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Chapter 1

Introduction

Black holes are fascinating objects: from an observational or experimental stand-

point, numerous candidates have been identified in Nature. Nowadays, there are

roughly 20 observed stellar binaries in our galaxy alone which are believed to con-

tain black holes of some solar masses, and super-massive black holes provide the

only explanation, as of yet, for the phenomena observed in the centers of active

galaxies [1]. Gravitational wave detectors such as LIGO [2] and VIRGO [3] also

aim to directly observe processes involving black holes in our cosmic neighborhood.

Interestingly enough, a black hole merger has been confirmed experimentally very

recently [4]. From a theoretical standpoint, black holes allow scientists to test and

refine a variety of novel ideas having appeared in the vast arena of gravitational

physics. Black holes bridge gaps between various areas of research and make highly

non-trivial connections among different tentative descriptions of our reality. This

is because they possess a number of interesting properties which make their study

a rich field of research.

Classically, black holes are solutions of Einstein’s theory of General Relativity.

They are intrinsically gravitational objects and describe a region of space-time

where a large mass (typically a few solar masses or more) is concentrated, giving

rise to a curvature singularity surrounded by an event horizon. This classical hori-

zon is the boundary of a region in space-time from which “nothing can escape”,

not even light, due to the extreme gravitational pull exerted by the black hole.

The interior of the horizon, and the singularity itself, are therefore hidden from

view and causally disconnected from the exterior. It is believed that whenever

a curvature singularity forms in Nature, it is always accompanied by an event

horizon, so that there are no “naked” singularities observable. This is the Cosmic

Censorship hypothesis [5].

1



2 Chapter 1 Introduction

Semi-classically, perhaps the most important property of black holes is the possibil-

ity to identify within their description a quantity behaving exactly as a thermody-

namical entropy, according to a proposal made by Bekenstein and Hawking. This

entropy acts as a measure of disorder or randomness in the internal constituents of

the black holes. Furthermore, one can also identify a corresponding temperature,

in agreement with the standard laws of thermodynamic. This led to the crucial

realization that black holes are, in fact, not entirely “black” but that they must

radiate in order to reach thermodynamical equilibrium with their environment.

One should stress again that this is a semi-classical effect, which arises upon con-

sidering a classical black hole interacting with a quantum field. Arbitrarily close

to the black hole, pairs of particles and anti-particles are created from the vacuum

due to the quantum nature of the field. A member of one such pair can then fall

into the interior of the black hole, while its companion escapes to infinity. This

process may be interpreted as the emission of a thermal radiation by the black

hole. The associated thermodynamical entropy defined by Bekenstein and Hawk-

ing is a function of the parameters of the black hole solutions as measured by an

observer far away (at infinity). These parameters therefore play the role of state

variables. For the simplest black holes, which are solutions of general relativity in

a vacuum, the only parameter entering their description is their mass M . There

exist other interesting cases where the black holes are also electrically and/or mag-

netically charged. These black holes are solutions of Einstein-Maxwell theory, a

combination of general relativity and Maxwell’s electro-magnetism. Their entropy

depends on their mass and on their electric and/or magnetic charges (M,Q). Fur-

ther, stationary rotating black holes also exist theoretically and their entropy is

parametrized by an additional angular momentum (M,Q, J).

Since the discovery of black hole entropy by Bekenstein and Hawking, considerable

effort has been deployed to understand precisely how this property arises at a fun-

damental level. But to do so comes with obvious difficulties, as there is at present

no way to efficiently probe the interior of a black hole past its event horizon and

observe what makes up its internal constituents. This failure is due to the posited

extreme environment of the interior, where quantum and gravitational effects are

expected to be comparable, and one needs to take both into account to arrive at

a correct description. To learn more about the internal structure of black holes

would thus require a quantum description of gravity.

Unfortunately there exists no consistent Quantum Field Theory (QFT) of gravity

based on general relativity. A special extension of general relativity exists, which

combines Einstein’s theory with supersymmetry to give rise to Supergravity. A

theory of supergravity possesses all the usual space-time symmetries of general
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relativity, and in addition is made up of a specific type of matter and gauge fields

symmetric under the exchange of bosons and fermions. In such theories, it is also

possible to describe black hole solutions. These black holes are the supersymmet-

ric analogues of the classical black holes of general relativity, and their quantum

behavior is under much better theoretical and computational control due to the ad-

ditional constraints imposed by supersymmetry. This symmetry should therefore

be viewed as a convenient and controlled theoretical framework to begin gathering

clues as to how black holes behave in the quantum regime, even if supersymmetry

itself has not yet been observed experimentally in Nature [6].

A number of other theories have been put forward to try and describe the quantum

regime of gravity. Among these, String Theory seems to be the most promising

to many. At its core, this theory is a somewhat radical departure from the fun-

damental tools of description available to the high-energy physicist using QFT.

In string theory, the fundamental objects are not fields defined at every point in

space-time, but extended objects: extremely small (typically of size close to the

Planck length, 10−33 cm) vibrating strings of energy, the spectrum of which gen-

erates what we observe in our macroscopic world as particle manifestations. This

includes all the known particles of the Standard Model, but also gravitons (the

fundamental quanta of gravity) and other more exotic particles. Another impor-

tant difference as compared to the usual QFTs is that the theory is consistently

formulated in ten space-time dimensions. Upon “curling up”, or compactifying,

six of these extra dimensions on an internal space, it is possible to make contact

with our four-dimensional world and understand how its properties arise from a

higher-dimensional perspective. In this framework, it is also possible to describe

black holes (and more generally black objects, which may have a different topol-

ogy than the classical black holes of general relativity): they are realized as stacks

of D-branes, which are extended objects in the spectrum of the theory endowed

with special properties. These D-branes interact quantum mechanically in the in-

ternal six-dimensional space and have a well-defined (and computable) number of

energy states. Using this description, string theory therefore offers a microscopic

view of the degrees of freedom available to the black holes and provides a statis-

tical interpretation of their thermodynamical entropy, in a way entirely similar to

Boltzmann’s description of the macroscopic entropy of a gas based on the number

of microstates available to the atoms making up the system.

In some simple cases, it is possible to compute scattering amplitudes in string

theory, and these results have been found to agree with the ones obtained in an

effective field theory of supergravity. This suggests that, when considering the

low-energy limit of string theory, one obtains theories of supergravity in certain
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specific situations. When such a connection is available, the quantum descrip-

tion of a black hole is readily available in both formulations, and it is therefore

of great interest to compare the predictions made by the high-energy, microscopic

description of string theory and the low-energy, macroscopic description offered by

supergravity. This has been the topic of many years of research, and fascinating

advances and insights have been gained from this connection. We could list here

for example the holographic principle and the AdS/CFT conjecture. It will be

the purpose of this work to study such a connection between string theory and

supergravity by analyzing in great detail the entropy of specific black holes whose

description is available in both frameworks.

The outline of the present thesis is as follows. In the remainder of this Chapter, we

discuss examples of classical black hole solutions in general relativity and Einstein-

Maxwell theory. We then review the proposal to define their thermodynamical

entropy, and we introduce concepts of string theory and supersymmetry necessary

to interpret this entropy statistically. In Chapter 2, we present a more refined

and complete analysis of the entropy of black holes using string theory, and put

forward a concrete proposal to define their quantum entropy in the macroscopic,

low-energy theory. We then introduce the mathematical framework which will be

required for an exact calculation of said quantum entropy. This ultimately leads to

a precise program for computing the exact quantum entropy of specific black holes

in supergravity and to compare it to string theory predictions. In Chapter 3, we

derive the supergravity theory which will be used in the rest of this work in order

to lay a solid foundation for explicit calculations. In Chapter 4, we review the

first example where the quantum entropy of a maximally supersymmetric black

hole was computed at all orders in supergravity and successfully matched with

the string-theoretic, microscopic description. We discuss two major assumptions

which entered this calculation, and we then justify the first of these assumptions

in a rigorous manner. The second assumption is examined and found to be correct

in Chapter 5, where we develop a general framework to compute one of the central

ingredients in the recipe for the quantum entropy of black holes. Putting these

new ingredients together, we push the quantum entropy program forward to less

supersymmetric black holes and compute their quantum entropy in Chapter 6.

Finally, we close with some conclusions and important open questions in Chapter 7.

Three Appendices are used to gather the conventions chosen throughout this work,

some facts regarding the mathematical theory of modular, Jacobi and Siegel forms,

and the technical details underlying the construction of the supergravity theory

which is used in the main text.
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1.1 Classical black holes

General relativity is based on the Einstein-Hilbert action and describes a theory

invariant under local coordinate transformations of the space-time manifold, which

is taken to be Riemannian. The field encoding the dynamics of space-time is the

metric tensor gµν , which acts as a gauge field for the local coordinate transforma-

tions. For definiteness, we will restrict ourselves to four space-time dimensions and

Minkowski signature in this Section, so we take µ, ν = 0, . . . , 3. The conventions

used in this work are summarized in Appendix A. The Einstein-Hilbert action

describing general relativity takes the form

SEH =

∫
d4x
√
−g
[
− 1

16πG

(
R− Λ

)
+ Lmat.

]
, (1.1)

where G is Newton’s constant, g is the determinant of the metric, R is the Ricci

scalar of the manifold which measures the curvature of space-time, Λ is the cosmo-

logical constant and Lmat. describes the matter content of the theory, minimally

coupled so that all derivatives are covariant with respect to the space-time symme-

tries. The equations of motion associated to this action are Einstein’s equations,

Rµν −
1

2

(
R− Λ

)
gµν = 16πGTµν , (1.2)

with Rµν the Ricci tensor and Tµν the stress-energy tensor derived from Lmat..

Throughout this work, we will set the cosmological constant to zero.1 In most of

this work, natural units where ~ = c = G = 1 are used.

Shortly after the discovery of general relativity, Schwarzschild (and independently

Droste) obtained one of the first solution to Einstein’s equations in an asymptoti-

cally flat vacuum (i.e. with Lmat. = 0) [8, 9]. This is the gravitational analogue of

the Coulomb charge in Maxwell’s theory of electro-magnetism. The Schwarzschild

line-element written in spherical coordinates (t, r, θ, φ) is

ds2 = gµνdx
µdxν = −

(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
.

(1.3)

This solution describes a spherically symmetric black hole of mass M located at the

origin of the space-time r = 0. At this point lies a curvature singularity where the

Ricci scalar diverges. This is a “true” singularity which cannot be eliminated by a

1Modern experimental observations indicate that the cosmological constant is in fact non-zero
and very small [7], but this has no bearing on the study of black hole entropy which is carried
on in this work.
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change of coordinate system. On the other hand, the surface specified by r = 2M

is a coordinate singularity and signals the presence of an event horizon.

One can also find analytic solutions to Einstein’s equations when matter is present

in the space-time. In the present work, we will be interested in electro-magnetically

charged black holes, also known as dyonic black holes, and we therefore consider

the case where Lmat. = −1
4
FµνF

µν is the Maxwell Lagrangian. The line-element

describing a charged black hole under this Maxwell field is now given by the

Reissner-Nordström solution [10, 11]

ds2 = −
(

1− 2M

r
+
q2 + p2

r2

)
dt2 +

(
1− 2M

r
+
q2 + p2

r2

)−1

dr2 + r2 dΩ2
2 ,

Frt =
q

r2
, Fθφ = p sin θ . (1.4)

Here, dΩ2
2 is the line-element of the 2-sphere and (q, p) are the electric and mag-

netic charges of the black hole. As in the Schwarzschild solution, a curvature

singularity sits at the origin of space-time r = 0, and the coordinate singularities

are now located at r± = M ±
√
M2 − (q2 + p2). This indicates that the charged

black hole in fact possesses two horizons, an inner and an outer one. In the lim-

iting case where M2 = (q2 + p2), these two horizons coalesce at r+ = r− = M ,

and the black hole is called extremal. Dyonic extremal black holes are especially

interesting as they exhibit a symmetry enhancement close to their horizon. This

can be shown, for instance, by making the following change of coordinates with

an arbitrary constant α:

τ =
α

r2
+

t , ρ = α−1(r − r+) . (1.5)

Taking α → 0 while keeping ρ fixed, the original radial coordinate r approaches

the horizon located at r+. In this near-horizon region, the line-element (1.4) then

becomes:

ds2 = r2
+

(
−ρ2dτ 2 +

dρ2

ρ2

)
+ r2

+ dΩ2
2 ,

Fρτ = q , Fθφ = p sin θ . (1.6)

This metric is a direct product of AdS2 (the two-dimensional anti-de Sitter space)

and the 2-sphere S2. This product space is invariant under the SO(3) group of

rotations of the 2-sphere, just like the non-extremal solution, but also possesses

an additional SO(2, 1) symmetry inherited from the AdS2 factor which was not

present in the non-extremal case. As we will see in Section 1.3, a similar and
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in fact stronger kind of symmetry enhancement also occurs for supersymmetric

black holes. Generically, a symmetry enhancement leads to what is known as

an attractor mechanism, where one obtains a stronger set of constraints which

the field configuration has to satisfy, arising from the larger group of symmetries

acting on the system. This phenomenon will be especially relevant in our study

of extremal, supersymmetric black holes, as will be explained in Chapter 2. The

Schwarzschild and (extremal) Reissner-Nordström black holes discussed above will

provide examples for various concepts introduced in the rest of this Chapter.

1.2 Semi-classical black holes

Having presented two classical black hole solutions to Einstein’s equations in four

dimensions, we now introduce the fundamental discovery made by Bekenstein and

Hawking [12, 13]. In the early 1970s, Penrose, Floyd and Christodoulou realized

that black holes exhibit a remarkable tendency to increase their horizon’s surface

area when undergoing perturbations [14, 15]. This led Bekenstein and Hawking to

formulate an analogue of the second law of thermodynamics for black holes, since

this second law states that changes in a closed thermodynamic system always take

place in the direction of increasing entropy. Therefore, they posited that one could

formally define a thermodynamical entropy for black holes as

SBH =
kB c

3

G ~
A

4
, (1.7)

where A is the area of the black hole horizon and kB is the Boltzmann constant.

Here we have reinstated all fundamental constants to point to the presence of ~,

which indicates that such a quantity is defined in a semi-classical theory, where

quantum effects are expected to start playing a part in the story. Equation (1.7) is

known as the Bekenstein-Hawking area-law, and it aims to identify the amount of

disorder within black holes, or our lack of information about them, with the surface

area of their horizon. Since the latter depends on the macroscopic parameters

associated to the black holes as measured by an observer at infinity (like their mass

or electro-magnetic charges), these parameters should be formally understood as

coarse-grained thermodynamical variables specifying the state in which the black

holes are.

Based on this formal analogy, Bardeen, Carter and Hawking went on to estab-

lish the general laws of black hole mechanics [16]. These laws apply to the
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static electro-magnetically neutral Schwarzschild black holes (1.3) parametrized by

their mass M , to the static electro-magnetically charged Reissner-Nordström black

holes (1.4) parametrized by their mass and charges (M,Q), and to the stationary

axisymmetric rotating black holes (known as Kerr solutions [17]) parametrized by

their mass, charges and angular momentum (M,Q, J).

• 0th law: The surface gravity κ of a stationary black hole, defined as the force

required to be applied by an observer infinitely far away to maintain a mass at

a fixed location on the black hole horizon, is constant over the event horizon.

• 1st law: Any two neighboring stationary axisymmetric black hole solutions

are related by

δM =
κ

8π
δA+ ω δJ + µ δQ , (1.8)

where δM , δA, δJ and δQ denote the change in mass, area, angular momen-

tum and electro-magnetic charge, respectively, when going from one solution

to the other, ω is the angular velocity measured at infinity, and µ the chemi-

cal potential conjugate to the electro-magnetic charge of the black hole, also

measured at infinity.

• 2nd law: The area A of a black hole never decreases in any process, δA ≥ 0.

For example, if and when two black holes collide, they will coalesce and form

a single black hole whose area is necessarily greater or equal to the sum of

the areas of the initial black holes.2

• 3rd law: It is impossible by any procedure, no matter how idealized, to reduce

the surface gravity κ to zero by a finite sequence of operations.

A comparison to the usual laws of thermodynamics is indeed suggestive of a ther-

modynamical interpretation of black hole dynamics. Historically however, a central

ingredient was still missing to take this formal analogy to the level of a true corre-

spondence: while at this stage it seems tempting to interpret the surface gravity κ

as the analogue of the temperature for a black hole, can a first-principle derivation

of such a relation be obtained?

This piece of the puzzle was provided by Hawking in 1975 [18]. Upon considering a

classical black hole interacting with a quantum field, he came to the realization that

black holes are almost perfect black bodies which can absorb and emit radiation,

2This has been observed very recently by the LIGO and VIRGO collaborations [4].



Chapter 1 Introduction 9

at a temperature proportional to their surface gravity. Such radiation may a

priori seem in contradiction with the naive picture that nothing can escape from

a black hole, but it is precisely the quantum character of the field with which

the black hole interacts that makes it possible. Pictorially, a quantum field close

to the horizon of the black hole undergoes quantum fluctuations, which result

in particle/anti-particle pair creations from the vacuum. Arbitrarily close to the

horizon, it is possible for the anti-particle to fall into the black hole while the

particle escapes, or vice-versa. The net effect is then a radiation emission from

the black hole horizon. It is important to stress again here that this is a semi-

classical picture, where the black hole is still thought of as a classical solution to

Einstein’s equations but the field it interacts with is intrinsically quantum to allow

for vacuum fluctuations. The radiation occurs at a temperature formally defined

as the black hole temperature, which is given by

TBH =
κ

2π
, (1.9)

where fundamental constants have been set to unity. Armed with this missing

piece of the puzzle, it is easy to see that the first law of black hole mechanics (1.8)

can be stated precisely as the first law of thermodynamics:

δM = TBH δ
(A

4

)
+ ω δJ + µ δQ . (1.10)

This cements the interpretation that the entropy of a black hole is to be identified

with its area according to the area-law (1.7), and also takes the formal analogy

of the second law of black hole mechanics and the second law of thermodynamics

into a true equivalence. It is capital to emphasize here that (1.7) is, at first sight,

an extremely puzzling formula. In usual thermodynamical objects, the entropy

behaves as an extensive quantity, which means it grows proportionally to the

volume of the system. But for black holes, it is instead the area of the system

which controls the entropy. This realization has led to a variety of interpretations,

the most famous of which is probably the holographic principle and its concrete

realization, the AdS/CFT correspondence [19, 20, 21, 22].

There is also an interesting consequence of the third law of black hole mechanics

for Reissner-Nordström black holes. Their surface gravity is given by

κ =
r+ − r−

2 r+
2
, (1.11)
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so that, for an extremal Reissner-Nordström black hole, the surface gravity be-

comes zero due to the coalescence of the inner and outer horizons r+ = r−. First,

this shows that for an extremal black hole and from the point of view of an observer

at infinity, a massive object located precisely at the horizon will remain there in-

definitely, since no force is required from the observer to keep it there. Second,

the third law of black hole mechanics makes the extremal Reissner-Nordström

black hole quite peculiar: starting from a non-extremal solution, it is impossible

to obtain an extremal solution in any finite amount of time. Extremal black holes

therefore stand on their own as limiting cases which cannot be obtained from

more realistic non-extremal black holes by any physical process. In view of the

symmetry enhancement in their near-horizon region alluded to in Section 1.1, this

makes extremal black holes idealized objects very useful to study gravity, albeit

disconnected from the black holes we expect to observe in our universe.

As an illustration of the concepts introduced above, let us compute the Bekenstein-

Hawking entropy of the Schwarzschild and extremal Reissner-Nordström black

holes. Both these black holes are spherically symmetric with an horizon sitting

at rh = 2M and rh =
√

(q2 + p2), respectively, and the area-law (1.7) gives

SBH = 4πM2 , and SBH = π(q2 + p2) , (1.12)

respectively (we have set all fundamental constants to unity). As previously stated,

both entropies only depend on the macroscopic parameters of the black hole solu-

tions, namely the mass M and the electric and magnetic charges (q, p). This type

of dependence will be central to the tentative interpretation of the Bekenstein-

Hawking entropy which will be proposed later in this Chapter in terms of a mi-

croscopic description of the black holes.

At this stage, it will be instructive to derive the Hawking temperature (1.9) for

a Schwarzschild black hole in a way which makes use of the notion of Euclidean

time, following [23]. Here, we intend to show that the Hawking temperature can

be recovered using standard methods of statistical physics in Euclidean signature,

thus showing that even though the notion of temperature (and entropy) associated

to a black hole may at first sight appear counter-intuitive, it fits within the “stan-

dard” derivation of these quantities known from statistical quantum mechanics.

In quantum mechanics, the time-evolution operator of a given system is defined

as e−itH , where H is the Hamiltonian of the system. If we now consider a single

scalar field Φ and a Euclidean continuation t→ −iτ , the trace over the quantum
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Hilbert space of the time-evolution operator is given by

TrH e
−τH =

∫
dφ 〈φ|e−τH |φ〉 . (1.13)

Using the path-integral representation of the Euclidean time-evolution operator,

this can be written as

TrH e
−τH =

∫
dφ

∫
DΦ e−SE [Φ] , (1.14)

where SE[Φ] is the Euclidean action over periodic field configurations satisfying

boundary conditions Φ(τ) = Φ(0) = φ. Let us now examine the Euclidean line-

element of the Schwarzschild black hole (1.3). By a change of the radial coordi-

nate (r − 2M) = ρ2/(8M), it is possible to zoom-in on the near-horizon region

when taking ρ→ 0. In this near-horizon region, the Euclidean line-element takes

the form

ds2 = ρ2 dτ 2

16M2
+ dρ2 + 4M2dΩ2

2 . (1.15)

If we now make an additional change of coordinate,

τ

4M
= θ , (1.16)

the metric (1.15) is simply the metric of a two-dimensional flat Euclidean space

times a 2-sphere,

ds2 = ρ2dθ2 + dρ2 + 4M2dΩ2
2 , (1.17)

provided the variable θ has the periodicity 0 ≤ θ < 2π (otherwise there would be a

conical singularity at the origin of the two-dimensional plane). This identification

implies that the Euclidean time coordinate τ of the near-horizon Schwarzschild

metric must have periodicity 8πM .

Now, in quantum mechanics, the thermal partition function is given by

Z(β) = TrH e
−βH , (1.18)

where β is the inverse temperature, H is the Hamiltonian, and the trace is again

taken over the Hilbert space of the theory. This partition function is related to the

trace of the Euclidean time-evolution operator (1.13) upon identifying β = τ . For

a Euclidean Schwarschild black hole, τ must have periodicity 8πM , so we deduce

T =
1

β
=

1

8πM
=

κ

2π
, (1.19)
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where we have used that the surface gravity of the Schwarzschild black hole is given

by κ = 1/(4M). This is precisely the Hawking temperature (1.9). This simple

calculation shows that the familiar interplay between the periodicity of Euclidean

time and the temperature of a physical system learned from statistical quantum

mechanics can be successfully exploited for black holes to reproduce the findings

of Hawking.

The close analogy between the laws of black hole mechanics and the laws of ther-

modynamics opens the way for a natural, and ultimately profound, question. We

have learned since the work of Boltzmann that there exists a fundamental link be-

tween the thermodynamics of a system, describing its macroscopic behavior, and

the microscopic state configurations accessible to this system when described in

terms of its internal constituents. This is summarized by the Boltzmann equation

SB = kB log Ω . (1.20)

Here Ω denotes the number of microstates available to the internal constituents

of the system under consideration, SB is the statistical entropy of the system

and kB is the Boltzmann constant (which we will set to one hereafter). This

relation explains, for example, how the entropy of a gas can be obtained from

the microscopic kinetic theory describing the motion of N atoms or molecules

making up the gas, where N is very large. This microscopic description uses

methods of statistical physics, and the macroscopic, thermodynamical quantities

are seen as averaged or coarse-grained properties of this complicated mechanical

system. Both the macroscopic and microscopic descriptions match when we take

the thermodynamic limit N → ∞ along with the volume of the system V → ∞
while keeping V/N fixed and finite.

Semi-classically, we have identified the macroscopic entropy of a black hole with

the area of its horizon. Thus we should ask what is the analogue of the Ω quantity

for the black hole. This turns out to be a deep and difficult question, since it

requires us to identify the internal constituents of the black hole and compute the

number of microstates available to them. Black holes being intrinsically gravita-

tional objects, our search for a statistical interpretation of their entropy takes us

into the realm of quantum gravity, where a description of the black hole in terms

of its internal “gravitational constituents” or “atoms” should be available. Within

this description, a limit akin to the thermodynamic limit should allow us to re-

cover the Bekenstein-Hawking area-law. Were this to be achieved, it would then

truly warrant a thermodynamical interpretation of black hole mechanics.
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In this context, we can see the need for a theory of quantum gravity as arising from

the search for a statistical interpretation of the area-law (1.7). A straightforward

way to build such a theory and study the corresponding microscopic description of

black holes would be to quantize the Einstein-Hilbert action within the standard

framework of QFT. However, general relativity is notoriously difficult to quantize:

at the perturbative level, it is known to be non-renormalizable in four dimen-

sions [24, 25, 26]. There are however other theories of quantum gravity which are

not directly based on quantizing the Einstein-Hilbert action. The most promi-

nent of these to this day, and the one that we will make use of in the rest of

this work, is string theory. As we will explain in Section 1.3, this theory indeed

provides a microscopic picture of the internal constituents of specific black holes,

and it is possible to evaluate the degeneracies Ω of this system in great detail. In

fact, it turns out to be even more powerful: not only is it possible to recover the

Bekenstein-Hawking entropy in a certain limit, but one can also probe the sub-

leading corrections to (1.7). Such corrections are expected to be present since, as

we stressed in the beginning of this Section, the area-law was derived for a clas-

sical black hole solution of Einstein’s equations. Within the context of quantum

gravity, it will therefore naturally receive quantum corrections, and it will be the

main focus of this work to study such corrections.

It has been known for some time how to incorporate a specific kind of correc-

tions to (1.7), namely perturbative corrections arising in a low-energy effective

theory of quantum gravity. This effective theory is obtained by focusing on the

low-energy degrees of freedom (the massless modes) and neglecting the heavier

degrees of freedom by integrating them out. Its action describes the dynamics of

a classical background metric field for sufficiently weak curvatures at sufficiently

large distances. Any quantum field theory can be described as such by focusing

on its low-energy degrees of freedom. The dynamics of the massive degrees of

freedom are then encoded in corrections to the action describing the massless de-

grees of freedom. When these corrections are suppressed, it is possible to conduct

a perturbative expansion in the effective theory. For example, in string theory,

it is possible to show that the low-energy effective action generically contains

higher-curvature terms [27], which are generated both through quantum loop cor-

rections and stringy α′-corrections, where α′ is the dimensionful parameter of the

theory. The string length is defined as lstring =
√
α′ and the string mass is given

by mstring = (2α′)−1/2. When analyzing the action for the massless modes of string

theory at tree-level, one obtains the Einstein-Hilbert action along with an infinite

tower of higher-derivative couplings suppressed by increasing powers of α′, which
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shows that these higher-derivative interactions are sub-leading in the low-energy

limit. If the black hole entropy picture is to be consistent, we should like to know

how these sub-leading corrections affect the Bekenstein-Hawking area-law.

To examine this question, let L be a covariant Lagrangian built out of dynamical

fields, including the metric and collectively denoted as Φ. Within such a theory,

there exists a prescription due to Wald to describe the entropy of black hole solu-

tions based on the Noether current associated with diffeomorphisms [28, 29, 30].

It is therefore instructive to first review the notions of Noether currents and their

associated charges.

Generically, under any field variation δΦ, the Lagrangian L always varies into

δ(
√
−gL) =

√
−g E · δΦ +

√
−g∇µΘµ(δΦ) , (1.21)

where E = 0 are the equations of motion. If we now consider field variations

which leave the action invariant up to boundary terms, or in other words when

considering a symmetry of the action functional (denoted by δS to distinguish

from generic variations), the Lagrangian must be invariant up to a total deriva-

tive: δS(
√
−gL) =

√
−g∇µN

µ. General relativity is an example of a theory in

which Nµ is always non-vanishing, while gauge theories usually have Nµ = 0

unless Chern-Simons terms are present. The Noether current associated with

symmetries of the theory is defined as

Jµ = Θµ(δSΦ)−Nµ , (1.22)

and it satisfies ∇µJ
µ = 0 when E = 0. Associated to this Noether current is

the Noether potential Qµν , defined as Jµ = ∇νQµν . The total Noether charge

contained in a spatial volume Σ can be expressed as a boundary integral of this

potential

Q =

∮
∂Σ

d2x
√
h εµνQµν , (1.23)

where hµν and εµν are the induced measure and binormal on the boundary ∂Σ.

We now specialize the discussion to theories which are invariant under diffeomor-

phisms of the space-time manifold (the local coordinate transformations). In such

theories, one can define a Noether charge associated to these transformations, and

it will be expressed as a boundary integral of the corresponding Noether potential.

A crucial observation is that, when a black hole is present in the space-time, there

are two boundaries to take into account: one is the boundary at asymptotic infin-

ity, where the macroscopic parameters of the solution (M,Q, J) are measured, and
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the other is the horizon of the black hole itself, since the inaccessible interior should

not be thought of as part of the space-time manifold. In this situation, there ex-

ists a relation between surface integrals defined at asymptotic infinity and surface

integrals at the horizon. Wald showed that this relation takes precisely the form

of the first law of black hole mechanics (1.8), which led him to define the entropy

as the surface integral of the Noether potential associated with diffeomorphisms

over the horizon of the black hole3

SWald = 2π

∮
H

d2x
√
h εµνQµν , (1.24)

with hµν and εµν the induced measure and binormal on the horizon H. The

formula (1.24) gives a beautiful local geometric definition of the thermodynamical

entropy for black holes in any theory invariant under diffeomorphisms.

As a simple application, one can derive corrections to the Bekenstein-Hawking

area-law in the presence of higher-derivative terms using Wald’s formula. Suppose

the theory of gravity under consideration is described by the following higher-

curvature deformation of the Einstein-Hilbert action (1.1):

SEH def. = − 1

16π

∫
d4x
√
−g
(
R + αR2

)
, (1.25)

where we have included in the Lagrangian a term proportional to the square of the

Ricci scalar with a dimensionful constant α. In this case, the Noether potential

associated with diffeomorphism invariance is given by [29, 30]:

Qµνρσ =
δLEH def.

δRµνρσ

=
1

32π

(
1 + 2αR

)(
gµσgνρ − gµρgνσ

)
. (1.26)

Using (1.24), one obtains the following entropy

SWald =
1

4

∮
H

d2x
√
h
(
1 + 2αR

)
=
A

4
+
α

2

∮
H

d2x
√
hR . (1.27)

The first term in the above expression is the Bekenstein-Hawking entropy (1.7).

The second term captures the sub-leading corrections to the area-law coming from

the higher-derivative term in the action (1.25).

3It should be noted that Wald’s derivation requires the existence of a so-called bifurcation
point on the horizon, and thus applies to non-extremal black holes but a priori not to extremal
ones. However, it has also been argued, e.g. in [30], that such a bifurcate horizon is not necessary
to define the entropy as in (1.24). We will adopt the latter point of view and assume that Wald’s
definition of the entropy also applies to extremal black holes.
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The clear advantage of Wald’s approach is that it allows for the incorporation of

higher-derivative terms, which naturally arise in effective field theories, in the en-

tropy of black hole solutions. This formalism thus goes beyond the semi-classical

approximation of the Bekenstein-Hawking area-law and can take into account

quantum corrections, as long as they are encoded in a local effective action in-

variant under diffeomorphisms. However, this is not the end of the story. This

is because the full effective action of quantum gravity is expected to also contain

non-local terms which arise when integrating out massless degrees of freedom, as

well as non-perturbative effects originating from the full UV theory, which are

invisible in a local effective theory. Because Wald’s proposal is based on a local

action functional, it does not provide a framework to deal with these non-local and

non-perturbative terms. So while the Wald entropy is indeed a generalization of

the Bekenstein-Hawking area-law, it may fail to provide the full quantum answer

for the black hole entropy in a theory of quantum gravity.

One should, however, not lose hope that this complete answer might be within

reach. In the next Section, we explain how string theory provides a powerful

higher-dimensional picture to understand the origin of the fundamental param-

eters of black holes (such as their mass and electro-magnetic charges), which in

turn provides a string-theoretic origin of their thermodynamical entropy. In this

description, which relies on quantum mechanically interacting D-branes, it is also

possible to give an estimate for the number of microstates available to the system,

which leads to a beautiful statistical interpretation of the entropy. This will serve

as the template upon which we will build a formalism to define and compute the

quantum entropy of black holes in the next Chapter.

1.3 The higher-dimensional origin of charges and

supersymmetric black holes

At the perturbative level, superstring theory is defined by quantizing the rela-

tivistic supersymmetric string in a fixed background geometry. It is now known

that five consistent perturbative formulations of string theory exist, and they are

all based on a ten-dimensional supersymmetric description (they admit the ten-

dimensional Minkwoski vacuum as their ground state). In order to make contact

with the observed four-dimensional world, one must compactify the six extra di-

mensions on an internal manifold, the shape and nature of which determine the
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properties of the theory in the remaining four non-compact directions. In pertur-

bation theory, string theories provide a consistent description of quantum gravity,

in the sense that one can compute loop corrections involving gravitons. At the

non-perturbative level however, no background-independent formulation is known.

This is why string-theoretical calculations are conducted in a perturbative expan-

sion (in the parameter α′). Let us note that in the past, tremendous progress

has been made in understanding non-perturbative properties of string theories by

studying solitons, instantons, and string dualities. See [31] for an overview and

references.

There are objects of fundamental interest in all string theories, which are called

branes [32, 33]. Here we simply recall that branes are supersymmetric objects

in the theory on which open strings can end, and they source the various p-form

gauge fields of the theory. When compactifying the theory from ten down to

four dimensions, the branes are taken to wrap the internal six dimensions, so

that brane configurations in string theory are point-like from the four-dimensional

perspective. We summarize the field content and D-branes (branes with Dirichlet

boundary conditions) of so-called Type II string theories in Tables 1.1, 1.2 and 1.3.

We will mainly discuss Type IIB string theory in what follows. In this theory, D-

branes provide the ten-dimensional starting point for describing black holes, as we

now explain.

The microscopic quantum description of black holes in string theory typically

starts with a ten-dimensional brane configuration of given charges and mass at

weak coupling. To describe the influence this system has on the four-dimensional

world we observe, six dimensions must be compactified on some internal space,

and the branes are taken to wrap various cycles in this internal space. One then

computes an appropriate partition function in the QFT living on the world-volume

of the branes. By “appropriate”, we mean here a partition function which is topo-

logically protected, in the sense that it is invariant under changes in the string

coupling constant. These type of quantities are often very useful to extract in-

formation about the strong coupling behavior of a system by first going to the

weak coupling regime (where computations are generally expected to be tech-

nically easier thanks to perturbation theory) and then extrapolate the result to

strong coupling.4 At strong coupling, the branes under consideration gravitate and

form a black hole. The partition function computed at weak coupling is therefore

expected to count the microstates of the corresponding macroscopic gravitational

4In technical terms, we are thinking here of the so-called elliptic genus [34], or some general-
ization thereof.
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Theory NS-NS Bosons R-R Bosons

Type IIA gµν , B2, φ C1, C3

Type IIB gµν , B2, φ C0, C2, C4

Table 1.1: Bosonic field content of Type II string theories. The Ramond-
Ramond p-form field strengths are denoted by Cp. The NS-NS sector
always contains the graviton, the Kalb-Ramond 2-form, and the dilaton.

Theory Chiral fermions (MW) Non-chiral fermions (MW)

Type IIA - (ψ̃Lµ , ψ̃
R
µ ), (λ̃L, λ̃R)

Type IIB (ψLµ , ψ
L
µ ), (λR, λR) -

Table 1.2: Fermionic field content of Type II string theories. The fermions
are always Majorana-Weyl (MW) in ten dimensions.

Theory R-R Form Dp-brane source Dual D(6− p)-brane source

Type IIA
C1 D0 D6

C3 D2 D4

C0 - D7

Type IIB C2 D1 D5

C4 D3 D3

Table 1.3: D-brane sources of the various gauge fields in Type II string
theories. In ten dimensions, the Dp branes are dual to D(6− p) branes.

configurations. We illustrate these concepts here by presenting the first evidence,

discovered by Strominger and Vafa [35], that stacks of branes do indeed capture

the microscopic degeneracies of certain black holes.

Starting from Type IIB string theory in ten dimensions, Strominger and Vafa con-

sidered a compactification on K3×S1 to obtain a five-dimensional theory. Here K3

is a four-dimensional space, which is of standard use in string theory compactifica-

tions because it is endowed with special properties. One of the most important of

these properties encodes the behavior of spinor fields living on the manifold under

parallel transport. This is refered to as the holonomy group of the manifold, and

it specifies the number of unbroken supersymmetries after the compactification.

Here, the original supersymmetric ten-dimensional theory has 32 real supercharges

(the dimension of a fundamental spinor in ten dimensions). The internal space K3
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has SU(2) holonomy and the circle S1 has trivial holonomy, which means that the

resulting five-dimensional theory preserves 16 real supercharges [36]. Moreover,

since string theory includes a graviton field in its spectrum, the theory obtained

after compactification is a theory of gravity invariant under 16 real supersymme-

tries, i.e. a supergravity theory. The minimal amount of real supersymmetries

which can be preserved in five dimensions is 8, since a fundamental spinor in five

dimensions has complex dimension four. Thus, we are dealing with an N = 2 su-

pergravity theory after compactification, where N refers to the number of “copies”

of minimal supersymmetry.5 The low-energy effective action of this supergravity

theory (in the Einstein frame) contains the following terms:

− 1

16π

∫
d5x
√
−g
(
R− 4

3
(∇φ)2 − e−4φ/3

4
H2 − e2φ/3

4
F 2
)
, (1.28)

where H is a 2-form field strength arising from the NS-NS 3-form of Type IIB

with one component along the S1, F is the R-R 2-form field strength and φ is the

dilaton. In this theory, a black hole solution can carry charges with respect to

both H and F :

QH = − 1

4π2

∫
S3

∗e−4φ/3H , QF = − 1

16π

∫
S3

∗e2φ/3F , (1.29)

where ∗ denotes the Hodge dual in five dimensions. An extremal dyonic black hole

solution to the equations of motion associated to (1.28) is given by [35]:

ds2 = −
(

1− r2
h

r2

)2

dt2 +

(
1− r2

h

r2

)−2

dr2 + r2dΩ3
2 , (1.30)

where dΩ3
2 is the line-element of the 3-sphere and the horizon is located at

rh =
(8QHQ

2
F

π2

)1/6

. (1.31)

This is simply a five-dimensional dyonic extremal Reissner-Nordström black hole

with charges (QF , QH) and a near-horizon geometry AdS2 × S3. This solution

preserves 4 of the 16 real supercharges of the theory, and this is usually denoted

by saying that the black hole is 1/4-BPS. The Bekenstein-Hawking entropy (1.7)

5Note that we could also adopt a nomenclature based on a four-dimensional perspective:
there, a fundamental spinor has real dimension 4, twice as less as the five-dimensional spinors
owing to the possibility of imposing a Majorana condition in four dimensions [37]. From this
perspective, a supergravity theory preserving 16 real supercharges is naturally denoted as an
N = 4 supergravity theory.
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for this black hole is given by the area of the 3-sphere of radius rh divided by four,

SBH = 2π

√
1

2
Q2
F QH . (1.32)

Note that the action (1.28) (as well as the entropy (1.32)) receives corrections

from both string loop and sigma model perturbation theory [35]. Type IIB string

loop corrections are suppressed by powers of the string coupling constant gs which

is proportional to QF/QH . Sigma model corrections are suppressed by inverse

powers of the Schwarzschild radius which is proportional to
√
Q2
F/QH . Therefore,

validity of (1.32) requires that both charges QF and QH be large.

How can one recover the thermodynamical entropy (1.32) by counting the mi-

crostates available to a D-brane system? Strominger and Vafa gave us the answer

by analyzing the dynamics of a system composed of

• one D5-brane wrapping C × S1, where C is the holomorphic 4-cycle in K3,

•
(

1
2
Q2
F + 1

)
D1-branes wrapping S1.

The R-R 2-form of Type IIB string theory is sourced by both the D1- and D5-

branes (see Table 1.3), and since D5-branes carry a negative D1-brane charge, the

total charge under this 2-form is 1
2
Q2
F . Microscopically, the other charge QH arises

from momentum along the S1 of the internal space.

Since we wish to describe the black hole (1.30) with this microscopic set-up, we

should count states which preserve a quarter of the space-time supersymmetries

(1/4-BPS states). To do so, one can count the states which preserve half of the

supersymmetries of the D-brane worldvolume theory. This is because 1/2-BPS

states in space-time correspond to supersymmetric ground states of the D-brane

worldvolume theory. In the limit where the internal K3 is small compared to the

size of the circle S1, this worldvolume theory is a supersymmetric sigma model

with target space Sym

(
1
2
Q2
F+1
)[

K3
]
, the symmetric product of

(
1
2
Q2
F + 1

)
copies

of K3 [38]. This target space can be intuitively understood as the moduli space

of
(

1
2
Q2
F + 1

)
un-ordered points on K3, corresponding to the D1-branes moving on

the single D5-brane.

For large QH , the degeneracy of 1/2-BPS states in this sigma model can be eval-

uated using the Cardy formula [39]:

d(QH , c) ∼ exp
(

2π

√
QH c

6

)
, (1.33)
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where c is the central charge of the sigma model. For the case at hand, the central

charge is c = 6
(

1
2
Q2
F + 1

)
, which leads to the following statistical entropy for the

D-brane system

SB = log d(QH , QF ) = 2π

√
QH

(1

2
Q2
F + 1

)
. (1.34)

In the limit where QF is also large, the statistical entropy of the microscopic

D-brane configurations agrees with the Bekenstein-Hawking entropy (1.32). Note

that this limit of large charges is the analogue of the thermodynamic limit discussed

in the context of Boltzmann’s equation: large QF means a large number of D1-

brane configurations making up the internal constituents of the black hole (i.e.

a large number of “particles” N) and large QH means a large circle S1 in the

internal manifold. Scaling both the charges uniformly keeps QH/QF ∼ 1/gs fixed

and finite. In this limit, the statistical and thermodynamical entropies do indeed

agree.

