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The Pyrenees at the Iberia–Europe collision zone contain sediments showing Albian–Cenomanian high-
temperature metamorphism, and coeval alkaline magmatic rocks. Stemming from different views on Jurassic–
Cretaceous Iberian microplate kinematics, two schools of thought exist on the trigger of this thermal pulse:
one invoking hyperextension of the Iberian and Eurasianmargins, the other suggesting slab break-off. Competing
scenarios for Mesozoic Iberianmotion compatible with Pyrenean geology, comprise (1) transtensional eastward
motion of Iberia versus Eurasia, or (2) strike-slip motion followed by orthogonal extension, both favoring
hyperextension-related heating, and (3) scissor-style opening of the Bay of Biscay coupled with subduction in
the Pyrenean realm, favoring the slab break-off hypothesis. We test these kinematic scenarios for Iberia against
a newly compiled paleomagnetic dataset and conclude that the scissor-type scenario is the only one consistent
with a well-defined ~35° counterclockwise rotation of Iberia during the Early Aptian. We proceed to show that
when taking absolute plate motions into account, Aptian oceanic subduction in the Pyrenees followed by Late
Aptian–Early Albian slab break-off should leave a slab remnant in the present-day mid-mantle below NW
Africa. Mantle tomography shows the Reggane anomaly that matches the predicted position and dimension
of such a slab remnant between 1900 and 1500 km depth below southern Algeria. Mantle tomography is
therefore consistent with the scissor-type opening of the Bay of Biscay coupled with subduction in the Pyrenean
realm. Slab break-off may thus explain high-temperature metamorphism and alkaline magmatism during the
Albian–Cenomanian in the Pyrenees, whereas hyperextension that exhumed Pyrenean mantle bodies occurred
much earlier, in the Jurassic.
© 2016 The Authors. Published by Elsevier B.V. on behalf of International Association for Gondwana Research.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The Pyrenees of southwestern Europe formed as a result of conver-
gence and crustal thickening between Iberia and Eurasia since at least
the LateMesozoic (80Ma). A conspicuous phenomenon in the Pyrenees
is the occurrence in the North Pyrenean Zone adjacent to the North
Pyrenean Fault (Fig. 1) of low-pressure, high-temperature meta-
sedimentary and alkaline igneous rocks with ages of ~110–90 Ma
(Ubide et al., 2014; Clerc et al., 2015). The North Pyrenean Zone is also
host to numerous bodies of sub-continental mantle rocks (Bodinier
et al., 1988; Lagabrielle et al., 2010; Vauchez et al., 2013). In recent
years, a fierce debate has started on the interpretation and importance
of these rocks for fundamental geodynamic processes. One school of
thought proposed that the HT–LPmetamorphism is intrinsically related
to the exhumation of the sub-continental mantle bodies, and that
it serves as example of the temperature evolution associated with
B.V. on behalf of International Asso
hyperextension at continental margins (Lagabrielle et al., 2010; Clerc
and Lagabrielle, 2014; Clerc et al., 2015). A second school of thought,
however, propounded that the metamorphism reflects the thermal re-
sponse in the crust to the detachment of a subducted slab below the
proto-Pyrenees (Vissers and Meijer, 2012a) and that the exhumation
of the mantle peridotites is considerably older (Late Jurassic) than the
HT metamorphism and associated magmatism.

These opposing interpretations stem from a long-lasting discussion
on the kinematic reconstruction of Iberia relative to Eurasia, originating
from the interpretation of marinemagnetic anomaly data in the Central
Atlantic Ocean and the Bay of Biscay. The Bay of Biscay contains a former
mid-ocean ridge that separated Iberia from Eurasia. A reconstruction for
M0 times (~126 Ma) by Olivet (1996), based on the Newfoundland
Gibraltar Fracture Zone (NGFZ) in combination with the broad J anom-
aly on each side of the Central Atlantic Ocean and on the geology-based
assumption of dominant strike-slip motion in the Pyrenean domain
prior to chron A33 (~79Ma), implied a relative rotation of Iberia versus
Eurasia of approximately 25°. Re-interpretation of the picks allied with
the J anomaly and analysis of the magnetic lineations in the Bay of
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Biscay by Sibuet et al. (2004) suggested an angle of ~35° instead,where-
as anomalies interpreted as A34 (~83 Ma), close to the paleo-ridge, are
nearly parallel. Scenarios based on these anomalies (Srivastava et al.,
1990, 2000; Sibuet et al., 2004; Vissers and Meijer, 2012a) defined an
Iberia–Eurasia Euler pole in the east of the Bay, west of the present-
day Pyrenees. The35° of rotation between 125 and 83Ma inevitably pre-
dicts up to ~500 km of oceanic lithosphere subduction in the Pyrenean
realm prior to the onset of Iberia–Eurasia collision (Sibuet et al., 2004;
Vissers andMeijer, 2012a). A further refinement of the timing of this ro-
tation came from a paleomagnetic study by Gong et al. (2008), who sug-
gested that most of the Iberian rotation occurred during the Aptian
(~126–113 Ma).

The validity of the interpretation of the M0 anomaly, particularly
in the Central Atlantic Ocean, is not beyond controversy, however.
Bronner et al. (2011) argued that this anomaly does not reflect early
sea floor spreading, but is located in mid-Cretaceous magmatic rocks
that covered exhumed mantle rocks of the hyperextended Iberian and
Newfoundland margins. In addition, tomographic models of themantle
under the Pyrenees (e.g.Souriau et al., 2008, Chevrot et al., 2014) show
no trace of a subducted slab, which led Bronner et al. (2012) and Clerc
et al. (2015) to argue that no Cretaceous subduction could have oc-
curred in the Pyrenean realm. This brought the reconstruction of Iberian
plate kinematics in an impasse.
Alternative reconstructions have attempted to estimate the kine-
matic history of Iberia using geological interpretation of the extension
and contraction history recorded in the Pyrenees (Jammes et al., 2009;
Mouthereau et al., 2014). These reconstructions also suggested a rela-
tively small rotation of ~25° during the Early Cretaceous and involved
extension across the Pyrenean realm throughout the Aptian–Albian.
But because these reconstructions are based on geological interpreta-
tion of the Pyrenees, they cannot serve as an independent platform to
study the origin of HT–LP metamorphism, alkaline magmatism, and
mantle exhumation in the North Pyrenean zone.

