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Summary 
 

Land use change is a central issue in the sustainability debate, because of its 
impacts on e.g. climate change, water availability and quality, soil quality and 
erosion, and biodiversity. Continuing population growth, shifting diets towards 
higher meat consumption and increasing bioenergy demands call for the 
exploration of possibilities for sustainable land use change pathways with minimal 
negative impacts. Spatially explicit demand driven land use change models are 
tools that support such explorations by projecting the spatial dynamics of a 
predefined set of land uses over a given period. Different potential future 
pathways can be assessed with these models by the evaluation of divergent 
scenarios. Designing land use change models is not straightforward, because the 
dynamic processes and feedbacks in the land use system are complex and only 
partially understood. This results in uncertainties in model structure, inputs and 
parameters, which propagate to the land use change projections and derived 
impacts. The fact that only a limited number of scenarios can be analysed results in 
additional uncertainty, i.e. a lack of clarity about the complete set of potential 
futures, referred to as solution space uncertainty. In land use change impact 
assessments it is essential to recognize these uncertainties, because management 
or policy decisions based on erroneous projections can be costly or irreversible, 
either from an environmental or from an economic point of view. In this thesis, 
methods are developed to quantify and reduce uncertainty in land use projections. 
Case studies in this thesis are focused on bioenergy as a driver of land use change, 
because bioenergy is experiencing a large demand increase and is - being designed 
as a sustainable alternative for fossil energy - under extra pressure in the 
sustainability debate to minimize negative impacts. 

In this thesis, the solution space uncertainty is quantified by comparing projected 
land use change impacts with land use change impacts that are minimized based 
on a selected set of environmental impacts. This is demonstrated for a case study 
of minimizing production cost and GHG emission for an ethanol supply increase in 
Goiás, Brazil, for 2030. Results show, for example, that the costs calculated from a 
land use scenario projection are 715 US$2014 / m3 ethanol, while the minimum 
attainable production costs are 656 US$2014 / m3 ethanol. This places the scenario in 
perspective and thereby supports policy makers in the decision making process. 
The developed methodology has the prospect to identify trade-offs between 
different impacts and win-win situations for other regions, scales, objectives and 
commodities.  

To quantify error propagation from the model components towards the land use 
projections the PCRaster Land Use Change model (PLUC) is developed, coupled to a 
Monte Carlo (MC) analysis scheme. Because the definition of uncertainty in all 
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model components is an integral part of the modelling framework, the end user 
can easily evaluate uncertainty for multiple scenarios or case studies. This is 
relevant as uncertainty in model structure, inputs and parameters often varies 
between scenarios and especially between case studies. In addition, the embedded 
coupling allows for land use uncertainty analysis for each model time step, which is 
important as uncertainty might evolve non-linearly through time. 

Methodologies are developed to define uncertainty in each model component and 
PLUC is applied to dynamically evaluate the effects of these uncertainties on the 
model output, i.e. the land use projections. Such a full scope error propagation 
assessment is new in land use change modelling. Generally, we find that: 1) output 
uncertainty is attribute dependent, e.g. in a projection for Brazil for 2030, the 
direct land use change (dLUC) area has a coefficient of variation (cv) of only 0.02, 
while the indirect land use change (iLUC) area has a cv of 0.72, and 2) output 
uncertainty is scale dependent, decreasing from lower to higher aggregation levels, 
e.g. the maximum variance in the total potential yield of eucalyptus in a projection 
for Mozambique for 2030 drops from 1 ∙ 105 to 680 to 298 (kg km-2 year-1)2 when 
scaling from cell level to province level to country level, respectively. In general, 
non-spatial inputs determine output uncertainty at high aggregation levels and 
spatial inputs determine output uncertainty at low aggregation levels. We also find 
that the land use system can experience systemic changes, inducing invalidity of 
the land use model structure. Our method to incorporate such changes into the 
land use change model increased the projected 95% confidence interval of the land 
use area per 25 x 25 km2 block by a factor of 2. 

To reduce the uncertainty in land use projections, a particle filter is coupled to 
PLUC. A particle filter is a data assimilation technique that updates prior knowledge 
about model structure, inputs and parameters by integrating observational data 
into the model during runtime. This method has the advantage that uncertainty in 
the observational data, such as classification errors, can be taken into account. The 
particle filter considerably reduces output uncertainty, e.g. for a case study for São 
Paulo, Brazil, the 95% confidence intervals of output land use metrics were 
reduced by at least a factor 3, compared to a run without the particle filter. 

Yet, even with reduced uncertainty, the uncertainties in land use projections are 
large, especially at local scale levels (up to 100 x 100 km2) and for long time frames 
(more than a decade). We conclude that the value of spatially explicit land use 
change models for answering questions about the future directions the system at 
local scale levels or for long time frames is limited. For policy implementation 
strategies this implies that the confidence interval of a land use attribute is often 
so wide that it is likely to straddle a legislation threshold. Therefore, we deem 
threshold evaluation for land use indicators, for example iLUC, a very questionable 
practice. Independent of the implications of these large uncertainties, we at least 
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created the conditions for policy makers to account for uncertainty in their 
decisions by presenting the robustness of the land use projections in an 
understandable way. Communication of uncertainties in land use change models 
should become common practice, because the users of the land use projections 
from these models are entitled to the opportunity to grasp the (un)reliability of 
these projections and related impacts. 
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Samenvatting 
 
Landgebruiksverandering is één van de hoofdkwesties in het duurzaamheidsdebat, 
door haar impacts op bijvoorbeeld klimaatverandering, de beschikbaarheid en 
kwaliteit van water, de bodemkwaliteit, landdegradatie en biodiversiteit. De 
aanhoudende populatiegroei, dieetveranderingen richting hogere 
vleesconsumpties en de groeiende vraag naar bio-energie roepen op tot onderzoek 
naar de mogelijkheden voor duurzame landgebruikstrajecten met een minimum 
aan negatieve effecten. Ruimtelijk expliciete, vraaggestuurde 
landgebruiksmodellen kunnen als instrumentarium dienen voor dergelijk 
onderzoek doordat ze de dynamieken van een set van landgebruikstypen over een 
bepaalde tijdsperiode simuleren. Verschillende landgebruikstrajecten kunnen 
bekeken worden door met zulke modellen uiteenlopende scenario’s te analyseren. 
Het ontwikkelen van landgebruiksmodellen is niet eenvoudig, omdat de 
dynamische processen en terugkoppelingen in het landgebruikssysteem complex 
en niet volledig bekend zijn. Dit resulteert in onzekerheden in de modelstructuur, 
input en parameters, die zich voortplanten naar de landgebruiksprojecties en 
daarvan afgeleide effecten. Het feit dat slechts een beperkt aantal scenario’s 
geanalyseerd kan worden zorgt voor extra onzekerheid, doordat geen totaalbeeld 
gevormd kan worden van de volledige set van mogelijke landgebruikstrajecten. We 
definiëren dit type onzekerheid als ‘onzekerheid in de oplossingsruimte’. Bij het 
analyseren van de effecten van landgebruiksverandering is het belangrijk om 
onzekerheden te erkennen, omdat management- of beleidsbesluiten gebaseerd op 
onjuiste landgebruiksprojecties duur of onomkeerbaar kunnen zijn,  hetzij vanuit 
een duurzaamheidsperspectief hetzij vanuit een economisch perspectief. In dit 
proefschrift zijn methoden ontwikkeld om onzekerheden in landgebruiksprojecties 
te kwantificeren en te reduceren. Studies in dit proefschrift zijn gericht op bio-
energie als drijvende kracht achter landgebruiksverandering, omdat de vraag 
hiernaar op dit moment sterk toeneemt. Een andere reden is dat bio-energie, 
bedoeld als duurzaam alternatief voor fossiele energie, onder extra druk staat in 
het duurzaamheidsdebat om negatieve effecten te verminderen. 

In dit proefschrift is de onzekerheid in de oplossingsruimte gekwantificeerd door 
de geprojecteerde landgebruikseffecten te vergelijken met de 
landgebruikseffecten die geminimaliseerd zijn op basis van een set van 
duurzaamheids- en economische criteria. Deze methode is gedemonstreerd op 
basis van een studie waarin de productiekosten en broeikasgasemissies van een 
toename in aanbod van ethanol in Goiás, Brazilië, geminimaliseerd worden. De 
resultaten laten bijvoorbeeld zien dat de productiekosten voor een bepaald 
scenario 715 US$2014 / m3 ethanol zijn, terwijl de minimum haalbare 
productiekosten 656 US$2014 / m3 ethanol zijn. Deze informatie plaatst het scenario 
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in perspectief en ondersteunt daarmee beleidsmakers bij de besluitvorming. De 
ontwikkelde methode biedt mogelijkheden om afwegingen te maken tussen 
verschillende effecten en om win-win situaties voor andere regio’s, schalen, doelen 
of goederen te identificeren. 

Om de foutenvoortplanting van de verschillende modelcomponenten naar de 
landgebruiksprojecties te kwantificeren is het PCRaster landgebruiksmodel, PLUC, 
ontwikkeld, gekoppeld aan een Monte Carlo (MC) analyse schema. Omdat hiermee 
de definitie van de onzekerheden in alle modelcomponenten een integraal deel 
van het model is, kan de eindgebruiker eenvoudig de onzekerheid evalueren in 
meerdere studies of in meerdere scenario’s binnen één studie. Dit is relevant 
aangezien de onzekerheid in modelstructuur, input en parameters vaak varieert 
tussen verschillende scenario’s en met name tussen verschillende studies. 
Bovendien zorgt de geïntegreerde koppeling ervoor dat de onzekerheid 
geanalyseerd kan worden in elke tijdstap van de gesimuleerde periode, wat 
belangrijk is omdat onzekerheid zich vaak niet lineair ontwikkelt over de tijd. 

Methodologieën zijn ontwikkeld om de onzekerheid in elke modelcomponent te 
definiëren en PLUC is toegepast om de dynamische effecten van deze onzekerheid 
op de modeluitkomsten, de landgebruiksprojecties, te evalueren. Een dergelijke 
volledige foutenvoortplantingsevaluatie is nieuw binnen de modellering van 
landgebruiksverandering. Over het algemeen komen we tot twee conclusies. Ten 
eerste dat de onzekerheid in de modeluitkomsten attribuutafhankelijk is. De 
variatiecoëfficiënt (cv) van het areaal directe landgebruiksverandering is 
bijvoorbeeld 0.02 terwijl de cv van het areaal indirect landgebruiksverandering 
0.72 is in Brazilië. Ten tweede dat de onzekerheid in de modeluitkomsten 
schaalafhankelijk is, afnemend van lage naar hoge aggregatieniveaus. De maximale 
variantie in het totale potentiële gewasopbrengst van eucalyptus in Mozambique 
loopt bijvoorbeeld terug van 1 ∙ 105 naar 680 naar 298 (kg km-2 jaar-1)2 wanneer 
opgeschaald wordt van rastercel (1 km2) naar provincie naar landelijk schaalniveau. 
Over het algemeen wordt de onzekerheid in de modeluitkomsten op hoge 
aggregatieniveaus bepaald door niet-ruimtelijke input en die op lage 
aggregatieniveaus  door ruimtelijke input. We stellen ook vast dat 
systeemveranderingen kunnen optreden in het landgebruikssysteem, die 
ongeldigheid van de modelstructuur veroorzaken. Onze methode om zulke 
systeemveranderingen in het landgebruiksmodel mee te nemen, resulteerde in 
een toename met een factor 2 van de breedte van het 95%-
betrouwbaarheidsinterval van het landgebruiksareaal per aggregatie blok van 25 x 
25 km2.  

Om de onzekerheid in landgebruiksprojecties te verlagen, is er een ‘particle filter’ 
gekoppeld aan PLUC. Een particle filter is een data assimilatie techniek die a-
priorische waarschijnlijkheden van  modelstructuur, input en parameters aanpast 
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door observatiedata gedurende de modelrun in het model te integreren. Deze 
methode heeft als voordeel dat de onzekerheid in de observatiedata, bijvoorbeeld 
als gevolg van classificatiefouten, meegenomen kan worden. Het particle filter 
reduceert de onzekerheid in de modeluitkomsten aanzienlijk. De breedtes van de 
95%-betrouwbaarheidsintervallen van verschillende maatstaven, die zijn afgeleid 
van landgebruiksverandering, worden bijvoorbeeld verminderd met ten minste een 
factor 3, vergeleken met de resultaten van een modelrun zonder particle filter. 

Desalniettemin zijn, zelfs met gebruik van het particle filter, de onzekerheden in 
landgebruiksprojecties groot, met name op lokale schaalniveaus (tot 100 x 100 
km2) en voor lange simulatieperiodes (meer dan een decennium). We concluderen 
dat de waarde van ruimtelijk expliciete landgebruiksmodellen voor het 
beantwoorden van vragen over het toekomstige traject van het systeem op lokale 
schaalniveaus en voor lange tijdsperiodes beperkt is. De implicatie van de 
gevonden onzekerheden voor beleidsimplementatiestrategieën is dat het 
betrouwbaarheidsinterval van een maatstaf van landgebruiksverandering vaak zo 
breed is dat het zeer waarschijnlijk een vastgestelde grenswaarde overspant. 
Daarom zijn wij van mening dat het vaststellen en evalueren van grenswaarden 
voor landgebruiksindicatoren, zoals indirecte landgebruiksverandering, een 
twijfelachtig gebruik is. Onafhankelijk van de implicaties van de gevonden 
onzekerheden, hebben we in dit proefschrift ten minste de condities gecreëerd 
voor beleidsmakers om onzekerheden mee te nemen in de besluitvorming, door de 
robuustheid van landgebruiksprojecties op een begrijpelijke manier te 
presenteren. De communicatie van onzekerheden in landgebruiksmodelering zou 
gangbaar moeten worden omdat de gebruikers van deze projecties recht hebben 
op de mogelijkheid om te bevatten hoe (on)betrouwbaar deze projecties en de 
daarvan afgeleide effecten zijn. 
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1. Introduction 

1.1. The significance of land use and land cover change 

Land use and land cover change is a central issue in the sustainability debate 
because of its wide range of environmental impacts (Lambin and Meyfroidt, 2011, 
Nesheim et al., 2014). Key sustainability issues affected by land use and land cover 
change are climate change, water availability and quality, soil quality and erosion, 
and biodiversity. For example, vegetation cover transformation and the conversion 
of carbon rich lands affect the climate through albedo change and the emission of 
greenhouse gases (GHGs) (e.g. Stocker et al., 2013). GHG emissions from land use 
change are difficult to quantify, but are estimated to have been between 10% and 
20% of the total annual anthropogenic GHG emissions in the past two decades 
(Canadell et al., 2007, IPCC, 2014). Furthermore, the expansion of agriculture and 
accompanying irrigation and fertilizer usage impact water availability and quality 
(e.g. Scanlon et al., 2007). Piao et al. (2007) reconstruct that land use and land 
cover changes account for about 50% of the global runoff trend of the last century. 
Deforestation and forest fragmentation can reduce biodiversity (e.g. Chaplin-
Kramer et al., 2015). Sala et al. (2000) estimate that, in the 21st century, of all 
factors influencing biodiversity, land use and land cover changes have the largest 
global impact, about 1.5 time as large as climate change and more than two times 
as large as other factors like changes in atmospheric CO2, and nitrogen deposition.  

Aiming to reach sustainable future pathways with minimal negative impacts, a 
sound understanding of the land system is required. Land use and land cover 
change has a wide range of drivers that can be natural or anthropogenic. Changes 
in land use, i.e. a classification of the purpose of exploitation of the land, are by 
definition anthropogenic. Changes in land cover, i.e. a physical classification of the 
land, can be natural, e.g. ecological succession or natural forest fires (Cihlar and 
Jansen, 2001), but can also be human induced, e.g. a change from cropland to 
urban area. In the latter case the land cover change is caused by a land use change, 
for the given example a change from agricultural use to residential use. In the 
sustainability debate, the interest in the drivers of land use and land cover change 
is focused on the anthropogenic drivers, as these are the ones we can try to steer 
to establish more sustainable pathways. For this reason, the focus in this thesis is 
on human induced changes and the term ‘land use change’ is used throughout, 
instead of ‘land use and land cover change’.  

The most apparent anthropogenic driver of land use change is the increasing world 
population (Agarwal et al., 2002, Alexander et al., 2015), as people need space to 
live, food should be cultivated to feed them, materials like wood and fibres are 
needed for houses and clothing, etc. Another driver of land use change is the 
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ongoing dietary transition towards an increased consumption of meat, influenced 
by a rise in GDP per capita. The production of animal products accounts for 65% 
(439 Mha) of the land use change over the past 50 years (Alexander et al., 2015). 
More recently, awareness of the exhaustibility and environmental impacts of fossil 
energy have, among other causes, resulted in an increasing land requirement for 
bioenergy crop production (Popp et al., 2014). Although the current area used for 
bioenergy crops is relatively small, 1.8% (81 Mha) of the global agricultural land, it 
had a share of 36% (3.2 Mha per year) in the net agricultural expansion area since 
1994 (Alexander et al., 2015). Globalization increases the average distance 
between the locations of production and consumption (Lambin and Meyfroidt, 
2011), which complicates tracking the connection between these land use change 
drivers and their impacts. 

Ongoing changes in global population, diets, and bioenergy demands are expected 
towards the future. The world population is expected to continue to grow with 
about 1% per year (World Bank, 2015), the developing countries are likely to 
steadily shift to levels of meat consumption typical of western diets (Alexandratos 
and Bruinsma, 2012), and the global biofuel demand is projected to grow from its 
current 3.0% of the road transport fuel demand to 3.5% by 2020 (OECD/IEA, 2014). 
Given the wide range of impacts of land use change and the awareness that these 
can, at least partly, be steered by policies, the implications of the future demands 
for land should be assessed and the possibilities for sustainable pathways should 
be explored to advise policy makers. The wide range of impacts play at different 
time scales and thereby require different time horizons for land use projections, 
e.g., for a government period (~4 years), a policy period (10-25 years), or a climate 
change period (50-100 years). 

In the impact assessments it is essential to know how solid the land use change 
projections are, because decisions based on erroneous projections can be costly, 
either from an environmental or from an economic point of view, due to the 
frequent irreversibility of these decisions. In other words, there is a need to 
recognize the uncertainty in these projections. Knowing the source of the 
uncertainty also offers means to reduce the uncertainty, for example by 
intensifying the data collection regarding this source. The aim of this thesis is to 
develop methods to quantify and reduce uncertainty in land use projections. In the 
following, background information is provided on land use change models used to 
generate land use change projections (section 1.2), the components that such 
models consist of (section 1.3), the importance and difficulties of uncertainty 
quantification (section 1.4), and the case study this thesis is focused on (section 
1.5). After that, the research problem and research questions are defined (section 
1.6). 
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1.2. Land use change models 

Land use change can be assessed in different ways. Agricultural statistics (census) 
databases, such as FAOSTAT (FAO, 2015), help to construct past trends of the areas 
of the different land use types, and remote sensing can be used to spatially 
evaluate land cover changes (see e.g. Allen et al., 2013 for a review). Since future 
trends depend on the aforementioned drivers, they are often not simply an 
extrapolation of past trends. Because of this, simulation models, which incorporate 
a theory on how the land use system relates to the drivers, are used to project 
future land use trends (Veldkamp and Lambin, 2001). Land use change impacts can 
vary widely over space, for example, land use change related GHG emissions 
depend on initial land use, soil type and climate conditions (e.g. van der Hilst et al., 
2014). Therefore, spatially explicit land use change models are suitable to study the 
expected impacts. 

Spatially explicit land use change models start with an initial land use situation for a 
given case study area and use an inferred transition function, representing the 
processes of change, to simulate the expansion and contraction of a predefined set 
of land use types over a given period. Land use change models help to improve our 
understanding of the land system by establishing cause-effect relations and testing 
these on historic data. In this way they help to identify the drivers of land use 
change and their relative importance. In addition, the models can be used to 
explore future land use pathways for different scenarios (Lambin et al., 2000, 
Magliocca et al., 2015), to answer questions of the ‘what-if’-type. For example, 
what will be the response of the land use system if a zoning policy is introduced? 
When a simulation model is used together with a visualization tool targeting to 
evaluate such what-if questions to support decision making, it is sometimes called 
a Spatial Decision Support System (SDSS) (Geertman and Stillwell, 2004). 

Various land use change modelling approaches exist. Agent based models (ABMs) 
try to capture the complexity of human decision making by defining the actors of 
change as autonomous entities (Parker et al., 2003, Matthews et al., 2007). What a 
single agent represents depends on the scale of the study, and ranges from an 
individual person (farmer, citizen) to a community of hundreds of people. In 
general, ABMs apply to local studies, mainly because for a large area both the 
acquisition of sufficient data to parameterize the model at the individual level for 
all relevant processes, and the computation time become problematic. In addition, 
the poor level of detail (coarse resolution) and the aggregation of several actors 
into single agents, inherent at large scales, results in a more homogenous set of 
agent types. This reduces the added value of the agent based approach (Evans and 
Kelley, 2004) and casts doubts about the validity of behavioural assumptions at this 
scale level (Verburg et al., 2004). 
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In a cellular automaton (CA) modelling approach land use change is simulated 
through local interactions in a space that consists of a set of discrete cells, a raster 
(Wolfram, 1984). Each cell has a state, representing the land use type (for example 
forest or cropland) present in that cell at that point in time. The advantage of a CA 
is that it is composed of relatively simple rules that can lead to complex spatial 
patterns, as observed in land use change (Santé et al., 2010). Cellular automata can 
be divided into two groups: pure CAs and constrained CAs. Pure CAs, e.g. SLEUTH 
(Chaudhuri and Clarke, 2013), determine the total area of land use change 
endogenously, by a bottom-up approach, based on historic data. In constrained 
CAs the total amount of change for the study area is determined exogenously, as 
an input or model boundary condition (White and Engelen, 2000). A model with an 
exogenous demand is considered more suitable for the simulation of human-
induced land use changes, which are often steered by drivers outside of  the land 
use system, demanding for the activity taking place or the commodity being 
produced on the land (Verburg et al., 2004). Models that constrain the amount of 
change are also called demand driven land use change models. Well-known 
examples of demand driven models are LandSHIFT (Schaldach et al., 2011) and 
models of the CLUE family (e.g. Verburg et al., 2002, Verburg and Overmars, 2009). 
Having the demand as an exogenous variable also allows for what-if questions 
regarding demand changes, e.g., what will be the response of the land use system 
if developing countries switch to a more meat-based diet like the developed 
countries? For this reason, demand driven, or constrained, CAs are more 
informative than pure CAs in the sustainability debate. 

 

1.3. Model components 

All simulation models consist of different model components. The inputs of the 
model form the first component. These are in a demand driven land use change 
model the demands for all land use types over a particular period of time, and a 
number of spatial attributes that influence the locations of land use change, for 
instance potential crop yield. The set of inputs for time t is denoted as 𝐱𝑡 (Figure 
1.1). The second component is the system state at time t, denoted as 𝐳𝑡 (Figure 
1.1), for instance land use. The system state of time t - 1 (the previous time step), is 
also one of the inputs to the calculation of the system state at time t, because, in 
almost all systems and certainly in all land use systems, the current system state 
depends on the past system state. The core of a simulation model is the set of 
transition rules that represent the processes that lead to the change in the system 
state over time. In the case of a land use change model a transition rule is a 
function calculating the suitability of each location for a particular land use type, 
with respect to a spatial attribute that influences the allocation of that land use 
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type (an input). The third component, encompassing the selection and 
combination technique of the transition rules, is called the model structure 𝐟𝑡  
(Figure 1.1). The transition rules can contain parameters 𝐩𝑡 defining the 
characteristics of the process represented by the transition rule. A land use change 
model can have, for example, a parameter that specifies whether the relation 
between the attribute values and the suitability values is linear or exponential. The 
parameters are the fourth model component. 

If a land use model is to be used to explore future land use pathways, it is essential 
to find the model structure and parameter values that result in an optimal model 
representation of the studied land use system. Identification of the model 
structure and parameter values can be accomplished through comparison of the 
modelled system state and observations of the real system 𝐨𝑡 for the same time 
step t (Figure 1.1) and subsequently selecting the parameter values and model 
structure that minimize the difference between modelled and observed land use. 
Although not explicitly part of the simulation model, the observations of the real 
system can be considered the fifth and final model component, because they do 
contribute to the model formulation. The observations can be land use maps, but 
also aggregated measures or spatial metrics of configuration (a measure of spatial 
patterns) or composition (a measure of the proportions of different classes) (Csillag 
and Boots, 2005).  

 

Figure 1.1: Conceptual model of a simulation model: 𝐟𝒕 represents the processes of change in the 
system state over time, i.e. the set of transition rules and the way to combine them, 𝐱𝒕 represents 
all inputs, and 𝐩𝒕 contains the parameters. Identification of the parameters and model structure is 

based on a comparison between the simulated system state 𝐳𝒕, or a derived spatial metric, with 
the observed system state 𝐨𝒕, or a derived spatial metric.  
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1.4. Uncertainty 

Constructing a land use change model is not straightforward. The dynamic 
processes and feedback loops in the land use system are complex and only partially 
understood (Manson, 2007, Verburg et al., 2013). Therefore, the model structure is 
by definition a strong simplification of this system. In addition, the model inputs 
and parameter values are uncertain and the observations of the real system 
contain errors. For example, land use maps are usually created from remotely 
sensed data, through classification, which is prone to errors (e.g. Burnicki, 2011). 
Also, land use areas from agricultural statistics tend to be rough estimates and can 
have large gaps (missing data values) that have to be interpolated (Lokupitiya et al., 
2007). Furthermore, there can be discrepancies between the data and the desired 
model setup in e.g. land use classes or spatial resolution, and bridging these 
discrepancies can add additional errors (Schroeder, 2007). These errors propagate 
through the model, which generates uncertainty in the modelled system state, i.e. 
in the land use projections. The land use system behaves non-linearly through 
time, and therefore the uncertainty of the projections is likely to be non-linear too 
(Manson, 2007). Thus, propagating uncertainty should be calculated iteratively. 

Yet, the uncertainty resulting from errors propagating through the different model 
components is not the only uncertainty associated with the land use projections. 
Another factor, that could also be termed an uncertainty, is related to the practice 
of scenario analysis. Namely, the analysis of chosen scenarios merely provides 
information on land use changes and the related impacts of a specific set of future 
story lines. It gives no information on how these different scenario outputs relate 
to the complete set of potential futures (Seppelt et al., 2013). For example, in an 
assessment of the environmental impacts through land use change of a certain 
increase in demand for a crop, one could use a land use change model to evaluate 
two scenarios. Presumably, one scenario will result in lower environmental impacts 
than the other one, but this approach does not ascertain that these are the lowest 
obtainable impacts. A calculation of how far off these ‘low’ environmental impacts 
are from the lowest obtainable impacts would make it possible to better place the 
scenario results into perspective, even if the lowest possible environmental 
impacts are not reachable given the available policy instruments. In this thesis, this 
uncertainty about the complete set of potential futures is defined as ‘solution-
space uncertainty’. 

The uncertainty in land use change model projections is rarely communicated to 
the end users, which is problematic given that a land use projection that is 
erroneous or has not been put into perspective can result in wrong conclusions 
(Pontius Jr. and Spencer, 2005, Moulds et al., 2015). One reason that uncertainty is 
not communicated is that the land use change models currently in use do not have 
accompanying tools for uncertainty quantification. To our knowledge, only the 
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pure CA SLEUTH includes tools to allow probabilistic estimates of land use change 
projections (e.g. Clarke et al., 1997). Most land use change models are 
implemented in compiled programming languages of which the source code is not 
made available (Rosa et al., 2014), making it difficult for modellers to add iterative 
uncertainty analyses tools to existing models.  

Another reason that uncertainty is not communicated, is that end users of land use 
change models, or SDSSs in general, often fail to appreciate uncertainty (Foody, 
2003). They consider the fact that uncertainty can play a role in decision making a 
reason not to deal with it, regarding it as a risk or trouble, while quantified 
uncertainty is actually useful additional information about the robustness and 
trustworthiness of the projections and related impacts (Aerts et al., 2003b). In 
addition, information about the uncertainty of the different model components 
signifies which model components have the prospects for and most impact on 
uncertainty reduction, i.e. making model projections more trustworthy. We, as 
scientists, should not take the end users’ anxiety towards uncertainty as an excuse 
not to calculate and communicate the uncertainty in land use change projections. 
It is our responsibility to clarify that this uncertainty does not undermine science, 
but is an intrinsic part of our (mis)understanding of the modelled processes and 
(un)comprehensiveness of the data for the given case study, and that this 
information can be used to the end user’s benefit (Ivanovic and Freer, 2009). 
Therefore, we claim, alongside others (Ivanovic and Freer, 2009, e.g. Uusitalo et al., 
2015, O'Hagan, 2012, Bastin et al., 2013), that uncertainty in simulation model 
outputs should be quantified and communicated to the end users.  

Although other approaches are available for quantifying uncertainty in simulation 
models (Uusitalo et al., 2015), e.g. fuzzy logic (Nguyen et al., 2007), stochastic 
modelling is chosen in this thesis, because of its ease of implementation and strong 
roots in mathematics (Aerts et al., 2003b). Stochastic modelling involves defining 
probability distributions for each variable that is considered to be uncertain and 
using random sampling to draw values from these probability distributions. The 
uncertain variables defined by probability distributions in the stochastic model can 
be any of the model components, inputs, parameters, model structure or 
observations, except for the system state itself, as that is the component we want 
to calculate the uncertainty for. The uncertainty is propagated towards the output 
of the simulation model, in our case the land use projections. Monte Carlo (MC) 
simulation is a solution scheme that involves running the stochastic model a large 
number of times, each time with a random value from each of the probability 
distributions of the stochastic variables. This results in different land use 
projections for these model realizations. Over the different projections summary 
statistics or spatial metrics can be calculated, quantifying the range of the total 
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ensemble and thereby the uncertainty per time step. This uncertainty is visualized 
in the SDSS for the end users. 

Once output uncertainty is known, methods can be applied to reduce this 
uncertainty. As there are currently no stochastic demand driven land use change 
models, there are also no methods for uncertainty reduction. There are, however, 
methods to find the transition rules, or model structure. Regression on a land use 
map is the most commonly applied model structure identification method (Verburg 
et al., 2002, Verburg et al., 1999, Aguiar et al., 2007, Diogo et al., 2014). In recent 
years, methods originating from artificial intelligence have become more prevalent, 
like neural networks (Dai et al., 2005, Li and Yeh, 2002) and swarm intelligence 
algorithms (Liu et al., 2008, Feng et al., 2011).  

There are two problems in the current model structure identification methods. 
Firstly, the uncertainty in the observational data, from e.g. classification of remote 
sensing images and discretization, of the system that the model should reproduce 
is not taken into account. Ignoring uncertainty in the empirical data may lead to an 
underestimation of model output uncertainty. Secondly, the model performance 
should be optimized based on the modelling aim, on the attribute one wants to 
project. For example, if the effect of future land use change on animal 
passageways is studied, connectivity of patches is an important characteristic of 
the land use projections, but if GHG emissions of land use change are studied it is 
more important in which climate zone the change occurs and which previous land 
use type is replaced, among other things. Other studies often fail to indicate which 
target is used to calibrate on (e.g. Aguiar et al., 2007, van Vliet et al., 2012), or 
calibrate on a cell by cell comparison statistic, e.g. Kappa (e.g. van Delden et al., 
2010, Mancosu et al., 2015) or revised Kappa (e.g. van Vliet et al., 2011, Blecic et 
al., 2015). We do not consider a cell-by-cell comparison a good practice as the aim 
of land use change models is usually not, and should not be, to simulate precisely 
the land use of each single cell in each year (Parker et al., 2008). More realistic is to 
try to capture the spatio-temporal patterns relevant to the modelling aim. 
Therefore, there is a need for a coupled land use change modelling and calibration 
framework, to allow recalibration of the model when an end user needs it for a 
new purpose or case study. 

 

1.5. Bioenergy 

There is a myriad of end users of land use change models, connected to the wide 
range of drivers and environmental impacts of land use change. Extent-wise, the 
most important land conversion is natural vegetation to agricultural land, i.e. 
cropland and pastoral land (Lambin and Meyfroidt, 2011). An important question in 
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the sustainability debate is to which extent this conversion is currently induced by 
a demand for bioenergy and how this will change in the future, as e.g. the global 
biofuel demand is projected to grow from its current 3.0% of the road transport 
fuel demand to 3.5% by 2020 (OECD/IEA, 2014) 

In this thesis, the developed methods to quantify and reduce uncertainty for 
spatially explicit land use change models are illustrated with case studies about the 
implications of increasing demands for bioenergy crops. Bioenergy crops are, 
compared to food, feed and fibre crops, under extra pressure in the sustainability 
debate, because they are targeted to be a sustainable alternative for fossil energy. 
While bioenergy crops are more sustainable than fossil sources in the sense that 
they are renewable and that they offer energy security for countries without (or 
with small or expensive to extract) oil and gas reserves, there are other aspects in 
which bioenergy crops are not by definition sustainable. One of the most discussed 
aspects herein is the total amount of GHG emissions from bioenergy production 
when land use change effects are taken into account, about which a heated debate 
started seven years ago with two papers, from Searchinger et al. (2008) and 
Fargione et al. (2008). GHG emission estimates of bioenergy production vary 
widely because there is no consensus about the carbon accounting approach 
(O’Brien et al., 2015), but also because carbon stocks vary widely over space, so the 
carbon stock change is dependent on where exactly the bioenergy crop will be 
cultivated (e.g. van der Hilst et al., 2014). For this latter problem, the uncertainty 
assessment of land use change projections would be of help. That is, if the range of 
possible land use change patterns is known, this range can be used to assess the 
range in carbon stock changes. This ranges given more information than a single 
value, of which the accuracy is unknown.  

According to the IPCC (2011), the global technical potential for bioenergy from 
biomass for 2050 is 500 EJ per year, of which 70 EJ per year could be supplied from 
marginal or degraded land (500 Mha) and 120 EJ per year from good quality 
agricultural and pastoral land (300 Mha). However, the future demand for and the 
potential supply of bioenergy depend on, among other things, the implementation 
and enforcement of energy and sustainability policies, feedstock choice, 
improvements in agricultural management, and prices of fossil resources (e.g. 
Dornburg et al., 2010). Because of this, spatially explicit demand driven land use 
change models are particularly applicable to bioenergy case studies, since they 
allow for the assessment of scenarios with contrasting assumptions for these key 
variables. Spatially explicit land use change models have already been used to 
answer bioenergy related questions (van der Hilst et al., 2014, e.g. Lapola et al., 
2010, Hellmann and Verburg, 2011). Recently, models have been especially of use 
in the projection of indirect land use change (iLUC), i.e. the cascading effect of a 
change in land use outside the bioenergy feedstock cultivation area, induced by a 
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change in use or production quantity of that feedstock (see Wicke et al., 2012 for a 
review). But only one of these model assessments of iLUC was done using a 
spatially explicit land use change model (Lapola et al., 2010). More importantly, 
although there is a huge divergence of estimated GHG effects of iLUC between the 
different studies, from 200% below up to 1700% above the carbon footprint of 
fossil fuels (Finkbeiner, 2014), evaluation of the uncertainties in the projections of 
one model, resulting from errors propagating through the different model 
components within this model, has not been performed. A few studies have 
assessed the solution space of particular bioenergy case studies, but all of them are 
spatially aggregated (e.g. Lautenbach et al., 2013, Akgul et al., 2012) or use very 
small case study areas, which limits the general applicability of the conclusions 
(Chikumbo et al., 2015). Also, none of these assesses the position of one or more 
scenario projections within this solution space.  

 

1.6. Problem definition, research questions and thesis outline 

From the above, it can be concluded that it is essential to be able to spatially 
project land use changes through time. Yet, the spatially explicit land use change 
models that are developed to do so, contain uncertainties in their different model 
components (inputs, model structure, parameters and empirical observations) and 
in the position of their scenario projections in the total solution space. Commonly 
used land use change models do not quantify these uncertainties. This leaves the 
end user unaware of the accuracy of the modelled land use projections and 
uninformed about the sources of uncertainty and possibilities for uncertainty 
reduction. The aim of this thesis to develop methods to quantify and reduce 
uncertainty for spatially explicit land use change models. Case studies in this thesis 
are focused on bioenergy as a driver of land use change, because the demand for 
bioenergy is expected to increase in the near future and the impacts of this 
increase are an important issue in the sustainability debate. The following research 
questions are assessed in the chapters of this thesis: 

 

1. How can uncertainty in land use change projections be quantified? 

In Chapter 2, Monte Carlo simulation is applied to quantify the uncertainty in land 
use change projections. Hereto uncertainties in all model components have to be 
estimated: inputs (Chapter 2, 5), parameters (Chapter 2, 3, 4), model structure 
(Chapters 3, 4, 5) and observations (Chapters 3, 4, 5). The methods to estimate 
these uncertainties and the effects of these uncertainties on different model 
outputs at various scales are discussed. Chapter 2 focuses on the uncertainty in 
potential bioenergy crop yield and on uncertainty visualization techniques for 
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SDSSs. Chapter 3 quantifies uncertainties in different spatial landscape metrics that 
are of relevance for land use change impacts, such as the number of 
interconnected patches of a land use type, which is of relevance to e.g. 
biodiversity. Chapter 4 demonstrates the effect of a non-stationary model 
structure on the total area of a bioenergy crop in different regions. Chapter 5 
focuses on the uncertainty in land use change at different scale levels. In Chapter 
6, a scenario projection of land use is compared with the ‘optimal’ land use 
configurations, given the objectives to minimize biofuel production costs and GHG 
emissions. This provides information on the solution-space uncertainty.  

 

2. How can uncertainty in land use change projections be reduced? 

Monte Carlo simulation is also used in Chapter 3 and 5, but now coupled to a 
particle filter, a data assimilation technique, to reduce the uncertainty in the model 
with observations of land use change over time. Errors in observations used to 
reduce the uncertainty are taken into account in both chapters.  

 

3. What are the contributions of different model components to the uncertainty in 
land use change projections? 

All chapters take into account uncertainty in different model components: inputs 
(Chapter 2, 5), parameters (Chapter 2, 3, 4), model structure (Chapters 3, 4, 5) and 
observations (Chapters 3, 4, 5). We aim to evaluate how large the influence of each 
of these components on the uncertainty in projections is. This is evaluated for 
various model output attributes at different spatial scale levels. This information 
indicates which components have the highest need for improvement. Future data 
collection and model development efforts can be tailored to this. 

 

4. What are the implications of the land use change projection uncertainties for 
bioenergy implementation strategies? 

The impacts of the findings of this thesis for bioenergy implementation strategies, 
like policy formulations, are discussed in all chapters for different bioenergy case 
studies. Chapter 2 explores the potential for sugar cane and eucalyptus for 
bioenergy in Mozambique up to 2030. Chapter 3 and 4 focus on sugar cane 
expansion in the state of São Paulo, in Brazil. Chapter 5 assesses the whole of 
Brazil, taking into account the expansion of sugar cane but the iLUC effects. Finally, 
Chapter 6 is focused on the allocation of sugar cane fields and ethanol mills in the 
state Goiás, one of the new expansion regions of sugar cane in Brazil.  
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Within the scope of this thesis the PCRaster Land Use Change (PLUC) model was 
developed. PLUC is a demand driven CA, similar to other land use change models 
such as CLUE (Verburg and Overmars, 2009, Verburg et al., 1999) and LandSHIFT 
(Schaldach et al., 2011). It is built within the PCRaster Python framework 
(Karssenberg et al., 2010) that facilitates integration of spatio-temporal modelling 
and uncertainty analysis. Hereto, it uses the PCRaster Python library (Karssenberg 
et al., 2007) that contains spatio-temporal functions for rasters. PLUC can be 
tailored to any case study and any region as the user can define the number of land 
use types to be modelled and transition functions valid for these land use types.  
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2. Spatio-temporal uncertainty in Spatial Decision Support 
Systems: a case study of changing land availability for 
bioenergy crops in Mozambique 

 
 

Judith A. Verstegen, Derek Karssenberg, Floor van der Hilst, André P.C. Faaij 
(2012), Computers, Environment and Urban Systems 36, 30-42. 

