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Abstract

Antibodies that discriminate protein isoforms differing by modifications at

specific amino acids have revolutionized studies of their functions. Skp1 is a

novel nucleocytoplasmic glycoprotein that is hydroxylated at proline-143 and

then O-glycosylated by a pentasaccharide attached via a GlcNAcα1,4(trans)-
hydroxyproline linkage. Skp1 isoform-specific antibodies were successfully
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obtained by immunizing mice or rabbits with KLH-coupled synthetic peptides

bearing either unmodified Pro, 4(trans)-hydroxyproline, or D-GlcNAcα1,4
(trans)-hydroxyproline, and screening with corresponding BSA-conjugates or

by Western blotting toward a panel of Skp1 isoforms. Antibodies specific for

Skp1 or HO-Skp1 were not found in exhaustive murine trials, yet monospecific

polyclonal antibodies were readily achieved in rabbits without cross-

adsorption. In all cases, antibodies were specific at the protein but not the

peptide level, which suggests that conformation comprises part of the basis

for recognition and which should be considered when developing screening

strategies.
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Abbreviations

BSA Bovine serum albumin

CRL Cullin-Ring ligase

FBP F-box protein

KLH Keyhole limpet hemocyanin

mAb Monoclonal antibody

pAb Polyclonal antibody

SCF Ub-ligase complex consisting of Skp1, cullin-1, an FBP, and Rbx1

Ub Ubiquitin

Introduction

Skp1 is an adaptor linking F-box proteins with cullin-1 in the highly conserved SCF

class of E3 ubiquitin (Ub) ligases (Willems et al. 2004). The E3SCFUb ligases, also

known as CRL1, mediate the K48-polyubiquitination of a broad range of centrally

important regulators of cell cycling, physiology, and differentiation. Their speci-

ficity is controlled by the choice of F-box protein (FBP) selected from the pool of

dozens to hundreds that are genomically encoded in a given organism, and often by

posttranslational modification, such as phosphorylation, of the target protein.

CRL1, as well as most of the other known CRLs (7 in humans), are regulated via

the cullin scaffold protein by activating neddylation and inhibitory binding of

Cand1 (Deshaies and Joazeiro 2009).

In protists such as the social amoeba Dictyostelium (West et al. 2010) and the

apicomplexan human pathogen Toxoplasma gondii (Xu et al. 2012a), a novel

posttranslational modification of the Skp1 subunit may represent an additional

level of CRL1-specific control (Wang et al. 2011; Sheikh et al. 2014). The

modification is initiated by 4-hydroxylation of Pro143, followed by step-wise

addition of five sugars (Fig. 1), leading to the accumulation at steady state of a

remarkably homogenous pentasaccharide. Evidence indicates that O2 availability
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is rate limiting for Skp1 hydroxylation via a prolyl 4-hydroxylase, PhyA

(Xu et al. 2012b), and genetic studies indicate that PhyA (West et al. 2007) is

an ortholog of the human O2-sensor that activates the transcriptional cofactor

hypoxia-inducible factor-α for polyubiquitination by CRL2 and subsequent

proteasomal degradation (Kaelin and Ratcliffe 2008). Dictyosteliummay regulate

its proteome in response to O2-availability via selective proteolysis involving

Skp1 modifications (Fig. 1), compared to the mammalian mechanism of tran-

scriptional activation.

Isoform-specific Abs that differentiate discrete modification states of Skp1

have proved useful for monitoring the hydroxylation and glycosylation status of

Skp1 in enzymatic assays (van der Wel et al. 2011) and in cells during hypoxia

(Xu et al. 2012a) or when glycosyltransferase genes are under- or overexpressed

(Zhang et al. 2012; Schafer et al. 2014). Development of Abs that are specific for

hydroxylation and glycosylation modifications remains highly empirical (Ingale

et al. 2007; Fukuda 2012), and here factors that have contributed to the success of

current isoform-specific Abs are reviewed.

Strategies to Develop Isoform-Specific Abs

Despite the apparent novelty of the Skp1 glycan, immunization of mice with native

glycosylated Skp1 failed to yield glycan-dependent mAbs (Kozarov et al. 1995).

