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Summary. Randomized response (RR) is an interview technique that ensures confidentiality
when questions are sensitive. In RR the answer to a sensitive question depends to a certain
extent on a probability mechanism. As a result the observed data are partially misclassified,
and the true status of the respondent is obscured. RR data are commonly analysed in a uni-
variate way, with models that relate the observed responses to the prevalence of the sensitive
characteristic, and with the more recent logistic regression models that relate the sensitive char-
acteristic to a set of covariates. In an RR design with multiple sensitive questions, interest is
usually not confined to the univariate prevalence and regression parameter estimates. Addi-
tional multivariate information may be obtained from an RR sum score variable, assessing
the sum of sensitive characteristics that are associated with the respondent. However, the
construction of an RR sum score variable is by no means straightforward, which might explain
why sum scores have not yet been used within the context of RR. We present two models for
RR sum score variables: the RR sum score model that relates the observed sum scores to
the true sum scores and the RR proportional odds model that relates the true sum scores to
covariates. The models are applied to RR data from a Dutch survey on non-compliance with
social security regulations.

Keywords: Proportional odds model; Randomized response; Regulatory non-compliance;
Sum score variable

1. Introduction

In surveys and questionnaires, questions are sometimes regarded as sensitive or embarrassing.
Especially if personal characteristics like the respondent’s use of drugs, alcohol consumption
or sexual behaviour are assessed, the questions may be perceived as an invasion of privacy, and
respondents will be reluctant to give a direct answer. Randomized response (RR) is an interview
technique that was designed to protect the privacy of the respondent. In RR, the answer to a
sensitive question depends partly on the respondent’s true status and partly on the outcome
of a randomizing device. The RR technique was originally introduced by Warner (1965). In
the Warner design the respondent is given two complementary sensitive questions, e.g. ‘I have
used drugs’ and ‘I have never used drugs’, and the outcome of a randomizing device determines
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which of the two questions the respondent must answer. So, a respondent who has never used
drugs answers false if the former question must be answered, and true if the latter question must
be answered. Since the outcome of the randomizing device is not known to the interviewer, the
true status of the respondent remains uncertain, and confidentiality is ensured.

Usually the main objective of the RR design is to obtain a prevalence estimate of the
sensitive characteristic, and this estimate can be obtained with a model that relates the ob-
served response to the true status of the respondent. In the Warner design, the model πÅ =
θπ + .1 − θ/.1 − π/ describes the probability πÅ of observing a true response as a function
of the prevalence π of drug use, and the probability θ that the statement ‘I have used drugs’
is selected. Since θ is determined by the design and the sample proportion of true responses
is an estimate of πÅ, the prevalence of the sensitive characteristic π can be estimated. Simi-
lar models have been presented for other RR designs such as the unrelated question design
(Horvitz et al., 1967), the forced response design (Boruch, 1971) and the Kuk design (Kuk,
1990).

In addition to the prevalence, the determinants of the sensitive characteristic are of interest.
Maddala (1983) and Scheers and Dayton (1988) presented logistic regression models that can be
used to analyse the dependence of an RR variable on a set of covariates. Recently, Elffers et al.
(2003) have applied these models to RR data to study the motives for regulatory non-compliance
with two Dutch instrumental laws.

In many RR applications, more than one sensitive question is asked. A meta-analysis of prev-
alence estimation in RR research (Lensvelt-Mulders et al., 2005) reveals that, in 39 RR surveys,
a total of 264 sensitive questions are asked, or an average of approximately seven questions
in each survey. In a design with multiple RR variables, interest is usually not confined to the
univariate prevalence and regression parameter estimates of the separate sensitive characteris-
tics. Böckenholt and van der Heijden (2007) and Fox (2005) introduced item response theory
models for RR profiles. In these models the person parameter is based on multiple assessments
of the sensitive characteristic and individual differences are explained by covariates. van den
Hout et al. (2007) present a multivariate logistic regression model describing the associations
between multiple binary RR variables and a set of covariates.

An alternative approach to analyse multivariate RR data is to construct a sum score variable
denoting the individual sum of sensitive characteristics. In this approach interest is primarily
in the distribution of the number of sensitive characteristics and the dependence of the number
of sensitive characteristics on covariates. Examples of sum score variables in the context of RR
are variables assessing the number of different drugs that the respondent has used, the number
of different criminal activities that the respondent has engaged in or the number of potentially
traumatic events that the respondent has experienced. To the best of our knowledge, sum score
variables have not yet been used in the context of RR.