 

 

Abstract - Spatial Decision Support Systems (SDSSs) often include models that can 
be used to assess the impact of possible decisions. These models usually simulate 
complex spatio-temporal phenomena, with input variables and parameters that 
are often hard to measure. The resulting model uncertainty is, however, rarely 
communicated to the user, so that current SDSSs yield clear, but therefore 
sometimes deceptively precise outputs. Inclusion of uncertainty in SDSSs requires 
modelling methods to calculate uncertainty and tools to visualize indicators of 
uncertainty that can be understood by its users, having mostly limited knowledge 
of spatial statistics. This research makes an important step towards a solution of 
this issue. It illustrates the construction of the PCRaster Land Use Change model 
(PLUC) that integrates simulation, uncertainty analysis and visualization. It uses the 
PCRaster Python framework, which comprises both a spatio-temporal modelling 
framework and a Monte Carlo analysis framework that together produce stochastic 
maps, which can be visualized with the Aguila software, included in the PCRaster 
Python distribution package. This is illustrated by a case study for Mozambique in 
which it is evaluated where bioenergy crops can be cultivated without endangering 
nature areas and food production now and in the near future, when population 
and food intake per capita will increase and thus arable land and pasture areas are 
likely to expand. It is shown how the uncertainty of the input variables and model 
parameters effects the model outcomes. Evaluation of spatio-temporal uncertainty 
patterns has provided new insights in the modelled land use system about, e.g., 
the shape of concentric rings around cities. In addition, the visualization modes 
give uncertainty information in an comprehensible way for users without specialist 
knowledge of statistics, for example by means of confidence intervals for potential 
bioenergy crop yields. The coupling of spatio-temporal uncertainty analysis to the 
simulation model is considered a major step forward in the exposure of uncertainty 
in SDSSs. 
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2.1. Introduction 

Spatial Decision Support Systems (SDSSs) are interactive, computer-based systems 
that include simulation models and visualization tools designed to assess the 
impact of possible decisions (Geertman and Stillwell, 2004). With SDSSs, planners 
can investigate the effects of different scenarios, and explore intervention 
possibilities by adjusting model inputs in a user interface accessible to users that 
do not have expert knowledge of modelling theory and technology. The models in 
SDSSs usually simulate change over time of a spatial phenomenon or, more likely, a 
number of spatial phenomena that interact with each other. These dynamic 
processes and interactions tend to be complex and are rarely fully understood 
(Manson, 2007). As simulation models are simplifications of open, complex 
systems, model output errors are inherent as a result of the debatable choice and 
conceptualization of relevant sub-processes, uncertainty in model parameters and 
input variables, and the discretization of information. These errors propagate 
through the model because the state of the modelled system at a certain moment 
in time is a function of its state in the past. This generates uncertainty in model 
outputs.  

Whereas scientists are familiar with the concept of uncertainty and methods to 
quantify it (Brown and Heuvelink, 2007, Chen et al., 2011, Goodchild, 2004, 
Heuvelink, 1998), SDSS users tend to seek certainty and deterministic solutions 
(Bradshaw and Borchers, 2000). In other words, they demand practical models 
with clear and unambiguous results to facilitate decision making. The result of this 
desire for clarity and simplicity is that SDSSs tend to underestimate, if not ignore, 
uncertainty (Foody, 2003). They thus yield clear, but therefore sometimes 
deceptively precise outputs. 

Decisions based on misinterpreted or erroneous model output can be costly due to 
the irreversibility of such decisions. Uncertainty thus needs to be communicated 
clearly. Therefore we claim, together with others (Foody, 2003, e.g. Aerts et al., 
2003b, Ivanovic and Freer, 2009, Ma et al., 2007, Oreskes et al., 1994), that instead 
of obscuring uncertainty users should be made more aware of uncertainty in 
SDSSs. Difficulties in including and communicating uncertainty in SDSSs are: 1) the 
concepts and measures of uncertainty can be somewhat difficult to grasp for users 
without specialist knowledge of statistics, 2) uncertainty is input-dependent, 3) 
uncertainty varies over space, time and aggregation level, and 4) software 
packages that can integrate spatio-temporal modelling, uncertainty analysis and 
visualization are rare. 

The first difficulty arises from the fact that it is unlikely that the average user of an 
SDSS has skills in handling uncertainty at a comparable level as the modellers 
themselves (Foody, 2003). Therefore, modellers should aid their end users by 
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providing intuitive and insightful indicators of uncertainty and straightforward tools 
to visualize these (Aerts et al., 2003b).  

The second problem is that the model uncertainty cannot be calculated on 
forehand by the modeller, as output uncertainty depends on model inputs and 
parameters. Currently, uncertainty in simulation models is sometimes assessed by 
providing a (static) map of output uncertainty of the final time step of a standard 
run of the simulation model (Brown et al., 2005, Chang et al., 2008, Eckhardt et al., 
2003). Clearly, this does not suffice for an SDSS, in which investigating the effects 
different model settings is the main goal, so that inputs and parameters are altered 
frequently. For that reason, uncertainty analysis should be automatically calculated 
by the model itself, every time it is run with different settings. 

The third difficulty is that uncertainty varies over space and time, because complex 
systems behave non-linearly. This makes that providing an uncertainty map of the 
final time step only is not sufficient when it comes to complex, non-linear systems 
(Ligmann-Zielinska and Sun, 2010). So, an uncertainty map is needed for each time 
step, in order to allow iterative uncertainty analysis (Manson, 2007), as for example 
demonstrated by Gorsevski et al. (2006). In addition, it has been shown by others 
(Pontius Jr. and Spencer, 2005, Hiemstra et al., 2012, Kok et al., 2001) that 
uncertainty is highly dependent on the level of spatial aggregation. Usually, 
uncertainty becomes lower at a coarser scale, because rearrangements in the 
landscape at locations in close proximity cancel each other out when they are 
aggregated. This is highly relevant in SDSSs, as their end users operate at different 
managerial levels (e.g., town, district, province, country), related to spatial scale 
levels (local, regional, national). To be able to aid these different end users, it 
should be possible in an SDSS to assess uncertainty at different levels of 
aggregation. Ideally, inclusion of such methods should be possible without too 
much additional work on the side of the model developer.  

The final problem is that most software packages are either dedicated to model 
development, e.g., Stella (2010) and NetLogo (2010), or to uncertainty analysis (for 
a package overview see Goovaerts, 2010), or to visualization, e.g., ArcGIS (ESRI, 
2011). Using such packages to construct an uncertainty-inclusive SDSS would 
require a complex coupling mechanism. Also, existing visualization tools do not 
explicitly support methods to visualize uncertain spatio-temporal data. A possible 
solution to this problem is the PCRaster model construction framework 
(Karssenberg et al., 2010, PCRaster, 2010), which offers a combined interface for 
spatio-temporal modelling and uncertainty analysis and includes a visualization 
tool for stochastic data in its distribution package.  

The objective of this paper is to construct an SDSS that integrates simulation, 
iterative uncertainty analysis, and visualization to facilitate end users at different 
managerial levels to take uncertainty into account in decision making. This is 
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illustrated by a case study of bioenergy-crop potentials in Mozambique. Although 
some studies have been conducted to assess the area of potentially available land 
for bioenergy crops in Mozambique (Batidzirai et al., 2006, Watson, 2011), none of 
these studies was carried out in both a temporally dynamic and spatially explicit 
way. The PCRaster Land Use Change model (PLUC) is developed to evaluate where 
bioenergy crops can be cultivated without entering into competition with other 
important land uses from an economic or sustainability point of view, now and in 
the near future when population and food intake per capita and thus arable land is 
likely to increase. We show that PLUC allows stochastic model inputs and produces 
interactive visualizations of forecast uncertainty, in space and time, at a range of 
spatial aggregation levels. These visualizations can be used by decision makers to 
evaluate possible locations and potential yields for bioenergy crops.  

The next section of this paper describes the concepts and methods of the PCRaster 
Python framework, outlines how the framework is applied to construct the land 
use change model for Mozambique, explains the error models of the different 
stochastic inputs, and illustrates the mode of implementation. The results section 
shows different visualization modes of uncertainty indicators and their potential 
usage, drawing on the outputs of PLUC for the Mozambique case study. The final 
section discusses the advantages and shortcomings of the uncertainty-inclusive 
simulation model. 

 

2.2. Methodology 

2.2.1. Software framework 

Although other approaches exist to include uncertainty in a model, such as fuzzy 
logic (e.g. Nguyen et al., 2007, Robinson, 2003), stochastic modelling has the 
advantage that it has a strong root in mathematics. In stochastic modelling, a 
model input is defined by a probability distribution of all possible values. This 
uncertainty is propagated through the model using a numerical solution scheme. 
Monte Carlo simulation is such a solution scheme, which is attractive because of its 
general applicability and ease of implementation (Aerts et al., 2003b). It involves 
running the model a large number of times, each time drawing a realization from 
the input probability distribution(s). For spatial models this results in different 
spatial patterns for the different model realizations, i.e. model runs or samples.  

The PCRaster model construction framework (Karssenberg et al., 2010, PCRaster, 
2010) facilitates this integration of spatio-temporal modelling and uncertainty 
analysis through the PCRaster Python library (Karssenberg et al., 2007). This library 
provides a large set of spatio-temporal functions on raster maps, embedded in the 
Python language (Python software foundation, 2014). Both a spatio-temporal 
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modelling framework and a Monte Carlo analysis framework are present as a 
Python class. These classes include methods to write the simulation results and 
uncertainty indicators to disk as maps, which can be visualized with the Aguila 
software (Pebesma et al., 2007), included in the PCRaster Python distribution 
package. To allow construction of a spatio-temporal model that permits stochastic 
inputs and assessment of the resulting uncertainty, three main methods are 
provided by the framework that together form the schedule in Table 2.1 
(Karssenberg and de Jong, 2006). Firstly, there is a loop for evaluation of the 
spatio-temporal process itself (line 2). Herein, the modeller can program the 
equations that represent the change of the system state over a time step (line 3). 
The framework provides for this purpose a number of functions particularly 
designed for spatial and stochastic operations. Secondly, a loop over this spatio-
temporal model is performed to generate the Monte Carlo samples (line 1). Finally, 
summary statistics are computed over all Monte Carlo samples (line 4), 
representing the uncertainty in the model output within a time step or over the 
whole simulated period of time. 

The individual Monte Carlo sample results and summary statistics are written to 
disk with a function from the PCRaster Python library. This function uses rules for 
file names defined by the modelling framework, so that they can directly be 
visualized with the Aguila software that recognizes these name conventions. 
Temporal deterministic and stochastic data can be viewed by animation or toggling 
through time, of which the last technique was considered helpful by decision 
makers (experts as well as novices) for visualizing uncertain data in a study of Aerts 
et al. (2003a). In addition, stochastic outputs are visualized as maps or plots of 
mean, standard deviation, confidence interval, exceedance probability, or 
cumulative probability distribution of a variable. These visualizations are 
interactive, which allows users to explore the data (Karssenberg et al., 2010, 
Pebesma et al., 2007). 

 

 

  
1  for each MC sample: 

2    for each time step: 

3      solve system state equation 

4  compute summary statistics 

Table 2.1: Modelling schedule of the PCRaster Python framework 
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2.2.2. Land use change model 

The potential to employ the PCRaster Python framework for an SDSS including 
uncertainty is illustrated by the construction of a land use change model, meant to 
aid in evaluating where bioenergy crop plantations can be allocated. Until now, 
bioenergy potentials were mostly assessed in a spatially aggregated (e.g. Hoogwijk 
et al., 2005) or temporally static way (e.g. van der Hilst et al., 2010). So, in this 
study a both spatially explicit and temporally dynamic model is created for 
Mozambique. The case is relevant, because Mozambique is considered promising 
for bioenergy crop production by its vast amounts of available land (Smeets et al., 
2007), favourable environmental conditions for cultivation (Batidzirai et al., 2006), 
and relatively low productivity of current agriculture (Arndt et al., 2010), which 
offers potential for improvement. However, over the past decade the area of 
forests and woodlands has decreased substantially due to an increase in cultivated 
areas (Jansen et al., 2008). Now as well as in the future, cultivation of bioenergy 
crops should not add to that effect and not endanger other important land uses, 
either from an economic, e.g., food crops and livestock, or from a sustainability 
point of view, e.g., conservation areas (Haberl et al., 2010). The population is 
expected to increase and its diet is expected to change as well, which induces 
further shifts in land use. The direction and extent of this shift depends on the 
agricultural and livestock productivity, which is expected to improve. The trends 
herein are derived from literature (e.g. FAO, 2003, INE, 2003), fieldwork, and 
meetings with national and local authorities. More background on the modelled 
processes and used data is provided in the twin-publication of this paper (van der 
Hilst et al., 2012). This section focuses on the set-up of the model. 

The main model component is the state transition function representing the 
change in spatially distributed land use over a time step. Many models of land use 
dynamics have been constructed before (see for overviews Agarwal et al., 2002, 
Parker et al., 2003, Verburg et al., 2004). Some focus on one specific land use 
conversion, such as urbanization (Batty, 2005, Ligtenberg et al., 2009), but more 
often several land uses in the area compete for new locations (Verburg and 
Overmars, 2009, Lei et al., 2005). We adopt the latter approach, in which we focus 
on active change in agricultural land use types and forest as the future distribution 
of land reserved for these land uses is the main issue in the view of potential 
locations for bioenergy crop plantations. By active change, we mean that 
expansion or contraction of the total area of this land use is explicitly steered by 
certain drivers. Other land use types on the land use map can change passively, by 
expansion or contraction of an active land use type. 
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Figure 2.1: Conceptual model of land use change. 

The land use change is steered by two factors: 1) the demand of the population for 
food, non-food crops (e.g., cotton and tobacco) and wood, and 2) the growth rate 
of yield, defined by agricultural and livestock productivity. The conceptual model 
(Figure 2.1) includes three loops. The first one loops over time and coincides with 
line 2 in Table 2.1. The other two belong to the actual state transition function (line 
3 in Table 2.1); one loops over all active land use types and the other checks 
iteratively whether this land use type should expand, contract or has met its 
demand. The actual location of the expansion or contraction of the land use types 
is determined by suitability factors, like distance to cities and transport networks, 
current land use in the neighbourhood, and location-specific yield due to 
characteristics of the soil and climate. Areas occupied by other economically 
important land uses, physically constrained areas, and protected land uses are 
excluded and the remaining land is potentially available for bioenergy crops. But 
the bioenergy crops are not included as a land use type, which means they are not 
allocated. The model is explained in more detail in the following. 

An important step in model implementation is the choice of the support to 
represent processes (Hengl, 2006, Pan et al., 2010, Bierkens et al., 2000). The 
support refers to the size in the spatial domain (i.e. spatial discretisation), and the 
temporal domain (i.e. time step duration) over which processes are considered 
homogeneous. Model inputs and parameters need to be representative for the 
support used (c.f. Bierkens et al., 2000). The following criteria were used to select a 
suitable support. 1) The scale at which the model output is required in order to 
answer the end user's questions (Evans and Kelley, 2004), also called policy scale 
(Bierkens et al., 2000). In our case, policy makers at different spatial scale levels are 
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involved, ranging from national to local scale. Information is needed on changes in 
land use over the coming decades. 2) The process scale, i.e. the scale of natural 
variability of the studied process (Blöschl, 1999). We do not aim to study land use 
changes at parcel level; the smallest transformation of interest is at the level of a 
small community of farmers. 3) Observational data availability. If the input data 
does not match the resolution of the model, upscaling or downscaling could be 
applied, but one should be careful to do so, as spatio-temporal probability 
distributions alter with changing resolution (Bierkens et al., 2000). Thus it is 
preferable to choose a support that matches the support of available observational 
data. 4) Processing power, as calculation time increases exponentially with the 
number of cells (Hengl, 2006). As PLUC is designed as an SDSS, it should be usable 
on a desktop pc. The Monte Carlo simulations should be performable in a 
reasonable amount of time and should result in a manageable amount of data. As 
the system studied constitutes of a number of subsystems that operate at different 
scales, while data availability differs between subsystems, we implement our 
models at three levels of spatial support: 1) country level, for data that is only 
available for the country as a whole, like economic trends, 2) land use type level, 
for crop-dependent but location-independent variables, like maximum possible 
product yield, and 3) cell level, for location-specific information, like population 
density. These three levels are implemented using gridded maps with a cell size of 
1 km2. This means that technically, all information is discretized into cells of 1 km2, 
but in fact the three abovementioned levels of spatial support are used in input 
data and process descriptions. The model uses a time step (Δt) of one year, with 
time step t = 1, 2, ..., T. Most equations are evaluated separately for each of the N 
land use types, with n = 1, 2, ..., N. The model is run for 25 years and the following 
dynamic land use types are defined: cropland, mosaic cropland-pasture (grazed 
grassland), mosaic cropland-grassland (not grazed), pasture, forest. However, any 
cell size, model period, and number and type of land uses could be defined by the 
user.  

The demand 𝑑𝑛,𝑡 (kg · year-1) for products from land use type n at time step t is: 

In Equation 2.1, 𝑝𝑡 denotes the number of inhabitants in the country at t, intake 
𝑖𝑛,𝑡 (kg · caput-1 · year-1) specifies the demand per capita of products from land use 
type n at t, and the self-sufficiency ratio 𝑟𝑡(-) is the extent to which the food 
demands are met by domestic supply at t. 

  

 𝑑𝑛,𝑡 = 𝑝𝑡 ∗  𝑖𝑛,𝑡 ∗ 𝑟𝑡   , for each n in each t  2.1  
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Potential yield 𝐩𝑛,𝑡 (kg · km-2 · year-1) is the yield of products from land use type n 
at t if the cell would be occupied by that land use type: 

 𝐩𝑛,𝑡 = 𝑚𝑛,𝑡 ∗ 𝐟𝑛    , for each n in each t 2.2  

In Equation 2.2, 𝑚𝑛,𝑡 is the maximum possible product yield (kg · km-2 · year-1) of 
products from land use type n at t, which can increase through time due to 
technological improvements in the agricultural or livestock sector, i.e. increased 
productivity (FAO, 2003). The location-specific variable fn ∈ [0,1] is the actual 
fraction of this yield that can be reached in a cell, depending on factors like soil 
type, climate, and water availability. Note that a bold font indicates that a variable 
is a spatial field, i.e. information at cell level. 

The total product yield of a land use type is calculated using the land use map at t. 
First, a spatial field of the current yield 𝐜n,t (kg · km-2 · year-1) of land use type n at t 
is constructed that contains the value of 𝐩𝑛,𝑡 for cells that are currently occupied 

by type n at t and zero for cells occupied by other land use types. The total product 
yield 𝑦𝑛,𝑡  (kg) of this land use type is therefore: 

 𝑦𝑛,𝑡 = ∑(𝐜𝑛,𝑡 ∗ 𝑎)   , for each n in each t 2.3  

In Equation 2.3, the summation sign indicates summation over the whole spatial 
field and a is the cell size in km2 (1 km2 in this study).  

To determine where a certain land use expands or contracts, every land use type is 
assigned a number of suitability factors. In total, nine suitability factors have been 
implemented in PLUC. The number and kind of suitability factors differ per land use 
type. 
 

Table 2.2 shows which suitability factors were implemented for every dynamic land 
use type in the case study of Mozambique and which weights were assigned to 
them (see Equation 2.4 below). For a detailed explanation of why these factors and 
weights were chosen, the reader is referred to van der Hilst et al. (2012).  
 

Table 2.2: Weights per suitability factor i per land use type n. The suitability factors concern: 
spatial autocorrelation (1), distance to roads (2), water (3), and cities (4), yield (5), population 

density (6), livestock density (7), distance to plot edge (8), and conversion elasticity (9). 

 suitability factor (i) 

land use type (n) 1 2 3 4 5 6 7 8 9 

cropland 0.20 0.10 0.10 0.10 0.20 0.20 0 0 0.10 

cropland-grassland 0.20 0.10 0.10 0.10 0.20 0.20 0 0 0.10 

cropland-pasture 0.20 0.10 0.10 0.10 0.15 0.15 0.10 0 0.10 

pasture 0.30 0.05 0.15 0.05 0.1 0.05 0.20 0 0.10 

forest 0.25 0 0 0.20 0.05 0.30 0 0.20 0 
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The spatial autocorrelation suitability factor (1) assumes that land uses attract land 
uses of the same or a related type (e.g., cropland is related to mosaic cropland-
pasture and mosaic cropland-grassland), i.e. that related land uses tend to cluster. 
It determines the area of land use type n or types that are related to n in the 
neighbourhood of a cell with land use type n. The size of the neighbourhood is 
determined by the window length l (m), i.e. the length of the square window 
around the centre cell, and the area occupied by the same or related land use 
types is calculated relative to the size of the window. This suitability factor thus 
introduces positive feedback loop into the model: if a land use type is allocated at a 
certain location, the suitability value in the neighbourhood of that location 
increases for this land use type, so that more of this land use might be allocated in 
the area in the next time step. 

The suitability factors for distance to roads (2), water (3), cities (4) and edge of the 
plot (8) determine suitability based on the shortest Euclidean distance to the 
object under consideration, i.e. roads, water, cities, or edges of plots, i.e. spatially 
connected areas of a uniform land use type. For crops and pasture typically a 
location close to roads and cities is preferred in order to minimize transport costs, 
and close to water for irrigation. Wood is preferably harvested at the edge of the 
forest, because this makes harvesting easier. The distance suitability functions (2, 
3, 4 and 8) all have two input parameters: relation type between distance and 
suitability (linear, exponential or inversely proportional) and range rn (m). The 
range indicates the maximum distance of effect of the feature, e.g., the maximum 
distance of effect of a road on the land use type pasture is set at 5 km, based on 
fieldwork, expert knowledge and literature (e.g. Jansen et al., 2008). Cells at a 
distance of more than the range have a suitability value of zero for this suitability 
factor. 

The yield fraction (5), population density (6) and livestock density (7) suitability 
factors relate to the fraction of the maximum that can be found in a cell (see 
Equation 2.2), where the maximum refers to maximum yield (𝑚𝑛,𝑡), maximum 
population density and maximum livestock density in factor 5, 6, and 7, 
respectively. Per land use type the direction (increasing or decreasing) and relation 
type between fraction and suitability (linear, exponential or inversely proportional) 
can be indicated, like in the distance suitability function, e.g., cropland is preferably 
located on cells with a high yield, but wood might preferably be harvested from 
cells with a low yield, i.e. biomass, because harvesting is easier in sparse forest. 

The current land use (9) suitability factor indicates the compliance of a certain land 
use type to be transformed into the land use type that implements the suitability 
factor. This factor is sometimes referred to as conversion elasticity (Verburg and 
Overmars, 2009), e.g., it is more preferable for pasture to be placed on a cell that is 
currently defined as 'abandoned' than on a cell that is currently defined as 
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'cropland', as the second case involves a greater loss of economic value. Note that 
most spatial fields resulting from the suitability factors (𝐮𝑖,𝑛,𝑡, see Equation 2.4 
below) remain the same over time, as the location of the features it relates to, e.g., 
roads, does not change over time in the model. This is the case for the factors 2, 3, 
4, 5, 6, and 7. However, the spatial fields of suitability factors related to dynamic 
land use types (1, 8, and 9) do change over time and thus establish feedback loops 
in the land use system. 

For every land use type a total suitability map 𝐬𝑛,𝑡 ∈ [0,1], indicating the 
aggregated appropriateness of a given location for land use n at time step t, is 
computed from its suitability factors: 

In Equation 2.4, 𝐮𝑖,𝑛,𝑡  ∈ [0,1] is the spatial field resulting from suitability factor i 
for land use type n at time step t, and 𝑤𝑖,𝑛 ∈ [0,1] is the weight of suitability factor 

i for land use type n (see Table 2.2). 

Now, all information is available to allocate the land uses. The land use types have 
a certain hierarchy determined mainly by their economic importance. In Africa, the 
current trend is that agricultural intensification takes place on land that is now 
used as mosaic cropland-pasture or mosaic cropland-grassland. This extensive land 
use becomes less common and is moved to less fertile grounds, while areas even 
less fertile, like mountain areas and forests, come into use for grazing of livestock 
(Lambin et al., 2001). Therefore, we assume the following order of allocation for 
the dynamic land uses: cropland, mosaic cropland-pasture, mosaic cropland-
grassland, pasture, forest. The allocation schema can be written in pseudo-code as 
in Table 2.3. When the land use type expands, it allocates new cells of this type at 
locations with the highest suitability, i.e. max(𝐬n,t), and when it contracts it 

removes cells of this type with the lowest suitability, i.e. min(𝐬n,t). Cells are 
converted to or removed from this land use until the total yield 𝑦𝑛,𝑡 equals the 
total demand 𝑑𝑛,𝑡. In Table 2.3 the number 99 in line 7 refers to the land use 
category 'abandoned'. For land use type forest the class 'abandoned' is named 
'deforested' in order to be able to distinguish cleared forest from deserted 
agricultural land on the resulting land use map. 

 

 𝐬𝑛,𝑡 =  ∑ (𝑤𝑖,𝑛 ∗ 𝐮𝑖,𝑛,𝑡)9
𝑖=1    ,  for each n in each t 

                                 with  ∑ (𝑤𝑖,𝑛) =  𝟏9
𝑖=1  

2.4  
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When allocation of one land use type is finished, allocation of the next type is 
performed, with the restriction that it cannot convert cells with a land use type 
that has already been allocated in that time step. Deforested areas become forest 
again when they are left fallow for 10 years. The regenerated forest can be 
harvested once more to fulfil the wood demand. 

At the end of each time step, when the land use map has changed according to the 
demands of the different land use types, it is determined which cells are potentially 
available for bioenergy crops. This is done by excluding all areas occupied by crops, 
pasture, steep slopes (calculated from the digital elevation model), roads, water, 
cities, forest concession areas, community areas, and nature reservation areas. 
This results in a Boolean map (𝐛𝑡) where cells are available (True) or unavailable 
(False) for bioenergy crops at time step t. Although the bioenergy crops are not 
allocated on the land use map, they do have their own maximum possible product 
yield 𝑚𝑡 and yield fraction map f, so the bioenergy crop yield per location and in 
total for the available area 𝐛𝑡 can be calculated using Equations 2.2 and 2.3. These 
results can be used to assess the available area and yield on provincial and national 
level, in order to take the influence of spatial aggregation into account. 

 

2.2.3. Error models 

The various projections of population growth, diet change and technological 
improvements in the agricultural sector differ significantly (Arndt et al., 2010, FAO, 
2003, UNDP, 2008), so applying one of these datasets deterministically to quantify 
drivers presumably ignores a large input error. Also, a number of model 
parameters are uncertain as they can only be estimated by expert knowledge, 
because extensive model calibration datasets are currently not available. PLUC 
takes each of these input errors into account in calculating the forecast 

1  if 𝑑𝑛,𝑡 > 𝑦𝑛,𝑡: 

2    while 𝑑𝑛,𝑡 > 𝑦𝑛,𝑡: 

3      convert cell with max(𝐬𝑛,𝑡) to n 

4      update 𝑦𝑛,𝑡 

5  else if 𝑑𝑛,𝑡 < 𝑦𝑛,𝑡: 

6    while 𝑑𝑛,𝑡 < 𝑦𝑛,𝑡: 

7      convert cell with min(𝐬𝑛,𝑡) to 99 
8      update 𝑦𝑛,𝑡 

9   else: 

10   do nothing 

Table 2.2: Pseudo-code for land use allocation procedure. Allocation of each land use type n in 
each time step t proceeds until yield fulfills demand. 
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uncertainty. Model drivers and parameters that are uncertain are defined here as 
lumped or spatially distributed stochastic variables. The variables can be divided 
into three groups according to their data type: single value, spatial field and time 
series (Table 2.4). 

Two stochastic variables represent a single value: the window length l used in 
suitability factor 1 and the range rn, used in suitability factors 2, 3, 4, and 8. For 
window length l a normal error model is used: 

 𝑙 = 𝜇𝑙  +  𝑍𝑙 ∗ 𝜎𝑙 

with 𝑍𝑙  ~ 𝑁(0,1) 
2.5  

In Equation 2.5, 𝜇l is the mean of l, i.e. the value that would be used in a 
deterministic run. In our case study a value of 3 km is used for 𝜇l, as this means 
that only the direct neighbours are taken into account in our 1 x 1 km raster. In 
Equation 2.5, 𝜎l is the standard deviation, which is set to 1 km. It should be noted 
that l can attain values such that the window cuts through cells. This is not a 
problem as the suitability factor calculates the area in the window occupied by 
attracting land use types, not the number of cells. 

For the range rn an error model with a uniform distribution is used: 

 𝑟𝑛 = √𝑎 + 𝑍𝑟 ∗ 2 ∗ 𝜇𝑟,𝑛 

with 𝑍𝑟 ~ 𝑈(0, 1)  
2.6  

In Equation 2.6, a is the cell size in km2. This means that realizations of the range 
vary between the cell length and twice the mean value that is used in a 
deterministic run. This lower limit is used, because land use cannot be allocated on 
the feature under consideration, e.g., a road. 

 

Table 2.4: Stochastic variables of the land use change model and their data type, error model and 
standard deviation (σ), if applicable. For explanation of error models, see main text. 

stochastic variable data type error model σ 

window length (l) single value normal  3 km 

range (rn) single value uniform - 

elevation (h) spatial field normal 1 m 

yield fraction (fn) spatial field relative normal 0.2 

population density spatial field relative normal 0.1 

livestock density spatial field relative normal 0.1 

maximum yield (𝑚𝑛,𝑡) time series relative normal 0.1 

demand (𝑑𝑛,𝑡) time series uniform - 
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Four stochastic input variables represent a spatial field, i.e. a raster map of values. 
For surface elevation h a normal error is used: 

 𝐡 = 𝛍𝐡  + 𝐙𝐡 ∗ 𝜎𝒉 

with 𝐙𝐡 ~ 𝐍(𝟎, 𝟏) 
2.7  

In Equation 2.7, 𝛍h is the original elevation map and 𝜎h is the standard deviation, 
for which a value of 1 m is used. Note that the normal error Zh is a spatial field, 
which means that a separate value is drawn for each cell. The other three 
stochastic spatial fields are the yield fraction, population density and livestock 
density. For all three a relative normal error model is used. This means that the 
error (in this case a normal error) is higher for higher mean values. For example, 
the yield fraction fn is defined as: 

 𝐟n = 𝛍𝐟  +  𝐙𝐟 ∗ 𝜎𝑓 ∗ 𝛍𝐟 

with 𝐙𝐟 ~ 𝐍(𝟎, 𝟏) 
2.8  

In Equation 2.8, 𝛍f is the original yield fraction map and 𝜎f is the standard 
deviation, for which a value of 0.2 is used. The population density and livestock 
density both have a standard deviation of 0.1. The standard deviation of the yield 
fraction is higher, because we found several different spatial data sets of the yield 
that were distinctively different, which indicates a large input error. 

Finally, two stochastic time series are used. The first is the maximum yield 𝑚𝑛,𝑡, to 

which a relative normal error model is assigned, similar to the one explained in 
Equation 2.8: 

 𝑚𝑛,𝑡 = 𝜇𝑚,𝑛,𝑡  +  𝑍𝑚 ∗ 𝜎𝑚 ∗ 𝜇𝑚,𝑛,𝑡 

with 𝑍𝑚 ~ 𝑁(0,1) 
2.9  

In Equation 2.9, 𝜇𝑚,𝑛,𝑡 is the mean of the of the maximum yield of land use type n 

at time step t, i.e. the expected value obtained from observation data or expert 
knowledge, and 𝜎m is the standard deviation, for which a value of 0.1 is used. The 
second time series is for the demand 𝑑𝑛,𝑡. It uses an error model based on a 
uniform distribution between the upper and lower limit of the attribute:  

 𝑑𝑛,𝑡  = 𝑙𝑡 + 𝑍𝑑 ∗ (𝑢𝑛,𝑡 − 𝑙𝑛,𝑡) 

with 𝑍𝑑   ~ 𝑈(0,1) 
2.10  

In Equation 2.10, 𝑙𝑛,𝑡 and 𝑢𝑛,𝑡 are the lower limit and upper limit of the demand of 
land use type n at time step t. The limits of the demand 𝑑𝑛,𝑡 are determined by 
upper and lower limits of population 𝑝𝑡, intake 𝑖𝑛,𝑡 and self-sufficiency ratio 𝑟𝑡 
(Equation 2.1) predicted by the FAO (2003) and expert knowledge. Note that, 
although the resulting variables from Equation 2.9 and 2.10, 𝑚𝑛,𝑡 and 𝑑𝑛,𝑡, change 
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over time, the stochastic variables 𝑍𝑑 and 𝑍𝑚 are drawn once, at the start of the 
simulation. These variables are used on all land use types, because they simulate 
the effect of the rate of increase in population, which cannot be different for the 
different land use types in the same model run.  

 

2.2.4. Implementation  

The schedule of PLUC is given in Table 2.5. The PCRaster Python framework 
consists of four main methods that represent the scheme in Table 2.1: the 

premcloop (line 6 in Table 2.5) is evaluated only once, the initial (line 21) is 
evaluated once for each realization, the dynamic (line 33) is evaluated once for 
each time step in each realization, and the postmcloop (line 54) calculates the 
descriptive statistics over the Monte Carlo samples. Some variables have the prefix 

self, as they are defined as member variables to allow usage over the four 
different methods. 

When the LandUseChangeModel is initiated it calls PCRaster Python's 

DynamicModel (line 3) and MonteCarloModel (line 4). Among other things, 
these allow retrieving time steps (line 64) and Monte Carlo samples (line 65). Next, 

the premcloop (line 6) imports input maps in lines 7-16. A separate file, defined 

by the model builder, parameters.py, defines all non-spatial inputs. This is 
done to prevent that the end user has to make changes in the main model scheme. 
All its variables and parameters are imported in lines 17-20.  

The initial method (line 21) is used to define initial or temporally constant 
stochastic variables for which a realization is drawn for each Monte Carlo sample. 
An example of an initial variable is the environment, i.e. the land use map, initiated 
in line 22. Examples of temporally constant stochastic variables are Zd and Zm used 
in Equation 2.10 and 2.9 for the calculation of demand 𝑑𝑛,𝑡 and maximum yield 

𝑚𝑛,𝑡. For Zd a value is drawn from a uniform distribution between 0 and 1 with the 

PCRaster Python mapuniform() function (lines 23). For the Zm a value from a 
normal distribution, from the PCRaster Python mapnormal() function, is 
multiplied by the standard deviation defined by the user (line 24).  
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1 class LandUseChangeModel(DynamicModel, MonteCarloModel): 

2  def __init__(self): 

3   DynamicModel.__init__(self) 

4   MonteCarloModel.__init__(self) 

5   setclone('landuse') 

 

6  def premcloop(self): 

7   self.initialEnvironment = self.readmap('landuse') 

... 

17   self.landUseList = parameters.getLandUseList() 

... 

 

21  def initial(self): 

22   self.environment = self.initialEnvironment 

23   self.demandStoch = mapuniform() 

24   self.maxYieldStoch = mapnormal() * self.sdYield 

25   self.landUse = LandUse(self.landUseList, self.environment) 

26   self.landUse.drawRealizationsParams(self.stochParams) 

27   self.landUse.createLandUseTypeObjects(self.relatedTypeDict 

, self.suitFactorDict, self.weightDict, self.varDict) 

... 

 

33  def dynamic(self): 

34   demandUp = timeinputscalar('deUp.tss', self.environment) 

35   demandLow = timeinputscalar('deLow.tss', self.environment) 

36   demandDiff = (demandUp - demandLow) 

37   demand = demandDiff * self.demandStoch + demandLow 

... 

42   self.landUse.calculateSuitabilityMaps() 

43   self.landUse.allocate(maxYield, demand) 

44   self.landUse.growForest() 

45   self.environment = self.landUse.getEnvironment() 

46   self.report(self.environment, 'landUse')    

47   eu,euPr,euTo = self.landUse.getBioPotential(self.bioNoGo,\ 

                        self.provinces) 

... 

 

56  def postmcloop(self): 

57   name = ['eu', 'euPr', 'euTo'] 

58   mcaveragevariance(name, self.sampleNumbers(), \   

    self.timeSteps()) 

59   name = ['eY', 'eYPr', 'eYTo'] 

60   percent = [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95] 

61   mcpercentiles(name, percent, self.sampleNumbers(), \  

    self.timeSteps()) 

62 nrOfTimeSteps = parameters.getNrTimesteps() 

63 nrOfSamples = parameters.getNrSamples() 

64 myModel = LandUseChangeModel() 

65 dynamicModel = DynamicFramework(myModel, nrOfTimeSteps) 

66 mcModel = MonteCarloFramework(dynamicModel, nrOfSamples) 

67 mcModel.run() 

Table 2.3. Main scheme of land use change model. Three dots and a discontinuity in the line 
numbering indicate omitted sections. 
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Next, the class LandUse, defined by the model builder, is instantiated (line 25). It 
is used to keep track of the changing land use map. This class has a method to 
calculate all other realizations for the stochastic variables in Table 2.4 (line 26). This 
LandUse class also instantiates N objects (i.e. one for each land use type) of the 
class LandUseType (line 27) that handle the land use type specific tasks, like 
computing suitability maps and allocating land (Equations 2.2, 2.3, 2.4 and Table 
2.3). These methods are implemented with functions from the PCRaster Python 
library, including point, neighbourhood, and global operations (Burrough and 
McDonnell, 1998). In lines 28 to 32 other initial actions are taken, like computing a 
map of the distance to roads, needed by the LandUseType class for calculation 
of the suitability maps. 

In the dynamic method (line 33), the temporal components of the model are 
evaluated. Demand is defined as a stochastic input variable by two time series per 
land use type (lines 34 and 35), as explained in the error model section. The 
variable demandStoch, drawn in line 23, is used as the position between the 
upper and lower bound, 𝑙𝑛,𝑡 and 𝑢𝑛,𝑡, to calculate the realization for 𝑑𝑛,𝑡 (Equation 
2.10) (lines 37 and 38). In lines 38-41 the maximum yield 𝑚𝑛,𝑡 is determined with 

the variable  maxYieldStoch from line 24 (see Equation 2.9) in a similar way. 
Next, the suitability maps are calculated (line 42), and the allocation procedure, 
explained in Table 2.3, is called (line 43 in Table 2.5). The total land use map is 

updated (line 45) and saved to disk with the PCRaster Python function report() 
(line 46) that creates file extensions recognizable for the Aguila software. Next, it is 
determined which space is left over for bioenergy crops. In lines 47 and 48 it is 
determined where the bioenergy crop eucalyptus could be allocated and what its 
potential yield is on a cell-basis (eu), aggregated per province (euPr), and in total 
for the whole country (euTo).  

In the postmcloop, the PCRaster Python function  mcaveragevariance (line 
58) calculates mean, variance and standard error of the files defined in line 57, for 

all time steps in all samples. The function mcpercentiles (line 61) computes 
the percentiles specified in the list in line 60 for a new list of files (line 59). All these 
estimators of uncertainty are automatically saved to disk. Note that these last two 
methods from the PCRaster Python library are the part of the model that calculate 
uncertainty. So, addition of just these two methods can turn any model into an 
uncertainty-inclusive model, given that it employs stochastic variables. 

 

2.3. Results 

The model was run in deterministic mode and in Monte Carlo mode using 500 
samples to project land use change in Mozambique from 2005-2030. The Monte 
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Carlo run implements the error models defined in Table 2.4, while the 
deterministic run takes the mean of each of these variables. This section focuses 
on added value of the uncertainty analysis, an in-depth discussion of the simulated 
land use patterns and potential bioenergy crop areas is provided by van der Hilst et 
al. (2012). 

