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In this study, satellite observations including gravity (GRACE), terrestrial reflectance (MODIS), and global precip-
itation (TRMM) data, along with the output from the PCR-GLOBWB hydrological model, are used to generate
monthly and sub-monthly terrestrial water storage (TWS) estimates and quantify flood events over the Tonlé
Sap basin between 2002 and 2014. This study is the first time GRACE data have been used to investigate the hy-
drological processes over the Tonlé Sap basin. To improve the accuracy of the TWS estimates fromGRACE, a signal
restorationmethodwas applied in an effort to recover the signal loss (i.e., signal leakage) inherent in the standard
GRACE post-processing scheme. The method applies the correction based on the GRACE observations only, re-
quiring no external data or hydrological models. The effectiveness of the technique over the Tonlé Sap basin
was validated against several independent data sets. Based on the GRACE observations since 2002, the 2011
and 2013 flood events were clearly identified, and measured to have basin-averaged TWS values of 42 cm
(40% higher than the long-termmean peak value) and 36 cm (34% higher) equivalentwater height, respectively.
Those same years also coincide with the largest observed flood extents, estimated from the MODIS data as
6561 km2 (91% above the long-term mean peak value) and 5710 km2 (66% above), respectively. Those flood
events are also linked to the observed inter-annual variations of water storage between 2010 and 2014. It was
shown that those inter-annual variationsmainly reflect the variations in the surfacewater and groundwater stor-
age components, influenced by the change of the precipitation intensity. In addition, this study presents a new
approach for deriving monthly and sub-monthly TWS variations over a regularly inundated area by using
MODIS reflectance data in addition to GRACE solutions. The results of this study show that GRACE data can be
considered as an effective tool for monitoring certain small-scale (82,000 km2) hydrological basins.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The main goal of this study is to quantify flood events in the Tonlé Sap
basin in Central Cambodia at both basin and sub-basin scales. It is shown
that a combination of several satellite data products in this data-sparse re-
gion can yield valuable insight into flood pulses during the last 15 years.

The Tonlé Sap basin has an area of approximately 82,000 km2 and
contains the largest freshwater lake (Tonlé Sap Lake) in Southeast
Asia, which serves as the primary fresh water resource for various
food and agricultural activities of Cambodia (Lamberts, 2001). Apart
from precipitation, the Tonlé Sap Lake regularly receives water from
theMekong River through the Tonlé Sap River. In addition, theMekong
gdamrongsub).

. This is an open access article under
River brings sediment and nutrients to the soil, making the Tonlé Sap
basin favorable for fisheries and the cultivation of rice and other crops.
The agricultural activities in the Tonlé Sap basin require irrigation, and
the irrigated area has been expanded in the past decade in line with
the implementation of a national strategic plan (Yu & Diao, 2011).
This has facilitated agriculture growth in the area, so that now more
than half of the Cambodian rice fields are located within the basin. Im-
portantly, several new hydro-electric power plants have been con-
structed in the regions upstream of the Mekong River (outside
Cambodia). These developments have altered the natural flows of
Mekong mainstream, which has a direct impact to on the Tonlé Sap
water level (Arias et al., 2012; Cochrane, Arias, & Piman, 2014;
Kummu et al., 2014). Compounded by climate variability, the frequency
and intensity of drought and flood events in the region have become
more severe and have led to the destruction of irrigation fields and
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Fig. 1. Geographical location of the Tonlé Sap basin (red line). The shapefiles of the Tonlé
Sap basin, Tonlé Sap Lake, fishery community and rice field were obtained from the Open
Development Cambodia website (http://www.opendevelopmentcambodia.net/maps/
downloads).
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civilian casualties (NCDM, andUNDP, 2014). It is clear that for the devel-
opment and prosperity of all of the countries dependent on theMekong
and Tonlé Sap basins, improved long-term monitoring of the region's
water resources is needed. Such monitoring will serve inter-
governmental agencies like the Mekong River Commission (MRC),
which aim to optimize theusage ofwater resources during the country's
development while minimizing the harmful effects on people and the
environment of the region. Despite the clear need for hydrological infor-
mation, the vast and inaccessible nature of the Tonlé Sap area makes it
difficult to collect in situ observations. As a result, remote sensing obser-
vations have to be exploited. This study is a first attempt to provide a
comprehensive assessment of the large-scale variations of the water
storage as well as to explore flood events in the Tonlé Sap basin over
the past decade, using various data sets delivered by remote sensing
satellites.

In several studies in the past, terrestrial surface reflectance data have
been used to identify the spatial flooding patterns over the Tonlé Sap
Lake (Arias et al., 2012; Sakamoto et al., 2007; Xiao et al., 2005). Howev-
er, that analysis did not allow the total water storage variations to be ac-
curately quantified. To address this issue, data from the Gravity
Recovery And Climate Experiment (GRACE) satellite mission (Tapley,
Bettadpur, Ries, Thompson, & Watkins, 2004) are used in our study. In
contrast to the terrestrial surface reflectance observations, GRACE
senses the total Terrestrial Water Storage (TWS) variations in all com-
ponents (e.g., surface water, soil moisture, and groundwater)
(Bettadpur, 2012). For this reason, GRACE data have been used in
many hydrological applications at both global and regional scales,
e.g., groundwater depletion in India (Rodell, Velicogna, & Famiglietti,
2009), flood prediction for Mississippi River basin (Reager, Thomas, &
Famiglietti, 2014) and characterization of regional (e.g., Amazon, Zam-
bezi, Texas) drought signatures (Thomas, Reager, Famiglietti, & Rodell,
2014). However, to date GRACE data have never been applied to study
hydrological processes over the Tonlé Sap basin. The results based on
GRACE data are supported and validated by means of other satellite
remote sensing datasets and hydrological models.

One of the challenges in using GRACE data is their temporal resolu-
tion, which is limited to one month, as well as their coarse spatial reso-
lution (typically N300 km). Unconstrained GRACE products require the
application of some formof spatialfiltering to reduce the effects of high-
frequency errors inherent to the publicly available GRACE fields. This
spatial filtering redistributes the signal over the filter radius, commonly
referred to as signal leakage, requiring additional processing to restore
this leaked signal if accurate TWS results over a specific target area are
desired. Several signal restoration methods have been described in the
literature for this purpose. Landerer and Swenson (2012) applied a scal-
ing factor computed as the ratio between the true TWS and filtered
TWS, based on a hydrological model. The procedure is simple but may
introduce a bias caused by the dependency on a particular hydrological
model. Baur, Kuhn, and Featherstone (2009) applied a correction based
on known signal geometry. Their method was developed to restore the
signal along the coastal zone of Greenland. Themethod does not rely on
external data and can be very effective, but requires a controlled
environment, where the surrounding signal is smaller than the target
one, and the signal location is known. More recently, Chen et al.
(2013, 2014) proposed a strategy similar to that of Baur et al. (2009)
but without the known signal geometry requirement. The main idea is
to mitigate the leakage out signal (from land to ocean) using GRACE
data directly, so that the signal damping effect near the coast is effec-
tively reduced (Chen et al., 2013). This strategy is straightforward,
easy to implement, and has been proven effective for inland applica-
tions (Chen, Li, Zhang, & Ni, 2014). As will be shown later, the results
produced compared well with independent validation data, suggesting
the approach is suitable for this study as well.