This result was the first tantalizing hint that the microscopic degrees of freedom

accessible to the interior of a supersymmetric black hole could be successfully

described by the dynamics of a D-brane system in string theory. Shortly after,

other compactifications of string theory were considered, mostly down to five-

and four-dimensional theories of supergravity admitting BPS black hole solutions

(see e.g. [40]). Again in these cases, it was found that the Bekenstein-Hawking

entropy of black holes could be reproduced from a stack of interacting branes in the

microscopic picture. This correspondence highlights the higher-dimensional origin

of the charges in the black hole solutions, which is always central in the derivation.

In the Strominger-Vafa case, the black hole charges arose as the number of D1-

branes and the momentum along a compactified direction in the microscopic string

theory. It is also important to stress that the success of this benchmark example

and the ones that followed relies on the fact that one can compute (or at least

estimate in some limit) the degeneracies of BPS states in the microscopic string

theory, in part thanks to the constraints imposed by supersymmetry. In fact, we

will see in the next chapter how supersymmetry and further mathematical tools

allow us to go beyond the Cardy formula and obtain also sub-leading corrections

to the microscopic degeneracies of BPS states. But for now, we discuss how

supersymmetry also constrains the macroscopic black hole solutions.

In the rest of this work, we will mainly be interested in so-called 1/2-BPS black

hole solutions of four-dimensional N = 2 supergravity coupled to vector and scalar

fields. These black hole solutions preserve four out of the eight real supercharges
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present in the theory and interpolate between a flat Minkowski vacuum at spatial

infinity and their near-horizon region. Much like in the bosonic case of the extremal

Reissner-Nordström solution (1.6), a symmetry enhancement takes place in this

region: the 1/2-BPS solution is in fact full-BPS near the horizon, which means that

it preserves the full set of eight supercharges present in the theory. This is known as

the BPS attractor mechanism, and was first exhibited in [41]. Full supersymmetry

of the near-horizon region has a wealth of consequences. Among them, imposing

the vanishing of all fermionic variations under supersymmetry shows that four-

dimensional extremal 1/2-BPS black hole solutions have an AdS2×S2 near-horizon

geometry. It also constrains the scalar fields interacting with the black hole to take

definite values in the near-horizon region, and these values are fixed entirely by

the electric and magnetic charges (qI , p
I) of the black hole (here I is an index

running over all the gauge fields in the supergravity theory). In particular, this

near-horizon field configuration is independent of the values the fields take at

space-time infinity: by the time the scalar fields reach the horizon, they have lost

all information about their initial conditions.

As was pointed out earlier, this attractor behavior does not rely on supersymme-

try specifically: it will occur whenever any symmetry gets enhanced. Recalling

once more the case of (1.6), we have seen that extremality enhances the bosonic

symmetries of the near-horizon region in a black hole. Therefore, there also exists

a formulation of the attractor mechanism for extremal black holes which does not

rely on supersymmetry. It is usually referred to as the AdS attractor mechanism

and, in the black hole context, was proposed by Sen in [42]. For supersymmetric

black holes, this mechanism coincides with the BPS attractor mechanism [43], and

it amounts to asking what are the consequences of imposing a certain symmetry

on the black hole horizon (an AdS symmetry in the former case, supersymmetry

in the latter). We now present this mechanism in some detail for four-dimensional

extremal black holes interacting with scalar and vector fields.

Starting from such a black hole solution, we impose SO(2, 1) × SO(3) symmetry

in the near-horizon region. This fixes the value of all the fields in the theory up

to undetermined constants – the near-horizon geometry is AdS2×S2 with sizes v1

and v2 for the two factors, respectively, the gauge fields under which the black

hole is charged have a constant electric field strength eI∗ on the AdS2 factor and a

constant magnetic flux on the 2-sphere with charge pI , and the scalar fields take
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constant values us:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θ dφ2

)
,

φs = us , F I
rt = eI∗ , F I

θφ = pI sin θ . (1.35)

In this setting, let

E(v1, v2, us, e
I
∗, p

I) := 2π
(
−1

2
qIe

I
∗ −

∫
S2

dθ dφ
√
−g L

)
, (1.36)

denote the entropy function, which is built out of the charges and the Lagrangian L

of the theory (possibly including higher-derivative interactions) evaluated on the

near-horizon geometry (1.35) and integrated over the S2. In terms of this func-

tion, the classical equations of motion and Bianchi identities for the various fields

correspond to extremizing E with respect to the parameters,

∂E
∂vi

= 0 ,
∂E
∂us

= 0 ,
∂E
∂eI∗

= 0 . (1.37)

The Bekenstein-Hawking-Wald entropy of the black hole is then equal to the en-

tropy function taken at the attractor values of the fields determined by (1.37):

SBHW = E|attr. . (1.38)

The equations (1.37) and (1.38) are a concise and elegant way to cast the entropy

of black holes as a variational principle in the near-horizon region (such a formu-

lation also exists for the BPS attractor mechanism and is based on a BPS entropy

function defined in [43]). We stress again here that this derivation of the entropy is

not based on the specific Einstein-Hilbert action, but relies solely on the existence

of the SO(2, 1) × SO(3) symmetry in the near-horizon region. This means that

the Lagrangian from which the function E is built can include for example higher-

derivative terms, in which case the entropy computed with the method outlined

above is the Wald entropy introduced in Section 1.2. Moreover, this variational

procedure admits straightforward generalizations to dimensions other than four,

and the possibility to include higher-rank gauge symmetries [42].

As an example, we can use the AdS attractor mechanism to derive the entropy

of the extremal, four-dimensional Reissner-Nordström black hole introduced in

Section 1.1. In this example, there are no scalar fields present but the black hole

is indeed charged under a single U(1) gauge field, so the near-horizon geometry
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takes the form:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θ dφ2

)
,

Frt = e∗ , Fθφ = p sin θ . (1.39)

The Lagrangian of the theory is the sum of the Einstein-Hilbert and Maxwell

Lagrangians

L = − 1

16π
R− 1

4
FµνF

µν . (1.40)

Note that we do not include higher-derivative interactions in this example, so

that the Wald entropy is equal to the Bekenstein-Hawking entropy. We may

evaluate (1.36) on the field configuration (1.39) to find

E(v1, v2, e∗, p) = −πq e∗ − 8π2v1v2

[
− 1

16π

( 2

v1

− 2

v2

)
+

1

2
v−2

1 e2
∗ −

1

2
v−2

2 p2
]
. (1.41)

The first equation of (1.37) yields

v1v2(v1 − v2) = 0 , (1.42)

which sets the AdS2 and S2 factors to have the same overall size v1 = v2 := v,

with v = 4π(e2
∗+ p2). The last extremization equation of (1.37) yields q = −8πe∗.

Finally, (1.38) gives the entropy of the black hole

SBHW = π(q2 + p2) . (1.43)

Comparing to (1.12), this is precisely the Bekenstein-Hawking entropy of the ex-

tremal Reissner-Nordström black hole.

The entropy function E can be thought of as an effective action in the near-

horizon AdS2 factor of extremal four-dimensional black holes, since the equa-

tions of motion and the Bianchi identities correspond to the extremization equa-

tions (1.37). The definition (1.38) correctly reproduces the Bekenstein-Hawking-

Wald entropy for these black holes, although it only provides us with the semi-

classical answer: we have not yet reached a complete answer to the quantum black

hole entropy problem in this Section. However, the next Chapter will show how the

notions introduced above can be nicely generalized to finally allow us to go beyond

the Bekenstein-Hawking-Wald entropy of black hole solutions in supergravity. In

parallel, string-theoretic generalizations of the Strominger-Vafa picture will also

provide a more complete and accurate description of the microscopic degrees of
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freedom in black holes. This program will rely on the effectiveness of comput-

ing the sub-leading corrections to the Bekenstein-Hawking-Wald entropy in both

string theory and supergravity, and comparing these corrections to investigate the

statistical interpretation of black hole entropy in the quantum regime.





Chapter 2

Quantum black hole entropy

Over the past 15 years or so, a more extensive treatment of black hole entropy has

been put forward, relying on string theory results generalizing the Strominger-Vafa

analysis presented in the previous Chapter, as well as improvements made to the

Bekenstein-Hawking-Wald entropy formula in theories of quantum gravity. These

advances have made it possible to go beyond the semi-classical limit and explore

quantum corrections to the Bekenstein-Hawking-Wald formula.

The Strominger-Vafa result (1.34) was obtained using the approximate Cardy for-

mula (1.33) for the statistical entropy of the brane system. There exists standard

D-brane methods to evaluate this statistical entropy with much more accuracy,

eventually leading to an exact result for the degeneracies of a black hole predicted

by string theory. In the following, we present an example that will be especially

relevant in this work, and stress the connection between these results and the

mathematical theory of modular and Jacobi forms. We will then introduce new

concepts in supergravity theories which have allowed for a refined definition of the

thermodynamical entropy of a certain class of extremal dyonic black holes. Com-

puting this quantum entropy and comparing to the results predicted by string

theory will be the focus of the rest of this thesis.

To begin this investigation, it shall be useful to recall how modular forms naturally

appear in the context of microstate counting in string theory. Suppose we are

interested in computing the degeneracy of 1/2-BPS states in Type II string theory

compactified on an internal manifold K3×T 2. This theory is dual to the heterotic

string compactified on a six-dimensional torus T 6. The resulting four-dimensional

low-energy theory is an N = 4 supergravity theory since the K3 breaks half of the

original supersymmetries. The 1/2-BPS states in this theory have zero magnetic

27
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charge but non-zero electric charge Q. They are known as Dabholkar-Harvey

states [44, 45]. They are purely electric and perturbative in the heterotic frame.

The partition function for such states is given by the partition function of the

chiral conformal field theory of 24 left-moving transverse bosons of the heterotic

string [46]. The Hilbert space H of this theory is the Fock space representation

of the commutator algebra of 24 harmonic oscillators representing the transverse

oscillation modes of the string:[
ai n, a

†
j m

]
= δijδn+m,0 , (2.1)

where i, j = 1, . . . , 24 and n,m = 1, 2, . . . ,∞. The Hamiltonian is simply

H =
24∑
i=1

na†i nai n − 1 , (2.2)

and the partition function is given by Z(τ) = TrH
(
qH
)
, where we denote q := e2πiτ .

Each oscillator mode of energy n contributes to the trace, and using the sum of a

geometric series, we immediately find

Z(τ) =
1

q

∞∏
n=1

1

(1− qn)24
. (2.3)

This is the inverse of the product representation of the discriminant function ∆(τ)

which is a modular form of weight 12. The modularity of the partition function is

naturally inherited from the modularity of the torus used in the heterotic string

compactification. This modular symmetry is extremely convenient to evaluate the

Fourier coefficients d(n) of the partition function. By an inverse Fourier transform,

we have that

d(n) =

∫
dτ Z(τ)e−2πinτ =

∫
dτ

e−2πinτ

∆(τ)
. (2.4)

What is the behavior of this quantity as n becomes very large? Most of the

contributions to the integral for large n will arise from the small τ region, so the

large n asymptotics for the degeneracies can be extracted from the knowledge

of the partition function at small τ . As τ → 0 (or equivalently q → 1), the

asymptotics of Z(τ) are very difficult to read off from (2.3) since it is an infinite

product of divergent quantities. But here, we can make use of the fact that the

partition function is the inverse of the discriminant function. Since ∆ is a modular

form of weight 12, we have the identity1 ∆(e2πiτ ) = τ−12∆(e−2πi/τ ), which yields

1We refer the reader to Appendix B for a collection of detailed facts regarding modular forms
and their generalizations.
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for the partition function

Z(τ) = τ 12Z
(
−1

τ

)
. (2.5)

As τ → 0, −1/τ → −∞ or equivalently q̃ := e−2πi/τ → 0. It is now straightforward

to obtain the q̃ → 0 asymptotics of the partition function,

Z
(
−1

τ

)
=

1

q̃

∞∏
n=1

1

(1− q̃n)24
∼ 1

q̃
. (2.6)

Using (2.5), this allows us to write the degeneracies of the 1/2-BPS states in Type

II string theory compactified on K3× T 2 for large n as

d(n) ∼
∫
dτ τ 12 e−2πinτ+ 2πi

τ = 2π n−13/2 I13

(
4π
√
n
)
, (2.7)

which is a Bessel function of the first kind of weight 13. In obtaining this re-

sult, the modular properties of the partition function were of crucial importance.

Various generalizations of the model just presented exist for other types of BPS

states and in different string compactifications, using the more general Jacobi and

Siegel counterparts of modular forms. Before presenting in more detail how this

happens in a specific example, we make some comments about the degeneracies

of Dabholkar-Harvey states just derived.

One may use the asymptotic expansion of the Bessel function of the first kind for

large values of n (B.14) to find the statistical entropy of Dabholkar-Harvey states

in the thermodynamic limit:

SB = log d(n) ∼ 4π
√
n . (2.8)

Here, n is given in terms of the electric charge of the Dabholkar-Harvey state

as n = Q2/2 [46]. Therefore, the statistical entropy (2.8) scales linearly in the

charges, SB ∼ Q. One can construct extremal BPS black hole solutions carry-

ing the same charge quantum numbers as the string states considered here, and

it is reasonable to expect that their Bekenstein-Hawking entropy will reproduce

the leading order statistical entropy (2.8). Unfortunately, the corresponding black

holes (often referred to as small black holes, as their size is comparable to the

string size in the string frame) are mildly singular and have a vanishing classical

horizon [47], and therefore vanishing thermodynamical entropy! The solution to

this apparent discrepancy emphasizes the importance of higher-derivative correc-

tions to the Bekenstein-Hawking entropy: the black hole solution with vanishing

entropy was constructed using only the tree-level low-energy effective action of
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the heterotic string and neglecting higher-derivative terms. It was shown in [48]

that after taking into account the effects due to these higher-derivative terms,

the geometry of the black hole is modified and the area of their horizon becomes

non-zero. Within this effective theory, one can use Wald’s formalism and show

that the Bekenstein-Hawking-Wald entropy now precisely matches the statistical

entropy (2.8) [49].

We now present how the modularity of the partition function of BPS states in

certain string theory compactifications can be used to extract the exact statistical

entropy of a brane system following the original derivation of Maldacena, Moore

and Strominger [50]. This will serve as the basic string-theoretic prediction for

the quantum entropy of a black hole, which we will strive to reproduce using a

low-energy supergravity description.

2.1 1/8-BPS black holes in N = 8 string theory

We begin by considering type IIB string theory compactified on T 6. The internal

manifold has trivial holonomy and therefore does not break any of the 32 super-

symmetries present in the original ten-dimensional theory. Thus, at low energies,

the effective description of the theory is given by N = 8 supergravity in four

dimensions. This theory has a macroscopic 1/8-BPS black hole solution carry-

ing electric and magnetic charges under the various gauge fields in the theory.

The N = 8 string theory has an E7,7(Z) duality group2 with a duality invariant ∆

which is quartic in the charges. In order to compute the microscopic degeneracies,

one goes to a particular duality frame in which there is an explicit description of

the charges of the black hole as charges in the microscopic string theory.

A simple description consists of at least four charges which can be represented as

follows. Writing T 6 = T 4 × S1 × S̃1, one has:

• a D1-brane wrapped on S1,

• a D5-brane wrapped on T 4 × S1,

• n units of momentum along S1,

• ` units of momentum along S̃1,

• one unit of Kaluza-Klein monopole charge on S̃1 [51].

2The discrete nature of this group originates from the fact that the charges in string theory
are quantized and take their values on a discrete lattice.
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In the following, we will refer to this brane system as the D1-D5-P-KK|N=8 system.

The electric and magnetic charge vectors of the black hole are given in terms of

the microscopic charges of the system as

Q2
e/2 = n , Qe ·Qm = ` , Q2

m/2 = 1 . (2.9)

The U-duality invariant in this configuration is ∆ := Q2
eQ

2
m−(Qe ·Qm)2 = 4n−`2.

This invariant is quartic in the charges. We have already seen in Section 1.2 that

the area of a macroscopic dyonic extremal black hole scales quadratically in the

charges, so we should already expect the area and the related Bekenstein-Hawking

entropy to scale as
√

∆.

Using this brane description, one can compute the BPS partition function which is

the generating function of the microscopic index of 1/8-BPS states in the theory:3

ZBPS(τ, z) =
∑
n,`∈Z

c(n, `) qn y` . (2.10)

This quantity was shown to have a simple explicit form in terms of known theta

and eta functions [50]:

ZBPS(τ, z) = ϕ−2,1(τ, z) :=
ϑ1(τ, z)2

η(τ)6
, (2.11)

where

ϑ1(τ, z) = q
1
8
(
y

1
2 − y−

1
2
) ∞∏
n=1

(
1− qn

)(
1− yqn

)(
1− y−1qn

)
,

η(τ) = q
1
24

∞∏
n=1

(
1− qn

)
. (2.12)

The black hole degeneracies are related to the index of 1/8-BPS states in the

theory as [52, 53]:

d(n, `) = (−1)` c(n, `) . (2.13)

The function ϕ−2,1 is an example of a Jacobi form of weight −2 and index 1. We

have collected a number of technical facts regarding Jacobi forms and their gen-

eralizations in Appendix B. At this stage, we simply want to point out that the

transformation properties obeyed by Jacobi forms (see (B.4) and (B.5)) are ex-

tremely constraining and give us great control over their Fourier coefficients c(n, `).

3Here and in the following, we use a notation which is common in number theory and the
discussion of modular and Jacobi forms, q := exp(2πiτ) and y := exp(2πiz).
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As a simple example, the elliptic transformation property (B.5) implies that the

Fourier coefficients of a Jacobi form of index m obey

c(n, `) = C`(4nm−`2) , where C`(4nm− `2) depends only on ` mod 2m. (2.14)

Therefore, for the specific 1/8-BPS black hole inN = 8 supergravity corresponding

to the brane system introduced above (where the Jacobi form has index 1), the

degeneracies (2.15) are a function of 4n− `2 = ∆ only,

d(∆) = (−1)∆+1c(n, `) , with ` = ∆ mod 2 , (2.15)

which is a manifestation of the physical U -duality symmetry. It is also consistent

with the expectation borne out of the attractor mechanism, which guarantees that

the entropy of the black hole must be a function of its electric and magnetic charges

only. The latter are indeed given in terms of the microscopic momenta n and ` of

the brane description according to (2.9).

The modular transformation property (B.4) is so powerful that one has an analytic

formula for all the coefficients of a Jacobi form in terms of its polar coefficients,

which are the Fourier coefficients associated to terms with a negative power of q

in the Fourier expansion. This formula, called the Hardy-Ramanujan-Rademacher

expansion and displayed in (B.11), takes the form of an infinite convergent sum of

Bessel functions (see [54] for a nice exposition).

For the 1/8-BPS states’ partition function (2.11), which is a weak Jacobi form of

weight −2 and index 1, the Rademacher expansion (B.11) yields:

c(n, `) = 2π
(π

2

)7/2
∞∑
c=1

c−9/2Kc(∆) Ĩ7/2

(π√∆

c

)
, with ∆ = 4n− `2 . (2.16)

Here Kc is a particular combination of so-called Kloosterman sums with the

property K1(∆) = 1, and Ĩρ(z) denotes the modified Bessel function of order ρ

(see (B.12) for definitions). Equation (2.16) (together with (2.15)) can be inter-

preted as an exact formula for the degeneracies of the D1-D5-P-KK|N=8 system.

In the limit of large charges (i.e. large ∆), we may use the asymptotic series of the

modified Bessel function (B.14) to estimate the leading contribution to the black

hole entropy. Evidently, this is given by the c = 1 terms in the sum (2.16), and

for ∆→∞, we have

Ĩ7/2

(
π
√

∆
)
∼ exp

(
π
√

∆
)
, (2.17)



Chapter 2 Quantum black hole entropy 33

thus showing that for large ∆ (that is, in the thermodynamic limit), the statistical

entropy of the D1-D5-P-KK|N=8 system computed in [50] is given by

SB ∼ π
√

∆ . (2.18)

This agrees with the Bekenstein-Hawking entropy since the latter scales as
√

∆ in

the limit of large charges.

In Chapter 6, we will investigate 1/4-BPS black hole solutions of N = 4 super-

gravity obtained by compactifying Type IIB on K3×T 2. We have already seen at

the beginning of this Chapter how to obtain the degeneracies of 1/2-BPS states

in this theory, but the 1/4-BPS states come with additional subtleties. A similar,

albeit more technical, analysis of their degeneracies than the one presented for

1/8-BPS states in N = 8 string theory can still be conducted, as we will review

later.

The case discussed in this Section shows that the microscopic string theory can

compute the exact degeneracies of certain D-brane systems very efficiently, ow-

ing to the modular or Jacobi symmetries of the BPS states’ partition function

(naturally inherited from the properties of the internal space used in the com-

pactification down to four dimensions). We now would like to ask the following

question: can these results be reproduced in the low-energy effective description

of string theory? This question amounts to asking whether there exist a recipe

in supergravity to compute the quantum entropy of black holes exactly, that is

by re-summing all quantum corrections to the Bekenstein-Hawking-Wald entropy

fomula. Remarkably, the answer to this question is in the positive for extremal

supersymmetric black holes. To present these results, we should first and foremost

define what we mean by the quantum entropy of these black holes in supergravity

theories. To this end, we now introduce the Quantum Entropy Function (QEF).

Subsequently, we discuss the method used to carry out the computation of this

quantum entropy.

2.2 Sen’s Quantum Entropy Function

We have seen in Section 1.3 that, for extremal black holes, it is possible to cast

the attractor mechanism as a variational principle for the function E introduced

in (1.36). To include the effect of quantum fluctuations of the fields on the black

hole entropy, Sen promotes this variational principle to a functional integral, called
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the quantum entropy, over all the fields of the theory which asymptote to the at-

tractor configuration specified by (1.37) [55]. This is a very natural extension of the

notion of entropy into the quantum realm, analogous to the Feynman path-integral

extension of the classical motion of a physical system obtained by extremizing the

action functional.

The functional integral for the partition function is weighted by the exponential of

the Wilsonian effective action at some fundamental scale defining the theory, such

as the string scale. To make the classical variational problem well-defined, it is nec-

essary to add a boundary term −iqI
∫
AI to the action. With this boundary term,

the quantum partition function can be naturally interpreted as the expectation

value of a Wilson line inserted at the boundary

exp [SQ(q, p)] := W (q, p) =

〈
exp[−i qI

∮
τ

AI ]

〉finite

AdS2

. (2.19)

The angular brackets indicate an integration (with an appropriate measure) over

all the field fluctuations with appropriate AdS2 boundary conditions [55, 56, 57].

Note that these boundary conditions fix all the electric and magnetic charges in

the theory, and naturally lead to a microcanonical ensemble for the statistical

interpretation of this quantum entropy. The superscript “finite” in the expres-

sion (2.19) refers to the fact that the action of the theory is divergent due to the

infinite volume of AdS2, and one therefore needs to regularize it. This is done

by putting a cutoff r0 on the AdS2 geometry so that the proper length of the

boundary scales as 2π
√
vr0, where v is the size of AdS2. Since the classical action

is an integral of a local Lagrangian, it scales as S1r0 + S0 +O(r−1
0 ). The linearly

divergent part can be subtracted by an appropriate boundary counter-term, and

this procedure sets the origin of energy in the boundary theory. After this renor-

malization we can take the cutoff r0 to infinity to obtain a finite functional integral

weighted by the exponential of the finite piece S0. This finite piece is a functional

of all fields and contains arbitrary higher-derivative terms. It is referred to as the

renormalized action Sren.

The main interest of the above definition for the quantum entropy is that it should

correctly reproduce the entropy obtained from a microscopic description of the

black holes provided by string theory. A one-loop evaluation of the functional

integral (2.19) for supersymmetric black holes was conducted in [58, 59], and

the leading logarithmic corrections were successfully matched to the microscopic

predictions. Even a preliminary reading of these papers allows us to appreciate

the technical power used in computing these one-loop corrections. This direct
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method of computing logarithmic corrections is applicable in a wide variety of black

holes, including non-supersymmetric ones. On the other hand, for supersymmetric

solutions, the method of supersymmetric localization allows us to sum up the

contributions from all orders of perturbation theory at one shot. We now present

this method in some generality, in view of applying it to specific four-dimensional

supersymmetric black holes in Chapters 4, 5 and 6.

2.3 Supersymmetric localization

Supersymmetric localization relies on a number of mathematical theorems derived

in the 1980s [60, 61, 62]. It was first suggested that it could be applied to physical

situations to obtain highly non-trivial results in [63]. The work of Pestun [64]

provided definitive evidence that localization in supersymmetric QFTs could be

used to extract meaningful results from a priori very complicated situations.

The basic principle underlying supersymmetric localization can be stated as fol-

lows.4 Suppose we are interested in computing the partition function of a quantum

system, which is given by the path-integral

Z =

∫
DΦ eS[Φ] , (2.20)

where S[Φ] is the action functional for the system and Φ denotes the collection

of quantum fields. Although the computation of this quantity looks at first sight

near impossible (it requires us to perform an infinite-dimensional integral over

the entire field configuration space of the system!), localization shows that in the

presence of a specific symmetry, it is in fact exactly computable. To understand

how this happens, we introduce the following:

• Let Q be a fermionic symmetry of the theory, and Q2 be such that it is

compact and generates isometries of the space-time on which the QFT lives.

• Let S be a Q-invariant action functional, i.e. QS = 0.

• Let V be a fermionic functional of fields such that Q2V = 0.

4The rigor of localization is based on the mathematical work quoted above. We refer the
reader interested in a more formal presentation of the localization arguments to these references,
along with the excellent review [65]. For the purpose of the present work, it will suffice to give
a more physical approach to the localization argument.
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We can then deform the partition function and define

Z(λ) :=

∫
DΦ eS[Φ]+λQV . (2.21)

It can now be shown [63] that this deformed partition function is in fact indepen-

dent of the parameter λ,
d

dλ
Z(λ) = 0 , (2.22)

provided the integration measure of the path-integral is itself invariant under Q

(which we will assume). Equation (2.22) shows that one can deform the initial

action by the bosonic functional QV , hereafter referred to as the localizing action,

without changing the value of the path-integral under consideration. This is ex-

tremely convenient: being interested in the original path-integral Z(0), we can

compute it for any value of the λ parameter, and especially for λ → ∞. In this

regime, the path-integral is entirely dominated by the saddle-point field configura-

tion QV(Φ) = 0. The solution(s) to this equation specify a submanifold of the full

field configuration space, called the localizing manifold MQ, and the path-integral

can be evaluated using the sole knowledge of this submanifold. More precisely, we

have the following exact equation:∫
DΦ eS[Φ] = Z(λ = 0) = Z(λ→∞) =

∫
MQ

[dφ] eS[φ] Z1-loop(φ) , (2.23)

where φ denote the coordinates on MQ, [dφ] a measure taking into account the

curvature of MQ, and Z1-loop is a one-loop functional determinant factor arising

from the quadratic fluctuations of the fields orthogonal to MQ.

Supersymmetric localization shows that the exact evaluation of a complicated

path-integral can be reduced to a much simpler one-loop computation involving

only finite-dimensional, regular integrals. This drastic simplification entirely stems

from the constraining powers of the fermionic symmetry generated by Q. Using

supersymmetry as the fermionic symmetry and applying this formalism to the

quantum entropy function introduced in Section 2.2, we will see in subsequent

Chapters how this general principle allows for an exact computation of the path-

integral (2.19). But before doing so, let us discuss a few key aspects required (or

simply desirable on technical grounds) for supersymmetric localization in general.

Evidently, the most important ingredient of the localization recipe is the super-

charge Q used to build the deformation functional QV(Φ). This supercharge spec-

ifies the localizing manifold and indirectly, the one-loop determinant factor. It
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will therefore be extremely convenient to work in a formalism in which the action

of this supercharge on all fields of the theory is known and fixed once and for

all. This is possible when one works in an off-shell supersymmetric theory, since

in this case the algebra of supercharges closes on all the fields without the need

for imposing equations of motion. In such an off-shell setting, any modifications

to the original action one wishes to localize (for example upon including higher-

derivative terms) will have no bearing on the Q-transformations of the fields and

therefore on the characterization of the localizing manifold. Also, note that for

localization to work, it is only necessary to use a single supercharge. This will be

relevant when dealing with off-shell hypermultiplets in Chapter 5.

Another key aspect in the supersymmetric localization technique is that the path-

integral (2.19) is defined in a Euclidean theory (as evidenced for example by the

periodic integral of the gauge field over the Euclidean time circle parametrized

by τ). Hence, we will have to work with a Euclidean supergravity theory. Such

theories can be obtained using a Wick-rotation and analytic continuation start-

ing from their Minkowskian counterparts, but this procedure usually relies on a

number of prescriptions which may be convention-dependent. In an effort to un-

ambiguously define the Euclidean theory we will make use of in the calculation

of (2.19), we will describe in Chapter 3 how to obtain a fully off-shell Euclidean

theory of supergravity by the method of time-like dimensional reduction.

In the localization procedure, the choice of the fermionic functional V is free.

Choosing two different V ’s will give different-looking intermediate steps in the

localization (for instance different localizing manifolds), but it is a mathematical

theorem that at the very end of the calculation, the two choices should yield the

same final answer. We can therefore exploit this freedom to choose a particularly

convenient fermionic functional:

V =
∑
α

(
Qψα , ψα

)
, (2.24)

where (. , .) is an appropriate inner product, and ψα denote the fermions of the

theory (labelled by the index α). With this choice (and in a bosonic background),

the localizing equations specifying the manifold MQ reduce to BPS equations

QV = 0 ⇐⇒ Qψα = 0 , (2.25)

for all the fermions. This is particularly convenient in the supergravity context,

where BPS equations are extensively studied and already encode much of the

information regarding the geometry of space-time.
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We can now summarize our strategy for studying the quantum entropy of su-

persymmetric black hole solutions and exploring the connection to the statistical

entropy of string theory:

1. We pick a four-dimensional, Euclidean, off-shell, supergravity theory. In this

theory, we focus on an extremal supersymmetric dyonic black hole solution

preserving at least one supercharge Q.

2. We define the macroscopic quantum entropy of the black hole using (2.19).

3. We apply the localization method by finding the localizing manifoldMQ for

all the fields present in the theory, and we compute the one-loop functional

determinant arising from quadratic fluctuations orthogonal to MQ.

4. We evaluate the resulting finite-dimensional integral to obtain an exact an-

swer for the quantum entropy of the black hole under consideration.

5. We compare the result obtained for this macroscopic entropy against the

microscopic predictions of string theory for the same black hole.

If the last step is conclusive, so that there is an agreement between the macroscopic

and microscopic descriptions of the black hole, it provides a non-trivial test that

supergravity is indeed an appropriate low-energy description of string theory and

sheds light on the statistical interpretation of the black hole’s thermodynamical

entropy, including all possible quantum corrections to the area-law of Bekenstein

and Hawking.

To initiate the localization program in supergravity, it will be useful to formally

study the Euclidean supergravity theory in which we will work for step 1. This

theory is built using the method of off-shell time-like dimensional reduction, as is

explained in detail in the next Chapter. Once this off-shell Euclidean supergravity

theory is constructed, we will focus on evaluating the QEF for specific black hole

solutions.
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Supergravity

Quantum Field Theories (QFTs) are in general invariant under certain space-time

and internal symmetries. The familiar space-time symmetries are generated by the

energy-momentum operator Pµ and the Lorentz operators M[µν] which make up the

Poincaré group. Internal symmetries constitute flavor (global) and gauge (local)

symmetries acting on the fields themselves. One can also consider a fermionic

symmetry relating bosons and fermions. This is the notion of supersymmetry.1

This symmetry is generated by spinor charges Qi
α, where α is a space-time spinor

index and i = 1, . . . , N labels the distinct supercharges. For the simplest N = 1

case, the supersymmetry algebra is given by the standard Poincaré algebra of

bosonic charges supplemented by the following commutation relations involving

the spinor charges:

{
Qα, Q̄

β
}

= 2 (γµ)α
β Pµ ,

[Mµν , Qα] = 2 (γµν)α
β Qβ , (3.1)

[Pµ, Qα] = 0 ,

other (anti-)commutators being zero.

The standard construction of gauge theories starting from the symmetry algebra

and gauging it by making the invariance hold locally can naturally be applied

to supersymmetric theories. Doing so, one obtains supergravity theories. Local

invariance under supersymmetry has a wealth of interesting consequences for these

theories, one of the most important of which is that they necessarily must contain a

spin-2 field associated with diffeomorphism invariance of the space-time manifold.

1According to the Haag- Lopuszański-Sohnius theorem, this fermionic symmetry is compatible
with the generic group of symmetries of the S-matrix in a local and unitary QFT [66].

39
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Generator PA MAB D KA

Gauge field eM
A ωM

AB bM fM
A

Parameter ξA εAB ΛD ΛA
K

Table 3.1: The generators of the conformal algebra, along with their asso-
ciated gauge fields and parameters.

In other words, local supersymmetry implies the presence of a metric tensor in the

spectrum, and thus implies gravity. The spin-2 graviton field has a superpartner

called the gravitino, which is a spin-3/2 field, along with possible other lower-spin

fields which furnish the irreducible gravity multiplet. In addition to the graviton

multiplet, one can also couple various interacting matter multiplets to it.

In the vast majority of this work, we will be concerned with specific supergravity

theories which exist in four space-time dimensions, along with their black hole

solutions. However, as was emphasized in Section 2.3, we will need to work in

Euclidean signature in order to apply localization to the computation of black

hole entropy. The four-dimensional Minkowski supergravity theories are well es-

tablished in the literature, but their Euclidean counterparts have so far not been

given the same treatment, so we will derive the theory we need by the method

of time-like dimensional reduction from a five-dimensional Minkowski supergrav-

ity theory. As was also alluded to in Section 2.3, it will be convenient for the

purposes of localization to use an off-shell formulation of supergravity. This can

be conveniently implemented using the method of superconformal multiplet cal-

culus [67, 68].

We now proceed to describe the five-dimensional conformal supergravity theory

which we will dimensionally reduce down to four dimensions.

3.1 Conformal supergravity

The conformal group is the group of symmetries which leave the light-cone invari-

ant. It contains the Poincaré group, along with additional symmetry generators:

the dilatations D and the conformal boosts, or special conformal transformations,

KA. In five dimensions, it is given by the group SO(5, 2). To each of these op-

erators, we associate a gauge field and a transformation parameter according to

Table 3.1. In this Table, the indices A,B = 0, . . . , 4 label the coordinates of a flat
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manifold of Minkowski signature. At this point, this is still an internal manifold,

and we will shortly see how this manifold can be identified with the tangent space

associated to the space-time manifold. Using the SO(5, 2) Lie algebra, one obtains

the transformation rules of the gauge fields under conformal transformations:

δeM
A =DMξA − ΛD eM

A + εAB eMB ,

δωM
AB =DMεAB + 4 ΛK

[AeM
B] + 2 ξ[AfM

B] ,

δbM = ∂MΛD + 2 ΛK
AeMA − ξAfMA , (3.2)

δfM
A =DMΛK

A + ΛDfM
A + εABfMB .

Here, the derivative DM is covariant with respect to Lorentz and dilatation trans-

formations. From these transformation rules, one builds the following curvature

tensors:

R(P )MN
A = 2 ∂[MeN ]

A + 2 b[MeN ]
A − 2ω[M

ABeN ]B ,

R(M)MN
AB = 2 ∂[MωN ]

AB − 2ω[M
ACωN ]C

B − 8 e[M
[AfN ]

B] . (3.3)

Upon imposing algebraic constraints on the curvature, we can relate the internal

transformations (3.2) to space-time transformations. Imposing R(P )MN
A = 0

shows that the P-transformation of the vielbein reduces to a covariant general

coordinate transformation of the space-time manifold. This constraint can also be

solved for the gauge field ωM
AB, which is then identified with the natural spin-

connection of the space-time manifold. Note that because of the dilatations, this

spin-connection contains a term proportional to the gauge field bM and so differs

from the spin-connection one may be familiar with from general relativity. A

second constraint eA
M R(M)MN

AB = 0 can be used to solve for the gauge field of

special conformal transformations:

fM
A = 1

6
R(ω, e)M

A − 1
48
R(ω, e)eM

A , (3.4)

where R(ω, e)M
A = R(ω)MN

ABeB
N is the Ricci tensor and R(ω, e) the corre-

sponding Ricci scalar. As mentioned above, the curvature R(ω)MN
AB reduces to

the usual Riemann curvature of general relativity upon setting bM = 0.

We now combine the conformal algebra with supersymmetry. We will work with

extended N = 2 supersymmetry. The N = 2 superconformal group in five dimen-

sions is given by the supergroup F2(4) [69]. In addition to the symmetry generators

presented above, it contains two distinct type of supersymmetry generators, de-

noted by Qi and Si (where i = 1, 2 for N = 2). For these generators, we have
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Generator PA MAB D KA Vi
j Qi Si

Gauge field eM
A ωM

AB bM fM
A VM i

j ψM
i φM

i

Parameter ξA εAB ΛD ΛA
K ΛSU(2) εi ηi

Table 3.2: The generators of the superconformal algebra, along with their
associated gauge fields and parameters. Bosonic and fermionic generators
are separated by a double line.

(suppressing space-time spinor indices) the usual anti-commutator for the Q’s,

{
Qi, Q̄j

}
= 2 γA PA δ

ij , (3.5)

and the S-supersymmetries close into the generator of conformal boosts:

{
Si, S̄j

}
= −γAKA δ

ij . (3.6)

All commutators and anti-commutators of the F2(4) superalgebra are invariant

under a USp(2) ' SU(2) group, called the automorphism or R-symmetry group

of the superalgebra, and one can associate a gauge field and parameter to the

generator of this transformation to gauge it like all the other symmetries. This

extends Table 3.1 to Table 3.2.

The five-dimensional fields of this conformal supergravity theory organize them-

selves into multiplets of the superconformal algebra F2(4). We distinguish between

the Weyl multiplet, which contains the graviton and its superpartner, and the mat-

ter multiplets, which consist of additional fields living on the curved space-time

whose dynamic is encoded by the Weyl multiplet. One can conformally couple

these matter multiplets to the graviton multiplet to describe the full dynamics of

space-time and matter. Since the theory is completely off-shell, we will also in-

corporate auxiliary fields into each multiplets, so that the superconformal algebra

closes without the need to impose equations of motion.

Starting from the five-dimensional Weyl multiplet, we explain in the next Section

how to effect the time-like dimensional reduction to four dimensions in order to ob-

tain a Euclidean version of four-dimensional N = 2 supergravity. We then repeat

the analysis for the matter multiplets, where we consider vector and hyper multi-

plets. These results will be used in subsequent Chapters to conduct localization

computations related to the quantum entropy of four-dimensional supersymmetric

black holes in Euclidean signature.
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3.2 Conformal N = 2 supergravity in four Eu-

clidean dimensions

The independent fields of the 5D Weyl multiplet consist of the fünfbein eM
A, the

gravitino fields ψM
i, the dilatational gauge field bM , the R-symmetry gauge fields

VMi
j (which is an anti-hermitian, traceless matrix in the SU(2) indices i, j), a

tensor TAB, a scalar D and a spinor χi. All spinor fields are symplectic Majorana

spinors. Our conventions here are as in [70]. The three gauge fields ωM
AB, fM

A

and φM
i, associated with local Lorentz transformations, conformal boosts and S-

supersymmetry, respectively, are not independent as will be discussed later. The

infinitesimal Q, S and K transformations of the independent fields, parametrized

by spinors εi and ηi and a vector ΛK
A, respectively, are as follows,2

δeM
A = ε̄iγ

AψM
i ,

δψM
i = 2DMεi + 1

2
iTAB(3 γABγM − γMγAB)εi − iγMη

i ,

δVMi
j = 6i ε̄iφM

j − 16 ε̄iγMχ
j − 3i η̄iψM

j + δij [−3i ε̄kφM
k + 8 ε̄kγMχ

k + 3
2
i η̄kψM

k] ,

δbM = iε̄iφM
i − 4ε̄iγMχ

i + 1
2
iη̄iψM

i + 2 ΛK
A eMA , (3.7)

δTAB = 4
3
i ε̄iγABχ

i − 1
4
i ε̄iRAB

i(Q) ,

δχi = 1
2
εiD + 1

64
RMNj

i(V ) γMNεj + 3
64

i(3 γAB /D + /DγAB)TAB ε
i

− 3
16
TABTCDγ

ABCDεi + 3
16
TABγ

ABηi ,

δD = 2 ε̄i /Dχ
i − 2i ε̄iTAB γ

ABχi − iη̄iχ
i .

Under local scale transformations the fields and transformation parameters trans-

form as indicated in Table 3.3. The derivatives DM are covariant with respect to

all the bosonic gauge symmetries with the exception of the conformal boosts. In

particular we note

DMεi =
(
∂M − 1

4
ωM

CD γCD + 1
2
bM
)
εi + 1

2
VMj

i εj , (3.8)

where the gauge fields transform under their respective gauge transformations

according to δωM
AB = DMεAB, δbM = DMΛD and δVMi

j = −2DMΛi
j, with

(Λi
j)∗ ≡ Λi

j = −Λj
i. The derivatives DM are covariant with respect to all the

superconformal symmetries.

2In five dimensions we consistently use world indices M,N, . . . and tangent space indices
A,B, . . . For fields that do not carry such indices the distinction between 5D and 4D fields may
not always be manifest, but it will be specified in the text whenever necessary.



44 Chapter 3 Supergravity

Weyl multiplet parameters

field eM
A ψM

i bM VM i
j TAB χi D ωM

AB fM
A φM

i εi ηi

w −1 −1
2

0 0 1 3
2

2 0 1 1
2

−1
2

1
2

Table 3.3: Weyl weights w of the Weyl multiplet component fields and the
supersymmetry transformation parameters in five space-time dimensions.