 

Figure 2.2: Screenshot of Aguila resulting from a deterministic model run showing land use in 
Mozambique in 2005 (time step 1, top left), 2013 (time step 9, top right), 2022 (time step 18, 

bottom left) and 2030 (time step 26, bottom right) with a close up around the city Tete. 
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Table 2.6: Simulated areas (km
2
) for the dynamic land use types in 2005, 2013, 2022 and 2030. 

year cropland mosaic cropland-
pasture 

mosaic cropland-
grassland 

pasture forest 

2005 9382 123737 2 7287 466205 

2013 11639 135188 5230 6835 418654 

2022 14137 146212 13809 6179 391540 

2030 16483 155297 23405 5618 368805 

 
Figure 2.2 shows how some land use maps resulting from a deterministic run of the 
model can be spatially and temporally explored using the Aguila visualization tool. 
Table 2.6 quantitatively summarizes the areas occupied by the dynamic land use 
types. Table 2.6 and Figure 2.2 give an impression of the expansions and 
contractions of the different land use types. The spider-web-like pattern of 
deforestation (dark purple) is a result of wood harvesting near roads. Roads namely 
form both the edge the forest plot, so that harvesting is easier, and a 
transportation possibility. The bands of deforestation become broader over time, 
but stabilize more or less in the last two time steps shown, as forest then starts to 
regrow at cells that were emptied at the beginning of the simulation. Cropland 
(red) expands, mainly around cities at the cost of (mosaic) cropland-pasture (light 
green). This can be seen as agricultural intensification and specialization. The land 
use type cropland-pasture that represents the extensive self subsistence farming 
practices including extensive cultivation of crops and grazing of livestock on the 
same plot, is relocated to areas that have been cleared by the harvest of wood. 
Areas of (mosaic) cropland-grassland (yellow) expand as well, but more at the 
outer border (away from cities) of existing cropland-grassland and cropland-
pasture plots, because they have less economic value and are thus allocated 
further away from population centres (see close up in the lower right panel in 
Figure 2.2). Pasture intensification, i.e. conversion from cropland-pasture to 'pure' 
pasture (light purple), takes place primarily in the North-East of Mozambique, 
where the largest concentrations of livestock, in this case goats, are present. For 
pasture it is less essential than for crops that they are located close to a market 
place, as animals are self-transporting and are taken to the market less frequently 
(von Thünen, 1966), so they are located even further away from the city than 
cropland-grassland. In this way concentric rings of land use evolve, as predicted by 
e.g., William Alonso's Bid Rent Theory (Alonso, 1964) and the Von Thünen model 
(von Thünen, 1966). A lot of information can be derived from this deterministic 
output, but it gives no information about the certainty of the observations, i.e. how 
general and how certain are the observed patterns? 
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Figure 2.3: Three different realizations of land use in 2022 (time step 18) zoomed in around the 
city Nampula, indicated in black, and the cursor window (top right) showing the land use type of 

the selected cell (cross in map views). The legend is the same as the one given in Figure 2.2. 

 

Figure 2.4: Artificial dataset showing the effect of the range parameters of city and road on the 
total suitability and consequently on the shape of the concentric 'rings'. 

To study this, Aguila allows visualization of different Monte Carlo runs in linked 
views, which make comparison easy. Figure 2.3 shows the variation within three 
out of the 500 generated samples by providing a close up of land use in 2022 in the 
area around the city Nampula. It can be seen that the overall pattern of concentric 
rings is the same for all three realizations, but some differences are visible (see, 
e.g., the values of selected cell in the cursor window). One is that it is evident that 
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the centre and right image have some abandoned (dark blue) cells, while the left 
one has none. This can be explained by the fact that the values for demand (𝑑𝑛,𝑡) 
and maximum yield (𝑚𝑛,𝑡) are sampled separately. Cells that are abandoned on the 
centre and right image are most often classified as cropland-pasture (light green) in 
the left one, so we take this land use type as an example for the explanation. It is 
given as a model input that both the demand and maximum yield of cropland-
pasture increase over the modelled period. The growth rate however, differs per 
realization, depending on the values of 𝑍𝑑 and 𝑍𝑚. As a result, three different 
situations are possible. The first situation applies for the centre and right image: 
the demand for cropland pasture has increased, but agricultural and livestock 
productivity have increased so much that in the area currently occupied by 
cropland-pasture too much yield is generated. As a result the land use type 
cropland-pasture contracts in order to balance yield with demand. The second 
situation is that the agricultural and livestock productivity have not increased 
enough to counteract the effect of increasing demand, so the land use type 
expands. The last situation is an equilibrium, in which the increases in demand and 
maximum yield are in balance, so that no expansion or contraction is necessary. It 
cannot be derived directly from the left map in Figure 2.3 which of the last two 
situations has occurred there, but it can be assumed that it is the second situation, 
expansion, as an exact equilibrium situation is very improbable. The described 
process is complicated by the fact that land of a certain type can be taken by 
another type during the simulation, so the current yield has to be updated 
constantly to check which situation is at hand. This stresses the fact that model 
output cannot be directly related to the input uncertainties due to the numerous 
non-linearities in the model.  

Another observation that can be made in Figure 2.3 is the shape of the concentric 
'rings' around Nampula. If we focus on cropland (red), the centre image shows 
circular clustering around the city, while in the right image it has a more star-like 
shape, with lumps around the four roads connecting to Nampula. The left image 
has a shape somewhat in between. This difference is an effect of two suitability 
factors: distance to roads (suitability factor 2) and distance to cities (suitability 
factor 4). For cropland both factors are used (see Table 2.2), with the same weight 
𝑤𝑖,𝑛, which means they have equal effects on the total suitability for cropland. For 

both suitability factors a separate realization is made for the stochastic parameter 
𝑍𝑟, which determines the range rn, i.e. maximum distance of effect. Figure 2.4 
illustrates how these two range parameters effect the sum of the suitability factors 
2 and 4. The figure shows that a smaller value for the range of roads results in 
more clustering around roads and consequently star-shaped concentric 'rings' 
(Figure 2.4b), while a smaller value for the range of cities results in more clustering 
around cities and consequently circular concentric 'rings' (Figure 2.4c), Similar 
values for the two ranges results in a shape in between (Figure 2.4d). 
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Figure 2.5: Probability that a cell is available for bioenergy (eucalyptus) in 2005 (time step 1, top 
left), 2013 (time step 9, top right), 2022 (time step 18, bottom left) and 2030 (time step 26, bottom 

right) zoomed in around the city Tete indicated in black. 

The total area covered by the agricultural land use types and their spatial 
distribution determine what land is available for bioenergy crops. For this purpose, 
it is not very convenient to look at all realizations separately. Therefore, a result 
from the summary statistics over all 500 Monte Carlo samples is used (see line 58 
in Table 2.5). Figure 2.5 shows the probability that the bioenergy crop eucalyptus 
can be cultivated in a cell at a certain point in time without interfering with other 
important land uses. A value 1 indicates that a cell is certainly available, i.e. it was 
available in all realizations, a value 0 that it is certainly unavailable, i.e. it was 
available in none of the realizations, and any value in between indicates 
uncertainty in availability. In 2005 some land is available for eucalyptus around 
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Tete, but in 2013 a ring has formed around the city that is certainly unavailable. 
This can be explained by the formation of concentric rings of agriculture around 
the city that may not be disturbed by the cultivation of eucalyptus. The zone 
around Tete that is unavailable for eucalyptus becomes larger over time. It can be 
seen that the edges of the ring have a value somewhere between 0 and 1. This is 
because the size and shape of the concentric rings differ between the samples, so 
that cells at the edges of the concentric ring are in some samples occupied by 
agricultural land use types in the considered year and in some samples not. In the 
first case they are not available for eucalyptus and the second they are. This 
uncertainty ring 'moves' away from the city and roads through time, as the 
concentric rings around the city grow.  

The planning of bioenergy crop plantations is not only of interest to local decision 
makers, but also of concern at higher managerial levels, e.g., province and country 
level. At these levels, the possible yield of eucalyptus per province and for the 
whole country at a certain point in the future and the uncertainty in these 
predictions are relevant. Figure 2.6 shows the variance in potential eucalyptus yield 
at three different aggregation levels. The yield is calculated per km2 at all three 
levels for comparability reasons. The variance in yield is a combined result of cell 
availability (Figure 2.5), yield fraction and maximum yield of eucalyptus as 
explained in the following. Most cells in Figure 2.6 have a variance of zero, because 
they have an availability probability of zero, or because the soil is infertile (yield 
fraction of zero). Some cells have a variance slightly above zero; these cells have an 
availability probability of one, but their yield differs because of the stochastic 
parameters in yield fraction (𝐙𝐟) and maximum yield (𝑍𝑚). Finally, there are some 
cells with very high variances; these cells are sometimes unavailable, and then 
have a yield of zero, and sometime available, and then have a yield dependent on 
the stochastic parameters yield fraction and maximum yield. This generates very 
large variances. It is evident that the maximum variance (maximum value of the 
value scale bar shown on the left side of the three maps) becomes much lower 
when scaling from cell level (1·105 (kg · km-2 · year-1)2) to province level (680 (kg · 
km-2 · year-1)2) to country level (298 (kg · km-2 · year-1)2). This is because local 
differences between samples are levelled out at higher aggregation levels.  
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Figure 2.6: Variance in yield ((10-5 kg·km-2·year-1)2) per cell (left), per province (middle) and for 
the country as a whole (right) in 2030. 

 

Figure 2.7: Top: 95% confidence interval for a yield above a threshold of 100 kg·km-2·year-1 in 
2030. Higher = certainly above, Lower = certainly below, Not distinguishable = confidence interval 

straddles the threshold. Bottom: probability of exceedance (y-axis) for different yield values (x-
axis). The vertical black line indicates the threshold value. Left = per cell, centre = per province, 

right = for the whole country. 

Other uncertainty information that can be used are the calculated percentiles (see 
line 61 in Table 2.5). The lower part of Figure 2.7 shows how Aguila visualizes these 
percentiles as exceedance probabilities. The s-shape of the curves indicates that 
eucalyptus yield is normally distributed at all aggregation levels. The width of the 
curves, in terms of the range of values they cover, decreases with increasing 



53 
 

aggregation level. This is again an indication that uncertainty decreases at higher 
aggregation levels. By using the option in Aguila to show confidence intervals of 
exceedance probabilities, the percentiles can be used to check, for example, 
whether a eucalyptus yield of more than 100 kg · km-2 · year-1 can be achieved at a 
certain point in time. The upper part of Figure 2.7 is the result of this query. The 
maps in Figure 2.7 show that on a country level (yellow) no definite answer can be 
given, but at a province level the province Tete (green) can definitely fulfil this 
condition.  

  

2.4. Discussion and conclusions 

We have shown how a modeller can construct a Spatial Decision Support System 
(SDSS) that integrates simulation, uncertainty analysis and visualization. This is 
considered useful in the light that current SDSSs tend to ignore uncertainty (Foody, 
2003, Ivanovic and Freer, 2009). The advantages of the constructed PCRaster Land 
Use Change model (PLUC) is that the uncertainty analysis is coupled to the model, 
so that the output uncertainty indicators adapt automatically to changes in inputs 
or parameters, and that the analysis is iterative (Manson, 2007), i.e. evaluated at 
each time step, which is important in non-linear models. We claim that the output 
maps and graphs of uncertainty distribution in space and time provide an intuitive 
way for end users to take uncertainty into account in their decisions. The mode of 
visualization for uncertain spatio-temporal data was considered suitable by end 
users without specialist knowledge of statistics in study by Aerts et al. (2003a). 

Hiemstra and Karssenberg (2012) argue that Monte Carlo results can give a non-
expert user the impression that it is hard to make any decision at all, because of 
the large number of cells that are reported as uncertain. Although it also good to 
stress the limited extent to which models can answer certain questions about 
complex systems (Manson, 2007), SDSSs usually do have merits for their end users. 
We have shown that by providing a means to display for example confidence 
intervals, with easily understandable qualitative categories lower, higher, and not 
distinguishable instead of difficult to interpret continuous measures such as full 
probability distributions, uncertainty information can be used to visualize locations 
where decisions can be made given a predefined confidence level. A disadvantage 
is that the error models of the input variables and parameters need to be specified, 
which is not a straightforward task, especially for users inexperienced in statistics. 

Another advantage of the stochastic land use change model is that is provides 
insights that could have been missed in a deterministic model. For example, where 
the probability that bioenergy crops could be cultivated is high or low. Running the 
model at a finer scale on sites with a high potential bioenergy-crop yield, and 



54 
 

investigating the effect of actual allocation is the next stage of our research. A 
different example of the added value of stochastic modelling is the observation of 
the difference in the shape of concentric rings of land use around cities, which has 
provided an insight in the combined influence of the range parameters of cities and 
roads on the resulting land use patterns. This indicates the huge effect that such 
parameters can have on model outcomes and thereby emphasizes the caution that 
should be taken in setting such parameters deterministically. 

Although the error propagation modelling provides information on the 
uncertainties in model outputs, it is not a means to evaluate the quality of the 
internal structure of the model, or to validate the model by comparing model 
outputs and independent observational data. Evaluation of the internal model 
structure would be possible in principle by using detailed observational data on 
certain sub-processes in the model. However, this data is currently not available for 
Mozambique. Also, validation is difficult because land use change in Mozambique 
in the past decades is characterized by civil war, independence and natural 
disasters, and therefore we do not expect steady continuation of past trends. 

A disadvantage for end users of the usage of the Monte Carlo method in an SDSS, 
also concluded from other studies (Aerts et al., 2003b, Ligmann-Zielinska and Sun, 
2010), is computation time. End users do not always have the time to wait at 
length for their model output. On a desktop pc it took about two days to run the 
500 samples. Especially calculation of percentiles is computationally demanding. 
Another drawback is that PLUC now takes into account data uncertainties and 
model parameter uncertainties, but not model structure uncertainties, e.g., about 
the selected error models (Brown and Heuvelink, 2007), model rules, and raster 
resolution, which are debatable as well. This could be solved by creating a 
probability distribution over different plausible rules or over the range between 
coarsest legible resolution and finest legible resolution (Hengl, 2006), so that these 
can also be sampled in the Monte Carlo simulation. The latter is complex, as spatio-
temporal probability distributions alter with changing resolution (Bierkens et al., 
2000). Also, having more stochastic parameters complicates model 
parameterization and raises the number of samples required and thus increases 
computation time even more. Nevertheless, it is important that uncertainty in 
simulation models in SDSSs, which grow ever more complex, is somehow evaluated 
and communicated. This paper shows that this can be accomplished almost 
without any additional work on the modellers side, which is a major step forward in 
the exposure of uncertainty in SDSSs. 
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Abstract - We present a Bayesian method that simultaneously identifies the model 
structure and calibrates the parameters of a cellular automaton (CA). The method 
entails sequential assimilation of observations, using a particle filter. It employs 
prior knowledge of experts to define which processes might be important in the 
system, and uses empirical information from observations to identify which ones 
really are and how these processes should be parameterized. In a case study for 
the São Paulo state in Brazil, we identify a land use change CA simulating sugarcane 
cropland expansion from 2003 to 2016. Eight annual observation maps of sugar 
cane cultivation are used, split over space and time for calibration and validation. It 
is shown that the identified CA can properly reproduce the observations, and has a 
minimum reduction factor of 3 in root mean square error compared to a Monte 
Carlo simulation without particle filter. In the part of the study area where no 
observational data are assimilated (validation area), there is little reduction in 
model performance compared to the part with observational data. So, incomplete 
datasets, regional land survey data, or clouded remote sensing images can still 
provide useful information for this particle filter method, which is an advantage 
because good quality land use maps are rare. Another advantage is that in our 
approach the output uncertainty encompasses errors from expert knowledge, 
model structure, parameters and observation (calibration) data. This can, in our 
opinion, be very useful for example to determine up to what future period the 
results are a secure basis for decisions and policy making.  
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3.1. Introduction 

A Cellular Automaton (CA) represents spatio-temporal change as local interactions 
of different entities and processes in a raster environment (Santé et al., 2010). The 
fact that a CA consists of relatively simple rules that can lead to complex patterns, 
makes it suitable to study complex system behaviour, which is currently considered 
important in environmental systems research (Manson, 2007, Page, 2011, Johnson, 
2010, Grimm and Railsback, 2012). Therefore, cellular automata are applied in 
many environmental modelling domains, like fire propagation (Berjak and Hearne, 
2002), vegetation spreading (Kéfi et al., 2007), and urban or land use change 
modelling (Verburg et al., 2004, Batty, 2005, Lauf et al., 2012). In CA development, 
one can distinguish between model structure identification, i.e. finding the set of 
processes to be represented in the model, conceptualized into the set of transition 
rules, and model calibration, i.e. finding the correct parameterization of these 
processes. In urban and land use change modelling, finding the set of transition 
rules is problematic (Santé et al., 2010, Straatman et al., 2004), which possibly 
poses limitations on the reliability and therefore the usability of these models. 

Transition rule derivation can be done in a number of ways. 1) From fundamental, 
e.g., physical or chemical, laws (e.g., Collin et al., 2011). This is difficult in land use 
change modelling, as most fundamental laws in this field do not provide a 
quantitative process description. Yet, some have successfully applied physical laws 
to simulate land use expansion, mainly aimed at cities (Batty, 2012, Bettencourt, 
2013). 2) By experts, who have experience-based knowledge of the study area. This 
is widely done in land use change modelling (e.g., van der Hilst et al., 2012, Yu et 
al., 2011), but it is somewhat subjective. 3) From empirical data. It is recognized 
that this is challenging in land use change modelling (Straatman et al., 2004, 
Hansen, 2012), but it is still important to continue exploring this option, because 
there is a need to find a more evidence-based approach to set up a land use 
change model.  

One can combine the benefits of expert knowledge and empirical data by using a 
method for transition rule derivation in which the prior knowledge (definition of 
potential model structures) is defined by experts, and the posterior knowledge 
(identification of the best structure) is attained by empirical data. Our objective is 
to devise such a method, which we believe should fulfil two requirements. The first 
requirement is that the method should be able to quantify uncertainty (Aerts et al., 
2003b, Rasmussen and Hamilton, 2012), i.e. it should not only be able to select the 
best model structure from all potential model structures defined by the prior 
knowledge, but it should give the likelihood of each individual structure being 
correct. In this way, a stochastic CA is obtained, which combines all potential 
model structures and parameters in an optimal way. The most important 
advantage of this is that confidence intervals of the modelled land use projections 
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can be defined, such that policy makers can decide up to what point in time the 
projections are reliable enough to be a foundation for their policies. The second 
requirement is that, herein, one should not only take into account uncertainty in 
the prior information, but also in the empirical data, the observations of land use, 
used to update the priors (Fang et al., 2006). Ignoring uncertainty in the empirical 
data may lead to an underestimation of model output uncertainty. 

The combined requirements of prior knowledge, observation uncertainty, and 
posterior knowledge with output uncertainty lead towards Bayesian methods, 
which start out with prior knowledge, and then assemble model uncertainty and 
observation uncertainty to end up with posterior knowledge including uncertainty 
information. Therefore, we show a method for model structure identification and 
calibration using the particle filter, a sequential Bayesian estimation, or data 
assimilation, technique (van Leeuwen, 2009). Data assimilation techniques update 
the prior knowledge during model runtime at time steps when observations are 
available. We will use this property to sequentially update both the model rules 
and their parameters. Data assimilation techniques are increasingly being used to 
calibrate spatio-temporal models in a wide range of different fields in the 
environmental sciences, such as oceanography (van Leeuwen, 2003), hydrology 
(Salamon and Feyen, 2009), and atmospheric transport (Hiemstra et al., 2012), but 
have, to our knowledge, not yet been applied for model structure identification. 
Recently, their potential has been recognized in the land use change field (van der 
Kwast et al., 2011, Zhang et al., 2011). 

The approach that is most often used in land use change modelling to define the 
model structure is regression on a land use map (Verburg et al., 2002, Verburg et 
al., 1999, Aguiar et al., 2007, Diogo et al., 2014). This method mostly results in only 
one deterministic model structure, without uncertainty in either the observations 
used to construct the regression model or in the model itself, and therefore does 
not meet our requirements. In the last decade, model rule identification methods 
originating from artificial intelligence have become popular, like neural networks 
(Dai et al., 2005, Li and Yeh, 2002), and swarm intelligence algorithms (Liu et al., 
2008, Feng et al., 2011). These, however, do not take into account observation 
uncertainty, the second requirement. Moreover, they result in black-box models (Li 
and Yeh, 2002), i.e. they do not provide explicit posterior knowledge. Bayesian land 
use model structure identification has been performed before by Kocabas and 
Dragicevic (2007). They apply a Bayesian network and an influence diagram. 
However, they do not include observation uncertainty. 

In this study, we evaluate the performance of the particle filter method for model 
structure identification and calibration of a land use change CA. Furthermore, we 
assess the effect of the amount of observational data assimilated, because time 
series of good quality land use maps are often absent (Straatman et al., 2004). We 



58 
 

also consider the effect of a pre-set (expert-based) model structure, to represent 
the situation of a model structure identification determined beforehand, which is 
now common practice in land use change modelling. In all approaches we provide 
confidence intervals with the land use projections, useful as a decision criterion for 
policy makers.  

The assessments are carried out on a case study of the expansion of sugar cane 
fields in the São Paulo state in Brazil, using an adapted form of the PCRaster Land 
Use Change model (PLUC) (Chapter 2). As the sugar cane is partly used to produce 
ethanol, this case study is relevant in view of the current debate on the 
sustainability of bioenergy from dedicated crops when land use change is taken 
into account (Lapola et al., 2010, Hellmann and Verburg, 2011). São Paulo is 
especially interesting because it has a long history in ethanol production (Walter et 
al., 2011) and very good observational data availability (Rudorff et al., 2010). 

The next section provides a definition of the problem of transition rule 
identification in a CA, a brief explanation of data assimilation, a description of the 
case study, an outline of the prior information about the land use change model 
structure and parameters, details of the performance measures used, a description 
of the observational data, and a scenario sketch. This is followed by a combined 
results and discussion section, and a conclusion section.  

 

3.2. Methods 

3.2.1. Model structure and parameter identification in a land use change 
cellular automaton 

A cellular automaton (CA) consists of a set of transition rules representing the 
processes that lead to change in the system state over time and rules to combine 
these transition rules (Figure 3.1). In the case of a land use change CA a transition 
rule is a function calculating the suitability of each location (cell) for a particular 
land use type, with respect to a spatial attribute that influences the allocation of 
that land use type, for instance the slope or the distance to roads. So, a land use 
change CA contains for each land use type a set of transition rules. The transition 
rules contain parameters defining the characteristics of the process represented by 
the transition rule, for example an exponent in an exponential relationship 
between the suitability value and slope. The transition rules need to be selected 
and combined such that they represent the key processes that steer the spatial 
allocation of land use change. This can be accomplished by selecting from a set of 
candidate transition rules. This could be done either in a Boolean fashion, by 
switching transition rules on or off, or in a continuous fashion, by weighting each 
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transition rule. We refer to this selection of transition rules as model structure 
identification. 

In modelling, it is essential to find the model structure and parameter values that 
result in an optimal model representation of the studied land use system. 
Identification of the model structure and parameter values can be accomplished 
through comparison of the modelled system, with certain transition rules and 
parameter values, and observations of the real system (Figure 3.1, right side), 
subsequently selecting the parameter values and model structure that minimize 
the difference between modelled and observed land use. Parameter identification, 
or calibration, has become common practice in land use change CA modelling, 
although the applied method differs per study (Santé et al., 2010). But methods to 
identify the transition rules, or model structure, are generally lacking (Straatman et 
al., 2004). Here, we propose a technique to simultaneously identify the parameters 
and the model structure using observational data. 

 

Figure 3.1: Conceptual model of a general CA: 𝐟𝒕 represents the processes of change in the system 
state over time, i.e. the set of transition rules and the way to combine them, 𝐱𝒕 represents all 
inputs, usually spatial attributes, and 𝐩𝒕 contains the parameters. Model calibration refers to 

identifying pt, model structure identification refers to selecting the transition rules 𝐟𝒕. 
Identification of the parameters and model structure is based on a comparison between the land 
use map 𝐳𝒕, or a derived spatial metric, with the observed land use map 𝐨𝒕, or a derived spatial 

metric. The parameter values and model structure with the smallest difference between zt and ot 
are considered optimal. 
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To summarize, a general CA, with the system state variable(s) 𝐳𝑡 and initial state(s) 
𝐳0, can be defined as:   

 𝐳𝑡 = 𝐟𝑡(𝐳𝑡−1,  𝐱𝑡 , 𝐩𝑡), for each t = 1, 2, …, T 3.1  

In Equation 3.1, 𝐟𝑡  is the set of transition rules at time step t, representing the 
processes that lead to change in the system state over time. The vector 𝐱𝑡 
represents all inputs, usually spatial attributes, and boundary conditions and 𝐩𝑡 
contains the parameters. In a stochastic model, the uncertain parts of the system 
are described stochastically. So, we have 𝑝(𝐟𝑡), a probability distribution of 
possible transition rules, 𝑝(𝐳𝑡−1) the probability distribution of the previous 
system states, 𝑝(𝐱𝑡), the probability distribution of inputs and boundary 
conditions, and 𝑝(𝐩𝑡), the probability distribution of the parameters. In the case 
that no observational data are used, these distributions together determine the 
shape of the resulting probability distribution of the state variable, referred to as 
𝑝(𝐳𝑡). Yet, our aim is to use observations to simultaneously identify 𝑝(𝐟𝑡) and 
𝑝(𝐩𝑡) in such a way that the model output matches the observations as closely as 
possible. 

 

3.2.2. General particle filter framework 

If we want to use the information comprised in system observations 𝐨𝑡 to select 
the transition rules (model structure identification) and parameterizations 
(calibration), that perform well and to incorporate this knowledge into the model, 
𝑝(𝐳𝑡) should be updated (the ‘identify’ step in Figure 3.1). Bayes’ rule updates a 
probability distribution of a variable, when evidence, i.e. an observation, of this 
variable arrives. So, for the time steps at which observational data are available the 
following equation is evaluated. 

 𝑝(𝐳𝑡|𝐨𝑡) =
𝑝(𝐨𝑡|𝐳𝑡) ∙ 𝑝(𝐳𝑡)

𝑝(𝐨𝑡)
, for each t 3.2  

In Equation 3.2, 𝑝(𝐨𝑡) is the probability distribution of the observations, i.e. the 
measurement data and their uncertainty. Thereby, model structure identification 
using Bayes’ rule fulfils our second requirement of taking into account observation 
uncertainty. 𝑝(𝐨𝑡|𝐳𝑡) is the joint probability density of the observations at t given 
the model state, which can be seen as the likelihood that the observations occur 
given the model. The posterior probability 𝑝(𝐳𝑡|𝐨𝑡) is the probability distribution 
of the state variable 𝑝(𝐳𝑡) adjusted to the observations. Hence, Bayes’ rule 
quantifies output (posterior) uncertainty given observation and input (prior) 
uncertainty, thereby satisfying our first requirement.  

Numerically, Equation 3.1 is often solved using Monte Carlo analysis, which 
represents probability distributions by a number of realizations, N, of the model. 
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Several sequential data assimilation techniques are available to solve Equation 3.2. 
Most data assimilation techniques are based on filtering theory (Jazwinksi, 1970): 
they filter the Monte Carlo realizations sequentially over time. The most well-
known filter technique is probably the Ensemble Kalman filter, first introduced by 
Evensen (1994). This filter is, however, not guaranteed to work with non-Gaussian 
distributions and non-linear systems and is thus not suitable for identifying 
transition rules in complex systems (Pasetto et al., 2012). More importantly, the 
standard version of the Ensemble Kalman filter allows updates only for the 
variables for which observations are available, which makes updating model 
structure and parameters in a land use change CA impossible, as these are not 
observable in the real world. Versions of the Ensemble Kalman filter that do allow 
this require very strict premises that do not hold for cellular automata. Therefore, 
we have selected another data assimilation technique that allows updating all, also 
non-observed, model variables and can handle non-Gaussianity and non-linearity: 
the sequential importance resampling (SIR) particle filter (van Leeuwen, 2009), 
hereafter simply referred to as the particle filter. Here, we only provide a short 
description of the particle filter. For a more extensive introduction into the particle 
filter, see e.g., Arampulam et al. (2002), Bengtsson et al. (2008), and van Leeuwen 
(2009). At each time step for which observational data are available the particle 
filter uses Bayes’ rule (Equation 3.2) to assess the probability that a certain Monte 
Carlo realization, here called particle, and the observed data can be considered 
equal (Hartig et al., 2011). Herein, the following steps are taken (Figure 3.2): 

1. N realizations are drawn from the initial probability distributions of model 
structures 𝐟𝑡, inputs  𝐱𝑡, and parameters 𝐩𝑡 (Equation 3.1), resulting in a 
total number of N particles. 

2. For all N particles the land use change model is run up to the next filter 
moment, i.e. the next moment for which observational data are available. 

3. The posterior probability that the modelled state at that moment is correct 
given the observations with their uncertainty, is calculated for each of the 
particles. A posterior probability of one indicates a perfect match and a 
posterior probability of zero a complete mismatch. 

4. Now, the sequential importance resampling (SIR) is performed: N particles 
are drawn to be progressed to the next observation moment with 
probabilities that are proportional to the posterior probabilities calculated 
in step 3. This procedure causes particles with a high posterior probability 
to be copied often (drawn several times) and particles with a low posterior 
probability to be removed (never drawn).  

5. Steps 2 to 4 are repeated until all filter moments are completed and the 
model has reached the final time step. This means that at each filter 
moment the initial distributions obtained in step 1 are narrowed, i.e. the 
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number of unique particles diminishes over time (see e.g., the histograms 
of parameter a in Figure 3.2). 

 

Note that, whenever a particle is copied, all model components within it are 
copied. Within  𝑝(𝐳𝑡|𝐨𝑡) the transition rules 𝑝(𝒇𝑡) and parameters 𝑝(𝐩𝑡) are 
thereby updated as well. So, after assimilation of all observations, i.e. after the last 
filter moment, the best model structure is identified and the CA is calibrated, i.e. 
the posterior probability distributions of 𝐟𝑡  and 𝐩𝑡 are obtained. 

 

 

Figure 3.2: Functioning of the particle filter. ‘Obs 1’ means observations at filter moment 1, the 
solid dark grey line indicates the median system state, grey areas represent the confidence 

interval. Histograms underneath the plots illustrate the effect of the filter moments on a 
parameter, referred to as parameter a. The prior distribution of parameter a at filter moment t is 

always equal to the posterior of parameter a at filter moment t-1. The effect on the transition 
rules is the same (not shown).  
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For conducting these steps, the PCRaster Python framework is used, which is freely 
available via http://pcraster.geo.uu.nl (Karssenberg et al., 2010). Steps 1 and 2 
involve running the land use change model in Monte Carlo mode, as explained in 
Chapter 2. Step 3 is achieved by solving Bayes’ theorem for each particle: 

 
𝑝(𝐳𝑡

𝑖|𝐨𝑡) =
𝑝(𝐨𝑡|𝐳𝑡

𝑖) ∙ 𝑝(𝐳𝑡
𝑖)

∑ 𝑝(𝐨𝑡|𝐳𝑡
𝑗
) ∙ 𝑝(𝐳𝑡

𝑗
)𝑁

𝑗=1

, for each i = 1, 2, …, N 
3.3  

In Equation 3.3, 𝑝(𝐳𝑡
𝑖) is the prior probability of model realization i, which is always 

equal to 1/N because the same number of particles is drawn at each filter moment 
(step 4). If the observations are not of the state variable, but of a derived spatial 
metric, like relative proportions of land use in a subarea as it is often found in 

census data, the model state 𝐳𝑡
𝑖  has to be converted to that measure before 

filtering.  

In Equation 3.3, 𝑝(𝐳𝑡
𝑖|𝐨𝑡) is the posterior probability of particle i and 𝑝(𝐨𝑡|𝐳𝑡

𝑖) is 

the probability of the observations given particle i. Under the assumption that the 
observation error has a Gaussian distribution, the latter can be calculated as (van 
Leeuwen, 2009): 

 
𝑝(𝐨𝑡|𝐳𝑡

𝑖) = 𝑒−1
2⁄ [𝐨𝑡−𝐳𝑡

𝑖]
𝑇

𝐑𝑡
−1[𝐨𝑡−𝐳𝑡

𝑖], for each t 
3.4  

In Equation 3.4, 𝐑𝑡 is the covariance matrix of the observation error and T 
indicates matrix transposition. Going through steps 1-5, the procedure ‘filters’ the 
ensemble of particles because many particles do not match the observations, 
receive low weights, and are thus not drawn and not progressed to the next 
observation moment. So, although the number of particles remains the same, due 
to the resampling in step 4, the variation in the particles in terms of their 
uniqueness in the transition rules and parameters diminishes. This means that the 
initial probability distributions of these model components are narrowed. Hence, 
the particle filter has identified which transition rules are most likely to be valid 
(model structure), and in what ranges the parameters are most likely to fall. The 
model has thereby been calibrated. 

 

3.2.3. Identifying transition rules of a land use change CA 

Case study 

A case study is defined to test the usability of the particle filter for model structure 
identification and calibration of a land use change CA. An important current debate 
in the land use change domain is whether bioenergy from dedicated crops is still 
sustainable when land use change (direct and indirect) is taken into account, in 
view of, e.g.,  carbon emissions (Searchinger et al., 2008, Fargione et al., 2008, 
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Lapola et al., 2010), rising food prices (von Braun, 2008), and biodiversity 
(Hellmann and Verburg, 2010). For all these aspects it is important to know where 
bioenergy crops have expanded in the past and are likely to expand in the future. 
Such projections can be made with a land use change CA. 

A key player in the bioenergy market is Brazil, mainly with the production of 
ethanol from sugar cane. Within Brazil, the state of São Paulo (Figure 3.3) has the 
longest history as well as the largest share in sugar cane production (about 60% of 
the national production in recent years). In addition it still experiences a significant 
production growth (Walter et al., 2011, Sparovek et al., 2009), especially since the 
introduction of the flex-fuel car in 2003 (Macedo and Seabra, 2008). The actuality 
of the debate, together with availability of an annual spatial dataset of sugarcane 
cropland distribution from the Canasat project of the National Institute for Space 
Research in Brazil (INPE) (Rudorff et al., 2010) as observational data, makes sugar 
cane cropland expansion in the São Paulo state a suitable case for testing the 
merits of the particle filter for identifying a CA.  

 

Transition rules and parameters: prior information 

For simulating sugar cane cropland expansion an adapted form of the PCRaster 
Land Use Change model (PLUC) (Chapter 2) is used. The land use change transition 
function, 𝐟𝑡  in Equation 3.1, is regulated by the spatial allocation mechanism, which 
relies on the land demand and the suitability map (Figure 3.4). 

 

 

Figure 3.3: Study area  
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Figure 3.4: Schematic representation of the land use change transition function. 

Different allocation mechanisms are possible, involving various degrees of 
competition between land use types. For instance, a model can fulfil the allocation 
of all land use types one by one (first the complete land claim of one land use type 
and then that of the next land use type), or assign to each cell the land use type 
with the highest suitability in that cell, or use a stochastic variant of the latter 
method. We use, however, a fixed, deterministic allocation mechanism, meaning 
that the cell with highest suitability is allocated first. This can be justified by the 
fact that there is little or no difference between different allocation mechanisms 
when considering only a single land use type.  

The amount of land that is allocated or removed is steered by the demand (dt) for 
products associated with the land use types, in this case sugar cane. In the current 
study, demand is expressed in hectares of cultivated land. All maps are resampled 
to a one-kilometre resolution and projected to the Albers Equal Area projection to 
preserve correctness of area, to ensure that the correct number of hectares is 
allocated. During the calibration and validation phase, 2003 to 2010, the demand is 
known from the observational data; it is simply the total area of sugar cane 
cultivation on the Canasat map per year (Figure 3.5). For 2011, the Canasat map is 
not available to us, but the total area is, so the demand is known. Two data sources 
are used to construct the demand between 2012 and 2016. From the Brazilian 
Land Use Model (BLUM) (ICONE, 2012, Nassar et al., 2008), an economic partial 
equilibrium model, preliminary results of the future development of harvested 
area of sugar cane in São Paulo are used. For sugar cane the harvested area is 
always smaller than the cultivated area, because sugar cane is a semi-perennial 
crop: after about six to eight harvests the cycle is interrupted and the area is 
renovated for a year. The harvested area from BLUM is converted to cultivated 
area by adding the average fraction of sugar cane fields under renewal, which is 
derived from Canasat data. From the Brazilian agricultural economics institute, IEA, 
a study is used that estimates the cultivated area of sugar cane in São Paulo up to 
2016 (Torquato, 2006). As we have equal trust in both sources, the demand in the 
land use change CA from 2012 to 2016 is the mean of the two time series created 
from these sources (Figure 3.5). It would be better to take into account the input 
uncertainty coming from the inconsistency between the two time series, but in this 
study we want to show how the uncertainty in the model structure and parameters 
propagates, without interference with the demand uncertainty. 
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Figure 3.5: Demand for sugar cane area from 2003 to 2016. Demand in the calibration and 
validation phases comes from the Canasat maps. Demand in the projection phase is the mean of 

two projection time series from BLUM and IEA. 

The preferred location of the expansion of sugar cane is regulated by the total 
suitability map, an assembly of the no-go areas, and all suitability factors (Figure 
3.4). The no-go map is derived from the sugar cane zoning for the São Paulo state 
(Padua Junior et al., 2012). These cells are masked from the total suitability map 
and therefore not available for land use change. The total suitability map 𝐬𝑡 ∈ [0,1] 
for sugar cane at time step t is: 

 𝐬𝑡 =  ∑ (𝑤𝑘 ∙ 𝐮𝑘,𝑡)𝐾
𝑘=1 , for each t 

with  ∑ (𝑤𝑘) =  1𝐾
𝑘=1  

and 𝐮𝑘,𝑡 = ℎ(𝐱𝑘,𝑡 , 𝐩𝑘,𝑡) 

3.5  

In Equation 3.5, k is the suitability factor, with k = 1, 2, …, K and 𝑤𝑘 ∈ [0,1] is the 
spatially and temporally uniform weight of factor k. Furthermore, 𝐮𝑘,𝑡  ∈ [0,1] is 
the suitability map for suitability factor k. The function h() uses the spatial attribute 
𝐱𝑘,𝑡 and parameter 𝐩𝑘,𝑡 to create the proxy for land use change, and then 
normalizes it, i.e. linearly transforms it to a scale between 0 and 1, to obtain 𝐮𝑘,𝑡. 
The transformation is linear, because the actual shape of the relation (linear, 
convex, concave) between 𝐮𝑘,𝑡 and 𝐱𝑘,𝑡 is determined by the parameters 𝐩𝑘,𝑡 

within 𝐮𝑘,𝑡, discussed later in this section per suitability factor k.  

The model structure of the CA, 𝑝(𝐟𝑡) (Equation 3.1), is formed by the weights 𝑤𝑘, 
because they determine if a certain process, or suitability factor, is of influence on 
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the total suitability map, and how large this influence is. The prior distribution of 
the weights is constructed using the following procedure, making sure that every 

weight covers the complete range [0,1] and that the constraint ∑ (𝑤𝑘) =  1𝐾
𝑘=1  is 

preserved. The weight of the first (randomly chosen) suitability factor k is drawn 
uniformly between zero and one. The next weight is drawn between zero and one 
minus the sum of the previous weights. The last weight is one minus the sum of all 
others. In this way, all weights have the same prior probability distribution, and all 
weights can become high (close to one) and are also often set to (close to) zero, i.e. 
the process is (almost) switched off. By assimilating observations, some weights 
can converge to zero over time, indicating that the processes, which the associated 
suitability factors embody, are irrelevant in the observed system. Other factors will 
prove to be important. So, by determining which suitability factors are relevant, we 
identify the CA model structure.  

