that if r : a → b,
Fullness implies that r ∈ c. Therefore Fullness and Bounded Separation imply
Exponentiation, that is, that ba is a set. This, however, does not imply that
Power Set holds, because the existence of a set {0, 1}a does not imply that the
power set of a exists: the existence of undecidable sets shows that not every
subset of a corresponds to a function in {0, 1}a.
We define

Separationϕ ∃b∀x
(
x ∈ b↔ x ∈ a ∧ ϕ(x)

)
,

and similarly for Strong Collectionϕ and Subset Collectionϕ. Bounded Separa-
tion, Strong Collection and Subset Collection are axiom schemes, while their
variants ()ϕ are formulas.
An axiom that is often used in constructive set theory is the Regularity Axiom
which guarantees the existence of greatest fixed points, which are used in the
setting of inductive definitions. In this paper the focus is on the other axioms
and the Regularity Axiom will not be discussed any further here.

3 Kripke models

In this section we introduce the method to construct Kripke models for subtheo-
ries of CZF from classical models of ZF, which is the main object of study in this
paper. Intuitively, given a frame F and classical models Mi for every node i of
F , the Kripke model will be the result of attaching model Mi to node i, where
the forcing of atomic formulas at a node corresponds to the validity of atomic
formulas in the model at that node. Of course, in order to obtain a Kripke
model various requirements have to be fulfilled. For example, for upwards per-
sistency every model Mi has to be a subset of the models at nodes above i, and
every atomic formula that holds in Mi, should hold in all models at the nodes
above i. The definitions below provide such restrictions. A collection of models
is called sound for a given frame, it if satisfies all the necessary requirements.
Although in the applications to come classical models will be attached to nodes
in a frame, one could also attach Kripke models to these nodes. The definitions
below describe the construction on this level of generality, but it might be clar-
ifying to keep in mind that in the theorems to come only the former restricted
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version of the construction is used. Clearly, the general case covers the specific
case, as classical models are instances of Kripke models, namely Kripke models
consisting of one node.
Note that in the general case we deal with nodes on two levels: nodes of the
underlying frame F , and nodes in the Kripke models Mi that we attach to the
nodes of F . For a node m in Mi we denote forcing in Mi at this node by
Mi,m 
, and in the final Kripke model we denote forcing at node i in F and
node m in Mi by 〈i,m〉 
. Here follow the details.
Given a Kripke model K we denote by WK , 4K , DK and IK respectively its
set of nodes, partial ordering, set of domains and its interpretations. A similar
notation is used for frames. When K is clear from the context we omit the
superscript. Given a node i in a model K, DK

i denotes the domain at node i,
and IKi the interpretation at node i.
Given a frame F = (W,4), we call a collection of (Kripke) models M = {Mi |
i ∈W} sound for F if

∀i, j ∈W ∀m ∈WMi∀n ∈WMj : i 4 j ⇒ DMi
m ⊆ DMj

n ,

∀i, j ∈W∀m ∈WMi∀n ∈WMj∀a, b ∈ DMi
i :

i 4 j ∧ Mi,m 
 P (a, b) ⇒ Mj , n 
 P (a, b) (P is = or ∈).

Given a frame F and a collection of Kripke modelsM = {Mi | i ∈WF } that is
sound for F , the Kripke model KF (M) = (W,4, D, I) is defined as follows:

• W ≡def

⋃
{{i} ×WMi | i ∈WF },

• D〈i,m〉 ≡def D
Mi
m ,

• 〈i,m〉 4 〈j, n〉 ≡def (i = j ∧m 4Mi n) ∨ (i ≺F j),

• I〈i,m〉 ≡def I
Mi
m .

Thus KF (M) is obtained from F by replacing node i in F by the Kripke model
Mi. The models in M are called local models. We sometimes call KF (M) the
final model.
Soundness guarantees the result to be a Kripke model:

Lemma 1 IfM is sound for F , then in KF (M):

〈i,m〉 4 〈j, n〉 ⇒
(
〈i,m〉 
 ϕ ⇒ 〈j, n〉 
 ϕ

)
.

In the following, when talking about a model KF (M), we tacitly assume that
M is sound for F .
Clearly, classical models are models of the form KF (M), where F consists of
one node. We will mainly consider models of the form KF (M) for which M
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consists of classical models and F is finite. Let us first consider an example of
this form, where F is the frame

1 2

3

>>>>>>>

�������
4

5

>>>>>>>

�������

and M = {Mi | i = 1, . . . , 5} consists of classical models. Then KF (M) is the
model

M1 M2

M3

CCCCCCCC

{{{{{{{{
M4

M5

CCCCCCCC

{{{{{{{{

This model has 5 nodes.
An example for which the models in M consist of more than one node is for
example given by the following frame F

1 2

3

>>>>>>>

�������

and the collection of models M = {Mi | i = 1, 2, 3}, where the frames of the
models Mi are of the form

ai

bi

Thus KF (M) is the following 6 node model:

a1 a2

b1 b2

a3

AAAAAAAA

}}}}}}}}

b3
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As mentioned above, if forcing in a model Mi is considered this will always
be indicated, as in expressions Mi,m 
 ϕ. In case the forcing is relative to
KF (M), the model will be often omitted, which means that 〈i,m〉 
 ϕ is short
for KF (M), 〈i,m〉 
 ϕ (recall that all nodes in KF (M) are of the form 〈i,m〉).
Similar remarks apply to 4Mi and 4KF (M).

