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Abstract
Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, account-

ing for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important

genetic risk factors of common GGE syndromes. In our present genome-wide burden analy-

sis, large (� 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence

(� 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control

cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) as-

sess the microdeletion burden in common GGE syndromes, 2) estimate the relative contri-

bution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent

microdeletions, and 3) identify potential candidate genes for GGE. We found a significant

excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x

10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for

36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased

burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously

implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily

conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR =

4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE pa-

tients harboured a high proportion of genes previously associated with epilepsy and neuro-

psychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our

results demonstrate that the significantly increased burden of large and rare microdeletions

in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions

affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurode-

velopmental processes in the pathogenesis of common GGE syndromes.

Author Summary

Epilepsy affects about 4% of the general population during lifetime. The genetic generalised
epilepsies (GGEs) represent the most common group of epilepsies with predominant genet-
ic aetiology, accounting for 20% of all epilepsies. Despite their strong heritability, the genetic
basis of the majority of patients with GGE remains elusive. Genomic microdeletions consti-
tute a significant source of genetic risk factors for epilepsies. The present genome-wide bur-
den analysis in 1,366 European patients with GGE and 5,234 ancestry-matched controls
explored the role of large and rare microdeletions (size� 400 kb, frequency< 1%) in the
complex genetic architecture of common GGE syndromes. Our results revealed a 2-fold ex-
cess of microdeletions in GGE patients relative to the population controls, 2) a 7-fold in-
creased burden for known hotspot microdeletions (15q11.2, 15q13.3, 16p13.11, 22q11.2)
previously associated with a wide range of neurodevelopmental disorders, and 3) a more
than 4-fold enrichment of microdeletions carrying a gene implicated in neurodevelopmen-
tal disorders. Our findings reinforce emerging evidence that genes affected by microdele-
tions in GGE patients have a strong impact in fundamental neurodevelopmental processes
and dissect novel candidate genes involved in epileptogenesis.
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Introduction
The epilepsies comprise a clinically heterogeneous group of neurological disorders defined by
recurrent spontaneous seizures due to paroxysmal excessive and synchronous neuronal activity
in the brain [1]. Epilepsy affects about 4% of the general population during their lifetime [2]
and about 40% of all epilepsies are thought to have a strong genetic contribution. The genetic
generalised epilepsies (GGEs) represent the most common group of epilepsies with predomi-
nant genetic aetiology, accounting for 20% of all epilepsies [3]. Their clinical features are char-
acterised by unprovoked generalised seizures with age-related onset, generalised spike and
wave discharges on the electroencephalogram and no evidence for an acquired cause [4,5]. De-
spite their strong familial aggregation and heritability [6–9], the genetic architecture of com-
mon GGE syndromes is likely to display a biological spectrum, in which a small fraction (1–
2%) follows monogenic inheritance, whereas the majority of GGE patients presumably display
an oligo-/polygenic predisposition with extensive genetic heterogeneity [10]. Although causa-
tive mutations for rare GGE with monogenic inheritance have been identified in genes primari-
ly affecting neuronal excitability, synaptic transmission, and neurodevelopmental processes
[11,12], the genetic basis of the majority of patients with GGE remains largely unsolved.

Genomic copy number variations (CNVs) constitute a significant source of genetic risk fac-
tors for common focal and generalised epilepsies [13–20]. By targeted screening of rearrange-
ments at genomic hotspots associated with neurodevelopmental disorders [21], we previously
identified recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 as important genetic risk
factors of common GGE syndromes [14,16,17,22–24]. The microdeletions at 15q13.3 and
16p13.11 represent the most prevalent genetic determinants of GGE identified so far [14,16].
In addition, we were able to show that non-hotspot exonic microdeletions in three brain-ex-
pressed genes encoding gephyrin (GPHN) [25], neurexin 1 (NRXN1) [26] and the RNA-bind-
ing protein FOX1 (RBFOX1) [27] confer susceptibility of GGE. Although the GGE-associated
microdeletions identified to date are individually rare (<1%), they cumulatively account for a
significant fraction of the genetic burden in more than 3% of patients with common GGE syn-
dromes [14–16,22].

In the present genome-wide burden analysis, we used the Affymetrix SNP 6.0 array to
screen large (� 400 kb) and rare (< 1%) autosomal microdeletions with high calling confi-
dence (� 200 markers) in European case-control cohorts of 1,366 GGE patients and 5,234
population controls. We aimed to: 1) assess the genetic burden of large and rare microdeletions
in common GGE syndromes, 2) evaluate the contribution of recurrent hotspot and unique
microdeletions to the genetic burden of GGE, and 3) identify novel candidate genes for GGE.
Specifically, we tested the hypothesis whether microdeletions affecting genes involved in neu-
rodevelopmental processes account for a significant fraction of the genetic risk of GGE
syndromes.

Results

Burden analysis of autosomal microdeletions
We identified 103 microdeletions in 100 out of 1,366 GGE patients compared to 214 microde-
letions in 208 out of 5,234 controls (S1 Table). Overall, 7.3% of patients with GGE carried at
least one microdeletion compared to 4.0% in controls (P = 1.77 x 10–7; OR = 1.91, 95%-CI:
1.48–2.46) (Table 1). We observed a marginal increase in microdeletion frequency in the GGE
patients when we considered only microdeletions affecting either at least one protein-coding
RefSeq gene (n = 18,299; P = 5.86 x 10–7; OR = 1.95, 95%-CI: 1.48–2.57) or at least one brain-
expressed gene (n = 8,878; P = 1.38 x 10–7; OR = 2.19, 95%-CI: 1.61–2.98) (Table 1). Likewise,
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the median size of microdeletions was larger in the GGE patients (713 kb; interquartile range
(IQR) = 523 kb—1,537 kb) compared to controls (589 kb; IQR = 488–930 kb; P = 3.99 x 10–3;
Wilcoxon-Mann-Whitney-Test). The number of individuals carrying at least two microdele-
tions did not differ significantly between the GGE patients (n = 3) and controls (n = 6;
P = 0.40, Fisher´s exact test). The microdeletion burden was similar for males (7.2%) and fe-
males (7.4%) affected by GGE (P = 0.91; OR = 0.97, 95%-CI: 0.63–1.52). The distribution of
GGE subsyndromes did not differ between 100 GGE patients carrying a microdeletion (33
JME, 50 CAE/JAE, 17 EGTCS/EGMA) and the group of 1,266 GGE patients without a large
and rare microdeletion (507 JME, 548 CAE/JAE, 211 EGTCS/EGMA; P> 0.15).