Apart fromGRACE observations, precipitation data from the Tropical
Rainfall MeasuringMission (TRMM, Kummerow, Barnes, Kozu, Shiue, &
Simpson, 1998), as well as three hydrological models are used in an
attempt to better understand the processes responsible for the observed
TWS variations. The hydrological models used are: (i) the Centre for
Medium-Range Weather Forecasts (ECMWF) ReAnalysis-Interim
(ERA-Interim) Full Resolution (Dee et al., 2011); (ii) the Global Land
Data Assimilation System (GLDAS; Rodell et al., 2004); and (iii) the
PCRaster Global Water Balance (PCR-GLOBWB) (Sutanudjaja, van
Beek, de Jong, van Geer, & Bierkens, 2014; van Beek, Wada, &
Bierkens, 2011; Wada, Wisser, & Bierkens, 2014). In contrast to the
ERA-Interim and GLDAS models that construct TWS based on soil
moisture storage, the PCR-GLOBWB model also contains surface water
and groundwater storage components and can be used to distinguish
the contribution of different storage components to the TWS.

Furthermore, the coarse temporal and spatial resolution of GRACE re-
quires supporting information to cover smaller temporal and spatial scales.
This information is obtained from the terrestrial surface reflectance data
provided by the Moderate-Resolution Imaging Spectroradiometer
(MODIS; Vermote, Kotchenova, & Ray, 2011), which form images with a
spatial resolution of 500 m every 8 days. To distinguish the open water
from soil and vegetation, the Normalized Different Water Index (NDWI;
McFeeters, 1996) is used. In thefirst instance, NDWI data are used to quan-
tify variations of the inundated area, which is essential for flood area plan-
ning. However, by using an empirical relationship between GRACE (TWS)
and MODIS (NDWI-based) data over the inundated area, it is also possible
to estimate the TWS variations from theMODIS data. This is important be-
cause it enables the estimation of TWS variations at sub-monthly time
scales. To the author's knowledge, this is the first time that TWS variations
have been produced fromMODIS data.

This paper begins with an overview of the Tonlé Sap basin, given in
Section 2. The description of all data and their processing are presented
in Section 3. The GRACE signal restoration scheme is described in
Section 4.

Section 5 focuses on the results obtained. The performance of the sig-
nal restorationmethod, aswell as of the hydrologicalmodels, is evaluat-
ed in Section 5.1. Precipitation is analyzed in Section 5.2. In Section 5.3,
we demonstrate the usage ofMODIS data to estimate the TWSvariations
over the Tonlé Sap Lake floodplain. Section 5.4 is focused on the investi-
gation of the inter-annual signal over the Tonlé Sap basin. Finally,
Section 6 discusses and summarizes the main results of the study.

2. Study region

The Tonlé Sap basin extends over eight major Cambodian provinces
and occupies approximately 46%of the land area of Cambodia. Tonlé Sap
Lake (Fig. 1) located in the center part of the basin has an area in the dry
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and wet seasons of approximately 2500 km2 and 16,000 km2, respec-
tively (Lim, Lek, Touch, Mao, & Chhouk, 1999). The region has a mon-
soon climate, which is characterized by a rainy period between May
and October and a dry period between November and April, with an av-
erage rainfall of approximately 1750 mm/year. Under normal condi-
tions, the lake releases water through the Tonlé Sap River, which
connects to the Mekong River near Panom Phen. However, in a wet
season (when the amount of rainfall by far exceeds the average level),
the lake receives the return flow water from the Mekong River leading
to floodingover the Tonlé Sap Lake floodplain. Theflood extent is partic-
ularly large when the Tonlé Sap basin (andMekong river basin) experi-
ences a high level of rainfall from strong tropical cyclones.

3. Data and data processing

3.1. GRACE

In this study, the GRACE CSR-Release05 monthly gravity field prod-
ucts from April 2002 to October 2014 were used. These fields were pro-
duced at the University of Texas at Austin, Center for Space Research
(CSR) (Bettadpur, 2012). The products come in the form of spherical
harmonic coefficients (SHC) up to degree and order 60, corresponding
to a (half-wavelength) spatial resolution of approximately 330 km).
The degree-1 coefficients are provided by Swenson et al. (2008). Be-
cause of large uncertainties in thedegree-2 coefficients of theGRACE so-
lutions, the values obtained by satellite laser ranging (Cheng and Tapley,
2004) are used instead. In the months without GRACE gravity solutions
(e.g., June and July 2003, June 2004), the SHC values were calculated
using a cubic-spline interpolation. Then, the long-term mean of the
SHC (between April 2002 and October 2014) was computed and re-
moved from each monthly SHC to obtain the monthly variations of the
gravity field.

Next, high-degree errors were alleviated by using de-striping
(Swenson and Wahr, 2006) and Gaussian smoothing (Jekeli, 1981) fil-
ters. The parameters of de-striping filter used in this study were similar
to those discussed in Duan et al. (2009) (A = 30, K = 10 in Eq. (1)). A
polynomial of degree 2 was used, and the orders lower than 5 were
kept unchanged. The radius (R) of the Gaussian smoothing filter was
350 km. After filtering, the SHCs were converted to the 0.5-degree
gridded TWS variations over the Tonlé Sap basin. The effects of post-
glacial rebound (Peltier, 2004) over the study area are negligibly
small, so no correction was made for them.

3.2. Hydrological models

Three hydrology models were used in this study, and the definition
of TWS varied depending on the storage components considered in
each of the models:

1. GLDAS-NOAH Version 1: Monthly one-degree nearly-global gridded
data are provided for different storage components separately. The
TWS was constructed as the sum over all available components,
i.e., four soil moisture layers: 0–10, 10–100, 100–150, and
150–200 cm, and the total canopywater storage. Note that contribu-
tion of the total canopy water storage is minor (b1%) over the Tonlé
Sap basin.

2. ERA-Interim Full Resolution: The reanalysis volumetric soil moisture
from the ECMWF is available every 6 h at approximately 80-km spa-
tial resolution. The volumetric soil moisture was converted to equiv-
alent water height by multiplying by the thickness of the layer.
Similar to GLDAS, TWSwas computed as the sumover 4 soilmoisture
layers: 0–7, 7–28, 28–100, and 100–289 cm. The monthly TWS was
then computed by averaging the 6-hour data over the month.