3.1 Model properties

This section discusses all the properties used to describe the requirements on F
and M under which KF (M) is a Kripke model of certain axioms of CZF. The
properties are listed below, but the reader might consider to not consult them
before the particular point at which they are used in the theorems, since their
meaning follows easily from the way in which they are applied.

D-formula

Given a set D, ϕ is a D-formula if all its parameters are in D.

Set-bounded

Given a formula ϕ and a term t, t is set-bounded in ϕ, if, when it occurs in ϕ,
ϕ → t ∈ s is derivable in intuitionistic logic, for some term s that occurs in ϕ.
In t ∈ s, for example, t is set-bounded while s is not.

Bounded

A formula is bounded if all its quantified subformulas are of the form ∃x ∈ aϕ(x)
or ∀x ∈ aϕ(x).

∈-sound

To establish that KF (M) satisfies certain axioms of CZF we will sometimes
use that these axioms hold on the meta-level. For example, in the case of Set
Induction we use that Set Induction holds in the real universe in which our
proofs live. For this we need the notion of ∈-soundness.
M is ∈-sound or sound for ∈ if

∀a, b ∈ DMi
m : Mi,m 
 a ∈ b ⇒ a ∈ b.

Here the a ∈ b in the conclusion of ⇒ refers to the underlying real universe,
here taken to be classical set theory, if not explicitly stated otherwise. Note
that classical ∈-models are ∈-sound.
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Transitive

To force that certain simple axioms of CZF such as pairing and union hold in
KF (M) we require that sets do not grow when moving up in the model, a
property that is captured by the notion of transitivity.
M is transitive at 〈i,m〉 if

∀〈j, n〉 < 〈i,m〉∀a ∈ DMi
m ∀b ∈ DMj

n : Mj , n 
 (b ∈ a ∨ b = a) ⇒ b ∈ DMi
m .

Note that this implies

∀〈j, n〉 < 〈i,m〉∀a ∈ DMi
m ∀b ∈ DMj

n : 〈j, n〉 
 (b ∈ a ∨ b = a) ⇒ b ∈ DMi
m .

M is transitive if it is transitive at every node. Note that if M consists of
classical models, transitivity implies that the models are transitive in the usual
sense, and vice versa.
To establish that KF (M) satisfies certain axioms of CZF we will often use that
the local models satisfy these axioms. For example, in order to have KF (M)
be a model of Bounded Separation, we need to understand for which formulas
forcing at a node in a local model is equal to forcing at that node inKF (M). For
in these cases KF (M) satisfies Bounded Separation because the local models
do. The formulas for which we can establish such a property are the bounded
formulas, for which we will show that they are preserved and decided in KF (M).

Decidable

A DMi
m -formula ϕ(x̄) is decided at 〈i,m〉 if

∀ā ∈ DMi
m ∀〈j, n〉 < 〈i,m〉 : 〈j, n〉 
 ϕ(ā) ⇔ 〈i,m〉 
 ϕ(ā).

This is equivalent to 〈i,m〉 
 ϕ(ā) ∨ ¬ϕ(ā). ϕ is decided in KF (M) if it is
decided at every node 〈j, n〉 for which ϕ is a DMj

n -formula. Observe that every
formula is decided at the leafs of KF (M). M decides atomic formulas if all
atomic formulas are decided in KF (M). Note that this means that for all
a, b ∈ DMi

m ∩D
Mj
n :

Mi,m 
 a = b ⇔ Mj , n 
 a = b Mi,m 
 a ∈ b ⇔ Mj , n 
 a ∈ b.

Note that this notion depends on the models inM only.

Preserved

A DMi
m -formula ϕ(x̄) is preserved at 〈i,m〉 if

∀ā ∈ DMi
m : 〈i,m〉 
 ϕ(ā) ⇔ Mi,m 
 ϕ(ā).

ϕ is preserved in KF (M) if it is preserved at every node 〈j, n〉 for which ϕ is a
D
Mj
n -formula. Observe that every formula is preserved at the leafs of KF (M).
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As we will see, in this paper we did not succeed in showing that, under the
conditions considered in this paper, KF (M) is a model of the collection axioms.
We do, however, recover certain instances of them. The requirements under
which this holds are expressibility and collapse. These properties are rather
strong, and we feel that in contrast to the results on the other axioms of CZF,
the results using these two properties are unnatural, and leave ample room for
improvement. In the last two sections we present some possible improvements
by providing particular local models for which KF (M) is a model of bounded
Exponentiation and weak versions of Replacement.

Expressible

A DMi
m -formula ϕ(x, y), in which x, y are the only free variables, is expressible

at 〈i,m〉 if

∀a, b ∈ DMi
m : 〈i,m〉 
 ∀x ∈ a∃y ∈ bϕ(x, y) ⇔ Mi,m 
 ∀x ∈ a∃y ∈ bψim(x, y).

The formulas ψim are called the companions of ϕ. Observe that every ϕ is a
companion of itself at the leafs of KF (M). Corollary 1 below implies that every
bounded DMi

m -formula is expressible at 〈i,m〉 by itself.