GGE-related spectrum of microdeletions
The spectrum of 103 microdeletions identified in 100 GGE patients comprised: 1) 38 (36.9%)
recurrent microdeletions at seven known genomic rearrangement hotspots previously associat-
ed with a wide range of neurodevelopmental disorders [29], 2) 27 (26.2%) genic microdeletions
that were detected only in the GGE patients, 3) 16 (15.5%) microdeletions without a protein-
coding RefSeq gene and that were not present in the controls, and 4) 22 (21.4%) non-hotspot
microdeletions which overlap with the microdeletions identified in the controls (S1 Table).
Most prominent was the 7.5-fold excess of recurrent hotspot microdeletions in the GGE pa-
tients compared to the controls (P = 2.61 x 10–17; OR = 7.46, 95%-CI: 4.20–13.33; χ2-test,
df = 1) (Table 2). Overall, 2.8% (n = 38) of 1,366 GGE patients carried one of the known recur-
rent microdeletions at 1q21.1 (n = 1), 15q11.2 (n = 13), 15q13.3 (n = 11), 16p11.2 (n = 1),
16p12 (n = 3), 16p13.11 (n = 6) and 22q11.2 (n = 3), whereas these hotspot microdeletions
were observed only in 0.4% (n = 20) of 5,234 population controls (S1 and S2 Figs). Significant
associations with GGE patients were found for single hotspot microdeletions at 15q11.2
(P = 4.18 x 10–4; OR = 3.58; 95%-CI: 1.58–8.09, χ2-test, df = 1), 15q13.3 (P = 2.89 x 10–8, Fisher
´s exact test), 16p13.11 (P = 1.48 x 10–3; OR = 11.48, 95%-CI: 2.05–116.5, Fisher´s exact test),
and 22q11.2 (P = 8.85 x 10–3, Fisher´s exact test). All hotspot microdeletions in GGE patients

Table 1. Microdeletion burden analysis.

Microdeletions Genes N GGE N = 1,366 CTR N = 5,234 P-value^ OR, 95%-CI

Autosomal microdeletions 100 208 1.77E-07 1.91; 1.48–2.46

RefSeq NM genes 18,299 85 172 5.86E-07 1.95; 1.48–2.57

Brain-expressed genes 8,878 70 126 1.38E-07 2.19; 1.61–2.98

Hotspot microdeletions 38 20 2.61E-17 7.46; 4.20–13.3

Gene-set enrichment

Neurodevelopmental genes# 1,547 59 51 8.02E-18 4.58; 3.09–6.82

ASD-related genes* 1,669 45 43 1.29E-12 4.11; 2.64–6.40

Control gene-sets

Randomly selected genes 3,256 12 35 0.412 1.32; 0.65–2.64

Not brain-expressed genes 3,837 13 58 0.618 0.86; 0.45–1.62

GGE, genetic generalised epilepsy; CTR: population control; RefSeq NM genes: autosomal protein-coding NM annotated genes of the human reference

sequence database, genome build GRCh37/hg19; Brain-expressed genes: autosomal brain-expressed genes specified by a log(reads per kb per million

reads) > 3.32 of the BrainSpan RNA-Seq transcriptome dataset [28]; Hotspot microdeletions: recurrent microdeletions at genomic rearrangement hotspots

[29]: Neurodevelopmental genes: autosomal genes associated with neurodevelopmental disorders based on literature and database queries [30]; Autism

spectrum related genes: autosomal brain-expressed genes that were selectively enriched for deleterious exonic de novo mutations in ASD individuals

relative to their healthy siblings [31]; Autosomal genes not expressed in the brain, defined by the BrainSpan RNA-Seq transcriptome database [28]; ^P-

value: P-value obtained for χ2-test with df = 1; OR, 95%-CI, odds ratio with 95% confidence interval.

doi:10.1371/journal.pgen.1005226.t001
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identified by SNP arrays were validated by TaqMan qPCR. Altogether, the present findings
highlight the cumulative impact of the recurrent microdeletions at 15q11.2, 15q13.3, 16p13.11
and 22q11.2 on the genetic risk of common GGE syndromes.

Besides the recurrent hotspot microdeletions, we identified 27 GGE patients carrying a
genic microdeletion that was not observed in the controls (Table 3 and S1 Table and S3 Fig).
These microdeletions affected 158 protein-coding RefSeq genes and exhibited an enrichment
of genes previously associated with epilepsy (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A,
RORB, PLCB1) and neuropsychiatric disorders (DPYD, CADM2, PARK2, GRM8, TSNARE1,
TPH2,MACROD2) (Table 3). Microdeletions involving NRXN1 exons 1–2 were observed in
two GGE patients with genetic absence epilepsies [26]. In addition, two partially overlapping
microdeletions were identified in the chromosomal region 8q24.3 encompassing the genes en-
coding the t-SNARE domain containing 1 protein (TSNARE1; chr8: 143,293,441–143,484,601)
and the brain-specific angiogenesis inhibitor 1 (BAI1; chr8: 143,545,376–143,626,368). All
other unique microdeletions occurred only once. The microdeletions affecting the neuronal
genes, NRXN1 and RBFOX1, have been reported in two previous publications [26,27].