In this paper, we aim to break through the current impasse on the
analysis of Iberian plate kinematics and the North Pyrenean geology in
two ways. First, we test the predictions of existing reconstructions
for the amount and timing of rotation of Iberia against an extensive
paleomagnetic database obtained from Mesozoic and Cenozoic rocks
of stable Iberia. Secondly, we test whether P- and S-wave seismic to-
mographic images of the mantle indeed falsify the hypothesis of sub-
duction in the Pyrenees. To this end, we first place the kinematic
reconstruction of Iberia and the Pyrenean domain in its relevant abso-
lute plate motion context and explore mantle structure at a depth
range and location appropriate for a mid-Cretaceous subduction zone
using global reconstructions of slab sinking rates (Van der Meer
et al., 2010).

Image of Fig. 1
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Below we first summarize geological data from the Pyrenees,
describe the competing plate kinematic scenarios for Iberia in the Late
Mesozoic, and show how these scenarios compare with magnetic line-
ations from the Central Atlantic Ocean and Bay of Biscay. We then pro-
ceed to test these scenarios against the paleomagnetic database and P-
and S-wave mantle tomography.

2. Previous work

2.1. Main features of the Pyrenean geology

The Pyrenees are an ~E–W trending mountain belt, about 450 km
long and 125 km wide (Fig. 1), formed in Late Cretaceous through
Paleogene times in response to convergence between NE Iberia and
Eurasia. Structural and deep seismic studies (ECORS Pyrenees) have
shown that the orogen is an asymmetric, doubly-vergent wedge that
absorbed about 165 km of shortening, with Iberian continental litho-
sphere underthrust at least about 80 km beneath Europe (Roure et al.,
1989; Beaumont et al., 2000). At shallow crustal levels, the European
continental margin preserved in the North Pyrenean Zone (NPZ) was
a backthrust onto the Aquitaine foreland basin to the north, while
Variscan basement units of the Axial Zone and their sedimentary
cover of the Iberian margin found in the South Pyrenean Zone (SPZ)
were thrust southward onto the Ebro foreland basin (Fig. 1). The NPZ
and Axial Zone are separated by the North Pyrenean Fault (NPF),
marked by isolated bodies of Variscan basement allied with extensional
structures, mantle peridotite bodies, alkaline gabbros and volcanics and,
mainly in the eastern part of the belt, metamorphosed Mesozoic rocks.
The pertinent main features of the geology of the NPZ are as follows.

Mesozoic facies distributions in the NPZ and now inverted normal
faults adjacent to Variscan basement blocks point to the development
of 10 km scale pull-apart basins spatially associated with the NPF
(e.g., Peybernès and Souquet, 1984). Middle Albian marl–turbidite
sedimentation occurred in half grabens, only a fewkmwide, interpreted
in a context of sinistral transtensile deformation, although the data do
not allow discrimination between a purely tensional or a transtensional
tectonic regime (Lagabrielle et al., 2010).

Upper mantle peridotites, partly serpentinized, occur amidst low-
grade Triassic–Jurassic sediments in the western part of the NPZ,
while in the east they are bounded by amphibolite facies Aptian–Albian
carbonates (Avé Lallemant, 1967). 40Ar/39Ar dating of amphiboles from
the Lherz and Caussou peridotites yield ages of 108–103 Ma, while
Sm–Nd internal isochrons on garnet–amphibole pyroxenites from
Lherz yield ages of 104 ± 5 Ma (Henry et al., 1998). The ages have
been interpreted by these authors to indicate rapid cooling of the ultra-
mafics during mantle exhumation to crustal levels. However, Sm–Nd
linear arrays defined by whole rock, clinopyroxene and garnet analyses
from layered anhydrous garnet pyroxenites yielded Jurassic Nd ages
of 153 ± 3 Ma (Prades), 177 ± 3 Ma (Moncaup) and 138 ± 4 Ma
(Moncaut), respectively, ascribed by Henry et al. (1998) to incomplete
Nd rehomogenization during fast ascent of the mantle rocks.

Albian–Cenomanian alkaline magmatism in the NPZ occurred as
submarine basaltic to trachytic flows, and as sills, dikes and gabbro
bodies. Micropaleontological data from intervening sediments con-
strain volcanic activity to the (upper) Albian to Turonian (Dubois and
Seguin, 1978). This is consistent with K–Ar age determinations by
Montigny et al. (1986) who recognized three magmatic stages, a first
one mainly in the central Pyrenees from 113 to 105 Ma, a second
stage from 100 to 90 Ma along the entire NPZ, and a third one limited
to the westernmost Pyrenees from 90 to 85 Ma. A recent re-evaluation
of these ages using 40Ar/39Ar geochronology confirmed this age range
(Ubide et al., 2014).

TheMesozoic sediments are metamorphosed, notably in the eastern
part of the chain, at temperatures of 550°–650 °C and pressures of
3–4 kbar (Golberg and Leyreloup, 1990). K/Ar geochronology of the
metamorphism yielded ages of 95 to 85 Ma, with a climax near 95 Ma
in the eastern part of the NPZ (Golberg et al., 1986; Montigny et al.,
1986), while recent 40Ar/39Ar dating by Clerc et al. (2015) yielded ages
of 110 to 90 Ma. In addition, reset Variscan basement rocks also yielded
Ar/Ar ages in the range 110–100 Ma (Clerc et al., 2015, and references
therein). High-grade Mesozoic rocks adjacent to the NPF are foliated
and locally show sub-horizontal synmetamorphic stretching lineations
and near-vertical fold axes of small-scale folds. Kinematic data, though
limited, are consistent with transcurrent sinistral motions along the
NPF (Choukroune, 1976). Montigny et al. (1986) and Golberg and
Leyreloup (1990) argued that this deformation associated with the
LP/HT metamorphism cannot be ascribed to the Alpine collision, and
was instead related to a pre-collisional extensional stage.

