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Abstract

Intervertebral disc (IVD) degeneration is associated with 
most cases of cervical and lumbar spine pathologies, 
amongst which chronic low back pain has become the 
number one cause of loss of quality-adjusted life years. In 
search of alternatives to the current less than optimal and 
usually highly invasive treatments, regenerative strategies 
are being devised, none of which has reached clinical 
practice as yet. Strategies include the use of stem cells, 
gene therapy, growth factors and biomaterial carriers. 
Biomaterial carriers are an important component in 
musculoskeletal regenerative medicine techniques. Several 
biomaterials, both from natural and synthetic origin, have 
been used for regeneration of the IVD in vitro and in 
vivo. Aspects such as ease of use, mechanical properties, 
regenerative capacity, and their applicability as carriers 
for regenerative and anti-degenerative factors determine 
their suitability for IVD regeneration. The current review 
provides an overview of the biomaterials used with respect 
to these properties, including their drawbacks. In addition, 
as biomaterial application until now appears to have been 
based on a mix of mere availability and intuition, a more 
rational design is proposed for future use of biomaterials 
for IVD regeneration. Ideally, high-throughput screening 
is used to identify optimally effective materials, or 
alternatively medium content comparative studies should 
be carried out to determine an appropriate reference 
material for future studies on novel materials.
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Introduction

The vertebral column is composed of the rigid bony 
vertebral bodies, interspersed with intervertebral discs 
(IVDs) and facet joints. It protects our spinal cord and 
supports our head, upper extremities and torso while 
providing flexibility in multiple degrees of freedom. 
The IVDs, in total making up about a third of the spinal 
column by height, enable movement of the spinal column 
and transfer the loads associated with movement. As 
non-vascular and non-synovial structures with limited 
repair capacities, the IVDs have been shown to be prone 
to cumulative damage. Chronic low back pain is strongly 
linked to lumbar IVD degeneration while radicular pain is 
associated with bulging of the posterior annulus fibrosus 
(AF) and nucleus pulposus (NP) herniation (Luoma et al., 
2000). Back pain, as a result of IVD degeneration, can start 
early in life and will affect at least 60 % of people over the 
age of 70 (Miller et al., 1988).

The healthy IVD: Functional characteristics and 
relation to tissue structure
The healthy IVD consists of a nucleus pulposus 
circumferentially surrounded by an AF and axially 
enclosed by two cartilaginous endplates (CEP) (Fig. 1). 
The NP mainly consists of proteoglycans and collagen 
type II, with a few cells interspersed in the matrix. Due 
to the presence of the highly charged proteoglycans with 
the concomitant attraction of cations, the tissue osmotic 
pressure is high. This in turn attracts water and due to the 
confinement by the AF and endplates generates hydrostatic 
pressure. When subjected to shear forces, the NP behaves 
as a viscoelastic material rather than a fluid (Iatridis et al., 
1996). The AF is a fibrocartilaginous structure consisting 
of both collagen I and II and proteoglycans, where the 
collagenous layers are alternately arranged at angles of 
about 60° and 150° to the spinal longitudinal axis around 
the NP. Together with elastin-rich layers in between the 
collagen lamellae, the AF provides tensile strength and 
the capacity to withstand disc bulging in response to 
loading (Isaacs et al., 2014). The cartilaginous endplate 
that connects the IVD to the vertebral bodies consists of 
hyaline cartilage and transfers compressive forces due 
to axial loading to the NP. It is supported by the osseous 
part of the endplate of the vertebral bodies to which the 
AF collagen fibres are anchored. As the IVD matures, the 
large cytoplasmic vesicle-rich notochordal cells inside 
the NP are replaced by the smaller chondrocyte-like cells, 
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possibly by transdifferentiation (Hunter et al., 2004; Kim 
et al., 2009; McCann et al., 2012; Purmessur et al., 2013). 
In addition, NP progenitor cells have been identified with 
mesenchymal stem cell (MSC)-like marker expression and 
multipotency, also in the degenerate IVD (Risbud et al., 
2007; Sakai et al., 2012). The AF contains fibroblast-like 
cells in its outer rim, whereas cells are more chondrocytic 
in appearance in the inner annulus.

Pathophysiology and aetiology of IVD degeneration
Intervertebral disc degeneration is characterised by several 
biochemical and morphological changes. Proteoglycans 
and collagen type II in the NP are lost and replaced 
by fibrous tissue rich in collagen type I (Fig. 1). This 
eventually leads to a reduction in hydration and a loss in 
the ability to maintain osmotic pressure. The process of 
proteoglycan loss is due to enzymatic activity by which also 
collagen and fibronectin become increasingly fragmented 
(Martin et al., 2002; Urban and Roberts, 2003). Up to 
50 % of cells in severely degenerate discs appear necrotic 
(Trout et al., 1982).
 The aetiology of IVD degeneration is still a subject of 
debate. The most commonly accepted theory is based on 
the concept that the IVD receives its nutrition from the 

cartilaginous endplate by diffusion towards the centre of 
the NP, although – controversially – diffusion or convection 
through the AF was also suggested (Cortes et al., 2014; 
Hutton et al., 2004; Urban et al., 1977; van der Veen et 
al., 2007). Occlusion of openings containing capillary 
endings in the bony endplate may reduce nutrient supply 
and oxygen saturation, affecting the pH, matrix synthesis 
and eventually cell viability inside the IVD (Urban and 
Roberts, 2003). Subsequent loss of proteoglycans results 
in a lower hydration state, leading to a reduced weight 
bearing capacity. This allows inappropriate weight and 
stress distribution across the disc, resulting in stress 
fissures in the nucleus or the AF (Adams et al., 2014). 
Another mechanism of disc degeneration may be related 
to mechanical loading. IVD degeneration is associated 
with physically demanding professions (Luoma et al., 
2000), suggesting intensive load bearing may induce 
degeneration, as supported by ex vivo experiments with 
overloading. Similarly, normal everyday loading may also 
cause lumbar IVD degeneration. This is supported by the 
observation that several polymorphisms associated with 
IVD degeneration involve genes encoding extracellular 
matrix proteins essential for the biomechanical properties 
of the IVD; amongst others, collagens (I, IX, XI), 

Fig. 1. Tools for regenerative treatments of the IVD. Upper left panel showing a healthy human disc, and on the right 
a degenerated disc. Below are depicted the main approaches towards regenerative medicine, i.e. the application of 
regenerative factors/factors inhibiting inflammation, biomaterials and exogenously added cells.
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aggrecan, hyaluronic acid synthase and also matrix 
degrading proteases including MMP-1, 2, 3 and 9 (Battie 
and Videman, 2006; Williams et al., 2012; Mayer et al., 
2013; Näkki et al., 2014). These polymorphisms may 
also act through non-mechanical pathways. However, the 
current lack of meaningful odds ratios for correlation of 
disc degeneration and polymorphisms indicates that most 
likely multiple factors are involved in this condition.