Since the observed data are partially misclassified, the construction of an RR sum score
variable is not straightforward. This paper demonstrates how to construct an RR sum score vari-
able and presents two models for analysing RR sum score variables. The RR sum score model
relates the sum of affirmative responses to the sum of the sensitive characteristics and is used
to estimate the probability distribution of the sum of sensitive characteristics. The RR propor-
tional odds model is an adjusted version of the proportional odds model that was presented
by McCullagh (1980) and describes the dependence of the sum of the sensitive characteristics
on a set of covariates. As an example, the models are applied to RR data from a Dutch survey
assessing regulatory non-compliance with social security legislation.

Section 2 describes the social security survey data and the forced response design that was
used in this survey. The first part of Section 3 presents the RR sum score model and the second
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part the RR proportional odds model. The example is presented in Section 4. Section 5 discusses
boundary solutions and presents an example. Section 6 gives the conclusions.

2. Social security survey 2002

Employees in the Netherlands are insured under the Social Security Law. The Disability Insur-
ance Act insures them against a loss of income due to a complete or partial inability to work.
To be eligible for financial benefits, one has to comply with various rules and regulations. In
2002 the Dutch Department of Social Affairs conducted a nationwide survey to evaluate the
level of non-compliance with the rules and regulations in the Disability Insurance Act (for more
details see Lensvelt-Mulders et al. (2006) and van Gils et al. (2003)). A sample of 1760 recipients
were asked two questions about their health status (questions 1 and 2) and two questions about
receiving income from work in addition to the disability benefit (questions 3 and 4).

Question 1. ‘At a Social Services check-up, have you ever acted as if you were sicker or less
able to work than you actually were?’

Question 2. ‘For periods of any length at all, do you ever feel stronger and healthier and able
to work more hours without informing the Department of Social Services?’

Question 3. ‘Have you done any small jobs for or via friends or acquaintances in the past year,
or paid jobs of any size without reporting it to the Department of Social Services? (This only
pertains to monetary payments.)’

Question 4. ‘Have you worked off the books in the past year in addition to your disability
benefit?’

Owing to the sensitive nature of the questions, the forced response design (Boruch, 1971) was
applied. In the forced response design the respondent tosses two dice and is instructed to answer
yes to the question if the sum of the two dice is 2, 3 or 4, and no if the sum of the two dice is 11 or
12, irrespective of the respondent’s true status. If the sum of the two dice is 5, 6, 7, 8, 9 or 10, the
respondent must answer truthfully. The outcome of the dice is known only to the respondent.

Misclassification occurs if respondents are forced to give an answer that is in disagreement
with their true status. The probabilities of a forced yes and a forced no response follow from the
probability distribution of the sum of two dice; it can be easily verified that P.forced yes/=1=6,
and P.forced no/=1=12. (The programmer inadvertently programmed the virtual dice so that
P.forced yes/ = 0:1868 and P.forced no/ = 0:0671.) Given that the respondent’s true answer
is no, the probability of misclassification P.observed yes|true no/ = P.forced yes/, and simi-
larly, given a true yes response, the probability of misclassification P.observed no|true yes/=
P.forced no/. Since, irrespective of the true response, the probability of misclassification is
non-zero, confidentiality is assured.

Let the variables YÅ
1 –YÅ

4 denote the answers to questions 1–4, with yÅ
1 , . . . , yÅ

4 ∈{0 ≡ no, 1 ≡
yes}. The frequencies of the observed response profiles 0000, 0001, . . . , 1111, with the score on
the last variable changing first, are given by the vector nÅ = .694, 117, 188, 81, 179, 43, 65, 41,
117, 41, 37, 26, 62, 14, 27, 28). The set of covariates consists of the variables gender, age, last
job contract, education, degree of disability and time unemployed. Gender, age, job contract
and degree of disability are binary variables with respective reference categories male, younger
than 45 years, other (versus regular job) and less than 80%. The categories of education are low,
middle and high. Time unemployed is a continuous variable that denotes the logarithm of the
number of years (plus 1) that have passed since the respondent was last employed.
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3. The models

In this section, we present the two models. The RR sum score model relates the sum of the
observed yes responses to the number of rule violations. The RR proportional odds model
relates the number of rule violations to the covariates.