2.2. Current scenarios for Mesozoic rifting in the Pyrenean realm

The Iberian Peninsula in SW Europe is currently part of the Eurasian
plate and was part of Pangea in Paleozoic time (e.g., Ziegler, 1982),
but has a Late Jurassic to Paleogene history as a separate microplate
(e.g.Carey, 1958; Van der Voo, 1969; Le Pichon and Sibuet, 1971).
During its history as an individual plate, Iberia was separated by an oce-
anic ridge from North America in the west, by a transform-ridge system
from Africa/Adria in the south and east, and by a ridge from western
Eurasia in the Bay of Biscay.

There are at least three competing scenarios describing the rifting of
Iberia from Eurasia (Fig. 2). Left-lateral strike-slip opening of the Bay of
Biscay (Fig. 2A) accommodated by the NPF wasmainly inspired by geo-
logical observations in the Pyrenees (Le Pichon and Sibuet, 1971; Olivet,
1996) interpreted to reflect Aptian–Albian transtensional rifting in the
Pyrenean domain. Scissor-type opening of the Bay of Biscay (Fig. 2B),
first suggested by Carey (1958), has been documented in studies using
magnetic lineations in the Atlantic and Bay of Biscay (Srivastava
et al., 1990, 2000; Sibuet et al., 2004; Vissers and Meijer, 2012a).
These studies indicate a N–S-directed rifting stage between anomalies
M25 (Kimmeridgian, ~56Ma) andM0 (base Aptian, 126Ma), before ro-
tation of Iberia between M0 and anomaly A34 (Campanian, 83 Ma).
Based on recent geological studies in the NPZ and seismic studies of
the eastern Bay of Biscay, a third scenario (Fig. 2C) has been proposed in-
volving left-lateralmotion of Iberia during the Jurassic–Early Cretaceous,
followed by orthogonal (NE–SW) extension in Aptian–Albian times
(Jammes et al., 2009). In addition, the extensional stage was inferred
to have led to a hyperextendedmargin geometry, withmantle exhuma-
tion in a narrow rift (Tugend et al., 2014).

These scenarios vary both in nature and timing of extension, themost
notorious difference being the Aptian–Albian convergence in the Pyrene-
an domain of more than 300 km at the location of the ECORS section
(Fig. 1), and up to 500 km in the easternmost Pyrenees, predicted by
the scissor-type opening of the Bay (Fig. 2B), at times that the other
two models argue for either transtensional and/or orthogonal continen-
tal stretching. According to the scissor-type scenario, rifting occurred ear-
lier, from the Late Jurassic until the Aptian, hence the hyperextended
margin architecture in essence developed prior to the Aptian, while the
amount of mantle exhumation and perhaps ocean spreading was signif-
icantly larger than in the purely extensional models.

2.3. Kinematic reconstructions of Iberia and the marine magnetic anomaly
record

Even though magnetic lineations in the ocean floor are clearly inde-
pendent from any interpretation based on geology, plate kinematic
studies based on magnetic lineations have as yet not convincingly
solved the kinematics of the Iberian microplate during the Mesozoic.
At this stage we note that the basic assumption underlying plate kine-
matic reconstructions using ocean floor anomalies is that they represent
genuine isochrons. This led Sibuet et al. (2004) to discard Olivet's
(1996) M0 reconstruction of Fig. 2A, because the marked mismatch of
the M0 anomalies in that reconstruction is inconsistent with the notion
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of these anomalies being isochrons. It is also this assumption that was
questioned first by Jammes et al. (2009), and addressed in more detail
by Bronner et al. (2011). The latter authors argued that in rifted settings
with low magma supply, the transition between continental and oce-
anic crust is wide, with a gradual change from continental crust via ex-
humed blocks of continental mantle to oceanic crust. While the timing
and location of continental breakup is commonly defined by the first
magnetic anomaly generated by magma erupted from the newly
formed mid-ocean ridge, they suggest that the J anomaly north of the
Newfoundland–Gibraltar Fracture Zone, conventionally thought to
have formed at chron M0 (Tucholke and Sibuet, 2007), instead repre-
sents a pulse of later magmatism – about 112 Ma ago – that may have
triggered continental breakup before seafloor spreading, hence that
the M0 anomaly cannot be interpreted as a genuine isochron. The sce-
nario proposed by Jammes et al. (2009) thus explicitly disregards the
M0 anomalies in the Atlantic Ocean and Bay of Biscay.

As noted in a comment by Tucholke and Sibuet (2012) to Bronner
et al. (2011), the magnetic model central to the Bronner et al. (2011)
study is plausible but leads to marked problems in terms of plate recon-
structions. They also note that while that magnetic model is plausible, it
is “no more so than models based on M-series geomagnetic reversal
data” such as proposed by Srivastava et al. (2000), Sibuet et al. (2004)
and Vissers and Meijer (2012a). In contrast, the scenarios of Olivet
(1996) and Jammes et al. (2009) are clearly inconsistent with the
ocean floor magnetic anomalies.

As matters stand, the current debate on the significance of the
magnetic lineations in the Central Atlantic Ocean and the Bay of Biscay
precludes a consensus on the kinematics of Iberia motion during the
Mesozoic, because the ocean floor anomalies are not accepted as a
valid independent criterion to either confirm or discard the different ki-
nematic scenarios. These scenarios, therefore, need to be tested against
other criteria, equally independent of geological interpretation of the
Pyrenees, such as onshore paleomagnetism and mantle structure.