Regenerative medicine (RM) as emerging approach 
for IVD degeneration
Current treatments of lower back pain mainly aim to treat 
its symptoms. Options for treatment include physiotherapy, 
analgesia, muscle relaxants, corticosteroids and surgery 
(discectomy, disc prosthesis or spinal arthrodesis) (Jacobs 
et al., 2013). Surgical treatment is highly invasive and 
although spinal fusion may reduce pain, it does not provide 
for biological repair and preservation of motion of the 
treated segment (Etebar and Cahill, 1999). Furthermore, 
spinal fusion has been associated with degeneration of 
adjacent IVDs (Higashino et al., 2010; Radcliff et al., 
2013), although this partially may reflect the natural course 
of disc pathobiology (Helgeson et al., 2013). In terms of 
arthroplasty, no long-term effective and fully safe IVD 
substitute has been described until now (Thavaneswaran 
and Vandepeer, 2014). All in all, the current treatments are 
mere salvage treatments that are not very effective and/or 
even entail serious risks.
 Therefore, research into novel treatment strategies 
focuses on regeneration of the IVD rather than addressing 
the effects of degeneration. For this purpose, three 
different components are being employed either alone or 
in combination: growth factors, cells and biomaterials (Fig. 
1). Cells, in particular mesenchymal stromal cells (MSCs), 
and growth factors hold promise to directly regenerate IVD 
tissue by anabolic effects on the cell population and matrix 
homeostasis (Chan and Gantenbein-Ritter, 2012; Masuda, 
2008; Richardson and Hoyland, 2008; Yim et al., 2014). In 
contrast, biomaterials can have several roles. They can be 
used as structural scaffolds (Darwis et al., 2002; Ella et al., 
2005; Gloria et al., 2007; Joshi et al., 2006), improving disc 
height and mechanical stability of the vertebral segments, 
thereby correcting altered distribution of mechanical loads 

affecting cytoskeletal structure, gene transcription, and 
matrix biosynthesis (Chen et al., 2004; Iatridis et al., 1999; 
Setton and Chen, 2006). Biomaterials have also been used 
as cell carriers and release systems for active factors in 
order to achieve regeneration. Resident cells in the native 
IVD can migrate into hydrogels, providing a framework for 
regeneration by native cells (Anderson et al., 2005; Yang 
and Li, 2009). The focus of this review is to explore the 
applicability of various biomaterials in IVD regeneration, 
with a focus on the NP and AF and on biodegradable 
biomaterials, as biostable materials (materials that do not 
degrade) are often implants and prostheses rather than 
elements contributing to regeneration of the IVD.

Biomaterials for IVD regeneration

To stimulate IVD regeneration, a biomaterial ideally 
possesses many different properties. It should provide 
some degree of immediate mechanical support and its 
degradation should occur in parallel with the formation 
of new and functional tissue, without the production of 
toxic by-products (Fig. 2). It should provide a permissive 
environment for seeded cells or for resident cells migrating 
into the biomaterial, allowing for diffusion of oxygen and 
nutrients required for tissue production. Cell differentiation 
and matrix production are achieved, induced either by 
active factors included or by intrinsic properties of the 
material or its constituent polymers.
 Biomaterials are often divided into natural biomaterials 
and synthetic biopolymers, and come as hydrogels or 
solid scaffolds. Natural polymer-based biomaterials used 
include mainly hydrogels, such as chitosan, alginate, 
collagen, hyaluronan and agarose. The group of synthetic 
biomaterials comprises poly-(D,L-lactide) (PLA) and 
derivatives, polyethylene glycol (PEG), polycarbonate 
urethane (PU) and poly(epsilon-caprolactone) (PCL). 
Some of these synthetic biomaterials can serve either 
as solid scaffolds or as hydrogels. Overviews of the 
biomaterials used and their effects and properties are given 
in Tables 1, 2 and 3.

Natural hydrogels
Chitosan
Chitosan is a polysaccharide biopolymer composed of 
glucosamine and N-acetyl glucosamine units and is derived 
from partial de-acetylation of chitin (Di Martino et al., 
2005; Roughley et al., 2006). Medical applications include 
wound haemostasis and healing, based on antimicrobial 
properties as well as drug delivery capabilities (Dai et 
al., 2011; Patel et al., 2010; Pusateri et al., 2003). Both 
hydrogels and solid scaffolds can be formed from chitosan 
(Di Martino et al., 2005). Chitosan is dissolved at low 
pH, so the final hydrogel needs to be neutralised before 
application. This presents a challenge as neutralisation of 
an acidic chitosan solution causes immediate cross-linking 
of chitosan chains.
 Chitosan is degradable in vivo through lysozyme 
activity. Increasing the degree of de-acetylation prolongs 
its degradation time while enhancing cell adhesion 
(Mao et al., 2004; Di Martino et al., 2005). The cationic 

biomaterial regenerating 
tissue 

time 

fu
nc

tio
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y 

Fig. 2. Paradigm for optimal biomaterial-based 
regeneration of the IVD. Ideally, functionality of the IVD 
is maintained by biomaterial degradation occurring at the 
same speed as tissue regeneration.
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nature of chitosan facilitates interaction with anionic 
glycosaminoglycans and binding of cytokines and growth 
factors (Di Martino et al., 2005).
 However, chitosan gels tend to be much softer and 
more flexible than the native NP (Sasson et al., 2012). 
Biomechanical properties of chitosan scaffolds can be 
improved by the addition of other biomaterials, in particular 
alginate (Iwasaki et al., 2004; Li et al., 2005b) and gelatin 
(Cheng et al., 2010) without affecting cell viability 
and matrix production. A chitosan/dextran hydrogel 
implanted into human cadaveric spines and subjected to 
extensive loading did not show extrusion. Furthermore, 
Young’s modulus and Poisson’s ratio were found to be 
similar to human IVDs under unconfined compression. In 
vitro, NP cells cultured on top of the hydrogel remained 
viable and MSCs incorporated into the gel were able to 
chondrogenically differentiate as reflected by collagen 
type II and aggrecan production (Smith et al., 2014). 
Bovine NP cells cultured in chitosan scaffolds produced 
an extracellular matrix (ECM) similar to that of the native 

NP, and more so than bovine AF cells (Roughley et al., 
2006). Canine AF cells cultured in alginate/chitosan 
scaffolds formed clusters and produced collagens I, II 
and aggrecan (Shao and Hunter, 2007). The addition of 
chitosan to alginate proved to increase degradation time 
for the scaffold.
 Also, undifferentiated cells show a regenerative 
response to chitosan. Human MSCs differentiated to NP-
like cells, produced collagen type II and aggrecan and 
remained viable up to 70 % after 4 weeks in chitosan-
glycerol phosphate hydrogels (Richardson et al., 2008). 
However, compared to alginate or gelatin, chitosan was 
less chondrogenic for MSCs (Bertolo et al., 2012). Rabbit 
adipose tissue-derived MSCs differentiated towards NP-
like cells on chitosan/alginate scaffolds under hypoxic 
conditions (Zhang et al., 2014). Rabbit bone marrow-
derived MSCs injected in chitosan-glycerophosphate 
hydrogels into lumbar NP defects in vivo, remained present 
up to 12 weeks and showed chondrogenic differentiation 
and ECM production, which was further enhanced by prior 

Biomaterial Chitosan Alginate Agarose Fibrin Hyaluronan
Collagen / 

gelatin SIS
Injectable as a liquid + + + + + + -
Can harden in situ if 
injected - + + + + + -

Can provide 
mechanical support - +/- +/- +/- +/- + +

Biodegradable + + - + + + +
Degradation: residue - - + - - - -
Biocompatible: 
including cell 
seedability/migration

+ + + + + + +

Stimulation 
differentiation/ECM 
production

+ + + + + + +

Swelling - + + +/- + + +/-

Extra properties Naturally 
antimicrobial

Degradation 
not fully 

understood

Biodegradable 
only as 

mixtures

Capability 
to act as AF 

defect sealant

Table 2. Overview of characteristics of natural biomaterials used for IVD regeneration.

Biomaterial PEG PLA / PGA PU PCL
Injectable + - - -
Can harden in situ if 
injected + - - -

Can provide mechanical 
support + + + +

Biodegradable - + + +/-
Degradation: residue - - + -
Biocompatible: including 
cell seedability/migration + + + +

Stimulation differentiation/
ECM production + + + +

Swelling +/- + + -

Extra properties Biodegradable 
as mixture only

Table 3. Overview of characteristics of synthetic biomaterials used for IVD regeneration.
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Sox9 transduction (Sun et al., 2014). Unfortunately, MSCs 
were never directly compared with NP cells in terms of 
regenerative capacity in chitosan gels.
 Although chitosan is a versatile material, it must be 
used in combination with other materials to improve 
its biomechanical properties. The added value of using 
chitosan in this situation is induction of chondrogenic 
differentiation. The main drawback is that chitosan remains 
a difficult material to handle, because it forms a hydrogel 
only when dissolved in an acid.
Highlights:
• Degrades relatively slowly.
• Evidence in vivo is limited.
• Hydrogel preparation is complicated as neutralisation 

causes cross-linking.
• Chitosan is less suitable for MSC-based IVD 

regeneration than gelatin or alginate.