The above supersymmetry variations and the conventional constraints involve a

number of supercovariant curvature tensors, denoted by R(P )MN
A, R(M)MN

AB,

R(D)MN , R(K)AB
A R(V )MNi

j, R(Q)MN
i and R(S)MN

i whose explicit form can

be found in [70]. The conventional constraints,

R(P )MN
A = 0 ,

γMR(Q)MN
i = 0 , (3.9)

eA
M R(M)MN

AB = 0 ,

determine the gauge fields ωM
AB, fM

A and φM
i. These constraints lead to ad-

ditional conditions on the curvatures when combined with the Bianchi identities.

In this way one can derive R(M)[ABC]D = 0 = R(D)AB and the pair-exchange

property R(M)ABCD = R(M)CDAB from the first and the third constraint. The

second constraint, which implies also that γ[MNR(Q)PQ]
i = 0, determines the

curvature R(S)MN
i. We are not primarily interested in exhibiting the detailed

relation between the 5D and 4D fields, although this is an obvious by-product of

the dimensional reduction.

The reduction to four space-time dimensions is effected by first carrying out the

standard Kaluza-Klein decompositions on the various fields that will ensure that

the resulting 4D fields will transform consistently under four-dimensional diffeo-

morphisms. The 5D space-time coordinates xM are decomposed into four coordi-

nates xµ and a fifth coordinate x5̂. The dependence on this fifth coordinate will be

suppressed in the reduction. Likewise the tangent-space indices A decompose into

the four indices a = 1, 2, 3, 4 and a fifth index A = 5. In Pauli-Källén notation

one of the coordinates is imaginary so that the 5D space-time signature will be a

permutation of (− + + + +). In [70] the fifth coordinate x5̂ was real, so that the

reduced theory was based on a four-dimensional Minkowskian space-time. Here,

we consider the time-like reduction where the fifth coordinate is purely imaginary.

Upon the reduction, where the dependence on the fifth coordinate is suppressed,
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the resulting theory will then be based on a four-dimensional Euclidean space. An

important observation is that the results of [70] were obtained using Pauli-Källén

conventions, which enables a direct conversion into the Euclidean theory by an ap-

propriate change of the reality conditions on the fields. One simply has to include

factors ±i whenever dealing with the fifth world or tangent-space component. For

instance, the fifth coordinate of xM takes the form x5̂ = ix0, so that the fifth com-

ponent of a contravariant vector field V 5̂ will be imaginary and can be written as

iV 0, where V0 is real. For a covariant vector the fifth component W5̂ will instead

be equal to −iW0, where W0 is real. A corresponding rule applies to tangent-space

vectors.

After this general introduction we will exhibit the consequences of the above strat-

egy. As is standard, the vielbein field and the dilatational gauge field are first

written in special form, by means of an appropriate local Lorentz transformation

and a conformal boost in the time direction, respectively. In obvious notation,

eM
A =

eµ
a iBµφ

−1

0 φ−1

 , eA
M =

ea
µ −iea

νBν

0 φ

 , bM =

bµ
0

 .

(3.10)

Note that the vielbein field is not real because we will keep using the tangent-

space indices A = 1, . . . , 5. As compared to the space-like reduction [70], the

field φ has remained unchanged while the Kaluza-Klein gauge field Bµ requires

a factor i so that it remains real. All the fields on the right-hand side of (3.10)

are now real and possible sign factors depend on whether we have suppressed an

upper coordinate A = 5 and/or a lower coordinate M = 5̂. The fields now carry

only four-dimensional world and tangent-space indices, µ, ν, . . . and a, b, . . ., taking

four values while the components referring to the fifth direction will be suppressed.

Observe that the scaling weights for eM
A and eµ

a are equal to w = −1, while for

φ we have w = 1. The fields bM , bµ and Bµ carry weight w = 0.

For the fermions there is no need to introduce a new notation, because the spinors

have an equal number of components in five and four space-time dimensions. In

five dimensions, we employ symplectic Majorana spinors χi with i = 1, 2 subject

to the reality constraint,3

C−1χ̄i
T = εijχ

j , (3.11)

3 The charge conjugation matrix C has the properties CγAC
−1 = γA

T, with CT = −C and
C† = C−1. The 5D gamma matrices in Pauli-Källén notation satisfy γABCDE = 1 εABCDE .
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where the Dirac conjugate is defined as χ̄ = χ†γ5. Observe that we adhere to the

convention according to which raising or lowering of SU(2) indices is effected by

complex conjugation. For fermionic bilinears, with five-dimensional spinor fields

ψi and ϕi and a spinor matrix Γ constructed from products of gamma matrices,

we note the following result,

(ϕ̄jγ
5Γ†γ5ψi)† = ψ̄i Γϕ

j = −δij ϕ̄k C−1 ΓT C ψk + ϕ̄iC
−1 ΓT C ψj . (3.12)

Hence the bilinearsOi
j equal to i ψ̄i ϕ

j, ψ̄iγAϕ
j and i ψ̄iγABϕ

j are pseudo-hermitean:

Oi
j = εikεjlOk

l (provided A,B, . . . = 1, . . . , 4; in Pauli-Källén convention γ5 ac-

quires an additional minus sign which is related to the definition of the Dirac

conjugate). In the context of the spinors special care is required in converting

from Minkoswki to Euclidean signature, because (Fierz) reordering of the spinors

depends sensitively on whether the spinor is a Majorana or an anti-Majorana field.

Observe that the gravitino field ψ5̂ with its world index in the fifth directions will

be an anti-Majorana field. This will be properly accounted for in the Kaluza-Klein

ansätze, which will include the proper factors of the imaginary unit, as can be seen

in Appendix C.

3.2.1 Off-shell dimensional reduction: the Weyl multiplet

Here we summarize the results for the superconformal transformation rules in 4D

Euclidean supergravity which are obtained in Appendix C. We present the trans-

formation rules of the superconformal fields, as well as the covariant curvatures

which are needed. We refrain from presenting the full list of superconformal cur-

vatures and the identities one can derive for them, as these will not be needed

later on. We do refer the interested reader to the original publication [A4] where

more details are given. Note that in contrast to the Minkowski case where four-

dimensional N = 2 conformal supergravity has a SU(2) × U(1) R-symmetry, the

Euclidean theory has a non-compact SU(2)×SO(1, 1) R-symmetry as exhibited in

Appendix C. The conventions used for four-dimensional spinors are given in Ap-

pendix C as well, and in particular they satisfy the symplectic Majorana reality

condition (C.37). The Weyl and chiral weights of the independent fields of the

Weyl multiplet have been collected in Table 3.4.
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Weyl multiplet parameters

field eµ
a ψµ

i bµ Aµ Vµij T±ab χi D ωabµ fµ
a φµ

i εi ηi

w −1 −1
2

0 0 0 1 3
2

2 0 1 1
2

−1
2

1
2

c 0 −1
2

0 0 0 ±1 −1
2

0 0 0 −1
2
−1

2
−1

2

γ5 + + − + −

Table 3.4: Weyl and chiral weights (w and c) and fermion chirality (γ5)
of the Weyl multiplet fields and the transformation parameters in four
space-time dimensions.

Under Q-supersymmetry, S-supersymmetry and special conformal transformations

the independent fields of the Weyl multiplet transform as follows,

δeµ
a = ε̄iγ

5γaψµ
i ,

δψµ
i = 2Dµεi + 1

16
i (T+

ab + T−ab)γ
abγµε

i − i γµη
i ,

δbµ = 1
2
i ε̄iγ

5φµ
i − 3

4
ε̄iγ

5γµχ
i + 1

2
i η̄iγ

5ψµ
i + ΛK

aeµa ,

δAµ = − 1
2
i ε̄iφµ

i − 3
4
ε̄iγµχ

i − 1
2
i η̄iψµ

i ,

δVµij = 2i ε̄jγ
5φµ

i − 3 ε̄jγ
5γµχ

i − 2i η̄jγ
5ψµ

i (3.13)

− 1
2
δij
(
2i ε̄kγ

5φµ
k − 3 ε̄kγ

5γµχ
k − 2i η̄kγ

5ψµ
k
)
,

δT±ab = − 8i ε̄iγ
5R(Q)±ab

i ,

δχi = 1
24

iγab /D(T+
ab + T−ab)ε

i + 1
6
R(V)ab

i
jγ

abεj − 1
3
R(A)abγ

abγ5εi +Dεi

+ 1
24

(T+
ab + T−ab)γ

abηi ,

δD = ε̄iγ
5 /Dχi .

Here εi denotes the symplectic Majorana parameter of Q-supersymmetry, ηi the

symplectic Majorana parameter of S-supersymmetry, and ΛK
a is the transforma-

tion parameter for special conformal boosts. The full superconformal covariant

derivative is denoted by Dµ, while Dµ denotes a covariant derivative with respect

to Lorentz, dilatation, chiral SO(1, 1), and SU(2) transformations. In particular,

Dµεi =
(
∂µ − 1

4
ωµ

ab γab + 1
2
bµ + 1

2
Aµγ

5
)
εi + 1

2
Vµij εj . (3.14)
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We will also need the covariant curvatures of certain gauge symmetries, which take

the following form,

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b − 1
2
ψ̄i[µγ

5γaψν]
i ,

R(Q)µν
i = 2D[µψν]

i − i γ[µφν]
i + 1

16
i (T+

ab + T−ab) γ
abγ[µψν]

i ,

R(D)µν = 2 ∂[µbν] − 2 f[µ
aeν]a − 1

2
i ψ̄i[µγ

5φν]
i + 3

4
ψ̄i[µγ

5γν]χ
i ,

R(A)µν = 2 ∂[µAν] + 1
2
i ψ̄i[µφν]

i + 3
4
ψ̄i[µγν]χ

i ,

R(V)µν
i
j = 2 ∂[µVν]

i
j + V[µ

i
k Vν]

k
j (3.15)

− 2i ψ̄j[µγ
5φν]

i + 3 ψ̄j[µγ
5γν]χ

i + 1
2
δij
(
2i ψ̄k[µγ

5φν]
k − 3 ψ̄k[µγ

5γν]χ
k
)
,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] + 1
2
i ψ̄i[µγ

5φν
i

− 1
8
i ψ̄µ iγ

5ψν
i (T ab+ + T ab−)− 3

4
ψ̄i[µγ

5γν]γ
abχi − ψ̄i[µγ5γν]R(Q)ab i .

The theory includes three conventional constraints (which have already been in-

corporated in (3.15)), given by

R(P )µν
a = 0 ,

γµR(Q)µν
i + 3

2
γνχ

i = 0 , (3.16)

eνbR(M)µνa
b − R̃(A)µa + 1

16
T+
ab T

− b
µ − 3

2
D eµa = 0 .

These constraints are S-invariant, and they determine the fields ωµ
ab, φµ

i and fµ
a

in terms of the independent fields of the Weyl multiplet. For instance,

ωµ
ab = − 2 eν[a∂[µeν]

b] − eν[aeb]σeµc ∂σeν
c − 2 eµ

[aeb]νbν

− 1
4

(
2 ψ̄µ iγ

5γ[aψb]i + ψ̄aiγ
5γµψ

b i
)
, (3.17)

φµ
i = − 1

2
i
(
γρσγµ − 1

3
γµγ

ρσ
) (
Dρψσi + 1

32
i (T+

ab + T−ab)γ
abγρψσ

i + 1
4
γρσχ

i
)
.

We will also need the bosonic part of the expression for the uncontracted connec-

tion fµ
a,

fµ
a = 1

2
R(ω, e)µ

a − 1
4

(
D + 1

3
R(ω, e)

)
eµ
a − 1

2
R̃(A)µ

a − 1
32
T−µb T

+ ba , (3.18)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the

corresponding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin

connection field ωµ
ab, given in (3.17).

The transformations of ωµ
ab, φµ

i and fµ
a are induced by the constraints (3.16).

We refrain from presenting their explicit expressions, as they will not be needed
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in what follows. They can be found in [A4].

3.2.2 Electric-magnetic duality

We now briefly discuss how electric-magnetic duality in the Euclidean theory is

the same as in the Minkowski theory [71, 72].

Start from a Lagrangian L(F ) which depends on n abelian selfdual and anti-

selfdual field strengths Fµν
I± (but not on their derivatives) and possibly on other

fields. The field equations are defined in terms of the tensors

Gµν
I
± = 2

∂L

∂FµνI±
. (3.19)

The corresponding Bianchi identities and equations of motion then take a func-

tionally similar form,

∂µ
(
Fµν

I+ − FµνI−
)

= 0 = ∂µ
(
GµνI

+ +GµνI
−) . (3.20)

Obviously these equations are invariant under the electric-magnetic duality trans-

formations,FµνI±
GµνJ

±

 −→
 F̃µνI±
G̃µνJ

±

 =

 U I
K ±ZIL

±WJK VJ
L


FµνK±
GµνL

±

 , (3.21)

where F̃µν
I±, and G̃µνJ

± denote the transformed field strengths (and not the Hodge

dual). Here the n×n submatrices U I
K , ZIL, WJK and VJ

L are real. The question

is now whether the rotated tensors G̃µνJ
± can again follow from a new Lagrangian

L̃(F̃ ) in analogy with (3.19). In that case there may be a different Lagrangian

that leads to an equivalent set of Bianchi identities and equations of motion. As

it turns out, this imposes the following restriction on the matrices in (3.21),

UTV −WTZ = V UT −WZT = 1l ,

UTW = WTU , ZTV = V TZ . (3.22)
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which are equivalent to U ±Z

±W V


0 −1l

1l 0


 U ±Z

±W V


T

=

0 −1l

1l 0

 , (3.23)

Hence the electric-magnetic dualities form a group of equivalence transformations

that connect different Lagrangians which describe the same physics since the equa-

tions of motion and the Bianchies identities are the same. As is clear from (3.22),

this group is Sp(2n;R), the same group as in the Minkowski theory [71, 72].

Note that the above results follow from the observation that the two Lagrangians

L̃ and L are related by

L̃(F̃ )− 1
4
F̃µν

I+ G̃µν
I
+− 1

4
F̃µν

I− G̃µν
I
− = L(F )− 1

4
Fµν

I+Gµν
I
+− 1

4
Fµν

I−Gµν
I
− , (3.24)

up to terms that are independent of Fµν
I±

3.2.3 Off-shell dimensional reduction; matter multiplets

In this Section we repeat the same analysis as in Section 3.2.1, but now applied to

the vector multiplet and the hypermultiplet. We refrain from presenting similar

results for tensor multiplets. They can be derived by the same method, or, alterna-

tively, they can be found by considering a composite tensor multiplet constructed

from the square of a vector multiplet.

In five space-time dimensions the vector supermultiplet consists of a real scalar σ,

a gauge field Wµ, a triplet of (auxiliary) fields Y ij, and a fermion field Ωi. Under

Q- and S-supersymmetry these fields transform as follows [70],

δσ = i ε̄iΩ
i ,

δΩi = − 1
2
(F̂AB − 4σTAB)γABεi − i /Dσεi − 2εjk Y

ijεk + σ ηi ,

δWM = ε̄iγMΩi − iσ ε̄iψM
i ,

δY ij = εk(i ε̄k /DΩj) + 2iεk(i ε̄k(−1
4
TABγ

ABΩj) + 4σχj))− 1
2
iεk(i η̄kΩ

j) . (3.25)

where (Y ij)∗ ≡ Yij = εikεjlY
kl, and the supercovariant field strength is defined as,

F̂MN(W ) = 2 ∂[MWN ] − Ω̄iγ[MψN ]
i + 1

2
iσ ψ̄[MiψN ]

i . (3.26)



Chapter 3 Supergravity 51

vector multiplet hypermultiplet

field σ Wµ Ωi Yij Ai
α ζα

w 1 0 3
2

2 3
2

2

Table 3.5: Weyl weights w of the vector multiplet and the hypermultiplet
component fields in five space-time dimensions.

The fields behave under local scale transformations according to the weights shown

in Table 3.5.

The reduction proceeds in the same way as before, except that we now have the ad-

vantage that some of the 4D fields belonging to the 4D Weyl multiplet have already

been identified. We decompose the 5D gauge field WM into a four-dimensional

gauge field Wµ and a scalar−iW = W5̂ by using the standard Kaluza-Klein ansatz,

and write the Q- and S-transformation rules, including the compensating Lorentz

transformation (C.1). Just as in (C.32) we introduce an R-covariant spinor field

field,

(Ωi +W ψ̂i)
∣∣Rcov

= exp[−1
2
ϕγ5] (Ωi +W ψ̂i) , (3.27)

which transforms under SO(1, 1). In terms of the chiral R-covariant spinor fields,

we derive the following transformation rules,

δ
[
e∓ϕ(σ ± φW )

]
= ± i ε̄i(1± γ5)

(
Ωi +W ψ̂i

)
,

δWµ = 1
2
ε̄i
[
γµ(1− γ5)(Ωi +W ψ̂i)− i(σ − φW )eϕ(1 + γ5)ψµ

i
]

− 1
2
ε̄i
[
γµ(1 + γ5)(Ωi +W ψ̂i)− i(σ + φW )e−ϕ(1− γ5)ψµ

i
]
,

δ(1± γ5)
(
Ωi +W ψ̂i

)
= − 1

2

[
F̂ (W )ab − 1

8
(σ ∓ φW ) T̂ab

]
γab(1± γ5)εi (3.28)

− i /D
[
(σ ± φW )e∓ϕ

]
(1∓ γ5)εi − 2Ŷ ikεkj(1± γ5)εj

+ (σ ± φW )e∓ϕ(1± γ5)ηi ,

where Ŷ ij is defined by:

Ŷ ij = Y ij − 1
2
W V̂k

i εjk + 1
2
iφ−1 (Ω̄kγ

5 − 1
2
σφ−1 ¯̂

ψk)ψ̂
(i εj)k . (3.29)

Note that in (3.28), we have again suppressed the field-dependent S-supersymmetry

and SU(2) R-symmetry transformations given in (C.10).
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At this stage, we can cast the transformation rules (3.28) in a form which we will

use in the following. This is done by first making the following field redefinitions:

(σ + φW )e−ϕ := 2X , (σ − φW )eϕ := 2 X̄ ,

(Ωi +Wψ̂i) :=λi , Ŷij := 1
2
Yij . (3.30)

In terms of the newly introduced fields, (3.28) takes the form

δX = i ε̄iP+λ
i ,

δX̄ = −i ε̄iP−λ
i ,

δWµ = ε̄iγµP−λ
i − ε̄iγµP+λ

i + 2i
[
X ε̄iP−ψµ

i − X̄ ε̄iP+ψµ
i
]
, (3.31)

δ(P+λ
i) = −1

2

[
F̂ (W )ab − 1

4
X̄Tab

]
γabP+ε

i − 2i /DX P−ε
i − Y i

jP+ε
j + 2XP+η

i ,

δ(P−λ
i) = −1

2

[
F̂ (W )ab − 1

4
XTab

]
γabP−ε

i − 2i /DX̄ P+ε
i − Y i

jP−ε
j + 2 X̄P−η

i ,

δY i
j = −2 ε̄jγ

5 /Dλi + δij ε̄kγ
5 /Dλk ,

where we have introduced the short-hand notation for the Weyl projectors

P± = 1
2
(1± γ5) . (3.32)

We now make additional field redefinitions. This is done so as to match the con-

ventions which were chosen in the original works [A1, A2] forming the basis of

the next Chapters, since the analysis conducted there (based on previous works

like [73]) specifically uses an imaginary T tensor, a complex vector field Wµ and

complex scalar fields X, X̄. This is not the most natural choice from the point of

view of the dimensional reduction, where the reality conditions of fields are inher-

ited from five dimensions, but it is still a consistent set of conventions. We should

point out that this choice is an artefact of using a Wick-rotated and analytically

continued Minkowski theory as the basis for the Euclidean theory, a procedure

which relies on a number of prescriptions and convention choices. Thanks to the

results of this Chapter we can now avoid using such a procedure and work directly

in the Euclidean theory that was derived from five dimensions, albeit after mak-

ing simple field redefinitions to match the conventions and reality conditions on

fields used in the Wick-rotated theory. To implement this, we make the following

replacements:

T−ab → −iT−ab , T+
ab → iT+

ab , X → iX , X̄ → −iX̄ , Wµ → −Wµ . (3.33)
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With these changes, the transformations under Q- and S-supersymmetry of the

fermions in the Weyl multiplet and of the vector multiplet fields now take the form

δ(P±ψµ
i) = 2Dµ(P±ε

i)± 1
16

(T+
ab + T−ab)γ

abγµP∓ε
i − i γµP∓η

i , (3.34)

δ(P±χ
i) = ± 1

24
γab /D(T+

ab + T−ab)P∓ε
i + 1

6
R(V)ab

i
jγ

abP±ε
j ∓ 1

3
R(A)abγ

abP±ε
i

+DP±ε
i ∓ 1

24
i (T+

ab + T−ab)γ
abP±η

i ,

and

δX = ε̄iP+λ
i ,

δX̄ = ε̄iP−λ
i ,

δWµ = ε̄iγµP+λ
i − ε̄iγµP−λi + 2

[
X ε̄iP−ψµ

i + X̄ ε̄iP+ψµ
i
]
, (3.35)

δ(P+λ
i) = 1

2

[
F̂ (W )ab − 1

4
X̄Tab

]
γabP+ε

i + 2 /DXP−ε
i − Y i

jP+ε
j + 2iXP+η

i ,

δ(P−λ
i) = 1

2

[
F̂ (W )ab − 1

4
XTab

]
γabP−ε

i − 2 /DX̄P+ε
i − Y i

jP−ε
j − 2i X̄P−η

i ,

δY i
j = − 2 ε̄jγ

5 /Dλi + δij ε̄kγ
5 /Dλk .

These two sets of transformation rules will be extensively used in the following

Chapters. We do not present the details of the other transformation rules after

the redefinitions (3.33), as they will not be needed in what follows.

Hypermultiplets are associated with target spaces of dimension 4r that are hy-

perkähler cones [74]. The five-dimensional supersymmetry transformations are

most conveniently written in terms of the sections Ai
α(φ), where α = 1, 2, . . . , 2r,

δAi
α = 2i ε̄iζ

α ,

δζα = − i /DAi
αεi + 3

2
Ai

αηi . (3.36)

The Ai
α are the local sections of an Sp(r) × Sp(1) bundle. We also note the

existence of a covariantly constant skew-symmetric tensor Ωαβ (and its complex

conjugate Ωαβ satisfying ΩβγΩγα = −δαβ), and the symplectic Majorana condition

for the spinors reads as C−1ζ̄α
T = Ωαβ ζ

β. Covariant derivatives contain the

Sp(r) connection ΓA
α
β, associated with rotations of the fermions. The sections

Ai
α are pseudo-real, i.e. they are subject to the constraint, Ai

αεijΩαβ = Ajβ ≡
(Aj

β)∗. The information on the target-space metric is contained in the so-called

hyperkähler potential. For our purpose the geometry of the hyperkähler cone is

not relevant. Hence we assume that the cone is flat, so that the target-space

connections and curvatures will vanish. The extension to non-trivial hyperkähler
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vector multiplet hypermultiplet

field X Wµ Ωi Y ij Ai
α ζα

w 1 0 3
2

2 1 3
2

c −1 0 −1
2

0 0 −1
2

γ5 + −

Table 3.6: Weyl and chiral weights (w and c) and fermion chirality (γ5)
of the vector multiplet and the hypermultiplet component fields in four
space-time dimensions.

cone geometries is straightforward. For the local scale transformations we refer

again to the weights shown in Table 3.5.

The hypermultiplet is not realized as an off-shell supermultiplet. Closure of the

superconformal transformations is only realized upon using fermionic field equa-

tions, but this fact does not represent a serious problem in what follows. The 4D

fields have, however, different Weyl weights as is shown in Table 3.6. This has

been taken into account in the reduction, by scaling Ai
α by a factor φ−1/2, as can

be seen below. Furthermore we define an R-covariant spinor combination,

(φ−1/2ζα− 1
2
φ−3/2Aj

αγ5ψj)
∣∣Rcov

= exp[1
2
ϕγ5] (φ−1/2ζα− 1

2
φ−3/2Aj

αγ5ψj) . (3.37)

The 4D Q- and S-supersymmetry variations take the following form, again in

terms of R-covariant chiral spinors,

δ(φ−1/2Ai
α) = 2i ε̄iP+

(
φ−1/2ζα − 1

2
φ−3/2Aj

αγ5ψj
)

− 2i ε̄iP−
(
φ−1/2ζα − 1

2
φ−3/2Aj

αγ5ψj
)
, (3.38)

δ
(
P±
(
φ−1/2ζα − 1

2
φ−3/2Aj

αγ5ψj
))

= −i /D(φ−1/2Ai
α)P∓ε

i + φ−1/2Ai
αP±η

i ,

where, as before, we suppressed the S-supersymmetry and R-symmetry transfor-

mations with field-dependent parameters. Note that the proportionality factor

in front of the 4D S-supersymmetry variation has changed as compared to the

5D result (3.36). We can again make a simple field redefinition to bring these

transformation rules into a convenient form. Let

φ−1/2Ai
α := Ãi

α , φ−1/2ζα − 1
2
φ−3/2Aj

αγ5ψj := ζ̃α . (3.39)
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In terms of these fields, (3.38) takes the form

δÃi
α = 2i ε̄iP+ζ̃

α − 2i ε̄iP−ζ̃
α ,

δ
(
P±ζ̃

α
)

= − i /DÃi
αP∓ε

i + Ãi
αP±η

i , (3.40)

These transformation rules will be used in Chater 5, where for clarity we will drop

the tilde on the scalar sections and the hyperini.

3.2.4 Supergravity algebra

With the help of the transformation rules for the various fields just derived, we

can write down the algebra of Q- and S-supersymmetries for the Euclidean N = 2

supergravity theory. This algebra closes off-shell on all the fields of the Weyl and

vector multiplets, and closes on-shell on the hypermultiplet fields (for which one

needs to use fermionic equations of motion). As expected from the general discus-

sion at the beginning of this Chapter, two successive Q-transformations generate

a general coordinate transformation, along with additional symmetries: a Lorentz

transformation, a K- and an S-transformation and in addition a gauge transforma-

tion acting on the vector fields present in the vector multiplets, since they come

with their own gauge symmetries:

[
δQ(ε1), δQ(ε2)

]
= δcgct(ξ) + δM(εab) + δK(Λ̂K

a) + δS(η̂i) + δgauge . (3.41)

The parameters of the various transformations are given by

ξµ = 2 ε̄2 iγ
µP−ε1

i − 2 ε̄2 iγ
µP+ε1

i ,

εab = 1
2
ε̄2 iP−ε1

i T−ab + 1
2
ε̄2 iP+ε1

i T+
ab , (3.42)

Λ̂K
a = − 1

2
ε̄2 iP−ε1

iDbT
−ba − 1

2
ε̄2 iP+ε1

iDbT
+ba + 3

2
ε̄2 iγ

aγ5ε1
iD ,

η̂i = − 6i ε̄j[1P−ε2]
i χj .

The remaining gauge transformation acting on vector fields is parametrized by

δgaugeWµ = ∂µ
(
4 ε̄2 iP+ε1

i X̄ + 4 ε̄2 iP−ε1
iX
)
. (3.43)

The additional commutators of a Q-transformation with an S-transformation and

of two successive S-transformations will not be needed in what follows.
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This concludes the analysis of the Weyl, vector and hyper multiplets in Euclidean

signature. All the transformation rules have been obtained using the method

of time-like dimensional reduction from the Minkowski 5D theory, as explained

in Appendix C. Moreover, the four-dimensional superconformal algebra on the

Weyl multiplet and the vector multiplets is realized off-shell (without imposing

equations of motion). These off-shell Euclidean transformation rules will serve as

a basis for all the following Chapters.

Obviously, many more details regarding the Euclidean theory can be given, and

they are interesting in their own right. Most of these details are discussed in the

publication [A4], but they are not needed for the analysis which is presented in

the following Chapters, so we do not elaborate on them here. We should however

point out that, as in the Minkwoski case, the superconformal gravity theory ob-

tained here is gauge-equivalent to the N = 2 Poincaré supergravity theory. That

is, upon gauge-fixing the extra conformal (super)symmetries (the dilatations, spe-

cial conformal transformations and S-supersymmetry), one obtains the Poincaré

theory.

Recall also from the Minkowski case that gauge-fixing the dilatations requires an

additional vector multiplet [68], which is called a compensating multiplet (it is

required so that the Einstein-Hilbert term in the gauge-fixed supergravity action

has the canonical form). Thus, the coupling of nv +1 vector multiplets to the Weyl

multiplet is gauge-equivalent to a Poincaré supergravity theory of one graviton

multiplet coupled to nv vector multiplets. In the conformal setting, we will always

consider the coupling of nv +1 vector multiplets to the Weyl multiplet to take into

account this extra compensating vector multiplet.

In the Euclidean theory just derived, we will be interested in 1/2-BPS black hole

solutions and their quantum entropy defined as the path-integral (2.19). In the

previous Chapter, we presented an exact result for the degeneracies of 1/8-BPS

states in N = 8 string theory, which are given by (2.16). With some anticipation,

we also mentioned that a similar result can be derived for 1/4-BPS states in N = 4

string theory (this will be the topic of Chapter 6). An inquisitive reader might

then wonder: why focus on N = 2 supergravity theories if we want to compare

the results of the localizing program applied to the QEF to results obtained in

N = 4 or N = 8 string theories? The reason is that, at present, no covariant

off-shell formulations of N = 4 and N = 8 supergravity theories is known. This

hampers the localization program laid out in the previous Chapter since, as we

explained, it is desirable to use an off-shell theory to characterize the localizing
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manifold MQ. Nevertheless, it is still possible to make contact with the string

theory degeneracies when we consider truncated supergravity theories, as we now

briefly explain following the original idea of [75].

Starting from Type II string theory compactified on the torus T 6, we obtain a four-

dimensional N = 8 theory with 28 massless U(1) gauge fields. A charged state in

this theory is characterized by 28 electric and 28 magnetic charges, which form the

56 representation of the U-duality group E7,7(Z). Under the SO(6, 6;Z) T-duality

group, the 28 gauge fields decompose as 28 = 12 + 16. We can now truncate the

theory by dropping four N = 4 gravitini multiplets, each containing four gauge

fields. This amounts to dropping 16 gauge fields, which we take to be the 16 in

the decomposition of 28. The resulting theory is a reduced N = 4 theory with a

U-duality group SO(6, 6;Z)×SL(2;Z), with SL(2;Z) the S-duality group. We now

drop two more N = 2 gravitini multiplets (containing two gauge fields each) and

the hypermultiplets to obtain a truncated N = 2 theory with 8 gauge fields and a

U-duality group SO(6, 2;Z)× SL(2;Z). The 1/8-BPS states in the original N = 8

theory correspond to 1/2-BPS states in the truncated N = 2 theory, and we can

now use N = 2 conformal supergravity coupled to nv + 1 = 8 vector multiplets

as the low-energy limit of the latter. This effective theory being off-shell, we can

apply localization to the QEF for the 1/2-BPS black hole solutions, and compare

to the degeneracies of 1/8-BPS states in N = 8 string theory.

Similarly, one can start from Type II string theory compactified on K3 × T 2 to

obtain an N = 4 theory with 28 massless gauge fields. The U-duality group of this

theory is SO(6, 22;Z) × SL(2;Z). Upon dropping two N = 2 gravitini multiplets

and the hypermultiplets, the resulting truncated theory has N = 2 supersymme-

try and contains 24 massless gauge fields, with a U-duality group SO(2, 22;Z) ×
SL(2;Z). 1/4-BPS states in the original theory now correspond to 1/2-BPS in the

truncated N = 2 theory, whose low-energy description is that of N = 2 conformal

supergravity coupled to nv +1 = 24 vector multiplets. The degeneracies computed

using the QEF for 1/2-BPS black holes in this theory can then be compared with

the ones for 1/4-BPS states in the N = 4 string theory.

Of course, any calculation conducted in a truncated theory will be valid in the full

theory provided the truncation scheme is consistent. For the black hole degenera-

cies, this amounts to proving that the fields being dropped during the truncation

effectively carry no entropy. While we do not attempt to prove such statements on

general grounds in this work, we will see in the coming Chapters that we can pro-

vide an a posteriori justification of this fact for the N = 8 and N = 4 truncations
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outlined above. A first-principle understanding of this seems highly desirable at

the moment and is left for future work.



Chapter 4

Quantum entropy of 1/2-BPS

black holes and localization

In Chapter 3, we outlined the construction of the four-dimensional N = 2 confor-

mal supergravity in Euclidean signature. This theory admits black hole solutions,

and in the present Chapter we will review its 1/2-BPS black hole solutions and

their Bekenstein-Hawking-Wald entropy. We then summarize the computation of

their exact quantum entropy using the localization formalism applied to the QEF

presented in Chapter 2. This will lead to a Master Formula (4.17) for the quan-

tum entropy of 1/2-BPS black holes in N = 2 conformal supergravity, which will

play a central role in what follows. As will be explained, this formula relies on an

assumption which we will prove in the remainder of this Chapter by examining the

influence of a large class of full-superspace supergravity actions on the quantum

entropy using the formalism of the kinetic multiplet.

4.1 Semi-classical 1/2-BPS black hole entropy

We use the Euclidean theory of N = 2 conformal supergravity developed in Chap-

ter 3. This theory describes the Weyl multiplet coupled to nv +1 vector multiplets

and nh hypermultiplets. Recall that the Weyl multiplet of the theory contains the

following independent fields:

W =
(
eaµ, ψµ

i, bµ, Aµ,Vµij, T±µν , χi, D
)
, (4.1)

59
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along with composite fields built out of the above fields. In the two-derivative

gauge-fixed Poincaré theory, the field eaµ is the vielbein, and the Tµν tensor is an

auxiliary field without kinetic term. These two fields will play an important role

in this Chapter and the following ones.

The independent fields of the Euclidean vector multiplet are

XI =
(
XI , X̄I , P±λ

I i, W I
µ , Y

I
ij

)
, (4.2)

where XI and X̄I are two scalars, the gaugini λI form an SU(2) doublet of sym-

plectic Majorana-Weyl fermions, W I
µ is a vector field, and the Y I

ij form an SU(2)

triplet of auxiliary scalars. The index I runs over the nv + 1 vector multiplets.

The action of the theory under consideration is specified by the holomorphic

prepotential F (XI , Â), describing the coupling of the vector multiplets to the

background Weyl multiplet through chiral-superspace integrals (see e.g. [76]).

Here, Â := (T−µν)
2 is the lowest component of the W2-multiplet. The latter de-

pendence encodes higher-derivative terms in the supergravity action proportional

to the square of the Weyl tensor. Supersymmetry requires that this prepotential

be holomorphic and homogeneous of degree two,

F (ΛXI ,Λ2 Â) = Λ2 F (XI , Â) . (4.3)

As explained in Section 3.2.2, electric-magnetic duality of the theory is real-

ized as symplectic transformations, under which the pair (XI , FI) with FI :=

∂F (XI , Â)/∂XI transforms linearly.

Conformal N = 2 supergravity admits 1/2-BPS black hole solutions. They carry

electric and magnetic charges (qI , p
I), where I runs over the nv + 1 vector multi-

plets, and interpolate between fully supersymmetric asymptotically flat space and

the near-horizon Euclidean AdS2 × S2 region. The near-horizon region is itself

fully BPS due to the supersymmetry enhancement granted by the attractor mech-

anism (recall the discussion in Section 1.3), and in the low-energy limit it can be

decoupled from the environment and studied on its own. We parametrize it as

follows (with all other fields not related by symmetries set to zero):

ds2 = v
[
(r2 − 1)dτ 2 +

dr2

r2 − 1

]
+ v
[
dψ2 + sin2(ψ)dφ2

]
, (4.4)

F I
rτ = − ieI∗, F I

ψφ = pI sinψ, XI = XI
∗ , X̄I = X̄I

∗ , T−rτ = −ivw, T+
rτ = −ivw .
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Here F I
µν is the field strength of the vector field W I

µ in the vector multiplet I and

(v, w, XI
∗ , X̄

I
∗ e

I
∗, p

I) are constants. The choice of a complex vector field strength

is an artifact of using conventions which have been derived in a Wick-rotated

version of the Minkowski theory. Note also that, in contrast to the extremal

Reissner-Nordström line-element (1.6), we have chosen the position of the horizon

to be at a fixed distance r = 1 when taking the near-horizon limit.

The full-BPS solution (4.4) has an SL(2) × SU(2) bosonic symmetry, the two

factors acting on the AdS2 and S2 parts respectively. It also admits eight real

supersymmetries, which together with the bosonic symmetries form the SU(1, 1|2)

superalgebra. One of the supercharges of this algebra, which we shall call Q, will

play an important role in the following. It obeys the algebra

Q2 = L0 − J0 , (4.5)

where L0 and J0 are the Cartan generators of the SL(2) and the SU(2) algebras

respectively.

The two scalar fields XI and X̄I of the vector multiplets are determined completely

in terms of the fluxes by the BPS attractor mechanism [77, 78], or equivalently

using the AdS attractor mechanism introduced in Section 1.3:

F+I
ab =

1

4
XI
∗ T

+
ab , F−Iab =

1

4
X̄I
∗ T
−
ab . (4.6)

For our solution (4.4), we have:

XI
∗ =

2

w
(eI∗ + ipI) , X̄I

∗ =
2

w
(eI∗ − ipI) , v =

16

w2
. (4.7)

At this stage, one can choose a dilatation gauge w = 4 which brings the deter-

minant of the metric (4.4) to unity, but we will keep this scale factor manifest in

this Chapter. The electric fields eI∗ are determined in term of the charges qI by

the extremization equation (1.37),

FI

( 2

w
(eI∗ + ipI)

)
− F̄I

( 2

w
(eI∗ − ipI)

)∣∣∣
Â=−4w2

= i
w

4
qI . (4.8)

Finally, the Bekenstein-Hawking-Wald entropy of this black hole is given by (1.38):

SBHW = −π qIeI∗ − 2πi
[
F
( 2

w
(eI∗ + ipI)

)
− F̄

( 2

w
(eI∗ − ipI)

)]∣∣∣
Â=−4w2

. (4.9)
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This entropy is completely determined by the prepotential of the theory, and is a

function of the electric and magnetic charges of the black hole only. The apparent

dependence on the constant w reflects the fact that we haven’t gauge-fixed the

dilatations here, so that there is still a scaling symmetry. As we mentioned in

the beginning of this Section, the prepotential can have a dependence on the low-

est component of the W2-multiplet which encode higher-derivative terms in the

supergravity action. F (X, Â) can thus, for instance, take the form of an infinite

series in powers of Â corresponding to a higher-derivative expansion of the super-

gravity action, and the entropy inherits this expansion structure through (4.9). A

consequence of this fact will be examined in Chapter 5.

This concludes the semi-classical analysis of 1/2-BPS black holes in N = 2 con-

formal supergravity. The main players in this story were the vector multiplets,1

and the Bekenstein-Hawking-Wald entropy of the black hole is entirely determined

using the attractor mechanism (BPS or AdS equivalently, since the black hole so-

lution is supersymmetric). We now turn to the quantum entropy of these black

holes using the QEF formalism of Section 2.2.

4.2 Quantum 1/2-BPS black hole entropy

According to the discussion in Section 2.2, the quantum entropy of the 1/2-BPS

black hole solutions presented in the previous Section is defined as a functional

integral over all the fields of the supergravity theory:

exp[SQ(q, p)] = W (q, p) =

〈
exp[−i qI

∮
τ

AI ]

〉finite

AdS2

. (4.10)

To apply localization, we pick the specific supercharge Q with algebra (4.5) [73].

With this choice, the first step in the localization program of Section 2.3 is to find

all solutions to the localizing equations (2.25)

Qψα = 0 , (4.11)

where ψα runs over all the fermions of the theory. The space of solutions to these

equations is the localization manifoldMQ. For four-dimensional N = 2 conformal

supergravity, the complete localization manifold was found in [79] and is described

as follows.
1In particular, note that the hypermultiplets played essentially no role. This will change in

Chapter 5 when analyzing the quantum entropy in more detail.



Chapter 4 Quantum entropy of 1/2-BPS black holes and localization 63

When the field strength of the SU(2) R-symmetry gauge field V i
µ j is set to zero,

the full set of bosonic solutions to the localization equations in N = 2 off-shell

supergravity coupled to vector and hyper multiplets is labeled by nv + 1 real

parameters. These parameters label the size of fluctuations of a certain shape

(fixed by supersymmetry) of the conformal mode of the metric and of the scalars

in the vector multiplets, and can be taken to be the values of these nv + 1 fields at

the center of AdS2. Using the dilatation gauge symmetry of the theory, one can

trade the conformal mode of the metric for the scalar of the compensating vector

multiplet. We set the metric of Euclidean AdS2 × S2 to have unit determinant,

and the scalar fields of the vector multiplet have the solution:

XI = XI
∗ +

w

4

CI

r
, X̄I = X̄I

∗ +
w

4

CI

r
, I = 0 , . . . , nv . (4.12)

These fluctuations are off-shell 1/2-BPS solutions, and they are supported by the

auxiliary fields in the vector multiplets:

Y I 1
1 = −Y I 2

2 =
w2

8

CI

r2
. (4.13)

The rest of the fields in the solution remain unchanged with respect to the full-

BPS AdS2 × S2 solution (4.4). In particular, the hypermultiplets have a trivial

bosonic profile Ai
α = 0. An important point to note at the end of the first step

is that the localization manifold MQ is universal insofar that it is independent

of the choice of the action, since the supersymmetry variations (4.11) are defined

entirely in the off-shell theory.