3. PCR-GLOBWB Version 2.0: daily 0.5-degree TWS estimates are
provided globally as the sum of 7 water storage components: snow,
interception, river channels (including lakes), irrigation, upper soil
moisture (0–30 cm depth from the surface), lower soil moisture
(30–150 cm depth), and groundwater. The monthly TWS was com-
puted by averaging the daily data of themonth. A further description
of PCR-GLOBWB can be found in Appendix A.

Themonthly TWS values from all 3 models were constructed for the
time interval between April 2002 and October 2014. For every model,
the long-term mean of the TWS was computed and removed from
each monthly estimate to obtain the TWS variation consistent with
the one derived from GRACE data.

3.3. MODIS-derived NDWI

TheMODIS sensors on board NASA's Terra and AQUA satellites have
been successfully collecting spectral imaging data for more than a
decade. Among N20 product types, the MODIS Surface-Reflectance
Product (MOD 09) provides the surface reflectance in 7 different
frequency bands every 8 days (Vermote et al., 2011). Combinations of
specific frequency bands can be used to identify open water bodies of
the size of approximately 500m andmore (MOD 09 spatial resolution).
Therefore, it is possible to calculate the variations of the inundated area
of the Tonlé Sap Lake from this product. In this study, the NDWI derived
from MYD09A1 (AQUA) product was used. The surface reflectance in
different frequency bands was extracted from the MODIS tile h28v07
(covering the floodplain of the Tonlé Sap Lake). Based on the data qual-
ity control information, the pixels flagged with cloud cover or fill values
were masked. The NDWI was computed based on reflectance from
green and near infrared (NIR) channels as follows:

NDWI ¼ green−NIRð Þ= greenþNIRð Þ: ð1Þ

The range of NDWI is between−1 and 1. Positive NDWI values rep-
resent the open water while the zero or negative values represent soil
and terrestrial vegetation (McFeeters, 1996). Due to the limited data
availability, NDWI was computed starting from July 2002.

3.4. Precipitation

Precipitation data were obtained from TRMM (Kummerow et al.,
1998), a joint NASA/JAXA mission. Several sensors (e.g., radar, micro-
wave, infrared) were used to collect the precipitation-related passive
microwave data, which contain the hydrometeor profiles information.
In this study, the latest released monthly precipitation data (TRMM
3B43 Version 7; Huffman et al., 2007) between April 2002 and October
2014 were used. The product provides the rainfall estimates every 0.25
degree between 50° S and 50° N.

4. GRACE signal restoration methodology

The GRACE inter-satellite range observable does not measure TWS
variations directly, and requires processing to relate the absolute and
relative accelerations of the twin satellites to variations in the gravity
field. The publicly available GRACE SHC products contain high-
frequency errors that require the use of a spatial filter to suppress
them. As mentioned earlier, both signal and error are impacted by this
filtering step, making restoration of the leaked signal important for
proper characterization of the full TWS changes in the basin. Similar to
the approach of Chen et al. (2014), the following signal restoration
scheme is applied (see also Fig. 2):

1. After de-striping andGaussianfiltering are applied to the GRACE SHC
(result from Section 3.1), the TWS variation in the form of Equivalent
Water Height (EWH) is computed followingWahr et al. (1998). The
result is set as the filtered reference TWS.

2. A candidate TWS variation (i.e., the “candidate TWS”) is introduced
and is set equal to the filtered reference TWS.



Fig. 2. Flowchart of the GRACE signal restoration scheme.
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3. The candidate TWS is set equal to zero over the oceans. After that, it is
converted to SHCs up to degree 60, with a Gaussian filter of radius
R=350 km applied. Then, the SHCs are converted back to TWS var-
iations. Note that, following the recommendation of Chen et al.
(2014), the de-striping filter is not applied. The result of this step is
called the “filtered candidate TWS”.

4. The TWS increment is computed as the filtered reference TWSminus
the filtered candidate TWS.

5. If the TWS increment satisfies a stopping criterion (e.g., if the differ-
ence in every grid cell is smaller than a pre-defined threshold), the
candidate TWS is defined as the corrected TWS (the final product).
Otherwise, the candidate TWS is updated by adding the TWS incre-
ment and the steps 3–5 are repeated.

It is emphasized here that the signal restoration processwas applied
to the TWS globally, but the stopping criterion was locally defined. The
stopping criterion was chosen empirically: the signal restoration
process was repeated until the increment TWS in every grid cell inside
the Tonlé Sap basin became smaller than 0.5 cm EWH. Note that the se-
lected value is 3–4 times smaller than the noise level of TWS variations
derived from GRACE (Wahr, Swenson, & Velicogna, 2006; Klees et al.,
2008; Dahle et al., 2014). For all monthly solutions, the criterion was
met after about 30–40 iterations.

To study the sensitivity of the obtained results to the choice of the
Gaussian filter radius, four more time series of the corrected TWSs
were computed using the same signal restoration procedure but with
other Gaussian filters radii R: 300, 400, 450, and 500 km. Every month,
the error bounds were drawn based on the minimum and maximum
values taken from the 5 time series (including the case of R= 350 km).

Furthermore, two more variants of the corrected TWS were
produced for comparison.

1. To evaluate the sensitivity of the signal restoration method to the
choice of the filter radius, the filtered land mass data provided by
the GRACE Tellus website were considered (http://grace.jpl.nasa.
gov; last access: 24 March 2015). Similar to this study, the land
mass grid data (CSR option) were also produced using the CSR
RL05 product, but using different de-striping parameters, and with
the Gaussian smoothing radius set equal to 300 km (see http://
grace.jpl.nasa.gov/data/gracemonthlymassgridsland; last access:
24 March 2015). The filter radius R in the signal restoration proce-
dure was defined consistently. For clarity, the term “GRACE TWS” is
used below to represent the results of the processing from this
study (Section 3.1) while the term “GRACE TWS (Tellus)” is used to
represent the results based on the data obtained from the Tellus
website.

2. To compare the performance of the signal restoration method and
the scale parameter method (Landerer & Swenson, 2012), the latter
technique was used to post-process the filtered TWS instead. The
scale parameters were computed based on the three hydrological
models considered in our study. First, the original monthly TWS var-
iations from each hydrological model were converted to the SHCs,
and the SHCs were Gaussian filtered using the same smoothing radi-
us as in the case of GRACE (350 km, see Section 3.1). The filtered
SHCs were then converted to TWS (called the filtered TWS). Second,
the time-series ofmean TWS over the Tonlé Sap basinwas computed
from the filtered TWS and the original TWS, and the former was fit
using least-squares to the latter using one scale parameter. The
scale parameters estimated from GLDAS-NOAH, ERA-Interim, and
PCR-GLOBWB hydrology models were 1.63, 1.27, and 1.67, respec-
tively. The difference in the estimated values was likely influenced
by the model dependency. As indicated by Landerer and Swenson
(2012), the estimated scale parameter over the small river basin
could be biased toward the hydrology model applied. Therefore, in-
stead of applying the scale parameter individually, the mean value
of 1.52 was used to scale the filtered TWS extracted from GRACE.