The ‘candidate’ suitability factors and a short explanation of the processes they 
represent are listed in Table 3.1. They are referred to as candidate suitability 
factors, because over the course of the calibration they either prove to be relevant, 
by obtaining a weight above zero, or to be irrelevant, by receiving a weight of zero. 
The candidate factors are derived from informal discussions with experts and 
literature review (Lapola et al., 2010, Walter et al., 2011, Rudorff et al., 2010, 
Macedo and Seabra, 2008, Sparovek et al., 2007, Sparovek et al., 2012, de Souza 
Soler and Verburg, 2010, Aguiar et al., 2011). Sugar cane in the neighbourhood (k = 
1) is expected to be important because larger plantations usually require less 
money per hectare as equipment and infrastructure can be shared (economies of 
scale). Also, a group of existing sugar cane fields usually already has a mill, in which 
the sugar cane is crushed, in the vicinity, so the sugar cane from new fields in the 
neighbourhood could go to the same mill. Travel time, and thereby transportation 
costs, to São Paulo city (k = 2) could be of influence because the ethanol is 
distributed through there, so São Paulo city is the main market. It is assumed that 
transportation occurs by truck only (Macedo and Seabra, 2008). Potential yield (k = 
3) is important for the potential profits per hectare. We use a potential yield map 
created from physical landscape properties and climate data by the IIASA (Tóth et 
al., 2012). Slope (k = 4) is critical, because the São Paulo state tries to eliminate 
pre-harvest burning, with its negative impacts on human health and on the 
environment due to the emission of pollutant gases (Aguiar et al., 2011). Pre-
harvest burning can be banned when manual harvesting is replaced by mechanical 
harvesting, which does not require burning. However, the harvest machines cannot 
operate on sloping ground. The state law that promotes sustainable production 
practices for sugarcane in São Paulo State therefore induces new sugar cane 
agrarians to avoid slopes above 12%. Random noise (k = 5) is used as a suitability 
factor to include local allocation choices that cannot be captured by a specific 
process or attribute at this model scale. 
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Table 3.1: Candidate suitability factors for sugar cane in São Paulo 

k Suitability factor Process represented 

1 Sugar cane in neighbourhood Economies of scale 

2 Travel time to São Paulo* Transportation costs to the main market 

3 Potential yield Profits 

4 Slope Mechanization potential 

5 Random noise Local allocation choices (unexplained) 
* Calculated as distance divided by speed. Speeds on different road types are taken from de 
Souza Soler & Verburg (2010).  

 

The tuning of the parameters of the model, or calibration, relates to finding the 
posterior distribution of all parameters, 𝑝(𝐩𝑡), within the suitability factors. In 
total, there are five parameters to calibrate: 𝐩𝑡= [f, l, 𝑎2, 𝑎3, 𝑎4], which are 
explained in the following. Suitability factor 1, the neighbourhood effect, is defined 
as:  

 
𝐮1,𝑡 = 𝑛𝑜𝑟𝑚(−𝐱1,𝑡

2 + 2 ∙ 𝑓 ∙ (
𝑙

𝑐
)

2
∙ 𝐱1,𝑡), for each t 

3.6  

In Equation 3.6, the number of neighbours being sugar cane in the neighbourhood 
window in a certain time step is 𝐱1,𝑡. Parameter c is the cell length, in this study 

fixed at 1000 m, and parameter l (m) is the window length of the window that 
determines whether or not a cell belongs to the neighbourhood. And f is the 
‘preferred’ fraction of neighbours being sugar cane of the total number of 
neighbours, (𝑙/𝑐)2, within the window. The function norm() normalizes its 
contents. The prior distribution of l is lognormal, 𝑙 =  𝑒𝑍𝑙 , with 𝑍𝑙  ~ 𝑁(8.5,0.7), 
which results in a median of around 5000 m and a mean of 3000 m. For these 
values, the window, (𝑙/𝑐)2, is the extended and direct Moore neighbourhood, two 
of the most commonly used neighbourhood types. The prior distribution of f is 
uniform, 𝑓 =  𝑍𝑓 , 𝑤𝑖𝑡ℎ 𝑍𝑓  ~ 𝑈(0,1). If, for example, f equals 0.5, the highest 

suitability (𝐮1,𝑡 = 1) occurs where half of the neighbours in the window is sugar 
cane. A reason why it could be the case that the neighbourhood shows ‘gaps’ 
without sugar cane is that a law, the Forest Code, requires that a certain portion of 
private farmland is set aside for natural vegetation preservation. In São Paulo, 
being outside the Legal Amazon Region, this is 20% (Sparovek et al., 2012). Another 
reason why more sugar cane in the neighbourhood is not always better is that the 
mill in which the sugar cane is crushed, has a maximum crushing capacity per 
season. In São Paulo the average maximum capacity is 1.9 ∙ 106 tonnes (Walter et 
al., 2011). When this capacity is reached, it is not necessarily an economic 
advantage anymore to create new sugar cane fields close to existing ones, as a new 
mill has to be built anyway.  
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Suitability factors 2, 3 and 4 from Table 3.1 are calculated as: 

 𝐮𝑘 = 𝑛𝑜𝑟𝑚(1 − 𝐱𝑘
𝑎𝑘), for k = 2, 4 

𝐮𝑘 = 𝑛𝑜𝑟𝑚(𝐱𝑘
𝑎𝑘), for k = 3 

3.7  

In Equation 3.7, 𝐱𝑘 is the attribute of suitability factor k. In the case of attributes 
travel time to São Paulo (k = 2) and slope (k = 4), lower attribute values lead to a 
higher suitability, while for potential yield (k = 3) higher attribute values lead to a 
higher suitability. The parameter 𝑎𝑘 determines the shape of the suitability 
function. A value of one results in a linear function, meaning that suitability 
increases or decreases linearly with the increase in the value of the attribute. For 
0 < 𝑎𝑘 < 1, the shape of 𝐮𝑘 is concave, and for 𝑎𝑘 > 1, the shape is convex. The 

prior distribution of 𝑎𝑘 is lognormal, 𝑎𝑘 =  𝑒𝑍𝑎𝑘 , 𝑤𝑖𝑡ℎ 𝑍𝑎𝑘
 ~ 𝑁(0,1.8), which 

results in a distribution of 𝑎𝑘 with a median of one, i.e. a linear relation between 
𝐮𝑘 and 𝐱𝑘. The uncertainty of the attributes, 𝐱𝑘, is based on information provided 
with the datasets (Tóth et al., 2012, Jarvis et al., 2008). Only the locations of roads 
and São Paulo city, used for suitability factor 2, are assumed to be known, and 
therefore used deterministically. Note that these suitability factors and their 
uncertainty remain static over time. In reality they change, e.g., new roads can be 
build and potential yield can decline due to land degradation, but these processes 
are not taken into account due to a lack of data. 

Suitability factor, 5, has no parameters. Its suitability is equal to its attribute, which 
is a uniformly distributed random spatial field, varying between zero and one, 
drawn separately in each time step, so 𝐮5,𝑡 =  𝐱5,𝑡.  

 

Spatial metrics 

The purpose of land use change models is usually not, and should not be, to 
simulate precisely the land use of each single cell in each year (Parker et al., 2008). 
More realistic is to try to capture certain spatio-temporal patterns. Therefore 
aggregated measures or spatial metrics are often more useful for calibration than 
location-based methods (Pijanowski et al., 2006). To correctly identify the system 
dynamics, it is essential to evaluate multiple system characteristics. So, multiple 
spatial metrics should be assessed in the model structure identification and 
calibration, observed at different system levels (Grimm and Railsback, 2012). Three 
spatial metrics were selected based on their complementarity (global vs. regional, 
configuration vs. composition (Csillag and Boots, 2005)). 1) The fraction of sugar 
cane in 150 x 150 km blocks. This metric ensures that the demand for sugar cane in 
the São Paulo state is distributed in correct proportions over regional areas. The 
metric is regional and based on composition. 2) The total number of 
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interconnected sugar cane patches. This signifies whether all sugar cane cropland 
is connected into one patch or distributed over many patches. 3) The landscape 
shape index, 𝑞𝑡, calculated as (Pijanowski et al., 2002): 

 𝑞𝑡 = 𝑒𝑡/min(𝑒𝑡) 3.8  

 Herein, 𝑒𝑡 (m) is the total length of the edge of the sugar cane patches in time step 
t, min(𝑒𝑡) (m) is the minimum total length of edge for a maximally aggregated 
sugar cane patch, attained if all sugar cane is grouped into one square patch. So, it 
indicates the shape of the patches, e.g., very compact or more crooked. The last 
two metrics are global and based on configuration, so that a balance between 
global and regional, and composition and configuration is obtained in the model 
calibration and validation. 

Validation is done using the same spatial metrics used for calibration, as the 
performance criteria should match the model purpose and thus the calibration 
criteria (Rykiel Jr., 1996). The root mean square error (RMSE) and 95% confidence 
intervals are used to quantitatively compare the spatial metrics obtained from the 
model projections and from the observational data of the same period. 

 

Observational data 

       The observational data are eight annual maps of sugar cane occurrence, 
classified from Landsat images by INPE for the Canasat project (Rudorff et al., 
2010), with a resolution of 30 m and a temporal extent from 2003 to 2010. The 
data are resampled to a 1 km resolution. 

In order to solve Equation 3.4 (particle filter), not only the mean observations, 𝐨𝑡, 
i.e. the observed spatial metrics, have to be known, but also their error covariance, 
𝐑𝑡. As the error of the Canasat maps is not known, at least not for each cell, the 
error is determined by generating possible realizations of these maps. Hereto we 
use a stochastic simulation procedure that is widely applied to predict the 
uncertainty of an attribute at unknown locations, given a set of known locations 
(Pebesma and Wesseling, 1998). We use it to assess the uncertainty of an attribute 
at locations for which we already know the attribute value. Herein the following 
actions are taken for each time step in the calibration period: 

1. Experimental semi-variances (Cressie, 1993) are calculated and plotted. 
This is done based on a Boolean map, in which sugar cane is one and no 
sugar cane is zero. 

2. A semi-variogram model (Cressie, 1993) is fitted using the software gstat 
(Pebesma, 2004). An exponential model was chosen, because it yielded the 
best fit and because this model is usually a good choice when several 
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patterns interfere (Burrough and McDonnell, 1998), which can be 
expected for land use patterns that are often governed by many drivers of 
location. 

3. Cross-validation (Burrough and McDonnell, 1998) is performed to check 
the semi-variogram model. 

4. Gaussian simulation (Pebesma and Wesseling, 1998) is used to create 100 
potential spatial fields of scalar values, in which values close to zero 
indicate that there is probably no sugar cane and values close to one that 
there probably is.  

5. A threshold is applied to these 100 fields to turn them into Boolean maps 
again. To include not only configuration errors (sugar cane located in the 
wrong cell), but also composition errors (the total area of sugar cane in the 
map is wrong), this threshold is a normally distributed stochastic 
parameter with a mean of 0.5 and a standard deviation of 0.1. As a result, 
some of the realizations will have a larger sugar cane cropland coverage 
than others. 

6. From each of the 100 realizations, the three spatial metrics are derived. 
7. The covariance matrix 𝐑𝑡 is calculated from these spatial metrics. 

 

Scenarios 

To summarize, the land use change model (Figure 3.4) is run for the case study. 

During run time Equation 3.3 is applied at each filter moment to find 𝑝(𝐳𝑡
𝑖|𝐨𝑡), the 

posterior probability of land use change model particle i. The system state 𝐳𝑡
𝑖  and 

the observations 𝐨𝑡 are compared in the form of the three spatial metrics (section 
2.3.3), derived from respectively the model output and the Canasat maps. Because 

𝑝(𝐳𝑡
𝑖|𝐨𝑡) contains, besides the system state, also the transition rules 𝑝(𝒇𝑡), where 

𝒇𝑡 ←  𝑤𝑘 (Equation 3.5) and the parameters 𝑝(𝐩𝑡), where 𝐩𝑡 = [f, l, 𝑎2, 𝑎3, 𝑎4] 
(Equations 3.6 and 3.7), these are updated as well when the ensemble of model 
runs is updated using sequential importance resampling.  

 

Table 3.2: Calibration and validation scenarios 

# purpose model structure 
(weights) 

parameters filter in t = # of 
blocks 

1 Reference case stochastic stochastic - - 

2 Filtering stochastic stochastic 2004, 2005 5 

3 Less observational data stochastic stochastic 2004, 2005 2 

4 Model rules preliminarily set deterministic stochastic 2004, 2005 5 
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As one should not use the same set of data for calibration and validation, we use a 
split-sample approach over space and time in all scenarios. Two years (2004 - 2005) 
are used for calibration and five (2006-2010) for validation. More years are used 
for validation than for calibration to be able to study to what extent the 
performance decreases over time. In addition, the data are split over space: half of 
the ten 150 x 150 km blocks is used for calibration (from this point onwards called 
calibration blocks), and the other half is not (from this point onwards called 
validation blocks). In this way, the performance of the calibration blocks and the 
validation blocks can be evaluated separately, to assess to what extent the model 
can be used for areas where no calibration data are available. Then, we use the 
calibrated and validated model for land use change projections up to 2016. 

Four calibration scenarios were designed (Table 3.2). The first is the reference case, 
i.e. what would happen without filtering, thus only Monte Carlo simulation. The 
second scenario is meant to show the effect of the particle filter and to evaluate 
the two different sets of five blocks (sample split over space), as explained above. 
The third scenario uses fewer blocks, i.e. a smaller spatial coverage, to test the 
influence of observational data availability, as time series of good quality 
observations are often not obtainable (Straatman et al., 2004). In reality, this could 
represent a situation in which one has incomplete data for calibration, e.g., remote 
sensing images partly covered by clouds. The fourth scenario is meant to discuss 
the matter of model structure identification. In many calibration efforts the model 
rules are preliminarily set and only the parameters are calibrated. This scenario 
represents that situation in order to evaluate the difference between pre-set (this 
scenario) and stochastic model rules (scenario 2). All scenarios are run using N = 
25000 particles. 

 

3.3. Results and Discussion 

3.3.1. Realizations of observations 

For the filter moments, realizations of the observations were created, using 
Gaussian simulation as explained in section 2.3.4. These realizations represent 
potential instances of sugar cane cropland maps and are used to determine the 
covariance matrix, 𝐑𝑡. Figure 3.6 shows a close up of nine of the hundred 
realizations for 2005. On the one hand one can identify the configuration errors 
(sugar cane cropland located in the wrong cell). For example, variations in the 
shape of the large patch in the middle of the close up. On the other hand, the 
effects of composition errors (the total area of sugar cane cropland in the map is 
wrong) are visible. The upper left realization, for instance, shows a larger total 
sugar cane cropland area than the one below it. 
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Figure 3.6: Close up of the most Western wedge of São Paulo of nine realizations of the 
observations from 2005. 

3.3.2. Model structure identification 

The evolution of the model structure 𝑝(𝐟𝑡) is illustrated by the evolution of the 
weights 𝑤𝑘 of the five candidate suitability factors over time for scenario 2 (Figure 
3.7). All weights have the same prior lognormally shaped distribution between zero 
and one. Over time, some particles are filtered out and others are copied. After the 
first filter moment (2004), of which the results can be seen in 2005 (Figure 3.7), the 
effects are small. But, for example, for the random noise suitability factor, the 
weight distribution is narrowed: a land use change model structure in which 
random noise is the only relevant suitability factor is rejected. Also, for potential 
yield and travel time to São Paulo high weights have become less prevalent in the 
ensemble. In the second filter moment (2005), the distributions converge further, 
e.g., the weight of slope converges towards high values; its posterior distribution 
has two peaks around 0.9 and 0.5. This means that slope is a very important factor 
in the allocation of sugar cane cropland. Slope was expected to be important, 
because the São Paulo state tries to eliminate pre-harvest burning, as explained in 
section 0. We had, however, not foreseen that slope is so much more important 
than the other factors. Travel time to São Paulo city, for example, was expected to 
be more important. The results that it is not (it has a weight distribution between 
0.0 and 0.2), could be because the whole study area is relatively close to São Paulo 
city. Another explanation can be the fact that the sugar cane is not transported to 
the city directly. First the sugar cane is transported to sugar cane mills, where it is 
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converted to ethanol. The ethanol in its turn, is usually transported to São Paulo 
city. Ethanol, though, is a much higher value and higher energy density product, for 
which transportation costs, and therefore travel times, are less important. We have 
considered to include travel time to the sugar cane mills as a suitability factor, but 
the problem with this is that new mills emerge quite often, and since we do not 
know where, forecasting becomes problematic with this model structure. An 
additional reason for relatively low importance of travel time could be that an 
ethanol pipeline is present running through the high-density sugar cane cropland 
area in the middle north part of São Paulo state to São Paulo city. More pipelines 
are planned in the future. Macedo and Saebra (2008) expect that by 2020 20% of 
the ethanol in Brazil will be transported through pipelines. 

Some weights converge to values close to zero, as is the case for sugar cane in the 
neighbourhood and random noise, which means the processes are less relevant. 
The fact that random noise obtains a low weight in the posterior is a good sign. It 
indicates that unexplained local allocation choices have little influence on the 
regional and global sugar cane pattern. However, it does not converge to zero 
entirely, so it is not completely irrelevant. 

 

Figure 3.7: Evolution of the weights 𝒘𝒌 of the candidate suitability factors over time for scenario 
2, with filtering in 2004 and 2005. For each suitability factor the black horizontal lines in the centre 

panel are a random selection of 10% (for visualization purposes) of the particles, the bars on the 
left represent the prior distribution, and the bars on the right represent the posterior distribution 

of the weight (see also diagram structure on the top left).  
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3.3.3. Calibration 

At the same time the parameters within the suitability factors have been calibrated 
(Figure 3.8). The prior of the logarithm of window length l, of the sugar cane in 
neighbourhood suitability factor, is normally distributed and the posterior has 
converged to values around 8. This means that the best neighbourhood is the 
direct Moore neighbourhood, as 𝑒8 ≈ 3000 m, which is 3 cell lengths. The prior 
distribution of the preferred fraction of neighbours being sugar cane f is uniformly 
distributed between zero and one. The posterior distribution has two peaks. The 
largest lies around 0.5, indicating that the preferred number of neighbours being 
sugar cane, is half of the total number of neighbours in the neighbourhood. 
Because the posterior distribution of window length l has a value of about 3 cells, 
this means that the highest suitability for the neighbourhood function is reached 
when four out of the eight direct neighbours are sugar cane. This could imply that 
farmers set aside part of their farmland to meet the terms of the Forest Code. But 
to verify this, a further study on the land use of the non-sugar-cane cells in the 
window should be done. When these cells are indeed natural surroundings, it could 
be the case, but when this land is used otherwise, e.g., for other crops or grazing of 
livestock, a different reason exists for the scattered pattern. At the moment we are 
unable to examine this, because we have no map of the other land uses in the São 
Paulo state that is sufficiently detailed in space, time and attributes. 

The lower three panels in Figure 3.8 represent the logarithm of the parameter 𝑎𝑘, 
which determines the shape of the suitability functions of travel time to São Paulo 
(k = 2), potential yield (k = 3) and slope (k = 4). The prior of the natural log of all 
three parameters is normally distributed, with a median of zero, so that the 
median of 𝑎𝑘 = 𝑒0 = 1, which results in a linear relationship between the 
attribute value and the suitability. The posterior distribution of 𝑎2 for travel time to 
São Paulo has its peaks above zero. Applying Equation 3.7, we see that the 
resulting shape of 𝐮2 plotted against 𝐱2 is convex (Figure 3.9). This means that up 
to a travel time of about ten hours from São Paulo city the suitability is high and 
almost constant, and further away it quickly drops to zero. On the map this shift 
arises far away from main roads in the North-western and South-western parts of 
the study area only. From that point onwards transportation costs possibly become 
too high1.  

                                                           
1
 If costs versus revenues are truly the reason for the position of the tipping point of 𝒂𝟐, it 

should be noted that this point is very sensitive to e.g., changes in fuel prices. The model 
could be improved by calculating transportation costs instead of travel time, so that these 
economic variables are reflected in the suitability factor. However, obtaining data to 
accurately do that is time-consuming, as e.g., regulations, taxes and fuel prices can vary 
widely per administrative unit in Brazil. 
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The posterior distribution of 𝑎3 for potential yield has its largest peak around -2. 
Applying Equation 3.7, we see that 𝐮3 plotted against 𝐱3 has a convex shape 
(Figure 3.9). The curve shows that even soils with relatively low yield, in the region 
of 15% of the maximum attainable yield, are suitable for sugar cane cultivation. 
This is in line with information provided to us by experts from CTBE (Brazilian 
Bioethanol Science and Technology Laboratory), who stated that in the São Paulo 
state all soils are good enough to cultivate sugar cane and the soil must be 
prepared anyway, so the precise quality is not that important. The climate is also 
uniformly good; in the entire state sugar cane can be cultivated without irrigation.  

The posterior distribution of slope has its largest peak at approximately zero. 
Therefore, the median of 𝐮𝟒 plotted against 𝐱4 has a linear shape (Figure 3.9), 
meaning that the suitability decreases linearly with the increase of slope. It should 
be noted that slopes higher than 12% are included in the no-go area. Therefore, in 
the model sugar cane cannot be allocated on high slopes anyway, so the part of 
the graph where x4 > 12% has no effect in the CA.  

In scenario 3, in which less observational data are assimilated, the parameters 
converge to similar values, but the distributions remain much broader. This is 
because less information is available on whether a certain parameterization 
performs well. In scenario 4, parameter distributions are narrower again. They 
have converged to different values than scenario 2 and 3, to correct for the fixed 
model structure, which is different from the optimal model structure in scenario 2 
(Figure 3.7). For example, window length l, obtains a median of about 13 km. 
Apparently, the fact that sugar cane is the neighbourhood was given a too high 
weight, can be partly compensated by calculating the number of neighbours in a 
larger window. 

 

3.3.1. Validation 

Figure 3.10 compares the root mean square error (RMSE) of the validation time 
steps 4 to 8 (2006-2010) of all scenarios for all three spatial metrics for the 
calibration and the validation blocks separately. The RMSE is a frequently used 
measure of the differences between a modelled and an observed variable. As the 
measure is scale dependent (Hyndman and Koehler, 2006), it has a relative 
meaning only, so we merely use it to compare between scenarios. For absolute 
comparison, the modelled spatial metrics and the observed spatial metrics are 
compared for scenarios 1, 2, and 4 in Figure 3.11. 

 



77 
 

 

Figure 3.8: Prior (thin line) and posterior (thick line) distributions of all parameters for scenario 2. 

 

Figure 3.9: Suitability distributions 𝐮𝒌 for the attributes 𝐱𝒌: travel time to São Paulo (k = 2), 

potential yield (k = 3), and slope (k = 4), given the median (solid black line) and the 95% confidence 
interval (grey area) of the posterior distribution of 𝒂𝒌.  

In general, it can be observed that in the two scenarios in which the particle filter 
was applied, the width of the 95% confidence interval is significantly smaller, and 
the relative difference in width between the scenarios with and the scenario 
without filtering increases over time.  For example, the width of the confidence 
interval in scenario 2 is less than 10% of the width in scenario 1 in 2016 (Figure 
3.11).The scenarios in which the particle filter was applied have a lower RMSE 
(Figure 3.10). This implies that the particle filter reduces the uncertainty in the 
ensemble of model runs in a way that brings the output values closer to the 
observed values. For the calibration blocks, the general trends are similar to the 
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validation blocks. Overall, the performance is a bit better in calibration blocks than 
in the validation blocks, as expected. 

Scenario 2 outperforms the other scenarios regarding all metrics throughout the 
modelled period, except for two years (Figure 3.10). Concerning the fraction sugar 
cane per block, the median of the model output and the observations differ less 
than 1% up to 2006, and for three out of the five blocks even all the way up to 
2010 (Figure 3.11). In scenario 1, the divergence of the two medians starts already 
in 2004 and concerns four instead of two blocks. This shows that the particle filter 
has managed to resample the ensemble of particles in such a way that the sugar 
cane expansion behaviour is corrected in the two other blocks, however not all the 
way up to 2010. The median of the model output and the observations for 
landscape shape index differ less than 1% up to 2006 for both scenario 1 and 2. 
After that, the modelled landscape shape index is too low (maximum of 10%), and 
the observations do not fall within the 95% confidence interval in scenario 2. So, 
the particle filter does narrow the confidence interval and reduce the RSME over 
the complete validation period, but further away from the filter moments the 
ensemble is not successful anymore in projecting either the fraction of sugar cane 
for two out of the five blocks or the landscape shape index. This can be a result of 
either incorrect model identification, or non-stationarity in the land use system 
itself. The implication of this is that, if one wants to use the identified CA to assess 
an impact of land use change that uses these blocks or the landscape shape index 
as a criterion, the reliability of this impact analysis is low. Yet, the fact that there is 
little difference in performance between the calibration and validation blocks for 
scenario 2 (Figure 3.10) indicates that the identified model structure and 
parameters perform equally well in the part of the study area for which no 
observations were assimilated. With information from half of the study area, the 
particle filter is able to identify model structure and parameters resulting in the 
same performance in the other half of the area.  

The effect of less observational data (scenario 3) is largest for the fraction of sugar 
cane per block (Figure 3.10), where it performs even worse than the reference 
scenario (scenario 1). The RMSE is more than four times as large as for scenario 2. 
For the calibration blocks scenario 3 seems to perform better, but is calculated 
only for the two calibration blocks instead of five as is the case for the other 
scenarios. Because of this it is problematic to compare the RMSE of scenario 3 with 
the other ones for the calibration blocks.  

For scenario 4 (pre-set model structure but calibrated parameters), the decrease in 
performance is especially large for the number of patches (Figure 3.10). Figure 3.11 
shows that this scenario is completely unable to capture the trend in this metric. It 
predicts continuous decrease from the start, while there should be an increase. 
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Figure 3.10: Root mean square error for all spatial metrics for all scenarios for the validation 
blocks (top) and calibration blocks (bottom) for scenario 1 (reference case), 2 (particle filter), 

scenario 3 (less observational data), and 4 (preliminarily set model rules). 

To further compare the predictive power of the reference and the particle filter 
scenario, Figure 3.12 shows the maps of the probability of sugar cane cropland 
coverage in 2007 and 2016 for both scenarios the observational data in 2007. In 
2007, two filter moments have passed in scenario 2, so its land use map differs a 
lot from the one of the reference scenario. In scenario 1, sugar cane cropland has 
expanded along edges of existing patches. The area in the Southern part of São 
Paulo state has probabilities of zero because this is defined as the no-go area for 
sugar cane (Padua Junior et al., 2012). Furthermore, almost all cells have a, 
although low, probability to be occupied by sugar cane in 2007. In the output of 
scenario 2, the uncertainty of where sugar cane will be located has been greatly 
reduced; most cells are either red (probability of zero) or green (probability of 
one). The majority of the expansion has taken place in the North-West. Both the 
location and the configuration (scattered) of the expansion in this scenario result 
resemble the observations much better than scenario 1.  
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Figure 3.11 (continues on next page, caption provided there). 
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Figure 3.11 (continued): Comparison of modelled median (solid line), 95% confidence interval 
(grey area) and observations (dashed line) of the spatial metrics for the five validation blocks for 

scenario 1 (reference case), 2 (particle filter) and 4 (preliminarily set model rules). The filter 
moments are indicated with vertical dashed lines. 

 

 

Figure 3.12: The probability of sugar cane cultivation for scenario 1 (left) and scenario 2 (centre), 
and the observations (right), for 2007 and 2016. 

For 2016 the same differences between scenario 1 and 2 appear; scenario 1 is 
much more uncertain, although the uncertainty in scenario 2 has also increased, as 
the time period since the last filter moment is long. Scenario 2 indicates the 
highest probability of expansion mainly in the western part of São Paulo state. 
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Obviously, there are no observations for 2016, so validity cannot be checked. Yet, 
the sugar cane cropland expansion sites up to 2020, given by Lapola et al. (2010, p. 
2) resemble the locations with a high probability in our results closely. 

To ensure that the model structure and parameters obtained with the particle filter 
are not dependent on partition of the blocks for calibration and validation, scenario 
2 was repeated with a different, again randomly drawn, block division. In Figure 
3.13, Figure 3.14, and Figure 3.15 in the Appendix A the equivalents of respectively 
Figure 3.7, Figure 3.8, and Figure 3.11 are shown for the new sets of calibration 
and validation blocks. The results are deemed comparable, so we reject the 
possibility that the results shown in this section are a product of the partition of 
the area into calibration and validation blocks.  

 

3.4. Conclusion 

The method used here simultaneously identifies the model structure and calibrates 
the parameters of a land use change cellular automaton (CA) by sequential 
assimilation of observations, using a particle filter. The method uses the 
(subjective) knowledge of experts to define which processes or drivers might be 
important in the system, and applies the (objective) information from observations 
to adjust the model structure and calibrate the parameters. With the candidate 
suitability factors chosen in this study and the observational data used, the particle 
filter identified a probability distribution of model structures and associated 
parameters that could forecast the chosen spatial metrics fairly good. 
Nevertheless, performance clearly decreased over time, further away from the 
filter moments (Figure 3.10 and Figure 3.11). So, using this calibration technique, 
information about the land use system is gained and short-term land use 
projections are clearly improved, but projections of more than a few years ahead 
are not very reliable. It remains, however, a question whether this is a deficit of the 
calibration technique, or a result of non-stationarity in the land use system itself. 
The assessment of the persistence of land use change drivers and possible changes 
in their relative importance over time, is the next stage of our research. 

In areas where no observational data were assimilated (validation blocks), the 
model performed about as well as in the areas for which observations were 
assimilated (calibration blocks) (Figure 3.10). So, spatially incomplete datasets, 
regional land survey data, or clouded remote sensing images can still provide 
valuable information for this CA identification. Also, data gaps in time are not a 
problem, as the sequence of filter moments does not need to be continuous, i.e. 
there may be gaps in the time series of observations that is assimilated. These two 
characteristics of the used method are a considerable advantage given the fact 
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that time series of good quality land use maps are rare (Straatman et al., 2004). 
Only when the area of observational data availability became significantly smaller, 
the model performed a lot worse in the unknown areas (validation blocks). Besides 
the improvements on the land use change model itself, the technique also 
improves land use system knowledge, because the result of the model structure 
identification provides information on the relative importance of the drivers. For 
example, in our case study slope turned out to be much more important for sugar 
cane cropland allocation than expected in advance.  

It is shown that the particle filter method can be used not only to calibrate the 
parameters inside the transition rules, but also to find the relative importance of 
the transition rules, the model structure. The importance of taking into account the 
identification of the model structure is shown by running a scenario with a pre-
defined model structure. As expected, it performed worse compared to the 
scenario in which the model structure was identified by the particle filter. 
However, the choice for this specific, pre-defined structure was of course arbitrary, 
so this result should be interpreted with caution. A ‘real’ expert might have chosen 
a completely different model structure, possibly performing better. 

Before carrying out the method presented in this paper, one should also 
contemplate the aim of the CA modelling effort. The calibration target, i.e. the 
spatial pattern that the model should be able to reproduce, should match the 
modelling aim. If, for instance, the effect of future land use change on animal 
passageways is studied, connectivity of patches is probably an important 
characteristic. Hence, one or more measures of connectivity should be used as a 
calibration and validation target. In this study, three spatial metrics were used. It 
turned to be complicated to correctly reproduce the landscape shape index in the 
longer run. This should be taken into account when studying impacts that rely on 
these properties. 

Although it is an advantage that the search space, i.e. the prior distributions of 
parameters and model structure, can be defined by experts, it should be kept in 
mind that this prior information has a large effect on the outcomes. The selection 
of candidate suitability factors and the prior distribution of their weights should be 
performed carefully. The potential solution to incorporate a huge number of 
candidate suitability factors to make sure that all possible drivers are considered, is 
not feasible, because the addition of one parameter makes the number of required 
particles increase exponentially (Bengtsson et al., 2008). Many CAs have such a 
large number of parameters that computation time and disk space become severe 
constraints. Three possible solutions, that can also be combined, are: 1) to fix 
parameters having little influence on outcomes or having evident values and to 
calibrate only the remaining ones, 2) to apply a more advanced particle filter 
scheme giving similar results with a lower number of particles thus reducing the 
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required run time and disk space (Spiller et al., 2008, Jeremiah et al., 2012), and 3) 
to use super computers or cluster machines, to allow for a larger number of 
particles in the data assimilation scheme, thereby enabling an increase in the 
number of parameters that can be calibrated. 

An advantage of the method shown is that model uncertainty and observation 
uncertainty are taken into account. It must be acknowledged that the uncertainty 
in the observational data is constructed by making realizations using Gaussian 
simulation. So, the assumed observation uncertainty can be incorrect, but at least 
observation uncertainty is not ignored, as it is in many other predictive studies 
(Ivanovic and Freer, 2009). This means that our output uncertainty encompasses 
errors from model structure, parameters and observation (calibration) data. Such a 
full scope error propagation assessment is, to our knowledge, new in land use 
change CA modelling. In our opinion, it can be very useful, for example, to 
determine for which future time frame the results are reliable enough to base 
decisions and policies on. A practical application of how uncertainty information 
can be used in decision making is given by, e.g., Aerts et al. (2003b) and Chapter 2.  
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3.6. Appendix A 

 

Figure 3.13: Evolution of the weights 𝒘𝒌 of the candidate suitability factors over time for the new 
block division, with filtering in 2004 and 2005. For each suitability factor the black horizontal lines 
in the centre panel are a random selection of 10% of the particles, the bars on the left represent 

the prior distribution, and the bars on the right represent the posterior distribution of the weight. 

 

Figure 3.14: Prior (thin line) and posterior (thick line) distributions of all parameters for the new 
block division. 
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Figure 3.15: Comparison of modelled medians (solid lines), 95% confidence intervals (grey areas) 
and observations (dashed lines) of the spatial metrics for the validation blocks for scenario 2 

(particle filter). The filter time steps are indicated with vertical dashed lines. 
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4. Detecting systemic change in a land use system by 
Bayesian data assimilation 

 

Judith A. Verstegen, Derek Karssenberg, Floor van der Hilst, André P.C. Faaij 
(2016), Environmental Modelling & Software, 75, 424-438. 

 

 

Abstract - A spatially explicit land use change model is typically based on the 
assumption that the relationship between land use change and its explanatory 
processes is stationary. This means that model structure and parameterization are 
usually kept constant over the model runtime, ignoring potential systemic changes 
in this relationship resulting from societal changes. We have developed a 
methodology to test for systemic changes and demonstrate it by assessing whether 
or not a land use change model with a constant model structure is an adequate 
representation of the land use system given a time series of observations of past 
land use. This was done by assimilating observations of real land use into a land use 
change model, using a Bayesian data assimilation technique, the particle filter. The 
particle filter was used to update the prior knowledge about the model structure, 
i.e. the selection and relative importance of the explanatory processes for land use 
change allocation, and about the parameters. For each point in time for which 
observations were available the optimal model structure and parameterization 
were determined. In a case study of sugar cane expansion in Brazil, it was found 
that the assumption of a constant model structure was not fully adequate, 
indicating systemic change in the modelling period (2003-2012). The systemic 
change appeared to be indirect: a factor has an effect on the demand for sugar 
cane, an input variable, in such a way that the transition rules and parameters have 
to change as well. Although an inventory was made of societal changes in the study 
area during the studied period, none of them could be directly related to the onset 
of the observed systemic change in the land use system. Our method which allows 
for systemic changes in the model structure resulted in an average increase in the 
95% confidence interval of the projected sugar cane fractions of a factor of two 
compared to the assumption of a stationary system. This shows the importance of 
taking into account systemic changes in projections of land use change in order not 
to underestimate the uncertainty of future projections.  

 

  



88 
 

4.1. Introduction 

Land use change (LUC) is the result of complex interactions between socio-
economic and environmental processes (Verburg, 2006, Brown et al., 2008). To 
simulate potential development pathways in the land use system, scenario 
storylines are used in combination with land use change models. Various modelling 
approaches have been designed for this. Several such approaches are founded on 
the conceptual distinction between 1) the quantity of change per land use type, 
also called demand, and 2) the spatial allocation of this change (Pontius Jr. and 
Neeti, 2010). The quantity of change can be seen as a model input, because it is 
dictated by the scenario storyline, and the spatial allocation of change is defined by 
the model structure and parameters. The model structure consists of a set of 
suitability factors that serve as proxies for the land use system being socio-
economic and environmental processes that regulate the location of change 
(Schaldach et al., 2011, e.g., Verburg et al., 2002, van der Hilst et al., 2012), such as 
topography, accessibility, and potential revenues, and the way these factors 
interrelate.  

Although there are some exceptions (e.g., Clarke et al., 1997, Carlson et al., 2012), 
the selection, relative importance and parameterization of the suitability factors, 
i.e. the model structure and its parameters, are in current applications usually kept 
constant over model runtime. A crucial assumption, implicit in this method, is that 
the relationship between LUC and its explanatory processes is stationary (Manson, 
2007). This assumption ignores potential systemic changes in this relationship 
resulting from societal changes including technological, political or economic 
developments. A systemic change is a fundamental change in system structure. 
Because the notion of ‘fundamental’ is subjective, we recognize systemic change in 
the context of models by: “a system state change that cannot be simulated using a 
constant model structure and/or parameterization”. This definition is further 
explained in section 2.1. Our aim is to develop a general methodology, applicable 
to any type of model, to test for systemic change given this definition. We 
demonstrate this methodology in a case study with a land use change model and 
try to answer the following questions: 1) Is the assumption of a spatially explicit 
LUC model with a constant model structure and parameters, as generally used in 
the land use change community, an adequate representation of the land use 
system, or do observations of past land use over time indicate systemic changes? 
2) If systemic changes occur, can these be related to known societal changes? 3) 
How does the inclusion of systemic changes in the model affect model projection 
uncertainty? 

Evaluation of the stationarity of the relationship between land use and a set of 
spatial attributes has been done by others (Aspinall, 2004, Bakker et al., 2011, 
Bakker and Veldkamp, 2012). These studies use logistic regression, separately from 
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the land use change model. Therefore, they do not gain information on how to 
implement the (either changing or constant) spatial attributes into the model, in 
other words, how to turn these attributes into suitability factors, which restricts 
their value for the challenge of modelling systemic change. In addition, they often 
do not take into account uncertainty in the model and/or observational data and 
compare only two points in time, with the exception of Bakker et al. (2011), who 
compare three points in time. 

To overcome these restrictions, we assimilate a time series of observations of real 
land use into a spatially explicit LUC model to find the best model configuration for 
different points in time. A similar approach has been demonstrated in the field of 
hydrology by Merz et al. (2011). Here, we use the particle filter (van Leeuwen, 
2009), which is a Bayesian estimation or data assimilation technique. A particle 
filter updates the prior knowledge about the model structure and parameters 
during model runtime at points in time for which observations are available. In this 
way we assess the land use system structure, or model structure, as a whole, 
instead of only its components independently, in a fashion similar to our previous 
study (Chapter 3). Unlike in this previous study, we apply the particle filter here 
separately for each year for which a land use map is available. By following this 
approach, optimal model structures and parameterizations, can be obtained for 
these different points in time. This allows us to create a time series of the evolution 
of the model structure and parameters. Two stationarity tests, a distribution 
comparison test and the Runs test (Wald and Wolfowitz, 1940), are used to assess 
deviations in this time series and to check whether these deviations can be 
attributed to randomness or not. If not, this indicates systemic change. An 
important advantage of the particle filter compared to, for example, logistic 
regression is that it provides posterior knowledge including uncertainty, which 
enables providing confidence intervals for the identified model structures and the 
associated land use change projections. 