3.1. The randomized response sum score model
In an RR design with M sensitive questions, let variable Ym denote the true response to the mth
question, for m ∈ {1, . . . , M} and ym ∈ {0 ≡ no, 1 ≡ yes}. The RR sum score variable denoting
the number of true yes responses is defined by

Z =
M∑

m=1
Ym: .1/

Analogously, let the sum score variable ZÅ = ΣM
m=1YÅ

m denote the number of observed yes
responses. The probability of observing sum score s on variable ZÅ, for s∈{0, . . . , M}, is given
by the RR sum score model

πÅ
s =

M∑
t=0

qs|tπt , .2/

where πÅ
s =P.ZÅ = s/, πt =P.Z = t/ and qs|t =P.ZÅ = s|Z = t/.

Lemma 1. Denote the misclassification probabilities of the variables Ym by pi|j = P.YÅ
m =

i|Ym = j/, for i, j ∈{0, 1}, and let pi|j be the same for all m∈{1, . . . , M}. The misclassification
probabilities of Z are given by

qs|t =
t∑

j=0,0�s+j−t�M−t

(
t

j

)(
M − t

s+ j − t

)
p

t−j
1|1 p

j
0|1p

s+j−t
1|0 p

M−s−j
0|0 : .3/

The index j in equation (3) denotes the number of positions where YÅ
m =0 among the t posi-

tions m where Ym = 1, and the index s + j − t denotes the number of positions where YÅ
m = 1

among the M − t positions m where Ym = 0. Equation (3) follows from the fact that the pairs
.YÅ

m, Ym/ are independent and identically distributed for all m∈{1, . . . , M}, and the order of 1s
and 0s in the response profile .Y1, . . . , YM/ is not relevant for the result. (We thank a referee for
contributing to the final formulation of lemma 1.)

3.1.1. Estimation
The RR sum score model is most easily estimated with the method of moments (MM). The
MM estimator is most conveniently presented by using matrix notation,

π̂=Q−1π̂Å, .4/

where π= .π0, . . . , πM/′, πÅ = .πÅ
0 , . . . , πÅ

M/′ and πÅ
s is estimated by nÅ

s =n, with nÅ
s denoting the

frequency of the observed sum score s on variable ZÅ. The matrix Q is an .M + 1/×.M + 1/

transition matrix with entries .s+1, t +1/ given by the conditional misclassification probabili-
ties qs|t , for s, t ∈{0, : : : , M}. The MM solution always fits the data but can result in probability
estimates that are outside the boundaries of the parameter space defined by (0,1).

The maximum likelihood (ML) estimates of the RR sum score model are obtained by maxi-
mizing the kernel of the observed data log-likelihood
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ln{l.π|nÅ
0 , . . . , nÅ

M/}=
M∑

s=0
nÅ

s ln
(

M∑
t=0

qs|tπt

)
, .5/

for πt ∈ .0, 1/. Kuha and Skinner (1997) have provided EM algorithms. van den Hout and van
der Heijden (2002) showed that, if the MM estimates are in the interior of the parameter space,
the ML solution is identical to the MM solution. Otherwise, one or more ML estimates will be
on the boundary.

3.2. The randomized response proportional odds model
We now present the model for the regression of an RR sum score variable on a set of covariates.
Assume that the sum scores are on an ordinal scale and let P.Z= t|x/ denote the probability that
the sum score variable Z takes the value t given the covariate vector x. Define γt =P.Z � t|x/.
Then the proportional odds model (McCullagh, 1980) states that

γt = exp.αt −x′β/

1+ exp.αt −x′β/
, .6/

where the threshold parameters αt can be thought of as the values on a latent trait variable that
mark the transition from Z = t −1 to Z = t. The threshold parameters satisfy the condition

−∞<α0 �α1 � . . . �αM ≡∞: .7/

For M = 1, the order of the threshold parameters is −∞ < α0 � α1 ≡ ∞, and expression (6)
reduces to the binary logistic regression model (with a negative sign for β).

A property of the proportional odds model is that the logarithm of the cumulative odds

ln
{

P.Z � t|x0/=P.Z>t/|x0/

P.Z � t|x1/=P.Z>t/|x1/

}
= .x1 −x0/′β .8/

is proportional to the distance between x0 and x1, and does not depend on t. McCullagh (1980)
called this property the proportional odds assumption.

