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The conditional probabilistic scenario analysis combines statistical methods of uncertainty analysis at

parameter level with storylines which recognize the deep uncertainty that exists for several underlying

trends. The model calculations indicate that cumulative 21st century emissions could range from 800 to

2500 GtC in the absence of climate policy. This range originates partly from the underlying storylines,

and partly from the probabilistic analysis. Among the most important parameters contributing to the

uncertainty range are uncertainty in income growth, population growth, parameters determining energy

demand, oil resources and fuel preferences. The contribution of these factors is also scenario-dependent.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Indications of possible long-term trends in the global energy
system provide very essential information for policy makers. The
energy system is by far the single most important driver of
anthropogenic climate change, and also plays an important role in
connection with several other sustainability problems such as
regional air pollution and resource depletion. The future of the
energy system is, however, beset with uncertainty, as it is the
product of complex dynamic processes and factors, including
demographic and economic development, technological change,
energy policies and resource availability. Various development
patterns for each of them could introduce very different futures
for the energy system as a whole. Scenarios are tools used in the
assessment of future developments of these complex systems that
are either inherently unpredictable or characterized by large
scientific uncertainties. In exploring future development of energy
systems and climate change, uncertainty management therefore
needs to be a constant companion of scientists and decision-
makers (Hulme and Carter, 1999). Uncertainty has various causes,
varying from stochastic randomness to limitations in knowledge,
and ignorance and human anticipation. Uncertainty can occur on
different scales: model parameters, model structures and/or
complete disagreement in conceptualization among experts
ll rights reserved.
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(see next Section 2). The question how to deal with uncertainty
in model projections has, in recent years, been given considerable
attention (Grübler and Nakicenovic, 2001; Schneider, 2001, 2002;
Webster et al., 2002; Patt and Dessai, 2005; Dessai et al., 2007).
Two approaches are most prominent in the debate on handling
uncertainty in the context of climate and (energy) emissions
scenarios: (storyline-based) alternative scenarios and fully probabil-

istic scenarios.
The alternative scenarios approach is founded on the premise

that possible future developments can vary over a large and partly
unknown range, among other based on fundamentally different
views of the current and desired situation (De Vries, 2006). These
ranges are only partly bound by relationships among variables
(so-called stylized facts1). Usually (energy) models endogenize
only a limited number of these relationships as they may be too
complex to incorporate and/or lack quantitative evidence. In the
scenario approach, such relationships are expressed in a ‘‘story-
line’’; this storyline represents a kind of underlying logic of the
scenario and its main assumptions. This way of providing
consistency to the complex parts of the real-world developments
forces modelers (and users) to think in a more creative way about
possible future developments.

The fully probabilistic approach to uncertainties expresses the
most important model inputs in terms of probability estimates
1 The term ‘‘stylized facts’’ refers to stable patterns that emerge from many

different sources of empirical data.
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and uses statistical sampling techniques to create a range of
emission pathways defined by a median value and various
probability intervals. This approach is easily applicable to systems
that are clearly defined and for which input parameters can be
meaningfully expressed in terms of likelihood. The approach has
also been applied to more complex systems, as in the modeling of
future greenhouse gas trajectories (Webster et al., 2002, 2003). One
might say that the fully probabilistic approach operates from the
positivist engineering/control paradigm (the system is known well
enough to make meaningful probabilistic estimates), whereas the
alternative scenario approach positions itself more in a constructi-
vist social science tradition (one can create alternative visions of the
future, but without assigning likelihood) (De Vries, 2006).

The ongoing discussion between proponents of the individual
approaches has revealed strengths and weaknesses of both
approaches (see Section 2.1). The methods can, in our view, best
be seen as complementary, not exclusive. In fact, one could also
combine the two methods by simultaneously accepting ignorance
for some aspects of future development, while at the same time
bringing in elements of formal uncertainty analysis. O’Neill (2004,
2005) introduced such a ‘‘conditional probability approach’’ for
population scenarios, with as rationale that is more meaningful to
make judgments about the likelihood of future trends in the
context of a particular development path, than about the like-
lihood of this path itself. While O’Neill applied this approach
successfully in population scenarios, hardly any attempt has, so far,
been made to use a similar approach for the total energy system.

The main focus of this paper is to explore what kind of
information can be provided by a conditional probabilistic approach
to uncertainty. For this purpose we have applied such an analysis
using statistically sampled simulations of the TIMER energy model
(van Vuuren et al., 2006a) conditional to the storylines of the IPCC-
SRES scenarios. We focus here, in particular, on one crucial output
variable of this model, i.e. global CO2 emissions.

The aim was to provide insight into the following questions:
1.
 What range of emissions would result from a probabilistic
approach to uncertainty?
2.
 What elements of uncertainty contribute most to these
emission ranges?
3.
 How do results of a conditional probabilistic approach
compare to other approaches of uncertainty?

Obviously, the answers to these questions depend on the
modeling tool applied. A more complete account of uncertainties
would be achieved by including more than one model (Nakice-
novic and Swart, 2000; van Vuuren et al., 2006b). However, even
then, some of the uncertainties will not be captured by any of the
models. In the next section, we will discuss in more detail
the value added and limitations of the conditional scenario. In
brief, we feel that this article adds to existing literature by:
(1) contributing to a discussion of methods for characterizing
uncertainty in future emissions, (2) providing estimates of the
influence of uncertainty in parameters, and (3) discussing the
relationship of parameter uncertainty and storylines. The paper
will contribute to but clearly not be the last word in the debate
how different methods for uncertainty analysis can be used.

2. Methods

2.1. Sources of uncertainty and earlier applications of uncertainty

methods in scenario approaches

Uncertainty originates from various causes and can be
classified in different ways (NRC, 1996; Rotmans and de Vries,
1997; Moss and Schneider, 2000; Dessai and Hulme, 2001, 2004;
Van der Sluijs et al., 2003; Patt and Dessai, 2005). One
classification is based on the nature of the uncertainty (NRC,
1996; Petersen, 2006). Ontic uncertainty (a) refers to natural
randomness, which can generally be expressed in mean estimates
and their ranges of likelihood (for instance, uncertainty originat-
ing from chaotic behavior in complex systems). This type of
uncertainty cannot be easily reduced. Its influence can sometimes
be empirically determined (e.g. distribution of extreme weather
events), although there is no guarantee that the same distribution
will hold in the future. Epistemic uncertainty (b), in contrast, comes
from incomplete knowledge (for instance, ultimately available oil
resources). In the case of energy scenarios, an important part of
the uncertainty originates from not knowing how the techno-
economic and socio-cultural context of the energy systems
evolves. There are various subcategories of epistemic uncertainty
based on the way it is handled (mostly subjective) statistical
expressions (b1); conditional statements (b2) or recognized
ignorance (b3). A special form of epistemic uncertainty comes
from (c) disagreements among experts (Patt, 2007). The latter may
also come from value pluralism of experts (Rotmans and de Vries,
1997). A special category (with ontic and epistemic elements) is
human reflexive uncertainty (d) originating from unknowns in
human response to and anticipation of changes (Dessai and
Hulme, 2004). Here, even when historical analysis suggests
certain estimates by comparison and analogy, there is no
guarantee that such an approach is valid for the time to come.
All uncertainties together may result in total ignorance or deep

uncertainty. Here, there is no agreement on the description of
the system, the probability distribution of important drivers of
the system or the value system used to rank alternatives (Lempert
et al., 2004).

Other classifications of uncertainty can also be made: one
refers to scale and distinguishes uncertainty in model parameters

(1), uncertainty about model structure (2) and uncertainties
that arise from (3) disagreements conceptual theories on an even

larger scale.

As indicated, various methods have been introduced to deal
with uncertainty in scenario development. In the field of green-
house gas emission scenarios, focus was originally on ‘‘business-
as-usual’’ emission trajectories, with simple variations for the
main driving forces (e.g. Leggett et al., 1992). The two prominent
approaches today, the alternative scenario approach and the fully

probabilistic approach, can both be seen as an improvement to
these early projections. The alternative scenario approach empha-
sizes the need for consistent assumptions and the handling of
ignorance (cat. b2, b3, c, d), while the probability approach places
the variations in the framework of a more structural assessment of
plausible futures (cat. a, b1).