In addition, reactive lectins have not been found. The core trisaccharide is equiv-

alent to the blood group H type I structure, but is not recognized by a commercial

mAb (Abcam ab3355) which reacts with this trisaccharide in other contexts

(Yu et al. 2012). Thus, synthetic hydroxypeptides and glycopeptides representing

early steps of hydroxylation and GlcNAc addition were used to focus the immune

response to the site of modification. Multiple immunization and screening strategies

are summarized below for their effectiveness in generating Abs specific for Skp1

(unmodified), HO-Skp1, or GlcNAc-Skp1.

Fig. 1 Proposed role of Skp1 modification in regulation of protist proteomes. Availability of

enzyme substrates listed in the left column regulates the activity of modification enzymes in the

second column, which sequentially generate the Skp1 isoforms shown in the third column.

Increasing modification promotes interaction with select F-box proteins, potentially leading to

increased E3SCFUb-ligase activity and degradation of target substrates. αKG ¼ α-ketoglutarate or
2-oxoglutarate (The E3SCFUb-ligase schematic was originally published in Schafer et al. (2014),

# the American Society for Biochemistry and Molecular Biology)
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Murine Monoclonal Abs

The first strategy was a traditional approach of immunizing mice with 13-mer

peptides conjugated via an N-terminal Cys to KLH, using a combination of

Freund’s complete and incomplete adjuvants. mAbs were screened using an

ELISA-type assay with corresponding BSA-peptides for mAbs specific for the

target peptide relative to the other two peptides (Wang et al. 2009, 2011). Initial

sera were positive with high titers but not specific. High affinity mAbs reactive

toward target peptides appeared with good frequency but were equally reactive with

all three peptides, suggesting that the desired specificity was not achieved. The

majority of these mAbs reacted similarly with all six Skp1 isoforms analyzed based

on standard Western blotting of Skp1 isoforms present in cytosolic extracts of

mutant strains that accumulated the individual isoforms.

GlcNAc-Skp1 (Gn-Skp1)-specific mAbs were, however, detected by Western

blot screening of peptide-reactive hybridoma supernatants derived from mice

immunized with the GlcNAc-peptide, at a frequency of approximately one per

standard fusion. An example (mAb 1C9) is shown in Fig. 2c, and a second mAb,

2F8, exhibits similar specificity. Both mAbs reacted similarly in ELISA assays

toward all three BSA-peptides. Thus, the unique epitope required the presence of

additional parts of Skp1 not present in the immunogen. One possibility is that the

full-length protein imposes conformational restrictions on the peptide, which is

further constrained by the chemical modification, and that the unique epitope(s) is

not comprised only of the chemical modification per se.

In contrast, this strategy failed to recover mAbs specific for unmodified Skp1 or

HO-Skp1. Screening of peptide-reactive mAbs with full-length Skp1 in theWestern

blot assay yielded mAb 4H2 that discriminated unmodified Skp1 relative to

Gn-Skp1 (Wang et al. 2011). However, mAb 4H2 also bound HO-Skp1 and showed

weak reactivity with other isoforms (Fig. 2b). As observed for the above mAbs,

mAb 4H2 was not discriminatory at the peptide level. This was the only Skp1

selective Ab isolated from two fusions.

mAbs that discriminated HO-Skp1 from unmodified Skp1 were also not forth-

coming from this approach, despite screening of four fusions from mice immunized

with the Hyp-peptide using various adjuvants and cell culture media. Interestingly,

several mAbs (3A9, 8G5, 12B6) showed a novel pattern of reactivity at the protein

level toward Skp1, HO-Skp1, and GGn-Skp1, with weak reactivity toward FGGn-

Skp1 and little to no reactivity with the other isoforms including Gn-Skp1 (Fig. 2a).