We have set up a spatially explicit land use change model simulating sugar cane 
cropland expansion in the state of São Paulo in Brazil for the period 2003 to 2012, 
for which a time series of sugar cane occurrence maps of high quality (Rudorff et 
al., 2010, Adami et al., 2012a) is available as observational data. This case is 
suitable for testing our approach, because there are a number of societal changes 
in Brazil in the studied period that might have caused systemic change in the sugar 
cane expansion patterns, e.g., the economic crisis in 2008, and the adaptation of 
the Forest Code in 2012. We consider four suitability factors that could potentially 
be of importance in the spatial allocation of new sugar cane fields: sugar cane in 
the neighbourhood, distance to the sugar cane processing mills, potential yield, 
and slope. First, we use a synthetic dataset generated by the model for the years 
2004-2012 and demonstrate that the particle filter can reproduce the model 
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structure and parameters which were applied to generate this synthetic dataset. 
Second, we use the real observations as observational data, to find the best fitting 
model structure and parameters for the real system for each of the years. 
Significant variations in optimal model structure and parameters between 
consecutive years would indicate that the changes in these years cannot be 
simulated using the stationarity assumption, and therefore signify systemic 
changes. In our study we try to relate the changes in model structure over time to 
the societal changes identified beforehand.  

Next, sugar cane expansion is projected for the years 2013-2022. For this 
projection phase, the model is run with model structure and parameters varying 
over time. The trend in this variation, if any, depends on the connection between 
societal changes and the variation in model structure and parameters found for the 
time span between 2004 and 2012. This run is compared to a run with a classical 
model having a constant model structure and parameters. Differences in system 
state behaviour and uncertainty are evaluated. 

The next section explores the concept of systemic change in the context of models, 
and provides explanations of the land use change model, the particle filter 
technique, and the stationarity analysis. Section 3 describes the case study, 
mentions potential causes of systemic changes in the case study area, and 
delineates the different model runs. Section 4, and 5 and 6 are the results, 
discussion, and conclusion sections. 

 

4.2. Methods 

4.2.1. Systemic change 

In the introduction, systemic change was defined as a change in the system 
indicated by a system state change that cannot be simulated using a constant 
model structure and/or parameterization. The system state as a function of the 
model structure can be described as:  

 𝐲𝑡 = 𝐟(𝐲𝑡−1,  𝐱𝑡 , 𝐩), for each t = 1, 2, …, T 4.1  

In Equation 4.1, 𝐲𝑡 is the system state at the time step t, f is the set of transition 
rules, representing the processes that lead to change in the system state over time, 
and the way they are implemented and combined, i.e. the model structure. The 
vector 𝐱𝑡 represents all inputs, both spatial and non-spatial, and 𝐩 contains the 
parameters of the transition rules f. In the case of a spatially explicit land use 
change model the spatial inputs are the input maps to calculate the suitability 
factors and the non-spatial input is the demand. 
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Systemic change means that a certain f and/or p, which was at previous time steps 
able to give an accurate representation of the change in 𝐲𝑡, has to be altered at a 
certain point in time to remain able to correctly simulate 𝐲𝑡. This coincides with the 
special issue editors’ description of systemic change as “entities no longer 
interrelating in a particular way” or “changes in the set of exogenous variables to 
which the system is sensitive”. 

The systemic change visible in f and/or p can be either direct or indirect. Direct 
means that an action, e.g. a policy change, directly affects f and/or p. Indirect 
denotes that the action has an effect on the inputs 𝐱𝑡, in such a way that the 
transition rules and parameters have to change as well (Filatova and Polhill, 2012). 
In other words, the behaviour of the inputs over time suddenly changes, beyond 
the function domain of f, with the result that f becomes invalid.  

 

4.2.2. Land use change model 

The land use change model applied in our study is a branch of the PCRaster Land 
Use Change model (PLUC) (Chapter 2), a spatially explicit LUC model. It is, like many 
other land use change models (Pontius Jr. and Neeti, 2010), grounded on the 
conceptual distinction between 1) the quantity of change per land use type, and 2) 
the spatial allocation of this change. The total quantity of land required per land 
use type, also called the demand x𝑑,𝑛,𝑡, is an input (present in 𝐱𝑡 in Equation 4.1), 
defined by historical data in historical runs, the identification phase, and by the 
scenario storyline in runs for future land use change, the projection phase. The 
change in demand, which can denote expansion as well as contraction, is allocated 
using the total suitability map 𝐬𝑛,𝑡, a weighted sum of the suitability factors for that 
land use type: 

 𝐬𝑛,𝑡 =  ∑ (𝑤𝑛,𝑘 ∙ 𝐮𝑛,𝑘,𝑡)
𝐾𝑛
𝑘=1 , for each n in each t 

with  ∑ (𝑤𝑛,𝑘) =  1
𝐾𝑛
𝑘=1  

and 𝐮𝑛,𝑘,𝑡 = ℎ(𝐱𝑛,𝑘,𝑡, 𝐩𝑛,𝑘) 

4.2  

In Equation 4.2, t is the time step in years, with t = 1, 2, …, T; n is the land use type, 
with n = 1, 2, …, N; and k is the suitability factor, with k = 1, 2, …, Kn. Furthermore, 
𝐮𝑛,𝑘,𝑡 ∈ [0,1] is the suitability map for suitability factor k; and 𝑤𝑛,𝑘 ∈ [0,1] is the 
weight of factor k, which denotes the importance of this specific proxy in the total 
suitability map 𝐬𝑛,𝑡. The suitability factors and their weights together establish the 
model structure of the LUC model, and are, just like the parameters 𝐩𝑛,𝑘, 

temporally and spatially constant as in most land use change models. The function 
h() uses the spatial attribute 𝐱𝑛,𝑘,𝑡 and parameter(s) 𝐩𝑘,𝑡 to create the proxy for 
land use change, and normalizes it, i.e. linearly transforms it to a value between 0 
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and 1, to obtain the suitability map for suitability factor k, 𝐮𝑛,𝑘,𝑡. The 
transformation is linear, because the actual shape of the relation (linear, convex, 
concave) between 𝐮𝑛,𝑘,𝑡 and 𝐱𝑛,𝑘,𝑡 is determined by the parameters 𝐩𝑛,𝑘 within 
𝐮𝑛,𝑘,𝑡, discussed later. If required, areas where expansion is not allowed (no-go 
areas) can be masked out in the total suitability map, so that no change can occur 
in these cells. 

Two types of suitability factors exist in PLUC: attraction or repulsion factors and 
feedback effects. Attraction/repulsion factors represent the attracting or repelling 
effect of a spatial attribute on a land use type.  They are defined as: 

 𝐮𝑛,𝑘,𝑡 = 𝑛𝑜𝑟𝑚(𝑐𝑛,𝑘 ∙ 𝐱𝑛,𝑘,𝑡

𝑎𝑛,𝑘 ), for 𝑘 ∈ attraction/repulsion  4.3  

In Equation 4.3, 𝐱𝑛,𝑘,𝑡 is the attribute of suitability factor k, e.g., potential yield. The 
parameter 𝑎𝑛,𝑘 determines the shape of the suitability function. A value of 1 

results in a linear function, meaning that suitability increases or decreases linearly 
with the increase in the value of the attribute. For 0 < 𝑎𝑘 < 1, the shape of 𝐮𝑛,𝑘,𝑡 
is concave, and for 𝑎𝑛,𝑘 > 1, the shape is convex. Whether a certain attribute 
attracts (higher attribute values lead to a higher suitability) or repels (lower 
attribute values lead to a higher suitability) land use type n, is determined by the 
constant 𝑐𝑛,𝑘, having a value of 1 in case of attraction and -1 in case of repulsion. 
The function norm() normalizes its contents, so that 𝐮𝑛,𝑘,𝑡 ∈ [0,1]. 

Feedback effects characterize the positive effect of the presence of a land use type 
on the allocation of another land use type in a pre-defined neighbourhood. They 
represent temporal feedback in the system because the land use updated in the 
previous time step, 𝒚𝑡−1, is used as an input, and thereby generate non-linear 
system behaviour. They are calculated as: 

 𝐮𝑛,𝑘,𝑡 = 𝑛𝑜𝑟𝑚(𝐱𝑛,𝑘,𝑡−1
2 + 2 ∙ 𝑓𝑛,𝑘 ∙ 𝑙𝑛,𝑘,𝑤

2 ∙ 𝐱𝑛,𝑘,𝑡−1),     for 𝑘

∈ feedback  

4.4  

In Equation 4.4, 𝐱𝑛,𝑘,𝑡−1 is the number of neighbours of the land use type of 
interest (usually land use type n itself) in the neighbourhood window in time step t 
- 1, derived from the system state in the previous time step 𝒚𝑡−1. Parameter 𝑙𝑛,𝑘,𝑤 
is the window length (in number of cells) of the window that determines whether 
or not a cell belongs to the neighbourhood. Furthermore, 𝑓𝑛,𝑘 is the ‘preferred’ 
fraction of neighbours of the land use type of interest appearing in the total 

number of neighbours, that is 𝑙𝑛,𝑘,𝑤
2 , within the window. Equation 4.4 creates a 

parabolic shape of 𝐮𝑛,𝑘,𝑡 against 𝐱𝑛,𝑘,𝑡−1. The rationale for this, is that e.g., 
financial and policy related principles can lead to a specific optimal number of 
neighbours. More as well as less neighbours than this optimum reduces the 
suitability 𝐮𝑛,𝑘,𝑡. For example, for farmers it can be advantageous when some of 
their neighbours cultivate the same crop, for they can share machinery, but it can 
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also be disadvantageous, as the land price increases due to this favourable 
situation under a growing demand.  

Allocation of the demand x𝑑,𝑛,𝑡 occurs at each t by sorting 𝐬𝑛,𝑡 and allocating cells 
to land use type n until x𝑑,𝑛,𝑡 has been fulfilled. This mechanism (Equation 4.1 plus 
the allocation) is f in Equation 4.1. Systemic change concerning f can happen 
trough a required change in 𝑤𝑛,𝑘. The land use map resulting from applying f is 𝐲𝑡 
in Equation 4.1. The inputs  𝐱𝑡 in Equation 4.1 are x𝑑,𝑛,𝑡 and 𝐱𝑛,𝑘,𝑡 or 𝐱𝑛,𝑘,𝑡−1, 

depending on k. The parameters p are 𝑎𝑛,𝑘, 𝑙𝑛,𝑘,𝑤, and 𝑓𝑛,𝑘. 

We do not use a single, deterministic model run to simulate land use change, but 
an ensemble of runs, a Monte Carlo simulation (Aerts et al., 2003b, Chapter 2). For 
land use type n, in each cell, in each year, this ensemble represents the probability 
distribution of the occurrence of n. The ensemble is created by sampling from the 
prior probability distributions of the weights (𝑤𝑛,𝑘) and parameters (𝐩𝑛,𝑘) of the 
suitability factors (Equations 4.2 to 4.4), and running the land use change model for 
each of the ensemble members i, with i = 1, 2, …, I.  

 

4.2.3. Particle filter 

The ensemble of runs represents the range of possible model outcomes in each 
year given the uncertainty in model structure and parameters. The sequential 
importance resampling (SIR) particle filter (van Leeuwen, 2009) is a Bayesian 
estimation technique that uses observations to reduce the uncertainty in the 
ensemble, in our case to identify the optimal model structure and parameters. At a 
time step when observations are available, i.e. a filter moment, the particle filter 
solves Bayes’ theorem for each ensemble member i, also called particle: 

 
𝑝(𝐳𝑡

𝑖|𝐨𝑡) =
𝑝(𝐨𝑡|𝐳𝑡

𝑖) ∙ 𝑝(𝐳𝑡
𝑖)

𝑝(𝐨𝑡)
=

𝑝(𝐨𝑡|𝐳𝑡
𝑖) ∙ 𝑝(𝐳𝑡

𝑖)

∑ 𝑝(𝐨𝑡|𝐳𝑡
𝑗
) ∙ 𝑝(𝐳𝑡

𝑗
)𝑁

𝑗=1

, for each i = 1, 2, …, N 
4.5  

In Equation 4.5, 𝑝(𝐳𝑡
𝑖|𝐨𝑡) is the posterior probability of the model state 𝐳𝑡

𝑖  of 

ensemble member i. The model state consist of the system states as well as the 
transition rules, inputs and parameters, i.e. zt = (yt, f, xt, p) (see Equation 4.1). Thus, 

when 𝑝(𝐳𝑡
𝑖|𝐨𝑡) is updated, not only the system state 𝑝(𝐲𝑡) is updated, but the 

probability distributions of the weights, 𝑝(𝑤𝑛,𝑘), and of the parameters, 𝑝(𝐩𝑛,𝑘) 
are updated as well, because they are enclosed in the same ensemble member. 

Furthermore in Equation 4.5, 𝑝(𝐳𝑡
𝑖) is the prior probability of ensemble member i, 

and 𝑝(𝐨𝑡) is the probability distribution of the observations, i.e. the measurement 
data and their uncertainty. If the observations are not of the state variable, but of a 

derived measure, the modelled system state 𝐲𝑡
𝑖 has to be converted to that 

measure before filtering. The prior probability of ensemble member i is always 
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equal to 1/I due to the sequential importance resampling (SIR) strategy (van 
Leeuwen, 2009). Namely, SIR samples a new set of I ensemble members after each 
filter moment, where the probability that an ensemble member is resampled 
equals the posterior probability of ensemble member i in that filter moment. 

Finally, 𝑝(𝐨𝑡|𝐳𝑡
𝑖) is the probability of the observations given ensemble member i. 

Under the assumption that the observation error has a Gaussian distribution, the 
latter can be calculated as (van Leeuwen, 2009): 

 
𝑝(𝐨𝑡|𝐳𝑡

𝑖) = 𝑒−1
2⁄ [𝐨𝑡−𝐇(𝐳𝑡

𝑖)]
𝑇

𝐑𝑡
−1[𝐨𝑡−𝐇(𝐳𝑡

𝑖)], for each t 
4.6  

In Equation 4.6, H is the measurement operator that transforms the model state to 

the observation, i.e. it selects the modelled system state 𝐲𝑡
𝑖 from 𝐳𝑡

𝑖  and, if 
necessary, converts it to the same support as the observations of the system state. 
𝐑𝑡 is the covariance matrix of the observation error and T indicates matrix 
transposition. The diagonal elements of 𝐑𝑡 represent variance of the observation 
error, 𝛔𝑜,𝑡

2 . The off-diagonal elements of 𝐑𝑡 are relevant only when observation 

errors are correlated over space and/or time, otherwise they are zero.  

We apply Equations 4.5 and 4.6 in two different ways (Figure 4.1). The traditional 
way to use the particle filter is sequentially (see Figure 4.1a) in order to, in the end, 
obtain 𝑝(𝐳𝑇|𝐨𝑇), the posterior of the model state at the final time step T. We have 
used this method before to identify model structure (Chapter 3). This approach 
assumes a constant model structure and constant parameters: observations of the 
system state at a certain point in time are used as additional information about the 
best-fit model structure and parameters. So, although the number of ensemble 
members remains the same, due to the SIR, the variation in the ensemble 
members in terms of their uniqueness in parameter values will typically diminish 
over time. This means that the probability distributions of these parameters are 
gradually narrowed. This, however, also means that the approach does not work 
when parameters 'in reality' change over time, because there is no stationary 
parameter value the model state can converge towards. Therefore, this approach 
is suitable only under the assumption of model structure and parameter 
stationarity, i.e. no systemic changes. 



95 
 

 

Figure 4.1: Functioning of the particle filter, (a) in the traditional approach with sequential 
importance resampling (SIR), and (b) in the approach used to assess the presence of systemic 
changes. ‘Obs 1’ means observations at filter moment 1, the solid dark grey line indicates the 

median system state, grey areas represent the confidence interval. Histograms underneath the 
plots illustrate the effect of the filter moments on a general parameter a. In panel a, the prior of 

parameter a at filter moment t is always equal to the posterior of parameter a at filter moment t-
1. In panel b this relation is not present; all priors are the same and not dependent on any of the 

posteriors. 
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Because in this paper we want to validate that assumption, we also apply 
Equations 4.5 and 4.6 in an atypical way (Figure 4.1b). Observations of the system 
state at a certain point in time are used as distinctive information about the best-fit 
model structure and parameters at that point in time. Equations 4.5 and 4.6 are 
not applied sequentially, but separately at each filter moment. So, the model is 
initiated with the system state provided by 𝐨𝑡−𝑥 and is run up to the next filter 

moment, obtaining 𝑝(𝐳𝑡−𝑥,𝑡|𝐨𝑡), where x is the number of time steps between 

model start and filter moment. Next, the model is initiated with the system state 
provided by 𝐨𝑡, with all parameters set to their initial prior probability distribution 
again, and the model is run up to the next filter moment. Using this approach, we 

find a distinctive 𝑝(𝐳𝑡−𝑥,𝑡|𝐨𝑡) at every filter moment, not limited by previous 

observations, valid for period t – x to t (one subplot in Figure 4.1b). Hence, we can 
explore whether the optimal model structure and/or parameters vary significantly 
over time. If one of them does, the various observed system states cannot be 
simulated using a constant model structure and/or parameters, reflecting systemic 
change. 

 

4.2.4. Stationarity analysis 

Of course it can be viewed in a qualitative way whether the posterior probability 
distributions of the weights, 𝑝(𝑤𝑛,𝑘), and of the parameters, 𝑝(𝐩𝑛,𝑘) vary notably 
over time, but it is more objective to use a quantitative test. Two general 
approaches exist to quantitatively test for stationarity: parametric and non-
parametric tests (Grazzini, 2012). Parametric tests rely on the assumption that the 
distribution of the variable being sampled is known. Because this is often not the 
case for models of complex systems, like land use change models, a non-
parametric test is more applicable (Grazzini, 2012, Lanzante, 1996).  

First, a non-parametric distribution comparison test is applied to check to what 
extent the distribution of a parameter at time t differs from the average 
distribution over all other time steps T*. In this test we first calculate a random 
variable dn,k,t, which represents the difference between the posterior distribution 
of a parameter at a particular time step and the mean of the parameter over all 
time steps. This is done in an approach similar to bootstrapping (Efron and 
Tibshirani, 2003), by subtracting a value randomly taken from the posterior 
distribution of a parameter at time step t from a value randomly taken from the 
average distribution of this parameter over T*. This is done I times, i.e. as many 
times as we have Monte Carlo samples. If the posterior distribution of a parameter 
at time t and the average distribution of this parameter over T* are the same, the 
resulting distribution p(dn,k,t) is centred on zero. So, under the null hypothesis of 
stationarity (𝐻0), p(dn,k,t) has an expected value of zero. To test this hypothesis, 
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taking into account the full distribution of the parameter, we infer whether or not 
zero falls within the confidence interval of p(dn,k,t): 

 𝐻0: 𝑄𝛼/2(𝑝(𝐝𝑛,𝑘,𝑡)) < 0 < 𝑄1−(𝛼/2)(𝑝(𝐩𝑛,𝑘,𝑡)) , for each t 4.7  

In Equation 4.7, 𝑄𝛼/2(𝑝(𝐝𝑛,𝑘,𝑡) is the α/2 percentile of  𝑝(𝐝𝑛,𝑘,𝑡), e.g. the 2.5th 

percentile when verifying if α < 0.05. If the 𝐻0 is rejected, there is systemic change 
in time t. The same is done for the weights. 

 The test above indicates the probability of systemic change in a certain parameter 
at a certain time step, but does not tell anything about the temporal correlation of 
potential deviations. To investigate this temporal correlation we use the non-
parametric Wald-Wolfowitz test, also called Runs test (Wald and Wolfowitz, 1940). 
This test was successfully applied before to test for stationarity in a complex 
system model by Grazzini (2012). Given a time series and a function that aims to 
explain the trend in these time series, the values in the time series should be 
randomly distributed above and below the function, uncorrelated over time, if the 
function gives an adequate description of the time series. This is true regardless of 
the shape of the error distribution in the time series. Values above the function are 
labelled as + and values below the function are labelled as -. In the Runs test, a run 
is defined as a sequence of identical instances, i.e. either pluses or minuses. For 
example, the series +, +, +, -, +, -, -, +, + contains five runs, namely one run of three 
pluses, followed by a run of one minus, etc. In a time series containing a number of 
𝑁+− values, with random temporally uncorrelated errors, the expected, or mean, 
number of runs, 𝜇𝑟, is (Wald and Wolfowitz, 1940): 

 
𝜇𝑟 =

2𝑁+𝑁−

𝑁+−
+ 1 

4.8  

And the variance of 𝜇𝑟 is: 

 
𝜎𝑟

2 =
2𝑁+𝑁−(2𝑁+𝑁− − 𝑁+−)

𝑁+−
2 (𝑁+− − 1)

 
4.9  

In Equation 4.8 and 4.9, 𝑁+ is the number of plus instances, 𝑁− is the number of 
minus instances. Using this probability distribution of the number of runs, the Runs 
test checks whether the null hypothesis of randomness can be rejected or not. In 
other words, it checks whether the distribution of values in the time series above 
and below the function can be considered random, uncorrelated over time, given a 
certain level of significance α. If it is not, the function is not an appropriate 
representation of the time series. When one uses a constant value for this 
function, one can test whether this constancy, of e.g. a parameter, is a correct 
representation of this parameter in the studied system. If it is not, there is a 
systemic change in our definition (section 4.2.1).  
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4.3. Case study 

4.3.1. Background 

A case study on sugar cane cropland expansion in São Paulo state is set up to 
examine the presence of systemic changes in a land use system. Expansion of the 
sugar cane area is related to an increasing demand for both sugar and ethanol. 
Brazilian ethanol production from sugar cane is seen as one of the most efficient 
biofuel technologies currently available, and it is profitable without subsidies, so in 
the future the expansion is expected to continue (Walter et al., 2011, Sparovek et 
al., 2009, Cerqueira Leite et al., 2009). Sugar cane cultivation in Brazil is 
concentrated in the South-Central region (Rudorff et al., 2010). This region, which 
includes São Paulo state, has been annually mapped since 2003 in the Canasat 
project (Rudorff et al., 2010) with an overall thematic accuracy of 98% (Adami et 
al., 2012a), providing a reliable time series of observational data for the particle 
filter. 

Within the period between 2003 and 2012, a number of societal changes in Brazil 
might have caused systemic change in the sugar cane expansion. The review 
provided here is a reflection of societal changes that were deemed of importance 
by the authors after consultation of literature and experts, and should therefore 
not be considered exhaustive. We focus on developments that potentially change 
the spatial allocation of sugar cane, not the quantity of change (demand) as in 
PLUC the demand is exogenous (section 4.2.2). We provide hypotheses of how 
they might change the model structure or parameters when this is not immediately 
clear. 

 

Figure 4.2: Schemes specifying the required area without pre-harvest burning as a proportion of 
the total sugar cane area (a) for slopes ≤ 12% and (b) for slopes > 12%. 
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Some policy changes in the last decade may have had, and are in fact established 
to have, an effect on the land use system. According to Sparovek et al. (2010) 
“Land-use modellers exploring the Brazilian case generally pay little attention to 
the influence of legal aspects, i.e., how Brazilian regulations influence agriculture, 
including the size and spatial distribution of the expansion potential”. Therefore we 
discuss these aspects in detail, and explore whether they can be traced as systemic 
changes in our case study. Firstly, sugar cane straw is currently often burned 
before harvesting the sugar cane to improve the safety of the ‘cane cutters’ and to 
increase the yield. The Brazilian government tries to eliminate pre-harvest burning 
because it has negative effects on human health and on the environment due to 
the emission of pollutant gases (Aguiar et al., 2011). Replacing manual harvesting 
by mechanical harvesting can eliminate pre-harvest burning, because mechanical 
harvesting does not require burning. However, the harvest machines cannot 
operate on sloping ground; 12% is considered the maximum slope for mechanical 
harvesting (Macedo, 2007). Therefore, schemes are established, specifying the 
maximum area on which pre-harvest burning can be practiced as a proportion of 
the total sugar cane area, per slope category per year (Figure 4.2). With the most 
recent of the three schemes, the Green Ethanol protocol, compliance is not 
obligatory, but can be advantageous for the producers because the protocol 
resembles importer’s preferences and offers a first step towards certification. By 
2008, 145 out of the 177 ethanol plants in São Paulo complied to the protocol, 
representing 89% of total cane crushing (Lucon and Goldemberg, 2010). However, 
a study by Aguiar et al. (2011) for the years 2009 and 2010 shows that in some 
areas the harvesting system was shifted in the wrong direction in these years, i.e. 
from green harvest to harvest with burning.  

The second important policy change is the initiation of sugarcane agro-
environmental zoning (AEZ) in São Paulo in 2008 (Lucon and Goldemberg, 2010). 
Using eight physical indicators (climate, surface water, slope, ground water, 
biodiversity protection areas, biodiversity connectivity, and integral protection 
units) a map with four categories is created: suitable, moderately restricted, highly 
restricted, and unsuitable for sugar cane cultivation (Padua Junior et al., 2012). The 
initiative of the state zoning has led to the launch of the federal Sugarcane Agro-
ecological Zoning (ZAE Cana) in 2009 (Lucon and Goldemberg, 2010). It uses similar 
physical indicators, and in addition aims to protect the Amazon and Pantanal 
biomes and Upper Paraguay River Basin. The initiation of these zonings might 
increase the importance of physical suitability factors in the model structure. 

A third policy change that might have had an effect on the spatial allocation of 
sugar cane is the  adaptation of the Forest Act, or Forest Code, in 2012. The Forest 
Act, established in 1965, is the main legal framework in Brazil for natural 
vegetation (not only forest) conservation. Among other things, it specified the 
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fraction of the farmland that should be set aside for biodiversity conservation, 
meaning that natural vegetation should be kept in place. This fraction was 35% 
inside the Legal Amazon, and 20% outside. A low compliance in the past and 
several amendments of the Forest Code between 1965 and 2012 that allowed 
farmers to sometimes preserve lower fractions of farmland, had put a large part of 
the Brazilian farmers in an illegitimate situation (Sparovek et al., 2012). As this 
illegality was a national and international (certification) problem and total 
compliance with the prescribed fractions through vegetation restoration would be 
too costly, a revision of the Forest Act was accepted in 2012. The exact rules in the 
new Forest Act remain vague up to this point in time. It is expected that it 
maintains the preservation requirements for future expansion, but legalizes the 
farmers' situation for those who deforested illegally before 2008 (Costa and Gray, 
2011). The story goes that, as the process of the revision started already in 2009, 
farmers anticipated on the new Forest Code since then by accelerated illegal forest 
cutting, hoping that amnesty would be granted, but, as far as we know, this is not 
scientifically proven. In the model the new Forest Code might affect the 
neighbourhood suitability factor or the parameters herein that determine the 
‘preferred’ fraction of neighbours, 𝑓𝑛,𝑘 (Equation 4.4), as a percentage of the land 
cannot be used for cultivation. 

Economically, many developments have taken place affecting the sugar cane 
sector, and it goes beyond the scope of this paper to discuss them in detail. 
Obviously, the crisis in 2008 may have affected the sugar cane demand (model 
input) but also the spatial distribution. The crisis led to a discontinuation of 
investments, forcing farmers to produce at older, less productive sites (Gómez Jr., 
2013), and to postpone modernization of agricultural machinery (Aguiar et al., 
2011). The latter might cause farmers to care less about the slope of the field, 
since they cannot afford machinery to harvest mechanically anyway. 

Finally, a shift not in the human but in in the environmental system that could 
affect the allocation of sugar cane is that Brazil has experienced some bad harvests 
between 2009 and 2011. Aguiar et al. (2010) report that from season 2006/2007 to 
2008/2009 the area of sugar cane left unharvested has gone up from 3.0 to 4.1 to 
11.6%. They believe that this was related to unfavourable harvest weather 
conditions as well as delays in constructing planned mills, with the result that the 
mills were not operational in time. In 2009/2010, the unharvested area rose to 
18.1%, thereafter decreasing to 6.9% and 1.0%, reaching 4.1% in the season 
2012/2013 (Aguiar et al., 2011, Aguiar, Personal communication, July 17th 2014). 
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4.3.2. Model setup 

The land use change model described in section 4.2.2, is applied to the São Paulo 
case study as follows (Table 4.1). Sugar cane (n = 1) is the only 'active' land use 
type, i.e. a land use type responding to a demand, thus N = 1. The suitability map 
for sugar cane expansion 𝐬1,𝑡 (Equation 4.2) is calculated using four suitability 

factors (K1 = 4), derived from discussions with experts and literature review (Lapola 
et al., 2010, Walter et al., 2011, Rudorff et al., 2010, Macedo and Seabra, 2008, 
Sparovek et al., 2007, Sparovek et al., 2012, de Souza Soler and Verburg, 2010, 
Aguiar et al., 2011, Adami et al., 2012a) (Table 4.1). A similar model setup has been 
calibrated before with the particle filter, resulting in a minimum reduction factor of 
3 in the root mean square error of three spatial metrics compared to the reference 
model (Chapter 3). Sugar cane in the neighbourhood (k = 1) is expected to be 
important because larger plantations require less investment costs per hectare as 
equipment and infrastructure can be shared. The distance from the field to the 
sugar cane mill (k = 2) determines the transportation costs of sugar cane to the 
processing unit. The distance to the mill is expected to be more eminent than the 
distance from the mill to the distribution centre, because the end product (ethanol 
or sugar) has a higher energy density than the sugar cane and thus lower transport 
costs per energy unit. Potential yield (k = 3), an indicator linking agro-climate 
conditions to crop requirements, is important for the potential revenues per 
hectare. Slope (k = 4) defines the potential  for sugar cane harvest mechanization 
(see section 4.3.1). Table 4.1 gives more details about the parameterization of the 
processes described above.  

The total area of São Paulo state is about 250000 km2 and a resolution of 5 km is 
used. We purposefully model at a resolution larger than the average farm size in 
Brazil. The land tenure system in Brazil is complex and includes farms managed by 
the mill, farms held by the mill and leased to a farmer, farms held by the farmer 
with a contract obligation to deliver to a certain mill for a fixed price, farms held by 
a farmer having no such contract, and other constructions (see e.g., Sparovek et 
al., 2007). Spatial data on this with a complete coverage is not available so 
modelling at farm level would have limited value as the inputs of such a model are 
highly uncertain. Apart from this, a much finer resolution would increase model 
run time which hampers the application of the Monte Carlo based particle filter. By 
aggregating to a cell size of several farms we hope to average out the effects 
related to the land tenure situation of the individual farmer and focus more on 
general sugar cane expansion trends, resulting in a model with a relatively short 
run time. 
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Table 4.1: Suitability factors for sugar cane in São Paulo, including type of suitability factor used 
(attraction/repulsion or neighbourhood effect), the probability distributions of the parameters 
(𝐩𝟏,𝒌), and the data sources. The probability distributions of the stochastic variables, e.g., 𝒁𝒘𝟏,𝒌

, 

represent prior distributions; during filtering they change. 

k 1 2 3 4 

suitability 
factor 

sugar cane in 
neighbourhood 

distance to 
sugar cane mills 

potential yield slope 

process to 
represent 

economies of 
scale 

transportation 
costs to 
processing units 

profits 
mechanization 
potential 

weights 
(𝒘𝟏,𝒌) 

(Equation 
4.2) 

𝑤1,1

=
𝑍𝑤1,1

∑ (𝑍𝑤1,𝑘
)4

𝑘=1

 , 

𝑤1,2

=
𝑍𝑤1,2

∑ (𝑍𝑤1,𝑘
)4

𝑘=1

 , 

𝑤1,3

=
𝑍𝑤1,3

∑ (𝑍𝑤1,𝑘
)4

𝑘=1

 , 

𝑤1,4

=
𝑍𝑤1,4

∑ (𝑍𝑤1,𝑘
)4

𝑘=1

 , 

with 𝑍𝑤1,𝑘
 ~ 𝑈(0,1) 

type of 
suitability 
factor 

neighbourhood 
effect  
(Equation 4.4) 

attraction/repul
sion (Equation 
4.3) 

attraction/repul
sion (Equation 
4.3) 

attraction/repul
sion (Equation 
4.3) 

parameter
s (𝐩𝟏,𝒌,𝒕) 

(Equations 
4.3 and 
4.4) 

𝑙1,1,𝑤 =  𝑒𝑍𝑙 ,  
 𝑍𝑙𝑤

 ~ 𝑁(9.6,0.7) 

𝑓1,1 =  𝑍𝑓1,1
,  

 𝑍𝑓1,1
 ~ 𝑈(0,1) 

𝑎1,2 =  𝑒𝑍𝑎1,2 ,  
𝑍𝑎1,2

 ~ 𝑁(0,1.8) 

𝑐1,2 =  −1 

𝑎1,3 =  𝑒𝑍𝑎1,3 ,  
 𝑍𝑎1,3

 ~ 𝑁(0,1.8) 

𝑐1,3 =  1 

𝑎1,4 =  𝑒𝑍𝑎1,4 ,  

𝑍𝑎1,4
 ~ 𝑁(0,1.8) 

𝑐1,4 =  −1 

original 
map 
attribute 
for 𝐱𝟏,𝒌,𝒕 

sugar cane location of mills potential yield 
digital elevation 
model 

map 
source 

Rudorff et al., 
2010 

Picoli, 2013 Tóth et al., 2012 Farr et al., 2007 

 

The model is run in two phases: an identification phase, in which we identify the 
relative importance of the suitability factors and their parameterization (Table 4.1) 
and try to recognize systemic changes; and a projection phase, in which we use this 
information to propagate the land use change (further explained in section 4.3.4). 
In total T is 20 time steps, with t = 1 representing the year 2003. The initial land use 
map (a Boolean map: 1 = sugar cane, 0 = no sugar cane) is the 2003 Canasat map 
(Rudorff et al., 2010), which has a resolution of 30 m, resampled to the model 
resolution (5000 m). The resampling is done in such a way that the total sugar cane 
area in the resampled map matches the total sugar cane area in the original map, 
i.e. the demanded area for sugar cane is harmonized because this is an important 
model input. Note that the class 'no sugar cane' is passive: it has no demand and 
can only change through conversion by the active land use type 'sugar cane'. 
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Figure 4.3: Demand per year for the identification phase (2003-2012) and the projection phase 
(2012-2022). The demand increase with respect to the previous year (area for the model to 

allocate) is hatched to enhance visibility of variation over time in this demand increase. 

 

 So, the input variable ‘demand’ is in the identification phase simply the total area 
of sugar cane found in the Canasat maps (Figure 4.3). In the projection phase two 
data sources are used to construct the demand. The first is the Brazilian Land Use 
Model (BLUM) (ICONE, 2012, Nassar et al., 2008), an economic partial equilibrium 
model, and the second is the Brazilian agricultural economics institute, IEA 
(Torquato, 2006). As we have equal trust in both sources, the demand in PLUC 
from 2013 to 2022 is the mean of the two time series created from these sources 
(Figure 4.3). 

 

4.3.3. Particle filter setup 

The data assimilation framework in the PCRaster Python framework (Karssenberg 
et al., 2010) is used for the particle filtering. The data used to create the 
observational data are nine annual maps of sugar cane occurrence (Rudorff et al., 
2010), from 2004 to 2012 (the data of 2003 is used as the initial system state). We, 
together with others (e.g., Parker et al., 2008), believe that the purpose of land use 
change models is not, and should not be, to simulate precisely the land use of each 
single cell in each year. For this reason, we do not use the sugar cane map directly 
as 𝐨𝑡 (Equation 4.5), but calculate the fraction of sugar cane in 25 x 25 km blocks 
and take that as 𝐨𝑡. In total the study area consists of 473 of such blocks, making 
the length of the array 𝐨𝑡 473. Obviously, we also convert the model output to that 
measure (fraction of sugar cane in 25 x 25 km blocks) before filtering. 

The observational data has two error sources: 1) errors in the classification of the 
remote sensing image and 2) errors from the upscaling to a larger cell size. We 
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assume that there is no spatial or temporal correlation in the errors of the 
observational data, so only the diagonal elements of 𝐑𝑡 need to be defined, i.e. the 
variances of the observation error, 𝛔𝑜,𝑡

2 .  

A study by Adami et al. (2012b) shows that the user’s accuracy (the probability that 
a cell classified as a certain class is actually that class (Lillesand et al., 2003)) of the 
Canasat data is 0.97 for the sugar cane class and 0.98 for the no-sugar cane class. 
To obtain the standard deviation, 𝛔𝑜,𝑡,𝑢, for the 25 x 25 km blocks belonging to 
these user’s accuracies, we simulate for every potential fill of a block (0-100% sugar 

cane) 1 ∙ 105 events where sugar cane cells have a probability of 0.03 to become 
no-sugar cane, and no-sugar cane cells have a probability of 0.02 to become sugar 
cane. The results indicate that 𝛔𝑜,𝑡,𝑢 is linearly related to the fraction of sugar cane 
per block, as: 

 𝛔𝑜,𝑡,𝑢
2 = (2.8 ∙ 10−2 + 1 ∙ 10−2 ∙  𝐨𝑡)2, for each t 4.10  

The upscaling error arises from the fact that in the modelled land use in a cell is 
either sugar cane or no sugar cane (Boolean), while in the data the fraction of 
sugar cane per cell is given, leading to a difference between model output and 
observations. This error has a maximum of 100% (a cell has in reality a sugar cane 
fraction of 0.5, but the model output is 0 or 1) and a minimum of 0%. The 
distribution of this error is difficult to estimate, because it depends on the 
observed values. For this reason we assume normality of this error (required to 
fulfil the conditions of Equation 4.6) and apply its maximum possible size of 
0.5 ∙  𝐨𝑡 to all observations. 

Combining these two error sources, the total variance of the observations is: 

 𝛔𝑜,𝑡
2 = (2.8 ∙ 10−2 + 5.1 ∙ 10−1 ∙  𝐨𝑡)2, for each t 4.11  

We are aware of the fact that we have made a strong assumption about the shape 
and magnitude of the variance, but we want to stress that the stationarity test 
used to detect systemic change (see sections 2.4 and 3.4) employs only the mean 
of the posterior and not the full distribution. This diminishes the effect of this 
assumption on the conclusions about systemic change.   

 

4.3.4. Stationarity analysis setup 

For the distribution comparison test (Equation 4.7), instead of assuming an α value 
and reporting whether or not 𝐻0 is rejected, we calculate the α belonging to the 
tipping point between rejection and no rejection, which is more transparent. This α 
value gives the probability that 𝐻0 is unjustly rejected, i.e. the probability that we 
assume systemic change in this parameter at t while in fact there is stationarity. 
Hence, low α values indicate a high probability of systemic change. The Runs test is 
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applied as follows. For the posterior distributions of the weights (𝑤𝑛,𝑘) and 
parameters (𝐩𝑛,𝑘) of the suitability factors (Equations 4.2 to 4.4), obtained 

separately for each observation time frame (𝑝(𝐳𝑡−𝑥,𝑡|𝐨𝑡), Figure 4.1b), the overall 

mean is obtained. This overall mean is the function aiming to explain the trend in 
time series of posteriors. Next, the mean per posterior distribution, i.e. per 
observation time, is obtained, and assigned a + if it is above the overall mean and a 
– if it is below. On this sequence the Runs test is applied, and the p-value is 
reported, indicating the probability that the pattern found in the deviations from 
the mean is random. If the null hypothesis of randomness is rejected, f and/or p in 
Equation 4.1 cannot be considered stationary, so a systemic change is present. 
Note that the Runs test checks only if an average value in the time series is above 
or below the mean and not how much it is above or below. Therefore, the 
detection of systemic change should be based on the combined results of visual 
inspection of the means, the distribution comparison test and the Runs test.  