Gene-set enrichment analyses of neurodevelopmental genes
To explore the hypothesis whether neurodevelopmental genes affected by the microdeletions
have an impact on the genetic risk of common GGE syndromes, we performed enrichment
analyses of the deleted genes, using two previously published sets of genes implicated in neuro-
developmental disorders (ND): 1) ND-related genes (n = 1,547) compiled by literature and da-
tabase queries [30], and 2) genes implicated in autism spectrum disorder (ASD-related genes)
comprising 1,669 brain-expressed genes with an enrichment of deleterious exonic de novomu-
tations in ASD [31]. Microdeletions carrying at least one ND-related gene were 4.6-fold en-
riched in the GGE patients as compared to the controls (P = 8.02 x 10–18; OR = 4.58, 95%-CI:
3.09–6.82) (Table 1). Likewise, microdeletions encompassing at least one ASD-related gene
showed a 4.1-fold excess in the GGE patients relative to the controls (P = 1.29 x 10–12;
OR = 4.11, 95%-CI: 2.64–6.40) (Table 1). To explore the impact of neurodevelopmental genes
that are not covered by the recurrent hotspot microdeletions, we combined the ND- and ASD-
related gene lists [30,31] and removed all genes affected by observed recurrent hotspot micro-
deletions. Non-recurrent microdeletions carrying at least one of the 2,495 selected ND/ASD-
related genes showed a 2.3-fold excess in GGE patients (n = 1,328) compared to control sub-
jects (n = 5,214), when individuals with recurrent hotspot microdeletions were excluded
(P = 4.56 x 10–4; OR = 2.48, 95%-CI: 1.42–4.30). To rule out an artificial enrichment of

Table 2. Recurrent microdeletions at rearrangement hotspots.

Recurrent Microdeletion hg19 position GGE N = 1,366 CTR N = 5,234 Candidate Gene P-value OR, 95%-CI

1q21.1 chr1: 146.5–147.5 1 1 GJA8 0.37# 3.8; 0.05–300

15q11.2 chr15: 22.8–23.1 13 14 CYFIP1 4.18E-04* 3.5; 1.6–8.1

15q13.3 chr15: 31.3–32.5 11 0 CHRNA7 2.89E-08# Inf; 9.7-Inf

16p13.11 chr16: 15.0–16.3 6 2 NDE1 1.48E-03# 11.5; 2.1–117

16p12 chr16:21.9–22.5 3 2 0.06# 5.8; 0.7–69

16p11.2 chr16: 29.6–30.2 1 1 PRRT2 0.37# 3.8; 0.05–300

22q11.2 chr22: 18.8–21.6 3 0 SNAP29 8.85E-03# Inf; 1.6-Inf

Total 38 20 2.61E-17* 7.5; 4.20–13.3

GGE, genetic generalised epilepsy; CTR: population control; P-value: P-value obtained for # Fisher´s exact test or * χ2-test with df = 1; OR, 95%-CI, odds

ratio with 95% confidence interval.

doi:10.1371/journal.pgen.1005226.t002
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microdeletions in the GGE patients, we compiled two control gene assemblies comprising: 1)
3,256 randomly selected autosomal protein-coding RefSeq genes, and 2) 3,837 autosomal pro-
tein-coding RefSeq genes not expressed in the brain [28]. Both control gene assemblies did not
show evidence for an increase of the microdeletion burden in GGE patients compared to con-
trols (P> 0.40) (Table 1).

Functional enrichment and network analyses
The Disease Association Protein-Protein Link Evaluator (DAPPLE v2.0) tool [85] was applied
to identify significant physical connectivity among proteins encoded by genes affected by
microdeletions. Therefore, we separately tested the gene assemblies for the GGE patients and

Table 3. Gene-disrupting microdeletions found only in patients with genetic generalised epilepsy.

Sample-ID Syndrome Chr Start End Candidate gene Disease/Trait References

EC-CAE428 6/CAE,gsw 1 97005643 97712686 DPYD SCZ,AUT [32–34]

EC-EGTCS014 14/EGTCS,gsw 1 110606081 111393713 KCNA2,ALX3 EPI,ID [35–39]

EC-CAE333# 5/CAE,gsw 2 50979977 51453231 NRXN1 GGE [26,40,41]

EC-JAE085# 12/JAE,gsw 2 51080429 51682854 NRXN1 GGE [26,40,41]

EC-JME399 13/JME,gsw 2 130275170 130762880 RAB6C

EC-JME104 13/JME,gsw 3 85017098 85603757 CADM2 ADHD [42,43]

EC-CAE040 7/CAE,gsw 3 165317672 166886252 BCHE ADHD,SCZ [44]

EC-JME445 26/JME 4 27778687 31233363 PCDH7 GGE,EPI [45–48]

EC-CAE099 6/CAE,gsw 5 275875 1257621 SLC6A19,TERT

EC-JME481 14/JME,gsw 5 28059042 31736582 DROSHA,CDH6 SCZ [49–51]

EC-CAE347 9/CAE,gsw 6 144444363 146880409 EPM2A,GRM1 SCZ,EPI [52,53]

EC-CAE204 8/CAE,gsw 6 162801345 163287279 PARK2 [54–58]

EC-JME461 4/CAE 7 124586130 126665734 GRM8 ASD,ADHD [59–61]

EC-CAE158 8/CAE,gsw 7 143223069 143873940 FAM11C5,FAM115A

EC-EGTCS130 25/EGTCS,gsw 8 99979097 100538070 VPS13B

EC-JME417 17/JME,gsw 8 142563566 143798641 TSNARE1,BAI1,ARC SCZ,BPD [62]

EC-JAE119 16/JAE,gsw 8 142850077 143549806 TSNARE1,BAI1 SCZ,BPD [62]

EC-CAE300 10/CAE 9 76601085 77182821 RORB EPI,ID [63–65]

EC-JME005 12/JME,gsw 10 27836576 28429513 MPP7,ARMC4,MKX ID [66]

EC-JME054 20/JME,gsw 11 4167416 5262622 C11orf40,TRIM68

EC-JME425 13/JME 12 72135173 73995884 TBC1D15,TPH2 ADHD [67–69]

EC-JME642 15JME,gsw 15 84915113 85726714 WDR73,PDE8A MCP [70]

EC-CAE286* 3/CAE,gsw 16 5615773 6512138 RBFOX1 ASD,SCZ,EPI [27,71–73]

EC-CAE226 6/CAE,gsw 18 13982898 14969710 ZNF519

EC-CAE161 7/CAE,gsw 20 8099277 8572225 PLCB1 EE,EPI,SCZ [54,74–77]

EC-EGTCS119 15/EGTCS,gsw 20 14902412 15312347 MACROD2 AUT,ADHD [78–82]