3. Paleomagnetic constraints on Iberian rotation

3.1. Paleomagnetic database of Iberia since 200 Ma

Since the pioneering work of Van der Voo (1969) who concluded
~35° counterclockwise (ccw) rotation of Iberia sometime between the

Image of Fig. 2
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Late Triassic and Late Cretaceous, onshore paleomagnetic studies have
accumulated into a large dataset. To test whether the onshore paleo-
magnetic data are consistentwith the amount of Iberia–Eurasia rotation
predicted by the different kinematic models, we have compiled a data-
base of all paleomagnetic data collected from stable Iberia from rocks of
200Ma and younger (Fig. 3). This database, provided as Supplementary
information, was built in and can be uploaded in the online tool www.
paleomagnetism.org (Koymans et al., accepted pending revision). Each
entry in the database contains a reference to the published source, and
references are included in this paper.
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accepted pending revision), database provided in the supplementary information.
The database contains ~100 sites and was built according to the fol-
lowing selection criteria. Paleomagnetic data from rocks older than
Jurassic, as well as archeomagnetic data, were not included. Because
we aim to test the rotation of the Iberian continent,we have not included
paleomagnetic results from the Betic Cordillera or the Pyrenees where
rotations may stem from regional tectonics. One exception to this con-
cerns the paleomagnetic results of the Cretaceous of the Organyà
basin in the Southern Pyrenees of Gong et al. (2008), which were
collected from a coherent stratigraphy. Although this basin as a whole
may have undergone rotation during Cenozoic thrusting, the relative
rotations recorded within this stratigraphy can be used to obtain age
constraints on the rotation history, as proposed by Gong et al. (2008).
All directions are given in tectonic coordinates, i.e., corrected for bed-
ding tilt, andwere converted to normal polarity. In addition, we applied
and expand on quality criteria as detailed in Lippert et al. (2014): data
were excluded from sites that 1) are not used by the original authors
if a reason for exclusion is provided; (2) are characterized by fewer
than four samples; (3) were not analyzed using principle component
analysis (Kirschvink, 1980); (4) have site k-values (Fisher (1953) preci-
sion parameter) below 7; we have not a priori excluded data that fall
outside the A95 min/max reliability envelope of Deenen et al. (2011);
and (5) do not contain magnetizations of primary origin according to
the original authors. Lava sites were discarded if these (6) contained
directions of mixed polarity, as lava sites should be spot readings
that cannot record a reversal; (7) have k-values b50. Where lava sites
were reported, we combined these into one pole and discard sites that
(8) are beyond a 45° angular threshold, following Johnson et al. (2008).

Paleomagnetic data from sedimentary sites were included on a per
site level as reported by the original authors. If GPS coordinates of sites
were not provided, thesewere determinedwith the location information
provided in the original paper using Google Earth. Reported stratigraphic
ageswere converted to the latest timescale of Gradstein et al. (2012). The
paleomagnetic community does not normally publish their original data,
but provide only statistical descriptions of the data set. This is not prob-
lematic for lava sites, whereby acquisition of the natural remanent mag-
netization occurs geologically instantaneous upon lava cooling and the
recorded direction can be regarded as a spot reading of the paleomagnet-
ic field. For sediments or plutons, however, each sample can at first order
be considered as a spot reading (although for sediments, particularly
those with low sedimentation rates, some averaging of paleosecular var-
iation may occur within one sample). As pointed out by Deenen et al.
(2011), a better approach is then to always perform statistics on paleo-
magnetic directions instead of site averages, also to weigh larger over
smaller datasets. Except for the few sites where we had the original di-
rections at our disposal, we have therefore created parametrically sam-
pled data sets for each site. The average directions in the database are
based on these parametrically sampled data sets andmay slightly, but in-
significantly, differ from the published average directions. The predicted
declinations of each site are shown in Fig. 3A.

3.2. Testing Iberian reconstructions against paleomagnetic data

We now test whether the reconstructions of Vissers and Meijer
(2012a), Olivet (1996), and Jammes et al. (2009) successfully predict pa-
leomagnetic data from Iberia. The amount of rotation of Iberia in these
kinematic models was not based on paleomagnetic data, which can
therefore serve as an independent test. We note that the timing of Iberi-
an rotation in the model of Vissers and Meijer (2012a) was inspired by
paleomagnetic data of Gong et al. (2008), but the amount of rotation
was based onfitting theM0 anomalies on either side of the Bay of Biscay.

To test the kinematic reconstructions against the declinations mea-
sured in Iberia through time, we computed the declinations for Iberia
predicted by the Global Apparent Polar Wander Path (GAPWaP) of
Torsvik et al. (2012) for each of the kinematic models for Iberia. The
GAPWaP is based on a compilation of paleomagnetic data from all con-
tinents that were rotated into a South African frame of reference using a

http://www.paleomagnetism.org
http://www.paleomagnetism.org
Image of Fig. 3
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global plate reconstruction. The GAPWaP then constrains the position of
the South African reference plate by applying a 20Mamoving average to
the dataset, in 10Myr intervals. To arrive at paleomagnetic directions for
Iberia, the GAPWaP has to be rotated from South African to Iberian coor-
dinates using a SAF-Iberia Euler pole, in 10 Myr time steps. Vissers and
Meijer (2012a, 2012b) and Vissers et al. (2013), as well as Olivet
(1996) provided a set of Iberia–Eurasia Euler poles. The scenario pro-
posed by Jammes et al. (2009) did not provide Euler rotations for their re-
construction of Iberia, but we estimated poles from their cartoons, using
GPlates plate reconstruction software (Boyden et al., 2011).We integrat-
ed each of these reconstructions with the global plate reconstruction
using Euler poles for Eurasia–North America, North America–Northwest
Africa, and Northwest Africa–South Africa as detailed in Torsvik et al.
(2012). From this, we computed South Africa–Iberia Euler poles in
10 Myr time intervals, interpolating between poles given by, or sug-
gested by, the Iberian kinematic reconstructions, and used these to rotate
the GAPWaP in Iberian coordinates for each scenario. The predicted pa-
leomagnetic directions for Iberia in Fig. 3Awere then calculated for a co-
ordinate coinciding with Madrid (40.38°N, 3.72°W). The predicted
declinations for the kinematic models of Vissers and Meijer (2012a,
2012b), Olivet (1996) and Jammes et al. (2009) are shown in Fig. 3B, to-
gether with the paleomagnetic data measured for Iberia.