Alginate
Alginate (alginic acid) is a natural biopolymer derived 
from brown seaweed, generally composed of beta(1-4)-
linked D-mannuronic acid (M) and alpha(1-4) linked 
L-guluronic acid (G) moieties (Bron et al., 2011; Larsen 
and Haug, 1971). Alginate-based gels can be cross-linked 
through ionic, covalent and thermal processes. The 
latter two require modification of alginate and addition 
of thermosensitive hydrogels (Lee and Mooney, 2012; 
Nunamaker et al., 2007). Medical applications of alginate 
include local drug release and wound dressings (Lee 
and Mooney, 2012). In vivo degradation is dependent 
on the process of removing links between chains (Lee 
and Mooney, 2012). In vivo, alginate induces negligible 
immunological reactions (Leone et al., 2008; Li et al., 
2008; Nunamaker et al., 2007).
 Alginate hydrogel stiffness can be regulated by 
changing its alginate weight/volume (w/v) percentage 
(Bron et al., 2011). 2 % (w/v) alginate scaffolds resemble 
the native NP in terms of stiffness (Bron et al., 2011). 
Furthermore, 2 % alginate hydrogels cross-linked with 
0.025 M CaCl2 achieved aggregate moduli (1.2 MPa) 
similar to the native IVD (Foss et al., 2014). Alginate-based 
materials are often combined with synthetic polymers such 
as poly (epsilon-caprolactone) (PCL) or polyglycolide 
(PGA) to further enhance mechanical properties (Xu et al., 
2012). Alginate itself is often added to natural hydrogels 
for its easy to control cross-linking properties (Iwasaki et 
al., 2004; Shao and Hunter, 2007; Zhang et al., 2014).
 Photocrosslinking alginate not only improved 
mechanical characteristics but also allowed for enhanced 
ECM synthesis in vivo by pre-loaded bovine NP cells, 
when compared to non-photocrosslinked gels (Chou et 
al., 2009; Chou and Nicoll, 2009). In addition, AF, NP 
and CEP-derived stem cells were shown to proliferate and 
produce ECM in alginate hydrogels, albeit with distinct 
differences between the cell types (Melrose et al., 2001; 
Wang et al., 2014). In vivo, combination with CEP-derived 
cells resulted in better NP regeneration in a rabbit model 
of induced disc degeneration compared to AF- and NP-
derived cells (Wang et al., 2014). Further enhancement of 
NP cell differentiation and matrix production was achieved 
by adding glucosamine and chondroitin sulphate to alginate 

(Foss et al., 2014). The addition of collagen to alginate 
scaffolds not only promoted proliferation of seeded AF 
cells and MSCs in vitro, but also induced the migration of 
endogenous AF cells in vitro, although in all cases only 
collagen I and not collagen II was produced (Guillaume 
et al., 2014). Other cues enhancing regeneration and 
differentiation inside alginate gels are RGD peptides, which 
have been shown to facilitate chondrogenic differentiation 
of human MSCs (Re’em et al., 2010).
 Altogether, alginate is a very versatile material that 
shows definite promise as a scaffold for regeneration of 
especially the NP. The main drawback of using this material 
is that the mechanism of degradation in vivo is not fully 
understood yet.
Highlights:
• Alginate is easy to use and its physical and chemical 

characteristics are well described.
• It is versatile and is very well suited as a structural 

addition to almost any hydrogel blend.
• Alginate is mostly used for NP regeneration.
• The degradation pathway of alginate in vivo is unclear, 

further research should focus on determining if this 
interferes with regeneration for the NP.

Hyaluronan
Hyaluronan or hyaluronic acid (HA) is a connective 
tissue polysaccharide consisting of repetitive units of 
D-glucuronic acid and N-acetyl-D-glucosamine residues 
(Kenne et al., 2013), extensively studied for the purpose of 
tissue regeneration (Collins and Birkinshaw, 2013; Kim et 
al., 2011). Hyaluronan derivatives are clinically applied for 
drug delivery and surgical procedures (Kogan et al., 2007).
 Biodegradation of HA occurs by the action of 
hyaluronidases and degradation rate can be adjusted by 
the incorporation of methacrylate groups also used for 
photocrosslinking (Kim et al., 2011). Adjusting the w/v 
percentage of HA hydrogels or using HA with a greater 
molecular weight increases the stiffness, up to close to that 
of native NP, although it reduces the ability to withstand 
shear forces, which negatively influences hydrogel 
integrity (Chen et al., 2013). In composite hydrogels, ECM 
production can be influenced by using dynamic hydrogels, 
i.e. hydrogels changing in physicochemical properties, for 
example at a particular high w/v percentage and hence 
stiffness, which reduces over time by hydrolytic action on 
caprolactone units (Chung et al., 2009).
 For IVD regeneration with HA, mainly NP cells and 
MSCs have been studied (Chung et al., 2009; Cloyd et 
al., 2007; Collin et al., 2011; Su et al., 2010). NP cells 
retain their rounded morphology while demonstrating a 
high viability in oxidised-HA gels (Chen et al., 2013). 
Furthermore, it was demonstrated that the presence of HA 
facilitates their matrix synthesis as determined by GAG 
content (Peroglio et al., 2012). HA hydrogels are often 
mixed with other natural hydrogels such as gelatin or with 
synthetic polymers, usually polyethylene glycol (PEG) 
(Collin et al., 2011; Frith et al., 2013). The addition of 
gelatin provides viscoelastic properties (shear modulus) 
resembling the native NP, while NP cells cultured on this 
combination still show regeneration (Chen et al., 2013). 
In particular, gels containing lower molecular weight HA 
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combined with PEG were found to facilitate NP and AF 
cell proliferation (Jeong et al., 2014).
 MSCs can bind to HA through the cell surface receptor 
CD44 (Kota et al., 2014). However, although higher 
density HA hydrogels enhance ECM production and 
retention by bone marrow derived MSCs, even distribution 
of ECM throughout the construct is limited (Erickson et al., 
2009). Several animal in vivo studies have been performed, 
each demonstrating that the injection of MSCs with HA 
into degenerate discs stimulates some regeneration as 
measured by restoration of disc height (Crevensten et al., 
2004; Ganey et al., 2009; Ghosh et al., 2012).
 HA is an interesting material for IVD regeneration 
because it is an integral part of the native IVD. Its main 
setbacks are the differential effects of molecular weight 
and the choice of biomaterial to be combined with. Higher 
molecular weight HA resembles the IVD mechanically but 
inhibits cell function, which benefits from lower molecular 
weight formulations.
Highlights:
• Hyaluronic acid is a very versatile biomaterial, is 

biocompatible and relatively easy to handle.
• Its chemical structure allows for adhesion of many 

different cell types examined for IVD regeneration.
• HA as scaffold shows great potential for NP regeneration.
• Depending on its molecular weight, HA may also be 

a good additive to synthetic hydrogels to stimulate 
ECM formation.