EC-JME101 24/JME 21 45866974 48096945 ADARB1,S100B [83,84]

GGE, genetic generalised epilepsy; CTR: population control; Chr: chromosome, start/end: genomic start and end point of the deleted segment, hg19; ^P-
value: type-1 error rate for a χ2-test with df = 1; OR, 95%-CI, odds ratio with 95% confidence interval. Disease phenotype: ASD: autism spectrum disorder,

ADHD: attention deficit hyperactivity disorder, AN: anorexia nervosa, AUT: autism, BPD: bipolar disorder, EE: epileptic encephalopathy, EPI: epilepsy, ID:

intellectual disability, MCP: microcephaly, SCZ: schizophrenia; GGE syndromes: CAE: childhood absence epilepsy, JAE: juvenile absence epilepsy, JME:

juvenile myoclonic epilepsy, EGMA: epilepsy with generalised tonic-clonic seizures alone predominantly on awakening, EGTCS: epilepsy with generalised

tonic-clonic seizures alone, gsw: generalised spike and wave discharges on the electroencephalogram, number/: age-at-onset of afebrile generalised

seizures. # previously published in [26] and * [27]. Bold gene symbols indicate genes previously implicated in epileptogenesis.

doi:10.1371/journal.pgen.1005226.t003
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the control subjects. Based on an initial regional query we extracted 191 seed genes from 103
microdeletions found in the GGE patients and 221 seed genes from 214 microdeletions ob-
served in controls. There was an overlap of 61 genes between the two assemblies. DAPPLE net-
work analyses revealed a significant enrichment for direct connections between the seed genes
(P = 0.01) in the GGE microdeletion carriers, while the control gene network did not show evi-
dence for an enrichment (P = 0.40). Finally, in GGE we found eleven genes with significant
connectivity: PLCB1 (P = 0.002), GRM1 (P = 0.002), ARC (P = 0.002), CNTN6 (P = 0.015),
CHL1 (P = 0.033), BAI1 (P = 0.033), CYFIP1 (P = 0.040), TRIP13 (P = 0.042),MAPK3
(P = 0.044), GJ8 (P = 0.048), and KCNA2 (P = 0.050) (S4 Fig).

Utilising the Enrichr tool [86], functional enrichment analysis of the gene assembly affected
by the microdeletions in the GGE patients revealed a significant enrichment of the MGI Mam-
malian Phenotype term "abnormal emotion/affect behaviour" (MP:0002572; Padj = 1.30 x 10–3)
and the GO biological process term “cognition” (GO:0050890; Padj = 0.012) (Table 4). Enrichr
network analysis identified one significant PPI Hub in the GGE patients based on an enrich-
ment of nine deleted genes (ARC, TJP1,MAPK3,MYH11, EXOC3, NRXN1, PARK2, PLCB1,
GRM1) among 219 network genes (Padj = 0.018), for which GRIN2B encodes the shared
interacting protein.

Discussion

High burden driven by recurrent hotspot microdeletions
The present burden analysis applied a screening strategy that focused on both large (� 400 kb,
� 200 markers) and rare (< 1%) autosomal microdeletions to ensure a high calling accuracy
[87] and to enrich pathogenic microdeletions among confounding benign copy number poly-
morphisms [88–90]. We found a significant 1.9-fold excess of microdeletions in the patients
with GGE compared to the controls (Table 1). Overall, 7.3% of the 1,366 GGE patients carried
at least one microdeletion compared to 4.0% in 5,234 controls. These findings highlight the im-
portant impact of microdeletions on the genetic susceptibility of common GGE syndromes
with an attributable risk of about 3.3%.

The spectrum of 103 microdeletions identified in the GGE patients contained a high pro-
portion (36.9%) of recurrent microdeletions at genomic rearrangement hotspots, known to

Table 4. Functional gene enrichment and network analysis.

Gene-set library Padj-
value

Genes

MGI Mammalian Phenotype
abnormal emotion/affect
behaviour (MP:0002572)

1.30E-
03

ARC NTAN1 RORB PARK2 GRM1 GRM8 APBA2 CHRNA7
CHL1 TPH2 COMT/ZDHHC/RTN4R

GO biological process

cognition (GO:0050890) 0.012 ARC OR52B4 EPM2A NTAN1 PARK2 NRXN1 S100B
BCHE CYFIP1 CHRNA7 PLCB1 CHL1 DGCR2/COMT

PPI Hub Proteins
GRIN2B 0.018 ARC TJP1 MAPK3 MYH11 EXOC3 NRXN1 PARK2 PLCB1

GRM1

Significant gene-set enrichments on 329 genes deleted in GGE patients revealed an enrichment of

GRIN2B interacting proteins, genes of the MGI abnormal emotion/affect behaviour annotation and of the

GO cognition annotation. Segmental clusters of genes belonging to a gene family were removed. Positional

clustering of genes physically linked on a microdeletion is indicated by a slash between the gene symbols.