The IPCC-SRES scenarios, as most well-known application of
the alternative scenario approach, map out a range of possible
emission trajectories based on the wide variation in assumptions
structured around four main storylines. Consistent with the basic
premise of the approach, Nakicenovic and Swart (2000) indicate
that it is not meaningful to assign probability estimates to these
scenarios based on ignorance and the influence of societal choice
(deep uncertainty). The SRES scenarios, however, formed the start
of a lively debate. Schneider (2001, 2002) and Webster et al.
(2002) argued that policy analysts and decision-makers need
probability estimates to assess the risks of climate change impacts
resulting from these scenarios; this is to decide how to respond to
these risks. Even when probability estimates are subjective, in
their view researchers (experts) are better equipped to make an
assessment than the users (non-experts) of these scenarios. A
counter argument from the SRES team (Grübler and Nakicenovic,
2001) that social systems (important in emission scenarios) are
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fundamentally different from natural science systems is dismissed
by their critics: in both cases often probability estimates need to
be made for systems that cannot be measured (Schneider, 2002).
The absence of probability assignments in SRES also resulted in
ambiguities in follow-up work such as in the probabilistic
statements on temperature change made Wigley and Raper
(2001), who decided to assign an equal likelihood to the scenarios.

Several studies have applied the contrasting probabilistic

approach to emission scenarios (Manne and Richels, 1994;
Nordhaus and Popp, 1997; Scott et al., 1999; Webster et al.,
2002, 2003; Richels et al., 2004; Kouvaritakis and Panos, 2005;
Pepper et al., 2005; Sweeney et al., 2006). An important critique
formulated against this approach is that attempts to assign
subjective probabilities in a situation of ignorance forms a
dismissal of uncertainty in favor of spuriously constructed expert
opinion (Grübler and Nakicenovic, 2001; Grübler et al., 2006).
Moreover, it is also argued that while the fully probabilistic
approach provides more (seemingly) readily useable information,
the alternative scenario approach provokes creative thinking of
decision-makers about possible futures and strategic choices.
Finally, uncoupled sampling within distribution ranges of
input parameters may result in inconsistent combinations.
Clearly, the handling of uncertainty and the appropriateness of
assigning subjective probabilities to scenarios is a matter of lively
debate and an important, unresolved, challenge in the application
of climate scenarios (Dessai et al., 2007; Groves and Lempert,
2007).

2.2. Uncertainty approach used in this paper

This paper applies the conditional probabilistic approach, as
indicated in the Introduction, which is a combination of the
scenario approach with formal uncertainty analysis. The approach
attempts to combine the strength of the scenario approach in
providing consistent descriptions of more fundamental uncer-
tainties with the strengths of the formal uncertainty approach
where appropriate. The rationale is that the reduction of the
uncertainty space, with help of divergent storylines, will make
uncertainties more suitable for a formal uncertainty method. For
example, while it is difficult to assign meaningful probabilities to
the future economic growth rate (as this depends on fundamen-
tally uncertain factors such as trends in globalization), if one
restricts the set of possible futures to only those in which
globalization proceeds rapidly, the probability distribution of
future economic growth rates is likely to narrow down. The
approach was applied earlier to population scenarios by O’Neill
(2004, 2005).

Obviously, the method proposed leaves some crucial questions
open: (1) is it is possible to derive meaningful estimates of the
parameter range conditional upon the scenario storyline, and (2)
how can information derived by the method be used (also vis-à-
vis other methods of uncertainty analysis).

On the first point, one should realize that both the pure
alternative scenario method and the full probabilistic approach
need to make ‘‘arbitrary’’ estimates on how different variables
evolve in the future (based on an interpretation of their past
behavior). In the storyline approach this translates into a set of
consistent assumptions of co-evolving parameters; in the fully
probabilistic approach assumptions need to be made about
reasonable sampling ranges. In that sense, the current approach
adds by making these arbitrary choices somewhat more explicit.
This allows for interpreting a ‘‘high growth storyline’’ by using a
confined range of high economic growth assumptions and
combining these with parameter ranges that are relatively
plausible with such high growth, for instance, fast(er) technology
change and a (more) rapid demographic transition. Admittedly,
the degree of correlation between such ranges of qualitative
storyline assumptions and model parameters are based on expert
judgments—but as argued above: some mixture of expert
elicitation and educated guesswork exists in any method that
attempts to explore future developments.

As to their purpose, both the alternative scenario method and
the derived method presented here are similar in that they do not
intend to evaluate the likelihood of the underlying storylines. It
still requires users to either accept that there are these
fundamentally unknown elements or to make their own inter-
pretation of the most appropriate storyline for their specific
question (see Section 2.1 for the discussion between Schneider
and SRES authors on the type of information that is needed
(Grübler and Nakicenovic, 2001; Schneider, 2002)). The method,
however, can be used to:
�
 Explore mission pathways—with ranges for different storylines
and using statistical information for those parameters for
which it is available.

�
 Allow for the analysis of robust strategies across different

storylines—including the ranges that are associated with these
storylines.

�
 Exploring the consistency of different storylines—and the role

of individual parameter uncertainty within each storyline.

�
 As compared to the unconditional probabilistic approach:

explore the impacts of linkages among different parameters
(which are usually ignored) and making the sampling of
parameters ranges more explicit.

The current method is not meant to replace the existing
methods as they are used for different purposes and respond to
different types of uncertainty. It rather provides a complementary
tool to deal with large and hard-to-quantify uncertainties. We
come back to the limitations and use of the method in the
Discussion section.

In terms of the actual application, we based our analysis on the
IPCC-SRES scenarios (Fig. 1) (Nakicenovic and Swart, 2000). These
scenarios are described in Section 2.3. The scenarios and story-
lines considered in this paper all represent so-called baseline
scenarios; i.e. we assume no climate policy. Uncertainties with
respect to technologies such as carbon capture and sequestration
(CCS), which are only relevant in a world that includes climate
policies, are therefore not included in the analysis. We also
consider only CO2 emissions from energy use. Our conditional
probabilistic analysis consisted of the following four steps:
1.
 Identification of parameters subject to uncertainty analysis.

2.
 Assessment of the conditional probability ranges associated

with these parameters.

3.
 Use of Monte-Carlo sampling to calculate uncertainty results

and TIMER model runs.

4.
 Identification of ranges for model outcomes and of determi-

nants adding to model uncertainty.

For step 1, we used the results of an earlier uncertainty analysis
on the TIMER energy model that was based on the NUSAP method
(van der Sluijs et al., 2002). This analysis used several techniques
to identify elements of uncertainty in TIMER, including a formal
sensitivity analysis, a 2-day expert elicitation workshop, and
model comparison and interview techniques with different model
developers. Based on this study, we identified the most relevant
model parameters to include in a formal uncertainty analysis
(either based on relevance or sensitivity). Step 2 was to quantify
the probability functions of those model parameters con-
ditional to the scenario storyline of the model (see Section 2.5).
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Next (step 3), we applied Monte-Carlo sampling of input data for
750 model runs and estimated (step 4) the probability range for
outcome parameters, and the contribution of the uncertainty
ranges assigned to different parameters (see Section 2.6).
2.3. The TIMER energy model

In this analysis we used the TIMER 2 energy model (Van
Vuuren, 2007). TIMER is a system-dynamics simulation model at
an intermediate level of aggregation: 17 world regions, five
energy-demand sectors and around 10 different energy carriers.
TIMER is a simulation model: it simulates year-to-year investment
decisions based on specific rules about investment behavior, fuel
substitution and technology. The time horizon in the present
analysis is the period from 2000 to 2100, while model calibration
is performed on the basis of historical data for the 1971–2000
period.

In the model, energy demand is calculated on the basis of
changes in sectoral value-added and GDP, population, income
elasticities, autonomous-energy efficiency improvement (AEEI)
and price-induced efficiency improvement (PIEEI) (see Fig. 2).
Market shares of various energy carriers in each sector are
determined by means of multi-nomial logit equations, taking into
account changes in price and/or subscribed fuel preferences.
Demand for electricity and hydrogen are forwarded to submodels
that simulate investments in various technological options (both
fossil-fuel based, bio-energy based and non-fuel-based technolo-
gies) to produce these final energy carriers. The decisions on
investments and fuel use are derived from the relative (perceived)
costs of each option, according to a multi-nomial logit formula-
tion. Demand for primary energy carriers (fossil fuels and bio-
energy) are finally fed into different production models that
simulate their production and trade. The costs of energy carriers
result from an interplay between depletion and learning
dynamics. Depletion leads to increasing production costs, as a
function of cumulative production of fossil fuels or of the ratio
between actual and maximum potential in the case of renewables.
Learning-by-doing leads to a decrease in production costs.
2.4. Storylines of the IPCC-SRES scenarios

Nakicenovic and Swart (2000) provide a detailed description of
the SRES scenarios, organized around the two major uncertainties
in the direction that the world could evolve. These are globaliza-
tion versus regionalization, and economic orientation versus
orientation towards social development and environmental
protection (resulting in four scenario families A1, A2, B1 and
B2). Other dimensions are considered to be implicitly or explicitly
related to these two dimensions, for instance, technology and
governance.