Collagen and gelatin
Collagen is one of the most abundant proteins found in the 
human body, making up about one third of our total protein 
weight (Ferreira et al., 2012). Gelatin is a material derived 
from animal collagen usually through thermal denaturation. 
Both are biodegradable and their degradation results in 
non-toxic by-products (Huang et al., 2005; Lee et al., 
2001; Nicodemus and Bryant, 2008). Current medical uses 
include applications in plastic and reconstructive surgery 
and as a vehicle for drug delivery (Ferreira et al., 2012). 
Collagen type I as a hydrogel is also investigated for bone 
and soft tissue regeneration (Badylak et al., 2009; Bron et 
al., 2012; Cen et al., 2008; Ferreira et al., 2012).
 Collagen I hydrogels can attain rheological properties 
resembling the native NP when compressed (Bron et al., 
2009). When implanted inside damaged ex vivo bovine 
IVDs, the collagen matrix was able to restore disc height 
and mechanical behaviour of the spinal segment. The main 
issue reported is implant extrusion (Wilke et al., 2006). 
Hydrogel stiffness can be adjusted by changing the w/v 
percentage (Bron et al., 2009). Native caprine NP and 
AF cells successfully migrated into 3.0 % collagen type I 
scaffolds, which was dependent on collagen digestion by 
the migrating cells (Bron et al., 2012). Human adipose-
derived stromal cells seeded on elastin-glycosaminoglycan-
collagen I composite hydrogels attained an NP-like 
morphology (Mercuri et al., 2014). Gelatin, mostly derived 
from collagen I, is often used in composite hydrogels to 
improve biomechanical properties. Addition of gelatin to 
HA improves viscoelastic properties (Chen et al., 2013; 
Malhotra et al., 2012). Similarly, addition of gelatin to 
chitosan hydrogels improved rheological properties and 

left cell viability unaffected (Cheng et al., 2010). Addition 
to agar hydrogels increased equilibrium elastic behaviour 
to that of the native NP, due to enhanced osmotic swelling 
(Strange and Oyen, 2012). The addition of gelatin to other 
hydrogels not only influences the mechanical properties but 
also has the ability to improve the microenvironment for 
NP cells, because gelatin, like collagen, contains regions 
that allow for cell attachment e.g. RGD motifs (Chen et 
al., 2013).
 In vivo, gelatin-based hydrogels could suppress the 
progression of IVD degeneration in a rabbit model of 
NP aspiration (Nagae et al., 2007). Also, the injection 
of cell-free gelatin-based microspheres into a rabbit disc 
degeneration model showed less apoptosis in the NP than 
IVDs without this treatment (Sawamura et al., 2009).
 In conclusion, collagen and gelatin hydrogels, much 
like HA, are interesting because they form an integral part 
of the ECM, thereby improving cell adhesion. Collagen 
hydrogels can prove difficult to work with, because they 
easily denature at temperatures above 37 °C (Ferreira et 
al., 2012). They can be blended into other hydrogels in 
different forms, so as to enhance the drug/growth factor 
release profiles as well as enhance the compatibility of a 
composite hydrogel.
Highlights:
• Gelatin/collagen is one of the best-understood natural 

biomaterials.
• Mechanical properties are well understood.
• Currently widely examined for other RM purposes and 

controlled release strategies.
• A good addition to any hydrogel blend for its structural 

and cell binding properties.
• Promising for NP regeneration.
• Further research should focus on studying this material 

in vivo.

Agarose
Agarose is a polysaccharide derived from algae and 
composed of monomer agarobiose units consisting of 
one D-galactose and one 3,6-anhydro-L-galactopyranose. 
Agarose gels when mixed with water provide a 
3-dimensional helical structure (Gruber et al., 2006). 
Agarose by itself is non-degradable in vivo. Composites 
containing agarose degrade by degradation of the added 
hydrogel components, resulting in fragmentation of 
agarose over time. Therefore, complete degradation is 
not guaranteed (Hunt and Grover, 2010). Degradation 
time is controllable by changing composite component 
concentrations. None to mild immunological responses 
were noted in vivo in subchondral cartilage defects (Gupta 
et al., 2014). Human AF cells cultured in agarose produced 
more GAGs than in collagen sponges but proliferated less. 
To what extent collagen sponges can be considered truly 
3D is unclear; however, as in sponges with large pores, 
cells may not be surrounded by the biomaterial but rather 
are attached to the pore surfaces (Gruber et al., 2006). 
Agarose, in combination with a synthetic electrospun 
polymer, mimicked the IVD in compression and torsion 
tests, with agarose as NP and the electrospun polymer as AF 
(Nerurkar et al., 2010). MSCs seeded on these composite 
structures produced ECM components (Lazebnik et al., 
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2011; Nerurkar et al., 2010). Bovine NP cells cultured 
in agarose hydrogels infused with transforming growth 
factor-beta (TGF-β) were capable of responding to cyclical 
compressive loading with increased matrix synthesis and 
gene expression (Tilwani et al., 2012).
 Research groups are combining agarose into natural/
synthetic composite scaffolds to allow more comprehensive 
mechanical testing of NP-AF analogues. Agarose 
hydrogels singularly may not suffice for regeneration of 
the IVD, but it holds promise as a structural component to 
other hydrogel formulations.
Highlights:
• Particularly interesting for NP regeneration as structural 

component for hydrogel blends.
• It is a relatively difficult material to work with, as it 

remains liquid only at high temperatures.
• As a single hydrogel, it has limited use, especially since 

it is non-degradable in vivo.

Fibrin
Fibrin is a protein associated with the blood coagulation 
pathway. It is used in medicine as a sealant. Fibrin is 
biocompatible and non-immunogenic (Ahmed et al., 
2008). Physical scaffold characteristics can be adjusted 
by adjusting the concentration of Ca2+, fibrinogen and 
thrombin. Fibrinogen concentrations above 25 mg/
mL combined with Ca2+ 20 mmol/L produced hydrogel 
constructs that remained stable for up to 3 weeks (Eyrich 
et al., 2007). Fibrin is often combined with other materials 
such as silk, HA or PGA (Colombini et al., 2014; Hegewald 
et al., 2010; Park et al., 2011b; Stern et al., 2004). The 
addition of silk-fibroin to fibrin/HA hydrogels provides 
greater mechanical strength than fibrin/HA hydrogels alone 
while preventing shrinkage in vivo (Park et al., 2011b). 
In fibrin/HA hydrogels, porcine NP cells showed more 
proliferation and proteoglycan production compared to 
alginate culture (Stern et al., 2000). Fibrin/HA cultured 
with bovine NP cells and injected in a nucleotomy defect in 
organ culture, demonstrated better integration with native 
NP tissue compared to fibrin hydrogels without the addition 
of HA, while restoring disc height, with a compressive 
stiffness similar to native NP levels (Li et al., 2014).
 Fibrin/genipin based hydrogels have been tested 
as adhesives for AF repair. Genipin is an aglycone 
derived from the Gardenia fruit with excellent cross-
linking properties at low toxicity (Sung et al., 1999). A 
combination of fibrin/genipin hydrogels improved in vivo 
hydrogel longevity compared to fibrin-only hydrogel 
scaffolds in a subcutaneous model in rats (Likhitpanichkul 
et al., 2014). In a bovine ex vivo AF defect model, 
fibrin/genipin hydrogels prevented disc height loss and 
remained integrated after more than 10,000 cycles of 
loading (Likhitpanichkul et al., 2014). Furthermore, it was 
demonstrated that AF cells remained viable and migrated 
into fibrin/genipin hydrogels (Likhitpanichkul et al., 
2014; Schek et al., 2011). Fibrin hydrogels functionalised 
with TGF-β stimulated human MSCs (hMSC) to undergo 
chondrogenesis, although soluble TGF-β resulted in a 
more profound induction of regeneration (Diederichs et 
al., 2012). A fibrin/alginate blend of 40:8 w/w was able to 
promote MSC proliferation as well as GAG and collagen 