Lemma 2 If M is a transitive class of models of Pairing and decides atomic
formulas, and ϕ(x, y) is expressible by companions ψim, then

∀d, e ∈ DMi
m : 〈i,m〉 
 ϕ(d, e) ⇔ Mi,m 
 ψim(d, e).

Proof Consider d, e ∈ DMi
m . Because the Mi are models of Pairing, there exists

a set {d} ∈ DMi
m such that

M i
m 
 ∀x(x ∈ {d} ↔ x = d).

The assumption that M is transitive and decides atomic formulas implies that
also

〈i,m〉 
 ∀x(x ∈ {d} ↔ x = d).

This implies that

〈i,m〉 
 ϕ(d, e) ⇔ 〈i,m〉 
 ∀x ∈ {d}∃y ∈ {e}ϕ(x, y).

The same reasoning gives

M i
m 
 ψim(d, e) ⇔ M i

m 
 ∀x ∈ {d}∃y ∈ {e}ψim(x, y).

Now we can use that ϕ is expressible by ψim at 〈i,m〉 to obtain the desired
result. 2
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Collapse

Given 〈j, n〉 < 〈i,m〉, and a DMi
m -formula ϕ(x, y, z), in which x, y, z are the only

free variables, then ϕ(x, y, z) collapses from 〈j, n〉 to 〈i,m〉 if

∀c ∈ DMj
n ∀a, b ∈ DMi

m : 〈j, n〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, c) ⇒(
〈j, n〉 
 ¬∃x ∈ a or

(
c ∈ DMi

m and 〈i,m〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, c)
))
.

ϕ(x, y, z) collapses if it collapses from 〈j, n〉 to 〈i,m〉 for all 〈j, n〉 < 〈i,m〉.

Lemma 3 If M is a transitive class of models of Set Induction that decides
atomic formulas, and the DMi

m -formula ϕ(x, y, z) is bounded, z is set-bounded
in it, and x, y, z are the only free variables in it, then ϕ(x, y, z) collapses.

Proof We have to show that for all 〈j, n〉 < 〈i,m〉:

∀c ∈ DMj
n ∀a, b ∈ DMi

m : 〈j, n〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, c) ⇒(
〈j, n〉 
 ¬∃x ∈ a or

(
c ∈ DMi

m and 〈i,m〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, c)
))
.

Therefore suppose 〈j, n〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, c) and 〈j, n〉 6
 ¬∃x ∈ a. Thus
for some 〈h, k〉 < 〈j, n〉, 〈h, k〉 
 ∃x ∈ a ∧ ∀x ∈ a∃y ∈ bϕ(x, y, c). It follows that
there exist elements u, v such that 〈h, k〉 
 u ∈ a ∧ v ∈ b ∧ ϕ(u, v, c). Hence
u, v ∈ DMi

m by transitivity. Since z is set-bounded in ϕ(x, y, z) it follows that
〈h, k〉 
 c ∈ t, for some term in ϕ(u, v, c). Because Set Induction holds in the
models, t 6= c. Since all terms in ϕ(u, v, c) except c belong to DMi

m , it follows
that c ∈ DMi

m by transitivity. That also 〈i,m〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, c) holds,
follows from Corollary 1 below. 2

Recall that an ∈-model is a model in which the membership relation is that of
the universe.

Lemma 4 IfM consists of classical transitive ∈-models, thenM is transitive,
∈-sound and decides atomic formulas.

Note that in the lemma the requirement that the models of ZF are ∈-models
is not only needed for the ∈-soundness, but also for the decidability of atomic
formulas.

3.2 Forcing in the two models

Here follow some lemmas relating forcing in the local models to forcing in the
final model. As we explained in the previous section, bounded formulas will
be central in some of the theorems below. In this section we show that such
formulas are preserved and decided in KF (M).
When we consider a formula at Mi,m or 〈i,m〉 we tacitly assume that all its
parameters belong to DMi

m , that is, that it is a DMi
m -formula.
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Lemma 5 If M is transitive and decides atomic formulas, then all bounded
formulas are decided in KF (M).

Proof We have to show that for bounded formulas ϕ:

∀〈j, n〉 < 〈i,m〉 : 〈i,m〉 
 ϕ ⇔ 〈j, n〉 
 ϕ.

We use formula induction. For atomic formulas the lemma holds because M
decides atomic formulas. That it holds for conjunction, disjunction and impli-
cation follows easily. We treat the existential quantifier, the universal quantifier
being similar.
∃ If 〈j, n〉 
 ∃x ∈ aψ(x), then for some d ∈ D

Mj
n , 〈j, n〉 
 d ∈ a ∧ ψ(d).

By transitivity d ∈ DMi
m , and whence 〈i,m〉 
 d ∈ a ∧ ψ(d) by the induction

hypothesis. Thus 〈i,m〉 
 ∃x ∈ aψ(x). 2

Lemma 6 If M is transitive and decides atomic formulas, then all bounded
formulas are preserved in KF (M).

Proof We have to show that for bounded DMi
m -formulas ϕ:

〈i,m〉 
 ϕ ⇔ Mi,m 
 ϕ.