 

4.3.5. Scenarios 

Three scenarios are run (Table 4.2). By the word ‘scenario’ we do not mean a 
scenario storyline, i.e. a potential development pathway of the land use system, 
but a model setup designed to investigate a specific property of the used method 
or studied system. All scenarios are run using an ensemble of 5000 members. 

In the first scenario, the ability of the particle filter to detect the correct weights 
(𝑤𝑛,𝑘) and parameters (𝐩𝑛,𝑘,𝑡) is tested using a synthetic dataset. The synthetic 

dataset is created by running the model deterministically with the demand equal 
to the demand in the Canasat data (Rudorff et al., 2010) (Figure 4.3) and the 
settings specified in Table 4.3. These settings do not change over time. Next, the 
model is run stochastically and the particle filter is applied separately for each year 
(the method shown in Figure 4.1b) from 2004 to 2012 using the synthetic data as 
observations 𝐨𝑡. If the method is working correctly, the distributions of the weights 
(𝑤𝑛,𝑘) and parameters (𝐩𝑛,𝑘) should converge to the values in Table 4.3 in all years, 
i.e. the particle filter should trace back settings that were applied to generate the 
synthetic dataset. 
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Table 4.2: Scenario setup regarding observational data (synthetic or Canasat (Rudorff et al., 
2010)), filter method, and projection method. 

scenario observational 
data 

filter (2004 - 
2012) 

projection (2013 - 2022) 

1 synthetic method Figure 
4.1b 

- 

2 Canasat method Figure 
4.1b 

using a trend or random posterior from all 

𝑝(𝐳𝑡−𝑥,𝑡|𝐨𝑡) depending on the results 

3 Canasat method Figure 
4.1a 

using posteriors from 2012 

 

Table 4.3: Model settings for the synthetic dataset: the weights (𝒘𝟏,𝐤) and parameters (𝐩𝟏,𝐤), 

𝒍𝟏,𝒌,𝒘, neighborhood window length, 𝒇𝟏,𝒌, neighborhood fill, and 𝒂𝟏,𝒌, suitability function shape 

parameter, for k = 1, 2, 3, 4. 

k 
1, sugar cane in 
neighbourhood 

2, distance to 
sugar cane mills 

3, potential 
yield 

4, slope 

weights (𝑤1,𝑘) 𝑤1,1 = 0.25 𝑤1,2 = 0.25 𝑤1,3 = 0.25 𝑤1,4 = 0.25 

parameters 
(𝐩1,𝑘) 

𝑙1,1,𝑤 =  15000 m 

𝑓1,1 =  0.5 
𝑎1,2 = 1 𝑎1,3 =  1 𝑎1,4 =  1 

  

In the second scenario, we run a new ensemble, applying the particle filter 
separately for each year, but now with the Canasat observational data of sugar 
cane distribution. Potentially, significantly different posterior distributions of the 
weights and parameters are obtained in each year. If any kind of trend or 
connection to the societal changes can be detected in distributions, this trend is 
prolonged in the projection phase (2013-2022). If no trend is apparent, and no 
connection to societal changes can be found, we assume that for each time step in 
the projection phase any of the systems found in the identification phase can be 

valid. So in each projection year (2013-2022) a posterior model state 𝑝(𝐳𝑡−𝑥,𝑡|𝐨𝑡), 

containing probability distributions of the weights, 𝑝(𝑤𝑛,𝑘), and of the parameters, 

𝑝(𝐩𝑛,𝑘), is drawn randomly from all posteriors model states of the identification 

years (2004-2012). The projection phase of scenario 2 is run five times to cover the 
uncertainty arising from the diverse sequences of posteriors that are drawn. 

In the third scenario, the traditional particle filter method with Sequential 
Importance Resampling (Figure 4.1a) is applied, again with the Canasat data. 
During the projection phase, the posterior distribution of the final year is 
used, 𝑝(𝐳𝑇|𝐨𝑇), because this posterior contains information from the whole 
identification phase.  
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4.4. Results 

4.4.1. Identification with synthetic data 

For scenario 1, the means of the posterior distributions of the weights, 𝑤1,𝑘, 

converge to values around 0.25 (Figure 4.4), as expected since these were the 
values used to generate the synthetic dataset (Table 4.3). The weight of distance to 
sugar cane mills, 𝑤1,2, is on average 0.03 too low, 0.22, and the weight of potential 

yield, 𝑤1,3, is on average 0.03 too high, 0.28. The other two are on average exactly 
0.25. No significant trends are visible over time, which is confirmed by the 
distribution comparison test (average α values all very high, > 0.85) and the Runs 
test (Table 4.4). The complete posterior distributions of the weights and the 
posterior distributions of the parameters are given in Appendix A. The distributions 
of parameters 𝑎1,2, 𝑎1,3, and 𝑎1,4 in all years, and the distributions of the 

parameters 𝑙1,1,𝑤 and 𝑓1,1 in all years but 2006 to 2009 remain broad, indicating 
that the parameters are difficult to identify. The Runs test concludes non-
stationarity for four out of the five parameters, but the distribution comparison 
test does not for any α below 0.2. 

 

 

Figure 4.4: Mean of the posterior distributions of the weights of the suitability factors, 𝒘𝟏,𝒌,  

obtained with synthetic observational data (scenario 1). 
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4.4.2. Identification with Canasat data 

For scenario 2, the means of the posterior distributions of the weights, 𝑤1,𝑘, 
(Figure 4.5) imply that all four selected suitability factors are relevant in the land 
use system, because none of them receives a zero weight. On average, distance to 
the mills appears to be the most important suitability factor in determining where 
sugar cane expands. Next most important are sugar cane in the neighbourhood 
and slope, switching over time between second and third most important. Least 
important, but still relevant with an average weight of 0.1, is potential yield.  

The mean weight of distance to sugar cane mills appears to be stationary (Figure 
4.5). This is confirmed by the Runs test, using, for example, a 5% significance level 
(Table 4.4). The distribution comparison test confirms this; it has the highest 
average α value and also the most constant α value over time, indicating the 
highest probability of stationarity. The mean weights of the other factors clearly 
change over time (Figure 4.5). In the period 2006 to 2008, the mean weight of 
sugar cane in the neighbourhood is 54% higher than in the other years, and the 
weight of potential yield is  24% lower. Slope has a 67% lower weight that persists 
one year longer. This non-stationarity, indicating systemic change, is confirmed for 
all three factors by the distribution comparison test, with low α values in especially 
2007 and 2008,  and the Runs test, and is strongest for potential yield (Table 4.4).  

 

Figure 4.5: Mean of the posterior distributions of the weights of the suitability factors, 𝒘𝟏,𝒌, 

obtained with Canasat observational data (Rudorff et al., 2010) (scenario 2). Occurrences of 
societal changes, discussed in section 3.1, are indicated above the bar graph. Minimum 

percentage of sugar cane area that should be harvested without pre-harvest burning (phb) per 
year (average of the state and Green Ethanol Protocol requirements, Figure 4.2) is indicated below 

the bar graph, together with the percentage of sugar cane area left unharvested. 
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Figure 4.6: Posterior distributions of the weights of the suitability factors sugar cane in 
neighbourhood (𝒘𝟏,𝟏), distance to mills (𝒘𝟏,𝟐), potential yield (𝒘𝟏,𝟑), and slope (𝒘𝟏,𝟒), obtained 

with Canasat observational data (Rudorff et al., 2010) (scenario 2). 

 

Figure 4.7: Representation of the posterior distributions of the parameters of the suitability 
factors, obtained with Canasat observational data (Rudorff et al., 2010) (scenario 2): a, window 

that determines whether or not a cell belongs to the neighbourhood (𝒍𝟏,𝟏𝒘
𝟐 ), b, ‘preferred’ fraction 

of sugar cane neighbours (hatched area) within the window (𝒇𝟏,𝟏), c, suitability for distance to 

mills 𝐮𝟏,𝟐,𝒕 plotted against distance to mills 𝐱𝟏,𝟐,𝒕, d, suitability for potential yield 𝐮𝟏,𝟑,𝒕 plotted 

against potential yield 𝐱𝟏,𝟑,𝒕, and e, suitability for slope 𝐮𝟏,𝟒,𝒕 plotted against slope 𝐱𝟏,𝟒,𝒕. Black 

lines represent the median of the parameter value, grey areas are 95% confidence intervals. 
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In the parameters, 𝐩𝑛,𝑘,𝑡, the systemic change is visible as well (Figure 4.7), 
although the uncertainty in the parameter values is mostly high. From 2006 to 
2008 the mean window size of the neighbourhood, 𝑙1,1,𝑤, is about 50% smaller 
than in the other years. The α values are very low, 0.02 and 0.01 in 2007 and 2008 
(Table 4.4), indicating systemic change. The neighbourhood fill, 𝑓1,1, on the 
contrary, is more stable over time, around a value of 0.1, except in the first two 
years, when it is about 0.2. For the parameters 𝑎1,𝑘, for k = 1, 2, 3, the stability over 
time is more difficult to observe because of the large uncertainty. This can also be 
concluded from the distribution comparison test, which gives few low α values, 
except for 𝑎1,2 in 2004 to 2006. For all weights (Figure 4.6) and the parameters 

𝑙1,1,𝑤 and 𝑓1,1 (Figure 4.7) the posteriors in the period 2006 to 2009 are narrower 
than in the other years. 

 

Table 4.4: Results of the two stationarity tests for the weights (weight of neighborhood 𝒘𝟏,𝟏, 

weight of distance to mills 𝒘𝟏,𝟐, weight of potential yield 𝒘𝟏,𝟑, and weight of slope 𝒘𝟏,𝟒) and the 

parameters (window length 𝒍𝟏,𝟏,𝒘, neighborhood fill 𝒇𝟏,𝟏, and the shape parameters for the 

attraction/repulsion suitability factors 𝒂𝟏,𝒌 for k = 1, 2, 3) for scenario 1 (with synthetic data that is 

supposed to be stationary) and scenario 2 (with the Canasat data (Rudorff et al., 2010)).For the 
distribution comparison test, the α (Equation 4.7) is given belonging to the tipping point between 

rejection and no rejection. This α value gives the probability that the null hypothesis of 
stationarity is unjustly rejected. The p-value of the Runs test gives the probability that the pattern 

found in the deviations from the mean is random. Hence, for both tests: low values (red colors) 
indicate a high probability of systemic change and high values (green colors) indicate a high 

probability of stationarity. 

 
year 2004 2005 2006 2007 2008 2009 2010 2011 2012 

  

variable scenario probability (α in Equation 4.7) of unjustly rejecting stationarity 
average 
α 

p-value 
Runs 
test 

𝒘𝟏,𝟏 
1 0.82 0.65 0.93 0.93 0.91 0.79 0.98 0.96 0.9 0.87 0.66 

2 0.54 0.48 0.68 0.07 0.11 0.64 0.97 0.85 0.83 0.57 0.05 

𝒘𝟏,𝟐 
1 0.99 0.9 0.98 0.92 0.98 0.93 0.94 0.95 0.89 0.94 0.66 

2 0.96 0.97 0.89 0.67 0.6 0.62 0.69 0.79 0.99 0.8 0.15 

𝒘𝟏,𝟑 
1 0.97 0.82 0.91 0.84 0.91 0.87 0.87 0.95 0.97 0.9 0.21 

2 0.86 0.74 0.49 0.16 0.25 0.31 0.85 0.95 1 0.62 0.04 

𝒘𝟏,𝟒 
1 0.99 0.94 0.97 0.88 0.98 0.96 1 0.98 0.99 0.97 0.66 

2 0.86 0.95 0.86 0.41 0.41 0.45 0.97 0.96 0.93 0.76 0.05 

𝒍𝟏,𝟏,𝒘 
1 1 0.92 0.82 0.17 0.28 0.38 0.75 0.93 0.93 0.69 0.04 

2 1 0.86 0.31 0.02 0.01 0.61 0.79 0.97 0.92 0.61 0.04 

𝒇𝟏,𝟏 
1 0.78 0.99 0.76 0.32 0.62 0.33 0.71 0.8 0.87 0.69 0.04 

2 0.44 0.16 0.87 0.88 0.34 0.21 0.22 0.53 0.59 0.47 0.01 

𝒂𝟏,𝟐 
1 0.58 0.7 0.57 0.47 0.77 0.43 0.56 0.57 0.7 0.59 0.04 

2 0.05 0.08 0.04 0.94 0.3 0.83 0.36 0.23 0.24 0.34 0.59 

𝒂𝟏,𝟑 
1 0.86 0.92 0.52 0.23 0.43 0.26 0.71 0.76 0.62 0.59 0.04 

2 0.54 0.57 0.33 0.46 0.53 0.19 0.43 0.43 0.37 0.43 0.01 

𝒂𝟏,𝟒 
1 0.63 0.57 0.54 0.44 0.51 0.6 0.57 0.6 0.61 0.56 0.15 

2 0.41 0.54 0.49 0.7 0.85 0.88 0.58 0.64 0.65 0.64 0.66 
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Figure 4.8: Evolution of the weights for the four suitability factors, 𝒘𝟏,𝒌, using the traditional 

particle filter approach and the Canasat data (Rudorff et al., 2010) (scenario 3). In the main panels 
the black horizontal lines represent the ensemble members. The smaller panels on the left and 

right give the full prior (2003) and posterior (2012) distributions. 

The start of the systemic change, 2006, is a year with no identified societal changes 
(Figure 4.5). The ‘recovery’ period of the system, 2009 to 2010, coincides with the 
years of bad harvests, and a percentage of sugar cane fields left unharvested more 
than twice as high as in previous years (Aguiar et al., 2010). In 2010, the average 
area on which pre-harvest burning is forbidden increases from 30 to 50% for slopes 
below 12%. The potential connection between the societal changes and the 
observed systemic change is considered in the discussion section (4.5.2). 

Filtering with Canasat data (Rudorff et al., 2010) using the traditional particle filter 
method (scenario 3) (Figure 4.8) yields the same order of importance of the 
suitability factors (distance to mills, neighbourhood and slope, potential yield) as 
found in scenario 2 (Figure 4.5). However, the posterior distributions of the 
weights in scenario 3 are narrower than the posterior distributions (per year) in 
scenario 2 (Figure 4.6). And, obviously, variation in the weights over time cannot be 
detected in scenario 3, as only one posterior distribution is obtained per weight 
(Figure 4.8). 

 

4.4.3. Projection 

Because no trend is detected in the posteriors of the weights and parameters in 
the identification phase that could be extrapolated, in each projection year (2013-
2022) a posterior is drawn randomly from the posteriors of the identification years 
(2004-2012). The projection phase of scenario 2 is run five times to cover the 
uncertainty arising from the diverse potential sequences of drawn posteriors. 
Scenario 3 is run once, because it always yields the same result.  
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Figure 4.9: Projection of fraction of sugar cane in 4 random 25 x 25 km blocks out of the total of 
473 blocks in the study area for, a, scenario 2, and, b, scenario 3. Scenario 2 is run five times, to 

show how the results differ when other posteriors for the weights and parameters are used. Black 
lines represent the median of the block value, grey areas are 95% confidence intervals (for 

scenario 2 calculated over all values of the five runs together). 

 

The projection of the fraction of sugar cane per 25 x 25 km block shows little 
difference between scenario 2 and 3 in the median expansion trend of the selected 
blocks (Figure 4.9); the lines in the upper and lower panel have similar courses and 
end up at similar values in 2022. However, the 95% confidence interval in this 
trend in scenario 2 is on average twice as large as in scenario 3. 

4.5. Discussion 

4.5.1. Identification with synthetic data 

From the fact that in scenario 1 the weights of the suitability factors converge to 
approximately the correct mean value of 0.25 (maximum error is 0.03), we 
conclude that the particle filter is successful in inferring the weights. For the 
variation in this mean over time, the Runs test gives high p-values (0.21-0.66), 
meaning that there is no reason to reject the null hypothesis that this variation is 
caused by randomness: the weights are almost certainly stationary, as expected.  

The relatively weak convergence of the parameter values in most years indicates 
that the parameters perform equally well (or badly) over their complete prior 
distribution. So we conclude that the sugar cane distribution data does not contain 
sufficient information for inferring the parameters using the particle filter at this 
resolution. This could be related to the spatial averaging of the model results and 
observations to the 25 x 25 km blocks in the particle filter. The parameters should 
be stationary over time, but the Runs test denotes non-stationarity. However, this 
result is unreliable because of the large uncertainty in the parameters. The 
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distribution comparison test, that does take into account the full posterior 
distributions, does not indicate systemic change, supporting the conclusion that 
the low identifiability of the parameter makes the Runs test unsuitable. In future 
research other types of data may be used for inferring the parameters, or the 
parameters may be fixed and only the weights calibrated. So, in this case study the 
test for systemic change in model structure and/or parameterization should be 
focused on the model structure. 

 

4.5.2. Identification with Canasat data 

In scenario 2, non-stationarity is observed for three out of the four weights of the 
suitability factors (Table 4.4), indicating a period of systemic change. It concerns 
the weights of sugar cane in the neighbourhood, potential yield, and slope, in the 
period 2006 to 2008/2009. The weight of the neighbourhood suitability factor 
becomes higher, while the weights of slope and potential yield become lower 
(Figure 4.5). This implies that in determining where to create a new sugar cane 
field, existing fields in the neighbourhood become more important, and the slope 
of the land and potential yield, and therefore the mechanization potential and 
expected revenues, become less important. In addition, it appears that the 
neighbourhood window that is used to look for existing sugar cane fields in the 
vicinity becomes smaller (Figure 4.7), i.e. expansion of sugar cane occurs closer to 
existing fields. However, in the previous section it was concluded that we should be 
careful in interpreting the results for the parameters, because the scenario with 
synthetic data implied that they cannot be fully trusted. 

The systemic change is gradual and reaches its maximum in 2007 (Table 4.4). 
Looking at the societal changes in the studied period that we considered of 
possible influence (section 4.3.1), there are two policy changes: the adoption of 
one of the schemes for the phasing out of pre-harvest burning (Aguiar et al., 2011, 
Gallardo and Bond, 2011) and the implementation of the agro-environmental 
zoning (Lucon and Goldemberg, 2010). Yet, these two policies are expected to 
increase the importance of the suitability factor slope, while in the identified 
systemic change period the weight decreases. The economic crisis in 2008 is also 
an unlikely candidate for the cause of the change, because the systemic change 
clearly starts already in 2006, when the crisis was not yet foreseen. In conclusion, 
given our shortlist of potential causes for systemic changes, no cause can be found 
for the onset of systemic change. Nevertheless, the low weight of the suitability 
factor potential yield in 2008 and 2009 confirms the conclusion of journalists that 
the crisis forced, by a discontinuation of investments, sugar cane production at 
older, less productive sites (Gómez Jr., 2013). A potential explanation of the 
recovery of the system in 2009, to its functioning before 2006, are the bad harvests 
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from 2009 to 2011 and the consequential larger share of fields left unharvested. 
The changed system in which the importance of potential yield was low, was 
possibly not maintainable anymore, because bad weather usually has a relatively 
large influence on already low yielding soils. 

Remarkable is the relation between the demand increase (Figure 4.3) and the 
systemic change. The years 2006-2009 have a demand increase above average, the 
exact same period as the systemic change, with maxima in 2007 and 2008. This 
implies an indirect systemic change: an action has an effect on the input ‘demand’, 
in such a way that the transition rules and/or parameters have to change as well 
(Filatova and Polhill, 2012). A possible reasoning behind the connection between 
fast demand increase and an increase in the weight of the neighbourhood 
suitability factor is that a sudden upsurge in demand increase is difficult to predict 
for farmers. New farmers, searching new locations, may not have time to respond 
to the upsurge, but existing farmers, already having the machines and 
infrastructure, can expand their existing fields in response to the upsurge. This 
results in the fact that expansion is more guided by existing sugar cane cultivation 
than by optimal conditions (slope and potential yield) for new fields. The existing 
fields are already close to mills, so this suitability factor remains of equal 
importance. However, other explanations might be possible as well. 

The fact that most of the societal changes cannot be traced in our results does not 
mean that they have no effect at all on the sugar cane expansion system in São 
Paulo; it only means that they have no effect on the sugar cane expansion system 
in São Paulo given our model setup, observational data and resolution. Optimal 
model structure, and consequently stationarity, is thus different at different 
resolutions, as also noted by Pontius Jr. and Spencer (Pontius Jr. and Spencer, 
2005). For example, one would expect that the adoption of a new scheme for the 
phasing out of pre-harvest burning (Figure 4.2) results in an increase of the weight 
of the suitability factor slope, but this was not observed in this study. At a different 
resolution, considering a longer time period (there might be a time lag), 
considering different suitability factors, or using a different implementation of the 
currently used suitability factors the effects can possibly be observed. In this case 
we studied the systemic changes using block averages of sugar cane coverage as 
model outputs and observations. If systemic changes are studied based on spatial 
patterns, like number of patches, or landscape shape index (Pijanowski et al., 2002) 
the conclusion can be different. However, the advantage of using areal averages of 
land use is that this measure cannot be derived only from land use maps, but also 
from agricultural statistics databases. Where time series of land use maps of 
sufficient length are not always available, time series of agricultural statistics 
usually are, showing the large applicability of the shown approach. But, to be able 
to draw a conclusion on the impact of societal changes, or more specific the 
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effectiveness of policies, the methodology should be applied with various model 
setups, with different spatial patterns in the observational data, at various 
resolutions. This was, however, not the aim of our study. Also, the single land use 
type is an oversimplification. Applying the particle filter on a land use model with 
multiple land use types, using an agricultural statistics database as observations, is 
the next stage of our research. 

The lower standard deviations in the period 2006 to 2009 compared to the other 
years can be explained by the information content of the observations. In the given 
period the demand increase is relatively large, as mentioned before. This implies 
allocation of a relatively high number of sugar cane cells in those years. With this 
greater amount of change, the particle filter can better detect the optimal relative 
importance and parameterization of the suitability factors, so the convergence of 
the probability distributions will be stronger. As a reference: when there is no 
demand increase or decrease at all, the particle filter can never identify the optimal 
model structure, because the observations contain no information (no change). It 
is important to note here that the information content of the observations is not 
the reason for the detected systemic change, because in scenario 1 (synthetic 
data) the same demand time series was applied, and the model structure was 
stationary.  

 

4.5.3. Projection 

The 95% confidence interval for the projected  fraction of sugar cane per block is 
twice as large for scenario 2 compared to scenario 3 (Figure 4.9), indicating that 
the use of a different posterior in each year results in a higher uncertainty 
regarding the dynamics of fraction of sugar cane in a block. Still, caution should be 
taken in generalizing this quantitatively. If it is true that the systemic change in the 
identification period is related to changes in demand increase, the model structure 
used in the projection period should depend on projected demand. Nonetheless, if 
one assumes that different system structures that have existed in the past are 
valid, in any order, in the future, uncertainty in the projection of land use change 
becomes considerably higher. Although it was not analysed in this study, it is even 
possible that the uncertainty arising from the potential systemic changes in the 
future is so large that variation in the results of different storylines completely 
disappears. This is something that should be kept in mind when conducting land 
use change projections, especially over long time intervals. 

Instead of representing changes in the model structure by a random approach, as 
is done here, it would be preferable to extend the model by including processes 
representing the systemic change itself. This would enable better forecasting of 
future changes as variation in the model structure becomes a function of the state 
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or inputs of the modelled system itself. For example, one can connect the land use 
change model to a transportation model to account for changes in accessibility 
(e.g., Aljoufie et al., 2013), or to an erosion model to represent changing landscape 
features (e.g., Claessens et al., 2009). However, in our study the causes for the 
systemic change were not clearly identified, so dealing with systemic change by 
including the societal changes causing them was not achievable. We foresee that 
this will also be unachievable in many other land use change modelling studies, as 
often the knowledge of the system and the data availability are insufficient to fully 
understand and model the systemic changes. 

 

4.6. Conclusion 

Our first aim in this paper was to develop a general methodology, applicable to any 
type of model, to test for systemic change. In the methodology  observations of the 
real system are assimilated into the model, using a particle filter (van Leeuwen, 
2009). The particle filter was used to update the prior knowledge about the model 
structure, in the case of our land use change model the selection and relative 
importance of suitability factors, and parameters during model runtime at years for 
which observations of real land use were available (2004-2012) (see also Chapter 
3). Using the particle filter separately for each point in time for which a land use 
map was available, we have obtained optimal model structures for these different 
points in time.  

One limitation of our methodology is the strong assumption about the uncertainty 
in the observations. Also, the land use change model that was used to test the 
methodology was relatively simple, with only one active land use type. Another 
problem is that the two statistical tests used to provide evidence for the systemic 
changes, did not always give high significance levels. Therefore, we hope that this 
study serves as an eye opener to the potential presence of systemic change, in land 
use systems as well as in other modelling domains, and as a first step towards a 
sound methodology to test for systemic changes. 

Given these limitations, we still believe that some conclusions can be drawn about 
systemic change in our case study of sugar cane expansion in the São Paulo state in 
Brazil. Here, the assumption of a constant model structure was not an adequate 
representation of the land use system given a time series of observations of past 
land use. A visual inspection and an analysis of the quantity of variation in the 
distinctive posterior distributions of the suitability factor weights and parameters, 
as well as the outcome of two statistical tests on these distributions have provided 
a strong indication of non-stationarity in the model structure and parameters, i.e. 
systemic change.  
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The systemic change appeared to be indirect: something has an effect on the input 
demand for sugar cane, in such a way that the transition rules and parameters 
have to change as well (Filatova and Polhill, 2012). But, although an inventory was 
made of societal changes in the study area during the studied period, none of 
these could be related to the onset of the observed systemic change in the land 
use system in 2006. The recovery of the system, in 2008 or 2009, might be related 
to a few years of bad harvests, forcing farmers to focus more on potential yield 
when selecting a new field.  

Because no clear reason was detected for the model structure and parameter 
changes in the identification period, we assumed that a future land use system 
could be any of the land use systems found in the identification period. Applying 
this resulted in an increase of the 95% confidence interval of the projected fraction 
of sugar cane by a factor of two compared to the assumption that the future land 
use system is a combination of all land use systems found in the identification 
period, in a stationary way.  

In view of the above, we recommend land use change modellers to check, if 
permitted by data availability, whether or not the system was stationary in the past 
and if potential causes can be found for detected non-stationarity. The 
methodology proposed in this paper can be used for such an analysis although it 
certainly needs further evaluation given the limitations of this study described 
above. Non-stationarity in land use change projections is challenging to model, 
because it is difficult to determine when the system will change and how. We 
cannot expect land use change modellers to incorporate systemic changes in their 
models. Nonetheless, we believe that they should be more aware, and 
communicate more clearly, that what they try to project is at the limits, and 
perhaps beyond the limits, of what is still projectable, because systemic changes 
seem to occur in reality.  
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4.8. Appendix A 

 

Figure 4.10: Posterior distributions of the weights of the suitability factors sugar cane in 
neighbourhood (𝒘𝟏,𝟏), distance to mills (𝒘𝟏,𝟐), potential yield (𝒘𝟏,𝟑), and slope (𝒘𝟏,𝟒), obtained 

with synthetic observational data (scenario 1). 

 

Figure 4.11: Posterior distributions of the parameters of the suitability factors, the length of the 

neighbourhood window (𝒍𝟏,𝟏,𝒘 (m)), the ‘preferred’ fraction of sugar cane neighbors within the 

window (𝒇𝟏,𝟏),  and 𝒂𝟏,𝒌, the suitability function shape parameter, for k = 2, 3, 4, obtained with 

synthetic observational data (scenario 1). 
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Figure 4.12: Representation of the posterior distributions of the parameters of the suitability 
factors, obtained with synthetic observational data (scenario 1): a, window that determines 

whether or not a cell belongs to the neighbourhood (𝒍𝒏,𝒌,𝒘
𝟐 ), b, ‘preferred’ fraction of sugar cane 

neighbours (hatched area) within the window (𝒇𝟏,𝟏), c, suitability for distance to mills 𝐮𝟏,𝟐,𝒕 

plotted against distance to mills 𝐱𝟏,𝟐,𝒕, d, suitability for potential yield 𝐮𝟏,𝟑,𝒕 plotted against 

potential yield 𝐱𝟏,𝟑,𝒕, and e, suitability for slope 𝐮𝟏,𝟒,𝒕 plotted against slope 𝐱𝟏,𝟒,𝒕. Black lines 

represent the median of the parameter value, grey areas are 95% confidence intervals. 
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5. What can and can't we say about indirect land use 
change in Brazil using an integrated economic - land use 
change model? 

 

Judith A. Verstegen, Floor van der Hilst, Geert Woltjer, Derek Karssenberg, 
Steven M. de Jong, André P.C. Faaij (2015), Global Change Biology Bioenergy, 

early view. 

 

 

Abstract - It is commonly recognized that large uncertainties exist in modelled 
biofuel induced indirect land use change, but until now, spatially explicit 
quantification of such uncertainties by means of error propagation modelling has 
never been performed. In this paper, we demonstrate a general methodology to 
stochastically calculate direct and indirect land use change (dLUC and iLUC) caused 
by an increasing demand for biofuels, with an integrated economic – land use 
change model. We use the global Computable General Equilibrium model 
MAGNET, connected to the spatially explicit land use change model PLUC. We 
quantify important uncertainties in the modelling chain. Next, dLUC and iLUC 
projections for Brazil up to 2030 at different spatial scales and the uncertainty 
herein are assessed. Our results show that cell (5 x 5 km2) based probabilities of 
dLUC range from 0 to 0.77, and of iLUC from 0 to 0.43, indicating that it is difficult 
to project exactly where dLUC and iLUC will occur, with more difficulties for iLUC 
than for dLUC. At country level, dLUC area can be projected with high certainty, 
having a coefficient of variation (cv) of only 0.02, while iLUC area is still uncertain, 
having a cv of 0.72. The latter means that, considering the 95% confidence interval, 
the iLUC area in Brazil might be 2.4 times as high or as low as the projected mean. 
Because this confidence interval is so wide that it is likely to straddle any legislation 
threshold, our opinion is that threshold evaluation for iLUC indicators should not 
be implemented in legislation. For future studies we emphasize the need for 
provision of quantitative uncertainty estimates together with the calculated LUC 
indicators, to allow users to evaluate the reliability of these indicators and the 
effects of their uncertainty on the impacts of land use change, like greenhouse gas 
emissions. 
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5.1. Introduction 

Governments throughout the world have set mandatory biofuel targets for the 
transport sector, aiming at mitigating climate change, improving energy security, 
and stimulating rural development (Sorda et al., 2010). Currently, one of the 
central problems in the biofuel arena is the premise of biofuel induced land use 
change (IPCC, 2011, Finkbeiner, 2014, Warner et al., 2014, Creutzig et al., 2012). 
These land use changes can have negative impacts like carbon stock loss, rising 
food prices, loss of biodiversity, and water scarcity, reducing the eligibility of the 
feedstock as a sustainable source for biofuels. An increased demand for biofuel 
feedstocks can lead to direct land use change (dLUC): land use is changed from 
some previous use to the biofuel feedstock. This, in turn, can lead to indirect land 
use change (iLUC): a change of land use outside the biofuel feedstock cultivation 
area, induced by a change in use or production quantity of that biofuel feedstock. 
This can happen either when the agricultural land use type converted to the 
biofuel feedstock is displaced to elsewhere, in order to continue to meet the 
demand for its agricultural products, or when the direct conversion triggers a 
change in the price of agricultural products, causing land to be taken into (or out 
of) production elsewhere (Wicke et al., 2012). The question to be tackled is to what 
extent the global increase in demand for biofuels (Broch et al., 2013) leads to dLUC 
and iLUC and how the negative effects can be minimized.  

Direct land use changes are unambiguously visible in both historical data and 
spatial land use change model results. DLUC takes place wherever a bioenergy crop 
field appears and consequently displaces the previous land use. On the contrary, 
iLUC cannot be directly observed (Finkbeiner, 2014), because if e.g. pasture 
displaces forest in the presence of an expansion of bioenergy cropland over 
pasture, this does not necessarily mean that the pasture displacement is caused by 
the expansion of bioenergy cropland. The pasture might have caused deforestation 
for a reason unrelated to bioenergy. In other words, the indirect effects of a 
particular demand increase cannot be identified from historical data because the 
effects are intertwined with a wide range of processes from which the effects are 
also present in these data (Overmars et al., 2011, O'Hare et al., 2011). Separate 
identification is only possible by comparing all land use changes with and without 
the demand increase for bioenergy, which can be done using a simulation model 
(Creutzig et al., 2015). 

The processes governing dLUC and iLUC range from global to local scale. For 
example, the impact of the biofuel targets on demands for feedstocks in different 
parts of the world is a global market issue. On the other hand, at which location 
the land use changes and which previous land use is replaced, is primarily steered 
by local factors, such as accessibility and biophysical conditions (Meyfroidt et al., 
2013). Likewise, the impacts of the land use change are highly location-dependent 
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(e.g. van der Hilst et al., 2014). Therefore, a sound approach to model iLUC is by 
using a global economic model coupled to a spatially explicit land use change (LUC) 
model to take both the global and local scale level into account, as for example 
demonstrated by Lapola et al. (2010). 

It is commonly recognized that there is a large uncertainty in modelled iLUC (Wicke 
et al., 2012, Finkbeiner, 2014, Creutzig et al., 2015, Mathews and Tan, 2009, 
Malins, 2013). The uncertainties arise from model structure uncertainty (Refsgaard 
et al., 2006, Chapter 4), from data (inputs, calibration dataset and initial system 
state) (Dendoncker et al., 2008), and from model coupling (Ray et al., 2012). For 
iLUC in particular, uncertainty in reported values also stems from the fact that the 
assumptions, the employed models and the validity of these models are often not 
clearly communicated (Mathews and Tan, 2009). Information quantifying 
uncertainty in iLUC is critical to evaluate whether or not iLUC indicators are reliable 
enough to be included in legislation, to identify which parts of the modelling chain 
have the highest priority for improvement, i.e. cause most uncertainty, and to 
assess how this uncertainty propagates to the impacts of iLUC, like greenhouse gas 
(GHG) emissions (e.g. Plevin et al., 2015). Uncertainty information can be obtained 
by 1) being explicit about the applied models, the processes included in these 
models and the parameter settings used, as well as the uncertainty in the various 
model components and the performance of these models (Broch et al., 2013, 
Mathews and Tan, 2009), and 2) assessment of the magnitude of the output 
uncertainty by e.g. doing Monte Carlo analyses of iLUC (Wicke et al., 2012, Warner 
et al., 2014, Plevin et al., 2015, Nelson et al., 2014, Wicke et al., 2015). Uncertainty 
should be assessed at different spatial scales because different types of impacts 
play a role at different scales and it is known that uncertainty is highly scale-
dependent (Pontius Jr. and Spencer, 2005, e.g. Chapter 2). Yet, such information is 
currently scarcely reported for iLUC; a status we aim to improve with this paper. 

We have set up a model study with the global Computable General Equilibrium 
(CGE) model MAGNET (e.g. Woltjer and Kuiper, 2014, Kavallari et al., 2014), 
integrated with the spatially explicit land use change model PLUC (e.g. Chapter 2). 
With this integrated model we project land use change caused by an increasing 
demand for biofuels up to 2030 for Brazil, one of the main bioethanol producers in 
the world. Since Brazil holds the world’s major potential for agricultural expansion 
(Alexandratos and Bruinsma, 2012), production and export of bioethanol are likely 
to increase in the future (Walter et al., 2014, IEA, 2013, OECD/Food and Agriculture 
Organization of the United Nations, 2014ood and Agriculture Organization of the 
United Nations 2014). Yet, the country also maintains the largest area of natural 
remnants, with high carbon stocks and high levels of biodiversity, stressing the 
need to assess potential negative impacts. For this case study we seek to answer 
the following research questions: 1) What are the dLUC and iLUC projections for 



124 
 

Brazil up to 2030 at different spatial scales and what is the uncertainty herein? 2) 
What are the sources of uncertainty for each step in the model chain and how do 
these uncertainties influence dLUC and iLUC projections? 3) What is the 
contribution of the economic and land use change model to the uncertainty in 
dLUC and iLUC at the different spatial scales? 

The next section introduces the Brazilian case study, presents the LUC model, the 
CGE model, and the way they are coupled, describes the calibration method, 
defines the projection scenario for the increased demand for biofuels, and explains 
how iLUC is derived from the results. Section three illustrates the results for the 
three research questions. The final section discusses these results in light of the 
research questions and gives suggestions for further research.  

 

5.2.  Materials and methods 

5.2.1. Overview 

The projection of dLUC and iLUC in Brazil caused by an increasing demand for 
biofuels and the uncertainty herein is performed using MAGNET (Woltjer and 
Kuiper, 2014), a global Computable General Equilibrium (CGE) model, connected to 
the land use change model PLUC (e.g. Chapter 2), tailored to Brazil (Figure 5.1). For 
2006 an initial land use map is created by combining tabular area data per land use 
type and land use maps with satellite data. This map is used as the initial system 
state for PLUC. Next, PLUC is calibrated from 2007 until 2012 based on trends per 
land use type from agricultural statistics databases. To project the dLUC and iLUC 
effects of the biofuel mandates, we define both a 'biofuel scenario' that includes 
these mandates and a 'reference scenario' that does not include them. For both 
scenarios, MAGNET determines the supply and demand of all commodities in all 
world regions up to 2030 and, related to that, the area they occupy. This 2013 – 
2030 time series of land area demands per land use type for Brazil is then input for 
the spatially explicit land use change projection up to 2030 by PLUC. The PLUC 
outputs are a time series of land use maps. By comparison of the maps of the two 
scenarios dLUC and iLUC are assessed.  

In the model chain, uncertainties in the inputs, calibration dataset, initial system 
state and model structure are quantified, part of which propagates through the 
model coupling (Figure 5.1). To quantify uncertainty in MAGNET, it is run with two 
different parameter sets, resulting in an upper and a lower demand limit. PLUC, 
including the generation of the initial land use map, the calibration, and the 
demand coming from MAGNET, is used stochastically by running it in Monte Carlo 
mode (Figure 5.1). 
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Figure 5.1: Overview of the modelling chain and model run-time frame to simulate the probability 
of dLUC and iLUC in Brazil up to 2030. 

 

5.2.2. Case study 

Brazil has been producing bioethanol from sugar cane since the beginning of the 
20th century and has been exporting the ethanol since 1989 (Andrade de Sá et al., 
2013). Sugar cane currently occupies the third largest area of all crops in Brazil, 
topped only by soy and maize (although a large quantity of the maize is cultivated 
as second crop) (IBGE, 2013b). The main sugar cane production areas are the 
Central South region and the Northeast region. Recent expansion has mainly taken 
place in the Central South region: in the past decade the total area dedicated to 
sugar cane cultivation has more than doubled in that region (Rudorff et al., 2010). 
It expected that future expansion will also predominantly occur in the Central 
South region (Lapola et al., 2010, Nassar et al., 2008). According to Adami et al. 
(2012b) over 99% of all sugar cane expansion in the last decade has taken place 
over existing agricultural land, signifying that the direct effect of increasing ethanol 
demand on deforestation is negligible. However, deforestation can still take place 
through iLUC, which is also shown by others (e.g. Lapola et al., 2010, de Souza 
Ferreira Filho and Horridge, 2014).  
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5.2.3. Initial land use map and land use change model 

We distinguish eleven different land use types n, where n = 1, 2, …, 11: urban, 
water, natural forest, rangeland, planted forest, crops (excluding sugar cane), grass 
and shrubs, sugar cane, planted pasture, bare soil and abandoned agricultural land. 
Planted pasture and natural pasture (rangeland) are modelled separately because 
the extensively managed, naturally vegetated rangelands have a stocking rate of 
about 70% lower than the intensively managed planted pastures (IBGE, 2006, 
Aguiar and d'Athayde, 2014). Cropland includes both annual and permanent crops. 
Sugar cane is modelled as a separate land use type to be able to evaluate where 
sugar cane expands in reaction to the increased ethanol demand and which other 
land uses it replaces.  