type II production while combining physical characteristics 
of alginate and fibrin hydrogels (Ma et al., 2012). The main 
problem reported was formation of islands of alginate in 
the fibrin hydrogel. Moreover, at a w/w% content of 0.6 or 
above, alginate interfered with chondrogenesis (Ho et al., 
2010). Fibrin injected in solid poly(trimethylene carbonate) 
scaffolds as repair strategy in an ex vivo annulus defect 
model, resulted in GAG deposition after 14 days of culture. 
However, this appeared independent of the incorporated 
MSCs (Pirvu et al., 2015).
 In vivo fibrin was tested as a cell carrier for IVD 
regeneration in a mini-pig needle nucleotomy model. 
Chondrocytes proved to be more effective in restoring 
disc height and matrix production than MSCs or cell free 
controls (Acosta et al., 2011).
 Fibrin is a promising biomaterial for use as a cellular 
scaffold. It has excellent biocompatibility, combined with 
the ability to stimulate chondrogenesis. Fibrin can be 
considered for any blend of hydrogels for intervertebral 
disc regeneration. The main associated drawback is that 
fibrin is readily degraded by enzymatic action in vivo; 
cross-linking, however, can overcome this challenge. 
Despite the widespread use of fibrin in medical practice, 
there are as yet no on-going clinical trials using fibrin as 
a basis for IVD regeneration.
Highlights:
• Fibrin shows excellent promise as a cellular scaffold 

whereby extensive ECM production can be achieved 
by a wide variety of cell types.

• It has excellent biocompatibility.
• Fast degradation in vivo; requires modification for in 

vivo use for extended periods of time. 
• Fibrin can be used for both AF and NP regeneration.
• Further research into understanding the biomechanical 

properties should be performed.

Synthetic hydrogels
Synthetic hydrogels are mainly based on polymer 
networks that can absorb large amounts of water. They are 
characterised by their ease of modification. In addition, 
self-assembling peptide hydrogels have been a recent 
focus of attention (Loo et al., 2012); however, as only 
two publications have described their application for NP 
incorporation (Tao et al., 2014; Wang et al., 2012), these 
are not further discussed.

Polyethylene glycol
Polyethylene glycol (PEG) is a synthetic polyether that 
is manufactured through the polymerisation of ethylene 
glycol and carries the molecular formula C2nH4n+2On+1. In 
medical practice, it forms the basis for laxatives, due to 
its induction of water absorption, which also makes it an 
interesting biomaterial for NP regeneration. Like many 
other hydrogels, PEG is the subject of research in the field 
of controlled drug delivery (Ashley et al., 2013; Lin and 
Anseth, 2009). Although PEG-based hydrogels exhibit a 
similar range of biomechanical properties (compression 
modulus, tensile strength and hydrostatic swelling) as 
articular cartilage (Nguyen et al., 2012), it is rarely used 
for RM research as a stand-alone hydrogel as they are 
non-cell adhesive (Zhu, 2010). Therefore PEG hydrogels 
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for RM goals should be functionalised with cell adhesive 
peptides such as RGD sequences (Benoit and Anseth, 
2005; Hern and Hubbell, 1998) or mixed with hydrogels 
that do allow for adhesion (Collin et al., 2011; Drira and 
Yadavalli, 2013; Zhu, 2010).
 Biodegradation of PEG-based gels can be achieved 
through the addition of synthetic or natural components 
such as polylactide or enzyme-sensitive peptides (Raeber 
et al., 2005; Zhu, 2010). This approach is particularly 
useful for photopolymerised hydrogels, where cross-
linking typically reduces biodegradation. Porcine NP cells 
encapsulated in laminin-functionalised PEG hydrogels 
(Francisco et al., 2014) produced collagen and GAGs, 
which was enhanced in the softer PEG-laminin hydrogels 
compared to PEG-only hydrogels. Recently, a new PEG-
based gel covalently linked to serum albumin and mixed 
with high molecular weight HA has come close to clinical 
application. The gel, which has anti-angiogenic properties 
in vitro and in vivo, showed an increased expression of 
collagen II and aggrecan in cells isolated from human 
IVD tissue harvested in the course of spinal fusion surgery 
(Benz et al., 2012a; Scholz et al., 2010). In this hydrogel, 
cartilaginous matrix production was not only found in 
vitro, but also after subcutaneous implantation in immune 
deficient mice, with most matrix formation around cells of 
human origin (Benz et al., 2012a). However, application of 
a gel-IVD cell construct in a sheep model of nucleotomy-
induced IVD degeneration could not provide information 
on the capacity of the gel to mitigate disc degeneration, as 
all IVDs healed spontaneously, but no adverse effects of 
gel administration were found either (Benz et al., 2012b). 
Despite a lack of clear evidence for disc regeneration in 
vivo, a randomised clinical trial was initiated for patients 
with disc herniation (Web ref. 1).
 PEG hydrogels are promising candidates for IVD 
regeneration because of their proven ease in use and 
adjustability. Furthermore, PEG hydrogels could be 
considered as additions to any hydrogel formulation. 
Highlights:
• Easy to synthesise and adjust for RM purposes, 

especially for NP regeneration.
• Biomechanical properties are conducive for IVD 

regeneration.
• There are no attachment motifs for cells; therefore, 

functionalisation or blending is required.
• Can be useful as an addition to any hydrogel blend.
• Further research should focus on modifying PEG 

hydrogels for cell attachment.

Polyurethane
Polyurethanes or polycarbonate urethanes (PU) are 
materials normally used to produce hard plastics for 
applications such as electrical circuit housings. They 
have, however, been widely used in the medical world 
for years where they form the basis for vascular grafts 
(Santerre et al., 2005; Tiwari et al., 2002). Current research 
focuses on PU scaffolds for cartilage repair (Hung et al., 
2014; van Tienen et al., 2009). PU and its derivatives are 
generally biodegradable, in vivo degrading to water and 
carbon dioxide (Santerre et al., 2005; Yang et al., 2009). 
These by-products do not affect the local pH as much as 

poly(lactide-co-glycolide), reducing negative effects on 
the microenvironment (Yang et al., 2009). Biomechanical 
functionality appears to be promising, as PU hydrogels 
injected in human cadaveric spines could withstand 
loading compression (Dahl et al., 2010). The PU hydrogel 
translated compression forces to the AF in a similar fashion 
as the native NP.
 Various PU composite scaffolds have been created, 
with PU/silk fibroin (SF) hydrogels as the main example 
(Hu et al., 2012; Park et al., 2013). The addition of silk 
to PU scaffolds provides control over the degradation rate 
and mechanical properties. PU/SF scaffolds were used to 
replace the NP in cadaveric porcine spines by injection 
into the NP cavity (Hu et al., 2012). To scaffolds made 
of electrospun PU, AF cells attached and produced ECM 
components (Yeganegi et al., 2010; Attia et al., 2011). The 
addition of fibrin or fibronectin as cell attachment proteins 
further improved cell attachment to PU scaffolds (Mauth 
et al., 2009, Yeganegi et al., 2010). Furthermore, rabbit 
BMSCs proved to remain viable when seeded in a PU/SF 
hydrogel and produced extensive ECM.
 PU-based scaffolds hold promise for IVD regenerative 
strategies mainly due to their ease of use and the excellent 
track record with biocompatibility in medicine and medical 
research. The disadvantage of PU as a scaffold is mainly 
that very little research into NP cell and PU scaffold 
interaction has been conducted.
Highlights:
• PU scaffolds are highly biocompatible and easy to 

manufacture in different forms (gels and electrospun 
scaffolds). 

• The PU/SF composite has shown promise as a scaffold 
for NP and electrospun PU for AF regeneration.

• Only few data are available on the response of NP 
cells to PU.

Natural-based solid biomaterials
Solid biodegradable scaffolds are usually preformed 
before implantation. They can have many of the same 
characteristics of hydrogels and function in a similar 
way. They are, however, not injectable through a needle, 
but may still be used in minimally invasive surgery. The 
advantage of using solid scaffolds over hydrogels is that 
mechanical properties are generally easier to control and 
better mechanical support can be provided. Among the 
natural-based solid scaffolds, small intestinal submucosa 
has been investigated most intensively. In addition, in vitro 
regenerative capacities for AF and NP cells were shown 
of silk-based scaffolds (Chang et al., 2010; Zeng et al., 
2014; Park et al., 2012), which due to the limited number 
of studies are not further described.