The next step is to evaluate the effective action of the supergravity theory on

the localizing solutions and correctly integrate over the localizing manifold. As

explained in Section 2.3, the integral over MQ includes the measure [dφ] induced

from the supergravity field space, as well as the one-loop determinant of the de-

formation action QV coming from integration over the (non-supersymmetric) di-

rections orthogonal to the localizing manifold in field space:2

Ŵ (q, p) =

∫
MQ

[dφ] exp
[
Sren(φ, q, p)

]
Z1-loop(φ) , (4.14)

2The hat on W refers to the fact that we will only consider smooth supergravity configurations
in the functional integral. There can be other configurations which are only smooth in the full
string theory, such as orbifold configurations. Their contribution is highly subleading as explained
in [80, 81, 82].
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where Sren is the renormalized action defined below (2.19). In [73], this integral was

computed assuming that the effective renormalized action Sren only contains chiral-

superspace integral terms which are governed by the holomorphic prepotential F

of the theory. With this assumption, and defining the new variables

φI := eI∗ + 2CI , (4.15)

the renormalized action is given by

Sren(φ, q, p) = −πqIφI − 2πi
[
F
( 2

w
(φI + ipI)

)
−F̄
( 2

w
(φI − ipI)

)]∣∣∣
Â=−4w2

, (4.16)

where the prepotential F (X, Â) is evaluated at the attractor value Â = −4w2.

The quantum entropy of 1/2-BPS black holes in N = 2 conformal supergravity

coupled to nv + 1 vector multiplets and hypermultiplets therefore takes the form

Ŵ (q, p) =

∫
MQ

nv∏
I=0

[dφI ] exp
[
−π qI φI +4π ImF

(
2
w

(φI +ipI)
)]
Z1-loop(φI) , (4.17)

This is the Master Formula which will be used in the remainder of this work. It

has a number of important features:

1. It is universal, in the sense that it only depends on the prepotential F of

the supergravity theory one wishes to consider and not on the details of the

action itself.

2. It is a finite, (nv + 1)-dimensional integral, making its evaluation infinitely

easier than the partition function (4.10) defined as a path-integral.

3. By definition, it encodes all quantum corrections to the Bekenstein-Hawking-

Wald entropy formula (4.9). Therefore, it should match string theory pre-

dictions for a given compactification specifying the prepotential F of the

corresponding low-energy supergravity theory.

4. It is expected to be correct as long as the assumption of [73] is valid, namely

that only chiral-superspace integrals contribute to the quantum entropy.

Note also that (4.17) shares a number of interesting features with the OSV proposal

of [83], and it can be seen as part of an attempt to derive and refine this conjecture

from the gravitational theory. Details of the comparison with this proposal are
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given in [73, 84]. We shall make a comparison with the related proposal of [85] in

Chapter 5.

The Master Formula (4.17) was applied in [73, 84] to the N = 2 truncation of

Type IIB string theory compactified on T 6 = T 4 × S1 × S̃1 outlined at the end of

the previous Chapter. In the full N = 8 string theory, the microscopic degeneracy

of 1/8-BPS states (preserving 4 real supercharges) is given by (2.16). In the N = 2

truncation, the prepotential F (X) of the low-energy supergravity theory entering

the integral formula is given by the cubic prepotential

F (X) = −X
1XaCabX

b

X0
, a, b = 2, . . . , 7 (4.18)

where Cab is the intersection matrix of the six 2-cycles of T 4. This prepotential de-

scribes the classical two-derivative action of N = 2 conformal supergravity. Note

that it does not depend on Â because there are no higher-derivative quantum cor-

rections in the case of toroidal compactification. It was further assumed in [73, 84]

that the functional determinant Z1-loop is trivial and equal to unity in this specific

truncation. We will come back to this in Chapter 5 and verify this assumption.

In this setting, the quantum entropy for the 1/2-BPS N = 2 black holes computed

using (4.17) is in agreement with the microscopic degeneracy of 1/8-BPS states

in N = 8 string theory (2.16) to exponential accuracy, as evidenced by Table 2

in [84]. This was the first successful application of the localization program in a

theory of supergravity. We note here that the successful matching to N = 8 string

theory predictions hints at the fact that the truncated N = 2 supergravity theory

considered in [73, 84] is in fact consistent and encodes all the relevant information

about the complete string theory. In our current understanding of the truncation,

this seems quite non-trivial and we do not know how to justify this from first

principles. Nevertheless, we will take this result as a sign that such truncations

down to an N = 2 conformal supergravity theory coupled to vector and hyper

multiplets can be used in such situations. We will make use of this assumption

later in Chapter 6 for 1/4-BPS states in N = 4 string theory.

Furthermore, the success of this analysis points to a non-renormalization theorem

of the quantum entropy computed using the prepotential. Namely, it seems like

full-superspace integrals in the effective action do not contribute to the quantum

entropy of supersymmetric black holes. In the rest of this Chapter, we shall

provide evidence in support of this non-renormalization theorem and effectively

prove the assumption of point 4. in the list below (4.17), thereby ensuring that

one can use the Master Formula for the computation of the quantum entropy of
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generic 1/2-BPS black holes in N = 2 supergravity coupled to vector and hyper

multiplets.

4.3 Full-superspace integrals and classical entropy

In this section, we review the construction of a large class of full-superspace inte-

grals that can be built in a theory of N = 2 supergravity coupled to N = 2 vector

multiplets. This is done using the technology of the so-called kinetic multiplet [68].

We then review the fact that the semi-classical black hole entropy does not change

on adding these full-superspace terms to the effective action. These results were

first reported in [86] which we follow. We will suppress fermionic terms in what

follows since we are interested in purely bosonic configurations (the black hole).

4.3.1 A large class of full-superspace integral Lagrangians

Constructing the N = 2 supersymmetric Lagrangians of various matter fields

coupled to supergravity is quite an intricate technical task. The coupling of a

chiral multiplet Φ to supergravity through a chiral-superspace integral was worked

out in the early days [68]:

S =

∫
d4xL =

∫
d4x d4θ εΦ , (4.19)

where ε is an appropriately defined chiral superspace measure and θ are super-

space Grassmanian coordinates. This result was then adapted and modified to

construct the coupling of vector multiplets (by writing the vector multiplet as a

reduced chiral multiplet), and to construct higher-derivative terms (by considering

a holomorphic function F of chiral multiplets as a chiral multiplet itself). Since θ

has a Weyl weight 1/2, the coupling (4.19) is consistent only if the superfield Φ

has weight 2 (so that the action has weight zero).

The same technique can be further modified to construct full-superspace integrals.

The idea is to construct a kinetic multiplet out of an anti-chiral multiplet, which

involves four covariant θ̄-derivatives, i.e. T(Φ̄) ∝ D̄4Φ̄. This means that T(Φ̄)

contains up to four space-time derivatives, so that the expression∫
d4θ d4θ̄ Φ Φ̄ ∼

∫
d4θ ΦT(Φ̄) (4.20)
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corresponds to a usual higher-derivative coupling Lagrangian. Here we are being

slightly schematic and we have not shown the superspace measure.

The field Φ and Φ̄ entering the expression (4.20) can be composite fields built out

of the basic field content of the theory, and can very well be two independent fields.

We use this fact later in Section 4.4. A more subtle point concerns the nature of

the composite field Φ̄ entering this expression [87]. We will assume that Φ̄ is a

physical field that is a local functional of the fluctuating fields of the theory.

From the above expression, one sees that the operator T increases the Weyl weight

by 2, and so the superfield Φ should have Weyl weight 0 for the coupling to be

consistent. For a chiral multiplet Φ with components (A,Ψi, Bij, F
−
ab,Λi, C), the

Lagrangian (4.20) is [86]:

e−1L = 4D2AD2Ā+ 8DµA
[
Rµ

a(ω, e)− 1
3
R(ω, e) eµ

a
]
DaĀ+ C C̄

−DµBij DµBij + (1
6
R(ω, e) + 2D)BijB

ij

−
[
εik Bij F

+µν R(V)µν
j
k + εik B

ij F−µνR(V)µνj
k
]

− 8DDµADµĀ+
(
8 iR(A)µν + 2Tµ

cij Tνcij
)
DµADνĀ (4.21)

−
[
εijDµTbcijDµAF+bc − εijDµTbcijDµĀ F−bc

]
− 4
[
εijT µbij DµADcF+

cb − εijT
µbij DµĀDcF−cb

]
+ 8DaF−abDcF+

cb + 4F−ac F+
bcR(ω, e)a

b + 1
4
Tab

ij TcdijF
−abF+cd .

By making various choices for the chiral multiplet Φ which enters this formula,

we can construct a large class of full-superspace Lagrangians. In our theory, we

have a Weyl multiplet of weight 1 and nv + 1 vector multiplets XI of weight 1.

Associated to each vector multiplet XI is a reduced chiral multiplet CI [88]. We

can build a class of Lagrangians by choosing the chiral multiplet Φ above to be

equal to an arbitrary holomorphic function f(CI) and similarly Φ̄ to be equal to

an anti-holomorphic function ḡ(C̄I). The weight zero conditions on Φ, Φ̄ translate

to the condition that the functions f , ḡ are homogeneous functions of degree zero.

More generally, we can consider a sum of products of such functions

H(CI , C̄I) =
∑
n,n̄

f (n)(CI) ḡ(n̄)(C̄I) . (4.22)

The full-superspace integral

e−1L =

∫
d4θ d4θ̄ H(CI , C̄I) , (4.23)
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written in components is as follows [86]

e−1L =HIJK̄L̄

[
1
4

(
F−ab

I F−ab J − 1
2
Bij

I BijJ
)(
F+
ab
K F+abL − 1

2
BijK Bij

L
)

+ 4DaAI DbĀK
(
DaAJ DbĀL − 2F− ac J F+ b

c
L − 1

4
δabBJ

ij B
L ij
)]

+
{
HIJK̄

[
4DaAI DaAJ D2ĀK +

(
F−ab IF− Jab + 1

2
BI
ij B

Jij)
(
2cA

K − 1
8
F−Kab T abijεij

)
− 8DaAIF− Jab

(
DcF+ cbK − 1

2
DcĀKT ij cbεij

)
−DaAI BJ

ij DaBK ij
]

+ h.c.
}

+HIJ̄

[
4
(
2cĀ

I − 1
8
F+ I
ab T abijε

ij
)(

2cA
J − 1

8
F− Jab T abijεij

)
+ 4D2AI D2ĀJ

− 8DaF− abI DcF+c
b
J −DaBij

I DaBij J + 1
4
Tab

ij Tcdij F
−ab IF+cd J

+
(

1
6
R(ω, e) + 2 D̂

)
Bij

IBij J − 4F−ac I F+
bc
J R(ω, e)a

b

+ 8
(
Rµν(ω, e)− 1

3
gµνR(ω, e)− 1

4
T µb

ijT νbij + iR(A)µν − gµνD
)
DµAIDνĀJ

+
[
DcĀJ

(
DcTabij F− I ab + 4T ij cbDaF− Iab

)
εij + [h.c.; I ↔ J ]

]
−
[
εik Bij

I F+ab J R(V)ab
j
k + [h.c.; I ↔ J ]

]]
. (4.24)

This can be further generalized by including the Weyl multiplet in the construction

of the weight-zero superfields Φ, Φ̄. In this case, the corresponding function H
is homogeneous of degree zero with CI having scaling weight 1 and W2 having

scaling weight 2. The resulting Lagrangian generalizes (4.24) with additional terms

(see (4.10), (4.11) in [86]). When the W2 multiplet is a non-zero constant, the

additional terms drop out, and in this case the Lagrangian is proportional to (4.24).

4.3.2 Non-renormalization of the semi-classical entropy

As reviewed in Section 4.1, the semi-classical entropy is computed by evaluating

the local effective Lagrangian of the theory on the full-BPS solutions (4.4). In

addition, the first derivative of the Lagrangian enters the answer through the

definition of the charges (1.37). As we now review, all the full superspace integrals

discussed in the previous subsection, as well as their first derivatives, vanish when

evaluated on the full-BPS configuration [86].

The Euclidean AdS2 × S2 form of the metric (4.4) implies

R(A)µν = R(V)µν
i
j = D = R(ω, e) = 0 . (4.25)

The components of W2 then take the simple form:

A|W 2 = (T−ab)
2 = −4w2 , Bij|W 2 = F−ab|W 2 = C|W 2 = 0 . (4.26)
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In the gauge-fixed theory, when w is constant, the full Weyl-squared multiplet is a

constant multiplet (the lowest component is a constant and the higher components

vanish). It is convenient to write down the explicit values of the (anti)self-dual

component of the T -tensor:

T−ab =


0 iw 0 0

−iw 0 0 0

0 0 0 iw

0 0 −iw 0

 , T+
ab =


0 iw 0 0

−iw 0 0 0

0 0 0 −iw
0 0 iw 0

 . (4.27)

Similarly, the reduced chiral multiplet in the full-BPS configuration (4.4) is also a

constant.

A|CI = XI
∗ , Bij|CI = F−ab|CI = C|CI = 0 . (4.28)

The Lagrangian (4.24) involves only derivatives of A|CI , and therefore vanishes

on this constant solution. The generalized Lagrangian including the contribution

from the Weyl multiplet also vanishes for the full-BPS solution with the Weyl and

vector multiplets being constant. Using similar arguments, [86] also shows that

the first derivative of the Lagrangian with respect to all the fields vanish. We

thus deduce that the charges, and therefore the entropy, are not modified by the

addition of the full-superspace integrals.

In the next section, we shall consider half-BPS solutions wherein the scalar fields

are not constant and have a non-trivial profile in the bulk of AdS2 given by (4.12).

4.4 Full-superspace integrals and quantum en-

tropy

Our goal is to examine the effect of the full-superspace integrals described in

the previous section on the functional integral (4.10) for the quantum entropy of

1/2-BPS black holes. We will show now that the quantum entropy is completely

insensitive to any of these full-superspace integrals.

Our method of proof is conceptually very simple. As stressed in Chapter 2 and

elsewhere, the localizing manifold is defined using the off-shell supersymmetry

variations and does not depend on the action. This means that a full-superspace

integral added to the effective action can potentially affect the quantum entropy

in the following three ways:
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1. It can change the value of the effective action evaluated on the localizing

solutions and therefore change the value of Sren.

2. It can change the measure on the localizing manifold either through the clas-

sical induced measure [dφ] or the value of the one-loop determinant Z1-loop.

3. It can change the functional dependence of the electric charges qI on the

fluctuating fields3. (The magnetic charges pI are topological quantities and

do not depend on the action.)

In the following, we will discuss point 1 and we will show that all known full-

superspace integrals which can be constructed in N = 2 supergravity at any level

in the derivative expansion do not contribute to the renormalized action Sren.

Before doing so, we examine the effect on the measure, the one-loop determinant,

and the electric charges, assuming that point 1 holds.

The classical induced measure arises from considering the localizing manifold as

an embedded submanifold of the full field space of supergravity. It is a function of

the action evaluated on the submanifold and of the determinant of the embedding

matrix. The localizing solutions are solutions of the BPS equations which, in

our off-shell supergravity formalism, do not change under any modification of

the action. This means that the embedding matrix is also independent of the

action. Since, by assumption, the action evaluated on the localizing manifold

does not change, the induced measure does not change4 on addition of the full-

superspace integrals. The one-loop determinant, by definition, is evaluated using

the deformation action that is fixed once and for all in our first step of localization,

and manifestly does not depend on the higher-derivative terms that we add to the

effective action of supergravity.

The electric charges qI enter the functional integral in two different places, each

time as a boundary term in the effective action. The first occurrence is the explicit

coefficient of the Wilson line (4.10) which clearly does not depend on the higher-

derivative action. The other occurrence is through the boundary conditions of the

gauge fields and scalar fields in the functional integral (4.10). Since the bound-

ary conditions are completely fixed by the full-BPS solutions (4.4), the charge is

completely determined by the semi-classical theory, and the off-shell deformation

inside the AdS2 does not affect it. We have already seen in Section 4.3 that the

3The actual charges qI take integer values and are fixed once and for all.
4Note here that the determinant coming from the modes orthogonal to the embedding surface

will change in general, but this fact is irrelevant to our computation here.
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functional form of the charges in the semi-classical theory are not modified by the

addition of full-superspace terms.

We now turn to the first point in the list above. As described in Section 4.3, the

Weyl-squared multiplet of the localizing solutions is fixed to its classical full-BPS

value that was displayed explicitly in (4.26). We now turn to the vector multiplet.

For clarity, we parametrize the fluctuation away from the attractor solution by

an arbitrary real field ϕ(r), and we will plug back the half-BPS localizing value

ϕ(r) = C
r

at the end of the computation. The scalars are given by:

X = X∗ +
w

4
ϕ, X̄ = X̄∗ +

w

4
ϕ , (4.29)

and the auxiliary fields are determined by supersymmetry in terms of ϕ:

Y I,1
1 = −Y I,2

2 =
w2

8

(
(r2 − 1)∂rϕ+ rϕ

)
. (4.30)

This localizing solution is extended to all the components of a reduced chiral

multiplet C following [88]:

A|C =X = X∗ + w
4
ϕ(r)

Bij|C =Yij

F−ab|C = − w
16
T−ab ϕ(r) (4.31)

C|C = − w
2
D2ϕ(r) + w

64
(T+

ab)
2ϕ(r) .

We also remind the reader that in Euclidean signature, the anti-chiral multiplet

C̄ is not the complex conjugate of C. Note that when ϕ = 0, the half-BPS local-

izing configuration reduces to the full-BPS attractor solution, and we recover the

constant multiplet (4.28).

We now need to build weight zero chiral multiplets to use the full-superspace

formula (4.21) built out of kinetic multiplets. As a simple example, using the

reduced chiral multiplet C associated with one vector multiplet X and the Weyl-

squared multiplet, we can build a chiral multiplet Φ of weight w = 0 by taking

the combination

Φ = C ⊗
(
W2
)−1

2 . (4.32)
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This composite chiral superfield has the following components:

A|Φ = 1
2iw

X∗ + 1
8i
ϕ(r) ,

Bij|Φ = 1
2iw

Yij ,

F−ab|Φ = i
32
T−ab ϕ(r) , (4.33)

C|Φ = i
4
D2ϕ(r)− i

128
(T+

ab)
2ϕ(r) .

The corresponding composite superfield built out of an anti-chiral multiplet and

the Weyl-squared multiplet is given by

Ā|Φ̄ = − 1
2iw

X̄∗ − 1
8i
ϕ(r) ,

Bij|Φ̄ = − 1
2iw

Yij ,

F+
ab|Φ̄ = i

32
T+
ab ϕ(r) , (4.34)

C̄|Φ̄ = − i
4
D2ϕ(r) + i

128
(T−ab)

2ϕ(r) .

The Lagrangian (4.21) evaluated on the field configuration (4.33), (4.34) is:

e−1L = 1
16
D2ϕD2ϕ+ 1

8
DµϕR(ω, e) a

µ Daϕ+ 1
16
D2ϕD2ϕ

− 1
512
ϕD2ϕ

[(
T+
ab

)2
+
(
T−cd
)2
]

+ 1
16384

(
T+
ab

)2 (
T−cd
)2

(ϕ)2

+ w2

128
∂µ
[
(r2 − 1)∂rϕ+ rϕ

]
∂µ
[
(r2 − 1)∂rϕ+ rϕ

]
(4.35)

+ 1
64
T−cµ T+

νcDµϕDνϕ− 1
64

[
T+ µbT+

cb − T
− µbT−cb

]
DµϕDcϕ

− 1
128
DaϕDcϕT−abT+

cb − 1
256
T− acR(ω, e) b

a T
+
bc (ϕ)2

− 1
8192

(
T−ab
)2 (

T+
cd

)2
(ϕ)2 .

The Riemann tensor of the near-horizon solution is determined completely by

supersymmetry in terms of the T+, T− components

R b
a = 1

16
T−acT

+cb . (4.36)

Using this relation, and the explicit values of the T -tensor (4.27), the Lagrangian

(4.35) reduces to

e−1L =
1

8
D2ϕD2ϕ+

1

64
ϕD2ϕ+

w2

128
∂µ
[
(r2 − 1)∂rϕ+ rϕ

]
∂µ
[
(r2 − 1)∂rϕ+ rϕ

]
.

(4.37)
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Here we have used the fact that the covariant derivative on the scalar fields reduces

to the ordinary partial derivative. This Lagrangian can be rewritten as follows:

e−1L =
1

8
D2ϕ

[
r2D2ϕ+

w2

8
ϕ

]
+
w2

64
(r2 − 1) ∂r (rϕ)

[
D2ϕ+

w2

32
∂r (rϕ)

]
. (4.38)

Finally, plugging in the value ϕ(r) = CI

r
shows that each of the two terms in the

above Lagrangian vanishes, and we obtain:

e−1L = 0 . (4.39)

We thus have that the simplest full-superspace Lagrangian∫
d4θ d4θ̄ Φ Φ̄ , (4.40)

for the field Φ of (4.32) vanishes when evaluated on our localizing solutions. It is

easy to check that this result also holds for a chiral field multiplied by an anti-chiral

field built out of different vector multiplets:∫
d4θ d4θ̄ ΦI Φ̄J . (4.41)

The reason is that such a Lagrangian is quadratic in the fluctuation ϕ and, when

evaluated on the localizing solutions labeled by the real parameters CI , is propor-

tional to CICJ . The r-dependent part of the Lagrangian is exactly the same as

in (4.38) and vanishes for the same reason.

To discuss more general functions, it is convenient to go to a gauge-fixed frame

where w and therefore the Weyl-squared multiplet is a constant. This means that

the formula (4.24) for the vector multiplets that was written down for functions of

only vector multiplets can be used for functions of the vector multiplets and the

Weyl-squared multiplet by simply replacing the weight one field XI by the weight

zero field ΦI = CI ⊗ (W2)
−1

2 . In this case, the function H can be an arbitrary

real function H(ΦI , Φ̄I). As noted below (4.26), there are additional terms in

the full Lagrangian, but these drop out for a constant Weyl multiplet, and the

Lagrangian (4.24) is thus the most general Lagrangian of this type.

Our task is now clear – we need to evaluate the Lagrangian (4.24) on our localizing

solutions (4.33). The Lagrangian splits into quadratic, cubic, and quartic terms

in ΦI (and Φ̄I). The Lagrangian (4.21) follows from taking H = Φ Φ̄, in which

case (4.24) reduces to its quadratic piece, which vanishes on the localizing solutions
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as we’ve already seen in (4.39). We note that the first term in the quadratic piece

of (4.24) is equal to the term CC̄ in (4.21)

We have already seen above that the Lagrangian (4.24) vanishes when the chiral

or anti-chiral superfield is a constant (namely of the type (4.28) with only the

lowest component being non-zero and constant). This means that the Lagrangian

evaluated on our localizing solutions is proportional to the fluctuations ϕI(r).

Therefore, the quadratic, cubic, and quartic pieces in the Lagrangian are propor-

tional to HIJ̄ C
I CJ , HIJK̄ C

I CJ CK , and HIJK̄L̄C
I CJ CK CL (recall that CI is

real). The r-dependent part of the Lagrangian (4.24) can therefore be extracted

using a single superfield Φ and its conjugate Φ̄.

From our computation above, it is manifest that the quadratic piece vanishes on

the full localizing solutions. We find that the cubic and quadratic part of the

Lagrangian (4.24) also vanish identically. Therefore, the full Lagrangian (4.24)

vanishes on the localizing solutions.

4.5 Summary of results and assumptions

The conclusion of the analysis presented in the previous Section is that the full-

superspace integrals whose contribution were discarded in the originial localization

computation of [73, 84] indeed do not contribute to the final result for the quantum

entropy of the 1/2-BPS black hole solutions of EuclideanN = 2 supergravity. Note

that we have only considered a large class of such full-superspace integrals,but

have not exhausted all the possibilities yet: there are, for instance, full superspace

integrals built out of nested kinetic multiplets, i.e. coming from kinetic multiplets

built out of other kinetic multiplets, and so on and so forth. Nevertheless, we will

consider in what follows that the same methods developed here can be applied to

such “nested” full-superspace integrals. A preliminary investigation using manifest

superspace methods was also conducted and seemed to corroborate the result,

although it has not been published.

Effectively, we will consider having proven point 4. in the list of features of the

Master Formula, and we will therefore be able to safely use (4.17) in the following

Chapters to compute the quantum entropy of 1/2-BPS black holes. We repeat it

here for convenience:

Ŵ (q, p) =

∫
MQ

nv∏
I=0

[dφI ] exp
[
−π qI φI +4π ImF

(
2
w

(φI +ipI)
)]
Z1-loop(φI) . (4.42)
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Recall that the hat on W indicates that this formula still receives corrections from

orbifold configurations, see footnote 2. Since these contributions are exponentially

suppressed, we will discard them in what follows.

Coming back to the impressive agreement the authors of [73, 84] found between

the quantum entropy of 1/8-BPS black holes in N = 8 supergravity and the

Maldacena-Moore-Strominger microscopic degeneracies of the corresponding D-

brane system (2.16), recall that there was another assumption which entered the

computation: the one-loop determinant factor Z1-loop in (4.17) was taken to be triv-

ial in the N = 2 truncation they considered. In the next Chapter, we will justify

this assumption by computing this factor in a general theory of Euclidean N = 2

supergravity coupled to an arbitrary number of vector and hyper multiplets, and

subsequently applying the result to the specific N = 2 truncation of N = 8 Type

IIB string theory compactified on T 6 which [73, 84] examined. Anticipating the

results, we will show that the functional determinant is indeed trivial in this par-

ticular case. Later in Chapter 6, we will make use of the general formula for

this determinant and apply it to another N = 2 truncation, this time of Type

IIB string theory compactified on K3 × T 2 which gives rise to a low-energy four-

dimensional N = 4 theory where 1/4-BPS black hole solutions exist.





Chapter 5

One-loop functional determinants

in localization

In this Chapter, we examine another important aspect of supersymmetric localiza-

tion of the QEF (2.19) and its application to the quantum entropy of black holes,

namely the one-loop functional determinants entering the Master Formula (4.17).

The measure along the localizing manifold itself [dφ] has been discussed (in a

slightly different context) in [89], and we will also comment on these results in due

course.

The task that we set ourselves here is to compute the one-loop fluctuation determi-

nant of the localizing action QV (2.24) for vector multiplets and hypermultiplets.

We compute the determinant of the fluctuations of the fields in the theory nor-

mal to the localization manifold at an arbitrary point φI onMQ, focusing on the

dependence of this determinant on the charges and on the fields φI and ignor-

ing overall numerical constants. A non-trivial dependence on φI means that the

non-zero modes (under Q) of bosons and fermions do not cancel in the functional

integral (2.19). As we will see, the dependence of the determinant on the fields φI

appears only through the scale of the fluctuating geometry.

In the vector multiplet sector, fixing the gauge symmetry associated to the vec-

tor fields W I
µ does not commute with the off-shell supersymmetry, and to address

this problem, we develop a formalism to treat BRST symmetries for vector mul-

tiplets consistent with the off-shell closure of the supersymmetry algebra. We

do so using the standard rules of quantization for theories with multiple gauge

invariances [90, 91]. Our results are applicable to four-dimensional N = 2 su-

pergravity coupled to vector multiplets in any background that preserves some

77
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supersymmetry. In the case of the (deformed) 4-sphere, it agrees with the treat-

ment of [64, 92]. In the Euclidean AdS2 × S2 background, our formalism leads to

a different algebra. Note that we will only consider Abelian vector multiplets in

what follows, although the generalization of these results to non-Abelian vector

multiplets should be straightforward.

In the Weyl multiplet sector, we will make a particular choice of gauge in order

to perform explicit calculations. The physical observables are, of course, gauge

invariant. Recall that the superconformal algebra includes a local dilatation in-

variance under which the vierbein has scaling weight w = −1 and the vector

multiplet scalars XI have w = +1. The associated gauge field is bµ. There is also

a local invariance under special conformal transformations with gauge field fµ
a.

To gauge-fix the latter, we impose the K-gauge condition bµ = 0. To gauge-fix the

former, it is convenient to introduce the symplectically invariant scalar K via:

e−K := −i(XIF̄I − X̄IFI) . (5.1)

The field e−K has scaling weight w = 2, and it appears in the supergravity action

as a conformal compensator, with the kinetic term for the graviton appearing

through the combination:
√
g e−KR . (5.2)

The physical, dilatation-invariant metric is given by Gµν := e−K gµν .

The local scale invariance is generically gauge-fixed by setting a field with non-

zero scaling weight to a constant value. A common choice of gauge is the con-

dition e−K = 1 in which we have only nv fluctuating vector multiplets. In this

gauge the original metric gµν has the standard Einstein-Hilbert Lagrangian for

the graviton, as seen easily from (5.2). In this Chapter however, we shall use the

gauge condition
√
g = 1, which is also very convenient to analyze the solutions to

the localizing equations [73]. In this gauge, the fluctuations of the graviton gµν

are constrained to have fixed volume, but we gain a linearly acting symplectic

symmetry on the (nv + 1) freely fluctuating fields XI and X̄I .

As was briefly mentioned at the end of Chapter 3, we see from this discussion

that one of the (nv + 1) vector multiplet plays the role of a compensating multi-

plet. In addition, we need another compensating multiplet to gauge-fix the extra

gauge symmetries of the conformal supergravity theory, and we choose this to be

a hypermultiplet as in [68]. With these two compensators, the conformal super-

gravity theory is gauge-equivalent to Poincaré supergravity. Unlike the case for
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vector multiplets however, a formalism to treat off-shell N = 2 supersymmetry

transformations on hypermultiplets with a finite number of auxiliary fields is not

known. The compensating hypermultiplet is therefore treated using its equations

of motion. We will briefly comment on the consequences of this in the following.

The gauge-fixed version of the full-BPS attractor solution of Section 4.1 is found

by setting w = 4 in (4.4), (4.7) and (4.8). In particular, the R-symmetry gauge

fields Vµij and Aµ are pure gauge according to (4.25) and we set them to zero in

what follows. Note that, at the two-derivative level in the supergravity action (that

is, when the prepotential does not depend on Â), one may recast the semi-classical

entropy formula (4.9) in terms of the field K introduced in (5.1) as follows [93]:

SBHW = π e−K . (5.3)

In this form, it is clear that if we uniformly scale all charges as (qI , p
I)→ Λ(qI , p

I)

with Λ→∞, the semi-classical entropy of the 1/2-BPS black hole solution scales

as Λ2. We will refer to this scaling behavior later in this Chapter.

Supersymmetric localization of the QEF yielding the Master Formula (4.17) is

performed using the supercharge (4.5) contained in the superconformal algebra

SU(1, 1|2). Since we will discuss this supercharge and the localizing action QV
built from it in great detail, we begin by finding an explicit expression for the

associated spinor parameters on the Euclidean AdS2 × S2 background. These are

found by analyzing the conformal Killing spinor equations obtained from requiring

that the variations of the Weyl multiplet fermions (3.34) vanish:

2Dµ(P±ε
i)± 1

16
(T+

ab + T−ab)γ
abγµP∓ε

i − i γµP∓η
i = 0 , (5.4)

± 1
24
γab /D(T+

ab + T−ab)P∓ε
i +DP±ε

i ∓ 1
24

i (T+
ab + T−ab)γ

abP±η
i = 0 , (5.5)

with P± = 1
2
(1± γ5). In contrast to (5.4), which determines the Killing spinors of

the space-time and thus contains geometrical information, Equation (5.5) does not

impose any additional constraints on the geometry and is used to fix the value of

the background auxiliary fields Tab and D compatible with the conformal Killing

spinors.

In the
√
g = 1 gauge, the metric appearing in (5.4), (5.5) is given by

ds2 = sinh2 η dτ 2 + dη2 + dψ2 + sin2 ψ dφ2 , (5.6)

where we have changed the radial variable from (4.4) to r = cosh η. The T -tensor

is as in (4.27) with w = 4 in the gauge-fixed theory.
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We now observe that a set of solutions to the conformal Killing spinor equations

can be found simply by setting

ηi = 0 , (5.7)

taking the spinor parameter ε to be a solution of

2Dµ(P±ε
i)± 1

16
(T+

ab + T−ab)γ
abγµP∓ε

i = 0 , (5.8)

with Euclidean AdS2 × S2 boundary conditions, and with the field D being zero.

Note that in (5.8), the covariant derivative only contains the spin-connection in

our gauge-fixed theory since bµ and the R-symmetry gauge fields have been set to

zero, i.e. Dµεi = ∂µε
i − 1

4
ω ab
µ γabε

i.

For the spinor εi(D) = P+ε
i + P−ε

i, (5.8) reduces to

Dµεi(D) − 1
32

(T+
ab + T−ab)γ

abγµγ
5εi(D) = 0 . (5.9)

The solutions to Killing spinor equations of the form (5.9) have been obtained for

general AdSn×Sm geometries of both Minkowski and Euclidean signature in [94].

We obtain the following four complex, linearly independent solutions of (5.9):

ε
(1)
(D) = e

i
2
(φ+τ)

√
2


sinh η

2
cos ψ

2

i cosh η
2

cos ψ
2

− sinh η
2

sin ψ
2

i cosh η
2

sin ψ
2

 , ε
(2)
(D) = e

−
i
2
(φ+τ)

√
2


cosh η

2
sin ψ

2

i sinh η
2

sin ψ
2

cosh η
2

cos ψ
2

−i sinh η
2

cos ψ
2

 ,

ε
(3)
(D) = e

i
2
(φ−τ)
√

2


cosh η

2
cos ψ

2

i sinh η
2

cos ψ
2

− cosh η
2

sin ψ
2

i sinh η
2

sin ψ
2

 , ε
(4)
(D) = e

−
i
2
(φ−τ)
√

2


sinh η

2
sin ψ

2

i cosh η
2

sin ψ
2

sinh η
2

cos ψ
2

−i cosh η
2

cos ψ
2

 . (5.10)

From these four complex spinor solutions to (5.9), one may build eight linearly in-

dependent, symplectic Majorana-Weyl solutions to (5.4), (5.5) upon imposing the

chiral projections and reality conditions (3.32), (C.37). Note that these solutions

all have ηi = 0.

We are interested in the supercharge (4.5) which squares to (L0 − J0). This su-

percharge is parametrized explicitly by the following symplectic Majorana-Weyl
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spinor ε̂, where we display the Weyl-projected SU(2) components:

P+ε̂
1 =

e−
i
2

(τ+φ)

√
2


cosh η

2
sin ψ

2

0

0

−i sinh η
2

cos ψ
2

 , P+ε̂
2 =

e
i
2

(τ+φ)

√
2


sinh η

2
cos ψ

2

0

0

i cosh η
2

sin ψ
2

 ,

P−ε̂
1 =

e−
i
2

(τ+φ)

√
2


0

i sinh η
2

sin ψ
2

cosh η
2

cos ψ
2

0

 , P−ε̂
2 =

e
i
2

(τ+φ)

√
2


0

i cosh η
2

cos ψ
2

− sinh η
2

sin ψ
2

0

 .

(5.11)

5.1 Off-shell supersymmetry algebra

Now that we have obtained the explicit spinor parameter for the supercharge (4.5)

used in the localization procedure, we proceed to the supersymmetry transforma-

tions of the fluctuations around the localizing manifold.

Hereafter, the spinor εi is taken to be specifically the one given in (5.11) and we

omit the hat for clarity. Moreover, we will be interested in writing the action of

the supercharge on the various fields in a cohomological form (i.e. as an operator

squared rather than an anti-commutator). To this end, we will use commuting

spinor parameters in this Chapter. This is achieved by extracting a Grassmann

number in the expressions for the spinor parameters and the supercharge. We use

this convention in order to stay as close as possible to what is usually used in the

literature [64, 92].

Vector multiplets: The supersymmetry transformation rules for the vector mul-

tiplet on our localizing background are, using (3.35):

QXI = ε̄iP+λ
I i ,

QX̄I = ε̄iP−λ
I i ,

QW I
µ = ε̄iγµP+λ

I i − ε̄iγµP−λI i , (5.12)

Q(P+λ
I i) = 1

2
F I −ab γ

abP+ε
i + 2 /∂XI P−ε

i − Y I i
j P+ε

j ,

Q(P−λ
I i) = 1

2
F I +
ab γ

abP−ε
i − 2 /∂X̄I P+ε

i − Y I i
j P−ε

j ,

QY I i
j = − 2 ε̄jγ

5 /DλI i + δij ε̄kγ
5 /DλI k ,
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where

F I −ab := F I −
ab −

1

4
X̄IT−ab , F I +

ab := F I +
ab −

1

4
XIT+

ab ,

and F I ±
ab is the (anti)self-dual part of the vector field strength. The covariant

derivative on spinors is given by Dµ = ∂µ − 1
4
ω ab
µ γab in the gauge-fixed theory.

The square of the supersymmetry transformations can be obtained either by acting

twice with (5.12), or using the general algebra derived in Section 3.2.4 and evalu-

ating it on the full-BPS AdS2×S2 background for commuting spinor parameters.

We find:

Q2XI = vµ∂µX
I ,

Q2X̄I = vµ∂µX̄
I ,

Q2W I
µ = vνF I

νµ + ∂µ
(
2K−X̄

I + 2K+X
I
)
, (5.13)

Q2(P+λ
I i) = vµDµP+λ

I i + 1
4
Davbγ

abP+λ
I i ,

Q2(P−λ
I i) = vµDµP−λI i + 1

4
Davbγ

abP−λ
I i ,

Q2Y i
j = vµ∂µY

i
j .

The transformation parameters in (5.13) are given by

vµ = 2 ε̄iγ
µP−ε

i , K+ = ε̄iP−ε
i , K− = ε̄iP+ε

i . (5.14)

In the right-hand side of (5.13), we have used the following useful identities

D[avb] = −1

4
K−T

+
ab −

1

4
K+T

−
ab , (5.15)

and

∂µK± =
1

8
vνT±µν , (5.16)

which can be derived directly from the definition of the Killing vector and the

conformal Killing spinor equations (5.4) with ηi = 0.

Using the explicit form of the Killing spinor (5.11), we find that

vµ =
(
i 0 0 − i

)T
, (5.17)

and

K± =
1

2
(cosh η ± cosψ) , (5.18)

which we will use in the next Section.
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Hypermultiplets: We consider a set of nh hypermultiplets where the scalars are

denoted by Ai
α with α = 1 . . . 2nh. The index i is a doublet under the SU(2)

R-symmetry, so that we have total of 4nh real scalars. The 4nh fermions are

the 2nh positive-chirality spinors ζα and the 2nh negative-chirality spinors ζα.

We take the hypermultiplet fields to be neutral under the U(1) gauge symmetry

of the vector multiplet, as this is consistent with the classical attractor solution

in asymptotically flat space. The scalars Ai
α span a quaternionic-Kähler manifold

and we will assume that the target-space of the hypermultiplet sigma model is

flat [95].

Hypermultiplets do not participate in the classical attractor black hole background

– they take zero or constant values as shown in (4.4), and as a consequence, they

do not contribute to the classical action. Their quantum fluctuations, however, are

relevant for our discussion, and we will need an off-shell supersymmetry algebra to

treat these fluctuations within our approach. For vector multiplets, we were able to

directly use the formalism of off-shell conformal supergravity. For hypermultiplets,

however, there is no known off-shell formalism for the full N = 2 supersymmetry

algebra with a finite number of auxiliary fields.

There is, however, a formalism for the off-shell closure of the algebra of one super-

charge for vector and hyper multiplets with a finite number of auxiliary fields [96].

This formalism was used in localization problems in four-dimensional field theory

as in [64, 92]. This algebra acting on vector multiplets is exactly the one given

by the conformal N = 2 supergravity formalism that we used above. As was

emphasized many times now, the localization solutions (4.7) are universal, in the

sense that they do not depend on the physical action of the theory and continue

to hold even in the presence of other matter fields (which are all constant as in the

classical background (4.4)). We can therefore use the formalism of [96] and [64, 92]

for hypermultiplets in black hole backgrounds.

The Q-supersymmetry transformation rules are given by a modification of (3.40):

QAi
α = 2i ε̄iP+ζ

α − 2i ε̄iP−ζ
α ,

Q(P+ζ
α) = − i /∂Ai

αP−ε
i − 2Hi

αP+ε̆
i ,

Q(P−ζ
α) = − i /∂Ai

αP+ε
i − 2Hi

αP−ε̆
i , (5.19)

QHi
α = ¯̆εi /D(P−ζ

α)− ¯̆εi /D(P+ζ
α) ,
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where the action of the covariant derivative on the spinors is exactly as in the vector

multiplet. Here, Hi
α are 4nh scalar auxiliary fields. Indeed, upon setting Hi

α = 0,

one recovers the on-shell transformation rules of Chapter 3.

In the off-shell transformations (5.19), the parameters ε̆ i, ε̆i are built to satisfy:

ε̄iP−ε̆
j − ε̄iP+ε̆

j = 0 ,

¯̆εiP∓ε̆
i − ε̄iP±εi = 0 , (5.20)

¯̆εiγ
µP−ε̆

i − ε̄iγµP−εi = 0 .

In these equations, the spinors εi, εi are given by (5.11) as before. As mentioned

in [92], the constraints (5.20) do admit non-trivial solutions to ε̆. An explicit

solution is given by

P+ε̆
i =

(
cosh η − cosψ

cosh η + cosψ

)−1/2

P+ε
i , P−ε̆

i =

(
cosh η − cosψ

cosh η + cosψ

)1/2

P−ε
i . (5.21)

With these constraints, the Q-supersymmetry transformations close off-shell:

Q2Ai
α = vµ∂µAi

α ,

Q2(P+ζ
α) = vµDµP+ζ

α + 1
4
Davbγ

abP+ζ
α , (5.22)

Q2(P−ζ
α) = vµDµP−ζα + 1

4
Davbγ

abP−ζ
α ,

Q2Hi
α = vµ∂µHi

α .

For the localization analysis, we set all the fermion variations in (5.19) to zero. It

is clear that the configuration where the auxiliary field Hi
α = 0 and the hypermul-

tiplet scalars Ai
α = constant is a solution to the above BPS equations. In order

to find an exhaustive list of all solutions, one needs to do an analysis as in [79]

by separating the different tensor structures on the right-hand side. For now, we

proceed with the trivial solutions.

Supersymmetry algebra of Q: Inspection of (5.13) and (5.22) shows that

supersymmetry algebra of Q acting on all fields of the vector and hypermultiplets

in the Euclidean AdS2 × S2 background is:

Q2 = δcgct(v) + δM (Lab) + δgauge(θ
I) , (5.23)

where the quantities on the right-hand side are as follows.
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The operator δcgct(v) is the covariant general coordinate transformation, which

is the variation under all gauge symmetries of the conformal supergravity theory

(including regular general coordinate transformations, but also e.g. the U(1) gauge

symmetry of the vector multiplets), with the gauge parameters determined by the

vector vµ (given by (5.14) for our background). In our case, it is equal to the

sum of the Lie derivative along the vector vµ and the U(1) gauge transformation

parametrized by −vµW I
µ .