The threemodels do not showmajor differences in the last 100Myr,
and all predict themeasured paleomagnetic data well. Apart from a few
outliers, indicated in green in Fig. 3A–C, deviating by N45° from the
mean, Jurassic–Lower Cretaceous (200–135 Ma) declinations cluster
well around the Iberian declination predicted by Vissers and Meijer
(2012a, 2012b), but display a consistently higher counterclockwise ro-
tation than predicted by the models of Jammes et al. (2009) and Olivet
(1996). Upper Jurassic–Lower Cretaceous declinations (~155–135 Ma)
contain a ~30° variation, likely reflecting a component of local rota-
tions due to local tectonics along the southwest Iberian margin in the
Central Iberian ranges where most of these data were collected. The
paths predicted by Jammes et al. (2009) and Olivet (1996) coincide
with a few of these data, but 200–160 Ma declinations all display a
~15° higher counterclockwise rotation, as previously also pointed out
by Ruiz-Martinez et al. (2012).

All three kinematic models are unsuccessful in predicting the rate
at which the rotation of Iberia occurred. Paleomagnetic data, not only
from the South Pyrenean Organyà basin indicated in blue in Fig. 3, but
also from various localities in Portugal indicated in red (Fig. 3), suggest
that the rotation of Iberia occurred in the Early Aptian, even faster than
concluded by Gong et al. (2008). The timing of the Iberian rotation in
the model of Vissers and Meijer (2012a) during the Cretaceous Normal
Superchron (betweenM0andA34o, ~126–83Ma)was based on the sug-
gestion by Gong et al. (2008) that this occurred until the Albian–Aptian
boundary (113 Ma). We can obtain a much better fit with the presently
compiled data if we assume an end of rotation around 118 Ma instead
(Fig. 3C). The models of Olivet (1996) and Jammes et al. (2009) predict
a rotation rate that is significantly slower than shown by the data.

Based on this analysis, we conclude that (i) the paleomagnetic dec-
linations from Iberia require an amount of rotation that fits well with
the angle between the M0 anomalies on either side of the Bay of Biscay,
and that is considerably higher than that predicted by the fits of Jammes
et al. (2009) andOlivet (1996) and (ii) the rotation of Iberia occurred al-
most entirely in the Early Aptian (126–~118 Ma, Fig. 3C) and certainly
well before the onset of North Pyrenean high temperature metamor-
phism and alkaline magmatism.

4. Past subduction and present-day mantle structure

4.1. Approach: geological records, mantle structure, and absolute plate
motion

Jammes et al. (2009) and Olivet (1996) assumed that the rotation of
Iberia resulted from a (transtensional) strike-slip motion of Iberia along
the Armorican–South Pyreneanmargin. This, however, cannot generate
more than ~25° of rotation. More than 25° of rotation inevitably re-
quires that during Iberian rotation, there was convergence across the
Pyrenean plate boundary between Iberia and Eurasia. Sibuet et al.
(2004) were the first to realize the need for a subduction zone with
such high rotations and suggested that subduction occurred below the
present Ebro basin, placing the Pyrenean domain in an Aptian–Albian
back-arc setting to explain the Aptian–Albian extension inferred from
the Pyrenean geology. Later evidence that the Organyà basin, located
in the presumed back-arc of Sibuet et al. (2004), also experienced the
Iberian rotation led Vissers and Meijer (2012a) to suggest that subduc-
tion must have occurred below the Eurasian margin instead, and that
the North Pyrenean fault zone represents the suture. As emphasized
by Bronner et al. (2012) and later Clerc et al. (2015), two recent tomo-
graphic studies have shown that there is no evidence for the existence
of a subducted slab below the Pyrenean domain. According to Souriau
et al. (2008) no signature of anoceanic subducted slab could be detected
anywhere along the Pyrenean range, a result which in their view ruled
out the opening of a large oceanic basin before the Late Cretaceous
compression recorded in the geology of the Pyrenean fold–thrust belt.
Chevrot et al. (2014) arrived at the same conclusion, and noted that
the absence of a deep pronounced high-velocity anomaly in the upper
mantle and transition zone also rules out the presence of a detached
oceanic lithospheric slab beneath the Pyrenees and SW Eurasia.

Using the mantle structure below the Pyrenees to evaluate a Creta-
ceous subduction history assumes that southwestern Europe, Iberia,
and the Pyrenees have not moved relative to the mantle since the
Early Cretaceous. Motion of Iberia/Eurasia relative to the mantle,
however, could have laterally displaced the Pyrenean realm from any
sinking slab remnant after slab break-off. A clear example of such a
process was recently provided by Schellart and Spakman (2015).
They demonstrated that due to post-Eocene northward absolute
plate motion of Australia, a slab that detached in Eocene time along
the northern margin of Australia in Papua New Guinea is now
found at the top of the lower mantle below southern Australia. Sim-
ilar examples have been documented in the Caribbean region (Van
Benthem et al., 2013), in the Neotethyan realm between Arabia, India,
and Eurasia (Van der Voo et al., 1999; Hafkenscheid et al., 2006;
Replumaz et al., 2010; van Hinsbergen et al., 2012; Gaina et al., 2015),
and in the eastern Paleo-Pacific and western United States (Van der
Meer et al., 2010, 2012; Sigloch and Mihalynuk, 2013). Likewise, one
should take the absolute platemotions of Iberia and Eurasia into account
when assessing whether or not the mantle structure falsifies Pyrenean
subduction.