doi:10.1371/journal.pgen.1005226.t004
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play a pathogenic role in a wide range of neuropsychiatric disorders including epilepsy
[13,91,92]. In total, 2.8% of the GGE patients carried one of the known pathogenic hotspot
microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p12, 16p13.11 and 22q11.2 (Table 2),
whereas these hotspot microdeletions were found only in 0.4% of the population controls (S1
and S2 Figs). Although these hotspot microdeletions are individually rare (< 1%), they collec-
tively result in a 7.5-fold increased burden in the GGE patients and a population-attributable
risk of about 2.4%. A previous genome-wide CNV search in epilepsies observed a similar cu-
mulative prevalence of recurrent hotspot microdeletions in 3.5% out of 399 GGE patients [16].
Likewise, a targeted screening of the microdeletions at 15q11.2, 15q13.3 and 16p13.11 showed
a cumulative frequency of 3.1% in 359 GGE patients and an even higher frequency of 10% in
60 GGE patients with intellectual disability [17]. Several other CNV studies targeting these ge-
nomic rearrangement hotspots also emphasised a substantial impact of recurrent microdele-
tions at 15q11.2, 15q13.3 and 16p13.11 in the pathogenesis of GGE and other epilepsies [14–
20,22–24,93,94]. To our knowledge, this is the first study demonstrating a significant associa-
tion of the recurrent microdeletion at 22q11.2 with GGE. Re-evaluation of the clinical records
of three GGE patients carrying a 22q11.2 microdeletion revealed additional congenital and de-
velopmental features fitting to known conditions of the 22q11.2 deletion syndrome (OMIN
188400/192430). GGE patient (EC-EGMA094) had a moderate psychomotoric retardation, pa-
tient (EC-EGTCS145) was affected by a cleft palate and an atrial septal defect, and patient
(EC-EGTCS044) had a mild impairment of his motoric coordination during childhood, mod-
erate learning disabilities and hypocalcaemia, highlighting the 22q11.2 deletion syndrome as a
multisystem disorder with high penetrance and variable phenotypic spectrum [95]. According
to our ascertainment scheme [96], the present GGE patients with recurrent microdeletions did
not exhibit severe intellectual disability or severe psychiatric comorbidities at the age of explo-
ration but may evolve psychiatric disorders at later age. Considering the published CNV stud-
ies of epilepsies [14–20,24], meta-analyses may demonstrate an association of the less frequent
recurrent hotspot microdeletions at 16p11.2 and 16p12 with GGE. Haploinsufficiency of
CYFIP1 at 15q11.2 [97], CHRNA7 at 15q13.3 [98], NDE1 at 16p13.11 [99] and PRRT2 at
16p11.2 [100] has been implicated as risk-conferring mechanism for epilepsy and other neuro-
developmental phenotypes [88,89,91].

Functional-enrichment, pathway and network analyses showed significant connectivity of
genes affected by microdeletions in GGE patients (S4 Fig) and a significant enrichment for the
MGI Molecular Function category "abnormal emotion/affect behaviour" (MP:0002572) as well
as the GO biological process term “cognition” (GO:0050890). The protein-protein interaction
analyses highlight several genes that have been implicated in epileptogenesis (CYFIP1,
GRIN2B, KCNA2, NRXN1, PLCB1) [14,16,26,39,74,75,97] and neurodevelopmental processes
(ARC, GRM1, PARK2) [51,52,55,57–59].

Enrichment of microdeletions involving neurodevelopmental genes
In line with our neurodevelopmental hypothesis, we found a significant 4.6-fold excess of
microdeletions carrying at least one ND-related gene [30] and a 4.1-fold enrichment of micro-
deletions affecting at least one ASD-related gene [31] in the GGE patients compared to the con-
trol subjects. In contrast, the two control gene assemblies did not show an increase of the
microdeletion burden in GGE patients compared to controls (P> 0.40). Accordingly, the in-
triguing enrichment of ND- and ASD-related genes demonstrates that genes involved in neu-
rodevelopmental processes play an important role in the epileptogenesis of common GGE
syndromes. Notably, the moderate overlap of the previously published assemblies of ND- and
ASD-related genes implicates a large number of neurodevelopmental genes contributing to the
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risk of common GGE syndromes and extensive genetic heterogeneity. The emerging overlap of
gene-disrupting microdeletions and the rapidly evolving landscape of loss-of-function gene
mutations in rare and common epilepsy syndromes will facilitate the prioritisation of causal
epilepsy genes and the elucidation of the leading molecular pathways of epileptogenesis
[101,102].

Non-hotspot microdeletions implicating potential GGE genes
We identified 27 gene-covering microdeletions in non-hotspot genomic regions that were pres-
ent only in GGE patients (Table 3 and S3 Fig). These autosomal microdeletions involved sever-
al genes previously implicated in epilepsy and neurodevelopmental disorders. Although it
remains challenging to distinguish benign and pathogenic microdeletions, several of these con-
tain plausible candidate genes for epilepsy. Of particular interest were seven genes at seven
microdeletion loci that have been associated with epilepsy.

Three of the epilepsy-associated microdeletions have been reported in two previous publica-
tions demonstrating an association of microdeletions affecting the 5´-terminal exons of the
neuronal genes encoding the adhesion molecule neurexin 1 (NRXN1; 2p16.3, chr2:
50,145,642–51,259,673, hg19) and the splicing regulator RNA-binding protein fox-1 homolog
(RBFOX1; 16p13.3, chr16: 5,289,468–7,763,341, hg19) [26,27]. The microdeletions involving
NRXN1 exons 1–2 were observed in two female GGE patients with genetic absence epilepsies
[26]. The 5´-terminal untranslated RBFOX1 exons 1–2 were deleted in a female patient with
childhood absence epilepsy [27]. Deleterious mutations and microdeletions of the genes,
NRXN1 and RBFOX1, have been reported in a large number of patients with a broad range of
neuropsychiatric disorders, who were frequently also affected by epilepsy [40,41,54,72,81]. A
recent study demonstrated that the splicing regulator Rbfox1 controls neuronal excitation in
the mammalian brain and the Rbfox1 knockout in mice results in an increased susceptibility to
spontaneous and kainic acid-induced seizures [71]. Furthermore, molecular, cellular, and clini-
cal evidence supports a pivotal role of RBFOX1 in human neurodevelopmental disorders
[73,103].

A 3.45 Mb microdeletion harbouring the protocadherin PCDH7 gene (chromosomal loca-
tion: 4p15.1, chr4: 30,721,950–31,148,422, hg19) was found in a female GGE subject with juve-
nile myoclonic epilepsy. An international GWAS meta-analysis including 8,696 epilepsy
patients and 26,157 controls highlights PCDH7 as susceptibility gene for epilepsy in general
and GGE syndromes in particular [45]. The PCHD7 gene encodes a calcium-dependent adhe-
sion protein that is expressed in neurons of thalamocortical circuits and the hippocampus [46].
PCDH7 has been implicated as neuronal target gene ofMECP2 [47], the gene for Rett syn-
drome (OMIM #312750), which manifests as a progressive neurodevelopmental disorder with
recurrent seizures. Moreover, mutations in the X-chromosomal protocadherin gene PCDH19
cause epilepsy and intellectual disability in females [48]. These lines of evidence suggest an in-
volvement of PCDH7 in epileptogenesis.