We use formula induction. For atomic formulas the lemma holds because atomic
formulas are preserved by definition of KF (M). That it holds for conjunction
and disjunction follows easily. For implication we use the induction hypothesis
and Lemma 5 that implies that all bounded formulas are decided in KF (M).
We treat the universal quantifier, the existential quantifier being similar.
We have to show that

〈i,m〉 
 ∀x ∈ aψ(x) ⇔ Mi,m 
 ∀x ∈ aψ(x).

⇒ Suppose n <Mi m, and d ∈ DMi
n and Mi, n 
 d ∈ a. Thus d ∈ DMi

m by
transitivity. Hence 〈i,m〉 
 d ∈ a by decidability. Thus 〈i,m〉 
 ψ(d). Hence
〈i, n〉 
 ψ(d) by upwards persistency, and thus Mi, n 
 ψ(d) by the induction
hypothesis. This proves that Mi,m 
 ∀x ∈ aψ(x).
⇐ Suppose 〈j, n〉 < 〈i,m〉, and d ∈ DMj

n , and 〈j, n〉 
 d ∈ a. Hence d ∈ DMi
m

by transitivity and Mi,m 
 d ∈ a by decidability. Thus Mi,m 
 ψ(d). Hence
〈i,m〉 
 ψ(d) by the induction hypothesis. Thus 〈j, n〉 
 ψ(d). This proves that
〈i,m〉 
 ∀x ∈ aψ(x). 2

Observe that the condition of atomic decidability in the previous lemma cannot
be replaced by atomic preservation, since the argument for implication in the
proof by induction might no longer be true.

Corollary 1 IfM is transitive and decides atomic formulas, then all bounded
formulas are decided and preserved in KF (M).

Corollary 2 IfM consists of transitive ∈-models of ZF, then all bounded for-
mulas are decided and preserved in KF (M).
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4 Models of CZF

4.1 Models of CZFic

Proposition 1 IfM is transitive and decides atomic formulas, then for all ax-
ioms ϕ of CZFic except Strong Infinity, if the models inM satisfy Extensionality
and ϕ, then so does KF (M).

Proof The proof of this theorem is simple, but we have included all details
for completeness’ sake. Essential is that bounded formulas are preserved and
decided.
Extensionality We have to show that

〈i,m〉 
 ∀x(x ∈ a↔ x ∈ b)↔ a = b.

Observe that the formula is bounded. Since the Mi are models of Extensionality,
they satisfy this formula at all their nodes. Lemma 6 implies that whence the
formula holds at all nodes in KF (M).
Empty Set Suppose the models in M are models of Empty Set. Thus for all
nodes m in Mi there exists a set ∅im ∈ DMi

m that is the empty set at that node,
i.e. such that

Mi,m 
 ∀x(x ∈ ∅im → ⊥).

Since ∀x(x ∈ ∅im → ⊥) is a bounded formula, Lemma 6 implies that it is forced
at 〈i,m〉 too.
Pairing Suppose the models inM are models of Pairing. Thus there exist sets,
denoted {a, b}im, in DMi

m for which

Mi,m 
 ∀x(x ∈ {a, b}im ↔ x = a ∨ x = b).

Transitivity and the fact that atomic formulas are decided implies that ∀x(x ∈
{a, b}im ↔ x = a ∨ x = b) is forced at 〈i,m〉 too.
Union Suppose the models in M are models of Union. The existence of sets
∪aim ∈ DMi

m such that

Mi,m 
 ∀x
(
x ∈ ∪aim ↔ ∃y ∈ a(x ∈ y)

)
,

implies that
〈i,m〉 
 ∀x

(
x ∈ ∪aim ↔ ∃y ∈ a(x ∈ y)

)
by transitivity and the fact that atomic formulas are decided.
Bounded Separation Suppose the models in M are models of Bounded Separa-
tion. Let ϕ be a bounded formula. Thus there are sets cim ∈ DMi

m for which

Mi,m 
 ∀x
(
x ∈ cim ↔ x ∈ a ∧ ϕ(x)

)
.

Since ∀x
(
x ∈ cim ↔ x ∈ a∧ϕ(x)

)
is a bounded formula, it follows from Lemma 6

that 〈i,m〉 forces that formula too. 2
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4.2 Strong Infinity

Proposition 2 IfM is a transitive class of models of CZFic that decides atomic
formulas, then KF (M) is a model of Strong Infinity.

Proof Let ∅im be the sets such that

Mi,m 
 ∀x¬(x ∈ ∅im).

Because the models are models of Strong Infinity, there are sets ωim such that

Mi,m 
 ∀x
(
x ∈ ωim ↔ x = ∅im ∨ ∃y ∈ ωim(x = y ∪ {y})

)
.

It suffices to show that 〈i,m〉 forces the formula. Therefore consider 〈j, n〉 <
〈i,m〉 and x ∈ DMj

n . We show that 〈j, n〉 forces

x ∈ ωim ↔ x = ∅im ∨ ∃y ∈ ωim(x = y ∪ {y}).

We will use that for x, y ∈ DMi
m :

Mi,m 
 x = y ∪ {y} ⇔ 〈i,m〉 
 x = y ∪ {y}.