Small intestinal submucosa
Small intestinal submucosa (SIS) is derived from the – 
usually porcine – intestine. It is currently investigated 
for oesophageal reconstructive surgery and regenerative 
restoration of soft tissue and tendon defects (Badylak et 
al., 1995; Dejardin et al., 2001; Jonsson et al., 2011; Tan 
et al., 2012).
 SIS contains growth factors such as TGF-β (Le Visage 
et al., 2006). In vitro, SIS scaffolds provided suitable 
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environments for AF and NP cells to produce ECM (Le 
Visage et al., 2006). Although an organised regenerated 
structure failed to be produced upon application of a SIS 
scaffold after box annulotomy in sheep, the scaffold did 
increase the hydration state of the annulus fibrosus and 
improved mechanical functionality (Ledet et al., 2009). 
Biomechanical properties could be further improved by 
combination with poly(lactide-co-glycolide) (PLGA); this 
combination also resulted in greater NP cell adhesion and 
ECM production in the composite scaffold (Kim et al., 
2014b).
 SIS is a material that needs further research to 
determine whether it can be used successfully in vivo for 
the regeneration of the IVD. However, the main concern 
with using decellularised animal matrices is the potential 
transfer of disease and immunogenicity.
Highlights:
• An ill-defined material that may show promise as a 

cellular scaffold, in particular for annulus repair.

Synthetic solid biomaterials
There are several synthetic materials that can be used in 
preformed solid scaffold configuration. Although there only 
are a few options, they are important to discuss because 
they hold great promise. 

Poly(lactide/glycolide)
Polylactide (PLA) and polyglycolide (PGA) are synthetic 
polymers with the respective chemical formulae (C3H4O2)n 
and (C2H2O2)n. Several different formulations of PLA have 
been used: poly(L-lactide) (PLLA)and poly(D,L-lactide) 
(PDLLA) which is a racemic mixture, while PGA is not 
racemically structured. However, a composite of PLA and 
PGA termed poly(lactide-co-glycolide) (PLGA) appears 
most interesting for RM. Osteoblasts adhered better 
to PLGA scaffolds than single PLA or PGA scaffolds, 
probably due to better cell adhesion properties of the 
composite scaffolds (El-Amin et al., 2003). Degradation 
of PLGA, through hydrolysis of ester linkages, results 
in the production of lactic and glycolic acids which are 
naturally present in the human body and hence non-toxic 
(Danhier et al., 2012), although ensuing local acidification 
may be harmful (Agrawal and Athanasiou, 1996; Ding 
and Schwendeman, 2008). PLGA has Food and Drug 
Administration (FDA) approval for use in the human body 
for controlled drug release applications, where it is also the 
subject of much research (Lai et al., 2014). However, very 
little biomechanical data are available on PLGA scaffolds 
used for IVD regeneration.
 Also, NP cells seeded on PLGA scaffolds and 
subcutaneously implanted in mice produced extensive 
ECM in scaffolds with small pores (90-250 µm) (Kim 
et al., 2014a). In vitro, adipose-derived stem cells have 
been shown to initiate chondrogenesis when seeded on 
PLGA scaffolds as measured through collagen type II 
expression. Upon implantation into pouches in nude mice, 
chondrogenesis was reflected by mRNA for collagen type 
II, aggrecan and other chondrogenic genes (Mehlhorn et al., 
2009). PLGA constructs seeded with NP cells and inserted 
into the IVD of beagle dogs maintained disc height better 

than no implant or PLGA constructs alone (Ruan et al., 
2010), although in a rabbit model of disc degeneration, cell-
free scaffolds showed migration of cells and chondrogenic 
matrix production after 12 months (Endres et al., 2010). 
PLGA microsphere scaffolds seeded with adipose-derived 
stem cells were able to partially regenerate the IVD in rats 
after 24 weeks, where the addition of cells over cell-free 
scaffolds demonstrated a clear added value (Liang et al., 
2013).
 PLGA scaffolds are interesting because they have 
excellent biocompatibility and are widely studied as drug 
release systems, which has added value for any IVD 
regenerative implant.
Highlights:
• PLA, PGA and PLGA have good biocompatibility.
• PLGA shows promise for NP regeneration, but AF 

regeneration was not studied.
• PLGA could be used for combining drug delivery with 

regeneration.
• Further research should focus on biomechanical 

properties relevant for IVD regeneration.

Poly(-ε-caprolactone)
Poly(epsilon-caprolactone) (PCL) is a synthetic polyester 
produced through the polymerisation of ε-caprolactone 
(C6H10O2). PCL is biodegraded through hydrolysis of the 
ester linkages, but degradation takes months to years, far 
slower when compared to other materials such as PLGA. 
The degradation time can be reduced by the addition of 
poly(vinylalcohol) (PVA) or PGA into the polymer chain 
(Dash and Konkimalla, 2012; Sinha et al., 2004). PCL is 
approved for use in the human body by the FDA and as such 
has been part of various medical applications for years, 
such as medical sutures. PCL has currently undergone a 
resurgence in research for the purpose of controlled drug 
release (Agrawal and Ray, 2001; Dash and Konkimalla, 
2012; Silva et al., 2007).
 PCL is interesting for regeneration of the AF because 
electrospun PCL fibres can mimic an AF fibre structural 
alignment (Koepsell et al., 2011b). It was shown that 
organised alignment by electrospinning induces ECM 
production by porcine AF cells on PCL scaffolds (Koepsell 
et al., 2011a). PCL was previously demonstrated to be a 
good carrier of human bone marrow derived MSCs (Li et 
al., 2005a), when cultured in 3D for 21 days extensively 
produced chondrogenic ECM. PCL as part of a whole 
IVD replacement scaffold was shown to hold promise for 
regeneration of the IVD (Martin et al., 2014).
 PCL-based scaffolds usually have to be pre-shaped 
before implantation, but the addition of other synthetic 
scaffold materials allows the production of injectable 
hydrogels together with PCL. The addition of PCL into a 
synthetic hydrogel also allows the hydrogel to function as 
scaffold for the longer term (Lopez et al., 2010).
Highlights:
• PCL is an FDA-approved material for use in the human 

body.
• Holds promise as an AF regeneration component due 

to its high tensile strength.
• Little use for this material as a NP structural component.
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• Can be used as hydrogel in combination only or as a 
material to reinforce hydrogel structures.

• In vivo tests with PCL as part of a composite disc-like 
structure for whole IVD replacement/regeneration.

Biomaterials as sustained delivery agents in IVD 
regeneration

In addition to their role in supporting native or exogenously 
added cells, scaffolds, either solid or hydrogel-based, can 
be used for the delivery of cues required for regeneration. 
Several bioactive substances have been incorporated 
into delivery systems for IVD regeneration, including 
regenerative factors, such as growth factors and hormones, 
but also anti-oxidant and anti-inflammatory factors 
targeting mechanisms of cell senescence and matrix 
catabolism. Thus far, mostly nano- and microstructured 
injectable biomaterials have been used to achieve sustained 
release and are also discussed here, although they do not 
have a biomechanical nor intrinsic regenerative role in this 
type of application. For a general overview of materials 
for potential use as delivery vehicles, readers are referred 
to (Blanquer et al., 2012).