A 788 kb microdeletion involving the Shaker-like voltage-gated potassium channel gene
KCNA2 (1p13, chr1: 111,136,002–111,174,096, hg19) was identified in a male GGE patient
with generalised tonic-clonic seizures starting at the age of 14. The Kv1 subfamily plays an es-
sential role in the initiation and shaping of action potentials, influencing action potential firing
patterns and controlling neuronal excitability as well as seizure susceptibility [36,38,39]. De
novo loss- or gain-of-function mutations in KCNA2 have been identified to cause human epi-
leptic encephalopathy [39]. Furthermore, the Kcna2 knockout mice exhibit spontaneous sei-
zures and have a reduced life span [35,37].
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One female GGE patient with childhood absence epilepsy carried a 2.4 Mb microdeletion in
the chromosomal region 6q24.6 encompassing two neuronally expressed genes encoding the
metabotropic glutamate receptor type 1 (GRM1; chr6: 146,348,917–146,758,734,
NM_001278065, hg19) and laforin (EPM2A; chr6: 145,946,439–146,056,991, NM_005670,
hg19). Deleterious mutations in the GRM1 gene have been found in patients with schizophre-
nia [52]. Also, familial segregation analysis of deleterious non-synonymous sequence variants
revealed a co-segregation with multiple neuropsychiatric conditions including epilepsy in
some families. Recessive mutations/microdeletions of EPM2A cause progressive myoclonic ep-
ilepsy type 2A (Lafora disease, OMIM #254780) [53].

A 582 kb microdeletion encompassing exon 1 of the gene encoding the RAR-related orphan
receptor B (RORB; 9q21.13, chr9: 77,112,251–77,303,533, NM_006914, hg19) was found in a
male patient with childhood absence epilepsy, overlapping with the critical region of a novel
microdeletion syndrome at 9q21.13 characterised by intellectual disability, speech delay, facial
dysmorphisms and epilepsy [63]. The RORB gene is a strong candidate for the neurological
phenotype because RORB was deleted in all affected individuals [63], it is expressed in the cere-
bral cortex and thalamus, and genetic associations of RORB with bipolar disorder [64] and ver-
bal intelligence [65] have been reported.

The gene encoding the enzyme phospholipase C-beta 1 (PLCB1; 20p12.3, chr20: 8,112,911–
8,865,546, hg19) was partially deleted (exons 1–3, NM_015192, hg19) in a male GGE patient
with childhood absence epilepsy. PLCB1 catalyses the generation of inositol 1,4,5-trisphoshate
and diacylglycerol from phosphatidylinositol 4,5-bisphosphate, a key step in the intracellular
transduction of many extracellular signals. Homozygous microdeletions of chromosome
20p12.3, disrupting the promoter region and first three coding exons of PLCB1, have previous-
ly been reported in two consanguineous families with early infantile epileptic encephalopathy
[74]. Mutation analysis of a family with severe intractable epilepsy and neurodevelopmental
delay revealed compound heterozygous mutations in PLCB1 composed of a 476 kb microdele-
tion encompassing PLCB1 and a deleterious PLCB1 splice site mutation [75]. Girirajan et al.
[54] found an enrichment of microdeletions and duplications involving the PLCB1 gene in in-
dividuals with autism. Together, these findings implicate that the PLCB1 gene contributes to
the genetic risk of neurodevelopmental disorders including epilepsy.

In addition to the epilepsy-associated microdeletions, nine deleted genes have been previ-
ously implicated as genetic risk factors in a broad range of neuropsychiatric disorders. Unique
hemizygous microdeletions in GGE patients involved DPYD/1p13.3 [32–34], CADM2/3p12.1
[43], BCHE/3q26.1 [44], PARK2/6q24 [54,55,57,58], GRM8/7q31.33 [59–61]. TSNARE1/
8q24.3 [62],MPP7-ARMC4-MKX/10p12.1 [66], TPH2/12q21.1 [67–69],MACROD2/20p12.1
[78–81], and ADARB1/21q22.3 [83,84]. Notably, overlapping microdeletions encompassing
TSNARE1 at chromosome 8q24.3 in two GGE patients indicate its potential role in epilepto-
genesis. A recent GWAS meta-analysis of psychiatric disorders identified TSNARE1 as suscep-
tibility gene for schizophrenia, schizoaffective and bipolar disorders [62]. While the function of
TSNARE1 remains elusive, bioinformatic predictions suggest a vertebrate-specific function in
synaptic vesicle exocytosis [104]. Further studies will be necessary to disentangle the pathogen-
ic genes and to elucidate their molecular pathways in neurodevelopmental disorders
and epileptogenesis.

Summary
Our burden analysis of large and rare autosomal microdeletions (size� 400 kb,
frequency< 1%) revealed: 1) a nearly 2-fold excess of microdeletions in GGE patients relative
to the population controls, 2) a 7-fold increased burden for known hotspot microdeletions
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previously associated with neurodevelopmental disorders, and 3) a more than 4-fold enrich-
ment of microdeletions carrying a gene implicated in neurodevelopmental disorders. Recurrent
microdeletions at seven genomic rearrangement hotspots accounted for 37% of all microdele-
tions identified in the GGE patients and predominantly contributed to the excess of microdele-
tions in GGE patients. Comorbidity of GGE with other neurodevelopmental disorders, such as
intellectual disability, ASD and schizophrenia, may result in even higher prevalence of recur-
rent hotspot microdeletions [17] and emphasises a valuable diagnostic contribution to the clin-
ical management of these severely affected comorbid patients with GGE. The remarkable
phenotypic variability observed for the recurrent hotspot microdeletions suggests a shared sus-
ceptibility of a wide range of neuropsychiatric disorders and GGE [105]. Several genes affected
by microdeletions that were found only in GGE patients highlight novel candidate genes for
GGE. Altogether, the present findings reinforce converging lines of evidence that genes affected
by microdeletions in GGE patients reside in fundamental neurodevelopmental processes.