The storyline of the A1 scenario is based on an assumed
continuation of globalization trends and a focus on market
processes and economic objectives. Within the logic of the
storyline, economic growth is assumed to be high. As this could
spur on the demographic transition, population growth in turn is
low. In terms of the energy system, the scenario is characterized
by rapid technology development but also by energy-intensive
lifestyles. Within the A1 storyline, there are three variants based
on the emphasis in technology development: (1) balanced (A1b),
(2) fossil-intensive (A1FI) and (3) focused on renewable technol-
ogy (A1T). The A2 storyline, in contrast, emphasizes regional
(energy) security and cultural identity. Here, it is assumed that
trade protectionism and barriers between world regions will slow
down technical innovations and economic growth, which will, in
turn, tend to slow down the demographic transition in low-
income regions. The B1 storyline describes a convergent world
with emphasis on global solutions to environmental and social
sustainability, including concerted efforts towards reduction of
economic inequity, and less energy- and material-intensive
products and lifestyles (‘‘dematerialization’’). Finally, on the basis
of its position with respect to the major uncertainties, the B2
storyline emphasizes regional sustainable development. However,
for practical reasons this scenario is mainly implemented as a
combination of medium assumptions for several trends.

Although the SRES scenarios as originally implemented are still
broadly consistent with the literature, new insights have emerged
for some parameters (van Vuuren and O’Neill, 2006). For instance,
current expectations for population and economic growth for low-
income regions are now generally lower than that assumed in
SRES. Against this background, a set of updated scenarios was
recently developed using the Integrated Model to Assess the
Global Environment (IMAGE), the integrated assessment model-
ing framework of which TIMER forms the energy model (van
Vuuren et al., 2007) (see Fig. 3). These scenarios form the starting
point of the analysis presented here. We have decided to comply
with the tradition of sometimes placing the B2 storyline in the
middle of the three other, more explicitly focused, storylines. We
assume that the alternative variants in the A1 world (A1B, A1FI
and A1T) can be generated in the analysis by varying technology
parameters on the basis of statistical uncertainty analysis in the
A1 storyline—and thus need not to be specified explicitly.
2.5. Parameter values and their ranges

The most sensitive parameters identified in the quantitative
and qualitative uncertainty analysis for the TIMER model reported
by van der Sluijs et al. (2002) has been used as starting point for
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variables are in ‘‘italic’’).
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selecting uncertainty parameters considered in this study.2

Moreover, their expert elicitation was used in the specification
of useful parameter ranges. The list of input parameters is given in
Table 1 (see also Fig. 2). Assumptions for our uncertainty analysis
were made on a global scale, unless additional information was
available that allowed regional specification. Webster and Cho
(2006) recently showed that using a more limited correlation of
regional growth rates (i.e. correlation only bound by the
empirically observed level) led to a considerably reduced range
of outcomes for CO2 emissions compared to the original work of
Webster et al. (2002) (which assumed full regional correlation). As
a result, also the full correlation assumed here may result in
broader ranges in output variables than in the situation where no
perfect correlation has been assumed.

For each parameter, we use as mean value the assumptions
of the recent TIMER elaboration of the IPCC-SRES scenarios
(van Vuuren et al., 2007). The sampling ranges around these
means have, as far as possible, been based on ranges indicated in
2 Some parameters (technology assumptions for H2, wind/PV resources and

capacity credit) were added later in association with model additions made more

recently.
the literature, such as historical fluctuations or explicit statements
on their distribution. In the Appendix A, we explicitly describe the
sampling ranges of the different parameters and the reasoning
behind the choices made. In each case, we believe that the range
chosen does adequately represent the storyline of the scenario—

also in light of the purpose of the method (see Section 2.2). As
indicated in Table 1, for most parameters, the sampling range is
set the same for all scenarios and regions. Population and
economic growth form an exception, as here the sampling ranges
are also scenario- and region dependent.

It should be noted that estimating the sampling range is
complex. If ranges (or even probability distribution functions
(pdfs)) are found in the literature, these often refer to what are
meant as unconstrained situations (i.e. not depending on certain
storylines). This introduces an element of arbitrariness as these
estimates need to be interpreted in the context of our storylines
(see also Section 2.2). Although expert elicitation would be a
preferred instrument to do this, for the sake of simplicity and
time, the ranges here were only partly based on expert elicitation
(van der Sluijs et al., 2002) and partly by interpretation of
available literature by the authors of this paper. The overall
scheme used in this interpretation process is shown in Fig. 4. As
an example an unconditional range is shown on the left-hand side
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Fig. 3. Driving forces and fossil fuel CO2 emissions in the IMAGE 2.3 SRES scenarios compared to the IPCC-SRES Marker scenarios (Nakicenovic and Swart, 2000) (see also

www.ipcc.ch).

Table 1
Input parameters included in uncertainty analysis

Parameter category Parameter Central value Sampling range around

central value

Driving forces Population Scen, Reg Scen, Reg

GDP Scen, Reg Scen, Reg

Size of industry sector Scen, Reg Indep.

Energy demand AEEI Scen, Reg Indep.

Pay-back time Scen, Reg Indep.

Structural change Scen, Reg Indep.

Technology change Fossil fuels Scen, Reg Indep.

Renewables (electric power) Scen, Reg Indep.

Nuclear power Scen, Reg Indep.

Bio-energy Scen, Reg Indep.

Energy demand Scen, Reg Indep.

Hydrogen technologies Scen, Reg Indep.

Thermal power plants Scen, Reg Indep.

Resources Oil resources Reg Indep.

Gas resources Reg Indep.

Coal resources Reg Indep.

Wind resource Reg Indep.

Biomass resource Scen, Reg Indep.

PV resource Reg Indep.

Other Fuel preferences Scen, Reg Indep.

Credit factor for renewables Reg Indep.

Taxes Scen, Reg Indep.

Short-term price uncertainty oil and gas Reg Indep.

Scen: indicates that either the central value or the sampling range around this value is scenario-dependent.

Reg: indicates that either the central parameter value or the sampling range around this value is region-dependent.

Indep.: indicates that the sampling range is scenario- and region-independent (thus a constant sampling range).

D.P. van Vuuren et al. / Global Environmental Change 18 (2008) 635–654640
for a selected input variable as found in the literature (e.g. a 95%
interval). For those parameters for which pdfs were available
(progress ratios, population), the shape was mostly comparable to
a normal distribution. On this basis, we have (again for the sake of
simplicity) assumed all parameters to be normally distributed.
Next, storyline descriptions were used to choose a specific range
within the unconditional pdf for each scenario. As most storyline
statements are described as ‘‘high’’, ‘‘low’’ or ‘‘medium’’, a

http://www.ipcc.ch
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Fig. 4. Scheme used in interpretation process showing derivation of conditional ranges (if those were not available).
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standard interpretation was made. We assumed that these
statements generally refer to values above, below or near the
median value, respectively, thus assigning a corresponding half of
unconditional 95% interval to each scenario (see Fig. 4). This
implies that, unless more specific information had been available,
our conditional distribution was characterized by main value,
based on the existing scenario implementation of van Vuuren
et al. (2007), with an uncertainty range equal to half the
‘unconditional range’.

Clearly, pdfs of different parameters are not unrelated.
Relationships may exist in the form of interactions outside the
scope of the model or in the form of the scenario storyline. For
instance, the A1 storyline emphasizes that its high economic
growth is likely to spur on the demographic transition leading to
low population growth. Or, in another example, the relatively slow
rate of technological change in the A2 scenario is considered
to be in line with the low economic growth rate, which, in turn, is
an assumed consequence of trade protectionism. As our
approach captures the original implementation of the scenarios
and only samples around these ‘‘median’’ values, the existing
qualitative relationships between model parameters are arguably
preserved.