In the RR design, Z is not directly observed. Therefore, the cumulative probabilities P.Z� t|x/

are modelled through the observed variable ZÅ, with the relationship between ZÅ and Z given
by the RR sum score model. The RR proportional odds model is given by

γÅ
s =

s∑
j=0

M∑
t=0

qj|t.γt −γt−1/, .9/

where γÅ
s =P.ZÅ � s|x/.

3.2.1. Estimation
The ML estimator of model (9) is obtained by maximization of the kernel of the observed data
log-likelihood, which is given by

ln{l.β, α|zÅ
i , . . . , zÅ

n , xi, . . . , xn/}=
n∑

i=1
ln

{
M∑

t=0
qzÅ

i |t.γt −γt−1/

}
, .10/

where γ−1 =0 and γM =1. To identify the model, we use the convention α0 =0. For the maximi-
zation of expression (10) standard optimization routines can be used. To estimate the models in
the social security survey examples we use the quasi-Newton optimization routine QNewtonmt
of the statistical package GAUSS. The gradients and Hessian matrix are computed numerically
by using the Broyden–Fletcher–Goldfarb–Shanno method. For solutions in the interior of the
parameter space standard asymptotic theory applies with respect to the normal distribution of
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the estimators, and we report the asymptotic standard errors that are derived from the estimated
Hessian matrix. In case of a boundary solution the normality assumption is no longer valid,
and we report 95% bootstrap confidence intervals that are derived from 500 non-parametric
bootstrap samples by using the percentile method.

4. The example

In this section, we analyse the sum score variable Z = Σ3
m=1Ym, denoting the number of yes

responses to questions 1–3 of the social security survey, with the RR sum score model and the
RR proportional odds model. The frequencies of the sum scores 0, 1, 2 and 3 that are observed
in the sample are given by the vector nÅ = .811, 649, 245, 55/.

The respective MM sum score probability estimates of the RR sum score model are π̂ =
.0:850, 0:075, 0:058, 0:017/. Since the MM estimates are all in the interior of the parameter
space, the ML solution is identical. The log-likelihood of the ML solution is −1949:54. The
same probability estimates and log-likelihood can also be obtained with the RR proportional
odds null model, i.e. the model without any covariates except the intercept. The parameter esti-
mates of the null model are β̂0 =−1:74, α̂1 =0:77 and α̂2 =2:32, and the sum score probabilities
are found by plugging these estimates into γ̂t defined in equation (6), and using the expression
π̂t = γ̂t − γ̂t−1.

Table 1 presents the parameter estimates of the RR proportional odds model with all six
covariates. The log-likelihood of this model is −1937:84, yielding a likelihood ratio test statistic
of 23:4 with 6 degrees of freedom in relation to the null model. The parameter estimates of the
covariates gender, age, last job contract and education are significant. To interpret these results,
we use the property of the proportional odds model that, for all t, the odds of non-compliance
with more than t rules change with a factor exp.−βj/ for each unit increase in covariate j,
holding all other covariates constant. The parameter estimate for gender indicates that for men
the odds of non-compliance are about 2.3 times those for women. Similarly, the odds of non-
compliance for people above the age of 45 years and for people who had a regular job contract
are about 1.8 times that for younger people and people who had a different kind of job contract
respectively. Finally, the odds of non-compliance decrease with a factor 0.73 for each increase
in the level of education.

To test whether the proportional odds assumption holds for this model, we performed a likeli-
hood ratio test with respect to the RR unconstrained partial proportional odds model (Peterson
and Harrell, 1990), that is given by

Table 1. Parameter estimates of the RR proportional
odds model

Parameter Estimate t-value
(standard error)