Materials and Methods

Case-control cohorts
The study protocol was approved by the local institutional review boards of the contributing
clinical centres. All study participants provided written informed consent. Genomic DNA sam-
ples of all study participants were processed by the Affymetrix SNP 6.0 array. For the genome-
wide CNV burden analysis, we did not include individuals with excessive CNV counts (> 50
autosomal deletions per individual for deletions spanning> 40 kb in size and covering> 20
markers). In addition, we excluded all Affymetrix SNP 6.0 array data derived from lymphoblas-
toid cell lines because of the clonal source of the DNA which is prone to CNV artefacts com-
pared to genomic DNA samples derived from blood cells [21]. All study participants were of
self-reported North-Western European origin.

Unrelated GGE patients of European descent were ascertained through the primary diagno-
sis of a common GGE syndrome according to the classification of the International League
Against Epilepsy [1,4]. The standardised protocols for phenotyping of GGE syndromes as well
as inclusion and exclusion criteria are available online at: http://portal.ccg.uni-koeln.de/ccg/
research/epilepsy-genetics/sampling-procedure/ [96]. GGE patients with a history of severe
major psychiatric disorders (autism spectrum disorder, schizophrenia, affective disorder: re-
current episodes requiring pharmacotherapy or treatment in a hospital), or severe intellectual
disability (no basic education, permanently requiring professional support in their daily life)
were excluded. The GGE cohort comprised 1,366 patients (853 females, 513 males) with the
following age-related GGE syndromes: childhood absence epilepsy (CAE, n = 398), juvenile ab-
sence epilepsy (JAE, n = 191), unspecified genetic absence epilepsy (GAE, n = 9), juvenile myo-
clonic epilepsy (JME, n = 540), epilepsies with generalised tonic-clonic seizures (GTCS) alone
predominantly on awakening (EGMA, n = 94), and epilepsies with recurrent unprovoked
GTCS alone starting before the age of 26 (EGTCS, n = 134). These 1,366 GGE patients were
collected from Austria (n = 142), Belgium (n = 39), Denmark (n = 97), Germany (n = 801) and
the Netherlands (n = 287). Notably, 1,052 of the GGE patients and 3,022 population controls
investigated in the present study were part of a previous study that investigated six target
microdeletions at genomic rearrangement hotspots [14].

Affymetrix SNP 6.0 data from 5,234 German population controls (2,559 females, 2,675
males) were obtained from three epidemiologically based cohorts: 1) KORA cohort from South
Germany (n = 1,507) [106], 2) PopGen cohort from North Germany (n = 1,143) [107], and 3)
SHIP cohort from East Germany (n = 2,584) [108]. The population controls were unscreened
for epilepsy or major neuropsychiatric disorders. EIGENSTRAT principal component analysis
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[109] was applied to remove ancestry outliers and to match for European ancestry of the case-
control cohorts [96].

CNV analysis and screening of autosomal microdeletions
Genomic DNA samples were investigated by the Affymetrix Genome-Wide Human SNP
Array 6.0 (Affymetrix, Santa Clara, CA, USA). CNV analysis was performed as previously de-
scribed [14,22], using the Birdsuit algorithm implemented in the Affymetrix Genotyping Con-
sole version 4.1.1. All annotations refer to the genome build GRCh37/hg19. The present
genome-wide burden analysis focused on rare and large autosomal microdeletions to ensure a
high reliability of the microdeletion calls [87] and to enrich pathogenic microdeletions [88–
90]. Therefore, we filtered out autosomal microdeletions with high calling confidence accord-
ing to the following criteria: a) size� 400 kb, b) coverage of� 200 probe sets, and c) microde-
letion frequency< 1% in the entire study sample. The microdeletion size of at least 400 kb was
selected because all known pathogenic hotspot microdeletions identified in neurodevelopmen-
tal disorders exceed this size in CNV scans with the Affymetrix SNP Array 6.0 [29,88–90]. We
did not include microduplications in the present burden analysis because the accuracy of CNV
detection is lower for microduplications compared to microdeletions [110]. In particular, geno-
mic DNA samples with substantial degradation are prone to spurious microduplication calls.
Moreover, microduplications seem to exert pathogenic effects less frequently compared to
microdeletions [88]. We excluded microdeletions with an overlap of> 10% with 12 chromo-
somal regions prone to artificial CNV calls according to a recently published "artefact list"
[111]. For all QC-filtered microdeletions identified by SNP array screening, the segmental log2
ratios of the signal intensities and the SNP heterozygosity state were visually inspected by the
Chromosome Analysis Suite v1.2.2 (Affymetrix, Santa Clara, CA, USA) to exclude spurious
microdeletion calls. Validation of all 38 recurrent hotspot microdeletions and four GGE-asso-
ciated microdeletions identified by SNP arrays in the GGE patients was carried out by real-
time quantitative PCR (qPCR) according to the manufacturer´s instructions (Life Technolo-
gies, Carlsbad, CA, USA).

Burden analyses
Overall burden analyses were carried out for three assemblies of autosomal microdeletions: 1)
any microdeletion, 2) genic microdeletions encompassing at least one protein-coding RefSeq
gene, defined by the largest NM gene transcript (n = 18,299, hg19), and 3) microdeletions af-
fecting a brain-expressed gene (n = 8,878), specified by a log(RPKM)> 3.32 of the BrainSpan
RNA-Seq transcriptome dataset (http://www.brainspan.org/) [28].

Specifically, we tested the hypothesis whether microdeletions affecting genes involved in
neurodevelopmental processes account for a significant fraction of genetic risk of GGE syn-
dromes. Therefore, we investigated two recently published assemblies of genes associated with
neurodevelopmental disorders (ND): 1) ND-related genes compiling 1,547 genes that were as-
sociated with neuropsychiatric disorders, autism candidate genes and genes of known genomic
disorders based on literature and database queries [30], and 2) ASD-related genes comprising
1,669 brain-expressed genes that were selectively enriched for deleterious exonic de novomuta-
tions in ASD individuals relative to their healthy siblings [31]. To evaluate a spurious enrich-
ment of microdeletions in the GGE patients relative to the population controls, we tested two
control gene assemblies comprising: 1) 3,256 randomly selected autosomal genes, and 2) 3,837
autosomal genes not expressed in the brain [28], defined by the BrainSpan RNA-Seq transcrip-
tome dataset. ND- and ASD-related genes, genes located in genomic rearrangement hotspots,
or the artefact list were removed from the compiled control gene assemblies.
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Functional enrichment and network analyses
Functional-enrichment tests, pathway and network analyses were performed with the Disease
Association Protein–Protein Link Evaluator version 2.0 program (DAPPLE v2.0; http://www.
broadinstitute.org/mpg/dapple/dappleTMP.php; [85]) and the gene-set enrichment tool
Enrichr (http://amp.pharm.mssm.edu/Enrichr/index.html; [86]). Therefore, we compiled two
lists of genes affected by microdeletions in either the GGE patients (number of genes; n = 329;
n = 191 regional seed genes) or the controls (n = 428 genes; n = 221 regional seed genes). There
was an overlap of 103 genes (n = 61 seed genes) in both gene lists. To explore potential physical
interactions among proteins encoded by deleted genes, DAPPLE uses experimentally validated,
protein-protein interaction (PPI) databases to identify network and protein connectivity. Em-
pirically, 1,000 random networks were generated by permutation to determine whether the
connectivity of each seed protein with the PPI reference network was greater than that expected
by chance.