5. Results

5.1. TWS variations estimated over the Tonlé Sap basin

5.1.1. Signal restoration from the filtered GRACE-based estimates
The signal restoration method was applied to the filtered monthly

GRACE TWS variations. The results before and after the restoration are
demonstrated in Fig. 3 for the flood months of October 2009, 2011,
and 2013. Before the signal restoration, a single maximum was ob-
served in the northern part of the basinwith the amplitude reaching ap-
proximately 10–20 cm EWH (Fig. 3 (a, b, c)). After the restoration, the
TWS variations between the Tonlé Sap basin and Central Highlands of
Vietnam became apparent in all solutions (see Fig. 3 (d, e, f)), and
TWS amplitude reached approximately 40–45 cm EWH (see contours
in Fig. 3 (d, e, f)). As the signal restoration processwas designedwithout
any involvement of the hydrologymodel or any other external data, the
agreement with an independent hydrological model provides some
confidence in the GRACE TWS estimates. The TWSs derived from PCR-
GLOBWB hydrological model were shown in Fig. 3 (g, h, i). Although
the spatial resolution mismatches between GRACE (Fig. 3d, e, f) and
PCR-GLOBWB (Fig. 3g, h, i) were presented, the signal location between
themwas relatively consistent. To verify the consistency of the location,
the same GRACE post-processing procedures (see Sections 3.1 and 4)
were applied to PCR-GLOBWB, and the results were shown in Fig. 3 (j,
k, l). Again, although not identical, the spatial distributionwas observed
very close to GRACE signal restoration results. Note that the PCR-
GLOBWBwith post-processingwas only used to illustrate the consisten-
cy of the TWS spatial distribution andwas not used further in this study.

Fig. 4 presents the basin averaged TWS variations based on different
GRACE solutions and correctionmethods. The filtered TWSwithout any
correction applied is very smooth with a clear seasonal signal varying
within the range of approximately±10 cmEWH. After applying the sig-
nal restoration method to the GRACE solutions, the amplitude of the
TWS variations increases by approximately a factor of two. Note that
the amplitude of the corrected TWS was always approximately 20 cm
EWH, even though different R values were used (see Table 1). This indi-
cates that, for the average signal amplitude estimated over a long time
interval, the signal restoration is sufficiently insensitive to the choice
of R. In some specific months, however, a difference is observed. This
is likely due to the remaining error caused by the choice of an R value
that was too small (i.e., stripes may still exist in that case).

For the comparison, the corrected TWSwas also computed from the
GRACE solutions using the scale parameter method. Note that, in

http://grace.jpl.nasa.gov
http://grace.jpl.nasa.gov
http://grace.jpl.nasa.gov/data/gracemonthlymassgridsland;
http://grace.jpl.nasa.gov/data/gracemonthlymassgridsland;


Fig. 3. TWS variation over Tonlé Sap basin inOctober 2009, 2011, and 2013 derived fromGRACE solution before (a, b, c) and after signal restoration applied (d, e, f). PCR-GLOBWB results of
the samemonths are also shown (g,h,i). For the comparisonwith GRACE, the same post-processing procedures used for GRACEwere applied to PCR-GLOBWB (see Sections 3.1 and 4), and
results were shown in the last row (j, k, l).
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contrast to the signal restoration method, which computes a correction
for eachmonth individually, the scale parameter method uses the same
scale parameter for all months. In this way, the annual amplitude
increased to approximately 20 cm EWH. Although the resulting time
series after the two correction methods show a similar pattern (see
Fig. 4), the overall amplitude after the scale parameter method is
smaller, particularly during the flood events, e.g., in October 2011 and
October 2013. On the other hand, large differences can also be seen in
Fig. 4. TWS averaged over Tonlé Sap basin derived from different GRACE solutions and
correction methods.
October 2003, where the scale parameter method led to significantly
larger TWS variation. To assesswhich techniquemight better character-
ize the true TWS in the region, the next section compares the results to
the output from the hydrological models.

5.1.2. GRACE versus PCR-GLOBWB
Because the TWS derived from the PCR-GLOBWB model covers all

storage components, that model was used in the first instance as an
additional comparison to the GRACE results. Fig. 5 shows differences
between TWS based on various GRACE solutions and TWS from PCR-
GLOBWB. The amplitude and phase were also estimated, based on
(Eqs. (B1)–(B3)). Although not uniformly, the GRACE solutions after
signal restoration (with R = 350 km) show a closer match to PCR-
GLOBWB, particularly after 2005, than the other solutions. Even though
PCR-GLOBWB was used in the scale parameter estimation (see
Section 4), the GRACE-based result after the scale parameter applied
was not closer to the PCR-GLOBWB result than the result from the signal
restoration method. Applying a uniform scale parameter to the entire
time-series likely led to the insufficient flexibility of that correction.

Additionally, the statistical values given in Table 1 demonstrate that
applying signal restoration with different R led to similar results. The
GRACE-based TWS after the signal restoration with R = 350 km was
selected for further analysis, as it matches best to PCR-GLOBWB in
terms of correlation coefficient and RMS difference.



Table 1
Correlation coefficient and RMS difference between GRACE-based TWS and TWS from PCR-GLOBWB. Annual amplitude and phase (estimated using Eqs. (B1–B3)) of TWS variations from
various GRACE solutions and hydrological models are also provided. The best performing correction method is highlighted in bold.