It is not difficult to see that this holds, using transitivity, the decidability of
atomic formulas, and that x = y∪{y} is equivalent to ∀z(z ∈ x↔ z ∈ y∨z = y).
→ Suppose 〈j, n〉 
 x ∈ ωim. We show that 〈i,m〉 forces x = ∅im ∨ ∃y ∈
ωim(x = y ∪ {y}). Transitivity and the decidability of atomic formulas implies
that x ∈ DMi

m and 〈i,m〉 
 x ∈ ωim. Thus Mi,m forces x ∈ ωim, and whence
x = ∅im∨∃y ∈ ωim(x = y∪{y}). The observations above imply that 〈i,m〉 forces
that formula too.
← First suppose 〈j, n〉 
 x = ∅im. Note that 〈i,m〉 forces ∅im ∈ ωim since Mi,m
does. Hence 〈j, n〉 forces x ∈ ωim by the equality axioms. Second, suppose for
some y, 〈j, n〉 forces y ∈ ωim ∧ x = y ∪ {y}. Thus y ∈ DMi

m by transitivity, and
〈i,m〉 
 y ∈ ωim by the decidability of atoms. There is a set x′ ∈ DMi

m such
that 〈i,m〉, and whence Mi,m, forces x′ = y ∪ {y}. Thus Mi,m, and whence
〈i,m〉, forces x′ ∈ ωim. Hence 〈j, n〉 
 x′ ∈ ωim. Since 〈j, n〉 forces x = x′ by
Extensionality, it forces x ∈ ωim by the equality axioms. 2

Corollary 3 IfM is transitive and decides atomic formulas, and all models in
M are models of CZFic, then KF (M) is a model of CZFic.

Combining this with Lemma 4 we obtain the following corollary.

Corollary 4 If M consists of transitive ∈-models of ZF, then KF (M) is a
model of CZFic.
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4.3 Power Set

Proposition 3 If M is a class of transitive classical ∈-models of Power Set,
then KF (M) is a model of Power Set.

Proof Since the models in M are models of Power Set, there is a set P (a) in
Mi such that Mi,m 
 ∀x(x ∈ P (a) ↔ x ⊆ a). The transitivity of the models
in M implies that this then holds at all nodes in all models Mj , where j <F i.
Note that this implies that it holds in KF (M). 2

4.4 Models of Set Induction

As mentioned in the beginning, the background theory in this paper is taken to
be ZFC, but we do think that in most cases CZF would suffice. In this section
we explicitly state in which background theory we work, because in the case
of Set Induction it is instructive to see how the conditions on the local models
have to be changed if we only allow constructive reasoning and wish the final
model to be a model of Set Induction.

Proposition 4 (CZF) If M is sound for ∈, then KF (M) is a model of Set
Induction.

Proof Set Induction We show that ∀x(∀y ∈ xϕ(y)→ ϕ(x))→ ∀xϕ(x) holds in
KF (M). Note that it suffices to show that

〈i,m〉 
 ∀x(∀y ∈ xϕ(y)→ ϕ(x)) ⇒ 〈i,m〉 
 ∀xϕ(x).

Therefore suppose 〈i,m〉 
 ∀x(∀y ∈ xϕ(y)→ ϕ(x)). We have to show that

∀〈j, n〉 < 〈i,m〉 ∀x ∈ DMj
n 〈j, n〉 
 ϕ(x).

Let
ψ(x) ≡def ∀〈j, n〉 < 〈i,m〉

(
x ∈ DMj

n → 〈j, n〉 
 ϕ(x)
)
.

It suffices to show that ∀x
(
∀y ∈ xψ(y) → ψ(x)

)
, since an application of Set

Induction to this formula on the meta level then gives ∀xψ(x), i.e. 〈i,m〉 

∀xϕ(x). Thus assume ∀y ∈ xψ(y). To show ψ(x), we prove that for 〈j, n〉 <
〈i,m〉 and x ∈ DMj

n , we have 〈j, n〉 
 ∀y ∈ xϕ(y). Since 〈i,m〉 forces ∀x(∀y ∈
xϕ(y) → ϕ(x)), so does 〈j, n〉, and hence 〈j, n〉 
 ϕ(x). This will show that
ψ(x), and completes the argument.
Therefore consider 〈h, k〉 < 〈j, n〉, y ∈ DMh

k and 〈h, k〉 
 y ∈ x. Then y ∈ x
by ∈-soundness. Because we have ∀y ∈ xψ(y), this implies 〈h, k〉 
 ϕ(y). Thus
indeed 〈j, n〉 
 ∀y ∈ xϕ(y). 2

By Lemma 4, Corollary 4, and the previous theorem we obtain the following
corollary.
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Corollary 5 If M consists of transitive ∈-models of ZF, then KF (M) is a
model of CZFc.

Proposition 5 (ZF) If M consists of models of Foundation, and F is a frame
without infinite ascending branches, then KF (M) is a model of Set Induction.

Proof We have to show that

i 
 ∀x(∀y ∈ xϕ(y)→ ϕ(x)) ⇒ i 
 ∀xϕ(x).