The transformation δM is a Lorentz transformation parametrized by (see (5.15))

Lab := −1

4

(
K−T

+
ab +K+T

−
ab

)
= D[avb] , (5.24)

which, on our background solution, equals

Lab =

 0 −i cosh η 0 0
i cosh η 0 0 0

0 0 0 −i cosψ
0 0 i cosψ 0

 . (5.25)

Lastly, the transformation δgauge is a U(1) gauge transformation parametrized by

θI := 2K−X̄
I + 2K+X

I . (5.26)

In the following, we will combine the off-shell supersymmetry Q with the BRST

symmetry encoding the U(1) gauge symmetry of the vector multiplet. To do so, we

isolate the U(1) gauge connection term present in the covariant general coordinate

transformation of (5.23) and combine it with the gauge transformation already

present in the algebra of Q. We thus rewrite the off-shell supersymmetry algebra

in the form1

Q2 = Lv + δM(Lab) + δgauge(θ̂
I) , (5.27)

where Lv is the Lie derivative along the vector vµ, and

θ̂I := 2K−X̄
I + 2K+X

I − vµW I
µ . (5.28)

1A similar procedure can be used to combine the spin-connection term appearing in the
covariant general coordinate transformation of fermions with the Lorentz transformation param-
eter Lab. In the gauge where ω 12

τ = − cosh η , ω 34
φ = cosψ, this yields Lab − vµωµab = 0, so

that the supersymmetry algebra is simply Q2 = vµ∂µ + δgauge(θ̂
I). It will be enough to stay in

a generic Lorentz gauge where such cancellations need not happen.
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Using the values (4.4) of the background gauge fields W I
µ on the localizing mani-

fold, we obtain the explicit expression:

θ̂I = eI∗ + 2CI = φI . (5.29)

Note that, on the localizing manifoldMQ, the gauge parameters on the right-hand

side of the supersymmetry algebra are precisely the coordinates on MQ.

We note here that the algebra (5.27) of the supercharge Q is similar in structure,

but not quite the same, as the one appearing in [64, 92]. Before specifying the

background manifold, the off-shell supersymmetry transformations (5.12), (5.19)

are the same as the corresponding ones in [64, 92]. The reason for the difference

is simply that the background values of the supergravity fields are different. In

particular, the right-hand side of the algebra (5.27) involves the SU(2) R-symmetry

of supergravity in the case of the sphere, while this term is absent in our case.

Instead, the Euclidean AdS2 × S2 algebra contains a Lorentz rotation which the

sphere algebra does not have. This fact will play a role in our analysis of the index

theorem in Section 5.3.

5.2 Gauge-fixing and BRST ghosts

We now turn to the issue of gauge-fixing the U(1) symmetry in each vector mul-

tiplet. The main problem is that the action of fixing a gauge does not commute

with the off-shell supersymmetry – which is central to our localization methods.

To treat this problem, we will need to extend the off-shell supersymmetry algebra

of Q to include the effect of the gauge-fixing. We also saw a hint of this appearing

in the fact that the supercharge Q squares to a compact bosonic generator only

modulo a gauge transformation in (5.27).

It is natural to solve this problem by combining the conformal N = 2 supergravity

formalism with the covariant BRST formalism2 by adding Fadeev-Popov ghosts

to the theory. The technical task is to set up a BRST complex for the gauge

symmetries of the theory, and combine it with the off-shell supersymmetry complex

generated by Q. This procedure builds a new supercharge Q̂ which, as we will

demonstrate, is suitable for localization and encodes both the gauge symmetry

2Another, more hands-on method is to choose a suitable gauge-fixed background and to
compute the bosonic and fermionic eigenmodes around this background. The non-cancellation
then happens because the naive Q operator, upon acting on a certain eigenmode, moves us out
of the gauge-fixing condition and one therefore has to modify Q as in e.g. [97].
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and the supersymmetry of the action. Once this formalism has been set up, the

approach turns out to be extremely compact, and we can use index theory to

elegantly compute the required functional determinants as laid out some time ago

in [64].

To treat the U(1) gauge symmetry of the vector multiplet, we introduce a standard

BRST ghost system. A U(1) gauge transformation acts on the vector fields as

δgW
I
µ = ∂µξ

I (5.30)

where ξI is the parameter of the transformation in each vector multiplet. To each

of these transformations we associate a ghost cI along with an anti-ghost bI and a

Lagrange multiplier BI . Notice that the operator ∂µ has normalizable zero modes

on a compact space, namely any constant function. In order to treat these zero

modes we need to introduce the so-called ghost-for-ghosts: the constant field cI0,

along with two BRST-trivial pairs (η̄I , BI
1) and (ηI , B̄I

1). This is the required field

content to properly fix the gauge in the QEF path-integral (4.10). This fact is most

easily understood by making use of the Batalin-Vilkovisky formalism [90, 98] and

noting that the gauge theory at hand is a first stage reducible theory.

The BRST transformation laws of the vector multiplet fields in the adjoint of

the U(1) gauge group are:

δBW
I
µ = Λ ∂µc

I , δBX
I = 0 , δBX̄

I = 0 , δBλ
i I
+ = 0 , δBλ

i I
− = 0 , δBY

I
ij = 0 ,

(5.31)

with Λ a constant anti-commuting parameter parametrizing the BRST transfor-

mation. We also have the following transformations on the ghost fields:

δBb
I = ΛBI , δBB

I = 0 , δBη
I = ΛB̄I

1 , δBB̄
I
1 = 0 , δB η̄

I = ΛBI
1 , δBB

I
1 = 0 ,

(5.32)

and

δBc
I = ΛcI0 , δBc

I
0 = 0. (5.33)

The operator QB defined by δBφ := ΛQBφ (φ being any field of the theory) is a

nilpotent operator, due to the fact that the field cI0 is constant.

We now add to the N = 2 supergravity Lagrangian a QB-exact gauge-fixing term:

Lg.f. = QB

[
bI
(
− BI

2ξW
+GW (W I

µ)

)
+ η̄I

(
−B

I
1

2ξc
+Gc(cI)

)
+ ηI

(
− B̄

I
1

2ξb
+Gb(bI)

)]
,

(5.34)
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where GW , Gc and Gb are appropriate gauge-fixing functions for the vector field,

the ghost and the anti-ghost, respectively, and ξW , ξb and ξc are constant param-

eters. The gauge-fixed action

Sgauge-fixed = S0 +

∫
d4xLg.f. , (5.35)

where S0 is the action of vector and hypermultiplets coupled to conformal super-

gravity, is BRST invariant since Lg.f. is QB-exact and QB is nilpotent. Expand-

ing (5.34) using the BRST transformation rules leads to the expression

Sg.f. =

∫
d4xLg.f.

=

∫
d4x

{
BI

(
GW (W I

µ)− BI

2ξW
− ηI δG

b

δbI

)
− bI

δGW (W I
µ)

δW J
µ

∂µc
J

+ B̄I
1

(
Gb(bI)− B̄I

1

2ξb

)
+BI

1

(
Gc(cI)− BI

1

2ξc

)
− cI0η̄J

δGc(cI)

δcJ

}
. (5.36)

One can recognize in this action the field BI as a Gaussian-weighted Lagrange

multiplier for the gauge condition GW (W I
µ) = ηJ δG

b(bI)
δbJ

, the field BI
1 as a Gaussian-

weighted Lagrange multiplier for the gauge condition Gc(cI) = 0 and the field B̄I
1

as a Gaussian-weighted Lagrange multiplier for the gauge condition Gb(bI) = 0.

For the case at hand, these last two gauge-fixing functions are meant to freeze

the freedom one has in shifting the ghost and anti-ghost by a constant func-

tion, and we can thus take them specifically to be Gc(cI) = cI and Gb(bI) =

bI . The BI
1 , B̄

I
1 Lagrange multipliers then impose the conditions that

∫
cI = 0

and
∫
bI = 0, respectively. The gauge-fixing function for the gauge field W I

µ is

then fixed to GW (W I
µ) = ηI through the equation of motion for the Lagrange mul-

tiplier BI . Note also that the partition function computed from this gauge-fixed

action is independent of the ξW , ξc and ξb parameters [64].

We pause here for a moment in order to make a technical comment on the ghost

set up that was used in the original work of Pestun [64]. For non-Abelian gauge

theories, like the one considered in [64], constant functions like c0 are not zero

modes of the operator Da
µ (where a is a color index). One could have tried to set

up the ghost-for-ghost c0 to be a zero mode of the covariant derivative and thus

take it to be a covariantly constant function – indeed, this may seem natural from

a certain point of view. Doing so, however, would render the integrations over

the gauge field and the ghost-for-ghost inter-dependent inside the path-integral,

which is difficult to implement in practice. The strategy for non-Abelian gauge

fields considered in [64] was to keep c0 as a constant function, and use a BRST
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charge which is non-nilpotent. In our case the gauge symmetry is Abelian, so that

we may use an honestly nilpotent BRST charge.

We now apply the above formalism to our problem of Abelian vector multiplets

on Euclidean AdS2 × S2. The non-compact nature of the space introduces some

subtleties.

Firstly, we need to specify boundary conditions on all the fields. For the physical

fields, we choose boundary conditions as in [57, 81]. For the ghost fields, we impose

Dirichlet boundary conditions on the fields bI , cI . This implies that there is no

normalizable zero modes for these fields, and therefore no ghost-for-ghosts. This

is consistent with the boundary conditions used in [58] for the gauge parameters.

Using this formalism, we set all the ghost-for-ghost fields to zero hereafter.

Secondly, there is the issue of boundary modes which are normalizable modes of

the gauge fields W I
µ that are formally pure gauge, but with gauge parameters that

do not vanish at infinity (these have been called “discrete modes” [58]). These

modes are zero-modes of the Laplacian on the AdS2 × S2 background. The four-

dimensional bulk action depends only on gauge invariant quantities and therefore

does not depend on these discrete modes – thus naively giving a divergence in the

path integral. These special modes have been treated carefully in [58], and the idea

is to obtain their contribution separately using arguments of ultra-locality. This

gives rise to a factor of `−2β to the functional integral, where ` is the background

length scale of the problem and β depends on the field under consideration. The

non-zero modes can be treated as usual, but since one needs a complete set of

local fields in the computation, one should add and subtract one set of zero modes

to the non-zero modes, thus obtaining the contribution of a complete local set of

modes and a factor of `2. As a result, one needs to multiply the answer found

by using a complete set of local field observables by a factor `2−2β. In the on-

shell theory of [58], it was found that for the gauge fields β = 1, which effectively

means that the discrete modes do not contribute. In the context we examine in

this Chapter, the discrete modes are not zero modes of the H operator introduced

below in (5.37) used for the calculation of the determinants. We believe that their

contribution can nevertheless still be ignored. In order to justify this procedure

more carefully in our localization computation, one needs to analyze the cut-off

theory and carefully take an infinite-volume limit. This must be done in such a

way as to keep the local superalgebra and the completeness of the basis intact.

Another possible resolution of this subtlety is that boundary effects will lift these
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zero modes in the localization action, as consistent with the fact that H takes non-

zero values on these modes. The boundary conditions introduced in the context

of the AdS/CFT correspondence in [99] may be relevant to this discussion. Since

additional work is required to treat these modes in the off-shell theory, we will

for now proceed with the assumption that they can be ignored. In contrast, such

modes are expected to play a role in the graviton determinant calculation since

already in the on-shell theory, they have β 6= 1.

The combined supercharge Q̂ and its algebra: We now consider the com-

bined transformation for the BRST symmetry and the off-shell supersymmetry,

generated by Q̂ ≡ Q+QB. We require this new supercharge to square to

Q̂2 = Lv + δM (Lab) ≡ H , (5.37)

where Lv and δM are the Lie derivative and the Lorentz transformations defined

around Equation (5.27). Note that the vector multiplet gauge transformation is no

longer present on the right-hand side of the algebra (5.37) – precisely because it is

already encoded in the BRST symmetry. This algebra allows us to systematically

derive the supersymmetry transformation rules on the ghost system.

Expanding Q̂2, and using the algebra (5.27) for Q and the nilpotency of QB, we

obtain

Q̂2 = Q2 +Q2
B + {Q,QB} = Lv + δM (Lab) + δgauge(θ̂

I) + {Q,QB} . (5.38)

Comparing with (5.37), we deduce that the anti-commutator of a supersymmetry

and a BRST transformation on the physical and auxiliary fields of the theory

should compensate for the gauge transformation parametrized by the vector and

scalar fields of the vector multiplet. Applying this observation to the various fields

leads to the supersymmetry transformation rules for the ghost system.

As an example, consider the vector field W I
µ :

{Q,QB}W I
µ = Q

(
∂µc

I
)

= −∂µ(θ̂I) , (5.39)

which immediately yields

QcI = −θ̂I . (5.40)
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Applying Q̂2 to the other fields of the theory, we obtain the remaining supersym-

metry transformations3

QbI = 0 , QBI = LvbI . (5.41)

We can now write down the various anticommutators on all fields of the theory as

Q2Φ(′) =
(
Lv + δM(Lab) + δgauge(θ̂

I)
)

Φ(′) , Q2(gh.) = 0 ,

Q2
BΦ(′) = 0 , Q2

B(gh.) = 0 , (5.42)

{Q,QB}Φ(′) = − δgauge(θ̂
I)Φ(′) , {Q,QB} (gh.) = Lv(gh.) ,

where Φ(′) stands for bosonic (fermionic) physical and auxiliary fields, and gh.

stands for all the ghost field of the gauge-fixing complex. Using these transforma-

tion rules, we conclude that the complete set of fields (including the ghosts) now

admits a symmetry Q̂ realized off-shell with algebra (5.37). This is the supercharge

that we would like to use to perform localization, and the localizing arguments of

Section 2.3 need to be applied with this new operator.

The first observation to be made is that the complete gauge-fixed action is closed

under Q̂,

Q̂ (S0 + Sg.f.) = 0 . (5.43)

This is the case since the S0 action is gauge and supersymmetry invariant by

definition, and as was established in [64], one may replace QB in (5.34) by Q̂

without changing the value of the path-integral under consideration. Thus, the

gauge-fixed action we built by introducing the gauge-fixing complex is closed under

the Q̂ operator, and this operator squares to a sum of bosonic symmetries. This

is the correct setup for localization.

We also need to revisit the conditions for the saddle point around which the

localization is performed. This means we now look for solutions to the equation

Q̂ψα = Qψα +QBψα = 0 (5.44)

for all physical fermions ψα in the theory. For the gaugini in the adjoint repre-

sentation of the gauge group, the added terms QBP±λ
I i are zero and therefore do

not modify the initial solution found for Qλ = 0 in [73]. A similar statement can

be made for the fermions of the hypermultiplets.

3The same procedure can be applied to also determine the transformation rules for the ghost-
for-ghost fields when they are present, e.g. as in [64].
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Finally, we need to modify the deformation operator QV used in localization to

the operator Q̂V̂ which now includes the gauge-fixing part of the action (5.34):

V̂ ≡ V + Vg.f. =

∫
d4x

[∑
α

(Qψα , ψα) + bIGW (W I
µ)
]
, (5.45)

where, following the discussion below Equation (5.36), we have discarded the

ghost-for-ghost fields and taken the parameter ξW to infinity in the gauge-fixing

action.

We now have the full formalism in place to compute the super-determinant of

the Q̂V̂ operator over the Q̂-complex (5.12), (5.19), (5.31).

5.3 Calculation of the one-loop determinant

In this section we compute the one-loop determinant of the Q̂V̂ operator using an

index theorem. We follow the procedure as explained in [64, 92, 100, 101]. We

will first organize the various fields on which the Q̂ operator acts in bosonic and

fermionic quantities as:

Xa Q̂−→ Q̂Xa , Ψα Q̂−→ Q̂Ψα , (5.46)

where Xa and Ψα stand for fundamental bosons and fermions, respectively. The

full set of bosonic and fermionic fields of the theory are thus organized as:

B ≡ {Xa , Q̂Ψα} (bosonic) , F ≡ {Ψα , Q̂Xa} (fermionic) . (5.47)

With this change of variables, the deformation operator V̂ = V+Vgf can be written,

up to quadratic order in the fields, as follows:

V̂|quad. =
(
Q̂X Ψ

) D00 D01

D10 D11

 X

Q̂Ψ

 . (5.48)

This implies the following form for Q̂V̂ :

Q̂V̂|quad. =

∫
d4x

(
BKbB + FKf F

)
≡ Lb + Lf , (5.49)
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Lb =
(
X Q̂Ψ

) H 0

0 1

D00 D01

D10 D11

 X

Q̂Ψ

 , (5.50)

and

Lf =
(
Q̂X Ψ

) D00 D01

D10 D11

1 0

0 H

Q̂X
Ψ

 , (5.51)

and where H = Q̂2 as defined in (5.37).

By definition, the one-loop determinant for the operator Q̂V̂ is:

Z1-loop =

(
detKf

detKb

) 1
2

. (5.52)

Using equations (5.49), (5.50) and (5.51), we find

detKf

detKb

=
detΨH

detX H
=

detCokerD10 H

detKerD10 H
. (5.53)

The above ratio of determinants can be computed from the knowledge of the index

ind(D10)(t) := TrKerD10 e
−iHt − TrCokerD10 e

−iHt . (5.54)

Indeed the expansion of the index

ind(D10)(t) =
∑
n

a(n) e−iλnt , (5.55)

encodes the eigenvalues λn of H, as well as their indexed degeneracies a(n), and

we can thus write the ratio of determinants in (5.53) as:

detCokerD10 H

detKerD10 H
=
∏
n

λ−a(n)
n . (5.56)

This infinite product is a formal expression, and we will discuss a suitable regulator

in the following.

From a mathematical point of view, the index (5.54) is an equivariant index with

respect to the action of H. This operator acts on all the fields as H = Lv +

δM(Lab) according to (5.37). The action of H on the spacetime manifold is simply

through the Lie derivative, i.e. the U(1) action H = (i ∂τ − i ∂φ) = L0 − J0. A

U(1)-equivariant index of this type can be computed in an elegant manner using

the Atiyah-Bott index theorem for transversally elliptic operators [102], as was
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explained in detail in [64]. Here we will make use of this index theorem even

though AdS2 is a non-compact space. We note in this context that the AdS

space is effectively compact, in the sense that there is a gravitational potential

well which localizes physical excitations around the fixed point of the U(1) action.

This suggests that continuous modes do not contribute to the index, which is

what we will assume. We leave a detailed analysis of the boundary conditions and

boundary action as an interesting problem to be analyzed in the future.

We now summarize the ideas of the index theorem very briefly from a working

point of view. The standard starting point for the considerations of index theory

is that of an elliptic operator on a manifold, which generalizes the notion of a

Laplacian. If the operator is linear and of second order, we can write it in local

coordinates xi as

aij(x) ∂i ∂j + bi(x)∂i + ci(x) . (5.57)

An elliptic operator is one for which the matrix aij is positive-definite4. This can

be restated as follows: if we replace the derivatives by momenta, i.e. consider the

Fourier transform of the linear operator, we obtain the symbol of the operator.

An operator is elliptic if the principal symbol aij pi pj does not vanish for any

non-zero pi. The operator D10 introduced above, however, is not elliptic – but it

can still be treated by index theory [102]. The point is that we have a certain

special U(1) action (that of H), and our operator D10 commutes with this action.

In the directions transverse to the U(1) orbits, the operator D10 is elliptic – such an

operator is called transversally elliptic, and there is a version of the index theorem

which deals with such operators. In terms of the symbol, an operator is called

transversally elliptic if its symbol does not vanish for any pi that is transversal

to the generator of the U(1) action. This means that the matrix aij is allowed

to degenerate, but only along the one-dimensional locus generated by the U(1)

action. With this definition, the operator D10 is transversally elliptic with respect

to the U(1) symmetry generated by H, as shown in [A2]. The proof is rather

technical so it will not be reproduced here.

The result of the theorem applied to our problem is that the index of the D10

operator (5.54) reduces to the fixed points of the manifold under the action of H.

Denoting this action by x 7→ x̃ = e−iHtx, we have:

ind(D10)(t) =
∑
{x|x̃=x}

TrX,Ψ (−1)F e−iHt

det(1− ∂x̃/∂x)
. (5.58)

4For technical reasons, the theory of elliptic operators often also assumes that the eigenvalues
are bounded.
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In our case the action of H on AdS2 × S2 decomposes into the separate actions

of L0 and J0 on the AdS2 and S2 factors, respectively. There are two fixed points

– at the center η = 0 of the AdS2 factor (fixed by the rotation L0), and at the two

poles on the S2 factor (fixed by the rotation J0). To apply the index theorem, we

further need to know the explicit field content of X and Ψ, and the charges they

carry under H. Once we know the eigenvalues of all the fields under H, we can

compute the trace in the numerator of (5.58).

As we discussed in Section 5.1, the off-shell algebra that we use has the same

structure as the one used in [64, 92], insofar that the field content and the gauge

invariances are the same. This allows us to use the splitting of fields into X, Ψ used

by those authors. On the other hand, as was emphasized at the end of Section 5.1,

the physical transformations on the right-hand side of the algebra as well as the

background manifold are different, and we should use the algebra (5.37) that is

relevant to our problem.

The action of the Lie derivative Lv on any field of the theory is composed of two

parts: a local translation on the spacetime coordinates along the vector vµ, and an

action on the tensor indices of the field. At the fixed points of spacetime under H,

the former action vanishes by definition. Thus, in order to compute the action

of H, we only need to keep track of the latter action of the Lie derivative, as

well as the action of the Lorentz rotation Lab. The vector vµ (5.17) translates us

along the angles τ and φ in the metric (5.6) and is therefore essentially a rotation

around the fixed points. The operator Lab (5.25) at the fixed points is also the

same rotation (acting on the spin part of the fields). Therefore, we only need to

compute the charges of all the fields under a rotation around the center of AdS2

combined with a rotation around the S2.

The calculation is simplified by going to complex coordinates in which the Eu-

clidean AdS2 × S2 metric is

ds2 = `2

(
4dwdw̄

(1− ww̄)2
+

4dzdz̄

(1 + zz̄)2

)
. (5.59)

Here ` is the overall physical size of the AdS2 × S2 metric, which is governed by

the field-dependent physical metric e−K(XI)gµν which depends on the position in

the AdS2 space. At the fixed points, i.e. the center of AdS2, this size is given

by `2 = e−K(φI) in the gauge
√
g = 1.5 At the fixed points, we have w = 0,

and z = 0 or 1/z = 0. There, the action of the operator e−iHt on the spacetime

5Here and in the following, we write K(φI) to mean K((φI + ipI)/2).
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coordinates is (z, w) → e−it/`(z, w). Therefore, the determinant factor in the

denominator of (5.58) is (1− q)2 (1− q−1)2, with q := e−it/`.

Near the fixed points the space looks locally like R4 with an associated SO(4) =

SU(2)+ × SU(2)− rotation symmetry. The planes labelled by the two complex

coordinates (z, w) rotate in the same direction under the SU(2)+, and in opposite

directions under SU(2)−. Comparing the two forms of the metric (5.6) and (5.59)

(noting the change in orientiation of the S2 part when going from one to another),

and recalling that H = i ∂τ − i ∂φ, we identify the action of H with the Cartan

generator of SU(2)+ at the North Pole, and with the Cartan of SU(2)− at the

South Pole according to:

H = 2 J+ (NP) , H = 2 J− (SP) . (5.60)

We now need to compute the charges of all the fields under this generator.

Vector multiplets: In the vector multiplet sector, the fields are separated into

X = {XI − X̄I ,W I
µ} and Ψ = {ΞI

i
j , cI , bI}, along with their respective images

under Q̂. The fermions ΞI are defined as

ΞI
i
j := 2 ε̄iP+λ

I j + 2 ε̄iP−λ
I j . (5.61)

The scalars (XI − X̄I), cI , bI are in the (0,0) of SO(4) = SU(2)+ × SU(2)−,

and therefore are all uncharged under H. The vector rotates with spin one, and

therefore is in the (2,2) of the SO(4). There are two modes (Wz, Ww) with

charges +1 and two modes (Wz, Ww) with charges −1 under H.6 To compute

the charges of the spinor bilinears, we notice that the spinor P+ε
i given in (5.11)

vanishes at the North Pole, and so the bilinear ΞI is in the (1,3) of the SO(4).

The spinor bilinears ΞI thus carry charge 0 under H. Similarly, at the South Pole,

the spinor bilinears are in the (3,1), while H is the Cartan of the SU(2)−.

Putting all this together, we find that, at each of the poles of the S2, the contri-

bution to the index is: [
2q

(1− q)2

]
. (5.62)

We see that there is a pole in this expression when q = 1. This pole arises due to

the fact that our operator is not elliptic but transversally elliptic. At a hands-on

level, the pole presents a problem in the interpretation of the index – namely,

how to compute the Fourier coefficients of this expression. Depending on whether

6Our convention is that a field ϕ of charge e transforms as ϕ→ e−ieHt ϕ.
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we expand around q = 0 or q−1 = 0, we will obtain 2
∑

n≥1 n q
n or 2

∑
n≥1 n q

−n,

which clearly have different Fourier coefficients. This problem is resolved by giving

a certain regularization defined by the behavior of the operator in the neighborhood

of each fixed point [64]. Accordingly, we write:

indvec(D10) =

[
2q

(1− q)2

]
NP

+

[
2q

(1− q)2

]
SP

. (5.63)

Here we have indicated the North Pole and South Pole contributions. As we shall

see, the effect of the different regulators in our final results for the determinant

will only be in an additive constant which we ignore in the functional determinant.

Hyper multiplets: We perform a similar analysis for the hypermultiplets. The

fields are separated into X = {Aiα} and Ψ = {Ξi
α}, with

Ξ α
i := 2 ¯̆εiP+ζ

α + 2 ¯̆εiP−ζ
α , (5.64)

again inspired by [64, 92].

The scalars Ai
α do not transform under rotations. To compute the charges of

the fermions, we note that, in contrast to the vector multiplet analysis, it is the

spinor P−ε̆
i which vanishes at the North Pole (as can be seen from its explicit ex-

pression (5.21)), and therefore the spinor bilinear Ξi
α is in the 2× (2,1) of SO(4),

where the factor of 2 counts both α components of a given hypermultiplet. Simi-

larly at the South Pole, P+ε̆
i vanishes and therefore the bilinear is in the 2× (1,2)

of SO(4).

Putting everything together, we obtain the index for one hyper multiplet:

indhyp(D10) =

[
− 2q

(1− q)2

]
NP

+

[
− 2q

(1− q)2

]
SP

. (5.65)

Zeta function regularization: We now use the expressions (5.63) and (5.65)

for the index of the vector and hyper multiplets to compute their one-loop deter-

minants. Given the infinite product (5.56), we write a formal expression for the

logarithm of the one-loop determinant as:

log
detΨH

detX H
= −

∑
n≥1

a(n) log λn . (5.66)
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In order to regularize this infinite sum, we use the method of zeta functions7. We

first construct the zeta function:

ζH(s) =
∑
n≥1

a(n)λ−sn . (5.67)

This converges for suitably large values of Re(s), and we then analytically continue

it to the complex s plane. The superdeterminant (5.66) is then defined as:

log
detΨH

detXH
= ζ ′H(s) |s=0 . (5.68)

One of the advantages of the zeta function method is that it easily yields the

dependence of the determinant on the physical parameters of the problem. In

our case, we have only one parameter in the background: the overall size of the

metric `2 = e−K(φI). The dependence on ` is easily calculated using the scaling

properties of the zeta function [103]. Note that this size is measured in Planck

units, and thus we are implicitly assuming here that the UV cut-off regularizing

the supergravity theory is of order unity in Planck units.8

We consider the contribution to the index at the North and South Poles separately.

At the North Pole, we have an expression which is expanded around q = 0:[
2q

(1− q)2

]
NP

= 2
∑
n≥1

n qn =
∑
n≥1

2n e−it
n
` . (5.69)

In the above language, this index has

a(n) = 2n , λn =
n

`
. (5.70)

The zeta function for this piece of the determinant is

ζNP
H (s) =

∑
n≥1

2n
(n
`

)−s
= 2 `s ζR(s− 1) , (5.71)

where we have introduced the Riemann zeta function

ζR(s) =
∑
n≥1

1

ns
. (5.72)

7The zeta function regularization has been used with great success to compute the perturba-
tive one-loop corrections to the physical quantum gravity path integral (see [103] and follow-ups).
Here we use the technique for the exact computation using localization methods.

8We are indebted to A. Sen for comments on this point.
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At the South Pole, where we expand in powers of q−1, we get a similar expression

but the zeta function ζSP
H (s) there differs from the north pole answer by a factor

of (−1)s. We thus need to deal with expressions of the type log(−n), for which

we use the positive branch of the logarithm.

Putting together the North and South Pole contributions, we obtain

ζ ′H(s) |s=0= 4ζ ′R(−1) + 2πiζR(−1) + 4 ζR(−1) log `

= 4ζ ′R(−1) + 2πiζR(−1) +
1

6
K(φI) . (5.73)

Since we are not keeping track of purely numerical overall constants, we drop the

finite numbers 4ζ ′R(−1) and 2πiζR(−1) in further expressions. Putting together

Equations (5.52), (5.53), (5.68), and (5.73), we finally obtain:

Zvec
1-loop(φI) = exp

(
K(φI)/12

)
, (5.74)

with K(φI) the generalized Kähler potential defined in Equation (5.1).

For the hypermultiplets, we use the same technique, and we find that the index is

equal and opposite to that of the vector multiplet – as can be seen directly from

the expressions (5.63), (5.65). Our final result is thus:

Zvec
1-loop(φI) =

(
Zhyp

1-loop(φI)
)−1

= exp
(
K(φI)/12

)
. (5.75)

Although we have only worked out the details of the vector and hyper multiplets, it

is clear that the above calculation will also go through essentially unchanged once

we have fixed the off-shell complex of any multiplet. Since there is only one scale

set by e−K in the localization background, the functional determinant will have

the symplectically invariant form e−a0K(φI). The number a0 receives contributions

from each multiplet of the N = 2 supergravity theory:

a0 = agrav
0 + n3/2 a

3/2
0 + (nv + 1) avec

0 + nh a
hyp
0 , (5.76)

where n3/2, (nv + 1), nh are the number of gravitini, vectors and hypers in the off-

shell theory, respectively. From our results in this section, avec
0 = −ahyp

0 = −1/12.

We will see in the following section how we can use existing on-shell computations

to check our formula (5.75) for the vectors and hypers, as well as to deduce the

coefficients a0 for the other multiplets.
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5.4 Relation to previous results

The leading logarithmic corrections to the semi-classical black hole entropy have

been obtained in [104, 59, 58] by explicitly evaluating the one-loop determinant

of the kinetic terms of all the quadratic fluctuations of the theory around the

classical attractor background (5.6). This is a very intricate computation which

requires a diagonalization of the kinetic terms of all the fields of the theory, and

it depends on the fact that the values of the metric, fluxes and scalars in the

attractor solution are related by supersymmetry. In contrast, the localization

method involves the one-loop determinant of the localizing action QV , which does

not depend on the equations of motion and the associated kinetic mixings. At a

practical level, the on-shell computation of [104, 59, 58] proceeds by solving for

the spectrum of eigenvalues of the various Laplacians of the theory, and observing

that there is a huge cancellation among them. The index theorem, on the other

hand, reduces this problem to a very simple computation at the fixed points of a

certain U(1) action.

The results of the on-shell and off-shell methods agree in the large-charge limit, as

expected. To show this, we consider a limit in which all the charges (qI , p
I) scale

uniformly by a large parameter Λ, i.e. (qI , p
I)→ Λ(qI , p

I). In the leading Λ→∞
limit, one can evaluate the quantum entropy (4.17) using saddle-point methods. If

we ignore the determinant factor Z1-loop, the saddle-point equations are simply the

extremization equations of the exponent in (4.17). These extremization equations

are precisely the attractor equations (4.7), (4.8) (with w = 4 in the gauge-fixed

theory), and the saddle-point values φI∗ = 2 ReXI
∗ are the attractor value of the

scalar fields.

From the attractor equations (4.7), we see that the attractor values φI∗ ∼ Λ for

large Λ, and the attractor entropy (4.9) scales as Λ2. From Equation (5.1), we see

that the determinants (5.75) scale as Λ−2a0 and therefore they will contribute to

the entropy as log Λ, so that it is indeed justified to ignore them to leading order.

The resulting semi-classical entropy is:

SBHW = −πqI eI∗ + 4π ImF (0)((eI∗ + ipI)/2) ≈ AH
4
, (5.77)

where F (0) denotes the prepotential without any Â-dependence, corresponding

to the two-derivative effective action which is consistent with the large-charge

approximation. This entropy agrees with the attractor mechanism result (4.9).
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The first corrections to the leading large-charge entropy are given by the first

corrections to the saddle-point value (5.77) of (4.17). In the large-charge limit, we

know that AH ∼ e−K ∼ Λ2. From Equation (5.75) we deduce that the quantum

entropy goes like

SQ =
AH
4

+ a0 logAH + . . . , (5.78)

where the number a0 is precisely the coefficient defined in (5.76). In Section 5.3,

we saw that

avec
0 = −ahyp

0 = − 1

12
, (5.79)

which indeed agrees with the corresponding on-shell computations of the log cor-

rections to the black hole entropy [58], performed using the heat-kernel method.

We defined the number a0 as appearing in the off-shell one-loop determinant in

Section 5.3, and we saw above that the same number is the coefficient of the

logarithmic correction to the large-charge expansion of black hole entropy. We

can actually use this consistency between on-shell and off-shell methods to deduce

the value of a0 for the graviton and gravitini multiplets. The results of [58] demand

that a
3/2
0 = −11

12
, and agrav

0 = 2 in the gauge
√
g = 1.

Miraculous cancellations in N = 2 truncations of N = 8

and N = 4 supergravities

Armed with the knowledge of the one-loop determinants, we can now come back

to the second assumption that was used in the original calculation and agree-

ment [73, 84] for the entropy of 1/8-BPS black hole in N = 8 theory in both

the macroscopic and microscopic theories. As outlined at the end of Chapter 3,

the physical low energy macroscopic field content is that of an N = 8 graviton

multiplet which, in the N = 2 language that we are considering here, consists of

one N = 2 graviton multiplet, n3/2 = 6 gravitini multiplets, nv = 15 vector mul-

tiplets, and nh = 10 hyper multiplets. The macroscopic entropy was computed

using localization in [84] in the truncated theory first considered in [75], where

the physical spectrum consists only of the N = 2 graviton multiplet coupled to

ntrun
v = 7 vector multiplets.

In this truncated theory, only the measure for the zero modes of Q was taken

into account in [84], and it was computed to be Z0 = e(ntrun
v +1)K/2 × O(Λ0). As

explained below (4.17), the localizing computation using only the contribution of

these zero modes agreed precisely with the string theory prediction (2.16).
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We now have an understanding of this agreement. Let us split the contribution of

one vector multiplet into two parts as avec
0 = − 1

12
= −1

2
+ 5

12
, where the −1

2
is the

contribution considered in [84], and 5
12

is the rest. Then, using the values of a0 for

the various multiplets written in the previous subsection, the contribution to a0

ignored in [84] is

5

12
(ntrun

v + 1)− 1

12
(nv − ntrun

v ) +
1

12
nh −

11

12
n3/2 + 2 .

For the field content of the N = 8 theory and the N = 2 truncation given above,

this indeed adds up to zero, thus explaining the miraculous cancellation in the full

string theory seen in [84]. This cancellation can already be seen at the leading log

level in the entropy from the results of [58]. It is now clear from the comments in

this section that this cancellation holds to all orders in perturbation theory.

We can also consider N = 4 string theories (as in the next Chapter), where the

physical low energy macroscopic field content is an N = 4 graviton multiplet

coupled to Nv N = 4 vector multiplets. In terms of N = 2 multiplets, we have

one graviton multiplet, n3/2 = 2 gravitini multiplets, nv = Nv+1 vector multiplets,

and nh = Nv hyper multiplets. The total logarithmic correction according to (5.76)

is given by a0 = 2 − 11
12
× 2 − 1

12
× 2 = 0, which is consistent with the on-shell

computations in the limit when all the charges are scaled to be equally large.

5.5 Exact formulas for N = 2 quantum black

hole entropy and the relation to topological

strings

The true power of the localization method clearly lies in the fact that one can go

beyond the perturbative large charge approximation to get an exact result for black

hole entropy. In this Section we propose such an exact entropy formula for BPS

black holes in N = 2 supergravity coupled to nv vector multiplets and nh hyper

multiplets. We then make some comments relating our formula to the microscopic

formula of [85], as well as on some relations with topological string theory.
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We have seen that one-loop determinant of the fluctuations around the localization

manifold takes the symplectically invariant form9:

Z1-loop = exp
(
−K(φI)

(
2− χ

24

))
, χ = 2(nv + 1− nh) . (5.80)

Recall that, beyond the renormalized action, there are two pieces which contribute

to the integrand of the Master Formula (4.17) – the one-loop fluctuations Z1-loop,

and the measure from the curvature of field space itself. Combining these elements,

we obtain:

Ŵ (q, p) =

∫
MQ

nv∏
I=0

[dφI ] e−π qI φ
I+4π ImF ((φI+ipI)/2)e−K(φI)(2−χ/24) . (5.81)

We now need to discuss the details of the prepotential function F (XI , Â) entering

this equation, which is a holomorphic homogeneous function of weight 2 in its

variables under the scalings XI → λXI , Â → λ2XI . Generically, we have an

expansion of the form:

F (XI , Â) =
∞∑
g=0

F (g)(XI) Âg (5.82)

which enters the Wilsonian effective action of the on-shell supergravity theory.

The function F (0)(XI) controls the two-derivative interactions, and the coeffi-

cients F (g), g ≥ 1, describe higher derivative couplings of the form C2 T 2g−2 and

terms related by supersymmetry, where C is related to the Weyl tensor, and T is

related to the graviphoton field strength.

At the two-derivative level, the prepotential has the form

F (0)(XI) = −1

2

nv∑
i,j,k=1

Cijk
X iXjXk

X0
, (5.83)

for a choice of symmetric Cijk. At this level, we can think of the measure of

the scalars in a geometric manner, and compute it from the knowledge of the two-

derivative kinetic term of the scalar sigma model. To be more thorough, we should

take into account all the fields in the theory – this can be done by using duality

invariance as a criterion for the measure as in [105]. Both these approaches give

9In this section we assume agrav0 = 2 (as argued for above) in the gauge
√
g = 1 which

we used throughout this Chapter. It is important to derive this result from a proper analysis
of the fluctuating Weyl multiplet and the corresponding gauge-fixing. This is currently under
investigation by the author and collaborators.
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rise to the measure:

[dφI ] =
(
det ImF

(0)
IJ

) 1
2 dφI . (5.84)

For a prepotential of the form (5.83), and for10 p0 = 0, q0 6= 0, we can compute

the various expressions entering the exact formula (5.81). We have:

e−K
(0)

=
Cijk p

i pj pk

φ0
, (5.85)

and det ImF
(0)
IJ = A/(φ0)(nv+3)/2 where A does not depend on φI (but does depend

on Cijk and pi). However, using these expressions in our integral expression (5.81)

leads to a formula which does not match the corresponding microscopic BPS state

counting formulas beyond the leading logarithmic correction (see e.g. [106, 107,

85]).

We believe that this discrepancy arises from our lack of complete understanding of

the induced measure term [dφI ]. The current best understanding of the measure in

the supergravity field space comes from the work of [105, 89], whose main guiding

principle is duality invariance. These authors have argued that imposing duality

invariance leads to a non-holomorphic modification to the induced measure. At

the two-derivative level, including these corrections, one has:

[dφI ] =
(
φ−2

0 exp
[
−K(0)(φI)

]) χ
24
−1
dφI , (5.86)

We note that the precise context in which these modifications have been derived is

different from the one considered in this Chapter. Notwithstanding this difference,

if we combine the expression (5.86) and the one-loop factor (5.80) in our exact

formula (5.81), we obtain:

Ŵ (q, p) =

∫
MQ

nv∏
I=0

dφI exp
[
−π qI φI +4π ImF (0)

(
(φI +ipI)/2

)](
φ0
)2− χ

12 e−K
(0)(φ) .

(5.87)

The black hole entropy formula conjectured in [85] based on consistency with the

Rademacher expansion of the microscopic black hole degeneracies in string theory

has exactly the same form as (5.87), with the two-derivative expressions F (0), K(0)

replaced by the all-order expressions F , K, respectively.

To go beyond the two-derivative level in our formalism, we need a formula for

the induced measure at all orders. The work of [105, 89] provides a formalism

10In the type IIA setting, this means absence of D6-branes in the charge configuration making
up the black hole.
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to take into account all the holomorphic corrections to the supergravity measure.

More work, however, needs to be done to fully understand the non-holomorphic

effects in the induced measure as defined in our treatment. It is possible that the

a priori induced measure in the original supergravity path integral suffers from a

holomorphic anomaly. Similar ideas have been proposed in [108] in the context of

the topological string theory. A computation of this measure from first principles

would complete the derivation of the exact quantum black hole entropy in the

gravitational theory.