Correlation wrt PCR-GLOBWB RMS difference wrt PCR-GLOBWB (cm) Annual amplitude (cm EWH) Annual phase (month)

No correction GRACE (350 km) 0.91 7.84 13.6 ± 0.4 5.70 ± 0.05
Scale parameter GRACE (350 km) 0.91 7.60 20.7 ± 0.7 5.70 ± 0.05
Signal restoration GRACE (300 km) 0.85 8.90 22.4 ± 1.4 5.51 ± 0.10
Signal restoration GRACE (350 km) 0.92 7.43 21.6 ± 1.0 5.77 ± 0.06
Signal restoration GRACE (400 km) 0.90 7.64 20.7 ± 0.9 5.56 ± 0.07
Signal restoration GRACE (450 km) 0.90 7.48 20.2 ± 0.8 5.67 ± 0.07
Signal restoration GRACE (500 km) 0.89 8.13 20.9 ± 0.8 5.55 ± 0.08
Signal restoration GRACE (Tellus) 0.91 7.54 20.7 ± 0.9 5.52 ± 0.09
PCR-GLOBWB – – 21.5 ± 0.7 5.81 ± 0.06
PCR-GLOBWB (SM) – – 8.3 ± 0.2 4.90 ± 0.05
GLDAS-NOAH – – 14.6 ± 0.4 4.84 ± 0.08
ERA-Interim – – 7.5 ± 0.3 4.48 ± 0.08
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5.1.3. Comparison of hydrological models
The basin averaged TWS variations derived from GRACE solutions

and three hydrological models are shown in Fig. 6. As TWS variations
derived from GLDAS and ECMWF lack surface water and groundwater
contributions (so that the primary signal there is related to soilmoisture
(SM)), PCR-GLOBWB derived SM alone is also shown for a comparison
(defined as PCR-GLOBWB (SM)). From Fig. 6 and Table 1, one can see
that PCR-GLOBWB matches GRACE better than the other models, in
terms of amplitude, phase and RMS difference. Such a good agreement
justifies the primary usage of PCR-GLOBWB for the cross-comparison
of GRACE-based estimates presented in the previous section.

Furthermore, the similar performance of GLDAS, ERA-Interim, and
PCR-GLOBWB (SM) models is noteworthy, and suggests that the SM
component is well characterized by all three models. To assess the
role of the individual storages in TWS variations, the contribution per-
centage of the store (w%)) can be simply computed as follows:

w% ¼ 1
T

XT
t¼1

wt

TWSt

" #
� 100: ð2Þ

where wt and TWSt are the hydrological components and TWS
variations estimated at time t and T is the total time interval of the
time series considered. A comparison of PCR-GLOBWB (SM) with PCR-
GLOBWB shows that SM contributes with only 24.5% to the TWS varia-
tion averaged over the entire Tonlé Sap basin (see Fig. 6), while the
groundwater storage (GWS) is the major contributor (71.1%). The
remaining contribution is mostly provided by surface water (including
reservoir, lake, irrigation paddy storages, and river channel storages):
approximately 4.4%. Interception storage variation contributes
b0.001%. Note that the percentage values were computed based on
the entire time series. A phase lag of approximately one month is ob-
served between TWS and SM. This phase difference is explained mainly
Fig. 5. Absolute value of the root-square difference between TWS based on various GRACE

solutions and TWS fromPCR-GLOBWB (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGRACE−PCRGLOBWBÞ2

q
). A value closer to zero

indicates a closer match to the PCR-GLOBWB.
by the GWS component: it takes water several weeks to transfer from
upper to lower layers (e.g., from surface to GWS).

Considering only the positive peak of every year, the lowest peak in
theGRACE-derived TWS variations is detected in October 2010: 12.6 cm
EWH. This peak is 49% lower than themean peak value (computed from
all the peaks between 2002 and 2014). The second lowest peak is
observed in October 2012: 44% lower than the mean peak value.
These features are also seen in the PCR-GLOBWB results. Additionally,
the greatest flood event was seen as the highest TWS peak observed
in October 2011 (by both GRACE and PCR-GLOBWB), quantified as
approximately 42 cm EWH, which is 40% higher than the mean peak
value. The second and the third largest flood events are observed in Oc-
tober 2013 as approximately 36 cm EWH (~34% higher than the mean
peak) and October 2009 as approximately 33 cm EWH (~31% higher),
respectively. The TWS variations constructed using only the SM compo-
nent show much lower variations in the peak value, approximately
10 cm EWH. The reason is that the SM storage is limited by a specific
field capacity with a particular maximum value, and therefore the
similar peak value (corresponding to the field capacity) is observed in
both normal and flood years. This suggests that the inter-annual TWS
variability in the Tonlé Sap basin is driven by the GWS component and
explains the relatively low peak values of GLDAS and ERA-Interim
models in that area.

5.2. Precipitation

Monthly total precipitation averaged over the Tonlé Sap basin was
computed (Fig. 7) for a comparison with the estimated TWS variations.
In addition, the seasonal precipitation was computed by accumulating
the monthly data over 2 periods per year, May – October (monsoon
season) and November – April (dry season). The pattern of annual
Fig. 6. TWS averaged over Tonlé Sap basin derived from GRACE solutions (with signal
restoration applied), and hydrological models. PCR-GLOBWB includes soil moisture,
groundwater, and surface water components. GLDAS-NOAH includes soil moisture and
canopy water storage components. Only soil moisture component is covered by ERA-
Interim and PCR-GLOBWB (SM).



Fig. 7. Monthly and seasonal total precipitation over the Tonlé Sap basin derived from
TRMM 3B43. Seasonal precipitation was computed by accumulating the monthly data in
2 periods per year, May – October and November – April. The mean value of a specific
month is shown in the inset figure.
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precipitation variations slightly changed after 2009 and, as seen in 2010,
2012 and 2014, a shortage of precipitation during the monsoon period
was responsible for the low TWS signatures seen in the GRACE TWS es-
timates. The largest amount of precipitation was recorded in 2011,
when precipitation in all themonths of themonsoon period was higher
than the average. This was likely the reason for the greatest TWS ob-
served in 2011 (see Fig. 6).
5.3. Inundated area variations

To observe variations of the inundated area, the monthly averaged
NDWI values calculated from MYD09A1 data were analyzed (Fig. 8).
Large flood extents are seen in October 2011 and October 2013. A limit-
ed inundated area is observed in October 2003, October 2012, and par-
ticularly in October 2010, where the average NDWI falls below 0.3. To
estimate the inundated area, the positive NDWI pixels inside the maxi-
mum flood extent area (defined as a gray shaded area in Fig. 8 (n))were
counted. The maximum flood extent polygon (outermost blue bound-
ary line) was drawn based on the fact that the NDWI outside the poly-
gon (between July 2002 and October 2014) always has zero or
negative values. Based on the resolution of the surface reflectance
data, each positive NDWI pixel was counted as 0.25 km2.

In contrast to the small proportion computed over the entire basin,
the surface water estimated from PCR-GLOBWB contributes approxi-
mately 61.3% to the TWS variation averaged inside the Tonlé Sap flood-
plain. GWS is the second contributor (35.3%) while SM contributes only
3.4%. As the surface water is the major contributor, it is reasonable to
represent the TWS variations in terms of inundated area variations.
Therefore, the average TWS variation inside the Tonlé Sap floodplain
(the shaded polygon in Fig. 8 (n))was computed fromGRACEdata to in-
vestigate whether it has the same temporal pattern as MODIS-derived
inundated area variations. The number of TWS pixels was 7 inside the
floodplain, compared to 28 over the entire basin.