Since all Mi consist of one node, 〈i,m〉 becomes i. We write Mj for DMj .
Therefore suppose i 
 ∀x(∀y ∈ xϕ(y) → ϕ(x)). Suppose i 6
 ∀xϕ(x). Thus
i1 6
 ϕ(a1) for some a1 ∈ Mi1 and i1 < i. This implies that i1 6
 ∀x ∈ a1ϕ(x),
say i2 6
 ϕ(a2) for some a2 ∈ Mi2 such that i2 < i1 and i2 
 a2 ∈ a1. Hence
i3 6
 ϕ(a3) for some a3 ∈Mi3 such that i3 < i2 and i 
 a3 ∈ a2, etcetera. Since
every branch of F is finite there exists an ij such that for all h ≥ j with h ∈ ω,
ah ∈ Mij and Mij 
 ah+1 ∈ ah. But this contradicts the fact that the models
inM are models of Foundation. 2

4.5 Models of Strong Collection

The theorem below implies that under the standard conditions we have used so
far, Bounded Collection holds in models of the form KF (M). Although many
applications of collection require only Bounded Collection, we feel that the result
in this section is rather weak. We chose to include it because the treatment of
collection here is similar to the treatment of the other axioms we encountered
so far. In Section 7 several variations of this theorem will be proved showing
that by a more subtle application of the method to construct KF (M), other
forms of collection can be forced to hold.

Proposition 6 IfM is transitive and decides atomic formulas, then for every ϕ
that is expressible by companions ψim, if the models inM are models of Strong
Collectionψi

m
and Pairing, then KF (M) is a model of Strong Collectionϕ.

Proof Let ψim be the companions of ϕ. We show that for a ∈ DMi
m

〈i,m〉 
 ∀x ∈ a∃yϕ(x, y)→ ∃b
(
∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)

)
.

Therefore suppose 〈i,m〉 
 ∀x ∈ a∃yϕ(x, y). We first show that

Mi,m 
 ∀x ∈ a∃yψim(x, y).

Namely, if n < m and b ∈ DMi
n such that Mi, n 
 b ∈ a, then b ∈ DMi

m by
transitivity, and Mi,m 
 b ∈ a by decidability. Thus 〈i,m〉 
 b ∈ a and whence
〈i,m〉 
 ϕ(b, c) for some c ∈ DMi

m . Thus M i
m 
 ψim(b, c) by Lemma 2, and

therefore ∃yψim(x, y), is forced at Mi,m, whence also at Mi, n.
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Since the Mi are models of Strong Collectionψi
m

, this implies that there exist
sets bim ∈ DMi

m such that

Mi,m 
 ∀x ∈ a∃y ∈ bimψim(x, y) ∧ ∀y ∈ bim∃x ∈ aψim(x, y).

By the expressibility of ϕ this implies

〈i,m〉 
 ∀x ∈ a∃y ∈ bimϕ(x, y) ∧ ∀y ∈ bim∃x ∈ aϕ(x, y).

2

Corollary 6 IfM is transitive and decides atomic formulas, then if the models
inM are models of Bounded Strong Collection, so is KF (M).

Proof If ϕ is bounded, Corollary 1 implies that ϕ is expressible by ϕ. Apply
the previous theorem. 2

4.6 Models of Subset Collection

The theorem below implies that under the standard conditions we have used so
far, Set-bounded Subset Collection holds in models of the form KF (M). The
same remark as in the case of Strong Collection applies here: the result is not
strong since the expressive power of the formulas in the axiom is limited. In
Section 8 we will encounter several variations of this theorem showing that under
reasonable conditions a restricted version of Exponentiation holds in KF (M).

Proposition 7 If M is transitive and decides atomic formulas, then for every
ϕ that collapses and is expressible by formulas ψim, if the models in M are
models of Subset Collectionψi

m
, then KF (M) is a model of Subset Collectionϕ.

Proof We show that for a, b ∈ DMi
m ,

〈i,m〉 
 ∃c∀z[∀x ∈ a∃y ∈ b ϕ(x, y, z)→ (1)
∃d ∈ c

(
∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, z)

)
].

Let ψim be the companions of ϕ. Since theMi are models of Subset Collectionψi
m

,
there are cim ∈ DMi

m for which

Mi,m 
 ∀z[∀x ∈ a∃y ∈ b ψim(x, y, z)→ (2)
∃d ∈ cim

(
∀x ∈ a∃y ∈ dψim(x, y, z) ∧ ∀y ∈ d∃x ∈ aψim(x, y, z)

)
].

It suffices to show that for all 〈j, n〉 < 〈i,m〉 and all z ∈ DMj
n

〈j, n〉 
 ∀x ∈ a∃y ∈ b ϕ(x, y, z)
⇒

〈j, n〉 
 ∃d ∈ cim
(
∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, z)

)
.
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Therefore assume 〈j, n〉 < 〈i,m〉, z ∈ DMj
n , and 〈j, n〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, z).

Thus 〈j, n〉 
 ¬∃x ∈ a or z ∈ DMi
m and 〈i,m〉 
 ∀x ∈ a∃y ∈ bϕ(x, y, z). In the

latter case, by expressibility Mi,m 
 ∀x ∈ a∃y ∈ bψim(x, y, z). And thus for
some d ∈ DMi

m , Mi,m forces

d ∈ cim ∧ ∀x ∈ a∃y ∈ dψim(x, y, z) ∧ ∀y ∈ d∃x ∈ aψim(x, y, z). (3)

By expressibility 〈i,m〉 forces

d ∈ cim ∧ ∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, z). (4)

Thus so does 〈j, n〉, which is what we had to show. In the former case, 〈j, n〉
forces ¬∃x ∈ a, it follows that 〈i,m〉, and whence Mi,m, forces 
 ¬∃x ∈ a
too, by transitivity and decidability. Hence Mi,m 
 ∀x ∈ a∃y ∈ bψim(x, y, z).
Consider the d for which (??). It follows that Mi,m, and whence 〈i,m〉, forces
¬∃x ∈ d. Thus so does 〈j, n〉, which implies that 〈j, n〉 forces (??), which is
what we had to show. 2

Corollary 7 IfM is transitive and decides atomic formulas, then if the models
inM are models of Set Induction and Set-bounded Subset Collection, KF (M)
is a model of Set-bounded Subset Collection.