Comments on relations to topological string theory

Consider type IIA string theory compactified on a Calabi-Yau 3-fold CY3. The

A-model topological string partition function on CY3 has the expression:

Ftop = −i(2π)3

6λ2
Cijk t

i tj tk − iπ

12
c2i t

i + FGW (λ, ti) , (5.88)

where λ is the topological string coupling, ti are the moduli fields (the complexified

Kähler structure in the type IIA theory), c2i are the second Chern classes of the 4-

cycles of the CY3, and FGW is the generating function of the Gromov-Witten (GW)

invariants of the CY3 that admits an expansion in powers of λ. By comparing (5.88)

to the corresponding Wilsonian expression (5.82) in supergravity, we obtain11:

Ftop =
iπ

2
F, ti =

X i

X0
, λ2 =

π2

8

Â

(X0)2
. (5.89)

The value of the topological string coupling constant on the supergravity local-

ization manifold analyzed in this Chapter is |λ| = 2π
√

2/φ0 – which is small for

large values of the charges. The microscopic analysis of [106, 107, 85] is based on

large λ. Using the relation of the GW invariants to the Gopakumar-Vafa invari-

ants related to counting M2-branes in M-theory, then making a precise prediction

for the degenerate instanton contribution at large topological string coupling, and

a subsequent analytic continuation, the authors of [106, 107, 85] claimed that the

the topological string partition function at weak coupling must have an additional

11There are important subtleties associated with the above identification, having to do with
the action of duality (symplectic transformations) on the geometry of the Calabi-Yau surface
and in supergravity [89, 109]. We do not add anything to this discussion here.
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logarithmic term:

F̃top = −i(2π)3

6λ2
CABC t

A tB tC − χ

24
log λ− iπ

12
c2A t

A + FGW (λ, tA) . (5.90)

where χ is the Euler characteristic of the Calabi-Yau three-fold. The puzzle then is

to interpret the logarithmic term in supergravity. Being a non-local contribution,

it cannot arise at any order in perturbation theory in Â.

From our point of view, the logarithmic contribution in λ (or equivalently in Â)

appears as a quantum effect. If we interpret the formula (5.87) as an OSV-type

formula [83], then the imaginary part of the prepotential contains precisely the

additional non-local logarithmic piece with coefficient χ/24 that is predicted by

the analytic continuation of the microscopic theory. (We recall that in a string

compactification on a CY3, the number χ = 2(nv + 1 − nh) is the Euler charac-

teristic of the CY3.) Our AdS2 functional integral incorporates the integration

over massless modes, and although the Wilsonian action of supergravity does not

contain the logarithmic term, the effective 1PI action appearing in the exponent of

Equation (5.87) does.12 13 We mention that most of this interpretation can be re-

constructed by combining the duality arguments of [89, 109] with the computation

of the leading logarithmic effects of [58]. The one point we add to this discussion

is the direct calculation of the one-loop effects proportional to e−a0K.

Finally, we note that, in addition to being at different values of coupling constants,

the values of the moduli in our analysis and that of [85] are also different. The

authors of [85] work with moduli t∞ in asymptotically flat space, while we choose

attractor values of moduli to define the black hole degeneracy since we are only

interested in the single-center black holes. Our results could be interpreted to

mean that the relevant index does not suffer any wall-crossing on moving from

one regime to the other.

These results may also point to a new “black hole index” that is simply constant

over all of moduli space. Indeed, an argument was made in [52, 53] that, when a

black hole preserves at least four supercharges and consequently at least an SU(2)R

symmetry at its horizon, its quantum entropy is equal to a supersymmetric index.

Defining this index in the microscopic theory is not an easy problem, but one

can do so in N = 4 string theories, as we will review in the next Chapter. In

12A deeper explanation of this phenomenon appears in [110].
13There are similar log gs terms in the couplings of the low energy effective action of string

theory in flat space, e.g. [111], which can be explained by mixing between the local and non-local
part of the 1PI action when rescaling from string frame to Einstein frame [112].
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that case the black hole index is given by the coefficient of a mock modular form,

defined using the attractor value of moduli, and it is constant all over of moduli

space [113]. A similar phenomenon in N = 2 string theories would point towards

a larger symmetry underlying the BPS states of N = 2 theories as proposed

in [114, 115].

5.6 Summary of results and assumptions

In this Chapter, we have refined the Master Formula (4.17) for the quantum en-

tropy of 1/2-BPS black holes in N = 2 supergravity by computing explicitly the

one-loop determinants of vector and hyper multiplets. To reach this result, we

made some assumptions along the way, which we gather here for convenience.

In setting up the Q-complex on the hypermultiplet fields and examining the solu-

tions to the localizing equations, we have assumed that only the trivial solution

for which the sections Ai
α are constant and the auxiliary scalars Hi

α are zero

contribute to the localizing manifold. While they are clearly part of the localiz-

ing manifold according to (5.19), it has not been proven that these are the only

solutions. Nevertheless, the agreement between the one-loop determinants and

the on-shell computations of [58] discussed in Section 5.4 seem to corroborate this

assumption.

We have also assumed a trivial contribution coming from the discrete modes of the

gauge fields Wµ
I introduced above (5.37). As discussed there, while this assump-

tion is valid in the on-shell calculations of [58], more work is required to examine

their impact on the off-shell results presented in this Chapter. The author intends

to examine this question more closely in the near future. A related assumption

was made in using the Atiyah-Bott index theorem to compute the equivariant in-

dex (5.54) even though the background space is non-compact. We assumed that

continuous modes do not contribute to the index, which should again be rigorously

proven by first going to a cut-off theory where the size of AdS2 is finite and then

taking the cut-off to infinity.

A more implicit assumption was used in taking the UV cut-off of the supergravity

theory to be set by the Planck scale, as explained below (5.68). This assumption

explains why the one-loop determinants (5.75) explicitly depend on the Kähler
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potential of the theory, which is part of the data contained in the supergravity

action and not solely in the supergravity algebra generated by Q.14

Lastly, we have used a comparison to the on-shell results derived for the loga-

rithmic corrections to the Bekenstein-Hawking-Wald entropy of black holes in [58]

to argue that the graviton multiplet will contribute to the one-loop determinants

with a factor of e−2K. As we mentioned already, it is crucial to derive this result by

examining the action of a combined supersymmetry/BRST complex on the quan-

tum fluctuations of the Weyl multiplet fields around the localizing background and

using the Atiyah-Bott index theorem. The author is currently investigating this

point with collaborators.

Using these assumptions, the results derived in this Chapter is the exact expression

for the one-loop determinant contribution of Weyl, vector and hyper multiplets:

Z1-loop = exp
(
−K(φI)

(
2− χ

24

))
, χ = 2(nv + 1− nh) . (5.91)

This can be used in combination with the Master Formula (4.17) for the quantum

entropy of 1/2-BPS black hole in N = 2 superconformal gravity coupled to nv + 1

vector multiplets and nh hypermultiplets. As explained in Section 5.5, one can

combine these results with some explicit assumptions regarding the integration

measure [dφI ] to reach an exact, closed formula. Having established the general

form that the functional determinants of the supergravity take in the localization

program, we now move on to a computation of quantum black hole entropy in N =

4 supergravity, truncated down to N = 2 pure supergravity coupled to nv +1 = 24

vector multiplets. This theory admits interesting black hole solutions, which are

more subtle than their 1/8-BPS N = 8 counterparts due to the existence of a

phenomenon known as wall-crossing. This is related to the mock modularity of

the counting functions in the microscopic string theory, as alluded to above.

14We are indebted to A.Sen for a discussion of this point.
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Localization in N = 4 supergravity

Based on the analysis of the previous Chapters, we now have a complete under-

standing of the quantum entropy of 1/8-BPS black holes in maximally supersym-

metric (N = 8) theories. Localization reduces the full perturbative path-integral

of the QEF in these theories to a one-dimensional integral, which is the integral

representation of a modified I-Bessel function. Going further, one can also identify

all non-perturbative saddle-points of the full path-integral [80, 81] and compute

the contributions of fluctuations around them [82]. The exact non-perturbative

expression for the black hole entropy is thus given by an infinite sum over dif-

ferent saddle-points yielding a corresponding infinite sum over I-Bessel functions

with successively suppressed arguments, which add up to precisely the integer

degeneracies of the microscopic ensemble computed in [50] and given explicitly

in (2.16).

This remarkable manner in which continuum gravity arranges integer black hole

degeneracies relies on the equally remarkable successive approximation of an in-

teger in terms of complex analytic functions—eventually arriving at a convergent

analytic series. This formula is well-known in analytic number theory as the Hardy-

Ramanujan-Rademacher expansion. As explained in Chapter 2 and Appendix B,

it is a consequence of the modular symmetry of the corresponding microscopic

ensemble of the black hole constituents. This modular symmetry of the black hole

ensemble is, however, special to N = 8 string theory. In theories with lower super-

symmetry, there are gravitational configurations other than the black hole which

contribute to the full entropy formula [116, 85] (unlike the case for N = 8 string

theories [117]), and isolating the microstates belonging to the black hole will, in

general, destroy modularity.

109
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We have learned about many aspects of the modular behavior of the microscopic

partition functions in the generic setting of N = 2 theories based on the modular

nature of the effective strings when black holes descend from wrapped strings, and

from the spacetime duality symmetries of the underlying theory [118, 54, 119, 120,

121, 85, 122, 123]. However, the counting function of microstates of a single black

hole is still not understood in general, and in particular, it is not clear to what

extent the modular symmetry of the original counting function has any remnant

in the single-center black holes. In this Chapter, we begin to address this problem

from the point of view of the bulk gravitational theory.

The main point is that localization allows us to compute the perturbatively exact

macroscopic formula for the black hole entropy. This formula is a very good

analytic approximation to the microscopic degeneracies of the single-center black

hole, and thus constrains the modular nature of their generating function. Under

explicit assumptions about the prepotential and the functional integral measure

in the language of effective supergravity, the exact macroscopic entropy has a

structure similar to the Rademacher expansion of modular forms. As was already

derived in [106, 85], following the OSV formula [83], the leading approximation to

the degeneracy is given by a Bessel function with argument equal to a quarter of

the area of the black hole, in the two-derivative approximation to the Wilsonian

effective action of supergravity. Here we go beyond the leading order and show that

including the infinite series of instanton effects in the holomorphic prepotential

leads to a finite series of sub-dominant Bessel functions.

We illustrate this formula in the concrete setting of the N = 4 string theory

obtained as a Type II compactification on K3 × T 2. In this situation we have

a complete knowledge of the non-perturbative prepotential in the supergravity

theory, as well as that of the microscopic BPS counting function for 1/4-BPS

states (see [124]). Further, it is known [117] that the only configurations, apart

from dyonic 1/4-BPS black holes, which contribute to the relevant supersym-

metric index are two-centered black holes which are each 1/2-BPS. Subtracting

this two-centered contribution leads, as expected, to a breaking of modular sym-

metry for the single-centered black hole degeneracies of interest. It was shown

in [113] that this breaking of modular symmetry happens in a very special manner

and the single-centered black hole degeneracies are coefficients of mock modular

forms [125, 126]. As a consequence, analytic number-theoretical expressions for

the degeneracies can be resurrected—at the expense of some modifications to the

formula due to the mock nature of the partition functions [127].
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We will show in this Chapter that the macroscopic answer in the K3× T 2 theory

has the following structure. The prepotential of the theory is exact at one-loop

order. The one-loop contribution to the prepotential depends only on a special

modulus in the theory S = −iX1/X0, and it can be expanded as an infinite series

in powers of the type e−nS, where n is identified as the instanton number. The

zero-instanton sector gives rise to the leading I-Bessel function in the Rademacher

expansion of the microscopic theory. In addition, the contribution from each of the

infinite instanton sectors has the right structure to be identified with an I-Bessel

function – seemingly leading to a badly divergent contribution to the answer.

However, the choice of integration contour ensures that one gets sub-leading I-

Bessel functions only until a certain value of the instanton number, beyond which

one obtains exponentially suppressed terms.

The supergravity partition function can thus be expressed as a sum of Bessel func-

tions with successively sub-leading arguments, with exactly the same arguments

of the Bessels as those which appear in the Rademacher expansion of a Jacobi

form. Quite remarkably, we find that the coefficients of the Bessel functions also

agree exactly for the first many Bessel functions – and begin to deviate from the

Rademacher expansion of a true Jacobi form exactly when we expect them to do

so due to the mock modular nature of the counting functions. This shows that

the supergravity answer is sensitive to the polar coefficients of the microscopic

function including the coefficients of the mock modular part. This looks to be the

beginning of the answer to the question “How does the continuum supergravity

know about the mock modular nature of the black hole partition function?” when

multi-centered configurations are present in the spectrum.

We will also point out a potential interest from a mathematical point of view –

namely that our results look like the beginning of a consistent large-charge expan-

sion for the coefficients of meromorphic Siegel modular forms which, in contrast

to the Rademacher expansion for (mock) modular and Jacobi forms, is not fully

understood in the mathematics literature as of yet. In order to complete this anal-

ysis, we need to classify and consider the effect of all gravitational saddle-points

with Euclidean AdS2 boundary conditions (as was done in [82] for the N = 8

theory). We leave this interesting problem for the future.
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6.1 Single-centered black hole degeneracies and

(mock) Jacobi forms

We first introduce the microscopic degeneracy formula for the 1/4-BPS black holes

inN = 4 string theory that we study in this Chapter. We then present some details

of the automorphic symmetry properties of the corresponding generating function,

which leads to an analytic formula for the degeneracies of a single-centered black

hole. This is the analogue of the situation described in Chapter 2 for 1/8-BPS

black holes in N = 8 string theory, where the degeneracies (2.16) were given

by the Fourier coefficients of a Jacobi form. In the present case, subtleties due

to wall-crossing phenomena lead to the fact that the black hole degeneracies are

coefficients of mock Jacobi forms. Here we will review the statements relevant to

us and refer the reader interested in more details of these mock modular functions

to [113].

Consider Type II string theory compactified on K3×T 2 or, equivalently, heterotic

string theory on T 6. At low energies the effective description of the theory is

given by N = 4 supergravity coupled to 28 N = 4 gauge field multiplets specified

by the compactification. The quarter-BPS black holes carry electric and magnetic

charges (Qi
e, Q

i
m) (i = 1, · · · , 28), under these gauge fields, where i is a vector index

under the T-duality group SO(6, 22), and (Qe, Qm) transform as a doublet under

the S-duality group SL(2,Z). The U-duality group of the theory is SL(2,Z) ×
SO(6, 22). 1/4-BPS dyonic states in the theory are completely labeled by the

three continuous T-duality invariants:

(Q2
e/2, Qe ·Qm, Q

2
m/2) ≡ (n, `,m) , (6.1)

and, in addition, some discrete charge invariants [128]. As in the N = 8 case of

Chapter 2, we write the compactification manifold as K3 × S1 × S̃1, and we can

choose a duality frame in which the black hole consists of

• Q5 D5-branes wrapped on K3× S1,

• Q1 D1-branes wrapped on S1,

• n units of momentum along S1,

• ` units of momentum along S̃1,

• one unit of Kaluza-Klein monopole charge on S̃1.
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The charge invariants are (Q2
e/2 = n, Qe · Qm = `, Q2

m/2 = Q1Q5). The exact

microscopic counting formula for the index of a generic 1/4-BPS state has been

worked out completely [129, 130, 131, 132, 133]. For charges where the discrete

invariants are trivial, the BPS indexed partition function is given by

ZBPS(τ, z, σ) =
1

Φ10(τ, z, σ)
, (6.2)

where we now have three chemical potentials that couple to the three T-duality

invariants. The function Φ10 is the Igusa cusp form, which is the unique Siegel

cusp form of weight 10.1 The microscopic degeneracy is given by the so-called

Dikgraaf-Verlinde-Verlinde (DVV) formula [129]:

d(n, `,m) = (−1)`+1

∫
C
dτdzdσ

e−iπ(τn+2z`+σm)

Φ10(τ, z, σ)
, (6.3)

with a contour C that was spelled out in [134].

Mock Jacobi forms

There is an important new physical phenomenon which arises in the N = 4 theory

as compared to the N = 8 theory. While the microscopic index that counts 1/8-

BPS states in the N = 8 theory only gets contributions from single-centered black

holes, the corresponding index that counts 1/4-BPS states in the N = 4 theory

gets contributions from single-centered black holes as well as two-centered black

hole configurations, depending on the value of the moduli at infinity [117]. This

ambiguity is captured in the DVV formula by the choice of contour in (6.3), which

depends on the moduli fields at infinity [135, 134]. Choosing the moduli to be at

the attractor point yields the pure single-centered black hole degeneracies. Doing

so, however, destroys the modular symmetry. From a physical point of view this

breaking is related to the fact that we are throwing away a part of the spectrum

of the theory. From a mathematical point of view it is because the partition

function 1/Φ10 is a meromorphic function with poles in the bulk of the Siegel

upper half plane.

Without the powerful handle given by the modular symmetry, it looks at first sight

like the program followed to interpret the microscopic degeneracies in supergravity

will not work. In particular, we do not know how to write down an analytic

expansion like (2.16) for the N = 8 black hole case. This problem was solved

1See Appendix B for more details on Siegel modular forms.



114 Chapter 6 Localization in N = 4 supergravity

in [113], as we now briefly summarize. (We give more details in Appendix B.) We

can perform one of the three Fourier expansions in (6.3) near σ → i∞ to obtain:

1

Φ10(τ, z, σ)
=

∑
m≥−1

ψm(τ, z) e2πimσ . (6.4)

The functions ψm are Jacobi forms of weight −10 and index m that are mero-

morphic (in z). These contain the degeneracies of states with magnetic charge m,

including both single and two-centered black holes. The single-centered black hole

degeneracies are found by subtracting the generating function of two-centered de-

generacies (called ψP
m) from ψm. The difference, called the finite or Fourier part

of ψm

ψF
m = ψm − ψP

m ,

is holomorphic in z, and has an unambiguous Fourier expansion:

ψF
m(τ, z) =

∑
n,`

cF
m(n, `) qn ζ` . (6.5)

It was shown in [113] that:

1. The microscopic indexed degeneracies d(n, `,m) of the single-centered black

holes (i.e. corresponding to the attractor contour) are precisely related to

the Fourier coefficients of this function

d(n, `,m) = (−1)`+1cF
m(n, `) , (6.6)

2. The function ψF
m(τ, z) is a mock Jacobi form.

The meaning of the word mock is that the transformation rule (B.4) is modified.

The functions ψF
m themselves are not modular, but one can add a correction term

(called the shadow) to get completed functions ψ̂F
m which are modular, i.e. they

transform exactly with the rule (B.4). The shadow is a non-holomorphic function2

and leads to a holomorphic anomaly equation as in (B.32). This resurrection of

modular symmetry means, in particular, that we can again use the circle method

to get a formula for the Fourier coefficients. This formula differs from that of

the analogous formula for true Jacobi forms (the Rademacher expansion) due to

the effect of the shadow term (see [127, 143]). In order to make sharp estimates

2See [136, 137, 138, 139, 140, 141, 142] for the physical origin of such non-holomorphic terms
from the point of view of conformal field theory. Understanding the physical basis of the non-

holomorphicity of the specific functions ψ̂F
m is an interesting open problem.
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about how the asymptotic expansion of mock Jacobi forms differs from that of true

Jacobi forms, we need to know the explicit expressions of the mock Jacobi forms

in question. This is a fairly complicated question but it has been addressed and

solved in ([113], Chapters 9, 10). We provide some relevant details in Appendix B,

and here we illustrate the main points with some examples.

In order to present the results, we need to introduce two Jacobi forms

A(τ, z) = ϕ−2,1(τ, z) :=
ϑ2

1(τ, z)

η6(τ)
, (6.7)

B(τ, z) = ϕ0,1(τ, z) := 4

(
ϑ2

2(τ, z)

ϑ2
2(τ)

+
ϑ2

3(τ, z)

ϑ2
3(τ)

+
ϑ2

4(τ, z)

ϑ2
4(τ)

)
, (6.8)

where ϑi, i = 1, . . . , 4 are the four classical Jacobi theta functions. These two

Jacobi forms generate the ring of all weak Jacobi forms of even weight over the

ring of modular forms [144]. The word “weak” here refers to a growth condition

on the functions, and it means in particular that for large values of ∆ = 4mn− `2,

the coefficients grow as (see Appendix B)

c(n, `) ' exp(π
√

4mn− `2) . (6.9)

The functions ψF
m can be worked out explicitly (see [143]) for a given value of m.

The first couple of cases are:

ψF
1 =

1

η(τ)24
(3E4A− 648H1) , (6.10)

ψF
2 =

1

3η(τ)24

(
22E4AB − 10E6A

2 − 9600H2

)
. (6.11)

Here the functions H1, H2 are mock Jacobi forms whose coefficients are linear

combinations of the so-called Hurwitz-Kronecker class numbers, whose Fourier

coefficients have purely polynomial growth. This is representative of the general

structure proved in [113]: the mock Jacobi forms ψF
m can always be written as a

sum of two pieces: ϕtrue
2,m (τ, z)/η(τ)24 and ϕopt

2,m(τ, z)/η(τ)24. The function ϕtrue
2,m (τ, z)

is a true weak Jacobi form (in particular, we can apply the usual Rademacher

expansion (B.11) to it), and the second is a mock Jacobi form of a very special

kind insofar that its Fourier coefficients grow extremely slowly. In the two examples

above, this growth is purely polynomial – this is the case whenever m is a prime

power. In general, the growth of the coefficients of ϕopt
2,m(τ, z) goes as

copt(n, `) ∼ exp
( π
m

√
4mn− `2

)
. (6.12)
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which can be contrasted with (6.9). What we need is to estimate the growth of

the ratios like ϕopt
2,m(τ, z)/η(τ)24 that enter our expressions. Such functions are

called mixed mock Jacobi forms, and their Rademacher expansion already differs

at leading order in the asymptotic expansion compared to a true Jacobi form of

the same weight and index (see Comment 1 below Theorem (1.3) of [127]).

We are now ready to reap the benefits of this technical analysis. If we want to

analyze the Rademacher expansion of the black hole degeneracies encoded in ψF
m,

we can use the usual Rademacher expansion (B.11) of Jacobi forms as long as

the growth of Bessel functions in (B.11) are larger than the growth of the mixed

mock Jacobi forms ϕopt
2,m(τ, z)/η(τ)24. From what we said above, it is clear that

we always have the contribution of the (denoting polynomial prefactors by pi for

now)

Leading Bessel: p0 Ĩ23/2

(
2π

√
(m+ 4)

(
n− `2

4m

))
, (6.13)

where p0 = (m + 2) 4π√
m

(
m+4

n− `2

4m

)23/4

as for a true Jacobi form for any m. This is

then followed by the sub-leading Bessel functions in the c = 1 series of (B.11):

Sub-leading c = 1 series: p1 Ĩ23/2

(
2π

√((m− 1)2

m
+ 4
)(
n− `2

4m

))
+ (6.14)

p2 Ĩ23/2

(
2π

√((m− 2)2

m
+ 4
)(
n− `2

4m

))
+ . . .

But we should stop trusting this series when one of two things happen: firstly

the c = 2 term begins to contribute at the order

c = 2 series: Ĩ23/2

(
2π

√
(m+ 4)

4

(
n− `2

4m

))
. (6.15)

Secondly the mock modular terms begin to contribute according to the discussion

above. We need to use a modified Rademacher expansion for the mixed mock

Jacobi forms as in [127]. Working out the details of the latter is an interesting

problem in analytic number theory which we leave for the future (and for the

experts!).

We will use the analysis presented here in Section 6.4 to work out some details

of when exactly the signature of the mock nature appears in the Rademacher

expansion on a case-by-case basis for the first few values of m. We now move on

to a supergravity analysis of the single-center black hole partition function.
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6.2 Localization in N = 4 supergravity in the

zero-instanton approximation

We consider the particular case of 1/4-BPS black holes in N = 4 string theory

coming from the compactification of Type II string theory on K3 × T 2. In the

two-derivative limit of supergravity, we show how the functional integral in the

near-horizon AdS2 reduces to a single Bessel function. We then set the stage for

the inclusion of instantons in the holomorphic prepotential of the supergravity,

which we will treat in the next Section.

The theory under consideration is described by N = 2 superconformal gravity in

four dimensions with the Weyl multiplet coupled to nv + 1 vector multiplets. In

this theory we consider a BPS black hole solution carrying electric and magnetic

charges qI , p
I . The exact quantum entropy of the black hole is given by the Mas-

ter Formula (4.17). As already explained in and around (5.82), the prepotential

function F (XI , Â) entering the localization formula can be expanded as

F (XI , Â) =
∞∑
g=0

F (g)(XI) Âg . (6.16)

We stress again that the function F (0)(XI) controls the two-derivative interactions,

and the coefficients F (g), g ≥ 1, describe higher derivative couplings in the theory.

Now we consider specifically the K3× T 2 compactification of the Type II theory.

As explained at the end of Chapter 3, writing this theory as an N = 2 supergrav-

ity yields a field content, in addition to the Weyl multiplet, of vector multiplets,

hypermultiplets and gravitino multiplets. Following the ideas of [75] one can trun-

cate this theory to an N = 2 supergravity with a Weyl multiplet and nv = 23

vector multiplets. In this case the perturbative prepotential has the form:

F tree(X) = −X
1

X0
XaCabX

b +
X1

X0
, (6.17)

where Cab is the intersection matrix on the middle homology of K3 (the 2-cycles).

In the full theory, this is modified due to the effects of worldsheet instantons, as

we shall consider in the following.

In this theory, one can solve the exact functional integral explicitly, as we now

briefly recall. The charge configuration corresponding to the microscopic brane

setup introduced in the previous Section below (6.1) corresponds to a non-zero
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value of (q0, q2, p
1, p2, p3) as explained in [84]. It was argued in [73], based on the

structure of the classical metric of the moduli space, that the induced measure on

the localizing manifold in the large-charge limit is:

[dφI ] = P1
1

p1φ0
dφI , (6.18)

where the prefactor P1 is a function only of the charges and independent of the

coordinates φI . One generically expects the measure factor to change when we go

beyond the tree-level approximation. We shall discuss this in the next section.

In order to obtain the truncated N = 2 conformal supergravity theory from the

starting N = 4 theory, we dropped two N = 2 gravitini multiplets and 22 N = 2

hypermultiplets. Following the analysis of the previous Chapter, the one-loop

determinant contributions from the dropped fields amounts to

Zdropped
1-loop = exp

[
−K
(
2× (−11

12
) + 22× ( 1

12
)
)]

= 1 , (6.19)

where K is the generalized Kähler potential of the theory defined in (5.1). The

one loop determinant contributions of the fields in the truncated theory (which

contains one Weyl multiplet and nv + 1 = 24 vector multiplets) is

Ztrunc.
1-loop = exp

[
−K
(
2 + 24× (− 1

12
)
)]

= 1 . (6.20)

Therefore, the one-loop determinants are trivial in the truncated theory, and the

fields we dropped in reaching this truncation of the original N = 4 theory also do

not contribute to the localized QEF at one-loop.

Putting all the ingredients together, the quantum entropy (4.17) takes the form

Ŵ tree(p, q) = P1

∫
dφ0 dφ1

φ0p1
exp
[
−πφ0q0

]
×
∫ nv∏

a=2

dφa exp
[
−πφ2q2 + 4π ImF tree

(φI + ipI

2

)]
. (6.21)

From (6.17), we see that the last (nv − 1) integrals are Gaussian integrals:∫ nv∏
a=2

dφa exp
[
−πφ2q2 + 4π ImF tree

(φI + ipI

2

)]
=

=

(
φ0

p1

)(nv−1)/2

exp
[
π
φ1

p1
p1q2

]
exp
[
π
φ1

φ0

(φ1

p1
+
p1

φ1

)
paCabp

b + 4π
p1

φ0

]
. (6.22)
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The change of variables τ1 = φ1/φ0, τ2 = p1/φ0 yields

Ŵ tree(p, q) = P1

∫
dτ1dτ2

τ
(nv+3)/2
2

exp
[ π
τ2

(
−p1q0 + p1q2τ1 + paCabp

bτ 2
1 + (paCabp

b + 4)τ 2
2

)]
.

(6.23)

Upon identifying the four-dimensional electric and magnetic charge invariants as

Q2
e/2 := −q0p

1 , Q2
m/2 := paCabp

b , Qe ·Qm := −q2p
1 , (6.24)

and with the identification (Q2
e/2, Qe · Qm, Q

2
m/2) := (n, `,m) this integral takes

the form,

Ŵ tree(n, `,m) = P1

∫
d2τ

τ
(nv+3)/2
2

exp
[ π
τ2

(
n− `τ1 +mτ 2

1 + (m+ 4)τ 2
2

)]
. (6.25)

The τ1 integral is Gaussian and can be evaluated in a straightforward manner.

The remaining integral over τ2 can be evaluated using the contour integral repre-

sentation of the Bessel function (B.12),

Ŵ tree(n, `,m) = P1
2π√
m

(
m+ 4

n− `2

4m

)23/4

I23/2

(
2π

√
(m+ 4)

(
n− `2

4m

))
. (6.26)

It has been argued recently in [145] that the prefactor P1 = 2m + 4. The func-

tion (6.26) then agrees precisely with the leading Bessel function in the Rademacher

expansion of the microscopic theory (B.11) with the right weight, argument, and

prefactor, see (6.13).

We now move to the instanton contributions. Note that we kept only the pertur-

bative prepotential to first sub-leading order while in general we have instanton

sums that generate an infinite series of corrections to the prepotential (6.17). In

general the instantons contribute to all the couplings F (g). In the Type II theory

on K3× T 2 the holomorphic prepotential is one-loop exact:

F (X) = −X
1XaCabX

b

X0
+

1

2πi
F (1)

K3×T 2(X
1/X0) . (6.27)

The one-loop contribution to the prepotential is:

F (1)

K3×T 2(X
1/X0) = log

(
η24
(
X1/X0

))
, (6.28)
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and has the expansion

F (1)

K3×T 2(X
1/X0) = 2πi

X1

X0
+ F̃ inst(X1/X0) . (6.29)

Here the function F̃ inst encodes the contributions of worldsheet instantons in the

Type II theory to the prepotential:

F̃ inst(τ) = − log
∞∏
n=1

(1− e2πinτ )−24 . (6.30)

A natural question is how to properly take these corrections coming from the

instantons into account. The instantons can affect the exact answer (4.17) in two

ways – by the explicit change of the prepotential in the renormalized action, and by

an implicit effect on the measure of the integral (which was also computed above

in the zero-instanton sector). This is what we turn to in the following Section.

6.3 Including instantons in the localization for-

mula

In this Section, we work out the corrections to (6.26) due to instantons. We write:

Ŵ (n, `,m) =

∫
γ

d2τ

τ
(nv+3)/2
2

e
π
τ2

(n−`τ1+mτ21 +mτ22 ) M(τ, τ) e−F
(1)(τ)−F(1)(−τ̄) . (6.31)

Here we have taken into account the explicit effect on the prepotential function:

F (X) = −X
1XaCabX

b

X0
+

1

2iπ
F (1)

(X1

X0

)
, (6.32)

with F (1) given in (6.28) being the one-loop effect (it is exact in this case), which

contains contributions from an infinite set of worldsheet instantons wrapping the

torus T 2. Naively the inclusion of all these instantons leads to an infinite series

of I-Bessel functions. In this section we show that with an appropriate choice

of contour γ in (6.31) most of these are in fact exponentially suppressed, leading

to a finite number of Bessel functions that contribute to the quantum entropy.

This finite sum has precisely the same structure as the leading c = 1 term in the

expansion (B.11) for Jacobi forms.
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We preface the calculation in this section with some remarks on the measure in

Equation (6.31). We have parametrized the effect of instanton corrections on the

measure of the functional integral by the function M(τ, τ̄). In Section 6.2 we

did not take into account the full quantum effects on the measure in the local-

ization computation. Indeed one needs to compute the induced measure from

the supergravity field space taking the instanton corrections into account. This

has been addressed in various papers [89, 105, 145] although we think it is fair

to say that a full satisfactory first-principles derivation of this measure has not

been reached yet. We do not attempt to solve this problem in the present work.

Instead we will use the fact that one knows the exact measure factor based on a

saddle-point approximation of the Dijkgraaf-Verlinde-Verlinde formula discussed

in Section 6.1 [75, 131, 146], as we shall now present. Note that this is a different

expansion compared to [113] that is used to compute the exact single-centered

degeneracies. In particular, the expansion of [113] explicitly subtracts the two-

centered black hole contributions from the Siegel modular form that is the full

1/4-BPS partition function, and then for each magnetic charge invariant, pro-

duces a mock Jacobi form (whose coefficients can then be again expanded in a

Rademacher-type series). The formulas in this section, as we shall see below, fol-

low from keeping only the residue at the leading divisor of the Siegel modular

form. These two expansions are not a priori related, and so the results of this

and the next section are non-trivial. They seem to point to a Rademacher-type

expansion of the Siegel modular form, which was anticipated in [81].

We begin with the DVV formula (6.3), which is a three-dimensional contour inte-

gral3:

d(n, `,m) = (−1)`+1

∫
C
dσdvdρ

e−iπ(σn+2v`+ρm)

Φ10(ρ, v, σ)
. (6.33)

We can perform an exact contour integral in the v-variable which reduces to picking

up residues at the divisors of 1/Φ10 in the Siegel upper-half plane, leaving a two-

dimensional integral over σ, ρ which are reexpressed as σ = τ1 + iτ2, ρ = −τ1 + iτ2.

The result is [131]:

d(n, `,m) '
∫
γ

dτ1dτ2

τ 2
2

e−F (τ1,τ2) , (6.34)

where ' implies equality up to exponentially suppressed contributions coming

from additional poles, which we shall discard from now on. The function F (τ1, τ2)

3For the next few lines we will use the variables (σ, v, ρ) instead of (τ, z, σ) to avoid confusion.
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is given by:

F (τ1, τ2) = − π
τ2

(
n− `τ1 +m(τ 2

1 + τ 2
2 )
)

+ ln η24(τ1 + iτ2) + ln η24(−τ1 + iτ2)

+12 ln(2τ2)−ln
[ 1

4π

{
26 +

2π

τ2

(
n− `τ1 +m(τ 2

1 + τ 2
2 )
)}]

, (6.35)

and the contour of integration γ is required to pass through the saddle-point of

F (τ1, τ2). We rewrite this formula by adding the following total derivative to the

integrand of (6.34),

d

dτ2

( 1

τ 13
2

exp
[ π
τ2

(n−`τ1+mτ 2
1 +mτ 2

2 )−ln η24(τ1+iτ2)−ln η24(−τ1+iτ2)
])
, (6.36)

which yields (with τ = τ1 + iτ2):

d(n, `,m) =
1

212

∫
γ

d2τ

τ 13
2

(m+E2(τ) +E2(−τ̄))(η24(τ)η24(−τ̄))−1e
π
τ2

(n−`τ1+mτ21 +mτ22 )
,

(6.37)

where E2 is the Eisenstein series of weight 2. It is related to the Dedekind eta

function as:

E2(τ) =
1

2πi

d

dτ
log η24(τ) . (6.38)

Comparing this to our parametrization (6.31), we obtain:

M(τ, τ) =
1

212
(m+ E2(τ) + E2(−τ)) . (6.39)

We note that M can be written, as anticipated in [106, 75], in terms of the general-

ized Kähler potential defined in (5.1), which for the prepotential F given in (6.32)

takes the form:

e−K(XI) =
2p1

φ0

(
m+ E2(τ) + E2(−τ)

)
. (6.40)

This yields the relation

M(τ, τ) =
1

213

φ0

p1
e−K(φI) . (6.41)

The function F (1) has a Fourier expansion in powers of q = e2πiτ :

e−F
(1)(τ) =

∞∑
p=−1

d(p) qp , (6.42)
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with d(p) for positive p being the number of instantons with charge p. Combining

the measure factor (6.38), (6.39), we have (with N0 = 2−12):

M(τ, τ̄) e−F
(1)(τ)−F(1)(−τ) =N0

∞∑
p,p̄=−1

(m− p− p̄) d(p) d(p̄) qp q̄p̄ , (6.43)

=N0

∞∑
p,p̄=−1

(m− p− p̄) d(p) d(p̄) e2πi(p−p̄)τ1 e−2π(p+p̄)τ2 .

We now plug in the expansion (6.43) in the quantum entropy integral (6.31). For

each term in this series, we can complete the square in τ1 to get a quadratic Gaus-

sian integrand. If we perform the τ1 integral naively over the real line, each term

in the above series would lead to an integral over τ2 of the form (B.12). It would

seem that we get an infinite series of I-Bessel functions for Ŵ (n, `,m). We remind

the reader that it is not surprising to find an infinite series of Bessel functions –

indeed the discussion of Section 6.1 shows that the microscopic degeneracy has

the same structure with the Bessel functions having successively sub-leading argu-

ments. We find, however, that the arguments of the Bessel functions here decrease

(as we expect) up to a point, but then increase indefinitely, thus showing that this

sum is not convergent!

A solution to this puzzle was presented recently in [145] by making a choice of

contour γ in (6.31) and analyzing the contributions to the degeneracies from each

term in the Fourier expansion. With this choice of contour, almost all of the

infinite number of Bessel functions turn out to be highly suppressed, and one is

left with a finite number of I-Bessel functions, consistent with the structure of

the leading c = 1 term of the Rademacher expansion (B.11). We now review this

analysis, and use the contour prescription of [145] to make a detailed comparison

between the expansion of the integral (6.37) and the c = 1 term of the Rademacher

expansion (B.11). We find, at the end of our analysis, that the two expansions

actually agree in great detail, in the appropriate regime of validity, including the

integer coefficients of the Bessel functions. At first sight this observation may

seem to be a pleasant surprise about this particular N = 4 string theory, but

as we sketched in the introduction to this Chapter, it can be understood as a

reflection of the deeper and broader ideas of [83, 85], namely that worldsheet

instanton degeneracies encode the microscopic black hole degeneracies in a very

precise manner.

By using the expansion (6.43) in the expression (6.31), splitting the contour γ into

two contours γ1, γ2 for the τ1 and τ2 integrals, respectively, and completing the
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square in each term, we obtain:

Ŵ (n, `,m) =N0

∑
p,p̄≥−1

(m− p− p̄)d(p)d(p̄) eiπ(p−p̄) `
m ×

×
∫
γ2

dτ2

τ
(nv+3)/2
2

exp
[
−πτ2

∆(p, p̄)

m
+
π

τ2

(
n− `2

4m

)]
× (6.44)

×
∫
γ1

dτ1 exp
[πm
τ2

(
τ1 + i(p− p̄)τ2

m
− `

2m

)2 ]
,

where we have defined

∆(p, p̄) := 4mp̄− (m− (p− p̄))2 . (6.45)

We will see in the following that the function ∆ becomes precisely the polar dis-

criminants entering the Rademacher expansion (B.11). We now define the con-

tours γ1, γ2 pertaining to the τ1 and τ2 integrals as [145]

τ1 = i τ2 u : − 1 + δ ≤ u ≤ 1− δ ,

τ2 : ε− i∞ < τ2 < ε+ i∞ , (6.46)

with δ small and positive and ε positive. This choice ensures that |q| < 1 and

|q̄| < 1 so that the Fourier expansion (6.43) is convergent. As we will see below,

it also brings Ŵ (n, `,m) to a form which is exactly of the same type as the c = 1

term in (B.11), namely coming from a generating function that has the elliptic

transformation property of a Jacobi form of index m. We now define

Iu(p, p̄) :=

∫
γ1

dτ1 exp
[πm
τ2

(
τ1 + i(p− p̄)τ2

m
− `

2m

)2 ]
. (6.47)

Following the idea of [145], we can evaluate this integral. The analysis is somewhat

technical and won’t be reproduced here. The interested reader is referred to the

original publication [A3] and its Appendix B in particular. Here, we simply quote

the result.

Defining α := (p − p̄)/m, there are two types of contributions to Ŵ (n, `,m) de-

pending on whether |α| ≤ 1 − δ or |α| > 1 − δ. The leading contributions to

the sum (6.44) are for |α| ≤ 1 − δ, and the terms for which |α| > 1 − δ are ex-

ponentially suppressed. We then need to take a δ → 0 limit in the contour γ1.

This limit is rather subtle, but it can be shown that once we take it, the leading

contributions to the sum (6.44) are the ones for which |α| ≤ 1 (modulo what we

call “edge-effects”, see again Appendix B of [A3]).
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Focusing on these contributions to the quantum entropy, we may evaluate the τ1

integral in (6.44) and we are left with the τ2 integral. The latter will yield expo-

nentially growing I-Bessel functions (B.12) as long as ∆(p, p̄) < 0. Therefore, we

now have two conditions, |α| ≤ 1 and ∆ < 0, which can be used to bound the

sums over (p, p̄). Putting these facts together leads to the following expression

for Ŵ :

Ŵ (n, `,m) 'N0

∑
p,p̄≥−1

∑
−m≤ p−p̄≤m

∆(p,p̄)< 0

(m− p− p̄) d(p) d(p̄) eiπ(p−p̄) `
m ×

× i√
m

∫
γ2

dτ2

τ
(nv+2)/2
2

exp
[
−πτ2

∆

m
+
π

τ2

(
n− `2

4m

)]
. (6.48)

Here the ' sign means that we have thrown away exponentially suppressed con-

tributions to the complete answer for Ŵ . We can now evaluate the remaining

integral on the contour γ2, which yields a Bessel function:

Ŵ (n, `,m) 'N0

∑
p,p̄≥−1

∑
−m≤ p−p̄≤m

∆(p,p̄)< 0

(m− p− p̄) d(p) d(p̄) eiπ(p−p̄) `
m × (6.49)

× 2π√
m

(
−∆(p, p̄)/m

n− `2

4m

)nv/4

Inv/2

(
2π

√
−∆(p, p̄)

m

(
n− `2

4m

))
.

The symmetry ∆(p, p̄) = ∆(p̄, p) implies that one can write the above expression

as a sum over p − p from 0 to m, with the replacement of the phase eiπ(p−p̄) `
m

by cos
(
π(p− p̄) `

m

)
.

To proceed further, we make the following change of variables:

`′ := m− (p− p̄) , n′ := p̄ . (6.50)

In these variables, we have ∆(n′, `′) = 4mn′ − `′2 as anticipated, and (6.49) takes

the form

Ŵ (n, `,m) ' 2N0

∑
0≤ `′≤m
n′≥−1

∑
4n′− `′2

m
< 0

(`′ − 2n′) d(m+ n′ − `′) d(n′) cos
(
π(m− `′) `

m

)

× 2π√
m

(∣∣4n′ − `′2

m

∣∣
n− `2

4m

)nv/4

Inv/2

(
2π

√∣∣∣4n′ − `′2

m

∣∣∣(n− `2

4m

))
.