Natural hydrogels
In the degenerated IVD, apoptosis and senescence related 
to reactive oxygen species (ROS) production rises with 
increasing degeneration (Heathfield et al., 2008). Ferulic 
acid, a strong anti-oxidant, loaded onto an injectable 
thermosensitive chitosan/gelatin/glycerol phosphate 
hydrogel was shown in vitro to decrease hydrogen 
peroxide-induced oxidative stress of NP cells and reduce 
the levels of cell apoptosis. Moreover, sustained release 
of ferulic acid resulted in matrix anabolism, at the gene 
and protein level (Cheng et al., 2011; Cheng et al., 2013).
 Biodegradable gelatin hydrogel microspheres 
impregnated with several poly-ionic growth factors 
released bioactive factors in a sustained fashion (Tabata et 
al., 1999) and upon impregnation with platelet-rich plasma 
(PRP), have been shown to inhibit IVD degeneration 
in vivo in a rabbit model of induced IVD degeneration 
(Nagae et al., 2007). Partial prevention of IVD height 
loss, increased gene expression levels of proteoglycan 
core protein and type II collagen, and a lower number of 
apoptotic cells compared to microsphere-only controls 
was noted. As this study was performed in a rabbit model 
with very mild IVD degeneration, additional studies are 
required to show proof of concept in moderate to severe 
IVD degeneration.
 The release of chemokines to attract endogenous stem 
cells was shown as a promising alternative approach 
towards regeneration, as demonstrated by the enhanced 
attraction of MSCs by injection of stromal cell-derived 
factor-1 (SDF-1)-loaded HA hydrogels in an ex vivo 
nucleotomy model, with a clear added value over SDF-1 
injected directly (Pereira et al., 2014).

Synthetic hydrogels
Intra-discal injection of a poly-N-isopropylacrylamide 
(pNIPAAM)-LDH-based hydrogel releasing celecoxib to 

specifically inhibit cyclooxygenase-2 (COX-2) activity 
showed a constant, albeit minor reduction of inflammation 
in a canine model of spontaneous IVD degeneration (Fig. 
3; Willems et al., 2015). The minor effect may have been 
related to the limited degeneration grade in this model. 
As this gel was proven to be suitable for delivery and 
transfection of siRNA, very specific inhibition of various 
other factors through RNAi-mediated gene silencing is 
also envisaged (Willems et al., 2015).

Solid synthetic biomaterials 
Various studies were performed using PLGA as delivery 
system. Nanostructured composites of PLGA microspheres 
loaded with dexamethasone and FGF-embedded 
heparin/poly(l-lysine) nanoparticles effectively induced 
chondrogenic differentiation of MSCs seeded on the 
microspheres (Liang et al., 2012). In vivo, in a rat model 
of puncture-induced IVD degeneration, adipose-derived 
stem cells were seeded on a similar drug delivery system 
of PLGA microspheres loaded with dexamethasone 
and TGF-β3, with a release for at least 28 d in vitro. At 
24-weeks follow up, IVDs treated with the delivery system 
alone and the delivery system seeded with cells, regained 
height and restored proteoglycan content compared to 
untreated controls, although not to the levels of healthy 
controls (Liang et al., 2013). Likewise, PLGA microspheres 
releasing growth differentiation factor 5 (GDF-5) over the 
course of 42 days improved IVD height, GAG and DNA 
content of treated discs compared to punctured untreated 

Fig. 3. Inhibition of PGE2 production by hydrogel-
mediated controlled release of celecoxib in a canine 
model of spontaneous disc degeneration. A PNIPAAM-
based thermoreversible hydrogel was loaded with 
celecoxib (gel+CxB) and injected in a canine model of 
spontaneous disc degeneration. Controls were unloaded 
gel (gel), sham injection (sham), and CxB alone (CxB 
bolus).
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IVDs in a rat tail degeneration model (Yan et al., 2013). 
However, no single intra-discal application of growth 
factors was included as comparator in these studies.
 Release of interleukin-1 receptor antagonist (IL-1ra) 
from PLGA microspheres was shown to attenuate the 
degradation induced by IL-1β in agarose-bovine NP cell 
constructs. The inhibitory effects on inflammation were 
most obvious during the first week of culture. Strikingly, 
although beyond 3 days of release proteoglycan content 
was not restored further, the biomechanical properties of 
the constructs were restored to control levels (Gorth et al., 
2012).
 Altogether, it appears that the concept of employing 
biomaterials for the sustained delivery of agents in IVD 
regeneration is just emerging. However, local prolonged 
exposure to factors modulating regeneration and 
degeneration holds great promise by reduction of systemic 
side effects and increasing effectivity.

Towards rational design of biomaterials for IVD 
regeneration

The response of cells to biomaterials depends on a complex 
set of chemical, physicochemical and physical parameters 
(Fig. 4). Understanding the intrinsic effects of biomaterials 
on incorporated cells and addressing these in focussed 
biomaterial studies is likely to enhance the search for the 
most effective material.

Extracellular matrix-cell interaction
Mesenchymal cell attachment to its surrounding material 
strongly affects its behaviour. Most of this attachment will 
be mediated by the ECM binding integrins present on the 
cell surface. The ECM motifs are either provided directly 
by the material used (gelatin, collagen, fibronectin), by 
serum adhesion proteins (Kobayashi et al., 2005; Yang et 
al., 2013; Dodo et al., 2013), or early deposition of ECM 
by the cells themselves (Pearlstein et al., 1980; Desai et 

Fig. 4. Scaffold characteristics determining cell behaviour and tissue regeneration. Biomaterial properties affect cell 
behaviour through various mechanisms, thereby determining the differentiation pathways chosen and the proliferative 
response.
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al., 2014; Jin et al., 2007; Sharma et al., 2012; Xu et al., 
2013). Integrin-mediated cell-matrix binding not only 
affects chondrogenic cell survival and proliferation in vitro 
and in vivo (Gilchrist et al., 2007; Loeser, 2014), but is also 
involved in cell differentiation by regulating the response 
to materials with different mechanical properties. High 
stiffness results in osteogenesis by MSCs (Huebsch et al., 
2010), most likely through the availability of ECM binding 
sites (Trappmann et al., 2012) and a process involving 
stress fibre formation. Inhibition of this pathway favours 
adipogenic or chondrogenic differentiation (Dupont et al., 
2011; Khetan et al., 2013; McBeath et al., 2004; Xu et al., 
2014), probably co-regulated by growth factor signalling 
(Park et al., 2011a). In addition to integrin receptors, 
several other cell-material receptors have been described, 
of which the hyaluronic acid receptor CD44 also appears 
to mediate chondrogenic differentiation and regeneration 
by hMSCs (Bian et al., 2013; Wu et al., 2013), although 
HA binding appears not to be involved in sensing stiffness 
(Khetan et al., 2013). Toll like receptor (TLR) signalling, 
originally identified in immune cells, may affect MSC and 
chondrocyte behaviour by enhancing cytokine production 
(Shokouhi et al., 2010; Campo et al., 2012; Sillat et al., 
2013; Tsuchida et al., 2013), although the ensuing effect 
on regeneration was not studied yet.

Hypoxia, porosity and fixed charge density
In terms of physical and physicochemical properties 
affecting cell behaviour, hypoxia is known to enhance 
chondrocyte redifferentiation through hypoxia-inducible 
factor 1alpha (HIF1α) expression and GAG deposition 
by MSCs (Duval et al., 2009; Buckley et al., 2012). Fixed 
charge density has been shown to above neutral values 
inhibit chondrocyte redifferentiation on top of hydrogels 
(Yang et al., 2010).