The hypothesis of an Aptian–Albian subduction–detachment pro-
cess, therefore, requires a more extensive test against mantle tomogra-
phy results. For this, two factors need to be taken into account, namely,
absolute plate motions, i.e., motions of the plates relative to themantle,
and sinking rates of detached slab fragments. These allow for predicting
the paleogeographic position of slab detachment and the approximate
mantle depth of the slab remnant in the present-daymantle, respective-
ly (Van der Meer et al., 2010).

Absolute plate motion models based on different approaches have
been put forward. The farther back in time, the less consistent these be-
come in their predictions (e.g., Williams et al., 2015). Moving hotspot
reference frames (O'Neill et al., 2005; Doubrovine et al., 2012) use
hotspot tracks, corrected for relative motions between the hotspot
sources, to infer absolute plate motions. These frames are less well
constrained in Cretaceous time, because fewer hotspot tracks are avail-
able. To go deeper into geologic time, paleomagnetic data have been
used, corrected for true polar wander, to infer past positions since
post-Middle Paleozoic time. These are cast in a mantle reference frame
by invoking the strong correlations of two large regions of anomalously
low seismic velocity atop the core–mantle boundary with the recon-
structed positions of past occurrences of large igneous provinces and
kimberlites (Torsvik et al., 2008).
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Alternatively, van der Meer et al. (2010) demonstrated a strong cor-
relation of paleosubduction zone configurations in plate reconstructions
with positive seismic anomalies in the lower mantle, which they as-
sumed to represent remnants of subduction. Their correlation is based
on identifying 28 lower mantle slab remnants and linking these to the
orogenic systems (not including the Pyrenees orogeny) from which
they likely detached at a given time interpreted from geological records.
Assuming on average vertical sinking of detached slabs, the study
by van der Meer et al. (2010) has resulted in a provisional set of longi-
tude corrections of the true polar wander-corrected reference frame
of Steinberger and Torsvik (2008), which can be translated to Euler
poles describing the motion of Africa in a ‘slab-fitted’ mantle reference
frame, or slab reference frame (Van der Meer et al., 2010). Furthermore,
as a spin-off result, van der Meer et al. (2010) obtained the first empir-
ical estimate of the average sinking rate of lower mantle slab fragments
of 12 ± 3 mm yr−1, i.e. 12 ± 3 km/Myr.

Williams et al. (2015) noted that hotspot reference frames prior to
70 Ma predict rapid, major motions of subduction zones relative to the
mantle. For the Aegean subduction zone, which was already active
in this period (van Hinsbergen et al., 2005), this would culminate
in N1000 km of westward motion of the trench relative to the Aegean
slab between 100 and 70 Ma, which we regard as unlikely. In the slab
reference frame, however, the Aegean slab is an anchor point to the
mantle. In our analysis of testing the Pyrenean subduction history
against mantle structure, we therefore use the slab reference frame of
van derMeer et al. (2010) as a basis for predicting the present-day loca-
tion of any Pyrenean slab remnant.

4.2. Mantle tomography as test for a detached Pyrenean slab: the Reggane
anomaly

We illustrate the absolute plate motion history of Africa in Fig. 4A as
a sequence, at 10 Myr intervals, of restored marker points representing
base Aptian 
M0 (126.1 Ma)

late Aptian 
(118 Ma)
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Fig. 4. Iberian plate kinematics viewed in a slab reference frame, and pertinent upper mantle to
ends and black marker at intersection with ECORS profile; R — Reggane anomaly, A— Algeria a
stored positions of Africa, Iberia and Europe for base Aptian (M0, 126.1 Ma) in blue, and Late A
marker point at Ceuta inmantle reference frame. Red star marks estimated location of slabmidp
around 110 Ma. Note that the latter location is shifted due to ongoing absolute plate motion. D
anomaly, with midpoint at 1700 km depth. Radius through estimated locus of detachment (r
of section at latitude 4.5° N. Euler poles for the slab reference frame of van derMeer et al. (2010)
see text.
Ceuta on theMoroccan coast, bearing inmind an uncertainty in latitude
equal to the error in true polar wander-corrected paleomagnetic refer-
ence frames, and in longitude in slab-fitting, both on the order of 5–10°
(Steinberger and Torsvik, 2008; Van der Meer et al., 2010). Total recon-
struction poles for Iberia and Europe with respect to Africa, and Africa
restored to the slab reference frame, allow the placement of the scenario
of Fig. 2B in this mantle reference frame; details are given as Supple-
mentary information. Fig. 4A shows the calculated positions of Africa,
Iberia and Europe for M0 (126.1 Ma) and Late Aptian (118 Ma),
i.e., the time by which the main 35° rotation was completed according
to the onland paleomagnetic data as outlined above, hence that subduc-
tion effectively came to a halt. The implication is that, assuming near-
vertical sinking, any gravitationally unstable slab fragment detached
during the Late Aptian from the Pyrenean domain should reside in the
mantle underneath the locus of detachment, indicated in Fig. 4A as a
red star. For detachment at say 115 Ma of a subducted slab of some
500 km length, hence with a midpoint at about 250 km depth at the
onset of detachment, and a sinking rate of 12±3mmyr−1, onemay ex-
pect the corresponding anomaly in a depth range of 1285–1975 km.
Note that the depth of the midpoint differs from the depth of detach-
ment. To calculate average sinking rate, the distance between the mid-
point of the longest portion of the slab at the moment of detachment
is subtracted with the midpoint of the imaged (detached) slab, and
divided by the time elapsed since detachment. For a later, Early Albian
detachment (~110 Ma) we expect the corresponding anomaly at a
depth between 1240 and 1900 km. The predicted locus of detachment
(white star in Fig. 4A) is shifted, however, due to ongoing motion of
the system in the slab reference frame between 115 and 110 Ma.