Proof Let ϕ(x, y, z) be a bounded formula in which z is set-bounded. By
Corollary 1, ϕ is expressible by itself, and Lemma 3 implies that ϕ collapses.
Thus we can apply the previous theorem. 2

If we combine all results above we obtain the following corollaries.

Corollary 8 If M is sound for ∈, consists of transitive models of CZF, and
decides atomic formulas, then KF (M) is a model of CZFc and Bounded Strong
Collection and Set-bounded Subset Collection.

Corollary 9 IfM decides atomic formulas and consists of transitive models of
ZF, such that these are ∈-models or F has no infinite branches, then KF (M)
is a model of CZFc plus Bounded Strong Collection and Set-bounded Subset
Collection. If the models are ∈-models, KF (M) is a model of Power Set.

5 Examples of models

Here follow some examples of classes of models satisfying Corollary 9.

5.1 Constructible set models

A collectionM of models sound for a frame F is called an L-extension if every
model that does not correspond to a leaf of F is L, that is, if all Mi, where i
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is not a leaf of F , equal L. In this case we denote KF (M) by KL
F (M). The

following is an example of such a model:

M1 M1

L

``@@@@@@@@

>>~~~~~~~~
M3

L

``AAAAAAAA

==zzzzzzzz

Recall that for every classical transitive proper class model M of ZF, LM = L
(Theorem 3.5 in [6]), and thus L is contained in M . Therefore a class of models
M is an L-extension on a frame F if the models inM corresponding to the leaves
of F are classical transitive proper class models of ZF, and all other models are
L.

Proposition 8 If M is an L-extension of transitive ∈-models of ZF, then
KL
F (M) is a model of CZFc, Bounded Strong Collection, and Set-bounded Sub-

set Collection.

5.2 Generic models

A collectionM of models that is sound for a frame F is called an M -extension
if Mi is a generic extension M [Gi] of M if i is a leaf of F , and it is the model M
otherwise. In this case we denote KF (M) by KM

F (M). Note that such models
decide atomic formulas.
We follow the notation of the book by Kenneth Kunen on set theory [6]. We
let Pi be the partial order in M with respect to which Gi is generic. Since for
every generic set G every m corresponds to a name m̆, such that (m̆)G = m, it
follows that M is a subset of every M [Gi].
The following is an example of a model KM

F (M):

M [G1] M [G2] M [G3] M [G4]

M

eeJJJJJJJJJJ

OO

M

OO 99tttttttttt

M

ccGGGGGGGGG

;;wwwwwwwww

Proposition 9 IfM is an M -extension of transitive models of ZF sound for a
frame F with no infinite branches, then KM

F (M) is a model of CZFc, Bounded
Strong Collection, and Set-bounded Subset Collection.
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6 Replacement

The use of constructible sets and generic extensions in the results above does not
seem to rely on constructibility or genericity in an essential way. The theorems
merely serve as natural applications of the more abstract lemma’s that were
treated before. The results in this section, however, show that by carefully
choosing generic models for the leaves of a frame, the final model can be forced to
satisfy stronger forms of the collection axioms than Bounded Strong Collection.
We will see that under well-known conditions on generic sets certain instances
of Replacement can be recovered.
For cardinals κ and natural numbers n we define

¬¬Replacementnκ
for all a ∈M with |a| < κ: ¬¬∀x ∈ a∃!y ∈ bϕ(x, y)→

∃f1, . . . , fn ∈ ba∀x ∈ a∀y ∈ b¬¬
∨n
i=1(ϕ(x, y)↔ fi(x) = y).

The “for all a with |a| < κ” is meant externally, in the real universe. The ¬¬
refers to the fact the antecedent of the implication is a double negated formula
as well as to the fact that the fi are only not not equivalent to ϕ. The property
states that the existence of certain functions at the leaves imply the existence,
at the interior nodes, of a finite number of functions that at the leaves behave
like the original functions.

Theorem 1 If κ is a cardinal,M is an M -extension of transitive models of ZF,
and F is a finite frame with n leaves, and all Pi associated with the M [Gi] are
κ-closed, then KM

F (M) is a model of ¬¬Replacementnκ.