2.6. Parameter sampling and analysis

In order to limit computational load we use the Latin
hypercube sampling (LHS) technique. LHS can be used in
combination with linear regression to quantify the sensitivity
and uncertainty contributions of the input parameters to the
model outputs (Saltelli et al., 2000, 2004). On this basis, 750 runs
are made for each scenario, sampling values for each of the 26
input values (Xi). In the analysis of the output data, the values for
each output variable Y (e.g. CO2 emissions) are approximated by a
linear function of the inputs Xi, expressed by

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn þ e (1)

where bi is the so-called ordinary regression coefficient and e the
error of the approximation. The quality of the regression model is
expressed by the coefficient of determination (R2) representing
the amount of variation in Y explained by Y�e. Next, we use the
standardized regression coefficient (SRC), which is a relative
sensitivity measure obtained by rescaling the regression equation
on the basis of the standard deviations sY and sXi

:

SRC ¼ bi

sXi

sY
(2)
SRCs can take values between �1 and 1. SRC is the relative
change Dy/sy of Y due to the relative change Dxi=sXi

of the
parameter Xi considered (both with respect to their standard
deviation s). Hence, SRC is independent of the units, scale and size
of the parameters. Its value is indicative of the contribution of the
uncertainty in Xi in the uncertainty of Y. The sum of squares of SRC

values of all parameters equals the coefficient of determination,
which for a perfect fit equals 1. An absolute SRC value above 0.2
(contributing more than 4%) is indicative of a strong relationship,
provided that its contribution is also significant. Testing whether
SRC is significant is done with Student’s t-statistic (Saltelli et al.,
2000). The SRC is significantly different from zero if the absolute
value of Student’s t-statistic exceeds 2. It is important to note here
that any conclusions drawn from the regression model are only
valid if the R2 is indeed close to 1, i.e. the regression model is
indeed a fair approximation. Commonly, a value above 0.8 is
considered acceptable. Furthermore, any statements about the
SRCs are made under the assumption that the input parameters
are uncorrelated.
3. Results

We use the so-called Kaya identity as a framework for
discussion of our results. The Kaya is presented below:

CO2emis ¼ Pop �
GDP

Pop
�

EnergyCons

GDP
�

CO2emis

EnergyCons
(3)

where CO2emis stands for emissions of CO2, Pop for population
size, GDP for economic output, and EnergyCons for primary energy
consumption. The factor EnergyCons/GDP (energy intensity) is a
function of energy efficiency improvement and changes in the
structure of the economy. The factor CO2emis/EnergyCons (carbon
factor) is a function of the mix of primary energy carriers. While
Section 3.2 focuses on developments in energy intensity and in
the carbon factor, Section 3.3 looks into changes in the mix of
primary energy carriers.

Table 2 summarizes the information found on the SRC (average
value over 2000–2100 period). Results of Table 2 are included in
the discussion of the results further on in this paper.

3.1. Trends in CO2 emissions

The CO2 emissions calculated by the TIMER model on the
basis of these scenarios covers a broad interval (4–40 GtC in 2100)
(Fig. 5). The emission trajectories are not surprising: for each
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Table 2
Contribution of input variables to the uncertainty in selected output variables (average SRC in the 2000–2100 period) (see also Fig. 2 for the position of different variables)

C.D.P. van
scenario the median values follow a pattern consistent with the
marker IPCC scenarios. In the case of A1, rapid economic growth
results first in a sharp increase in emissions which levels off after
2050, mainly as a result of a stabilizing population. Under A2,
Vuuren et al. / Global Environmental Change 18 (2008) 635–65464 2
emissions grow slowly first (as a result of slow economic growth),
but continue to grow in the second half of the century, driven by
further population growth and an increasing share of coal use (see
further on). The B2 scenario shows an intermediate pattern
olour coding indicatesthe level of contribution (categories are SRC4 155, SRC 1525–1525, SRC 0.10–1525 and SRC41505). Results are indicated separately for the A1, A2, andB1 and B2 scenarios (left upper corner, left lowercorner, right upper corner, right lower corner)
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Fig. 6. Frequency distribution of cumulative emissions 2000–2100.

Fig. 5. CO2 emissions as a function of time.
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throughout the century, while the B1 scenario follows a pathway
that clearly differentiates from other scenarios, peaking already
around 2050. Here, the assumed (normative) ‘‘pro-active’’
assumption with respect to fuel choice and the fast technology
change lead to very different results than other scenarios after
2050.

Of importance here are not so much the median values, but the
formalized uncertainty ranges. Fig. 5 shows a relatively strong
overlap between the 95% interval ranges of the A1, B2 and A2
storylines, and of B1 up to 2040. The A1 scenario range, however,
lies above the range of other scenarios as a result of high economic
growth assumptions, but results are more widespread in the
second half of the century, overlapping almost completely with
the B2 range (around 15–25 GtC). The 2000–2100 cumulative
emissions (Fig. 6) range from an annual average of 800–1200 GtC
for B1 to 1200–2500 GtC for the other scenarios. The ‘‘medium-
assumption’’ scenario B2 range overlaps with the low-end range
of ‘‘high growth’’ A1 and ‘‘fragmentation scenario’’ A2. The A2
shows the widest range of all three scenarios, extending both on
the lower and upper sides beyond the A1 range. The peaks in the
pdfs for the A1, A2 and B2 scenarios are in close proximity to each
other, with an average annual value of 1500–2000 GtC.

Table 2 shows that the most important determinants of global
carbon emissions are the input factors that determine energy
demand: income, population, efficiency improvement and struc-
tural change. Other factors that play a role are uncertainty in fuel
preferences, technology improvement rates for renewables and
energy demand and oil resources. Interestingly, other factors are
important for different storylines. For instance, population is
relatively important in A2, autonomous efficiency improvement in
A1 and fuel preferences in A1 and B1. It is very interesting to note
that these observations are consistent with the original story-
line—and confirm added value of the conditional approach:
different parameter uncertainties are important under different
storylines.

3.2. Energy intensity and the carbon factor

For energy intensity (Fig. 7), all scenarios show a distinct
improvement: most progress occurs in B1 and the least improve-
ment in A2. The uncertainty range around the development path
of B1, A1 and B2 partly overlap. The development pattern
occurring in the A2 scenario is clearly distinct (slow) as a result
of the relatively slow development of GDP and unfavorable
technology assumptions. The uncertainties determining the
energy intensity improvement (see Table 2) are GDP, AEEI,
structural change (both between and within sectors), the oil
resource and fuel preferences. Short-term uncertainty in energy
prices also plays a role. The influence of the first three factors
can be readily understood from assumed model relationships
(GDP drives AEEI and structural change), while other factors
operate via PIEEI.

A very wide range of results is found for development of the
carbon factor (CO2 emissions per unit of energy) strongly related to
the storylines. In contrast to energy intensity, the carbon factor has
been nearly constant over the last 30 years (indicating a relatively
constant energy mix). This trend is continued in the ‘‘medium’’ B2
range—although by the end of the century, depletion of fossil fuels
results in a distinct drop. In the A2 range, the opposite happens as
a result of a move towards coal (see further). The A1 range lies
somewhat lower due to optimistic technology assumptions
(important for the penetration of non-fossil-based technologies).
Finally, the carbon factor for B1 rapidly declines—driven by the
focus on renewable resources. The uncertainty ranges are larger for
B2 and A1 than in the other two scenarios resulting from the fact
that their storyline is less binding for fuel choice (B1 focuses on
renewable sources, while A2 is forced into coal due to trade
restrictions). In addition to the factors that impact energy demand,
the uncertainties in fuel preferences and several resource and
technology parameters contribute to the ranges found for the
carbon factor. Again, the contribution of the different factors
depends on the storyline. Uncertainty in GDP growth is relatively
important for the uncertainty in energy intensity in the A1
scenario; while the uncertainty in structural change is relatively
important in B1 and B2. For the carbon factor uncertainty,
population and gas resources stand out in A2 (both influencing
depletion dynamics in this scenario) and technology development
for renewables in B1.

3.3. Fuel mix

Fig. 8 shows the global consumption of coal, oil, natural gas
and renewables in each of the scenarios. As can be seen in Fig. 2,
these fuels are substitutes. Three factors play a major role in
substitution: fuel preferences, technology change and depletion.