The inundated area variations and TWSvariations over the Tonlé Sap
floodplain correspond well to each other, with a correlation coefficient
of 0.81 (Fig. 9). Note that the area within the maximum flood extent
area (see Fig. 8 (n)) is only 21,300 km2 (equal to a linear resolution of
~146 km), which is 3.8 times smaller than the total area of the Tonlé
Sap basin. Due to a limited GRACE spatial resolution, the GRACE-based
estimates of TWS inside the floodplain area is close to the TWS esti-
mates over the basin (see also Fig. 6). Therefore, even though the
GRACE TWS inside the floodplain area was used in this section for the
sake of consistency with the inundated area, the GRACE TWS estimate
is rather a basin average signal and not a signal inside the floodplain
only. On the other hand, a high correlation between GRACE TWS esti-
mates and MODIS inundation area estimates implies a strong spatial
correlation of mass re-distribution processes in the area, let the TWS
inside the floodplain area and over the basin be driven by different
hydrological processes, as described by PCR-GLOBWB.

From Fig. 9, the phase difference between the two time series is only
0.13 months, or approximately 4 days. The phase shift is likely due to
the different data interval used to calculate the monthly average of the
TWS and the inundated area variations. The mean peak inundated
area, calculated by averaging all yearly peak values between September
2002 and September 2014, is 3436 km2. The lowest peak inundated area
and lowest average TWS peak are observed in October 2010. The inun-
dated area in that month was 1342 km2, i.e., 2.6 times less than the
mean value. The largest inundated areas of 6561 km2.

(91% above the mean peak value) and 5710 km2 (66% above) are
seen in October 2011 and 2013, respectively. The similarity of the inun-
dated area variations and the GRACE-derived TWS variations is also
seen in the late 2003 monsoon period. Interestingly, in line with the
small inundated area in late 2003, GRACE also observed the low TWS
at the same period. This is in agreement with Kummu et al. (2014),
who showed that in 2003 the Tonlé Sap Lake received the smallest
amount of rainfall (69.1 km3/year; measured at Cambodian weather
stations) since 1999. Remarkably, the aforementioned feature is not
present in PCR-GLOBWB, GRACE data with the scale parameter correc-
tion, and the global precipitation data (see Fig. 9). According to
Kummu et al. (2014), it is likely that the precipitation in the global
dataset is overestimated during the late 2003 monsoon period. As
PCR-GLOBWB was forced by this dataset, PCR-GLOBWB likely
overestimated TWS in this period. As far as the scale-corrected GRACE
data are concerned, it is likely that the artifact in 2003 is caused by ap-
plying a uniform scale parameter to the entire time-series.

Next, a quantitative relationship between the inundated area and
the TWS variation is investigated. The scatter plot of these two quanti-
ties shows a non-linear behavior (Fig. 10). A different slope is seen be-
tween, e.g., points (a) to (b) and points (c) to (d), which is
presumably due to the topography of the inundation area.Water is first-
ly accumulated inside the deeper inundation bank (e.g., between points
(a) and (c)), and therefore a large rise in TWS is not accompanied by a
significant increase in inundated area. During the wet season, when
the deeper inundation bank is filled, water forms a shallow layer over
a large inundation area, and even a small change in TWS can lead to a
large variation of the inundated area (e.g., between points (c) and
(d)). From Fig. 10, a relationship between the inundated area and the
TWSvariation can be established, e.g., using a simple polynomial regres-
sion. It is found that the residual (between the fit and the target) was
further reducedwhen the annual variation termwas also used in the re-
gression equation. The equation used to relate the inundated area to the
TWS variation in this study was ultimately defined as

y ¼ a0 þ a1xþ a2 exp bð Þ þ a3 cos ωtð Þ þ a4 sin ωtð Þ
z}|{annual variation

; ð3Þ

b ¼ −x

1000 km2 ð4Þ

where y is a vector containing the TWS variations (m) derived from
GRACE, and x is a vector containing the inundated area (km2) estimates
derived from NDWI. The fourth and fifth terms represent annual varia-
tions, where t is the observation time, and ω=2π/T with T the annual
period. Using least-squares adjustment, we estimated the coefficients
in Eq. (3) and their values are given in Table 2. Fig. 11(a) and Table 3
show a good agreement between the TWS variations estimated on the
basis of the MODIS-derived inundated area and the GRACE-based
ones, with a correlation coefficient of 0.92 and a RMS difference of
7.65 cm EWH, when the annual variation term is included. The correla-
tion coefficient reduces to 0.88 and the RMS difference increases by 14%
when the annual variation term is not included.

The need of annual terms is explained by the presence of the station-
ary annual signal from the soil moisture component (see Fig. 6). This



Fig. 8.Monthly mean NDWI [−] of October between 2002 and 2014. Zero and negative values are excluded. Themaximum flood extent is defined by the blue polygon. For the inundated
area calculation, only the NDWI values inside the gray shade area (see (n)) are used.
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suggests that in order to ensure the consistency of results with the TWS
signal properties, the annual variation should be included in the adjust-
ment. To support our interpretation, the annual variation terms in
Eq. (3) are replaced by the soil moisture signal from PCR-GLOBWB:

y ¼ a0 þ a1xþ a2 exp bð Þ þ a5SM: ð5Þ

where SM is the soil moisture component (m). The coefficients estimat-
ed from Eq. (5) are also given in Table 2. Again, good agreement
between the GRACE-based and MODIS-based values is observed with
a similar correlation and RMSE values as obtained based on Eq. (3)
(see Table 3). Importantly, the restoration of the annual variation
(either from the mathematical fit or from SM component) is necessary
to increase the accuracy of the adjustment.

The analysis above was based on the monthly data. Further investi-
gation was conducted to determine whether the same relationship
could be applied with a higher temporal sampling. The 8-day MODIS-
derived inundated areas were firstly converted to TWS variations
(using Eq. (3) with the same coefficients) and then averaged over
monthly intervals (Fig. 11(b)). The TWS variations estimated this way
are again compared to GRACE-based TWS variations (Fig. 11(b) and
Table 3). For completeness, the adjustment based on Eq. (5) was also
performed. The obtained correlations and RMS differences are very
similar to those based on the mean monthly inundated areas. Such a
good agreement is an indication that reflectance data can be employed



Fig. 9. Monthly inundated area and TWS variations (derived from GRACE solutions after
signal restoration applied, GRACE solutions after scale parameter method applied, and
PCR-GLOBWB) averaged inside the defined polygon (see Fig. 8 (n)). Total monthly
precipitation (TRMM) is also provided. Note that the zero positions are different in the
left and right vertical axes.

Table 2
Parameters estimated from least-squares adjustment using Eq. (3) – (5) with andwithout
including annual variation terms.