The gene-set enrichment tool Enrichr was applied separately to explore patient and control
lists of genes affected by microdeletions for an overlap with pathway gene-set libraries, specifi-
cally the database PPI Hub Proteins [112], and gene-set libraries created from Gene Ontology
[113] as well as MGI Mammalian Phenotype terms [114]. A pathway or ontology term was
considered as significantly enriched if the false discovery rate (FDR, Benjamini-Hochberg) was
lower than 5% for an assembly of more than two genes and occurred only in the GGE patients
but not in the controls.

Statistical analyses
Burden analysis was performed by comparisons of the frequency of autosomal microdeletions
in GGE patients and controls. The P-values and corresponding odds ratios (ORs) with the
95%-confidence intervals were calculated with a two-sided χ2-test or Fisher´s exact test if ap-
propriate. The Wilcoxon-Mann-Whitney-Test was applied to compare differences in the geno-
mic size of microdeletions. In addition, the individual burden of microdeletions was assessed
for comparisons of microdeletion size. Nominal two-sided P-values< 0.05 were considered
significant.

Supporting Information
S1 Table. Clinical information of microdeletion carriers and details on microdeletion call-
ing and its genomic organisation. GGE, genetic generalised epilepsy, CTR, population con-
trol; Chr: chromosome, start/end: genomic start and end position of the microdeletion, hg19;
GGE syndromes: CAE: childhood absence epilepsy, JAE: juvenile absence epilepsy, JME: juve-
nile myoclonic epilepsy, EGMA: epilepsy with generalised tonic-clonic seizures alone predomi-
nantly on awakening, EGTCS: epilepsy with generalised tonic-clonic seizures alone, gsw:
generalised spike and wave discharges on the electroencephalogram; the number in front of the
GGE syndromes refers to the individual age-at-onset of afebrile generalised seizures. Bold gene
symbols indicate genes previously implicated in epileptogenesis. Previously published microde-
letion: � [14], �� [26], ��� [27].
(XLS)

S1 Fig. Relative distribution of rare and large microdeletions in patients with genetic gen-
eralised epilepsies and controls.Microdeletions identified in patients with genetic generalised
epilepsies (GGEs) and ethnically-matched European population controls differentiated by
microdeletion type. Top left: Proportion of recurrent hotspot vs. non-recurrent microdeletions
in population controls. Top right: Proportion of recurrent vs. non-recurrent deletions in GGE
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patients. Below: Relative distribution of recurrent microdeletions at seven genomic rearrange-
ment hotspots in GGE patients.
(PDF)

S2 Fig. Genomic organisation of recurrent microdeletions at seven genomic rearrangement
hotspots in patients with genetic generalised epilepsies and population controls. Genomic
organisation of recurrent microdeletions at the genomic rearrangement hotspots 1q21.1,
15q11.2, 15q13.3, 16p11.2, 16p12.2, 16p13.11 and 22q11.2. Tracks in red = patients with genet-
ic generalised epilepsies (GGEs); tracks in beige = population controls. The annotations of
genes (GRCh37/hg19) shown below are generated by the University of California, Santa Cruz
Genome Browser (http://www.genome.ucsc.edu).
(PDF)

S3 Fig. Gene-disrupting microdeletions found only in patients with genetic generalised epi-
lepsies. Chr: chromosome, start/end: genomic start and end position of the deleted segment,
hg19; GGE, genetic generalised epilepsy; GGE syndromes: CAE: childhood absence epilepsy,
JAE: juvenile absence epilepsy, JME: juvenile myoclonic epilepsy, EGMA: epilepsy with gener-
alised tonic-clonic seizures alone predominantly on awakening, EGTCS: epilepsy with general-
ised tonic-clonic seizures alone, gsw: generalised spike and wave discharges on the
electroencephalogram, number/: age-at-onset of afebrile generalised seizures. Bold gene sym-
bols indicate genes previously implicated in epileptogenesis. Signal intensity plots of microdele-
tions were visualized using the Affymetrix Chromosomal Analyze Suite software. Top track:
Red bars represent the computed area of the observed microdeletions. Second track: Signal in-
tensities (Log2 ratios) of a SNP or CN probe are represented by dots, one dot per probe. A seg-
mental decline of consecutive probe signal intensities indicates a genomic deletion. Third
track: Allele difference plot, a dot shift to zero indicates loss of heterozygosity which augments
high-confidence deletion calling. Bottom track: Survey of the genomic organisation of the
microdeletion generated with the University of California, Santa Cruz (UCSC) Genome Brows-
er (http://www.genome.ucsc.edu). Genomic organisation of the microdeletion region: Red bars
represent microdeletion size and genomic location in reference to genes affected by the micro-
deletion (generated with the UCSC Genome Browser, http://www.genome.ucsc.edu).
(PDF)

S4 Fig. Protein-protein interaction networks analysis of genes affected by large and rare
microdeletions in patients with genetic generalised epilepsies. DAPPLE direct networks de-
rived from genes deleted in GGE patients. Depicted are the most connected networks in GGE.
Connectivity is coloured from yellow to red describing low to high connection evidence respec-
tively. Significant interactors are marked bold.
(PDF)
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