PLUC (PCRaster Land Use Change model) (van der Hilst et al., 2014, Diogo et al., 
2014, van der Hilst et al., 2012, Chapter 2) is founded on the separation between 
the quantity of change per land use type, and the spatial allocation of this change, 
like many other land use change models (Pontius Jr. and Neeti, 2010). The quantity 
of land demanded per land use type n is called 'demand' 𝑑𝑛,𝑡, in which t is the time 
step in years, with t = 1, 2, …, T. The total area per land use type in the demand 
time series (tabular area data from agricultural statistics) for the initial year of the 
simulation should match the total area per land use type in the initial land use 
map, i.e. the initial system state of the model. If the time series and initial map are 
coming from different sources, which is likely, a perfect match is obviously never 
going to be the case. You and Wood (2005) provide a deterministic method to 
create a land use map that matches the time series, by spatially disaggregating 
land use areas per administrative region from the time series into raster cells 
within that region, using prior knowledge maps. We apply this procedure, using 
municipalities as administrative regions (5566 in total for Brazil), to create an initial 
land use map for Brazil with a cell size of 5 x 5 km2 for the year 2006. This year is 
chosen because it was the year in the recent past (to have a calibration period) 
with the best data availability for both the tabular and prior knowledge map data. 
Compared to You and Wood (2005) we do a few things differently, most 
importantly adding a method to make a stochastic map instead of a deterministic 
map, in order to include uncertainty arising from errors in the initial land use map 
into the model chain, as explained in Appendix A.  
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Table 5.1: Suitability factors, k, of the active land use types, n, for the Brazilian case study. 

n land use type k process represented suitability factor 

4 rangeland 1 
2 
3 

economies of scale 
transportation costs 
potential profits per hectare 

n in the neighbourhood 
distance to roads 
potential yield of n 

5  planted forest 1 
2 
3 

economies of scale 
transportation costs 
potential profits per hectare 

n in the neighbourhood 
distance to roads 
potential yield of n 

6 crops 1 
2 
3 
4 
5 

economies of scale 
transportation costs 
potential profits per hectare 
costs to make the land cultivatable 
double cropping potential 

n in the neighbourhood 
travel time to hubs

 
for n 

potential yield of n 
conversion elasticity 
growing season length 

8 sugar cane 1 
2 
3 
4 

economies of scale 
transportation costs 
potential profits per hectare 
costs to make the land cultivatable 

n in the neighbourhood 
travel time to hubs

 
for n 

potential yield of n 
conversion elasticity 

9 planted 
pasture  

1 
2 
3 

economies of scale 
transportation costs 
potential profits per hectare 

n in the neighbourhood 
distance to hubs for n

 

potential yield of n 

 

Out of the eleven land use types considered in PLUC, five are assumed to respond 
to changes in the economy by expanding or contracting: rangeland, planted forest, 
crops, sugar cane and planted pasture. These active land use types are demand-
driven (Table 5.1). The other six land use types do not have demands. They are 
either passive, meaning that they can contract or expand due to the dynamics of 
the active land use types, or static, meaning that they cannot change and are thus 
fixed on the map. Passive land use types are natural forest, grass and shrubs, bare 
soil, and abandoned agricultural land. Abandoned land originates when an active 
land use type contracts; it is not present in the initial land use map. Static land use 
types are urban and water. 

The demands for the five dynamic land use types over time in Brazil have been 
subdivided into six regions (Figure 5.2), corresponding to the macro regions 
defined by the Brazilian Institute of Geography and Statistics (IBGE). We added one 
region by splitting the Northeastern macro region into two regions, as suggested 
by Nassar et al. (2010), because the Northeast coast differs significantly from the 
Northeast Cerrado (savannah) in terms of agricultural production.  
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Figure 5.2: The six macro regions in Brazil (six different colours) used as demand input units in 
PLUC and the 27 states (black lines), or in fact 26 states and one federal district, used as 

calibration units. The state name abbreviations are: AC = Acre, AL = Alagoas, AM = Amazonas, AP = 
Amapá, BA = Bahia, CE = Ceará, DF = Distrito Federal, ES = Espírito Santo, GO = Goiás, MA = 

Maranhão, MG = Minas Gerais, MS = Mato Grosso do Sul, MT = Mato Grosso, PA = Pará, PB = 
Paraíba, PI = Piauí, PR = Paraná, RJ = Rio de Janeiro, RN = Rio Grande do Norte, RO = Rondônia, RR 

= Roirama, RS = Rio Grande do Sul, SC = Santa Catarina, SE = Sergipe, SP = São Paulo, TO = 
Tocatins. 

In PLUC, the spatial allocation is regulated by spatial attributes that serve as proxies 
for important drivers of location, i.e. processes that determine where a land use 
type expands or contracts. These are called suitability factors k, with k = 1, 2, …, Kn 
(each active land use type n can have a different number of suitability factors). For 
each n defined as active, a weighted sum of these suitability factors forms the total 
suitability map. In one model time step, representing one year, the demands of the 
active land use types are allocated sequentially for each macro region, as follows. 
For the first active land use type n the total suitability map is sorted, and cells are 
allocated to n, starting with the cell with the highest suitability value that is not yet 
of type n, until 𝑑𝑛,𝑡 is fulfilled. Next, the same is done for the second land use type 
in the sequence, with the exception that cells occupied by the first land use type 
cannot be changed. This procedure continues until the demands of all active land 
use types in all macro regions have been allocated (see also Appendix B). 

The suitability factors for the Brazilian case study are given in Table 5.1. To 
represent economies of scale (k = 1), the number of neighbours of the same land 
use type is counted in a square window of 5 by 5 cells (25 x 25 km2). For 
transportation costs (k = 2), the travel time to hubs is used as a proxy. This is the 
time it takes to transport the products originating from the land use type to the 
nearest production facility. For planted forest we have no data about the location 
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of hubs (e.g., saw mills) and for rangelands we believe that the livestock hubs are 
of lower importance, because livestock from rangeland is often ‘finished’ 
elsewhere before being slaughtered. Therefore, for these two land uses we apply 
distance to roads as the proxy for transportation costs. Potential profits per 
hectare (k = 3) are represented by potential yield maps, using IIASA's GAEZ data 
(Tóth et al., 2012). Since, to our knowledge, no potential yield map exists for 
woody biomass, we use IIASA's map of the length of the growing season as a proxy 
for the potential yield of planted forest. The costs to make the land cultivatable (k = 
4) are estimated using a conversion elasticity, i.e. a fraction indicating the ease 
with which a certain land use type can be transformed into the land use type that 
implements the suitability factor, especially relevant for crops. Double cropping 
potential (k = 5) is an important suitability factor in Brazil, indicated by the rapid 
increase in double or even triple cropped area over the last decade (Conab, 2014, 
Galford et al., 2008). We do not have a map of double cropping potential, so we 
use the growing season length as a proxy, which is supported by an analysis of the 
relation between these two by Arvor et al. (2014). 

The no-go map, i.e. areas where expansion is not allowed, is an overlay of military 
areas, areas of indigenous people, and federal and state conservation units (Gurgel 
et al., 2009). Conservation policies or initiatives which have historically not been 
well enforced, such as the Forest Act (Sparovek et al., 2012), the soy moratorium 
(Rudorff et al., 2011), and the sugar cane zoning (Padua Junior et al., 2012), are not 
taken into account in this simulation. We are preparing another paper, in which we 
include more scenarios with, among other things, stricter nature conservation rules 
(van der Hilst et al., in prep.).  

We use a Monte Carlo simulation with 5000 realizations. The weights of the 
suitability factors and the order of allocation are modelled stochastically. Their 
prior probability distributions are uninformed (see Methods S2). 

 

5.2.4. Calibration 

The aim of the calibration phase, 2007 to 2012, is to narrow the probability 
distributions of all stochastic elements: the order of the land use types and all 
weights of the suitability factors (Table 5.1). The model calibration is performed 
using a Bayesian data assimilation technique, the sequential importance 
resampling (SIR) particle filter (van Leeuwen, 2009). In short, the SIR particle filter 
compares the land use system simulated by PLUC and observations of the land use 
system from the real world, taking into account uncertainty in these observations. 
Next, it updates the Monte Carlo ensemble in such a way that well-performing 
realizations are progressed and poorly-performing realizations are discarded. An 
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extensive explanation of this model structure identification and calibration method 
for a case study in the São Paulo state is provided in Chapter 3. 

For calibration, a time series of land use/cover data is required as observational 
data. For Brazil we use time series of areal data per land use type per state (Figure 
5.2). These time series are derived using info from agricultural statistics databases 
(IBGE, 2013b, see van der Hilst et al., in prep., IBGE, 2013a, ABRAF, 2013). These 
observational data are not error free. Between the yearly (IBGE, 2013b (for crops), 
IBGE, 2013a (for livestock)) and the 10-yearly (IBGE, 2006) census data sources, 
areas and area increases differ from zero up to more than 100%. As one cannot 
calculate a standard deviation based on two values, we make an educated guess of 
the average error based on these data sources. Under the assumption that the 
observational errors are uncorrelated over space and time, we assign an 
observation error to the observed increase in area with a standard deviation of 
20% of the observed increase in that time step.  

After calibration, a land use matrix, summarizing the total areas per land use type 
in 2012, is computed per macro region, representing the initial system state for 
MAGNET (Figure 5.1). In addition, a land transition matrix is calculated per macro 
region, to be used for the calibration of MAGNET. These six land transition matrices 
show the average area of conversion from every land use type to every other land 
use type derived from PLUC over the whole calibration period.  

As a measure of model performance, we calculate root mean squared error 
(RMSE), the root of the summed squared differences between the median of the 
modelled area and observed area over all states. We determine the reduction in 
RMSE (%) for the results of the calibrated model, i.e. with uncertainty reduced by 
the SIR particle filter, compared to the non-calibrated model. To evaluate the 
effect of calibration, we apply a split-sample approach: PLUC is calibrated using 
data from 2007 to 2009 and the model reduction in RMSE is evaluated from 2010 
to 2012. This split-sample approach is used only to evaluate the effect of 
calibration. The model parameters we use for the projection, integrated with the 
MAGNET model, are calibrated based on all available observational data (2007-
2012). 

 

5.2.5. Economic (CGE) model 

The growing demand for food, feed, fibre and bioenergy requires an increased 
agricultural output. This can be reached by raising inputs like fertilizers, machinery 
and labour (bound by technological limitations), i.e. expansion at the intensive 
margin, or by converting new land to agriculture, i.e. expansion at the extensive 
margin (Hertel, 2011), which can result in iLUC. At what ratio both alternatives are 
applied in face of a growing demand depends on e.g., land availability, prices and 
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policies that vary worldwide. To evaluate how demand grows over time and to 
assess to what extent this demand is fulfilled by expansion at the intensive and 
extensive margins, we use a global Computable General Equilibrium (CGE) model 
(Rose, 1995). Key parameters in CGE models are the elasticities, simulating 
behavioural responses, for example the response of the demand for a commodity 
to a change in price or the response of consumption to a change in GDP per capita.  

The CGE model used is MAGNET (Modular Applied GeNeral Equilibrium Toolbox) 
(see for an extensive explanation Woltjer and Kuiper, 2014). This is the 
modularized and improved version of LEITAP (e.g. Banse et al., 2011, Hoefnagels et 
al., 2013). MAGNET uses the GTAP database version 8 (Narayanan et al., 2012), in 
an extended and adaptable form. For this case study, we use the database with 42 
sectors (including various ethanol sectors that take into account co- and by-
products like molassess and electricity, and a difference between planted pasture 
and rangeland), 45 commodities and 15 regions, of which Brazil is one. Brazil has 
been subdivided into six regions, matching the input macro regions for PLUC 
(Figure 5.2). These six macro regions are a subdivision in MAGNET in terms of 
agricultural production and land area only; for international trade Brazil is 
considered as one region. Total land availability per macro region is calculated 
from the no-go map. 

In order to model land cover change, a regional land transition approach has been 
developed that is inspired on the work of de Souza Ferreira Filho and Horridge 
(2014) and further developed by Woltjer (2013). Herein, the area of land that is 
changed from one particular land use type n to another one m, depends on the 
land transition elasticity 𝑒𝑛,𝑚. Using expert knowledge and trial and error, we test 
for all combinations of n and m for what values of 𝑒𝑛,𝑚 MAGNET can best 
reproduce the 2012 system state given by the land use matrix from PLUC, and the 
transitions given by the land transition matrix.  

To assess the uncertainty related to the key parameters in the economic model, 
two runs are performed, one with considerably higher (200%) and one with 
considerably lower (25%) land transition elasticities 𝑒𝑛,𝑚 than the values found by 

the procedure above. This results in two demand time series per land use type, one 
for the upper land transition elasticities, 𝑑𝑢,𝑛,𝑡, and one for the lower land 
transition elasticities, 𝑑𝑙,𝑛,𝑡, where all potential lines between these time series are 
assumed to have equal likelihood:  

 𝑑𝑛,𝑡 = 𝑑𝑙,𝑛,𝑡 + 𝑍𝑑 ∙ (𝑑𝑢,𝑛,𝑡 − 𝑑𝑙,𝑛,𝑡),      with 𝑍𝑑  ~ 𝑈(0,1),  

for each active n in each t 
5.1  

Equation 5.1 shows that the demand input of PLUC 𝑑𝑛,𝑡 in the projection phase has 
an error model based on a uniform distribution between 𝑑𝑢,𝑛,𝑡 and 𝑑𝑙,𝑛,𝑡. 
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5.2.6. Projection 

In the projection from 2013 to 2030 the socio-economic developments are based 
on the Shared Socioeconomic Pathways (SSPs) (O'Neill et al., 2014). The SSPs 
quantify global drivers of the energy-economy-land use system such as 
demographics and economic development. In these pathways projections are 
included on population and GDP growth. We use SSP2, the Middle of the Road 
pathway with some additional assumptions on for example the agricultural 
intensification over time (see van der Hilst et al., in prep.). 

Using SSP2 and these assumptions, MAGNET is run up to 2030, providing total land 
areas occupied by all land use types for all world regions and the six macro regions 
in Brazil for the years 2013, 2015, 2020, 2025 and 2030. Yearly demand time series 
for the six macro regions to serve as an input for PLUC are obtained by a linear 
interpolation between these years and an aggregation of the areas of all individual 
crops, except sugar cane, into the single class cropland.  

To evaluate the future dLUC and iLUC effects caused by current and planned 
ethanol mandates worldwide, we define both a 'biofuel scenario' including these 
mandates and a 'reference scenario' excluding them. This does not mean that 
there is no increase in the demand for sugar cane in the reference scenario, only 
that there is no (additional) increase originating from the increased ethanol 
demand. All other inputs and parameters of both models are kept the same as in 
the 'biofuel scenario'. 

 

5.2.7. Direct land use change (dLUC) and indirect land use change (iLUC) 

Normally, direct land use change can be assessed using one scenario, as the 
difference between current and projected land use. In our case, however, we want 
to assess dLUC from sugar cane caused by the biofuel mandates, i.e. only sugar 
cane expansion for ethanol. Therefore we want to exclude sugar cane expansion 
that is a result of an increased demand for sugar over time. Hence, both dLUC and 
iLUC originating from the mandates are assessed through the difference between 
the reference and the biofuel scenario (Table 5.2) in 2030. A grid cell that is sugar 
cane in the biofuel scenario, and something else in the reference scenario, is 
considered dLUC, i.e. sugar cane expansion resulting from the biofuel mandates. A 
grid cell that is nature in the reference scenario and agricultural land but not sugar 
cane in the biofuel scenario, is considered iLUC. The opposite effects exist as well. 
A grid cell that is sugar cane in the reference scenario and something else in the 
biofuel scenario is negative dLUC (neg_dLUC), and a grid cell that is agriculture in 
the reference scenario and nature or abandoned land in the biofuel scenario is 
negative iLUC (neg_iLUC). 
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Especially for iLUC this opposite effect might appear in the real world. If, for 
example, an area of 10000 ha of wheat fields is present, and 80% of this area is 
taken over by sugar cane for ethanol, then the remaining 20% of wheat land might 
be abandoned because the advantages of economies of scale have disappeared. 
The 8000 ha of displaced wheat land and the 2000 ha of wheat land now grown 
elsewhere, make 10000 ha of iLUC. In our methodology we count the abandoned 
land as -2000 ha of iLUC (and therefore we call it neg_iLUC (Table 5.2)), coming to 
a total of 8000 ha iLUC, which was indeed the area of land shifted by sugar cane. 

 

Table 5.2: Classification of differences in land use between the reference and the biofuel scenario 
that are considered undesirable effects of increasing ethanol demand (dLUC and iLUC, dark grey), 

and the opposite effects (neg_dLUC and neg_iLUC, light grey). The class 'other agriculture' includes 
rangeland, planted forest, crops, and planted pasture. The class 'nature' includes natural forest, 

grass and shrubs, bare soil, and abandoned agricultural land; thereby assuming that land will 
eventually become nature when left abandoned. Zero stands for no difference, i.e. neither 

(neg_)dLUC nor (neg_)iLUC. 
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To compare outcomes at different spatial scales, we focus our analysis on local, 
regional and national level, calculated from output of PLUC. At the regional level 
we use 250 x 250 km2 blocks. We do not use administrative levels, like states, 
because these differ in size and are thus problematic to compare. The coefficient 
of variation (cv) (standard deviation of dLUC or iLUC area over all Monte Carlo 
realizations divided by the mean of dLUC or iLUC area over all Monte Carlo 
realizations) is used as the measure of uncertainty. Since this measure of 
uncertainty is standardized by the mean, the cv is comparable between dLUC and 
iLUC and between regions with different magnitudes of dLUC or iLUC. As the local 
level we use probabilities of dLUC and iLUC in single cells (5 x 5 km2). 

 
5.2.8. Contribution of the two models to total output uncertainty 

 We compare the contribution of the two models to the total output uncertainty, 
by running the projection until 2030 three times, all three with 5000 realizations. 
One Monte Carlo run is with both models stochastic (the default run used in all 
analysis described above). One run is with only PLUC stochastic (including the 
uncertainty in the initial land use map and calibration time series). In this run the 
demand 𝑑𝑛,𝑡 is fixed at the mean between the upper and lower time series, by 

setting 𝑍𝑑 (Equation 5.1) to 0.5 for all Monte Carlo realizations to exclude 
uncertainty from MAGNET. The uncertainty in the output of this run is thus caused 
by uncertainty in PLUC only. The final run is with only MAGNET stochastic. In PLUC 
the weights, the order of allocation and the land use map for 2012 are fixed by 
taking the medians hereof from the calibrated model, to exclude uncertainty from 
PLUC. This run results in information about output uncertainty caused by MAGNET. 
For the three runs we compare the mean and the coefficient of variation in dLUC 
and iLUC area at the different spatial scales. 

 

5.3. Results 

5.3.1. Sources of uncertainty for each step in the model chain and their 
influence on dLUC and iLUC projections 

Initial land use map 

For the initial year, 2006, a land use map was created for each Monte Carlo 
realization to serve as the initial system state (Figure 5.3). The total area per land 
use type per macro region is the same for all realizations and also the locations of 
individual patches within the macro region are the same, but the shape of these 
patches differs slightly, see for example the patch of sugar cane at the bottom of 
the map view in Figure 5.3. The patches of land use types that were assumed to be 
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known precisely, being urban, water and bare soil (see Appendix A) always have 
the same shape, see for example the shape of the city Natal, in the northeast of 
the map. We can conclude that the uncertainty in the initial land use map is very 
local, important only at cell level. The effect for projected iLUC will mainly be that 
when sugar cane expands in a certain grid cell, uncertainty in the initial land use 
map makes that in some realizations it expands over agricultural land, which may 
result in iLUC through displacement (depending on the demand trend for the 
displaced agricultural land use type), and in other realizations over nature, not 
resulting in iLUC, because there is no displacement effect. 

 

 

Figure 5.3: Five out of the 5000 realizations of the initial land use map (year 2006) zoomed in to 
the state Paraíba, in the Northeast Coast region of Brazil (see Figure 5.2). 
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Figure 5.4: Demand for the five dynamic land use types in the six macro regions and Brazil total for 
the initial year, for the calibration period (using data from IBGE (2013b, 2013a) and ABRAF (2013)), 

and for two out of the five output years in the projection period (output from the MAGNET 
model). The ranges of the y-axes differ between macro regions to improve the visibility of trends. 
In the projection period, the hatched bar is the reference scenario and the non-hatched bar is the 
biofuel scenario. The thick box on top of the bars indicates the uncertainty in the output, i.e. the 
difference between 𝒅𝒖,𝒏,𝒕 (elasticities set to 200% ) and 𝒅𝒍,𝒏,𝒕 (elasticities set to 25%). In the case 

of a filled box 𝒅𝒍,𝒏,𝒕 is higher than 𝒅𝒖,𝒏,𝒕, and in case of an unfilled box 𝒅𝒍,𝒏,𝒕 is lower. 
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Land use change model, calibration 

The input demand time series that were constructed from agricultural statistics for 
calibration are shown in Figure 5.4 (2007-2012, indicated by an arrow). After 
calibration using this demand and the observations, out of the 120 possible 
sequences (see Appendix B) for the order of allocation of the land use types, 72 
obtain a posterior probability of zero, i.e. they are not present anymore in the 
ensemble. So, 48 unique sequences remain, with posterior probabilities ranging 
between 0.002 and 0.19. The land use sequence with the highest posterior 
probability is planted pasture – planted forest – sugar cane – rangeland – crops. An 
analysis of all other sequences and their posterior probabilities reveals that there is 
a dichotomy in this most common sequence. Planted pasture, planted forest and 
sugar cane usually (in about 80% of the realizations) come in the first part of the 
sequence, and rangeland and crops in the last part, but the order among them 
fluctuates.  

Sugar cane can only displace land use types coming after it in the sequence. So, in 
80% of the realizations it predominantly replaces crops and rangeland. An 
important consequence of this calibration result with regard to iLUC is that the 
iLUC within a macro region will originate mainly from the displacement of crops 
and rangeland, which is in line with the findings of Lapola et al. (2010).  

The weights of the suitability factors have been calibrated as well (Table 5.3). In 
general, suitability factor k = 1, representing n in the neighbourhood, obtains a high 
weight. This means that a land use type is likely to expand in regions in which it is 
already cultivated. This factor has the highest median posterior weight for 
rangeland, sugar cane and planted pasture. Accordingly, dLUC will take place close 
to existing sugar cane patches. For cropland the double cropping potential (k = 5) is 
the most important suitability factor for expansion. Galford et al. (2008) have 
found in a case study in Matto Grosso (an important expansion region, see Figure 
5.2) by means of remote sensing that newly established cropland is usually single 
cropped, but is converted to double cropping after two to three years. The high 
weight for the double cropping potential factor indicates that this potential already 
plays a role at the establishment of the cropland, while the actual implementation 
of double cropping takes place a few years later. As a consequence, the location of 
iLUC in the case of displaced cropland is likely to be a location with a high double 
cropping potential. In conclusion, the calibrated land use change model mainly 
influences the location of dLUC and iLUC within the macro region, i.e. distribution 
between and also within states in a macro region.  
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Table 5.3: The mean, first quartile and third quartile of the weights of the suitability factors k of all 
active land use types n resulting from the calibration. 

n name k suitability factors 1
st

 quartile median 3
rd

 quartile 

4 rangeland 1 
2 
3 

n in the neighbourhood 
distance to roads 
potential yield of n 

0.35 
0.24 
0.03 

0.46 
0.35 
0.19 

0.60 
0.45 
0.28 

5  planted 
forest 

1 
2 
3 

n in the neighbourhood 
distance to roads 
potential yield of n 

0.19 
0.27 
0.32 

0.29 
0.34 
0.37 

0.36 
0.37 
0.51 

6 crops 1 
2 
3 
4 
5 

n in the neighbourhood 
travel time to hubs

 
for n 

potential yield of n 
conversion elasticity 
growing season length 

0.11 
0.05 
0.05 
0.12 
0.21 

0.22 
0.14 
0.11 
0.23 
0.30 

0.36 
0.22 
0.20 
0.33 
0.36 

8 sugar cane 1 
2 
3 
4 

n in the neighbourhood 
travel time to hubs

 
for n 

potential yield of n 
conversion elasticity 

0.23 
0.21 
0.15 
0.17 

0.29 
0.28 
0.22 
0.21 

0.36 
0.33 
0.26 
0.24 

9 planted 
pasture 

1 
2 
3 

n in the neighbourhood 
distance to hubs for n

 

potential yield of n 

0.40 
0.33 
0.00 

0.53 
0.45 
0.02 

0.66 
0.56 
0.03 

 

The results above were based on calibration over 2007-2012. To show the effect of 
calibration, we have applied a split-sample approach, with calibration only from 
2007 to 2009, to allow a comparison with observational data in the validation 
period from 2010 to 2012. We compare the modelled against observed area of 
cropland (Figure 5.5), because this land use type gives the most information on 
model performance since it both expands and contracts in the calibration period. 
For most states without a clear break in their trend, for example Roirama (RR), 
Ceará (CE), and Mato Grosso (MT), the modelled median remains good in the 
validation period. However, the areas of states that do show a trend break, e.g. 
Maranhão (MA) and Rio de Janeiro (RJ), are poorly simulated, although at least for 
Maranhão the observed cropland area falls within the 95% confidence interval of 
the modelled area. 
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Figure 5.5: Modelled and observed areas per state, for the land use type cropland as an example. 
Vertical dashed lines: calibration years, dashed lines: observed area, solid lines: modelled median 
area, colored planes: 95% confidence interval of the modelled area, where the color corresponds 
to the color of the macro region in Figure 5.2, to be able to quickly see which states belong to the 
same macro region. The state name abbreviations are: AC = Acre, AL = Alagoas, AM = Amazonas, 
AP = Amapá, BA = Bahia, CE = Ceará, DF = Distrito Federal, ES = Espírito Santo, GO = Goiás, MA = 

Maranhão, MG = Minas Gerais, MS = Mato Grosso do Sul, MT = Mato Grosso, PA = Pará, PB = 
Paraíba, PI = Piauí, PR = Paraná, RJ = Rio de Janeiro, RN = Rio Grande do Norte, RO = Rondônia, RR 

= Roirama, RS = Rio Grande do Sul, SC = Santa Catarina, SE = Sergipe, SP = São Paulo, TO = 
Tocatins. 

Table 5.4: Reduction in root mean square error (%) of the median area of land use type n for the 
calibrated model compared to the reference case (Monte Carlo run without particle filter), 

summed over all states, given per year for the validation period (2010 – 2012). 

 year 

n land use type 2010 2011 2012 

4 rangeland -1 -2 -4 

5 planted forest -6 0 2 

6 crops 53 50 42 

8 sugar cane 26 21 24 

9 planted pasture 33 35 25 
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To summarize the effect of calibration for all land use types, we compare the root 
mean square error (RMSE) in area summed over all states of the calibrated and 
non-calibrated model (Table 5.4). For crops, sugar cane and planted pasture a 
considerable RMSE reduction is achieved. The highest reduction is achieved for 
crops, with a maximum of 53% in 2010. For sugar cane the average reduction is 
24%. A significant reduction for sugar cane is important, since it is the land use 
type of main interest. Being able to correctly project the location of sugar cane 
expansion, connotes correct modelling of dLUC, which is the first step in also 
correctly projecting iLUC since the two are chained. For rangeland and planted 
forest the calibration does not bring the modelled median area per state closer to 
the observed area. The modelled median even becomes worse, although not 
significantly, only a few percent. The reason why PLUC cannot find weights for the 
suitability factors that result in a correct projection, is probably the poor data 
availability for these two land use types. For example, for the initial land use map, 
no good prior knowledge maps were available (see Appendix A), and for the 
suitability factors we have no information about the locations of the hubs for these 
land use types.  

 

Economic model, projection  

Demands are projected by MAGNET per land use type for 2013, 2015, 2020, 2025 
and 2030. To illustrate the trend, the demands for 2020 and 2030 for the reference 
and the biofuel scenario and the uncertainty herein are shown in Figure 5.4. An 
interesting result is that the uncertainty within a scenario is often higher than the 
difference between the scenarios. This indicates that it can be problematic to draw 
conclusions about the effect of, for example, a policy by means of comparing 
scenarios from the CGE model. If the land transition elasticities are uncorrelated 
between the two scenarios, the large uncertainty makes that the policy effects 
might be negative as well as positive. Yet, we believe that although the elasticities 
are uncertain, they are correlated between the two scenarios, as these scenarios 
represent the same system, as long as the difference between scenarios is not too 
large. Others doubt this; a discussion that is known in economic modelling as the 
Lucas critique. Lucas (1976) argues in his work that the parameters in economic 
models are not policy-invariant, and that they would therefore change when a 
policy is implemented. This discussion is interesting, but goes beyond the scope of 
this paper. Nevertheless, we should be aware, that if Lucas is correct, the 
uncertainties in dLUC and iLUC shown in the next sections might be significantly 
higher. 

In the reference scenario sugar cane mainly expands in the Center West Cerrado 
and the Southeast (together called the Central South). The extra demand for sugar 
cane for ethanol from the mandates (biofuel scenario) also mainly ends up in these 
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two regions. In the biofuel scenario, the total area of sugar cane in the Center West 
Cerrado almost triples by 2030 compared to 2012.  

The difference between the reference scenario and the biofuel scenario for the 
other land use types within Brazil is the largest in the Southeast (Figure 5.4). In this 
macro region, the areas of crops and rangeland are significantly smaller in the 
biofuel scenario than in the reference scenario. As the productivity of all land use 
types are roughly the same in these two scenarios, this decrease in area means 
that MAGNET assumes that these areas of crops and rangeland are displaced by 
sugar cane. The displaced land uses are shifted to the Northeast Cerrado and the 
Northern Amazon: here crops and rangeland occupy a larger area in the biofuel 
scenario than in the reference scenario (Figure 5.4, difference between the 
hatched and plain bars).  

 

Conceptual differences between the two models 

Despite the ‘shared’ conversion matrix between MAGNET and PLUC and despite 
the fact that MAGNET provides the demand as an input for PLUC, the conversion 
dynamics between the two models differ because of conceptual differences 
between the models. A result of this is that the area of iLUC for the whole of Brazil 
calculated from MAGNET differs from the area calculated by PLUC (further 
discussed later on), although ideally these two would be the same. This problem 
does not occur for dLUC, only for iLUC, and in the following we explain why. 

The origin of the problem is that in PLUC sugar cane expands in the projection 
period, besides over cropland and rangeland, also often over planted pasture; a 
displacement also observed in other studies (e.g. Rudorff et al., 2010, Adami et al., 
2012b). In MAGNET, however, the area of conversion from planted pasture to 
sugar cane is negligible. This displacement of planted pasture in PLUC, not present 
in MAGNET, has two effects. One is that in PLUC the area of planted pasture is 
decreased in a region, such that, in that same year, planted pasture should expand 
(in addition to the expansion caused by a potential increase in demand already 
given by MAGNET) elsewhere in that region in order to make up for the lost 
acreage. This causes iLUC in the region, not anticipated by MAGNET. Another effect 
is that the areas of rangeland and/or crops in PLUC are larger than dictated by the 
demand in MAGNET for that year, so that these land uses will contract, resulting in 
abandoned land. This causes negative iLUC, which by definition never occurs in 
MAGNET. It can be debated which of the two models, if any, is correct. But the 
most important implication for our study is that uncertainty in iLUC projections 
does not only stem from uncertainties of parameters and model structure within 
one model component, but also from the dissimilarity in model concepts between 
the two models within the integrated model chain.  
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5.3.2. DLUC and iLUC projections for Brazil up to 2030 at different spatial 
scales and the uncertainty herein 

The direct land use change as a result of an increased ethanol production from 
2013 to 2030 mainly takes place in the Central South region. The highest cell (5 x 5 
km2) based probabilities, up to 0.77, exist in the South of Mato Grosso do Sul and 
the West of São Paulo (Figure 5.6, frame 1). The highest probabilities of indirect 
land use change, with a maximum of 0.43, occur in the Amazonian states 
Rondônia, Amapá, and Roirama (Figure 5.6, frame 2). Probabilities in these three 
small states are high because they are the only places in the Northern Amazon 
where any agricultural land use type can expand, as the rest of the Northern 
Amazon has very few roads, almost no existing agriculture and thus few hubs, and 
many protected areas. Implementation of new roads in the Amazon could change 
the spatial distribution drastically, but this is not included into the model due to 
limited spatial planning data availability. In the other macro regions, there are 
more options for expansion, and there is more variation in the suitability maps 
(best locations for expansion) between the different land use types and between 
the individual Monte Carlo realizations, i.e. more uncertainty. In these other macro 
regions, iLUC locations with high probabilities are the frontier of the sugar cane 
expansion area (Goiás, Mato Grosso do Sul, and Mato Grosso) as well as the 'arc of 
deforestation', the transition area from cultivated land to mainly natural vegetation 
(Mato Grosso, Pará and Rondônia).  

As expected, there are only very few cells experiencing negative dLUC, and with 
negligibly low probabilities, with a maximum of 0.07 (Figure 5.6, frame 3). 
Conversely, negative iLUC (land abandonment in the biofuel scenario and not in 
the reference scenario, Figure 5.6, frame 4) does appear, with probabilities up to 
0.48, mainly in Espírito Santo, Minas Gerais and the Pantanal, which is the wetland 
area in the West of Mato Grosso do Sul and the South of Mato Grosso. These are 
areas where the suitability for most agriculture is low, resulting in land 
abandonment when the demand in the biofuel scenario is lower than in the 
reference scenario (see also the discussion in the previous section). With lower 
probabilities, up to 0.1, this effect also occurs in the rest of the Central South. 
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Figure 5.6: Probability of 1) dLUC, 2) iLUC, 3) negative dLUC, and 4) negative iLUC per grid cell. 
Probabilities are shown at a common scale from 0 to 0.5. Only for dLUC a few cells with higher 

probabilities exist, up to 0.77, but stretching the scale up to 0.77 reduces discernibility between 
different cells with low probability in all four maps. For dLUC and iLUC map detail frames at a 
location in the expansion area are provided, showing probabilities for the three runs: a) the 
default with both models stochastic, b) with only PLUC stochastic, and c) with only MAGNET 

stochastic. 

In the following we add up dLUC and negative dLUC, and iLUC and negative iLUC, 
obtaining net dLUC and net iLUC. Scaling up to 250 x 250 km2 blocks (Figure 5.7), 
we can calculate the coefficient of variation (cv), indicating relative uncertainty in 
dLUC and iLUC. Clearly, the uncertainty in iLUC is generally larger than in dLUC. The 
median cv over all selected blocks for dLUC is 0.91, while for iLUC it is 1.61. This is 
caused by the fact that dLUC is affected by the dynamics of sugar cane only, while 



144 
 

iLUC is an effect of the interplay of all land use types, thereby being subjected to 
the uncertainties in all weights of all suitability factors (Table 5.3) and the order of 
allocation. The maximum cv value of dLUC is 4. The maxima occur at the expansion 
frontier of sugar cane, through Mato Grosso, Goiás and Minas Gerais. The 
maximum cv value of iLUC is 6. This means that, when considering the 95% 
confidence interval, mean iLUC values might be as much as 13 times as high or as 
low. In a nutshell, the uncertainty in these blocks is so high that we can say 
practically nothing about expected iLUC there, except when mean iLUC is (very 
close to) zero (13 times zero is still zero). Coefficients of variation in the arc of 
deforestation generally range from 1 to 3, which is a bit better, but still very 
uncertain. 

Comparing Figure 5.6 and Figure 5.7 it becomes apparent that blocks of maxima in 
cv of iLUC area correspond to regions where both iLUC and negative iLUC might 
appear. When some Monte Carlo realizations have negative iLUC values and others 
positive iLUC values, the standard deviation is large, and correspondingly the cv. In 
these blocks the net iLUC effect might be positive as well as negative, so that the 
impacts on for example biodiversity, might be negative as well as positive 
respectively. 

 

 

Figure 5.7: Mean net area (km
2
)

 
(colour of the block) and the coefficient of variation (cv) (-) (size of 

the red circle) of dLUC (left) and iLUC (right), per 250 x 250 km
2
 block. For the display of the cv, 

blocks smaller than 31250 km
2 

(half of a 250 x 250 km
2
 block, occurring at the map edges) are 

filtered out, as the cv is heavily influenced by the support size of the block. Also blocks with mean 
dLUC or iLUC smaller than 25 km

2
 (one cell) are filtered out, because when the mean goes to zero, 

the cv becomes infinite. 
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When looking at the cv for dLUC and iLUC area for Brazil as a whole (Table 5.5, 
both models stochastic), the values are many times smaller. The total amount for 
the whole of Brazil can be determined about nine times as precise for dLUC and 
about two times as precise for iLUC compared to the median of the 250x250 km2 
blocks, because small scale errors balance each other out when aggregating. 
 

5.3.3. Contribution of the economic and land use change model to the 
uncertainty in dLUC and iLUC at different spatial scales 

The cv of the dLUC area at national level is for 100% caused by MAGNET (Table 
5.5), which is logical, as MAGNET determines the total demand for sugar cane, and 
PLUC only allocates it within the macro regions. For iLUC area this is not the case. 
The cv value of iLUC area for the run with only MAGNET stochastic is about sixteen 
times higher than cv value of iLUC area for the run with only PLUC stochastic, so 
about 93% of uncertainty in iLUC stems from MAGNET. Yet, the exact contribution 
of both models cannot be determined, because errors from the two models partly 
compensate each other (the cv values of the two runs do not add up to the cv 
value of 0.72 found in the default run). The reason that uncertainty in iLUC at 
national level is not fully determined by MAGNET is that in PLUC iLUC can occur 
within a macro region that is additional to the iLUC between macro regions from 
MAGNET.  

At the grid cell level, many cells have some probability of experiencing dLUC or 
iLUC when both models are stochastic (Figure 5.6, detail frame 1a.). With only 
PLUC stochastic and MAGNET deterministic, there is in general not much 
difference with the results of the default run (Figure 5.6, panel 1c.), although 
somewhat fewer cells have a probability above zero on dLUC and iLUC. This 
indicates that only a small part of the uncertainty at cell level is caused by 
MAGNET. With only MAGNET stochastic and PLUC deterministic, compared to the 
default run less than half of the cells have a probability above zero on dLUC and 
iLUC, and the ones that have, have a relatively high probability, indicating much 
lower uncertainty (Figure 5.6, panel 1b.). The uncertainty now mainly exist at the 
edges of the expansion patches, caused by the variation in demand from MAGNET. 
For iLUC (Figure 5.6, panels 2a., 2b., 2c.) the same reasoning applies. In conclusion, 
uncertainty at grid cell level is mainly caused by uncertainty in PLUC, for both dLUC 
and iLUC. 
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Table 5.5: Total area (Mha), standard deviations (sd) (Mha), and coefficients of variation (cv) (-) of 
dLUC and iLUC for Brazil for three different runs: 1) both the land use change model and the 

economic model stochastic, 2) land use change model stochastic and the economic model 
deterministic, 3) the land use change model deterministic and the economic model stochastic 

run mean dLUC sd dLUC cv dLUC mean iLUC sd iLUC cv iLUC 

both stochastic 4.20 0.10 0.02 3.13 2.25 0.72 

PLUC stochastic 4.21 0.00 0.00 3.15 0.61 0.06 

MAGNET stochastic 4.20 0.10 0.02 2.62 2.19 0.84 

5.4. Discussion 

In this paper we have demonstrated a general methodology to calculate direct and 
indirect land use change (dLUC and iLUC) stochastically with an integrated 
economic – land use change model, taking into account important uncertainties in 
all components of the modelling chain. The proficiencies of this methodology were 
shown for a case study of land use change in Brazil up to 2030, steered by current 
and planned ethanol mandates worldwide. Here, we shortly discuss the answers to 
our three research questions and give recommendations for further studies. 