Towards efficient biomaterial design
All in all many biomaterial-related properties are known 
to affect the cell response, of which many cannot be fully 
dissected from each other. Porosity will for example 
simultaneously affect hypoxia, nutrient diffusion, and 
attachment and stress fibre formation. The relative 
contribution of these properties in determining cell 
behaviour is unclear and will in addition depend on cell 
type. It should also be borne in mind that crosslinking of 
natural biomaterials, such as methacrylation of HA or cross-
linking of gelatin, to enhance biomechanical properties 
may compromise degradability and biocompatibility.
 A promising approach towards efficient design of 
materials for IVD cell regeneration may entail the use 
of biomaterial arrays. 3D high throughput arrays of over 
1000 different biomaterials have been applied to study 
proliferation and differentiation, until now mainly of 
MSCs and preosteoblasts (Dolahatshai-Pirouz 2014; 
Chatterjee 2010). Biomaterial arrays not only can be used 
to determine the optimal response, in a widely varying 
array of biomaterials, but also in arrays of very similar 
polymers to determine essential chemical characteristics. 
Testing of material blends is also most likely possible, 
though not undertaken as yet. In addition to measuring 

cell differentiation and proliferation, the readout of 
biomaterial screens can also be biomechanical (Tweedie et 
al., 2005), which will be crucial as the type and magnitude 
of biomechanical input to the cell-biomaterial construct, in 
particular the relation between hydrostatic and shear stress, 
will affect differentiation (Carter et al., 2004; Neidlinger-
Wilke et al., 2009). Final identification of biomaterials or 
their physicochemical characteristics as regenerative will 
be achieved by automated multifactorial analysis of the 
results.
 Although the design of these arrays will be a task for 
skilled engineers, defining the readout parameters and 
using the right cell type will be the responsibility of the 
IVD biologist. Here, a key challenge may lie in outlining 
IVD cell differentiation and regeneration, which until 
now has mostly been defined in terms of chondrogenic 
ECM production, which in particular will not distinguish 
between cartilage and nucleus pulposus tissue. Recently, a 
consensus paper was published defining the healthy NP cell 
by several protein markers and functional characteristics 
(Risbud et al., 2015). As hardly any of these markers are 
present both exclusively and exhaustively in all NP cells, 
the ratio of aggrecan/collagen II may possibly be the most 
reliable parameter to relatively easily and safely define 
NP-like regeneration. This ratio has been shown to be 
always above 5:1 in the NP, even around 25:1 in healthy 
tissue, whereas for cartilage this never exceeds 3:1. Other 
screen readouts, for some of which other cell types will 
be used, may be anti-inflammatory, anti-angiogenic and 
anti-neurogenic properties, given the suggested association 
between low back pain and nerve ingrowth towards 
the centre of the NP. Finally, as different stages of IVD 
degeneration may require different types of biomaterials, 
the use of cells from different degeneration stages in the 
biomaterial screens will be required.
 Importantly, in the course of validation, ex vivo and 
in vivo models in different stages of degeneration will 
be a prerequisite to match biomaterials to degeneration 
grade. In addition to the medium-throughput screening 
of in vivo biocompatibility already available (Oliveira et 
al., 2014) further validation in ex vivo IVD organ culture 
models, preferably of clinically relevant sizes, may allow 
for standardised and reliable testing before finally using 
in vivo models (Hudson et al., 2013).

Concluding Remarks

In the 21st century, regenerative medicine will become 
one of the most important strategies of treating disease in 
general and IVD degeneration in particular. Biomaterials 
may serve a crucial role in this approach because they 
provide immediate mechanical support and instruct cells 
in the IVD to differentiate and produce new extracellular 
matrix.
 The advantages of natural materials include established 
degradation pathways, biocompatibility and safety. In 
general, they provide more favourable environments 
for cell proliferation and regeneration. However, the 
material properties of natural polymers are difficult to 
control, and the manufacturing processes are expensive 



223 www.ecmjournal.org

EM Schutgens et al.                                                                             Biomaterials for intervertebral disc regeneration

for recombinant proteins, or are based on animal tissues, 
with concomitant regulatory issues. Synthetic biomaterials 
allow for easy and reproducible manufacturing, while their 
chemical properties are simpler to adjust. However, the by-
products of degradation are in some cases harmful and the 
interaction with cells often limited. In practice, most of the 
materials mentioned have been tested in mixtures, because 
this allows blending of properties from each material, 
thereby improving biodegradability, biocompatibility or 
biomechanical functionality.
 On the whole, the application of biomaterials for 
regeneration of the IVD appears, until now, to have been 
mainly directed by intuition and/or mere availability. This 
has likely not enhanced progress in this area, as illustrated 
by the fact that, to date, only one hydrogel has made it 
into a clinical trial. Advancement of the field towards 
more effective design of biomaterials may be provided 
by high throughput screening of biomaterials, in which 
several characteristics of biomaterials are related to their 
regenerative effects. However, as this will likely involve 
a substantial lag time in development, an alternative route 
may possibly lie in extensive comparative studies carried 
out at several IVD research laboratories, leading to the 
identification of some kind of reference biomaterials for NP 
and AF regeneration. Standardisation of characterisation 
and testing, including relevant biomechanical properties, 
biocompatibility and regenerative responses, would 
provide a major advantage here.
 Finally, the clinical application of biomaterials may 
require some further research into the surgical techniques 
needed. Already, large sized needle injection of large 
volumes of fluid (Chee et al., 2014) was suggested to 
accelerate IVD degeneration (Carragee et al., 2009). 
Therefore, materials for NP regeneration are preferably 
injectable, using needles with small diameters, thereby 
excluding solid scaffolds and limiting the injectable 
volume. Alternatively, an approach through the endplate 
may be considered. AF regeneration may on the other hand 
be more feasible with solid scaffolds that at the same time 
withstand the tensile stresses and are capable of firmly 
adhering to the native tissue. 
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Discussion with Reviewers

Reviewer I: I would agree with the authors that the 
ability to perform in vitro high throughput screening of 
biomaterials is required to improve on their selection for 
use in IVD repair strategy. However, could the authors 
briefly discuss what are in their opinion the “minimum” 
and specific ex vivo quantitative outcome parameters that 
should be collected to select the most suitable stiffness 
or tensile strength close to IVD tissues, EC matrix 
accumulation / composition, etc.?
Authors: High throughput screening is usually based on 
readout parameters that are easy to measure, often gene 
expression-based detection systems employing luciferase 
or GFP. To this end, simple detection of collagen II and 
aggrecan expression with as negative markers collagen X 
and collagen I (for the NP) would be useful. The use of 
medium throughput assays that can measure these genes 
at the protein level, aiming for the healthy tissues’ ratios of 
their respective ECM proteins, at least including collagen 
II, I and aggrecan, could be the next step. Ideally, medium 
to low throughput systems will be developed that can 
subsequently measure biomechanical properties of mature 
biomaterial-cell constructs. Those characterising NP tissue, 
i.e. elastic and shear modulus, and the AF, tensile strength 
and compressive modulus, would predict functionality 
and thus be helpful in final selection of materials for more 
extensive experiments, including in vivo models of disease.

Reviewer II: The authors note the need for a ‘standard’ or 
reference material for comparison studies to be made. The 
same might also true for a standard media composition and 
oxygen environment. What would these authors suggest for 
the field in terms of reference materials and environments 
by which to compare new materials?
Authors: Although it is tempting to specify a few particular 
biomaterials, first several studies by independent research 
groups should be performed comparing the currently 
most often used biomaterials, be they synthetic or natural. 
The current review will be helpful at providing some 
suggestions for candidate materials. Those materials that 
consistently show most regenerative properties in terms 
of extensive NP-like matrix formation at the protein 
level, preferably under relevant biomechanical loads, may 
subsequently be used as reference materials. Any new 
materials that, in the future, consistently show to have 
more regenerative properties than the original materials, 
may be added to or replace the original set of reference 
materials. For culture conditions, it will be less easy to 
define optimal conditions. Ideally, the environment of the 
(human) degenerated IVD is mimicked, but even to the 
extent that this environment has been characterised, the 
importance of and mechanisms behind these characteristics 
(e.g. hypoxia, glucose content) is still not completely 
elucidated. Moreover, these characteristics may only be 
relevant if they affect the direction of the response to the 
biomaterial. This would need to be determined first, for 
example using the abovementioned reference materials.
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