α1 0.99 (0.31) 3.10
α2 2.46 (0.38) 6.46
Intercept −0.85 (0.46) −1.84
Gender −0.81 (0.26) −3.14
Education 0.32 (0.16) 2.05
Age −0.57 (0.28) −2.23
Time unemployed 0.13 (0.16) 0.80
Last job contract −0.57 (0.29) −1.99
Degree of disability −0.26 (0.25) −1.05
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logit.γt/=αt −x′β−w′ηt , .11/

where the k ×1 vector w contains a subset of the values in x, and ηt is a k ×1 vector with regres-
sion parameters, for t ∈{1, . . . , M −1}. If ηt =0 for all t ∈{1, . . . , M −1}, the RR unconstrained
partial proportional odds model reduces to the RR proportional odds model. The likelihood
ratio simultaneously tests the null hypothesis that for all covariates in w the cumulative odds
ratios do not depend on t. For the model with all six covariates included in w and the parameter
vector ηt specified for t ∈{1, 2}, the likelihood ratio statistic of 8.2 with 12 degrees of freedom
.p=0:77/ indicates that the proportional odds assumption need not be rejected. Note that the
likelihood ratio statistic at the same time implies that the proportional odds assumption holds
for the four significant covariates in Table 1. By setting the contribution to the likelihood ratio
statistic LR of the two non-significant covariates to 0 we obtain LR=8:2, 8 degrees of freedom,
and p=0:41.

5. Boundary solutions

FittingtheRRproportionaloddsnullmodel to theobservedfrequencyvector nÅ =.694, 601, 329,
108, 28/ of ZÅ =Σ4

m=1YÅ
m denoting the number of yes responses to the four questions 1–4 yields

the solution β̂0 =−1:31, α̂1 =−0:46, α̂2 =1:98 and α̂3 =2:22. Note that this solution does not
satisfy condition (7), since

α̂1 <α0 ≡0 < α̂2 < α̂3:

The vector π̂ = .0:906, −0:065, 0:134, 0:013, 0:012/′ that is implied by this solution coincides
with the MM solution of the RR sum score model. Obviously, this is not a valid solution since
π̂1 is outside the parameter space.

To force the threshold parameter estimates to satisfy condition (7) we use the parameterization

αt =α0 +
t∑

j=1
exp.α̇j/, .12/

and we maximize log-likelihood (10) for α̇j and β, with α0 constrained to 0. This parameteri-
zation yields the solution ˆ̇α1 =−10:92, ˆ̇α2 =0:46 and ˆ̇α3 =−0:02 (corresponding to α̂1 =0:00,
α̂2 =1:58 and α̂3 =2:56), and β̂0 =−1:88. The vector π̂= .0:867, 0:000, 0:102, 0:019, 0:012/′ that
is implied by this solution is valid and coincides with the ML estimates of the RR sum score
model.

Table 2 presents the parameter estimates of the full RR proportional odds model by using
parameterization (12). Since we have a boundary solution with the estimate of α̇1 tending to
−∞, we report the 95% bootstrap confidence intervals. The confidence intervals of the thresh-
old parameters αt are obtained after applying equation (12) to the bootstrap estimates of the
parameters α̇j. The log-likelihood of the model is −2251:87, yielding a likelihood ratio test
statistic of 19.9 with 6 degrees of freedom in comparison with the corresponding null model.
The parameter estimates for the covariates gender and last job contract show significance.

Since the RR logistic regression model is a special case of the RR proportional odds model, it
is informative to compare the results of both models for respectively the binary variables Y1–Y4
and the sum score variable Z. Table 3 presents the regression parameter estimates of the RR
logistic model specified as in expression (6), i.e. with a negative sign for the vector β. The prob-
ability estimates π̂1 are obtained by fitting separate RR sum score models for each Y -variable.
The solution of the RR logistic regression model with dependent variable YÅ

1 is unstable with
large parameter estimates and standard errors. The instability of this model is most likely due to
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Table 2. Parameter estimates and 95% bootstrap
confidence intervals CIboot of the full RR propor-
tional odds model with parameterization ·α

Parameter Estimate 95% CIboot

α1 0.00 (0.00, 0.31)
α2 2.01 (1.12, 3.02)
α3 2.53 (1.98, 3.84)
Intercept −1.02 (−2.01, −0.25)
Gender −0.76 (−1.26, −0.26)
Education 0.21 (−0.06, 0.46)
Age −0.42 (−0.86, 0.05)
Time unemployed 0.13 (−0.10, 0.38)
Last job contract −0.60 (−1.14, −0.09)
Degree of disability −0.25 (−0.71, 0.29)

Table 3. Parameter estimates (with standard errors in parentheses) of the RR
logistic regression model for variables Y1–Y4