These mAbs were also not specific at the peptide level. The occurrence of the

epitope on GGn-Skp1, recognized by a mAb from a mouse that did not encounter

this structure, suggests that it represents, at least in part, a novel conformational

epitope that is indirectly influenced by the chemical structure, rather than a unique

chemical determinant per se, as inferred above for the other mAbs. This may be

related to the changes in global Skp1 conformation after GlcNAc addition that are

observed in circular dichroism and small-angle X-ray scattering studies (Sheikh

et al. 2014).
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Rabbit Polyclonal Abs

As a second approach to generate Abs specific for HO-Skp1 or Skp1, rabbits were

immunized with the same KLH-peptide conjugates and adjuvant scheme. In this

trial, rabbits received final boosts with modified peptides containing a two-amino

acid C-terminal extension, with intent to not amplify the immune response toward

the unnatural peptide C-terminus. Western blot analysis indicated that one of each

the two rabbits exhibited strong preferential reactivity with its corresponding Skp1

isoform (Fig. 2d, e), whereas the other rabbit exhibited strong albeit nonselective

reactivity (Zhang et al. 2012). These antisera were also not specific at the peptide

level. Thus, rabbits responded strongly and with apparent high frequency to

epitopes unique to unmodified or hydroxylated Skp1, outcomes that were not

achieved by exhaustive screening of six mouse fusions. The antisera from animals

that preferentially responded to Skp1 (UOK87) and HO-Skp1 (UOK85) exhibited

high affinity, maintained selectivity over multiple bleeds, and were not improved by

affinity purification.

Fig. 2 Reactivity of Skp1

isoform-selective antibodies,

based on Western blot

analysis of cytosolic extracts

of mutant strains (labeled at

top) that accumulate the

indicated isoforms, labeled at

bottom. See Fig. 1 for key.

More highly glycosylated

isoforms migrate more slowly

in the SDS-PAGE gel, as

revealed by the pan-specific

mAb 4E1. The pAbs in panels

D and E were diluted 1:5000

(Panels C–F were originally

published in Zhang

et al. (2012),# the American

Society for Biochemistry and

Molecular Biology)
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These pAbs were further characterized by sandwich-type solution binding assays

that did not involve subjecting Skp1 to denaturing conditions of SDS-PAGE/

Western blotting. Full-length Skp1 isoforms were captured by mAb 3F9 that had

been adsorbed to the surface of a 96-well plate and probed with dilution series of the

pAbs (Fig. 3). Analysis of pAb UOK85 confirmed exquisite specificity toward

HO-Skp1 relative to Skp1 (compare row 4 with 9). pAb UOK87 was found to

prefer unmodified Skp1 (compare row 8 with 3), but some reactivity was observed

against HO-Skp1 again in agreement with the Western blotting. The results indicate

that the epitopes are present on natively folded Skp1. Their presence following

denaturing SDS-PAGE (Fig. 2) may result from refolding, as circular dichroism
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Fig. 3 Fluorescence-based soluble Ab binding assay. The indicated amounts of Skp1 or HO-Skp1

in 50 μl were captured for 2 h in microwells precoated with anti-Skp1 (mAb 3 F9) and blocked

with 2 mg/ml BSA. After washing, the wells were incubated with the indicated dilution of pAb

UOK77 (pan-specific), pAb UOK87, or pAb UOK85 for 2 h, washed, and incubated with 1:10,000

Alexa 680-conjugated goat anti-rabbit IgG in 2 mg/ml BSA for 2 h. After final washing, wells were

imaged in a Li-Cor Odyssey fluorescence scanner (middle panel) and densitometrically quantitated

using ImageJ in the left panel. pAb UOK77 confirmed the presence of Skp1 (compare rows 1 & 6).

Row 11, below the line, shows background binding in the absence of bound Skp1
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studies show that purified Skp1 readily renatures after unfolding (Tan et al. 2008;

van der Wel et al. 2011; Sheikh et al. 2014). The higher success rate suggests

that rabbits have a broader immune response repertoire toward this class of

epitopes.

Summary

The use of synthetic peptide conjugates successfully focused immune responses to

epitopes associated with discrete modification states of Pro143 in full-length Skp1.

High affinity pAbs and mAbs were highly selective for unmodified Skp1, HO-Skp1,

or GlcNAc-Skp1. Rabbits were especially effective for generating Abs specific for

Pro- and Hyp-containing Skp1s, which did not require affinity enrichment or cross-

adsorption for specificity. Evidence indicates that these epitopes are conformational

in nature, requiring screening at the protein level for their detection.
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