The availability of extractable fossil fuel, in particular oil,
makes resources a current subject of debate (Witze, 2007). Some
believe that the world has already reached a maximum rate at
which oil can be produced and further depletion will force
consumption to decline (the so-called peak-oil hypothesis).
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Others, however, claim that there will not be real limits on oil
production for the next 30 years. Here, we have based the
uncertainty ranges for conventional resources on the probabilistic
statements of USGS (as summarized in Mulders et al., 2006). On
the low side, the USGS estimates coincide reasonably with those
of peak-oil proponents (Laherre and Cambell, 1999; Deffeyes,
2006). On the high side, the USGS estimates are consistent with
claims that there will be abundant oil resources available in the
next decades (Witze, 2007). For unconventional fossil resources,
the situation is more complicated as probabilistic resource
estimates have not been established and estimates vary from
hardly any extractable reserves to nearly unlimited supplies. Here,
we vary unconventional fossil fuel estimates over a wide range,
but based on the large estimates of these resources, their
availability continues to dominate supply as indicated in Fig. 9.3

In our results for oil a clear peak in consumption levels occurs
in about half of the scenarios. However, such a peak occurs in
different periods, at different levels and for different reasons. In
fact, even for high resource estimates, oil use is likely to peak as a
result of saturating energy demand (driven, for example, by a
stabilizing world population) in combination with slowly rising
prices. Low-resource assumptions in combination with competi-
tive alternatives show a peak in oil use before 2040. In our
calculations, the extreme form of the peak-oil theory (an oil peak
before 2010) cannot be reproduced given: (1) assumed inertia, (2)
availability of large unconventional resources and (3) the fact
that no explicit model relationship exists between the extraction
rate and the degree of depletion (part of the peak-oil hypothesis).
Table 2 shows that the range of oil consumption pathways is
determined by energy demand, the size of the oil resource and the
technology factors for fossil fuel production. In addition, the
assumed potential of oil’s main competitor, bio-energy plays a
role (both resource size and technology development).

Fig. 9 compares the long-term supply-cost curves under the
low, medium and high resource estimates. Sampling is done in
between these three extremes (in time, the curve changes by
moving to the left along the x-axis as a result of technology
3 In this study, we applied a factor 2 variation, upwards and downwards, in

unconventional resources. This range, however, is not wide enough to fully capture

the very low reserve estimates of oil-peak proponents, nor does it capture a

deliberate choice to refrain from developing these resources for environmental

reasons.
development). In the figure, resource availability is compared to
2050 and 2100 cumulative consumption levels. As shown, under
the medium assumptions, conventional oil is more-or-less
depleted around 2050. However, the large amounts of unconven-
tional resources are still available for exploitation. If supply is
more limited, by 2050 also the most accessible unconventional
resources are likely to be depleted, while at the other end
of the range, high estimates imply that even by 2050, conven-
tional resources have only been exploited by about two-thirds. In
2100, cumulative consumption levels vary from 3000–5000
billion bbls, in which the majority of consumption comprises
non-conventional resources under each set of assumptions. As
such scenarios imply a transition to unconventional oil resources,
the uncertainty in production costs, the associated impacts on the
environment, and the gross greenhouse gas emissions deserve
further attention.

Uncertainty in natural gas use is determined (Table 2), apart
from demand factors, by gas resources, short-term fuel price
uncertainty, technology development for fossil fuels, oil resources
(as substitute) and fuel preferences. Fig. 9 shows that at similar
cost levels, more natural gas than oil is available. Correspondingly,
natural gas use grows more rapidly than oil use (assuming no
constraints on infrastructure investment) but still peaks after
2040–2060. The main reason is that resource depletion results in
higher natural gas prices and, given the flexibility of fuel choice in
the power sector, leads to relatively easy substitution away from
natural gas.

For coal use, a distinct difference is found between the B1
scenario and the other three scenarios (Fig. 8) caused by the
assumed preferences in B1 for clean fuels. In all other scenarios,
coal consumption in the absence of climate policy is likely to
increase. Coal use in 2100 ranges from 30 EJ to a staggering
1000 EJ. On the high side, the A2 scenario dominates the overall
range. The uncertainty in coal use is determined by similar factors
to those for natural gas use, although here too, the uncertainty in
renewables in the power sector plays an important role.

Finally, the trajectories for other energy carriers (renewables
and nuclear) show a rapid expansion in all cases. The highest
values are found for the B1 and A1 scenario (in B1, rapid
technology development and a preference for clean fuels are
major drivers; in A1, a major driver is rapid technology develop-
ment in combination with high energy demand). As the A1 range
is wider than the B1 range, the highest values are, in fact, found
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under the A1 storyline. The lowest values are found under the A2
and B2 scenarios.

The trends as discussed here are also depicted in Fig. 10 which
shows shares in total consumption (note that scenarios have very
different overall consumption levels.) In the first decades, all
scenarios move in the direction of increasing shares of oil/
gas—followed by a decrease as a result of increasing prices (thus
reducing competitiveness with other forms of energy). In the B1
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scenario, the response is to go in the direction of an energy system
consisting of primarily renewable energy. The A2 scenario
responds differently to increasing oil/gas prices by moving in
the direction of coal. The uncertainty range surrounding this
scenario is smaller. The other 2 scenarios follow a more
intermediate trajectory.

Underlying the fuel choice in the model are the energy prices
and production costs. As indicated in Fig. 2, production costs are a
function of depletion and learning-by-doing; both are driven by
cumulative production. These costs are shown for fossil fuels in
Table 3. Interestingly, the differences between the scenarios are
rather small—given the feedbacks in the model: scenarios with
relatively abundant resources or rapid technology development
lead to high exploitation rates and thus, indirectly, to higher
prices. For oil, the scenarios indicate a 2–3.5-fold increase in oil
prices across the century. For gas, an even higher increase is
found. In contrast, coal prices increase only modestly (certainly in
absolute numbers).
4. Discussion and comparison to other approaches

In the Introduction, we have already indicated that uncertainty
can be classified in different ways. Obviously, the source or type of
uncertainty has important consequences for the way it needs to
be managed in scenarios. Different methods were applied in the
literature to deal with uncertainty. In addition to alternative
scenarios and the full probabilistic approach, also other methods
have been applied such as model comparison (e.g. Weyant et al.,
Fig. 10. Primary energy expressed in the contribution of three main categories:

coal, oil/gas and other (bio-energy and non fossil-based electric power). The

corners of the triangle indicate 100% other (left-bottom), 100% coal (right-bottom)

and 100% oil/gas (top).

Table 3
Fossil fuel prices

Oil prices ($/GJ) Gas prices ($/G

2000 2050 2100 2000

A1 3.7 6.6–9 8.7–11.3 2.2

A2 3.7 7.4–10.0 10.6–14.9 2.2

B1 3.7 6.1–8.7 7.7–10.0 2.2

B2 3.7 5.9–8.6 8.3–10.8 2.2
2006) and the NUSAP method (van der Sluijs et al., 2002). Each of
the uncertainty methods relate in a different way to the sources of
errors indicated above. With respect to sources of uncertainty,
formal probability analysis, in particular, addresses ontic uncer-
tainty and statistical representations of epistemic uncertainty
(a-b1; see Section 2) by expressing uncertainty ranges in pdf of
input variables. In terms of scale, the uncertainty addressed by
this method occurs mostly at the level of parameters (1). The
alternative scenario method, in contrast, addresses epistemic or
human reflexive uncertainty (b2, c, d), in particular, by varying
values of input parameters across the scenarios. In terms of scale,
the scenario method focuses on the level of parameters (1), but by
adding storylines outside the model on more conceptual issues
(3). Model comparison as a method to deal with uncertainty is
particularly relevant for uncertainty originating from value
pluralism and ignorance on model relationships (c, 2). By
comparing different models some model-based biases can be
made explicit (although collective bias will not be detected).