Parameter Y1 Y2 Y3 Y4

π̂1 0.018 0.099 0.125 0.047
Intercept −5.36 (5.68) −1.42 (0.57) −1.38 (0.47) −1.93 (0.83)
Gender 2.53 (5.38) −0.94 (0.34) −0.83 (0.30) −0.46 (0.59)
Education 1.43 (1.42) 0.58 (0.22) 0.13 (0.16) −0.28 (0.35)
Age −7.44 (30.8) −0.77 (0.33) −0.14 (0.30) 0.10 (0.51)
Time unemployed −1.36 (1.01) 0.10 (0.18) 0.08 (0.16) −0.03 (0.14)
Last job contract −0.75 (1.64) −0.55 (0.37) −0.59 (0.34) −1.15 (0.62)
Degree of disability 0.07 (0.28) −0.46 (0.31) −0.13 (0.32) 0.37 (0.69)

the fact that π̂1 is close to 0, so that little information is available to estimate the parameters. In
the model with Y2 the covariates age, education and gender are significant, and the last is also
significant in the model with Y3. The model with Y4 shows no significant results. In comparison,
the RR proportional odds models also show significant results for the covariates age, education
and gender, but in addition reveal a significant relationship between regulatory non-compliance
and the covariate last job contract. This shows that both models may provide different insights
into the relationship between the dependent variables and the covariates; covariates that are sig-
nificantly related to the sum scores of multiple sensitive characteristics may not be significantly
related to any of the separate sensitive characteristics.

6. Conclusions

This paper discusses the construction and analysis of RR sum score variables that are com-
posed of multiple binary RR variables measuring a range of sensitive characteristics. The paper
introduces the RR sum score model that can be used to obtain the probability distribution of
the sum scores of the sensitive characteristics, and the RR proportional odds model that can be
used to analyse the dependence of the sum score probabilities of the sensitive characteristics on
a set of covariates. Special attention is devoted to various estimation methods and to bound-
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ary solutions that are characterized by sum score probability estimates on the boundary of the
parameter space. Both of the models are applied to two sets of sum score data from a social
security survey, and the analysis of one data set illustrates a boundary solution.

The analysis of a sum score variable provides additional information about the distribution of
the sensitive characteristics that are under study. For example, the distribution and determinants
of the sum score probabilities of regulatory non-compliance may contain valuable information
for law enforcers and policy makers. Moreover, the analysis of sum score data may reveal asso-
ciations that remain undetected if the data are analysed in a univariate way. In the examples, the
RR proportional odds model detected an association between regulatory non-compliance and
the last job contract, an association that was not found in the RR logistic model. These differ-
ences result from the fact that each model addresses different questions. Therefore the choice of
a model should ultimately be based on the research question; the RR logistic regression model
is appropriate if interest is in the predictors of a single sensitive characteristic, and the RR pro-
portional odds model is appropriate if interest is in the predictors of the sum score distribution
of multiple sensitive characteristics.

The second example shows that the RR proportional odds model can successfully handle
boundary solutions. However, this does not necessarily mean that the model is correctly spec-
ified. In this respect, the validity of the model depends on how the boundary solution came
about. One explanation for the occurrence of boundary solutions is chance. For example, if the
prevalence of the sensitive characteristic is 0 or close to 0, a boundary solution is obtained if
the proportion of respondents who throw 2, 3 or 4 with the two dice is less than 1/6. Obviously,
this type of chance result does not invalidate the model. Another explanation for a bound-
ary solution is that respondents protect their privacy by answering no when according to the
outcome of the dice they should have answered yes. Böckenholt and van der Heijden (2007)
propose a Rasch model with an extra parameter to account for the effects of self-protective
response bias on the response profiles of multiple RR variables. The results of this study suggest
that self-protective responses significantly affect the prevalence estimates. In the case of RR
sum score data, self-protective responses would lead to a systematic overestimation of the zero
sum score probability. If self-protective responses occur, the RR sum score model and the RR
proportional odds model are both misspecified, and additional research is needed to account
for this kind of response bias.

To conclude we mention that the RR proportional odds model can be extended to weighted
sum scores, where Z and ZÅ are weighted sums of respectively Ym and YÅ

m, with the weights
given by wm, m∈{1, . . . , M}. By analogy with the sum score variables, the conditional misclas-
sification probabilities for the weighted sum score variables can be found as a function of the
misclassification probabilities for the binary variables Ym and YÅ

m, since these are not affected
by the weights.
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