The tomography shown in Fig. 4A (P-wavemodel UU-P07 of Amaru,
2007) shows a horizontal section at 1700 km depth, where it reveals a
marked anomaly ~5° south of the point where detachmentwith respect
to the slab reference frame would predict a Pyrenees slab, below south-
western Algeria. The N–S cross-section of Fig. 4B shows the anomaly
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mography (model UU-P07). Abbreviations: NPF— North Pyrenean Fault, white markers at
nomaly, G — Gibraltar slab. Color scale represents velocity anomalies (shown in B). A: re-
ptian (118 Ma) in red. Green track with markers at 10 Ma intervals illustrates motion of
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epth of horizontal tomographic section 1700 km. B: NS cross-section across the Reggane
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with its midpoint at 1700 km depth. We note that this anomaly, here
named the Reggane anomaly after a village in southwestern Algeria, is
also imaged in S-wave tomography model S40RTS (Ritsema et al.,
2011), which independently attributes to its existence (see Supplemen-
tary information). The Reggane anomaly lies within the depth range
predicted by the global average sinking rate, and lies within the area
predicted by the slab reference frame of van der Meer et al. (2010).

A further test of whether the Reggane anomaly may represent a
Pyrenean slab detached in the Late Aptian–Early Albian is the regional
consistency with other anomalies, in particular the large N–S trending
“Algeria slab” identified by van der Meer et al. (2010). This slab is
observed between ~2300 and 1500 km depth, and is itself located
southwest of the Aegean slab which reaches a depth of ~1500 km
(van Hinsbergen et al., 2005), suggesting in first approximation that
the age of break-off of the Algerian slab and the age of initiation of the
Aegean subduction zone (~130–100 Ma) can be similar. Van der Meer
et al. (2010) therefore correlated the Algerian slab with subduction
that emplaced the Jurassic Balkanide ophiolite belt, now found from
Greece to the eastern Alps and Carpathians, over Adria in Early Creta-
ceous time (~130–120 Ma; e.g., Schmid et al., 2008). All subduction
events associated with post-Albian tectonics in the western Mediterra-
nean region are accounted for by shallower slabs such as the Gibraltar
slab (Spakman and Wortel, 2004; Bezada et al., 2013; Van Hinsbergen
et al., 2014) (Fig. 4). From this correlation, it follows that the Reggane
slab must have formed due to subduction west of Adria, consistent
with the prediction of Pyrenean subduction. We conclude that the
presence, in a slab reference frame, of a clear velocity anomaly near
the predicted depth and location, is consistent with Aptian Pyrenean
subduction and Late Aptian–Early Albian detachment of a slab subducted
in the Pyrenean realm. We also conclude that the structure of the upper
mantle below the present-day Pyrenees cannot confirm nor falsify
an Aptian–Albian subduction history of the Pyrenees, hence that it pro-
vides no basis to discard kinematic scenarios based on marine magnetic
and paleomagnetic data that demonstrate Iberia's ~35° rotation in this
time period.

5. Discussion

We have tested three different kinematic scenarios for Iberian mo-
tion against onland paleomagnetic data from Iberia. We conclude that
the paleomagnetic declinations require an amount of Iberia rotation
that fits well with the angle between the M0 anomalies on either side
of the Bay of Biscay, hence with scissor-type scenarios proposed by
Sibuet et al. (2004) andVissers andMeijer (2012a), but that the rotation
is considerably higher than that predicted by the scenarios of Jammes
et al. (2009) and Olivet (1996). Conversely, we argue on geometrical
grounds that strike-slip motion along the Armorican margin precludes
rotations in excess of ~25° unless, during the rotation, convergence
was accommodated in the Pyrenean realm. In addition, the paleomag-
netic database strongly suggests that the rotation of Iberia occurred al-
most entirely in the Early Aptian (126–~118 Ma) and certainly well
before the onset of North Pyrenean high-temperature metamorphism
and alkaline magmatism.

While the scissor-type scenario of Sibuet et al. (2004) and Vissers
and Meijer (2012a) successfully predicts the ~35° rotation of Iberia
during the Aptian, we show that the consequent subduction and de-
tachment during Aptian times of an oceanic domain in the Pyrenean
realm is not falsified by mantle tomography. Viewed in a mantle refer-
ence frame, P- and S-wave tomography show amarked anomaly within
the areawhere detachmentwould predict a Pyrenees slab, with itsmid-
point at 1700 km depth. i.e., within the depth range predicted by the
global average sinking rate. This strongly suggests that scissor-type
opening of the Bay of Biscay and allied subduction and detachment in
the Pyrenean domain is a viable hypothesis. We propose that Pyrenean
subduction and detachment were likely accommodated to the east by a
transform fault that must have separated Iberia from Sardinia, which in
Aptian–Albian time did not undergo any significant vertical axis rota-
tion (Advokaat et al., 2014). This transform fault may have become
reactivated during the Late Oligocene–Early Miocene as the North
Balearic Transform Zone (Van Hinsbergen et al., 2014).

Jammes et al. (2009) and Bronner et al. (2012) argued that there is
no evidence in the Pyrenean geology of subduction. There are, indeed,
no high-pressure, low-temperature metamorphic rocks at the surface,
nor is there evidence in the form of e.g. a distinct volcanic arc. In our
view, a main reason for this lack of geological evidence may be the na-
ture of the subducting lithosphere, formed during Late Jurassic–Early
Cretaceous stretching at a time-averaged rate of less than 1 mm/year,
i.e., under conditions of ultraslow spreading (Vissers and Meijer,
2012a; Vissers et al., 2013). This would result in a partly serpentinized
exhumed mantle type of ocean floor lacking any appreciable magmatic
crust, such that a typical ophiolite-type of oceanic crust and associated
depleted uppermost mantle did not develop. We suggest that only few
mantle peridotite bodies of this exhumed mantle lithosphere became
scraped off during subduction and are now found in the NPZ. This sub-
duction, however, occurred fast, led to a short slab that subducted for
only a short amount of time that may not have been sufficient to gener-
ate a stable volcanic arc. In this case, absence of evidence is not evidence
of absence.