(6.51)
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In this form, Ŵ can readily be compared to the leading Rademacher expansion for

a Jacobi form of index m and weight (3 − nv)/2. Indeed for such a Jacobi form,

the c = 1 term of the Rademacher expansion (B.11), (B.15) reads

c(n, `) ' 1

2(nv−1)/2

∑
0≤ `′≤m

∑
4n′− `

′2

m
< 0

c(n′, `′) cos
(
π(m− `′) `

m

)

× 2π√
m

(∣∣∣4n′ − `′2

m

∣∣∣
n− `2

4m

)nv/4

Inv/2

(
2π

√∣∣∣4n′ − `′2

m

∣∣∣(n− `2

4m

))
. (6.52)

We see that (6.51) has exactly the same form as (6.52) if we make the identification:

c(n, `) = (`−2n) d(m+n−`) d(n) , 4mn−`2 < 0, n ≥ −1, 0 ≤ ` ≤ m. (6.53)

We interpret this formula as an explicit prediction for the left-hand side, which

are the polar coefficients cF(n, `) of the mock Jacobi forms (6.5) that control the

single-centered black hole degeneracies. The coefficients d(p) of the right hand

side are the instanton degeneracies captured by the function F (1) (6.42)

1

η(τ)24
=
∑
n≥−1

d(n) qn = q−1 + 24 + 324q + 3200q2 + 25650q3 + 176256q4 + . . .

(6.54)

The fact that the instanton degeneracies d(n) vanish for n < −1 is reflected in

the fact that the single centered degneracies cF(n, `) also vanish for n < −1 as

we explained briefly in Section 6.1. In the next Section, we will show that the

expansion (6.51) agrees very precisely with the Rademacher-like expansion for the

Fourier coefficients cF(n, `) – up to an order where the latter starts to deviate from

the form (6.52) due to its mock modular nature.

6.4 Polar terms in 1/4-BPS black holes in N = 4

string and supergravity theory

In this Section, we verify the relation (6.53) for the first few values of m. There

are three sources of approximations in our derivation which impose a regime of

validity for the comparison of the macroscopic and the microscopic formulas. The

first source is that we have only kept the first (c = 1) series in the microscopic

Rademacher expansion while we should really keep all the terms from c = 1, 2, 3, . . .
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The second source, as we explained in Section 6.1, is that the effects of the shadow

of the mock modular forms (although small to leading order) can become relevant

at a certain sub-leading order. The third is what we call “edge-effects” [A3] in

the evaluation of the two-dimensional integral which is the result of the localized

supergravity path integral. The first source can be controlled in a fairly straight-

forward manner but typically this is the smallest effect. The second source is

an interesting problem in analytic number theory, and the third is a problem for

us to better define our contour prescription in supergravity. We leave these two

problems for the future. We now analyze these three effects in specific examples.

We begin with m = 1. We have:

ψF
1 (τ, z) =

1

η(τ)24
(3E4(τ)A(τ, z)− 648H1(τ, z)) , (6.55)

whose Fourier expansion begins as:

ψF
1 (τ, z) =

(3ζ + 48 + 3ζ−1)q−1

+ (48ζ2 + 600ζ − 648 + 600ζ−1 + 48ζ−2)

+ (3ζ3 − 648ζ2 + 25353ζ − 50064 + 25353ζ−1 − 648ζ−2 + 3ζ−3) q+

+ (600ζ3 − 50064ζ2 + 561576ζ − 1127472 + 561576ζ−1 − 50064ζ−2 + 600ζ−3)q2

+ . . . (6.56)

The polar terms are (n, `) = (−1, 1), (−1, 0), and (0, 1) or equivalently in terms

of ∆, (∆, `) = (−5, 1), (−4, 0), (−1, 1). The corresponding coefficients cF
1 (n, `)

are4 [143]:

cF
1 (−1, 1) = 3 , cF

1 (−1, 0) = 48 , cF
1 (0, 1) = 600 . (6.57)

The corresponding combinations of the (`− 2n) d(m+ n− `) d(n) are:

(n, `) = (−1, 1) : 3 , (n, `) = (−1, 0) : 48 , (n, `) = (0, 1) : 576 . (6.58)

We see that the first two coefficients agree, and the third does not. This is exactly

what we expect, as we explained at the end of Section 6.1. Indeed we have made

4We note that there is a textual error in the Appendix of [143]. In the first paragraph, it
says that the coefficients cFm(n, `) of the mock Jacobi forms are presented for the first four values
of m, while what is really presented is d(n, `,m) = (−1)`cFm(n, `) to emphasize the positivity of
those numbers. In particular, the polar coefficients cFm(n, `) (i.e. with 4mn− `2 < 0) are strictly
positive.
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an approximation in the Rademacher expansion keeping only the leading c = 1

term, and we have5

Ŵ (n, 0, 1)

4πN0

= 3
( 5

n

)23/4

I23/2

(
2π
√

5n
)

+ 48
( 4

n

)23/4

I23/2

(
2π
√

4n
)

+ 576
( 1

n

)23/4

I23/2

(
2π
√
n
)
, (6.59)

while the c = 1 term of the Rademacher expansion of a Jacobi form with the polar

coefficients (6.57) is:

cF
1 (n, 0)

4πN0

= 3
( 5

n

)23/4

I23/2

(
2π
√

5n
)

+ 48
( 4

n

)23/4

I23/2

(
2π
√

4n
)

+ 600
( 1

n

)23/4

I23/2

(
2π
√
n
)
, (6.60)

withN0 = 2−12. The c = 2 series in the expansion (B.11) starts with I23/2

(
2π
√

5n/4
)

which is larger than the last term in (6.60), and therefore we do not expect an

agreement at this order for the last coefficients in (6.59) and (6.60). This is one

of the issues that we need to be careful about in our comparison.

Secondly, we need to be careful about the interference of the mock nature of the

functions ψF
m. The first time6 we see this interference is for m = 3, where we have:

√
3

4πN0

Ŵ (n, 0, 3) = 5

(
7

n

)23/4

I23/2

(
2π
√

7n
)

+ 96

(
16

3n

)23/4

I23/2

(
2π

√
16

3
n

)

+ 972

(
13

3n

)23/4

I23/2

(
2π

√
13

3
n

)
+ 6400

(
4

n

)23/4

I23/2

(
2π
√

4n
)

+ 1728

(
3

n

)23/4

I23/2

(
2π
√

3n
)

+ 15552

(
4

3n

)23/4

I23/2

(
2π

√
4

3
n

)

+ 76800

(
1

3n

)23/4

I23/2

(
2π

√
1

3
n

)
. (6.61)

5Here and below we do the comparisons at ` = 0 for simplicity.
6We find experimentally that for m = 1, 2 the two expansions agree even including the mock

piece, but we believe this is an accident, which will be explained if we work out the asymptotic
expansion of the corresponding mock Jacobi form in detail.
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Correspondingly, the c = 1 term of the Rademacher expansion (B.11) for m = 3

is:

√
3

4πN0

cF
3 (n, 0) = 5

(
7

n

)23/4

I23/2

(
2π
√

7n
)

+ 96

(
16

3n

)23/4

I23/2

(
2π

√
16

3
n

)

+ 972

(
13

3n

)23/4

I23/2

(
2π

√
13

3
n

)
+ 6404

(
4

n

)23/4

I23/2

(
2π
√

4n
)

+ 1728

(
3

n

)23/4

I23/2

(
2π
√

3n
)

+ 15600

(
4

3n

)23/4

I23/2

(
2π

√
4

3
n

)

+ 85176

(
1

3n

)23/4

I23/2

(
2π

√
1

3
n

)
. (6.62)

The c = 2 term of the Rademacher expansion starts with I23/2

(
2π
√

7n/4
)
, and

we should ignore terms of that order, i.e. the last two Bessels in (6.62). However,

we still see a disagreement for the Bessel I23/2

(
2π
√

4n
)
. This is precisely the

interference from the mixed mock Jacobi form ϕopt
2,3 (τ, z)/η(τ)24. Therefore we

should only expect agreement up to the Bessel functions I23/2(2π
√

4n). In the

expressions (6.61), (6.62), this means that we should not expect a matching of the

coefficients for the fourth terms, 6400 vs. 6404.

Thirdly, in deriving our Rademacher-like expression from the supergravity path in-

tegral, we made a choice of contour in (6.46). As explained in Appendix B of [A3],

there are “edge-effects” in this contour that we have not taken into account prop-

erly here. These may go towards explaining the boxed discrepancies in the tables

we present below for the larger values of m = 5 and m = 7. We believe a more

detailed analysis of the integral Iu(p, p̄) in (6.47) would resolve these discrepancies.

We checked up to m = 7 that this kind of an agreement holds exactly after taking

into account these three effects. We present the data below.

Legend for tables: The pair (n, `) satisifies the conditions in (6.53), that is

n ≥ −1, 0 ≤ ` ≤ m and (4mn − `2) = ∆ < 0. The third column is the coeffi-

cient cF(n, `) of the mock Jacobi forms ψF
m (6.5). Recall that the black hole exists

for positive values of ∆ and the degneracy cm(n, `) is controlled by the polar coef-

ficients through an expansion of the type (6.52). (Essentially a polar term labelled

by ∆ enters the analytic formula for the degeneracy cm(n, `) for 4mn − `2 > 0

at an order exp[2π|∆|(4n − `2)].) The coefficients below the horizontal line have

deviations from their true values because we have only included the c = 1 series

of the Rademacher expansion, while at these orders we should necessarily start
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including the c ≥ 2 series. We indicate in bold face when the Rademacher ex-

pansion cannot be trusted because we have treated a mock Jacobi form as a true

Jacobi form. (For m = 1, 2 the coefficient still agree – which we indicate by a ∗.)

As we see clearly in the tables, the deviations for the bold-faced coefficients are

small and should be resolved by including the effects of the shadow. The boxed

values indicate possible edge-effects [A3] in the contour prescription.

m = 1:

∆ (n, `) c1(n, `) (`− 2n) d(1 + n− `) d(n)

−5 (−1, 1) 3 3

−4 (−1, 0) 48* 48

−1 (0, 1) 600 576

m = 2:

∆ (n, `) c2(n, `) (`− 2n) d(2 + n− `) d(n)

−12 (−1, 2) 4 4

−9 (−1, 1) 72 72

−8 (−1, 0) 648* 648

−4 (0, 2) 1152 1152

−1 (0, 1) 8376 7776

m = 3:

∆ (n, `) c3(n, `) (`− 2n) d(3 + n− `) d(n)

−21 (−1, 3) 5 5

−16 (−1, 2) 96 96

−13 (−1, 1) 972 972

−12 (−1, 0) 6404 6400

−9 (0, 3) 1728 1728

−4 (0, 2) 15600 15552

−1 (0, 1) 85176 76800
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m = 4:

∆ (n, `) c4(n, `) (`− 2n) d(4 + n− `) d(n)

−32 (−1, 4) 6 6

−25 (−1, 3) 120 120

−20 (−1, 2) 1296 1296

−17 (−1, 1) 9600 9600

−16 (0, 4) 2304 2304

−16 (−1, 0) 51396 51300

−9 (0, 3) 23328 23328

−4 (0, 2) 154752 153600

−1 (0, 1) 700776 615600

m = 5:

∆ (n, `) c5(n, `) (`− 2n) d(5 + n− `) d(n)

−45 (−1, 5) 7 7

−36 (−1, 4) 144 144

−29 (−1, 3) 1620 1620

−25 (0, 5) 2880 2880

−24 (−1, 2) 12800 12800

−21 (−1, 1) 76955 76950

−20 (−1, 0) 353808 352512

−16 (0, 4) 31104 31104

−9 (0, 3) 230472 230400

−5 (1, 5) 315255 314928

−4 (0, 2) 1246800 1231200

−1 (0, 1) 4930920 4230144
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m = 6:

∆ (n, `) c6(n, `) (`− 2n) d(6 + n− `) d(n)

−60 (−1, 6) 8 8

−49 (−1, 5) 168 168

−40 (−1, 4) 1944 1944

−36 (0, 6) 3456 3456

−33 (−1, 3) 16000 16000

−28 (−1, 2) 102600 102600

−25 (0, 5) 38880 38880

−25 (−1, 1) 528888 528768

−24 (−1, 0) 2160240 2147440

−16 (0, 4) 307200 307200

−12 (1, 6) 419904 419904

−9 (0, 3) 1848528 1846800

−4 (0, 2) 8615040 8460288

−1 (0, 1) 30700200 25769280

−1 (1, 5) 3118776 3110400

m = 7:

∆ (n, `) c7(n, `) (`− 2n) d(7 + n− `) d(n)

−77 (−1, 7) 9 9

−64 (−1, 6) 192 192

−53 (−1, 5) 2268 2268

−49 (0, 7) 4032 4032

−44 (−1, 4) 19200 19200

−37 (−1, 3) 128250 128250

−36 (0, 6) 46656 46656

−32 (−1, 2) 705030 705024

−29 (−1, 1) 3222780 3221160

−28 (−1, 0) 11963592 11860992

−25 (0, 5) 384000 384000

−21 (1, 7) 524880 524880

−16 (0, 4) 2462496 2462400

−9 (0, 3) 12713760 12690432

−8 (1, 6) 4147848 4147200

−4 (0, 2) 52785360 51538560

−1 (0, 1) 173032104 142331904



Chapter 7

Conclusion and open questions

In this work, we have shown how the supersymmetric localization technique could

be successfully applied to certain black holes in order to compute their quantum

entropy exactly. The two cases investigated here are N = 8 four-dimensional su-

perconformal gravity and N = 4 four-dimensional superconformal gravity. When

considering both of these theories as truncated N = 2 four-dimensional theo-

ries, it is possible to exactly evaluate the quantum entropy function introduced in

Chapter 2 for 1/8-BPS and 1/4-BPS black holes, respectively. Armed with the

knowledge of the partition functions for the corresponding 1/8-BPS states and

1/4-BPS states in the full string theory, it is possible to compare the macroscopic

(supergravity) and microscopic (string theory) answers.

In the case of 1/8-BPS states in four-dimensional N = 8 string theory, the de-

generacies of states are given by the Fourier coefficient of the ϕ−2,1(τ, z) Jacobi

form, as explained in Chapter 2, and powerful techniques of number theory (the

Rademacher expansion) allow for the complete evaluation of these degeneracies.

They are given by a sum over Bessel functions (2.16). Correspondingly, the

supergravity result for the exact quantum entropy of 1/8-BPS black holes can

be obtained using supersymmetric localization, which leads to the Master For-

mula (4.17) (after confirming that full-superspace integrals do not contribute to

the entropy, the purpose of the second half of Chapter 4, and computing the

one-loop determinant exactly, which was done in Chapter 5), where the prepo-

tential is simply the cubic one given in (4.18). Localization around the leading

saddle-point configuration of the supergravity partition function (the AdS2 × S2

configuration) yields precisely the c = 1 term in (2.16), and inclusion of smooth

orbifold configurations AdS2/Zc provides the full sum over c in (2.16), as was

shown in [82]. Thus, it is fair to say that there is an exact correspondence between
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the macroscopic and microscopic pictures in this specific case. Nevertheless, some

clarification would still be welcome, specifically regarding the point of the trunca-

tion down to an N = 2 supergravity theory where the localization is performed.

The complete N = 8 supergravity theory contains more fields than the truncated

one, and it is still somehow mysterious why these fields can be dropped from the

theory altogether, and how one can still obtain the complete, correct answer in the

truncated theory. A careful analysis of the consistency of such truncation would be

of interest in order to provide a first-principle explanation of why the truncated

theory encodes all the low-energy dynamic of the full N = 8 four-dimensional

string theory.

Moving on the case of 1/4-BPS states in four-dimensional N = 4 string theory,

Chapter 6 explained in some detail how one can write down the partition function

for such states, and how it is possible to obtain an approximation to its Fourier

coefficients. This approximation stems from the fact that, contrary to the previous

case, the counting functions are now mock modular forms, and thus an expansion

akin to the Rademacher one is not known exactly for their Fourier coefficients.

One can still obtain an estimate for these degeneracies by relying on the fact

that mock modular forms are almost modular, as explained in Chapter 6. In this

setting, it is in fact the N = 2 supergravity localization computation which is

under better control. Indeed, there it is possible to evaluate the quantum entropy

function exactly as in (6.51). If the matching with string theory is to hold, one

can interpret this formula as a prediction for the degeneracies of mock modular

forms. It would still be worthwhile to derive the Fourier coefficients of mock

modular forms independently using number theory techniques, and then conduct

the comparison with the supergravity answer. Also, again in this case, the issue

of truncating the full N = 4 supergravity theory down to an N = 2 raises the

same questions as in the previous case, and it would again be very interesting to

examine this truncation in more details.

Lastly, when examining the more general case of 1/2-BPS states and black holes

in N = 2 four-dimensional string theory and supergravity, a number of ques-

tions remain open. In light of the work contained herein, an important aspect

which should be explored is how to derive the complete one-loop determinant

factor entering the Master Formula (4.17), not only for the vector and hyper mul-

tiplets but also for the Weyl multiplet. In Chapter 5, we have used a comparison

to an on-shell calculation to fix this contribution. But as we explained there,

it should be possible to derive this contribution directly by analyzing the inter-

play between supersymmetry and gauge symmetries acting on the fields of the
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Weyl multiplet. Since for the Weyl multiplet, supersymmetry itself is gauged, one

should be able to construct a single BRST charge encoding all gauge symmetries

(including supersymmetry), and use this charge for a computation of the index

theorem (5.58). This is currently under investigation by the present author and

collaborators. Another issue concerns the exact evaluation of the Master Formula

for a generic N = 2 string theory compactification on a Calabi-Yau three-fold.

In such a compactification to four-dimensions, the prepotential of the low-energy

supergravity theory is not know at all orders in the Â expansion, as explained

in Chapter 5. This makes the exact knowledge of the one-loop determinants, the

localization measure and the renormalized action itself difficult. The microscopic

string theory suffers from similar shortcomings, and it is the belief of the author

that advancing this computation on either front would shed light on the correspon-

dence between thermodynamical and statistical entropy of 1/2-BPS black holes.

In closing, although much work remains to be done to examine other, more intri-

cate examples of the matching between the microscopic (string-theoretic) and the

macroscopic (supergravity) calculations of the quantum entropy of black holes, it

is encouraging to have found a few non-trivial examples in which such correspon-

dence can be verified explicitly and exactly, at all orders in perturbation theory.

Furthering our understanding of the microstates counting in string theory, of the

mathematical theory of mock modular forms and their possible generalizations

and of supersymmetric localization in quantum field theories will certainly allow

us to find more successful examples of a statistical interpretation for the thermo-

dynamical entropy of black holes, including all possible quantum effects.





Appendix A

Conventions

Space-time and tensor conventions

Space-time (curved) indices are denoted by Greek letters µ, ν, . . . while tangent

space (flat) indices are denoted with Roman letters a, b, . . . (Anti-)symmetrization

of indices is always done with weight one.

The dual of a rank-2 tensor in four dimensions and Euclidean signature is defined

as

T̃ab =
1

2
εabcd T

cd , with ε1234 = ε1234 = −1 . (A.1)

Note that the dual is an involution in Euclidean signature,
˜̃
T = T . The (anti)

self-dual part of a tensor is defined as

T±ab =
1

2
(Tab ± T̃ab) . (A.2)

Spinor and Clifford conventions

In Euclidean signature and in four dimensions, the Clifford algebra is

{γa, γb} = 2 δab . (A.3)

In Chapter 5, we use an explicit Hermitian representation of the Clifford algebra

given by

γ1 = σ1 ⊗ 1 , γ2 = σ2 ⊗ 1 , γ3 = σ3 ⊗ σ1 , γ4 = σ3 ⊗ σ2 , (A.4)
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where σi, i = 1, 2, 3 are the Pauli matrices. We also define the usual combina-

tion γab = 1
2
[γa, γb] and similarly for higher-rank γ matrices. In addition,

γ5 = −γ1γ2γ3γ4 . (A.5)

These matrices obey the following useful identities in four dimensions:

γab = − 1
2
εabcdγ

cdγ5 , γbγaγb = −2γa ,

γabγab = − 12 , γcdγabγcd = 4γab ,

γcγabγc = 0 , γabγcγab = 0 , (A.6)[
γc, γab

]
= 4 δ[a

cγb] ,
{
γc, γab

}
= 2 εab

cdγ5γd ,[
γab, γ

cd
]

= − 8 δ[a
[cγb]

d] ,
{
γab, γ

cd
}

= −4 δ[a
cδb]

d + 2 εab
cdγ5 .

In this work, we deal mainly with four-dimensional symplectic Majorana spinors

transforming under an SU(2)R symmetry. The summation convention for SU(2)

indices is NW-SE and (anti)symmetrization of indices is done with weight one.

The antisymmetric tensor of SU(2) is such that

εijεjk = −δik and εijεij = 2 . (A.7)

We define the Dirac conjugate of a spinor in four dimensions and Euclidean sig-

nature as

ψ̄i := (ψi)† . (A.8)

The symplectic Majorana reality condition reads

C−1ψ̄i
T = εij ψ

j , (A.9)

where the charge conjugation matrix C is such that

C γaC
−1 = −γaT , C γ5C−1 = γ5 , C−1 = C† , CT = −C . (A.10)

In the explicit representation (A.4), we take

Cγ5 = σ1 ⊗ σ2 . (A.11)

In Euclidean signature and four dimensions, the symplectic Majorana condition is

compatible with the Weyl projection onto positive and negative chirality spinors.
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That is, if we define the chiral parts of a spinor as

ψi± :=
1± γ5

2
ψi , (A.12)

each of the chiral projections enjoys the property (A.9):

C−1ψ̄± i
T = εij ψ±

j , (A.13)

A useful property of spinors and antisymmetric tensors is that when Tabγ
ab acts

on a spinor of (positive) negative chirality, it is projected onto its (anti)self-dual

part:

Tabγ
abεi+ = T−abγ

abεi+ and Tabγ
abεi− = T+

abγ
abεi− . (A.14)

The Fierz rearrangement formula for two four-dimensional anti-commuting spinors ψ

and χ reads

χ ψ̄ = −1
4
(ψ̄χ)1l− 1

4
(ψ̄γ5χ)γ5− 1

4
(ψ̄γaχ)γa+ 1

4
(ψ̄γaγ5χ)γaγ

5+ 1
8
(ψ̄γabχ)γab . (A.15)
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Modular, Jacobi and Siegel forms

Modular forms

Let H denote the upper half-plane, which is the set of complex numbers τ whose

imaginary part is positive. Let SL(2;Z) be the group of 2×2 matrices with integer

entries and unit determinant. A modular form f(τ) of weight w on SL(2;Z) is a

holomorphic function on H which transforms as

f
(aτ + b

cτ + d

)
= (cτ + d)w f(τ) ∀

( a b

c d

)
∈ SL(2;Z) , (B.1)

for an integer w. It follows from this definition that f(τ) is periodic under τ →
τ + 1, and thus admits a Fourier expansion

f(τ) =
+∞∑

n=−∞

a(n) qn , q := e2πiτ . (B.2)

If a(0) = 0, then the modular form vanishes at infinity and is called a cusp form.

Weakening the growth condition at infinity to f(τ) = O(q−N) (rather than O(1))

for some N ≥ 0, then the Fourier coefficients satisfy a(n) = 0 for n < −N . Such

a function is called a weakly holomorphic modular form. An important example

of a modular form is the discriminant function ∆(τ) introduced in Chapter 2:

∆(τ) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 + . . . . (B.3)
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Jacobi forms

A Jacobi form ϕ(τ, z) of weight w and index m is a holomorphic function from H×
C to C whose defining properties are the following two transformations. It is

“modular in τ”, i.e. it transforms under the modular group SL(2;Z) as

ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)w e

2πimcz2

cτ+d ϕ(τ, z) ∀
( a b

c d

)
∈ SL(2;Z) ,

(B.4)

and it is “elliptic in z”, i.e. it transforms under the translations of z by Zτ +Z as

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z) ∀ λ, µ ∈ Z . (B.5)

These symmetry properties are very powerful, in particular when investigating the

Fourier coefficients of Jacobi forms:

ϕ(τ, z) =
∑
n,`∈Z

c(n, `) qn y` , q := e2πiτ , y := e2πiz . (B.6)

As a simple example, the elliptic transformation property (B.5) implies that the

Fourier coefficients of a Jacobi form of index m obey the property

c(n, `) = C`(4nm− `2) , where C`(∆) depends only on `mod 2m . (B.7)

The same property also implies that ϕ(τ, z) has a “theta decomposition”

ϕ(τ, z) =
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z) . (B.8)

Here, ϑm,`(τ, z) denotes the standard index m, weight 1/2 theta function,

ϑm,`(τ, z) :=
∑
n∈Z

q(`+2mn)2/4m y`+2mn , (B.9)

and h`(τ) are vector-valued modular forms of weight w − 1/2. In terms of the

coefficients C`(∆) in (B.7),

h`(τ) =
∑

∆

C`(∆)q∆/4m with ` ∈ Z/2mZ . (B.10)
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The precise mathematical definition of Jacobi forms [144] includes some technical

conditions on the growth of the Fourier coefficients, in addition to the transfor-

mation formulas (B.4), (B.5). Two types of Jacobi forms will be relevant in the

course of this work.

The first is a weakly holomorphic Jacobi form, which means that the Fourier ex-

pansion in (B.6) obeys n ≥ −n0 for a fixed positive n0. Note that this implies

that there are only a finite number of terms with non-zero Fourier coefficients for

negative values of ∆ = 4mn−`2. These coefficients are called the polar coefficients

in the Fourier expansion of the Jacobi form. The second type is a weak Jacobi

form, which means that n0 = 0 above. We refer the reader to [144] for a detailed

theory of these functions.

The modular transformation property (B.4) is so constraining that one has an

analytic formula for all the Fourier coefficients of a Jacobi form in terms of its polar

coefficients. This formula, called the Hardy-Ramanujan-Rademacher expansion,

takes the form of an infinite convergent sum of Bessel functions and is established

by the so-called circle method in analytic number theory. The formula for the

coefficients C`(∆) of a Jacobi form of weight w + 1/2 and index m, with ∆ =

4mn− `2, has the following form:

C`(∆) = (2π)2−w
∞∑
c=1

cw−2 ×

×
∑

˜̀∈Z/2mZ

∑
∆̃<0

C˜̀(∆̃)K`(∆, `, ∆̃, ˜̀; c) ∣∣∣∣∣ ∆̃

4m

∣∣∣∣∣
1−w

Ĩ1−w

( π

mc

√
|∆̃|∆

)
,

(B.11)

where

Ĩρ(z) =
1

2πi

∫ ε+i∞

ε−i∞

dσ

σρ+1
exp
(
σ +

z2

4σ

)
, (B.12)

is called the modified Bessel function of index ρ, and is related to the standard

Bessel function of the first kind Iρ(z) by

Ĩρ(z) =
(z

2

)−ρ
Iρ(z) . (B.13)

The latter function has an asymptotic expansion for large arguments:

Iρ(z) ∼
z→∞

ez√
2πz

(
1− µ− 1

8z
+

(µ− 1)(µ− 32)

2!(8z)3
− (µ− 1)(µ− 32)(µ− 52)

3!(8z)5
+ . . .

)
,

(B.14)
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with µ = 4ρ2. The coefficients K`(∆, `, ∆̃, ˜̀; c) in (B.11) are the so-called gen-

eralized Kloosterman sums [54], and they consist essentially in sums of phases.

For c = 1, they are given by:

K`(∆, `, ∆̃, ˜̀; c = 1) =

√
2

m
eiπ(m−`′) `

m . (B.15)

The remarkable thing about (B.11) is that the coefficients C`(∆) for ∆ > 0 are

completely determined by the coefficients C˜̀(∆̃) associated to the polar terms q∆̃

with ∆̃ < 0, which are finite in number. The asymptotic formula of the Bessel

function Iρ(z) ∼ ez for large z shows that the terms with c > 1 are exponentially

suppressed compared to the leading c = 1 terms.

Siegel forms and mock Jacobi forms

There exists a generalization of Jacobi forms called Siegel modular forms. They are

holomorphic functions of three variables (τ, z, σ), which are arranged in a matrix

Ω =

(
τ z

z σ

)
, (B.16)

satisfying

Im τ > 0 , Imσ > 0 , det(Im Ω) > 0 . (B.17)

This defines the Siegel upper half-plane, where the Siegel forms are well-defined.

A Siegel form F (Ω) of weight w satisfies a property analogous to (B.4), namely

F
(
(AΩ +B)(CΩ +D)−1

)
= det(CΩ +D)w F (Ω) , (B.18)

where the matrices A, B, C and D are 2×2 matrices with integer entries satisfying

ABT = BAT , CDT = DCT , ADT −BCT = 1 . (B.19)

Just like the Jacobi forms, Siegel forms have a Fourier expansion

F (Ω) =
∑

n, r,m∈Z
r2≤4mn

a(n, r,m)qn yr pm , (B.20)
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again with the standard notation q := e2πiτ , y := e2πiz, p := e2πiσ. If one now

writes this Fourier expansion as

F (Ω) =
∞∑
m=0

ϕm(τ, z)pm , (B.21)

then each ϕm(τ, z) is a Jacobi form of weight k and index m. We will refrain from

giving a complete characterization of Siegel forms and their properties here, and

we now briefly review some facts from [113] which are relevant for the present

work.

As reviewed in Chapter 6, Siegel forms naturally appear in the counting problem

of 1/4-BPS dyons in N = 4 string theory. The partition function for such states

is given by the inverse of the so-called Igusa cusp form:

ZBPS(τ, z, σ) =
1

Φ10(τ, z, σ)
. (B.22)

The Igusa cusp form has double zeroes at z = 0 (and its Sp(2;Z) images), so that

the partition function is a meromorphic Siegel form of weight -10. The first step

in [113] to analyze its Fourier coefficients is to expand the microscopic partition

function in e2πiσ:
1

Φ10(τ, z, σ)
=

∑
m≥−1

ψm(τ, z) e2πimσ . (B.23)

One then defines the polar part of ψm

ψP
m(τ, z) :=

p24(m+ 1)

η24(τ)

∑
s∈Z

qms
2+sy2ms+1

(1− yqs)2
, (B.24)

where p24(n) counts the number of partitions of an integer n with 24 colors. The

function ψP
m is the average over the lattice Zτ + Z of the leading behavior of the

function near the pole z = 0

p24(m+ 1)

η(τ)24

y

(1− y)2
. (B.25)

The function ψP
m is an example of an Appell-Lerch sum, and it encodes the physics

of all the wall-crossings due to the decay of two-centered black holes presented in

Chapter 6.
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The two functions ψm and ψP
m have, by construction, the same poles and residues,

so the difference

ψF
m := ψm − ψP

m , (B.26)

called the finite or Fourier part of ψm, is holomorphic in z, and has an unambigu-

ous Fourier expansion:

ψF
m(τ, z) =

∑
n,`

cF
m(n, `) qn y` . (B.27)

The indexed degeneracies of the single-centered black hole with magnetic charge

invariant Q2
m/2 = m, as defined by the attractor mechanism, are related to the

Fourier coefficients of the function ψF
m as

d(n, `,m) = (−1)`+1cF
m(n, `) , (B.28)

the overall sign coming from an analysis of the fermion zero modes described in [53].

The statement of the main theorem of ([113], Chapter 8) is that the single-center

black hole partition function ψF
m(τ, z) is a mock Jacobi form.

What this means is that ψF
m has the same elliptic transformation property (B.5)

as a regular Jacobi form governed by the index m. Its modular transformation

property (B.4), however, is modified. The lack of modularity is governed by an

explicit non-holomorphic function called the shadow :

ψS
m(τ, z) =

1

η(τ)24

∑
`∈Z/2mZ

ϑ∗m,`(τ, 0)ϑm,`(τ, z) , (B.29)

where the operation ∗ is defined such that a modular form g of weight w obeys

(4πτ2)w
∂g∗(τ)

∂τ
= −2πi g(τ) . (B.30)

The function

ψ̂F
m(τ, z) = ψF

m(τ, z) + ψS
m(τ, z) , (B.31)

called the completion of ψF
m, transforms as a Jacobi form of weight −10 and in-

dex m, but it is not holomorphic. It obeys the holomorphic anomaly equation:

(4πτ2)1/2 ∂ψ̂
F
m(τ, z)

∂τ
= −2πi

1

η(τ)24

∑
`∈Z/2mZ

ϑm,`(τ, 0)ϑm,`(τ, z) . (B.32)

We now briefly present some relevant facts about the growth of the coefficients of
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the mock Jacobi forms ψF
m. By multiplying ψF

m by the function η(τ)24 (with η(τ)

the Dedekind function), we get a function ϕmock
2,m = η24ψF

m which is a mock Jacobi

form of weight 2 and index m. It was shown in ([113], Chapters 9, 10) that ϕ2,m

can be written1 as a linear combination of a (true) weak Jacobi form and a mock

Jacobi form

ϕmock
2,m (τ, z) = ϕtrue

2,m (τ, z) + ϕopt
2,m(τ, z) , (B.33)

such that the mock Jacobi form ϕopt
2,m has optimal growth. This means that the

Fourier-Jacobi coefficients of ϕopt
2,m(τ, z) grow at most as

copt(n, `) ∼ exp
( π
m

√
4mn− `2

)
. (B.34)

If we look at the Rademacher expansion (B.11), the growth (B.34) is the smallest

possible one, governed by the value of |∆̃| = 1. In fact, for m a prime power, the

coefficients of the optimal mock Jacobi form has only polynomial growth.

1The definition of a mock Jacobi form only holds modulo the addition of a true Jacobi form.
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Building Euclidean N = 2

conformal supergravity

Starting from the superconformal transformations for 5D supermultiplets pre-

sented in (3.7), (3.25) and (3.36), we perform a reduction on the time coordi-

nate and obtain the corresponding results for the 4D Euclidean superconformal

transformations as well as the relevant supermultiplets. The Weyl multiplet con-

tains the gauge fields associated with the superconformal transformations as well

as additional supercovariant fields, which act as a background for all other su-

permultiplets. Therefore this multiplet must be considered first. Here a subtle

complication is that the Weyl multiplet becomes reducible upon the reduction. In

D = 5 it comprises 32+32 bosonic and fermionic degrees of freedom, which, in the

reduction to D = 4 dimensions decomposes into the Weyl multiplet comprising

24 + 24 degrees of freedom, and a vector multiplet comprising 8 + 8 degrees of

freedom.

In Section 3.2 we also described the Kaluza-Klein decomposition of the metric

and the dilatational gauge field that ensure that the 4D fields transform covari-

antly under the 4D diffeomorphisms. Since these decompositions involve gauge

choices on the vielbein and the dilatational gauge field, compensating Lorentz

and special conformal transformations must be included when deriving the 4D

Q-supersymmetry transformations to ensure that these gauge conditions are pre-

served. Here the parameter of the compensating Lorentz transformation is most

relevant. It is equal to

εa5 = −ε5a = iφ ε̄iγ
aψi ⇐⇒ εa0 = −ε0a = φ ε̄iγ

aψi , (C.1)
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where we assumed the standard Kaluza-Klein decomposition on the gravitino

fields,

ψM
i =

ψµi +Bµψ
i

−iψi

 , (C.2)

which ensures that ψµ
i on the right-hand side transforms as a 4D vector. Owing

to the factor of i in this decomposition, both ψµ
i and ψi are symplectic Majo-

rana spinors. Upon including this extra term, one can write down the Q- and

S-supersymmetry transformations on the 4D fields defined above. As a result of

this, the 4D and 5D supersymmetry transformation will be different. For instance,

the supersymmetry transformations of the 4D fields eµ
a, φ and Bµ read,

δeµ
a = ε̄iγ

aψµ
i ,

δφ = iφ2 ε̄iγ
5ψi ,

δBµ = − φ2 ε̄iγµψ
i − iφ ε̄iγ

5ψµ
i , (C.3)

where the first term in δBµ originates from the compensating transformation (C.1).

Consequently the supercovariant field strength of Bµ contains a term that is not

contained in the supercovariant five-dimensional curvature R(P )MN
A. Therefore

the 5D spin-connection components are not supercovariant with respect to 4D

supersymmetry, as is reflected in the second formula below,

ωM
ab =

ωµab
0

− 1
2
φ−2F̂ (B)ab

Bµ

−i

 ,

ωM
a5 = − 1

2
i

φ−1F̂ (B)µ
a − φ ψ̄µiγaψi

0

− iφ−2Daφ

Bµ

−i

 . (C.4)

Here we introduced the supercovariant field strength and derivative (with respect

to 4D supersymmetry),

F̂ (B)µν = 2 ∂[µBν] + φ2 ψ̄[µiγν]ψ
i + 1

2
iφ ψ̄µiγ5ψν

i ,

Dµφ = (∂µ − bµ)φ− 1
2
iφ2 ψ̄µiγ5ψ

i . (C.5)

We should mention that the dilatational gauge field (as well as the composite

gauge fields, such as ωµ
ab, that depend on it) will not necessarily acquire the form

that is familiar from 4D. This may require to include an additional compensating

conformal boost transformation.
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Subsequently one writes corresponding Kaluza-Klein decompositions for some of

the other fields of the Weyl multiplet, which do not require special gauge choices,

VMi
j =

Vµij +BµVi
j

−iVi
j

 , φM
i =

φµi +Bµφ
i

−iφi

 TAB =

 Tab

Ta5 ≡ 1
6
iAa

 .

(C.6)

Hence we are now ready to consider the Q- and S-supersymmetry transformations

of the spinor fields originating from the 5D gravitino fields. Up to possible higher-

order spinor terms, one derives the following results from (3.7),

δ(φ2 ψi) = − 1
2

[
− F̂ (B)ab + γ5φ(3Tab + 1

4
φ−1F̂ (B)abγ5)

]
γabεi

+ i
[
/Dφγ5 − /Aφ

]
εi − φ2V i

j ε
j

+ γ5φ
[
ηi − 1

3
i /Aγ5ε

i − 1
8
γ5φ

−1(F̂ (B)ab − 4φTabγ5)γabεi
]
,

δψµ
i = 2

(
∂µ − 1

4
ωµ

abγab + 1
2
bµ + 1

2
eµ
aAaγ5

)
εi + Vµj

iεj (C.7)

+ 1
2
i
[
3Tab + 1

4
φ−1F̂ (B)abγ5

]
γabγµε

i

− iγµ
[
ηi − 1

3
i /Aγ5ε

i − 1
8
γ5φ

−1(F̂ (B)ab − 4φTabγ5)γabεi
]
.

Clearly, the fields eµ
a and ψµ

i must belong to the Weyl multiplet, whereas φ, Bµ

and φ2ψi correspond to the Kaluza-Klein vector multiplet, as the transformations

shown in (C.3) and (C.7) have many features in common with the expected 4D

transformations of these supermultiplets. Note that we have multiplied ψi with a

factor φ2 to give it the expected Weyl weight w = 3
2
. At this stage we have only

identified one of the two w = 1 scalars that must reside in a 4D vector multiplet.

The field Aa seems to play the role of an R-symmetry connection because it appears

to covariantize the derivatives on φ and εi in (C.7). Furthermore, a particular linear

combination of the 5D tensor components Tab and the (dual) supercovariant field

strength F̂ (B)ab appears in the transformations (C.7) in precisely the same form as

the 4D auxiliary tensor Tab, so that the latter is not just proportional to the original

5D tensor field. The same combination will also appear in other transformation

rules, as we shall see in, for instance, Section 3.2.3. Finally, S-supersymmetry

transformations are accompanied by extra contributions characterized by a field-

dependent parameter proportional to εi.

However, the result (C.7) is not yet complete as we have suppressed the variations

quadratic in the spinor fields. First of all we did not include the non-covariant term

in (C.4) and we ignored the compensating Lorentz transformation (C.1). Secondly

we ignored the variation of the field Bµ in the decomposition of the 4D gravitino
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(C.2), and thirdly the multiplication of ψi with φ2 will also generate a variation

quadratic in ψi . Since these terms will play an important role we summarize them

below,

δ(φ2ψi)
∣∣
non−linear

= 1
2
iφ3 ε̄jγ

aψj γaγ5ψ
i + 2iφ3 ε̄jγ

5ψj ψi ,

δψµ
i
∣∣
non−linear

= − 1
2
iφ ψ̄µjγ

aψj γaγ
5εi + 1

2
iφ ε̄jγ

aψj γaγ5ψµ
i (C.8)

+
(
φ2 ε̄jγµψ

j + iφ ε̄jγ
5ψµ

j
)
ψi .

The systematic pattern already noticed in [70] for the space-like reduction is that

the 5D supersymmetry transformations can uniformally be decomposed in terms

of the 4D supersymmetry transformation and field-dependent S-supersymmetry,

and SU(2) R-symmetry transformations with field-dependent parameters. Since

the derivation is identical to what was carried out in [70], we just present the uni-

versal formula for 5D Q-supersymmetry transformations of fields Φ that transform

covariantly in the 4D setting,

δQ(ε)
∣∣reduced

5D
Φ = δQ(ε)

∣∣
4D

Φ + δS(η̃)
∣∣
4D

Φ + δSU(2)(Λ̃)
∣∣
4D

Φ + δ′(Λ̃0)Φ . (C.9)

Here the first term on the right-hand side defines the 4D supersymmetry trans-

formation, while η̃ and Λ̃ denote the (universal) field-dependent parameters of

accompanying S-supersymmetry and SU(2) R-symmetry transformations. The

last variation denoted by δ′(Λ̃0) is a linear transformation on the fields Φ that

signals the emergence of an extra component in the 4D Euclidean R-symmetry

group. Note that η̃, Λ̃ and Λ̃0 are all linearly proportional to the supersymmetry

parameter εi. The explicit form of these field-dependent parameters is as follows,

η̃i = − 1
3
i /Aγ5ε

i − 1
8
γ5φ

−1
(
F̂ (B)ab − 4φTabγ5

)
γabεi

− 1
4
iφ2
(
ψ̄jγ

5ψiγ5 − ψ̄jψi + ψ̄jγ
aψiγa + 1

2
ψ̄kγ

5γaψkγ5γaδj
i
)
εj ,

Λ̃j
i = − iφ

(
ε̄jγ

5ψi − 1
2
δj
iε̄kγ

5ψk
)
, (C.10)

Λ̃0 = iφ ε̄kψ
k .