Earlier scenario studies can be classified on the basis of the
methods discussed above (Fig. 11). The studies of Webster et al.
(2002), Sweeney et al. (2006) and Kouvaritakis and Panos (2005)
can be interpreted as applications of the fully probabilistic
approach. The study of Richels et al. (2004) is an application of
a more conditional probabilistic approach—as their results are
made conditional to one major unknown, technology change (two
sets of scenarios, one with optimistic technology change assump-
tions and one with pessimistic assumptions). The EMF-21
modeling study (Weyant et al., 2006) is an example of an
application of the model comparison method to gain insight into
uncertainty. The Millennium Assessment scenarios (MA) provide
an example of the pure alternative scenario approach as based on
a diverging storyline implemented by only one model for each
topic these scenarios looked at (Carpenter and Pingali, 2006). The
SRES report (Nakicenovic and Swart, 2000) combined two
J) Coal prices ($/GJ)

2050 2100 2000 2050 2100

5.4–8.0 7.4–9.9 1.1 1.4–1.5 1.9–2.3

4.7–5.9 8.5–10.8 1.1 1.3–1.4 2.3–3.2

4.3–6.3 7.1–9.2 1.1 1.3–1.4 1.6–1.8

4.2–6.1 7.7–9.9 1.1 1.4–1.5 2.0–2.3

Fig. 11. Overview of earlier studies in comparison to the different methods for

dealing with uncertainty in scenario analysis.
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approaches: development of 4/6 different storylines, but also
comparison of the results of six different models.

Fig. 12 presents the outcomes of the studies indicated above for
the cumulative and annual CO2 emissions in 2050 and 2100. The
results, first of all, indicate that uncertainty increases in time in
every single study. The ranges for each of the SRES scenarios in the
original SRES report seem to be somewhat wider than the range
developed here. There are two main explanations for this. First of
all, the SRES range originates from the use of different models and
hence also reflects model differences. For the A2 scenario, for
instance, the high end of the range in SRES is represented by the
ASF model that always shows relatively high coal consumption
levels relative to other models, while the MARIA model shows
high penetration rates of nuclear power resulting in relatively low
emission levels (van der Sluijs et al., 2002). A second reason for
the wider SRES range in the full range results of the A1 scenario is
the explicit attention to the role of technology (A1T versus A1FI)
(Nakicenovic and Swart, 2000). Although the sampling here
allows for wide ranges of technology development rates and
technology preferences, the resulting range still does not capture
the one from the more explicit storyline approach taken in SRES.

On average, the scenarios of this study show slightly higher
emissions than the corresponding IPCC-SRES scenarios. The
reason for this is not obvious: new insights into population and
income development, into fossil fuel resources and into
1995–2005 emission trajectories and model bias may all play a
role. Only for B2, it is clear that some of the original SRES models
have paid more attention to the ‘‘environmental orientation’’ of
the original storyline. A model comparison study would be
Fig. 12. Cumulative emissions in the 2000–2100 period according to different studies

et al., 2002; RMW ¼ Richels, Manne and Wigley, 2004).
needed to gain more insight into the reason for higher CO2

emissions in this study vis-à-vis SRES for the other scenarios.
Comparing the results of this study to the fully probabilistic

studies shows that the latter give both broader (Webster et al.,
2002) and smaller range of outcomes (Richels et al., 2004;
Sweeney et al., 2006) compared to the overall range of this study.
The former is somewhat unexpected given the expectation that
purely probability-based approaches may suffer from a bias
towards one central set of assumptions. It should be noted,
however, that the EPPA model used by Webster seems to be less
constrained by inertia than TIMER: the lowest trajectories of
Webster et al. (2002) show very low emissions in the first part of
the century as a direct model response to certain assumptions.
More recently, Webster and Cho (2006) concluded that the
assumption of perfect correlation in economic growth rates
among regions is also causing wider ranges in their analysis
compared to a case where historically observed levels of
correlation were accounted for.

The combination of the two ranges identified by Richels et al.
(2004) roughly coincides with the range found here for the central
B2 storyline. It should be noted that Richels et al. (2004) only vary
a limited set of parameters in their analysis (population, GDP and
technology assumptions) resulting in a narrower range. Compar-
ison with the Sweeney et al. (2006) range leads to comparable
outcomes—while the range of the modeling effort by Kouvaritakis
and Panos (2005) (for 2050 only) shows the results of scenarios in
this study to overlap well with their unconditional range.

Finally, we compare our results to the outcome of the EMF-21
study. The modelers participating in that study were all asked to
addressing uncertainty. (K&P ¼ Kouvaritkis and Panos, 2005; Webster ¼Webster
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Table 4
Comparison of methods

Uncertainty method Indication of preferred application, strengths and weaknesses Type of uncertainties

typically addressed

Full probabilistic analysis � Formal methodology

� Very suitable for dealing with statistical uncertainty

� Requires subjective assumptions on sampling ranges.

a, b1, 1

Storyline-based

alternative scenarios

� Very suitable for dealing with uncertainties originating from societal choice, value interpretation and

uncertainty or ignorance in relationships

� Able to construct consistent sets of coevolving variables.

� However, method requires many subjective, and often arbitrary choices.

b2, b3, c, d, 1, 3

Model comparison � Formal methodology

� Suitable for comparing uncertainty in formalized relationships or for

� detecting model bias

� Comparison often complex of many parameters and relationships are different across the models.

b, 2

Conditional probabilistic

method

� Allows for using the strengths of the storyline-based method (assumptions for not-easily quantifiable

parameters; consistent parameters choices) while also using statistical approaches.

� But requires considerable work and still arbitrary estimates for parameter estimates.

a, b, c, d, 1, 3
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contribute one single, modeler’s preference baseline. In most
cases, these baselines can be interpreted as the central-estimate
scenarios of different modelers/models. The range across the EMF-
21 outcomes coincides reasonably with the B2 range of this study.
The range is considerably narrower than the whole across all four
scenarios of this study: neither the B1, nor the A2 range is
represented, indicating that most modelers would not regard
them as central baselines.4

The comparison of the studies as a whole provides some
insight into the importance of different forms of uncertainty:
1.
Jap
Uncertainty analysis within one particular model, as done here
using the conditional probability approach may result in a
similar range of outcomes, as generated by a multitude of
models (such as EMF-21).
2.
 Fully probabilistic uncertainty analysis may result in ranges
that are broader than those derived by storyline-based
methods (Webster et al., 2002), but also result in more narrow
ranges (2004). The differences between these studies show the
role of subjective choices.
3.
 The uncertainty ranges generated by TIMER around the
different storylines compare well to the ranges that are
obtained by the other uncertainty studies.

An intriguing question remaining is what can be said about the
total probability of the development of the 2000–2100 carbon
emissions (the focus on this indicator comes from its relevance for
long-term climate change). Some observations can be made on
the basis of Fig. 12:
1.
 There is an overlap in the ranges of the A2, B2 and A1 scenarios
in this study (between 1400 and 1600 GtC) despite the
differences in storyline.
2.
 The fully probabilistic studies seem to show the strongest
overlap in the 1100–1700 GtC range (with the highest prob-
abilities around 1400 GtC).
3.
 The modeler’s preference baselines of EMF-21 range from 1000
to 1800 GtC—with a central value of 1400 GtC.
4 The EMF-21 study covers mainly economic models from the USA, Europe and

an, possibly providing some bias in expectations.
Combined, scenario studies appear to obtain a majority of their
results within a much more confined range than the total
uncertainty range across all the different storylines. The question,
however, remains: is this caused by collectively biased expecta-
tions with respect to the future—or does ‘‘the balance of
evidence’’ suggest an indication of (now) likely emission levels,
despite fundamental uncertainties? In this context, one may note
that the full range of B1 and part of A2 is outside the ranges
suggested here.

The analysis here is constrained to baseline (no climate policy)
scenarios. A similar analysis can be done for mitigation scenarios,
(1) either to identify probabilistic outcomes of scenarios condi-
tional on both storyline and stabilization target (compare Webster
et al. (2003) for a comparable analysis in the fully probabilistic
approach), (2) or to identify strategies robust under different
storylines (Groves and Lempert, 2007).