Without annual
variation terms

With annual
variation terms

With annual variation
terms from SM

a0 (m) 3.6 ± 0.7 −5.4 × 10−1 ± 6.4 × 10−1 1.2 ± 0.7
a1 (m/km2) 1.7 × 10−3

± 1.2 × 10−4
1.4 × 10−3 ± 1 × 10−4 1.4 × 10−3 ± 1 × 10−4

a2 (m) −30.6 ± 1.6 −16.2 ± 1.4 −20.6 ± 1.4
a3 (m) 0 −4.8 ± 0.9 0
a4 (m) 0 −9.2 ± 0.9 0
a5 (−) 0 0 0.9 ± 0.1
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to observe the sub-monthly (e.g., 8-day) TWS variations over the Tonlé
Sap basin, and potentially at spatial scales higher than that GRACE data
can reliably provide.

5.4. Inter-annual variations

To explore annual and inter-annual variations of hydrological activ-
ity over the Tonlé Sap basin, power spectrawere computed based on the
Morlet wavelet with the software provided by Torrence and Compo
(1998). The wavelets are used to estimate the dominant time-
frequencies (periods) for different time-series.We analyzed themonth-
ly averaged TWS estimates derived from GRACE and PCR-GLOBWB
(Fig. 12(a), (b)), the monthly averaged SM, GWS, and surface water
storage derived from PCR-GLOBWB (Fig. 12(c), (d), (e)), the monthly
inundated area (over the defined flood extent; Fig. 12(f)), as well as
themonthly averaged global precipitation (Fig. 12(g)). As the precipita-
tion is a derivative of water storage, we integrated precipitation over
time before computing its power spectrum to avoid mathematical arti-
facts caused by the spectral inconsistency. In all spectra, annual varia-
tions are clearly observed throughout the entire study interval.
Starting from October 2010, inter-annual variations with an approxi-
mately 2-year period are present in all spectra, except PCR-GLOBWB
(SM), for which the limitation of the SM storage capacity is likely the
cause. The SM storage cannot exceed a certain amount and therefore
only a regular seasonal variation was observed from the SM spectrum.
From Fig. 12(d), it is clear that GWS has the strongest 2-year cycle of
Fig. 10. Scatter plot between TWS variation and inundated area before (original, blue
crosses), and after applying a least-squares fit with (red dots) and without (green line)
an annual variation term. Insert image explains schematically the relationship between
the TWS and inundated area with respect to the topography of the inundation area.
the three considered PCR-GLOBWB components. In fact, the shown
power spectra of inter-annual variations reflect their relative ampli-
tudes (compared to the total signal). The amplitudes of GWS inter-
annual variations seem to be larger simply because that signal is cleaned
fromnearly all stationary soil moisture signal. Inter-annual variations of
open water can also be observed from the surface water storage (PCR-
GLOBWB (Surface), Fig. 12(e)) and the MODIS-derived inundated area
(Fig. 12(f)). It is noted that although the power spectrum of surface
water storage was computed over the entire basin, the spectral pattern
is identical when it was computed over the flood extent only (not
shown). This is explained by the fact that the surface water component
was only situated inside the floodplain area. Therefore, the comparison
between the spectra of PCR-GLOBWB (Surface) and the MODIS-derived
inundated area based on Fig. 12 is reasonable. Due to the coarse spatial
resolution of the remote sensing observations, similar spectra patterns
of TWS, SM, GWS, and TRMM as Fig. 12 were also observed even
when only the signal inside the floodplain was considered (not
shown). The inter-annual amplitude of the MODIS-derived inundated
area (Fig. 12(f)) is stronger than that of surface water storage
(Fig. 12(e)) and even of TWS (Fig. 12(a), (b)). This can be explained
by the non-linear relationship described earlier between the inundated
area and the TWS: small variations of TWS can cause large variations in
the inundated area during the flood period (see the discussion in
Fig. 11. TWS averaged over the maximum flood extent area (see Fig. 8 (n)) derived from
the mean monthly MODIS-derived inundated area (a), and from the 8-day mean MODIS-
derived inundated area (b). In (b), the monthly averaged was computed from the 8-day
result. GRACE-based TWS estimates are shown in both plots for a reference. The annual
variation terms are included based on Eq. (3).



Table 3
Correlation coefficient and RMS difference between theMODIS-derived inundation-based
TWS variations and the GRACE-based ones. In the former case, the estimation process
made use of the mean monthly inundated area and the mean 8-day inundation area.

Monthly MODIS-derived
inundation-based

Correlation
coefficient

RMS difference
(cm EWH)

No annual variation term 0.884 8.94
With annual variation term 0.921 7.65
With annual variation term from SM 0.908 7.98

8-Day MODIS-derived inundation-based
No annual variation term 0.884 8.95
With annual variation term 0.920 7.70
With annual variation term from SM 0.911 7.87
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Section 5.3). The 2011 and 2013 floods apparently led to stronger inter-
annual amplitude of the inundated area variations than of TWS
variations. Finally, it is not surprising that the TWS power spectra
resemble that of precipitation (Fig. 12(g)), since the latter is the source
of the observed TWS variations.

6. Discussion and conclusions

Satellite remote sensing data of several types as well as several
hydrological models were used to study the TWS variations and flood
signatures over the Tonlé Sap basin between 2002 and 2014.

Among the satellite observations, the major focus was on GRACE,
which observes the TWS variations directly. Applying the signal restora-
tion method to GRACE data improves the accuracy of the TWS esti-
mates. In contrast to the scale parameter method that applies the
same scale parameter to all monthly data, the signal restorationmethod
treats TWS differently for different months. This improves the ability of
GRACE-based estimates to capture the irregularly low and high
(e.g., flood) TWS signatures. Of course, it is worth keeping in mind
that only the signal over one particular basin was analyzed in this
Fig. 12. Power spectral distribution of (a) GRACE-derived TWS, (b) PCR-GLOBWB derived TWS
(e) PCR-GLOBWBderived surfacewater storage, (f)MODIS-derived inundated area, and (g) TRM
in the base-2 logarithmic scale.
study, and the performance of the signal restorationmethodmay be dif-
ferent in other regions. Furthermore, the optimal choice of implementa-
tion details (for example, Gaussian smoothing radius and stopping
criterion)may be different in other areas. Ideally, the choice of the stop-
ping criterion should be such that additional iterations do not signifi-
cantly affect the final result, so that the total number of iterations can
be very large. However, in practice, each iteration introduces an addi-
tional error, e.g., due to the Gibbs phenomenon (Swenson & Wahr,
2002) or the presence of North-South stripes in the filtered reference
TWS. Therefore, the iterations should be stopped before the errors be-
come too large. Further sensitivity studies on the impact of implementa-
tion details are recommended to facilitate the use of the signal
restoration method in various regions.