An issue related to the nature of the subducted and detached oceanic
lithosphere previously formed under ultraslow spreading conditions
concerns its age at the time of subduction, because this principally af-
fects its thermally controlled density and thereby its tomographic de-
tectability. The plate kinematic reconstructions of Sibuet et al. (2004)
and Vissers and Meijer (2012a) involve a rifting stage in the Bay of
Biscay since the Kimmeridgian (157.3–152.1 Ma) proceeding till M0
times (126.1 Ma), i.e., the onset of Iberia rotation. In the Pyrenean
realm, Eurasia was bounded to the south by Alpine Tethyan ocean
floor developed during the rifting of Adria from Eurasia (Wortmann
et al., 2001; Rosenbaum et al., 2002; Vissers et al., 2013), which during
the ultraslow rifting and spreading process must have grown to the in-
ferred 300–500 km of oceanic lithosphere that subsequently subducted
during Iberia rotation and allied convergence during the Aptian. It fol-
lows that, upon subduction, at least part of that oceanic lithosphere
was young, not older than ~40Myr, but in view of its previous ultraslow
spreading history it must have been much colder than expected for the
case of a ridge-dominated oceanic lithosphere formed at moderate
to fast spreading rates.

The Cretaceous extension documented in the Pyrenees as small ba-
sins, possibly with a transtensile component, is one of the key argu-
ments for the extensional model of Jammes et al. (2009). In the light
of an Aptian subduction history, these extensional basins may instead
be explained as a result of a post slab break-off rebound, coevally with
HT–LP metamorphism and alkaline volcanism. This metamorphism af-
fected an accretionary mélange that contained the peridotite massifs
and probably led to the resetting of the 40Ar/39Ar and Sm–Nd clocks of
amphiboles from the Lherz and Caussou peridotites at 108–103 Ma
(Henry et al., 1998). Instead of an incomplete rehomogenization during
fast ascent of these mantle rocks, we note that the Jurassic–Early
Cretaceous Nd ages of 153 ± 3 Ma (Prades), 177 ± 3 Ma (Moncaup),
and 138±4Ma (Moncaut) (Henry et al., 1998) coincidewith the exten-
sion related to the breakup of Iberia from Eurasia and Adria from Iberia,
and that these ages may represent the timing of hyperextension at
the southwestern Eurasian margin. The geological record of Albian ex-
tension, metamorphism and magmatism is thus likely unrelated to
hyperextension and mantle exhumation, which occurred 40–70 Myr
earlier. In other words, the high-temperature metamorphism docu-
mented in the NPZ around 100Ma does not result from hyperextension
during Pangea breakup, but must post-date a phase of subduction
(Fig. 5). A straightforward alternative to explain the high-temperature
pulse, magmatism and possibly part of the extensional structures in
the Pyrenees is Late Aptian–Early Albian slab detachment following
the arrest of Iberian rotation and associated rapid convergence, and
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the consequent ascent of hot asthenosphere to shallow levels (e.g., Platt
and England, 1994, see also van de Zedde andWortel, 2001; Vissers and
Meijer, 2012a) (Fig. 5) leading to alkaline magmatism and inducing
a marked heat pulse. We suggest that the thermal effects of hyperex-
tension on sedimentary successions in the hanging wall should not
be studied in the Pyrenees, but may be better explored at e.g. exhumed
oceanic core complexes in ophiolites (e.g., Maffione et al., 2015).

Finally, we suggest that the subducting oceanic lithosphere and as-
sociated slab-pull in the Pyrenean realm may have contributed to the
dynamics driving rapid rotation of the Iberianmicroplate during Aptian
opening of the Bay of Biscay, and that slab-pull may have driven theN–S
extension documented during rotation in the north Iberian sedimentary
basins (e.g., Gong et al., 2009a, 2009b) but also in the central Iberian
chains (e.g., Simón et al., 1998).

6. Conclusions

We test prevailing plate kinematic scenarios for the Late Mesozoic
motion of Iberia against an extensive database of onshore paleomag-
netic data from Iberia. While each of these scenarios can be reconciled
with the geological data, magnetic anomaly-based reconstructions in-
volving Late Jurassic till Barremian rifting, Aptian rotation of Iberia
and concurrent convergence in the Pyrenean realm, followed by Late
Aptian–Early Albian slab detachment is the only one consistent with
the Iberian paleomagnetic data. We test previous arguments claiming
that the absence of evidence for slab remnants in the mantle below
the Pyrenees falsifies Pyrenean subduction by studying the Pyrenean
evolution in a mantle reference frame. Absolute plate motion recon-
structions of the Pyrenees predict that a subducted slab remnant that
detached in Late Aptian–Albian time below the Pyrenees should reside
in the mid-mantle below Algeria. Seismic tomography is consistent
with this prediction and shows an anomaly below the town of Reggane
in Algeria between 1500 and 1900 km depth. We conclude that the
structure of the upper mantle below the Pyrenees is irrelevant in falsi-
fying or confirming a Cretaceous subduction history in the Pyrenees,
and that it provides no basis to discard kinematic scenarios involving
scissor-type opening of the Bay of Biscay coupled with subduction in
the Pyrenean realm. This suggests that the geological evidence in the
Pyrenees for Albian high-temperature metamorphism and alkaline
magmatism may well reflect Late Aptian–Early Albian detachment of a
subducting slab and the consequent ascent of hot asthenospheric man-
tle, rather than the currently widely perceived hyperextension of the
adjacent margins.
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