After verifying that the decomposition is universally realized, these extra symme-

tries with field-dependent coefficients can be dropped provided they define local

symmetries of the 4D theory.

Evaluating the terms of higher order in the fermions is subtle; here we can only

partly rely on the results of [70] because the phases of the spinor bilinears cannot

always be converted directly from 5D (as noted just below equation (3.12)). It
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leads to the following redefinitions of the various bosonic fields,

Âµ =Aa eµ
a − 1

2
iφ ψ̄jψµ

j − 1
4
φ2 ψ̄jγ

5γµψ
j ,

T̂ab = 24Tab − φ−1 εabcd F̂ (B)cd + iφ2 ψ̄iγabψ
i ,

V̂j
i =φ2 Vj

i + 3
2
iφ3 ψ̄j γ

5ψi , (C.11)

V̂µj
i =Vµj

i + iφ
(
ψ̄µjγ

5ψi − 1
2
δj
i ψ̄µkγ

5ψk
)

+ 1
2
φ2 ψ̄jγµψ

i .

Note that in the last two equations possible contributions proportional to ψ̄kγ
5ψk

and ψ̄kγµψ
k do not appear as they vanish owing to the Majorana condition.

The modifications given in (C.11) lead to important changes in the supersymmetry

transformations. For instance, the S-supersymmetry transformations are given by

δÂµ = 1
2
iψ̄µjγ

5ηj ,

δT̂ab = 0 ,

δV̂j
i = 0 , (C.12)

δV̂µj
i = − 2i

(
ψ̄µj η

i − 1
2
δj
i ψ̄µk η

k
)
.

In particular, note that the factor in the variation of V̂µi
j has now changed as

compared to the corresponding 5D S-variation given in (3.7). Furthermore, Âµ is

not supercovariant because its Q-supersymmetry variation contains a term pro-

portional to the derivative of the supersymmetry parameter. This suggest that Âµ

will be related to a gauge field associated with an extra 4D R-symmetry, which

will indeed be consistent with the fact that Âµ transforms into the gravitino fields

under S-supersymmetry.

Let us now present the supersymmetry transformations for the redefined fields,

suppressing the field-dependent S-supersymmetry and SU(2) transformations in-

dicated in (C.9). For the vierbein and gravitini, we find

δeµ
a = ε̄iγ

aψµ
i , (C.13)

δψµ
i = 2

(
∂µ − 1

4
ωµ

abγab + 1
2
bµ + 1

2
Âµγ5

)
εi + V̂µj

i εj + 1
16

iT̂abγ
abγµε

i − iγµη
i .
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For the scalar φ, the spinor ψ̂i ≡ φ2ψi and the Kaluza-Klein photon field Bµ we

have the following Q- and S-supersymmetry transformations,

δφ = i ε̄iγ
5ψ̂i ,

δBµ = − ε̄iγµψ̂i − iφ ε̄iγ
5ψµ

i ,

δψ̂i = 1
2

[
F̂ (B)ab − 1

8
φ T̂abγ5

]
γabεi (C.14)

− iγ5γµ
[
Dµφ− 1

2
i(ψ̄µjγ

5ψ̂j − ψ̄µjψ̂jγ5)− Âµφ γ5
]
εi + V̂j

i εj + φγ5ηi ,

where the derivative Dµ is covariant with respect to 4D local Lorentz, dilatation

and SU(2) transformations.

At this point we make a number of important comments. First of all, we have sup-

pressed the chiral transformations proportional to the field-dependent parameter

Λ̃0,

δψµ
i = −1

2
Λ̃0 γ5ψµ

i , δψ̂i = −1
2
Λ̃0 γ5ψ̂i . (C.15)

Note, however, that we were not allowed to do this as these transformations are at

this stage not realized as local transformation of the 4D theory. Furthermore, the

variations of ψ̂i that are proportional to ψ̄µjψ̂
j are not part of a supercovariant

derivative of the field φ. And finally the field Âµ is not a gauge field associated with

the chiral transformations (although it appears in a suggestive way). However, it

is not a proper matter field either as it does not transform supercovariantly. We

will address these issues momentarily.

Rather than resolving these issues now, we prefer to first continue. Therefore it

is convenient to first define a composite fermionic gauge field φ̂µ
i which serves as

a 4D connection for S-supersymmetry. It is the solution of the equation (in the

ensuing analysis we will not exhibit terms quadratic in the spinor fields)

γµ
[(
D[µ + 1

2
Â[µγ

5
)
ψν]

i − 1
2
i γ[µ φ̂ν]

i + 1
32

i T̂abγ
ab γ[µ ψν]

i
]

= 0 , (C.16)

and transforms under S- and Q-supersymmetry as

δφ̂µ
i = 2

(
Dµ − 1

2
Âµγ5

)
ηi + 1

48
iγµT̂abγ

abηi

+ 2i f̂µ
aγaε

i + 1
16

(
γνγabγµ − 1

3
γµγ

abγν
)
DνT̂abε

i (C.17)

− 1
4
i
(
γabγµ − 1

3
γµγ

ab
)
R(V̂ )abj

iεj − 1
2
i
(
γabγµ + 1

3
γµγ

ab
)
R(Â)abγ

5εi ,

where f̂µ
a reads

f̂µ
a = 1

2
R(ω, e)µ

a − 1
12
R(ω, e) eµ

a − 1
2
R̃(Â)µ

a − 1
128

(T̂ − ˜̂
T )µb (T̃ +

˜̂
T )ba , (C.18)
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where R(ω, e)µ
a = R(ω)µν

ab eb
ν is the generalized (non-symmetric) Ricci tensor.

Its anti-symmetric part is equal to R(ω, e)[µν] = R(b)µν = ∂µbν − ∂νbµ. This

follows from the identity R(ω)[ab,c]
d = −R(b)[ab δc]

d, which reflects the fact that

the spin connection ωµ
ab depends on the dilatational gauge field bµ. As a result

the generalized Riemann tensor R(ω)µν
ab is not symmetric under pair-exchange,

R(ω)ab,cd −R(ω)cd,ab = −2 η[a[cR(ω, e)d]b] + 2 η[c[aR(ω, e)b]d] . (C.19)

Finally, R̃(Â)µν denotes the dual of R(Â)µν = ∂µÂν − ∂νÂµ.

The 5D S-supersymmetry gauge field φM
i follows from the fermionic conventional

constraint given in (3.9) and can be decomposed as follows under the 4D reduction,

φµ
i|5D − 1

6
i /̂Aγ5ψµ

i + 1
96
T̂abγ

abψµ
i − 1

12
φ−1F̂abγ

abγ5ψµ
i

= 1
2
φ̂µ

i + 1
3
φ−1γ5Dµψ̂

i + 1
12
φ−1γµγ5 /Dψ̂

i − 2
3
φ−1Âµψ̂

i + 1
6
φ−1γµ /̂Aψ̂

i

+ 1
3
iφ−2γνF̂µνψ̂

i − 1
24

iφ−2γµF̂abγ
abψ̂i − 1

96
iφ−1T̂abγ

abγµγ5ψ̂
i (C.20)

− 2
3
φ−2γ5

(
Dµφ− Âµφγ5

)
ψ̂i − 1

6
φ−2γµγ5

(
/Dφ− /̂Aφγ5

)
ψ̂i .

The right-hand side of this equation contains only supercovariant 4D expressions,

with the exception of the field φ̂µ
i which is a gauge field. For instance Dµψ̂

i is the

4D fully supercovariant derivative given by (at linear order in the spinor fields)

Dµψ̂
i =
(
Dµ + 1

2
Âµγ

5
)
ψ̂i − 1

2
φ γ5φ̂µ

i − 1
4

[
F̂ (B)ab − 1

8
φ T̂abγ5

]
γabψµ

i

+ 1
2
iγ5γν

[
Dνφ− Âνφ γ5

]
ψµ

i − 1
2
V̂j

i ψµ
j , (C.21)

which also contains the S-supersymmetry gauge field φ̂µ
i. The terms on the left-

hand side of (C.20) that depend explicitly on ψµ
i seem to affect the covariance

under Q-supersymmetry. However, they are to be expected because, according

to (C.9), the 5D Q-supersymmetry differs from the 4D one by a field dependent

S-supersymmetry transformation parametrized by η̃i given in (C.10).

The correctness of this result can be verified by considering the Q and S transfor-

mations of the 4D SU(2) gauge fields V̂µ i
j. After taking into account the Kaluza-

Klein decomposition, one has to correct for the field-dependent S-supersymmetry

transformation indicated in (C.9), which precisely cancels against the terms in

(C.20) that depend explicitly on ψµ
i. Furthermore one has to take into account

the redefinitions in (C.11) and the field-dependent SU(2) transformation in (C.9).
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There combined effect will only lead to terms such as

i(δψ̄µi − 2Dµεi) γ5φ−1ψ̂j , −2i ε̄i [γ
5Dµ(φ−1ψ̂j) + 1

2
φ̂µ

j] , φ−1 ¯̂
ψi δ(φ

−1ψ̂j) ,

(C.22)

where the derivative Dµ is supercovariant. Combining this with the result of the

Kaluza-Klein decomposition and with (C.20), one obtains

δV̂µ i
j = 2 i ε̄iφ̂µ

j−2 ε̄iγµχ̂
j−2i η̄iψµ

j− 1
2
δi
j
(
2i ε̄kφ̂µ

k−2 ε̄kγµχ̂
k−2i η̄kψµ

k
)
, (C.23)

where χ̂i is a supercovariant spinor field equal to

χ̂i = 8χi
∣∣
5D
− 1

4
iφ−1γ5 /Dψ̂i− 1

2
φ−2V̂k

iψ̂k + 1
8
φ−2
[
F̂ab− 1

4
φT̂abγ

5
]
γabψ̂i− 1

2
iφ−1 /̂Aψ̂i .

(C.24)

Let us subsequently turn to the Q- and S-supersymmetry transformations of the

field χ̂i, which contains the remaining independent fermion field χi|5D of the 5D

Weyl multiplet according to the equation above. When writing its variation in

terms of the 4D quantities, we naturally obtain terms that depend exclusively on

the 4D Weyl multiplet components and others that will involve both the Weyl

multiplet and the Kaluza-Klein vector multiplet. The latter terms should then

cancel by the variations of the additional terms in (C.24), because χ̂i must vary

exclusively into the components of the 4D Weyl multiplet. Here one should again

compensate for the composite S-supersymmetry variation parametrized in terms

of η̃i. This leads to the following expression,

δχ̂i = 8 δχi
∣∣
5D
− 3

2
TAB γ

AB η̃i − 1
4
i δ
[
φ−1γ5 /Dψ̂i

]
− 1

8
δ
[
4φ−2V̂j

i ψ̂j − φ−2[F̂ (B)ab − 1
4
φ T̂ abγ5]γab ψ̂

i + 4iφ−1 /̂A ψ̂i
]
, (C.25)

where we use the definition (C.17) for the supercovariant derivative of ψ̂i based

on the S-supersymmetry gauge field φ̂µ
i. Eventually we will make another, more

suitable, choice for this composite gauge field, but for the moment we adopt this

definition.

Restricting ourselves to terms linearly proportional to fermion fields, the variation

of χ̂i takes the following form,

δχ̂i = 1
24
T̂abγ

abηi + 1
6
R(V )abj

i γabεj + 1
24

i γab /DT̂abεi − 1
3
R(A)ab γ

abγ5εi + D̂ εi ,

(C.26)
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where D̂ is defined as (up to terms quadratic in spinor fields)

D̂ = 4D
∣∣
5D
− 1

4
φ−2 V̂j

k V̂k
j + 1

4
φ−1

[
(Da)2 + 1

6
R(ω, e)

]
φ− 1

12
(Âa)

2

− 1
12
φ−2F̂ abF̂ab + 1

192
φ−1εabcd T̂

abF̂ cd + 1
384
T̂ ab T̂ab , (C.27)

where we have made use of (C.18). Note that all bosonic terms in (C.26) have

been included.

We conclude this part of the analysis by giving the Q- and S-supersymmetry

transformations for the remaining fields, where we give also some further details

about terms quadratic in the spinor fields:

δbµ = 1
2
i ε̄i φ̂µ

i − 1
2
εiγµχ̂

i + 1
2
i η̄i ψµ

i ,

δT̂ab = − 8i ε̄iR(Q)ab
i + 4i ε̄iγabχ̂

i + 1
2
εabcd T̂

cd Λ̃0 ,

δÂµ = ε̄iγµγ
5χ̂i − 1

2
i ε̄iγ

5φ̂µ
i − 1

2
i η̄iγ

5ψµ
i + ∂µΛ̃0 , (C.28)

δV̂j
i = 2 ε̄j( /Dψ̂

i − iγ5φ χ̂i)− δj i ε̄k( /Dψ̂k − iγ5φ χ̂k) ,

δD̂ = ε̄i /Dχ̂
i + . . . .

In the derivation of the first result for δbµ we note that the same phenomenon

takes place as when deriving the transformation rules for V̂µ i
j in (C.23). Namely,

the S-supersymmetry transformation with field-dependent parameter η̃i in (C.9)

cancels against the terms in (C.20) that depend explicitly on ψµ
i. After that we

use the definition of χ̂i in (C.24), and the remaining terms are absorbed into the

4D conformal boost transformation. Since bµ is the only field that transforms

under conformal boosts, this will only affect the explicit form of the supersymme-

try algebra. The transformation rules of T̂ab, Âµ and V̂j
i do not involve further

subtleties, except that Âµ does not seem to transform supercovariantly. The trans-

formation rule of D̂, however, cannot be realiably calculated at this stage, because

we have not yet determined the contributions quadratic in the spinor fields in its

definition (C.27). In view of the fact that the original 5D theory as well as its

reduced 4D version are consistent, there is no doubt that the present calculation

can be completed to all orders.

We have thus shown in sufficient detail how the 5D Weyl multiplet reduces to

the 4D Euclidean Weyl multipet and a Kaluza-Klein vector supermultiplet. How-

ever, the latter multiplet involves only seven bosonic and eight fermionic degrees

of freedom, so that one bosonic field seems to be missing in the Kaluza-Klein

vector multiplet. A similar counting for the Weyl multiplet reveals that the Weyl

multiplet has twenty-five bosonic and twenty-four fermionic degrees of freedom (in



158 Appendix C Building Euclidean N = 2 conformal supergravity

this off-shell counting one always corrects for the number of gauge invariances,

so that for instance each gravitino corresponds to only eight fermionic degrees of

freedom).

The reason for the mismatch is well known; under dimensional reduction one

obtains the lower-dimensional theory in a partially gauge-fixed form. The R-

symmetry is extended to SU(2)×SO(1, 1), where the non-compact SO(1, 1) factor

acts by a chiral transformations on the fermions (it will also act on some of the

bosonic fields). At this point the SO(1, 1) group is, however, not realized as a local

invariance. Although the vector field Âµ seems to play the role of an SO(1, 1) gauge

field, it is not transforming under a corresponding gauge symmetry and represents

four bosonic dergrees of freedom. This is the underlying reason why the combined

Weyl and Kaluza-Klein supermultiplets are not yet fully irreducible.

Full irreducibility can be obtained by introducing a compensating scalar field ϕ

and writing

Âµ = Aµ − ∂µϕ , (C.29)

where Aµ and ϕ transform under local SO(1, 1) gauge transformations as

Aµ → Aµ + ∂µΛ0 , ϕ→ ϕ+ Λ0 , (C.30)

so that Âµ remains invariant. Under supersymmetry we assume that ϕ changes

according to

δϕ = −Λ̃0 = −iφ−1ε̄i ψ̂
i . (C.31)

Subsequently one uniformly redefines all fields and parameters with a ϕ-dependent

SO(1, 1) transformation, which will remove all explicit terms in the transformation

rules proportional to Λ̃0. When re-imposing the gauge condition ϕ = 0, then all

the Λ̃0-terms will re-emerge in the form of compensating gauge transformations.

We now summarize all the ϕ-dependent field redefinitions. The R-covariant spinors,

transforming under local SU(2)×SO(1, 1) R-symmetry transformations, are as fol-

lows,

εi|Rcov = exp[−1
2
ϕγ5] εi ,

ηi|Rcov = exp[1
2
ϕγ5] ηi ,

χi|Rcov = exp[−1
2
ϕγ5] χ̂i ,

ψµ
i|Rcov = exp[−1

2
ϕγ5]ψµ

i ,

φµ
i|Rcov = exp[1

2
ϕγ5] φ̂ iµ ,

ψi|Rcov = exp[−1
2
ϕγ5] ψ̂i ,

(C.32)
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Also some of the bosons will have to be redefined so that they transform covariantly

under SO(1, 1). First of all the tensor fields T̂ab, when decomposed into the self-

dual and anti-selfdual (real) components, take the form

Tab
±Rcov = exp[±ϕ] T̂ab

± . (C.33)

Furthermore the scalars φ and ϕ are combined into

φRcov = exp[−ϕ]φ , φ̄Rcov = exp[ϕ]φ . (C.34)

After these redefinitions the Weyl multiplet is now irreducible. It includes the

SO(1, 1) gauge field Aµ and comprises 24+24 off-shell degrees of freedom. The

compensator ϕ belongs to the Kaluza-Klein vector multiplet, defined in a back-

ground made up of the Weyl multiplet and comprising 8+8 degrees of freedom.

At this stage we will make some further field redefinitions to bring the results in

closer contact with the Minkowski version of N = 2 conformal supergravity. First

of all we will redefine the S-supersymmetry gauge field according to

φµ
i = φµ

i|old − 1
2
i γµχ̂

i . (C.35)

This will correspond to a different conventional constraint (the previous one was

given by (C.16)) which is S-supersymmetric. At the same time, we make use

of the R-covariant fields defined above. As a result, the transformation rules

of the various fields will acquire a simpler form. For instance, because of the

redefinition (C.35), the explicit expressions for the dependent gauge fields φµ
i

and fµ
a become

φµ
i = −1

2
i
(
γρσγµ − 1

3
γµγ

ρσ
) (
Dρψσi + 1

32
i (T+

ab + T−ab)γ
abγρψσ

i + 1
4
γρσχ

i
)
,

fµ
a = 1

2
R(ω, e)µ

a − 1
4

(
D + 1

3
R(ω, e)

)
eµ
a − 1

2
R̃(A)µ

a − 1
32
T−µb T

+ ba . (C.36)

where we restrict ourselves to bosonic terms in the last expression, and we have

dropped the caret on the field D (which we will consistently do from now on).

Furthermore, the derivative Dµ is now covariant with respect to local Lorentz,

dilatations and the full R-symmetry SU(2) × SO(1, 1) transformations. All the

field strengths are also supercovariant. The presence of the fully supersymmet-

ric covariant quantities has not been verified in every possible detail, but these

covariantizations are implied by the supersymmetry algebra.

Another change concerns the spinors. In view of the fact that we are now dealing
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with a Euclidean theory, we prefer to change the definition of the Dirac conju-

gate fields accordingly, so that χ̄i := (χi)†. This requires us to replace all the

barred spinors χ̄i in the previous equations by χ̄iγ
5. The corresponding symplec-

tic Majorana condition on the spinors can still be written in the same form as the

five-dimensional, Minkowski one (3.11):

C̃−1χ̄i
T = εijχ

j , (C.37)

albeit with a new charge conjugation matrix

C̃ = C γ5 . (C.38)

Therefore, the Hermitian gamma matrices γa now satisfy1

C̃γaC̃
−1 = −γaT (a = 1 . . . 4) . (C.39)

We still use the convention according to which raising or lowering SU(2) indices

is effected by complex conjugation. For four-dimensional fermionic bilinears, with

spinor fields ψi and φi and a spinor matrix Γ built out of products of gamma

matrices, we note the following result:

(ϕ̄jΓ
†ψi)† = ψ̄i Γϕ

j = −δij ϕ̄k C̃−1 ΓT C̃ ψk + ϕ̄i C̃
−1 ΓT C̃ ψj . (C.40)

With these new conventions, and the further field redefinition

Vµij := V̂µ j
i , (C.41)

the transformation rules for the independent Weyl multiplet fields (eµ
a, ψiµ, bµ,

Aµ, Vµij, T±ab, χi, D) displayed in (C.13), (C.23), (C.26) and (C.28) take the form

given in (3.13). We refrain from displaying the transformation rules of the Kaluza-

Klein vector multiplet, since we display the dimensional reduction of generic matter

vector multiplets in Section 3.2.3.

1This should be contrasted with the properties given in footnote 3 of Chapter 3.
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Physicists strive to describe our entire reality as a single, unified theory. To this

day, two main pillars of physics have been identified: Quantum Theory and Gen-

eral Relativity. The former describes the interaction of fundamental particles and

applies to microscopic scales. The latter is Einstein’s theory of gravity, and de-

scribes the interactions of large-scale objects, such as planets, stars and galaxies.

It has been a long-standing problem to try and unify these two foundations of our

reality into a single unified description. One possible avenue into this reconcili-

ation is to examine black holes in detail. Black holes are predictions of General

Relativity, which describes what happens when a large mass (at least a few solar

masses) is concentrated into a tiny area, for instance once a sufficiently massive

star has burnt out all of its fuel for fusion and collapses unto itself. This results

in a singularity surrounded by an imaginary spherical surface, the so-called event

horizon. Any observers or light particles falling inside the black hole past this

horizon is unable to escape due to the extreme gravitational forces at play. What

makes black holes fascinating is that, within relatively small distances around the

horizon, quantum phenomena are believed to be relevant, which means that one

has to deal with both gravitational and quantum effects to arrive at a correct

description. Their detailed examination can thus teach us more about the unified

theory of quantum gravity. Such examination is undertaken in the present theo-

retical work, where we focus on the so-called “quantum entropy” of certain specific

black holes. This research involves the use of new mathematical techniques which

have recently become available and allow for highly detailed predictions.

Entropy is a quantity known from classical physics in the context of thermody-

namics. There, one deals with physical systems containing a large number of

constituents and their associated degrees of freedom, such as a gas of atoms or

molecules in a box. When studying the behavior of such a gas under changes in

the total energy, temperature, volume, pressure, or density (proportional to the

number of molecules or atoms), 19th century physicists were able to derive certain
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relations between the various quantities used to describe the system. One such

quantity is the entropy function, which depends on the extensive quantities of

the gas: its energy, its volume, and the number of its constituents. According to

the so-called second law of thermodynamics, the classical evolution of the system

always takes place in the direction of increasing or constant entropy.

At the tail-end of the 19th century, Ludwig Boltzmann understood that a deep

connection exists between the aforementioned macroscopic (thermodynamic) de-

scription of a classical system, and its microscopic description. He realized that

the thermodynamic properties of a gas could be obtained from the microscopic

behavior of its atomic constituents. The latter can be described using methods of

statistical mechanics, and upon averaging over the behavior of a large number of

atoms or molecules, it is possible to recover the thermodynamic properties of the

gas. As such, entropy can be explained in a Boltzmann interpretation as being the

logarithm of the number of degrees of freedom accessible to the atoms or molecules

making up the gas.

It was recognized in the 1970s that a similar situation arises for black holes in

general relativity. Bardeen, Carter and Hawking showed that black hole evolution

is governed by a set of laws which they dubbed the “laws of black hole mechan-

ics”. One such law states that the surface area of the horizon of a black hole

never decreases when undergoing a physical process. For instance, when two black

holes collide, they will merge into a single black hole whose surface area is nec-

essarily greater or equal to the sum of the surface areas of the horizons of the

initial black holes. Furthermore, the surface area of the horizon behaves, under

changes of the other parameters entering the description of the black hole (its

mass, electric-magnetic charges and angular momentum), in a way akin to the be-

havior of the thermodynamic entropy under changes of energy, volume or density.

On this basis, Bekenstein and Hawking proposed to formally identify the thermo-

dynamic entropy of a black hole with the surface area of its horizon. Associated

to this thermodynamic entropy, it is also possible to formally define a notion of

temperature for the black holes. This might a priori seem in contradiction with

the classical statement that nothing can escape the horizon of a black hole. To

understand how this is possible, one needs to adopt a semi-classical picture, where

the black hole itself is still classical and described within the framework of general

relativity but is interacting with an intrinsically quantum field outside its horizon.

This field undergoes quantum vacuum fluctuations arbitrarily close to the horizon

of the black hole, which leads to creations of pairs of particles and anti-particles.

A member of one such pair can then fall inside the horizon of the black hole, while
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the other member escapes away from the black hole. The net result of such a pro-

cess is therefore the emission of a so-called “Hawking radiation”. The spectrum

of this radiation is almost exactly thermal, with a given temperature and entropy.

The discovery of black hole entropy then opens the way for a natural and ulti-

mately deep question: is there a Boltzmann interpretation of their thermodynamic

entropy? In other words, we should ask what are the corresponding microscopic

degrees of freedom, or “gravitational atoms”, making up the black hole. This

is where a tentative description of quantum gravity comes into play, since these

microscopic constituents should be sensitive to both gravitational and quantum-

mechanical effects. Are there existing theories of quantum gravity which could

provide such a description? A straightforward way of obtaining such a theory

would be to try and directly “quantize” Einstein’s theory of general relativity.

Unfortunately, this procedure is riddled with technical complications and does not

provide sensible predictions. There is, however, an extension of general relativity,

which combines Einstein’s theory with supersymmetry. This symmetry relates

bosons and fermions (particles with different quantum statistics), and imposes

additional constraints on the theory which imply a better conceptual and com-

putational control of its behavior at extremely short distances. The combination

of general relativity and supersymmetry is known as supergravity. Even though,

as of yet, supersymmetry has not been confirmed experimentally as being a fun-

damental symmetry of Nature, supergravity theories should be thought of as a

convenient theoretical framework, allowing us to start gathering clues regarding

the behavior of quantum gravity, albeit in a slightly idealized context.

Another foray into the quantum gravity regime is provided by string theory. String

theory differs from general relativity or supergravity in the sense that the funda-

mental objects in the theory are not fields defined at every point in space-time

and describing point-particles, but extended objects: tiny (typically of a size close

to the Planck length, 10−33 cm) vibrating strings, whose excitation spectrum gen-

erates what we observe in our macroscopic world as particle manifestations. Some

of these particles correspond to the elementary particles which have been observed

experimentally, while other are as of yet inaccessible to our current detection meth-

ods. At large distances, string theory effectively reduces to a supergravity theory.

On the other hand, it also contains its own extended objects, called branes, and

it is possible to provide a microscopic description of black holes in terms of these

branes. An invaluable insight provided by Strominger and Vafa in 1996 showed

that it is indeed possible to give a microscopic description of the entropy of black
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holes in the context of string theory by describing interacting branes and exam-

ining their available degrees of freedom. Upon averaging over a large number of

branes, they were able to recover, in a certain limit, the thermodynamic entropy

of Bekenstein and Hawking for the black hole. This was the first encouraging

hint that a Boltzmann interpretation of the Bekenstein-Hawking entropy could be

achieved using string theory methods.

Since this discovery, the relationship between a macroscopic and microscopic de-

scription of black holes has been investigated in various ways, and in increasing

level of details. Both the predictions from string theory and supergravity have

been clarified and generalized. In this respect, a more general definition of the

entropy of a black hole is often used, so that the special limit which Strominger

and Vafa used to recover the Bekenstein-Hawking entropy is no longer needed.

Hence, one often considers the Bekenstein-Hawking-Wald entropy when investi-

gating quantum mechanical corrections to the original result of Bekenstein and

Hawking. These corrections may be best incorporated by making use of the so-

called “quantum entropy function”, which was defined by Sen in 2008, in the con-

text of the AdS/CFT correspondence. This definition makes use of a path-integral

which is an integral over the infinite-dimensional space of all possible field config-

urations in the supergravity theory. At first glance, the exact computation of such

a quantity might seem rather hopeless. We show, however, that there exist mathe-

matical techniques which make the exact calculation possible in certain situations.

These are known as localization techniques, and they reduce the path-integral to a

standard, well-defined integral which can be evaluated using traditional methods.

As shown in this thesis, it is possible to use localization techniques to compute

the quantum entropy function of certain black holes exactly in supergravity, at all

orders in perturbation theory (and also including some non-perturbative effects).

The result can then be compared to the microscopic predictions of string theory

made on the basis of the brane description of the same black holes. They are found

to be in agreement, which indicates that there are indeed two different ways of de-

termining the entropy of certain black holes, in accordance with the interpretation

of Boltzmann.

The present work begins with laying a solid foundation for the evaluation of the

quantum entropy function by carefully defining the four-dimensional supergravity

theory under consideration. Within this theory, a first examination of highly su-

persymmetric black holes and their quantum entropy is conducted. Subsequently,

the main ingredients of the localization method are derived in some generality, be-

fore being applied to specific black holes possessing less supersymmetry. In each
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case investigated, an agreement with known string theory predictions is found. In

the less supersymmetric cases, such an agreement is in fact quite non-trivial due

to the presence of so-called “multi-center” solutions in the spectrum of both the

supergravity and string theory. This eventually relates in an interesting fashion to

the mathematical theory of so-called modular, mock-modular and Jacobi forms.





Nederlandse samenvatting

Natuurkundigen streven ernaar om verschillende materiële verschijnselen te beschri-

jven vanuit een allesomvattende theorie. De belangrijkste theorieën in dit verband

zijn de quantum-mechanica en de algemene relativiteitstheorie. De eerste beschri-

jft de werkelijkheid op microscopische afstandschalen. De tweede is Einsteins the-

orie van de zwaartekracht, die van toepassing is voor grote massa’s zoals sterren

en melkwegstelsels. Tot dusver bestaat er geen experimenteel getoetste theorie

die de uitgangspunten van beide theorieën in zich verenigt. De problemen kun-

nen nader onderzocht worden in de context van zwarte gaten, die lang geleden

werden voorspeld door de algemene relativiteitstheorie en die inmiddels in ons

heelal worden waargenomen. Zwarte gaten ontstaan als een grote massa (groter

dan de zon) in een klein volume wordt geconcentreerd, zoals bijvoorbeeld gebeurt

als een zware ster is opgebrand en implodeert. Dit resulteert in een singulariteit

omgeven door een denkbeeldig boloppervlak, de zogenaamde “horizon”. Materie

en lichtsignalen die de ster benaderen tot binnen die horizon zijn niet meer in

staat om te ontsnappen ten gevolge van de extreem sterke zwaartekracht. Op

relatief kleine afstanden rond de horizon worden quantum-mechanische verschi-

jnselen relevant en dat maakt dat we gelijktijdig te maken hebben met de effecten

van zowel de zwaartekracht als de quantum-mechanica. Het theoretisch onder-

zoek aan zwarte gaten kan daarom leiden tot nieuwe inzichten over de wederzijdse

relatie tussen de twee theorieën en op termijn tot een consistente theorie voor

quantum-gravitatie. In dit proefschrift wordt de zogenaamde “quantum-entropie”

onderzocht voor zeer specifieke zwarte gaten. Hierbij wordt gebruik gemaakt van

nieuwe wiskundige technieken die recent beschikbaar zijn gekomen en die zeer

gedetailleerde voorspellingen mogelijk maken.

Entropie is een begrip dat bekend is van de klassieke natuurkunde in de context van

de thermodynamica. In de thermodynamica onderzoekt men systemen bestaande

uit een zeer groot aantal bestanddelen, zoals bijvoorbeeld een gas van moleculen

of atomen. Door het gedrag van het gas te bestuderen onder veranderingen van
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de totale energie, de temperatuur, het volume, de druk, of de dichtheid van het

gas (evenredig met het aantal moleculen) bepaalde men in de 19de eeuw relaties

tussen de verschillende grootheden die gebruikt kunnen worden om het systeem

te beschrijven. Een daarvan was de zogenaamde entropie-functie die afhangt van

de extensieve grootheden van het gas, zoals de totale energie, het volume, en

het aantal moleculen. Volgens de zogenaamde tweede hoofdwet van de thermody-

namica kan een systeem alleen maar zodanig veranderen dat de entropie toeneemt

of eventueel constant blijft.

Op het eind van de 19de eeuw begreep Ludwig Boltzmann dat er een diep ver-

band bestond tussen de macroscopische (thermodynamische) beschrijving van het

klassieke systeem en de microscopische beschrijving in termen van moleculen of

atomen. Hij realiseerde zich dat de thermodynamische eigenschappen van een gas

bepaald kunnen worden uitgaand van het microscopisch gedrag van de bestand-

delen. Dat laatste kan worden beschreven met de statistische mechanica door te

middelen over het gedrag van een zeer groot aantal moleculen was het mogelijk om

de thermodynamische eigenschappen van het gas te reproduceren. In Boltzmanns

interpretatie kon worden bewezen dat de entropie evenredig is met de logaritme

van het aantal vrijheidsgraden dat beschikbaar is voor de moleculen van het gas.

Rond 1970 realiseerde men zich dat er een soortgelijke situatie bestond voor zwarte

gaten in de algemene relativiteitstheorie. Bardeen, Carter en Hawking toonden

aan dat zwarte gaten voldoen aan de zogenaamde “wetten van de mechanica van

zwarte gaten”. Een van die wetten geeft aan dat de grootte van het oppervlak

van de horizon van een zwart gat nooit afneemt als gevolg van een fysisch pro-

ces. Bijvoorbeeld, twee zwarte gaten die botsen kunnen een nieuw zwart gat

vormen waarvan het horizon-oppervlak gelijk is aan of groter is dan de som van

de horizon-oppervlakken van de oorspronkelijke zwarte gaten. Voorts verandert

de grootte van het horizon-oppervlak van een zwart gat door veranderingen van

andere grootheden die het zwarte gat bepalen, en wel op een soortgelijke manier

als waarop de thermodynamische entropie veranderd volgens de tweede hoofdwet

van de thermodynamica. Vandaar dat Bekenstein en Hawking voorstelden om aan

het zwart gat een thermodynamische entropie toe te kennen gelijk aan de grootte

van het horizon-oppervlak. Volgens deze analogie is het ook mogelijk een temper-

atuur toe te kennen aan het zwarte gat. Dit lijkt a priori in strijd met het feit

dat een zwart gat geen straling kan uitzenden zoals alle lichamen met een eindige

temperatuur doen. Om te begrijpen hoe dit mogelijk is moeten we gebruikmaken

van een semi-klassieke benadering waarin het zwarte gat wordt voorgesteld als een

klassiek zwart gat in interactie met een quantum-veld in de buurt van de horizon.
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Zo’n veld kan als gevolg van quantum fluctuaties een deeltje en een anti-deeltje

produceren. Een daarvan kan in het zwarte gat verdwijnen en de andere kan dan

ontsnappen als zogenaamde Hawking-straling. Het spectrum van die straling is

thermisch en gekarakteriseerd door een bepaalde temperatuur en entropie.

De ontdekking van entropie voor zwarte gaten leidt tot een voor de hand liggende

vraag, namelijk of er ook een mogelijke interpretatie van deze entropie bestaat

analoog aan die van Boltzmann voor de thermodynamica van gassen. Met an-

dere woorden, bestaan er ook elementaire microscopische “bestanddelen” hier

die een statische verklaring kunnen geven van het bestaan van de entropie van

zwarte gaten. Deze microtoestanden zouden onderhevig moeten zijn aan zowel de

quantum-mechanica en de zwaartekracht. Bestaat er een theorie van quantum-

gravitatie die dit zou kunnen verklaren? Een antwoord op deze vraag zou kunnen

worden gegeven door bijvoorbeeld Einsteins gravitatie-theorie te “quantiseren”,

maar helaas heeft deze theorie teveel technische complicaties en het is ook niet

duidelijk hoe hier de gewenste microtoestanden gëıdentificeerd kunnen worden. Er

bestaat een uitbreiding van de relativiteitstheorie die Einsteins theorie combineert

met supersymmetrie. Deze symmetrie relateert fermionen en bosonen (deeltjes

met een verschillende quantum-statistiek) hetgeen extra restricties impliceert voor

de theorie die aanleiding geven tot een beter gedrag op extreem korte afstanden.

Supersymmetrie is niet experimenteel aangetoond in de natuur, maar supergravi-

tatie is desalniettemin een geschikt theoretische model om een verklaring te zoeken

voor het bestaan van entropie van zwarte gaten.

Een ander idee is gebruik te maken van de snaartheorie. Snaartheorie verschilt

van de algemene relativiteitstheorie of van supergravitatie in die zin dat de fun-

damentele objecten in de theorie geen velden zijn, gedefinieerd op elk punt in

de ruimte-tijd, en geen puntdeeltjes beschrijven, maar kleine (de grootte orde is

ongeveer Planck lengte, 10−33 cm.) trillende snaren, waarvan de eigentrillingen

corresponderen met deeltjes. Sommige van die deeltjes corresponderen met de ele-

mentaire deeltjes die we experimenteel waarnemen, maar anderen zijn vooralsnog

niet waarneembaar met de huidige detectiemethoden. Op grote afstanden neemt

de snaartheorie de vorm aan van supergravitatie. Maar de snaartheorie kent ook

andere uitgebreide objecten, de zogenaamde branen, en het is mogelijk om een

microscopische beschrijving van zwarte gaten te geven in termen van deze branen.

Een belangrijke aanwijzing werd in 1996 gegeven door Strominger en Vafa, die erin

slaagden een microscopische beschrijving van de entropie van zwarte gaten te geven

door deze interagerende branen te beschrijven en hun beschikbare vrijheidsgraden

te onderzoeken. Het resultaat hiervan werd vergeleken met de entropie van
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zwarte gaten die voorkomen in supergravitatie, gebruikmakend van de entropie

zoals gedefinieerd door Bekenstein en Hawking. In een bepaalde limiet werd be-

wezen dat identieke resultaten konden worden verkregen, hetgeen suggereerde dat

Boltzmanns interpretatie ook van toepassing kon zijn op de Bekenstein-Hawking

entropie binnen het kader van de snaartheorie.

Inmiddels is deze relatie op verschillende manieren en in meer detail onderzocht.

Zowel de voorspellingen gebaseerd op snaartheorie als die gebaseerd op supergravi-

tatie theorieën zijn gepreciseerd en gegeneraliseerd. In dit verband wordt vaak een

wat algemenere definitie gebruikt voor de entropie in het kader van de algemene

relativiteitstheorie, die soms wordt aangeduid als de Bekenstein-Hawking-Wald-

entropie. In dat geval kunnen ook al quantum-correcties worden toegevoegd en

is de limiet van Strominger en Vafa niet langer nodig om vergelijkbare resultaten

te verkrijgen. De quantum-mechanische correcties kunnen echter nog vollediger

gëıncorporeerd worden door gebruik te maken van de zogenaamde “quantum en-

tropie”, die werd gedefinieerd door Sen in 2008 op basis van de AdS-CFT corre-

spondentie. Deze beschrijving, die wordt gebruikt in dit proefschrift, leidt tot een

“pad-integraal”: een integraal over de oneindig-dimensionale ruimte van alle mo-

gelijke veldconfiguraties in de supergravitatie theorie. Op het eerste gezicht is de

exacte berekening van zo’n integraal onmogelijk, maar er bestaan wiskundige tech-

nieken die een exacte berekening mogelijk maken onder bepaalde omstandigheden.

Met dergelijke “lokalisatie” technieken reduceert het antwoord tot een standaard

integraal over een eindig aantal variabelen, die vervolgens kan worden uitgerek-

end. Zoals aangetoond in dit proefschrift kunnen we met behulp van lokalisatie de

quantum-entropie van bepaalde zwarte gaten exact berekenen in supergravitatie.

Het resultaat kan vervolgens worden vergeleken met de microscopische voorspellin-

gen van snaartheorie op basis van de beschrijving in termen van branen. Het feit

dat de resultaten onderling in overeenstemming zijn, geeft aan dat er inderdaad

twee verschillende manieren zijn om de entropie van zwarte gaten te bepalen in

overeenstemming met de interpretatie van Boltzmann.

Dit proefschrift begint met een uitgebreide onderbouwing van de vier-dimensionale

supergravitatie theorieën die nodig zijn voor de bepaling van de quantum-entropie-

functie. Binnen deze theorieën worden supersymmetrische zwarte gaten bestudeerd

en vervolgens worden de belangrijkste ingrediënten van de lokalisatie-methode be-

sproken alvorens deze toe te passen op specifieke oplossing van zwarte gaten. In

alle gevallen die onderzocht worden is er overeenstemming met resultaten die zijn
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verkregen binnen het kader van de snaartheorie. In situaties met minder supersym-

metrie is een dergelijke overeenstemming minder vanzelfsprekend omdat oplossin-

gen met meerdere zwarte gaten kunnen bijdragen aan de entropie. Deze bijdragen

spelen een rol in zowel de supergravitatie als in de snaar-theoretische beschrijving.

Dit leidt uiteindelijk tot een interessante relatie met de wiskundige theorie van

zogenaamde mock-modulaire en Jacobi vormen.
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had the chance to meet during my time spent in St. Gotthard. It has been a great

pleasure and a humbling experience to get to know all of you over the years!

A tous les parisiens, Andréa, Benoit, Chatoune, Claire, Clémence, Cubi, Dominika,

Fanny et Fanny, Guillaume, Jeanne, Julie, Justine, Laetitia, Léo, Marguerite, Mus-

sard, Pierre-Yves, Tibo, Marta, Nil et Willy (même exilés a Londres) et Za . . . you

all know what you did. So I’ll just say this: I’m so very glad I met all of you.

Your friendship and support means the world to me.

Maybe somewhat unusually, I would like to pass my thanks and gratitude to Kiran

Sande of the Blackest Ever Black label and Oscar Powell of the Diagonal Records

label, for making what I consider to be the two best radio shows currently on the

air, on Berlin Community Radio and NTS Radio. They have provided me with an

amazing soundtrack on many a days spent working at my desk, and anyone who

knows me a little will know how important this aspect can be to me.

Lastly, but quite certainly most importantly, I want to express my deepest grati-

tude to my family for their love and support, and in particular my parents Vincent

and Claudine, and my brother and sister Nicolas and Philippine. I love you all

very much, I’m sure you already know that.

Now, thanks for reading if you’ve made it this far, but honestly, just put down this

book. Put on a record, go have a drink, and remember: everything is important.
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