Based on the results of the analysis, and the deliberations that
were made earlier, Table 4 represents an attempt to summarize
some of the strengths and weaknesses of the various approaches.
5. Conclusions
�
 Conditional probabilistic scenario analysis can be used as a way to

introduce statistical methods of uncertainty analysis, while

recognizing deep uncertainties. Uncertainties represent a crucial
element of scenario analysis. Two main methods are often
presented as options for uncertainty analysis: the scenario
approach and the fully probabilistic approach. This paper
shows that it is possible to combine the two approaches
(conditional probability analysis) in a way that allows formal
analysis of those elements where meaningful probability
estimates can be established, while still retaining the strong
elements of a storyline approach to uncertainty. Storylines are
a device for structured thinking about a future with deep
uncertainty while also assumptions regarding the reasoning
behind the choice of driving forces, parameter values, and
modeling approaches are made more explicit. The added value
of the conditional probabilistic approach compared to a non-
conditional approach can also be observed from the analysis of
most relevant uncertainties. These are shown to be a function
of the storyline. Compared to the default alternative scenario
method, the conditional probabilistic method (1) adds the
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strength of statistical methods in situations where they can
meaningfully be applied, and (2) provides ranges for each
scenario. The method, of course, also has also the limitations
characteristic for the two methods it combines. In particular, it
does not provide a single estimate of future emissions because
no probabilities are assigned to the underlying storylines
themselves. The method is also more elaborate than the
default storyline-based alternative scenario method.

�
 The model calculations suggest that 21st century cumulative

emissions range from around 800 to 2500 GtC in the absence of

climate policy. The low end of the range originates in a different
storyline than the high end of the range. The results indicate
that CO2 emissions from the energy system may develop in
very different directions, with emissions ranging from 4 to
40 GtC in 2100 or in terms of cumulative 2000–2100 emissions,
800–2500 GtC. The reason for this wide range results partly
from the fundamentally different way the 21st century society
could develop. The range found in this study is consistent with
the range found in the SRES scenario study (from which the
storylines used here are derived), but also with the range found
in the fully probabilistic study of Webster et al. (2002). The
smaller uncertainty ranges suggested by some other studies all
coincide with the uncertainty range identified here for the so-
called B2 world, based on a more-or-less business-as-usual
type of storyline. As such, the conditional probabilistic
approach can give one a sense of whether existing emissions
scenarios are biased in a particular direction.

�
 Emissions for a clearly defined storyline could still include an

uncertainty range of more than 40%. These ranges originate from
stochastic uncertainty and existing ambiguity in each storyline.
Important variables contributing to this uncertainty are un-
certainty in the development of driving forces such as popula-
tion and income, uncertainty in energy efficiency improvement,
oil resources, fuel preferences and technology development of
biofuels and renewables. There seems to be a dominance of
‘‘energy demand’’-related factors as causes of uncertainty.
However, one needs to realize that in TIMER (just as in most
other energy-system models) the supply sector is described with
considerably more detail than the demand sector, and as a result
the effects of single parameter values are smaller.

�
 There is considerable overlap in the uncertainty ranges identified

for the A2, A1 and B2 storylines. The results for B1 stand out.
Especially, the interpretation of the B2 scenario as a ‘‘medium’’
pathway, and the A1 storyline, results in a clear overlap of
outcome ranges for several parameters. The B1 storyline, a
le A1
in storyline assumptions underlying the SRES scenarios
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normative choice for sustainable development and away from
fossil fuels, produces very different results.

�
 The storylines explored here are deficient in many ways—and are

therefore not likely to come true. For instance, the assumption of
‘‘no climate policy’’ is, given the current focus on climate
change, highly unlikely. Moreover, the feedbacks of climate
change to the drivers have not been considered. Similarly, the
TIMER model also does not capture the possible feedbacks of
the energy system on the economic drivers (e.g. of very high
fossil fuels as a result of depletion). Finally, the scenarios are
derived from caricature storylines that are continued over 100
years without surprises. Surprises, however, may occur, such as
technology breakthroughs (fusion) or major wars. Further-
more, societies may shift from ‘‘one storyline to another’’.
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Appendix A. Storyline assumptions and assumed
parameter ranges

A.1. Assumed ranges for driving forces

The main (exogenous) driving forces of energy demand in
TIMER are GDP growth, economic structure (here represented by
share of industry in GDP) and population growth (Table A1).
1.
 Gross domestic product (GDP): In the model, energy demand
for five sectors is driven by GDP or sectoral value added
(see below).
2.
 Share of industry (% of GDP): Energy demand in the industry
sector is driven by industry value-added, in the service sector
by service value-added. As energy intensity is generally lower
in the service sector than in the industry sector, a shift in
sectoral composition of GDP will influences energy demand.
3.
 Population: Population drives energy demand in all sectors.

We have analyzed the regional growth rates of four large global
regions (as used in the IPCC-SRES report) for economic growth in
the 1890–2000 period (based on 10-year averages in the
B1 B2
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n
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Local solutions to
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Table A2
Description of sampling ranges for driving forces

A1 A2 B1 B2 Rationale

GDP (% growth in constant$ in the 2000– 2100 period)

Default values 2.7 1.2 2.3 2.2 Here global values are shown. However, in reality we use

regionally defined growth rates consistent with the IMAGE 2.3

implementation of the IPCC-SRES scenarios.

Sample ranges 2.4–3.2 1.0–1.5 2.0–2.7 1.6–2.4 Regionally defined ranges based on the historically founded values

Share industry (% of GDP in 2100)

Default values (% of total GDP) 0.36 0.35 0.27 0.37 Based on the IMAGE 2.3 implementation of the SRES scenarios and

underlying WorldScan calculations (IMAGE-team 2001)

Sample ranges 0.32–0.40 0.31–0.39 0.24–0.31 0.33–0.41 0.04 used on the basis of current variation among OECD regions

(15% range in total)

Population in 2050 and 2100 (billion)

Default values 8.2/6.9 10.4/12.5 8.2/6.9 9.0/9.1 Both default values and ranges are based on O’Neill (2004)

Sample ranges 7.6–8.6/ 8.5–13.7 7.6–8.6/ 8.3–10

5.6–8.2 9.2–16.0 5.8–8.0 7.5–10.8
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1890–1970 period on the basis of HYDE data). Furthermore, we
studied the 5-year moving average for the 1970–2000 period
(based on the World Bank Development Indicators). For the OECD
region, a normal distribution was found—with an average per
capita growth of 2.2% and a 95% range from 1.2% to 3%. The other
three regions (Central Europe and the Former Soviet Union (REF),
Asia (ASIA) and Africa�Latin America�Middle East region (ALM))
had much wider historical ranges with distinct temporal patterns.
For Asia, growth rates were found mostly in a 0–1% range during
the 1890–1970 period and a 4–6% range in the 1970–2000 period
(after the ‘‘take-off’’ phase of some of Asia’s economies). A broad
range was also found in the ALM region, but with almost an
opposite temporal distribution.

Based on the historical distributions, we could propose
regionally defined economic growth rates and their distributions
for each region, depending on the four storylines—with the mean
values roughly consistent with the IMAGE 2.3 implementation of
the IPCC scenarios (see Table A2). It should be noted that using the
5–10-year growth values as indicative for the uncertainty in long-
term growth pattern, the resulting 100-year growth level for the
highest (A1) and lowest (A2) storylines are considerable higher
and lower, respectively, than the growth rates that have actually
occurred in the past over such a long time period.

For economic structure, the size of the industrial sector plays
an important role as it is the most energy-intensive sector. The
central values (by region as a function of time) were set on the
basis of the IMAGE implementation of the IPCC-SRES scenarios
(IMAGE-team, 2001), in turn, based on the runs of Bollen (2004).
Analysis shows the current variation among OECD regions for
the relative size of the industry sector (compared to GDP) to
be around 15%. On this basis a conditional sampling range of 8%
(4% above and below the central value) was assumed.

Finally, for population O’Neill (2004) published a set of scenarios
conditional to the SRES storylines. We took the 95% intervals from
this publication, and sampled within these ranges, assuming normal
distribution. The assumption of normal distribution is reasonably
consistent with the distributions reported by O’Neill.
A.2. Assumed ranges for factors determining energy demand

In addition to the driving forces discussed above, several other
factors determine energy demand: these include AEEI, PIEEI and
structural change (SC) within sectors.
1.
 AEEI captures forms of efficiency improvement not caused by
price changes but general technology improvement. For
example, the presence of more efficient boilers at the time an
old boiler is replaced.
2.
 PIEEI: This factor describes the impact of increasing prices on
energy efficiency.
3.
 SC: This factor describes the energy intensity development
within sectors independent of efficiency improvement (e.g.
transport modes).