Using observations frommore than one independent sourcewas nec-
essary to interpret and validate the GRACE-based TWS estimations. Due
to the absence of several important components (in particular, ground-
water) in some hydrological models, a mismatch in amplitude and
phasewas observed compared to GRACE. The PCR-GLOBWBhydrological
model, on the other hand, covers all the major contributors to TWS (in-
cluding groundwater and surface water), allowing the results to be
directly compared to GRACE. Furthermore, usage of the PCR-GLOBWB
model allows the contributions of the different storage components to
be quantified, yielding an improved understanding of their dynamics.
Irregular precipitation variations between 2010 and 2014 observed
from TRMM verify the low and high TWS variation in the same period.

The inter-annual TWS variations between 2010 and 2014were driv-
en by the variability of the precipitation seasonal amplitude that began
from 2009. The inter-annual variationsweremainly present in the GWS
and surface water storage components. The SM component lacks those
variations due to its limited storage capacity. Although the 2010–2014
inter-annual patterns were clearly visible, it is difficult to verify their
long-term continuity due to the limited understanding of the driving
mechanisms. Longer time series are needed for better understanding
of the phenomenon.
, (c) PCR-GLOBWB derived soil moisture, (d) PCR-GLOBWB derived groundwater storage,
Mmonthly precipitation (integrated over study period). The power spectra are presented
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It was shown that the inundated area variations derived from sur-
face reflectance observations can also provide valuable information for
GRACE data validation. It was shown for the first time that the reflec-
tance data can be successfully used to estimate the total TWS variations.
To that end, an empirical non-linear relationship between the inundat-
ed area and GRACE-based TWS variations was established for the Tonlé
Sap basin. The non-linear relationship constructed can also be used to
explain the topography of the inundation area. The relationship reveals
that only small change of the TWS can lead to a significant variation of
the inundated area in the wet season. It is also found that including
the annual signal is necessary in the adjustment process in order to re-
duce the RMS values. The source of the annual variation is the soil mois-
ture component, which does not correlate with the inundation area
variation signal. Further analysis showed a good agreement between
the 8-dayMODIS-derived TWS variations averaged over monthly inter-
vals and the GRACE TWS variations. This indicates that surface reflec-
tance data can also be used to estimate TWS at sub-monthly time
scales, provided that monthly GRACE-based TWS variations are used
as a “training” phase. It is likely that the approach developed would
have similar applications to other areas that experience regular large-
scale inundation where NDWI has strong correlation with TWS. More
case studies conducted over other regions are needed to confirm the
performance of the approach.

Although this study made use of the state-of-the-art satellite data,
higher accuracy of the data is still welcome in order to achieve more
accurate descriptions of flood events. This might be possible if data
from new satellite missions are used that are already operational or
will become operational in the near future. For example, the Sentinel-
2 mission (Drusch et al., 2012) will provide surface reflectance data
with a temporal resolution of 5 days and a spatial resolution of 60 m
or higher (Sentinel-2 A was launched in June 2015; Sentinel-2B is to
be launched in the middle of 2016). The Global Precipitation Measure-
ment mission (GPM; Hou et al., 2014) has provided global near real-
time rainfall data since March 2014 with a spatial resolution of approx-
imately 10 km. GPM data can be used to force the next version of PCR-
GLOBWB model, which will provide global near real-time TWS
estimates with a similar spatial resolution (Sutanudjaja et al., in
preparation). Additionally, the variation of the Tonlé Sap Lake level
could be measured to a very high accuracy using future altimetry satel-
lite observations, e.g., Sentinel-3 (Donlon et al., 2012), ICESat-2
(Abdalati et al., 2010) and SWOT (Durand et al., 2010). Finally, the
GRACE Follow-On mission (Flechtner, Morton, Watkins, & Webb,
2014; launch scheduled in August 2017) is expected to continue
delivering monthly gravity field products well into the next decade. By
utilizing these state-of-the-art satellite observations and hydrological
models, the monitoring of flood events and their impact will continue
to improve.
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Appendix A. A PCR-GLOBWB description

The state-of-the-art global hydrological model PCR-GLOBWB (van
Beek, 2008; van Beek & Bierkens, 2009; van Beek et al., 2011;
Sutanudjaja et al., 2014; Sutanudjaja et al., in preparation) basically sim-
ulates spatial and temporal continuous fields of fluxes and storages in
various water storage components (primarily, snow, soil moisture, sur-
face water and groundwater) at a typical spatial resolution of 30 arc
minutes (approximately 50 km at the equator). In brief, for each grid
cell and for each daily time step, the model computes the storages of
two vertically stacked soil layers and an underlying groundwater store
based on water balance equation. Above the surface, the model also in-
cludes interception and snow storages. For each cell, the model com-
putes the vertical water exchanges between the soil layers and
between the top layer and the atmosphere, i.e., rainfall and snowmelt,
percolation and capillary rise, as well as evaporation and transpiration.
The groundwater store underlies the soil and is fed by net groundwater
recharge and exempt from direct influence of evaporation and transpi-
ration fluxes. However, capillary rise from the groundwater store can
occur depending on the simulated groundwater storage, surface eleva-
tion, and sustain soil moisture. Fluxes are simulated under various
land cover types by considering sub-grid variations in topography, veg-
etation phenology, and soil properties. Themodel includes a physically-
based scheme for infiltration and runoff, resulting in direct runoff, inter-
flow, as well as groundwater baseflow and recharge. River discharge is
calculated by accumulating and routing the specific runoff along the
drainage network. In this study, the daily precipitation from the Tropical
RainfallMeasuringMission (TRMM) 3B42 V7 (Huffman et al., 2007), the
daily mean 2 m air temperature from ERA-Interim (Dee et al., 2011),
and the daily reference potential evapotranspiration calculated based
on Hamon method (Lu, Sun, McNulty, & Amatya, 2005) were used to
force the model.

Appendix B. Estimation of annual amplitude and phase

The TWS time series are represented by

L ¼ f 0 þ f 1t þ f 2 sin ωtð Þ þ f 3 cos ωtð Þ þ f 4 sin 2ωtð Þ þ f 5 cos 2ωtð Þ; ðB1Þ

where L is the vector containing monthly TWS estimates, t is the obser-
vation time, and ω=2π/T with T the annual period. The coefficients
f0 ,… , f5 are estimated using least-squares adjustment. The annual am-
plitude (A) is estimated as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 22 þ f 23

q
; ðB2Þ

and the phase (φ) is estimated as

φ ¼ arctan2 f 2; f 3ð Þ: ðB3Þ

Note that the function arctan2 is realized in many high-level
computer languages (e.g., function atan2 in Matlab). The function
always returns a value in the range (−π,π].
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