Proof Since the models in M are classical, we write i instead of 〈i,m〉, and
Mi instead of DMi . Suppose i 
 ¬¬∀x ∈ a∃!y ∈ bϕ(x, y), where a, b ∈ Mi and
|a| < κ. Hence j 
 ∀x ∈ a∃!y ∈ bϕ(x) for all leafs j < i. Since all formulas
are preserved at leaves, it follows that ϕ represents a function fj : a → b that
belongs to Mj = M [Gj ]. If i = j we are done. So suppose i is not a leaf.
In Theorem 6.14 in [6] it is shown that if P is κ-closed, then for all G that are
P -generic over M , for all a, b ∈ M with |a| < κ, if g : a → b is in M [G], then
it is in M . Therefore fj ∈ M . Hence fj ∈ ba in M . That ¬¬

∨n
j=1(ϕ(x, y) ↔

fj(x) = y) follows easily. 2

Weak ¬¬Replacementn

¬¬∀x ∈ a∃!y ∈ bϕ(x, y)→ ∃f1, . . . , fn ∈ P(b)a

∀x ∈ a∀y ∈ b
( ∧n

i=1 |fi(x)| ≤ ω ∧ ¬¬
∨n
i=1

(
ϕ(x, y)→ y ∈ fi(x)

))
.

The Weakness refers to the fact that the fi belong to P(b)a instead of ba, but
in contrast to ¬¬Replacementnκ, there is no restriction on the cardinality of a.
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Note that in the requirement |fi(x)| ≤ ω lies the non triviality of the property,
as otherwise we could take fi(x) = b, and the property would trivially hold.

Theorem 2 If M is an M -extension of transitive models of ZF sound for a
finite frame F with n leaves, and (Pi has c.c.c.)M , then KM

F (M) is a model of
Weak Replacementn.

Proof Since the models in M are classical, we write i instead of 〈i,m〉, and
Mi instead of DMi . Suppose i 
 ¬¬∀x ∈ a∃!y ∈ bϕ(x, y), where a, b ∈ Mi.
Hence j 
 ∀x ∈ a∃!y ∈ bϕ(x) for all leafs j < i. Since all formulas are preserved
at leaves, it follows that ϕ represents a function gj : a → b that belongs to
Mj = M [Gj ]. If i = j we can take fj(x) = {gj(x)} and are done. So suppose i
is not a leaf.
In Lemma 5.5 in [6] it is shown that if (P has c.c.c.)M and g : a→ b is in M [G]
where a, b ∈ M , there is a map f : a → P(b) in M such that for all x ∈ a,
g(x) ∈ f(x) and (|f(x)| ≤ ω)M .
Thus there exist fj ∈M such that fj : a→ P(b) and

∀x ∈ a(gj(x) ∈ fj(x)) ∧ (|fj(x)| ≤ ω)M .

We have to show that the following formula is forced at i:

∀x ∈ a∀y ∈ b
( n∧
j=1

|fj(x)| ≤ ω ∧ ¬¬
n∨
j=1

(
ϕ(x, y)→ y ∈ fj(x)

))
.

The second part clearly holds as for leaves j, j 
 ϕ(x, y) ↔ gj(x) = y. For
the first part, note that since ω is absolute for transitive models, it belongs to
all models in M. Since

∧n
j=1 |fj(x)| ≤ ω holds in M , there exist injections

hxj : fj(x)→ ω in M . It is easy to see that by Corollary 1, i forces that the hxj
are injections too, since injectivity can be expressed by a bounded formula. 2

7 Exponentiation

In this section we show that under certain conditions on the generic sets in-
stances of exponentiation can be recovered. We write f : a→ b as an abbrevia-
tion of “f is a function from a to b”. Exponentiation is the axiom stating that
the set ba of functions from a to b exists for all a and b:

Exponentiation ∀a∀b∃c∀f(f ∈ c↔ f : a→ b).

For cardinals κ we define a bounded version of Exponentiation:

Exponentiationκ
for all a ∈M with |a| < κ: ∀b∃c∀f(f ∈ c↔ f : a→ b)

The “for all a with |a| < κ” is meant externally, in the real universe.
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Theorem 3 If κ is a cardinal,M is an M -extension of transitive models of ZF
sound for a finite frame F with n leaves, and all Pi associated with the M [Gi]
are κ-closed, then KM

F (M) is a model of Exponentiationκ.

Proof Since Exponentiation holds in the leaves of KM
F (M), it suffices to show

that for all i that are not leaves, for all a, b ∈ M with |a| < κ, there is a set
ci ∈ M such that i forces ∀f(f ∈ ci ↔ f : a → b). Take for all ci the set ba in
M consisting of all functions in M from a to b. This set exists because M is
a model of ZF, and thus of Exponentiation. We show that this c has the right
property, that is, that for any node i:

i 
 ∀f(f ∈ c↔ f : a→ b).

If i is a leaf and f ∈ c, this means that f ∈M by the transitivity of M , and thus
f : a→ b holds in Mi = M [Gi] too. If f : a→ b in M [Gi], then we use Theorem
6.14 in [6] stating that if P is κ-closed, then for all G that are P -generic over
M , for all a, b ∈M with |a| < κ, if g : a→ b is in M [G], then it is in M . Thus
f ∈M , and whence f ∈ c.
If i is not a leaf, we only have to consider the case that f ∈ M , as f ∈ M [Gi]
has been treated above. But in this case f ∈ c↔ f : a→ b is clearly forced at
i. 2

The results in the last two sections show how the choice of the generic sets can
force the final Kripke model to be a model of certain instances of collection. The
obvious open problem is whether this method can be pushed further to obtain
models of larger subtheories of CZF than the theories treated in this paper.
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in Martin-Löf type theory, Annals of Pure and Applied Logic 141(3), 2006, p.
442-471.

22