In TIMER, AEEI is assumed to relate to GDP growth (Table A3)
in a similar way as described by Richels et al. (2004), although we
also assume that this percentage declines over time as a result of
(slowly) approaching thermodynamic limits. Interpreting the
variation (unconditional range) applied by Webster et al. (2002)
(0.25–1.5% annually for OECD countries) means that the samples
mostly 25% in either direction relative to his economic growth
rates. Given no other inputs on this parameter, we have assumed
these numbers to form the basis of our ranges.

The contribution of price-induced energy efficiency improve-
ment in TIMER depends mainly on the assumed pay-back time.
We applied a variation of 15% to these values—based on the
default assumptions made in each scenario and the requirement
to keep the scenarios sufficiently distinct.

Finally, structural change by TIMER captures changes in the
type of activities over time within each sector (e.g. shifts from
heavy to light industry). The TIMER description assumes a long-
term saturation of energy demand per sector (in terms of GJ per
capita). In the scenarios, one factor is used to scale this saturation
up/downward as a function of time based on the storyline of the
scenario. This factor reflects the emphasis on energy-intensive
services in the scenario and is used here for uncertainty analysis.
To assess its potential range, we analyzed the differences in per
capita energy consumption of the different representations of the
SRES scenario per storyline (Nakicenovic and Swart, 2000). Values
of 30–50% variation among the central values were generally
found for different model representations of the same storyline.
Assuming this to a reasonable indication of the uncertainty range,
we used a sampling range of 15% upwards and downwards.

A.2.1. Technology change

Technology is represented in TIMER both by learning curves
(progress as a function of cumulative experience) and time-
dependent exogenous inputs. We have clustered the technology
variables into different groups: learning curves for (1) fossil fuel
production, (2) renewables in the power sector, (3) nuclear power,
(4) bio-energy and (5) energy demand, (6) hydrogen technologies
and time-dependent assumptions for (7) thermal power plants.
The learning curves are a function of the so-called progress ratio.
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�
 Progress ratio: A measure of improvement for a doubling of
experience, where a value of 0.8 indicates a 20% improvement
for each doubling.

Assessments of the historical pdf have been made for technology
in general (Argotte and Epple, 1990) and energy technology in
particular (McDonald and Schrattenholzer, 2002). The results of
these studies tend to reveal wide ranges—with most values found
between 0.7 and 1.0. Progress ratios in TIMER are dependent on
technology, time and scenario. Taking the conditional range to be
half the unconditional uncertainty range (0.3), we have samples for
each scenario with a value of 0.07 above and below the default
values. Sampling was done independently for the clusters of
technologies mentioned above. For thermal power technologies,
upward and downward sampling of 4% was applied on the basis of
the variation across the different scenarios (Table A4).

A.2.2. Resources

For fossil fuel resources, standard values in TIMER are based on
those reported by Mulders et al. (2006) using the methodology of
Rogner (1997). For each fossil fuel, Rogner provides different
categories varying in production costs and probability of occur-
rence (each category assumed to have higher production costs
than the previous). Together, these categories form a long-term
supply-cost curve for oil, natural gas and coal. For conventional
resources of oil and gas, the Mulders et al. numbers (cate-
gories1–4) are based on the USGS estimates for the reserves and
resources, with a different likelihood of occurrence (costs
estimates added by Rogner).
1.
Tab
Des

Pro

Def

Sam

Effic

Sam

Tab
Des

AEE

Def

Sam

Acc

Def

Sam

Stru

Def

Sam
Resources of fossil fuels: Available amounts of oil, natural gas
and coal per costs category.
le A4
cription of sampling ranges for parameters determining technology progress

A1 A2 B1 B2

gress ratios

ault values 0.7–1.05 0.7–1.05 0.7–1.05 0.7–1

ple ranges 70.07 70.07 70.07 70.0

iency of thermal power plants

ple ranges 70.04 70.04 70.04 70.0

le A3
cription of sampling ranges for parameters determining energy demand

A1 A2 B1 B2 Rationale

I (as % of GDP per capita growth)

ault values 0.28–0.44% of GDP per capita growth

(depending on region and sector)

ple ranges 725% 725% 725% 725% Based on th

epted pay-back times (years)

ault values 3.4 2.8 6 3.2 Industry se

ple ranges (%) 715 715 715 715 Based on th

ctural change (2100 multiplication on energy demand compared to standard TIMER set

ault values 1.75 1.50 0.85 1.25 A1 is repre

zones) of 2

ple ranges (%) 715 715 715 715 The propos

representat

use of the s
2.
 Renewable resources: Maximum use by category of renewable
energy; in TIMER the form of the supply-cost curve is kept
constant.

In our analysis, we assumed these estimates to be independent
of the storyline and were able to assign probability values to each
of these categories in such way that the total probability of these
categories collectively again reflected the original USGS prob-
ability estimate for total conventional oil and gas resources. This
results in a range of conventional oil resources of 7–17 ZJ.
Interestingly, the lower end of this range equals estimates
provided by the proponents of the ‘‘end-of-cheap-oil’’ hypothesis
(Laherre and Cambell, 1999). In other words, in most of our
probabilistic runs we included substantially higher resource
estimates than the peak-oil proponents but our runs do not
preclude their estimates.

For unconventional resources of oil and gas and for coal,
probability ranges are much harder to derive as no concrete ranges
were found in the literature. For unconventional gas resources, for
instance, ranges provided in the literature seem to have more
relevance for geology than for energy production. In contrast to
conventional resources, the values provided by Rogner do not
represent the upper range, but best-guess estimates. Therefore for
unconventional oil, we assumed a rather arbitrary range of 50%
around Rogner’s estimates, while for gas, we assumed a range of
70% relative to Rogner’s estimates. The higher number for natural
gas comes from the fact that here unconventional resources
represent mainly gas hydrates, an enormous source of potential
energy but characterized by a huge uncertainty with respect to the
potential use of natural gas. For coal, Rogner’s estimates represent
best-guess values for each category. We applied a sampling range,
both upwards and downwards, of around 25%.
Rationale

.05 Range captures all values as function of time, technology and

storyline

7 This represents about 25% of the unconditional range in p-values

found in the literature (Argotte and Epple, 1990; McDonald and

Schrattenholzer, 2002)

4 Sampling based on the assumed variation across the differences

scenarios

e variation applied by Webster et al.

ctor; similar trends for other sectors

e assumed default values

ting)

sentative of a saturation of per capita energy use (at high income and temperate

0–30% above US levels; B1 is found 30% below US levels

ed range complies with the general rule assuming that the B1–A1 range is

ive of the full uncertainty range. The range between differences per capita energy

ame scenario as reported by different models in SRES report is also around 30–50%
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3.
 Capacity credit: The capacity value assigned to renewables is
assumed to decline with increasing renewable penetration. The
shape of this curve can be influenced by the credit factor.
4.
 Energy taxes: Taxes on top of energy prices as function of sector
and region.
5.
 Short-term uncertainty in oil/gas prices: A factor added to the
model to reflect factors influencing oil and gas prices outside
the scope of the model. This factor ensures that the oil price is
set at a level of 50–60$/bbl in 2005.

The fuel preference values were varied in the analysis by 50% for
each scenario. Since no external information was available, the
range was based on the variation in values in the historical
calibration and across different scenarios.

The added value on transport costs, reflecting trade barriers,
were varied by 50% in either direction in our probabilistic
modeling. Again, the range is based on their values in the original
scenarios.

An important factor for the penetration of intermittent
renewables into the electric power system is the assigned capacity
credit as a function of penetration. On the basis of various curves
published in the literature (see Giebel, 2005), we have shifted the
curve used in TIMER with a factor of 2 upward and downward.

For secondary energy taxes, values in the scenarios were based
on current values in different regions. In the uncertainty analysis
these levels were varied by 50%, based on the existing differences
between the scenarios and current regional variation.

Finally, present-day oil and natural gas prices in TIMER can
only be represented by an assumption that other factors—long-
term supply-cost curves and simple price-setting equations—have
a substantial influence on fossil fuel prices (the equilibrium price
of oil in TIMER is around 25 US$/bbl). Important factors that
currently contribute to high oil prices and which are not
represented in the model are lack of production capacity,
speculation and supply insecurity. As it is uncertain how long
these factors will continue to determine oil prices, the short- to
medium-term price increase has been added as an additional
uncertainty. This factor is defined by the year that prices return to
equilibrium, assuming a linear decrease (varying from 2008 to
2050). The gas price is assumed to be coupled to the oil price
(Table A6).
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