 

5.4.1. What are the dLUC and iLUC projections for Brazil up to 2030 at 
different spatial scales and what is the uncertainty herein? 

Cell (5 x 5 km2) based probabilities of dLUC range from 0 to 0.77, and of iLUC from 
0 to 0.43. Thus, given our scenario assumptions, there is no single cell in Brazil for 
which it can be said with certainty that dLUC or iLUC will take place up to 2030. So, 
it is difficult to project exactly where dLUC and iLUC will occur, but it is certain that 
it will occur (there are no Monte Carlo realization without dLUC or iLUC effects). 
Yet, overall locations of iLUC are in line with the locations projected by Lapola et al. 
(2010). For dLUC our study shows some locations with high probabilities in Mato 
Grosso do Sul and Goiás, where Lapola et al. (2010) do not project dLUC. As there 
are the ‘new’ expansion areas, this inconsistency is likely caused by the fact that 
their projection is for 2020 while we project up to 2030. Also, in our projections 
there are many cells for which it can be concluded with certainty that no dLUC or 
iLUC will take place in 2030, which is surely relevant information. In 250 x 250 km2 
blocks, the coefficient of variation (cv) ranges from 0 to 4 for dLUC and from 0 to 6 
for iLUC. Large cv values for dLUC occur at the frontier of sugar cane expansion. 
High cv values for iLUC occur where both iLUC and the opposite effect (agriculture 
in the reference scenario is abandoned land in the biofuel scenario), introduced in 
this paper, might take place.  

The uncertainty in iLUC area and location is generally higher than in dLUC, because 
iLUC is caused by the interplay of various land use types that each have their 
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uncertain model parameters, while dLUC is mainly affected by the parameters for 
sugar cane. Uncertainty in dLUC and iLUC is lower at higher aggregation levels. For 
iLUC the decrease in uncertainty by aggregation is smaller. At country level, the cv 
for iLUC is 36 times higher than for dLUC in our case study. At this level, dLUC can 
be projected with high certainty, having a cv of only 0.02, while iLUC is still 
uncertain, having a cv of 0.72. Thus, to answer the question posed in the title, what 
we can and cannot say about iLUC: we can merely say things about iLUC with high 
uncertainties. Estimated iLUC areas, even at country level, might as well be 2.4 
times as high or as low, given the 95% confidence interval. 

 

5.4.2. What are the sources of uncertainty for each step in the model chain 
and how do these uncertainties influence dLUC and iLUC projections? 

Uncertain components in the land use change model are 1) the initial land use 
map, causing uncertainty at cell level, 2) the order of allocation of the land uses, 
causing uncertainty in especially iLUC, and 3) the selection and weights of the 
suitability factors for allocation of the land use types, causing mainly uncertainty at 
intermediate aggregation levels, like states. The reduction in root mean square 
error in the modelled median land use areas per state by model calibration, 
compared to a non-calibrated model is on average 20%. Poor-performing land use 
types are rangeland and planted forest, probably due to poor data availability for 
the drivers of location of land use change. 

For the economic model we have assessed only the effect of one of the most 
critical parameters: the land transition elasticities that simulate the likelihood of 
particular land transitions. The uncertainty caused by varying these elasticities 
mainly plays a role at national level. At the cell level, it only causes uncertainty at 
the edge of the patch of expansion.  

The final aspect generating uncertainty in the output is the difference in the 
conceptual model between the economic and the land use change model 
concerning the reclaiming of abandoned land. This conceptual difference affects 
the total amount of iLUC and the opposite iLUC effect. 

 
5.4.3. What is the contribution of the economic and land use change 
model to the uncertainty in dLUC and iLUC at the different spatial scales? 

At the cell level, uncertainty is primarily determined by the land use change model. 
Going to higher aggregation levels the influence of the uncertainty in the 
Computable General Equilibrium (CGE) model on output uncertainty increases. At 
national level, the cv of dLUC is caused by the CGE model for 100%. The 
contribution of the economic model to the cv of iLUC at this level is about 93%, 
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although this cannot be determined precisely, because errors from the two models 
partly compensate each other.  

 
 
5.4.4. Implications and recommendations 

From the above we can conclude that projected iLUC areas and locations are highly 
uncertain. Based on the case study, our opinion is that threshold evaluation for 
iLUC indicators should not be implemented in legislation. Thresholds (cf. Malins, 
2013) have no use when the model, used to check whether an indicator for a 
specific case is above or below this threshold, gives an output confidence interval 
that straddles the threshold. This is likely to happen considering the high 
uncertainties found in our study. As most iLUC (or LUC) indicators in legislation are 
provided in terms of greenhouse gas (GHG) emissions generated, the impacts of 
the uncertainty in dLUC and iLUC projections on GHG emissions should be assessed 
in order to underpin our conclusion. Error propagation assessment for other 
impacts, like biodiversity and water availability, is also desirable. Our opposition to 
thresholds for iLUC factors in legislation does not mean we favour negligence of 
biofuel induced land use change. We propose, in line with e.g., Finkbeiner (2014) 
and Mathews and Tan (2009), a change of focus from quantifying iLUC to taking 
proactive measures to mitigate iLUC, even though the effectiveness of these 
measures might be difficult to quantify. 

Our quantification of  the sources of uncertainty allows identification of the parts 
of the modelling chain having the highest priority for improvement. If one wants 
better estimates of dLUC and iLUC at cell level for a given case study, for example 
to be able to better quantify local GHG emissions caused by the biofuel targets, 
one should focus on improving the land use change model. Spatially explicit input 
data could be improved, especially for land use types that are problematic to 
derive from remote sensing: rangeland (problematic to distinguish from natural 
savannah) and planted forest (problematic to distinguish from natural forest). And 
data that are now only included at an aggregate level, like land management and 
yield level, could be included spatially to account for spatial variation. Also, better 
information on data accuracy would be helpful. Due to the lack of accuracy 
information we had to make strong assumptions on the errors in the maps used to 
create the initial land use map and the observational data used for calibration.  

If one wants better estimates of dLUC and iLUC at country level, one should focus 
on improving the economic model. Our current estimates of uncertainty in the CGE 
model might be underestimated, because we have evaluated the uncertainty from 
the land transition elasticities only, while land use changes might be sensitive to 
other parameters as well (Kavallari et al., 2014). Yet, making other parameters 
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stochastic could also reduce uncertainty, when they cancel out each other's errors. 
It would be good if making parameters stochastic and running Monte Carlo 
simulations would become common practice in economic modelling. Another 
option for better country level estimates might be the usage of a whole different 
type of model or tool, obviously also stochastic, although our current study gives 
cannot ascertain whether and to what extent that could reduce uncertainty. 

One thing that could improve iLUC estimates at all spatial scales is a better match 
between the economic and land use change model. The best solution would be to 
link the economic and the land use model with a hard link that includes a feedback, 
as also suggested by Wicke et al. (2015). However, there is an inherent risk that 
this feedback loop is infinite, meaning that the land use dynamics cannot be 
resolved, and there are many technical obstacles that complicate hard linking.  

Yet, even if improved models, or improved model connections are used, in all cases 
we strongly advise to provide quantitative uncertainty estimates together with the 
calculated dLUC, iLUC or LUC indicators so that users of these indicators can 
evaluate the reliability of the indicators. 
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5.6. Appendix A: Initial land use map 

The demand time series (tabular area data) for the initial year of simulation, 
2006, should match the total area per land use type in the initial land use map. If 
they do not, as in our case, three options exist to harmonize the two: 1) adapt the 
time series to the map, 2) adapt the map to the time series, and 3) do something 
intermediate. The first option is relatively easy. One can derive relative increase 
and/or decreases in area from the time series and apply this trend to the total area 
in the initial land use map. But if, for the case study under consideration, one has a 
higher confidence in the area values of the time series than in the map, or if there 
is no single map containing all land use types one wants to model, the second or 
third option is preferable. Because for Brazil no recent, coherent land use map is 
available for the whole country, we apply the second method, adapting the map to 
the time series. 
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You and Wood (2005) provide a deterministic method to create a land use map 
that matches the time series, by spatially disaggregating land use areas per 
administrative region from the time series into raster cells within that region. They 
base the disaggregation on prior knowledge about the likely distribution of the land 
use types, originating from one or several land use maps and potentially other 
sources like maps of potential yield for crops, farm size or cropping intensity.  

We apply the procedure of You and Wood (2005) to create an initial land use map 
for Brazil on a raster with a cell size of 1 km2. Differently from You and Wood, in 
our method the land uses are disaggregated sequentially instead of 
simultaneously, because our confidence in the prior knowledge maps (Table 5.6) 
varies for the different land use types. In addition to the prior knowledge maps 
given in Table 5.6, a map of natural remnants (CSR/Ibama et al., 2013) is used as 
prior knowledge about where it is unlikely that agricultural (unnatural) land uses, 
i.e. planted forests, crops, sugar cane and planted pasture, are present. As 
administrative regions we use municipalities, the smallest units in the IBGE Census 
data (IBGE, 2006), 5566 in total for Brazil. The result of the disaggregation is a map 
𝐚𝑛 for every land use type n, giving per cell the fraction that is occupied by that 
land use type n. Cells for which the sum of the fractions of all land use types is 

smaller than one (∑ (𝐚𝑛)10
𝑛=1 < 1) can be 'filled' up to one with natural land uses. In 

our case study these cells are filled with natural forest2 and grassland, relative to 
the shares in the GlobCover class (Arino et al., 2008) of that cell. 

Some land use change models work with fractions of land use types per cell, e.g., 
IMAGE (Bouwman et al., 2006) and CLUE (Verburg et al., 1999), but  PLUC (Chapter 
2) can handle only a single land use type per cell, similar to CLUE-S (Verburg et al., 
2002). Therefore, the collection of fraction maps has to be transformed into one 
nominal land use map. For every land use type n, 𝐚𝑛 is first converted to a Boolean 
map, keeping the total area per land use type the same as in the tabular data. This 
can be done by sorting the map 𝐚𝑛 for each administrative region separately, and 
assigning cells to land use type n (set Boolean true) starting with the highest value 
in 𝐚𝑛 until the total area of these cells equals the area for n in the tabular data in 
that administrative region. Again, this should be sequentially for all land use types, 
masking out cells that are already occupied by previously allocated land use types. 
In the end, the Boolean maps for all n are combined to create a single nominal land 
use map. This is performed using a cell size of 5 x 5 km2. 

  

                                                           
2 Note that this produces a map with a larger area of natural forest than indicated by the tabular 

data. The tabular data for forest in Brazil from the IBGE Census, however, report natural forest areas 
in the Amazon that we believed were questionably low, justifying our approach. 
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Table 5.6: Sources of the tabular area per land use type per municipality, sources of the prior 
knowledge maps, and the standard deviation, 𝝈𝐚,𝒏, used to create an ensemble of initial land use 

maps (Equation 5.2). 

n name source(s) of tabular area per 
LU type in 2006 

source(s) of prior 
knowledge map(s) 

𝜎𝐚,𝑛 

1 urban GlobCover (Arino et al., 2008) GlobCover (Arino et al., 
2008) 

0 

2 water GlobCover (Arino et al., 2008) GlobCover (Arino et al., 
2008) 

0 

3 natural 
forest 

IBGE Census (IBGE, 2006)
1
 GlobCover (Arino et al., 

2008) 
0.1 

4 rangeland IBGE Census (IBGE, 2006)
1
 GlobCover (Arino et al., 

2008) and Global Pasture 
data (Ramankutty and 
Foley, 1999)

2
 

0.1 

5  planted 
forest 

IBGE Census (IBGE, 2006)
1
 GlobCover (Arino et al., 

2008)
3 

0.1 

6 crops IBGE Census (IBGE, 2006)
1
 and 

Conab (Conab, 2014)
4 

GlobCover (Arino et al., 
2008) 

0.1 

7 grass and 
shrubs 

- - 0.1 

8 sugar cane Canasat (Rudorff et al., 2010)
5
, 

IBGE Census (IBGE, 2006)
1
 and 

Conab (Conab, 2014)
4 

Canasat (Rudorff et al., 
2010)

5
 and M3 crop data 

(Monfreda et al., 2008) 

0.1 

9 planted 
pasture  

IBGE Census (IBGE, 2006)
1
 PROBIO (MMA, 2008) 0.1 

10 bare soil GlobCover (Arino et al., 2008) GlobCover (Arino et al., 
2008) 

0 

1
 NoData in the IBGE data is presumed to be zero, following IBGE's own approach for scaling 

up from municipality to e.g., state level. 
2
 Because the Global pasture data is coarse, the correlation between the presence of pasture 

and the GlobCover classes was assessed. Next, each cell was assigned the correlation value 
based on its GlobCover class, and this map (thus having the fine resolution of GlobCover) was 
used as prior knowledge map.  
3
 Locations of planted forest in GlobCover are distinguished from locations of natural forest 

based on the map of natural remnants (CSR/Ibama et al., 2013). Planted forest is allocated 
outside of the remnants and natural forest inside, furthermore based on the same prior 
knowledge map. 
4
 The Conab data is used to calculate for each crop the percentage that is harvested as second 

or third crop. The Conab data is per state, so for all municipalities in that state the IBGE area is 
reduced by that percentage, because second and third crops do not require land (they are 
cultivated on the same land as the first harvest). 
5
 The Canasat map covers only the Central South region in Brazil, which includes the states 

Goiás, Minas Gerais, Mato Grosso, Mato Grosso do Sul, Paraná and São Paulo from 2003 
onwards and Espírito Santo and Rio de Janeiro from 2010 onwards. Therefore, we use IBGE 
Census data in combination with Conab data (see 4) as sources of tabular area data per LU 
type in 2006 and the M3 crop data as prior knowledge map for the other states.  
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Uncertainty is taken into account by adding random noise to 𝐚𝑛. If this is done for 
each Monte Carlo realization, every realization gets a slightly different initial land 
use map, varying especially at locations at which the value of 𝐚𝑛 is close the point 
at which the total area for n is met. Under the assumption that the error of 𝐚𝑛 is 
linearly related to 𝐚𝑛, the error model is defined as: 

 𝐀𝑛 = 𝐚𝑛  +  𝑍𝐚 
with 𝑍𝐚 ~ 𝑁(0, 𝜎𝐚,𝑛 ∗ 𝐚𝑛) 

5.2  

In Equation 5.2, 𝐀𝑛 is the stochastic fraction map for land use type n, and 𝜎𝐚,𝑛 is 

the standard deviation. For all land use types 𝜎𝐚,𝑛 is set at 0.1, except for the land 
use types which are the easiest to classify in the remote sensing image and for 
which the area as well as the prior knowledge are therefore derived from 
GlobCover; for these 𝜎𝐚,𝑛 is set to 0 (Table 5.6). 
 

5.7. Appendix B: Land use change model 

The total suitability map 𝐬𝑛,𝑡 of the active land use types is defined as: 

 
𝐬𝑛,𝑡 =  ∑ (𝑤𝑛,𝑘 ∙ 𝐮𝑛,𝑘,𝑡)

𝐾𝑛
𝑘=1 , for each active n in each t 

with  ∑ (𝑤𝑛,𝑘) =  1
𝐾𝑛
𝑘=1  

5.3  

In Equation 5.3, k is the suitability factor, with k = 1, 2, …, Kn (each active land use 
type n can have a different number of suitability factors). Furthermore, 𝐮𝑛,𝑘,𝑡 ∈
[0,1] is the normalized suitability map for land use type n for suitability factor k at 
time t; and 𝑤𝑛,𝑘 ∈ [0,1] is the weight of factor k, denoting the importance of the 
drivers of location in the total suitability map 𝐬𝑛,𝑡. The weights are part of the 

model structure (Chapter 4). Another structural element is the order in which the 
land uses allocate their demands. These two elements are modelled stochastically, 
i.e. defined by a probability distribution of all possible values, to take into account 
model structure uncertainty. For the stochastic model we use a Monte Carlo 
simulation with 5000 realizations. The prior probability distribution of the weights 
of the suitability factors in this ensemble is defined as: 

 
𝑤𝑛,𝑘 =

𝑍𝑤𝑛,𝑘

∑ (𝑍𝑤𝑛,𝑘
)

𝐾𝑛
𝑘=1

 ,      with 𝑍𝑤𝑛,𝑘
 ~ 𝑈(0,1),  

for each active n for each k 

5.4  

In Equation 5.4, 𝑈(0,1) denotes a uniform distribution between zero and one. 
Equation 5.4 ensures that the sum of the stochastic weights is 1. The order of the 
active land use types is also randomized, meaning that the order in which the land 
use types are allocated also differs per Monte Carlo realization. At the start of the 
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simulation, for each Monte Carlo realization, a weight is drawn for each suitability 
factor for each active land use type and a sequence is drawn. Given the fact that 
we model five dynamic land use types, the prior probability distribution of this 
sequence consists of 5! = 120 possible sequences, which are given equal prior 
probabilities. The posterior probabilities of the weights and allocation sequence is 
determined by the calibration (section 5.2.4). 
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6. A spatial optimization approach to find trade-offs 
between production costs and greenhouse gas 
emissions: a bioethanol case study   

 

Judith A. Verstegen, Jan Gerrit Geurt Jonker, Derek Karssenberg, Floor van der 
Hilst, Oliver Schmitz, Steven M. de Jong, and André P.C. Faaij (in prep.). 

 

 

Abstract - Ideally, land is used for different food, feed, fibre and bioenergy 
commodities in a way that economic benefits coincide with positive environmental 
impacts. Regrettably, often trade-offs exist between economic and environmental 
objectives. A Pareto frontier can quantitatively express these trade-offs. In this 
paper we demonstrate how a Pareto frontier can be constructed for a supply 
increase of a given commodity and how information derived from it could aid to 
formulate management or policy recommendations. This is illustrated by applying a 
spatially explicit optimization approach to a case study in which we aim to 
minimize production costs and GHG emissions of bioethanol for the state Goiás, 
Brazil, in 2030, for different carbon prices. We find that the Pareto frontier ranges 
between minimum costs of 656 US$2014 / m3 ethanol and minimum GHG emissions 
of -399 kg CO2-eq / m3 ethanol, i.e. carbon sequestration. At a moderate increase 
in carbon price from 0 to 10 US$2014 / tonne CO2-eq, the frontier shows a steep 
decrease in GHG emissions, a reduction of more than 50%, while production costs 
practically remain at their minimum, signifying an excellent opportunity for 
Brazilian bioethanol emission reduction policies. The developed methodology has 
the prospect to identify trade-offs and win-win situations for other regions, scales, 
objectives and commodities. 
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6.1. Introduction 

The intensifying pressure on the scarcely available land, by e.g., food, feed, fibre 
and bioenergy production requirements, leads to a growing debate about the 
potential negative environmental impacts of land use changes (Lambin and 
Meyfroidt, 2011). In the most sustainable situation, land is used for the different 
commodities in such a way that economic benefits are combined with positive 
environmental impacts. But in reality, trade-offs exist between economic and 
environmental objectives. Such trade-offs can be expressed quantitatively in a 
Pareto frontier, which shows all (in this case land use) alternatives for which it is 
impossible to improve one objective, without impairing another (Figure 6.1). In 
other words, it gives all ‘optimal alternatives’ given the different objectives 
(Seppelt et al., 2013). A Pareto frontier can help to structure the aforementioned 
debate, by showing the actors involved how much will be lost in one objective for a 
gain in another objective. Our aim is to demonstrate how a Pareto frontier 
between economic and environmental objectives can be constructed for a supply 
increase of a given commodity and how information derived from it could aid to 
formulate management or policy recommendations. 

 

Figure 6.1: The concept of a Pareto frontier (solid line) between an economic and an 
environmental objective with two optimal alternatives (dark grey dots) on the frontier and the 
spatial configurations belonging to these alternatives. In the spatial configuration the grey cells 

are cultivated for the commodity under consideration and the white ones are not. The black dot, 
accompanied by its the spatial configuration, is a suboptimal alternative. The light grey dot is an 

infeasible point and consequently has no spatial configuration belonging to it. 

Many constituents of economic and environmental objectives vary widely over 
space. For example, land use change related greenhouse gas (GHG) emissions 
depend on previous land use, soil type and climate conditions (e.g. van der Hilst et 
al., 2014). Also, the spatial configuration of the existing sourcing locations of the 
commodity is of relevance. Therefore, the spatial dimension should be taken into 
account. The few previous studies of Pareto frontier construction that included 
spatial data either used regionally aggregated data (e.g. Lautenbach et al., 2013, 
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Akgul et al., 2012), or analysed very small areas, making it difficult to draw 
generalizable conclusions relevant for regional or national policy making (e.g. 
Chikumbo et al., 2015, study area: 1500 ha).  

It should be realized that a Pareto frontier shows the economic and environmental 
impacts of the optimal land use alternatives. In reality however, the land use 
system behaves suboptimal (Lambin, 2004). As an indication of the effort required 
to reach a point on the Pareto frontier, an assessment of economic and 
environmental impacts of the commodity under consideration given scenario 
projections with the current, suboptimal, land use system (e.g., the black dot in 
Figure 6.1) is decisive information (Seppelt et al., 2013).  

Among the most debated commodities at the moment are biofuels. Scenario 
projections have been performed to study future economic benefits (e.g. Jonker et 
al., 2015, van der Hilst and Faaij, 2012) and potential environmental impacts (e.g. 
Warner et al., 2013, Fargione et al., 2010, Chapter 5, Gibbs et al., 2008) of biofuels. 
Such scenario projections give insights in the future sketched by the scenario, but 
do not indicate if this solution is optimal or suboptimal and do not provide 
information about potential other futures and the associated trade-offs between 
economic and environmental impacts. Therefore, we address a case study of 
simultaneously minimizing production costs and GHG emissions of a 2030 
bioethanol supply for the state Goiás, in Brazil. The production of bioethanol from 
sugar cane has two important location variables, the locations where the sugar 
cane is cultivated and the locations of the mills that process the sugar cane into 
bioethanol (de Meyer et al., 2014)3. Consequently, the control variables in our 
optimization are the location of sugar cane fields and the location and scale 
(processing capacity) of the mills. In addition we use a land use change model to 
obtain a projection with current (suboptimal) trends. Our main research question 
is: What is the Pareto frontier between the costs and GHG emissions of bioethanol 
production from sugar cane in Goiás, and what are the spatial patterns of sugar 
cane fields and processing mills belonging to different points on this Pareto 
frontier? Related to the above mentioned issues, we have two sub questions: a) 
How do these spatial patterns at different points on the Pareto frontier differ and 
what drives these differences? and b) How do the optimal costs and GHG 
emissions compare to the costs and GHG emissions projected for Goiás for 2030 
using current land use change trends?  

 

  
                                                           
3
 In this study we do not consider the distribution of the ethanol to the customers. 
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6.2. Methods 

6.2.1. Case study area 

Brazil started producing bioethanol from sugar cane at the beginning of the 20th 
century, motivated by a gasoline import burden and a sugar production surplus 
(Walter et al., 2014). In the harvest season 2013/2014 ethanol production had 
reached 27.5 million m3 (UNICA, 2015). The second largest proportion of this, 3.9 
million m3 (UNICA, 2015), was produced in the state Goiás, recently experiencing a 
fast growth of sugar cane area (Adami et al., 2012b). Goiás (Figure 6.2) is chosen as 
a case study area, because also a large share of the future sugar cane expansion is 
expected to occur here (Lapola et al., 2010, Chapter 5), making the evaluation of 
trade-offs between production costs and GHG emissions of bioethanol highly 
relevant. 

Goiás is 340 000 km2, roughly the size of Germany. It is principally a large plateau 
with a tropical climate. It is characterized by a vast area of planted pastures, 
especially in the West (Figure 6.2). Furthermore, there is a sizeable patch of 
cropland in the Southwest, with mainly soy, corn and sugar cane (IBGE, 2013b). 
Most forest areas are found in the centre North part, which has a more 
mountainous character. We model Goiás at a 5 x 5 km2 resolution (Figure 6.2).  

 

Figure 6.2: Land use map for Goiás, Brazil for 2006 at a 5 x 5 km
2 

resolution (from land use map of 
Brazil in Chapter 5). The upper left frame shows all states in Brazil (black lines) with Goiás 

indicated in yellow. 
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6.2.2. Objective function 

The production of bioethanol from sugar cane can be divided into four steps: 

1. Acquisition and preparation of land for the sugar cane plantation;  
2. Sugar cane cultivation and harvest; 
3. Transportation of the harvested cane to the mill; 
4. Processing of the sugar cane into bioethanol. 

 
All four steps involve both a production cost and a GHG emission component. Total 
production costs, c (US$2014 / m3 ethanol), are therefore: 

 
𝑐 = 𝑐𝑙 + 𝑐𝑐 + 𝑐𝑡 + 𝑐𝑝 6.1  

In Equation 6.1, cl  (US$2014 / m3 ethanol) are the land costs, mainly depending on 
potential sugar cane yield and the costs to convert the initial land use to sugar 
cane, cc (US$2014 / m3 ethanol) are the cultivation costs, partly yield dependent (e.g. 
fertilizer costs) and partly area-dependent (e.g. machinery costs), ct (US$2014 / m3 
ethanol) are the transport costs, depending on the distances between the fields 
and the processing mills, and cp (US$2014 / m3 ethanol) are the processing costs, 
depending on the scale of the mill (processing capacity). Correspondingly, total 
emissions e (tonne CO2-eq / m3 ethanol) are:  

 
𝑒 = 𝑒𝑙 + 𝑒𝑐 + 𝑒𝑡 + 𝑒𝑝 6.2  

In Equation 6.2, el (tonne CO2-eq / m3 ethanol) are the land emissions, depending 
mainly on the carbon stocks of the replaced land use type, ec (tonne CO2-eq / m3 
ethanol) are the cultivation emissions, partly yield dependent (e.g. fertilizer 
emissions) and partly area-dependent (e.g. machinery emissions), et (tonne CO2-eq 
/ m3 ethanol) are the transport emissions, depending on the distances between the 
fields and the processing mills, and ep (tonne CO2-eq / m3 ethanol) are the 
processing emissions, a fixed amount per m3 ethanol produced. Note that we 
calculate costs and emissions at the ‘factory gate’, meaning that the revenues from 
selling the ethanol and the avoided emissions from the replacement of fossil fuel 
are not included. The methods to calculate the cost and emission components are 
based on two papers by Jonker et al. (2015, in prep.). The details of these 
calculations are provided in Appendix A.  
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One way to stimulate reduction of GHG emissions for agricultural products is to 
charge the producer for these emissions using a carbon price (Smith et al., 2008, 
Chen et al., 2012). When a carbon pricing system is established the two objectives 
of minimizing production costs and GHG emissions can be combined into a single 
objective:  

 
𝑥 = 𝑐 + 𝑒 ∙ 𝑝 6.3  

In Equation 6.3, 𝑥 (US$2014  / m3 ethanol) are the aggregate costs (production costs 
plus GHG costs) that we aim to minimize and p (US$2014 / tonne CO2-eq) is the 
carbon price. The Pareto frontier between the production costs (c) and GHG 
emissions (e) of bioethanol is found by minimizing the aggregate costs (x) for 
different carbon prices (p). 

 

6.2.3. Control variables and optimization model 

For a given bioethanol supply increase d (m3 ethanol) and carbon price p, the 
aggregate costs 𝑥 are controlled by 1) the locations of the sugar cane fields, 2) the 
number of processing mills and their scale (processing capacity), and 3) the 
locations of these mills (de Meyer et al., 2014). The relation between the aggregate 
costs and each of these three control variables is non-linear and the set of 
potential solutions is too large for exhaustive search. Metaheuristics are designed 
to find near-optimal solutions in an acceptable computation time for such cases, 
using some kind of ‘smart’ search through the solution space (Blum and Roli, 
2003). We use a genetic algorithm (GA), because this metaheuristic has proved to 
generate good results for optimization problems similar to ours (e.g., Li and Yeh, 
2005, Stewart et al., 2004). A GA mimics the process of natural selection in a 
population of solutions, called individuals, similar to the set of samples in a Monte 
Carlo approach (Bennett et al., 1998). This population evolves through a number of 
rounds, called generations, towards better solutions. The best performing 
individual of the final evolved population is the optimal solution. See Appendix 3 
for a more elaborate explanation of the GA. 

It is not feasible to simultaneously optimize the locations of all fields, the number 
of mills, and all locations and scales of these mills. Such a large number of variables 
for a large case study area becomes unworkable for a GA (Haupt and Haupt, 2004). 
Therefore, take a sequential approach. We fix the number of mills and let the 
variables that the GA determines be the coordinates of these mills (Figure 6.3). For 
each individual in each generation, the following method is applied to calculate the 
objective value x. Once the locations of the mills are known, sugar cane fields are 
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placed at the locations with the lowest (cl + cc + ct) + p ∙ (el + ec + et)
4 until the 

supply is fulfilled. The total area of sugar cane fields can differ per individual in the 
GA, i.e. per solution, depending on whether sugar cane is allocated on high yielding 
(small area) or low yielding (large area) locations. When the fields are allocated, it 
is known which field delivers sugar cane to which mill (lowest ct + p ∙ et) and thus 
the scale of each mill (tonne cane / year) can be calculated. Although the number 
of placed mills is fixed, this control variable is still optimized. If no fields are 
assigned to a mill, the production costs and GHG emissions of this mill are not 
counted. Therefore, in reality, only the maximum number of mills is fixed, not the 
actual number of mills (see also Appendix A). It is ascertained that the scale of each 
mill cannot exceed the maximum attainable scale S (tonne cane / year). Now all 
control variables are known, so the objective value x can be calculated. Next, the 
GA adapts the locations of the mills of a selected proportion of the individuals (see 
Appendix 3) and the process is repeated (Figure 6.3). 

The optimization is implemented in the Python programming language (Python 
software foundation, 2014), using the AMORI software (AMORI, 2009) for the GA 
and the PCRaster Python framework (Karssenberg et al., 2010) for the calculation 
of the phenotypes and the objective values of the individuals. 

 

Figure 6.3: Conceptual model of control variables and calculation of the objective value. 

 

6.2.4. Scenario projection using current trends 

In reality, land use systems behave suboptimal with respect to production costs 
and GHG emissions (Lambin, 2004). To realize how far the real situation is from the 
optimal situation, the optimal production costs and GHG emissions of bioethanol, 
calculated as described above, are compared to the production costs and GHG 
emissions that would be obtained in 2030 given a scenario projection of the 
current land use system. Hereto, we use an integrated economic - land use change 
                                                           
4
 Processing costs cannot be calculated yet, because they depend on the scale of the mill, 

which can only be determined once the fields are allocated. 
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model, allocating sugar cane fields (and other land uses) in Brazil with allocation 
rules calibrated on historic data (Chapter 5). The results of these scenario 
projections for different scenarios are described by van der Hilst et al. (in prep.). 
For this study, we use the results for Goiás (same supply increase as in the 
optimization, see next section) from the Business-As-Usual (BAU) scenario that 
includes an increased ethanol demand due to current and planned ethanol 
mandates worldwide. 

The land use change model does not project the mills. In another study (Jonker et 
al., in prep.), we have optimized the number of processing mills, their scales and 
locations based on costs, for the projected locations of the sugar cane fields in 
2030, using a mixed integer linear programming model. We use the output of this 
study as our projection of the mills. Together we call the locations of the sugar 
cane fields, number of processing mills and their scale locations of these mills 
generated in this way the ‘scenario projection’. Costs and GHG emissions of this 
projection are obtained using Equations 6.1 and 6.2. Note that part of this 
configuration is still optimized, although this optimization was based on production 
costs only, and the sugar cane field locations were not a control variable.  

 

6.2.5. Data and boundary conditions 

The total increase in supply for bioethanol for Goiás for 2030 d is 10.2 million m3 

ethanol, derived from the total production of sugar cane in 2030 projected by the 
land use change model (van der Hilst et al., in prep.) minus the total production in 
the initial land use map (Chapter 5), and an assumed conversion efficiency η of 
0.09 m3 ethanol / tonne cane (Jonker et al., 2015). We derive the supply from this 
projection to ensure that the points on the Pareto frontier and the scenario 
projection are equal in terms of total ethanol production. Other cost parameter 
values are derived from Jonker et al. (2015). The most important limitation of these 
values is that they were collected for the state São Paulo, while our current case 
study is for the state Goiás. It is possible that the values differ for Goiás in reality, 
for example higher or lower labour costs or different machinery usage. The same 
goes for cultivation and processing emission parameter values; land emission and 
transport emission parameter values are general, i.e. not state specific (see also 
Jonker et al., in prep.). All data values and sources are provided in Appendix B. 

It is assumed that sugar cane present in the initial land use map goes to existing 
mills; this is not remodelled. New sugar cane fields cannot be allocated on raster 
cells that are urban, water or sugar cane in the initial land use map (as this would 
generate no additional ethanol compared to the initial situation). The number of 
mills M placed is 30 and each mill has a maximum scale of 5.5 million tonne cane / 
year (Jonker et al., in prep.). The GA is run with a population of 1000 individuals for 
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five different carbon prices of 0, 10, 100, 200 and 400 US$2014 / tonne CO2-eq5. It is 
also run once optimizing on emissions only, to get the minimum attainable 
emissions (minimum attainable costs are reached at a carbon price of 0 US$2014 / 
tonne CO2-eq). The GA settings are determined by performance tests as shown in 
Appendix 3.  

 

6.3. Results and Discussion 

6.3.1. Pareto frontier and spatial patterns belonging to different points on 
this frontier 

The minimum attainable emissions for a production of 10.2 million m3 ethanol in 
Goiás in 2030 are -399 ∙ 10-3 tonne CO2-eq / m3 ethanol, i.e. carbon sequestration 
of 399 ∙ 10-3 tonne CO2-eq / m3 ethanol, and the minimum attainable production 
costs (excluding GHG costs) are 656 US$2014 / m3 ethanol (Figure 6.4). These 
minimum costs are similar to the 520 US$2010 / m3 (approximately 650 US$2014 / m3 
ethanol) calculated by Jonker et al. (2015). The Pareto frontier shows the trade-offs 
between production costs and GHG emissions between these two extremes. 
Interesting from a policy perspective is that, at a carbon price of only 10 US$2014 / 
tonne CO2-eq, which is roughly the current carbon price in Europe (EEX, 2015), 
GHG emissions are reduced by more than 50%, compared to a zero carbon price in 
our simulations, with a negligible increase in production costs (Figure 6.4). Also, 
emission savings required by the Renewable Energy Directive (RED) (European 
Parliament and Council of the European Union, 2009) are reached at this carbon 
price6 (Figure 6.5b).  

                                                           
5
 No carbon pricing system is currently installed in Brazil and it is unknown if and when it 

will be installed (Dahan et al., 2015). 
6
 Note that RED also requires inclusion of GHG emissions from the distribution of ethanol 

(transport from the mills to the customers). This is not included in our study but we expect 
its contribution to be small because the emissions of sugar cane transport are already small 
(Figure 6.5b) and the ethanol has a much higher energy density than sugar cane, and 
therefore lower GHG emissions per m

3 
ethanol (e.g. Hamelinck et al., 2005a).  
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Figure 6.4: Pareto frontier (black line) between production costs (US$2014 / m
3
 ethanol) and GHG 

emissions (kg CO2-eq / m
3
 ethanol) for a supply increase of 10.2 million m

3 
ethanol in Goiás in 

2030. For each carbon price (0, 10, 100, 200 and 400 US$2014 / tonne CO2-eq), and the optimization 
on emissions only, the best 10% of the final GA population is plotted, where each individual is 

indicated by a coloured circle. The black plus sign indicates the production costs and GHG 
emissions for the scenario projection using current trends.  

As expected, GHG emissions decrease with increasing carbon price, while 
production costs increase with increasing carbon price (Figure 6.4), mainly through 
an increase in cultivation costs and also a slight increase in land costs (Figure 6.5a). 
Cultivation costs and land costs depend on the yield of the sugar cane field (section 
6.2.2 and Appendix A). Consequently, at low carbon prices, when the aggregate 
costs are mainly driven by production costs, all sugar cane fields and mills are 
concentrated in high-yielding areas (Figure 6.6, e.g. location 1 and 3), and the scale 
of the mill depends on the size of the high-yield area. The GHG emissions of 
ethanol production are dominated by the emissions of land use change. Therefore, 
reductions in GHG emissions along the Pareto frontier are reached though a 
reduction in land emissions (Figure 6.5b). Land emissions mainly depend on the 
type of land use replaced by sugar cane and carbon is sequestered when this is 
cropland. Hence, at high carbon prices, sugar cane fields are placed at locations 
that used to be cropland (Figure 6.6, e.g. location 2). However, not only croplands 
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are replaced. The yield remains an important driver of the sugar cane field pattern 
at high carbon prices (Figure 6.6, e.g. location 1), because land emissions and 
cultivation emissions are yield dependent too (section 6.2.2 and Appendix A). 
Therefore, low-yielding cropland is never preferred over high-yielding land of a 
another land use type. 

The spatial patterns of sugar cane fields and mills belonging to different carbon 
prices provide interesting information for management strategies. Win-win 
configurations that are optimal at all points along the Pareto frontier (Figure 6.6, 
e.g. location 1), are good locations for investment, because they are robust, i.e. 
independent of the future carbon pricing policy. 

From this analysis, two general conclusions can be derived. Firstly, yield is the main 
determinant of ethanol production costs and also an important driver of ethanol 
GHG emissions. The Pareto frontier would change drastically if the yield would 
change, either spatially (pattern of Figure 6.6e changes), or in the absolute sense 
(absolute yield in tonne cane / ha belonging to the value of 1 in Figure 6.6e 
changes). Therefore, improvements in management practices and the introduction 
of higher yielding sugar cane varieties can positively impact costs as well as 
emissions. This conclusion also gives rise to the need to examine the effect of 
climate change, because through a change in yields this can have major impacts on 
costs and emissions in a positive as well as in a negative direction (e.g. Holzkämper 
et al., 2015). 

 

Figure 6.5: (a) Production cost breakdown and (b) GHG emission breakdown for all carbon prices. 
‘E only’ are the results of the optimization on emissions only. The black dashed lines are the 

interpolation between carbon price and production costs or GHG emissions and the red dotted 
line indicates the maximum GHG emissions allowed for biofuels produced in installations in which 
production started on or after 1 January 2017 according to the Renewable Energy Directive (RED) 

(European Parliament and Council of the European Union, 2009). 
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Secondly, the shape of the Pareto frontier is subjected to the magnitude of the 
ethanol supply increase, as indicated for costs by others through cost-supply 
curves (e.g. van der Hilst and Faaij, 2012). For the supply analysed in this study, it 
was possible to allocate all sugar cane fields on high-yielding locations, but with an 
increase in supply lower yielding locations will have to be used and consequently 
average costs per m3 ethanol will increase. Along the same line of reasoning GHG 
emissions will increase with fewer possibilities to pick field locations with low 
carbon stocks. A limitation in our methodology is that it does not take into account 
indirect land use land change (iLUC). ILUC is the cascading effect of a land use 
change: for instance, when a sugar cane is allocated on land previously used for 
crop cultivation, the crop production has to be moved to elsewhere, in order to 
sustain the demand for this crop (Wicke et al., 2012). ILUC is likely to cause GHG 
emissions, additional to the direct emissions. Since they are (indirectly) caused by 
the land allocation of sugar cane, it could be argued that these emissions should be 
included in the commodity’s Pareto frontier.  

Incorporating iLUC requires determination of where the displaced land use type 
reappears. This entails the use of either a spatial land use change model 
determining the dynamics of all displaceable land use types (e.g. Chapter 5) or a 
combined optimization model for ethanol production and all other commodities 
(e.g. Lautenbach et al., 2013). Both options are data intensive and therefore 
require massive run times. And modelling Goiás only is not sufficient, because the 
reallocation can take place anywhere in the world. Yet, it is obvious that, if iLUC 
could be included in the optimization, 1) it is very likely that higher GHG emissions 
are obtained and 2) placing sugar cane on croplands becomes much less 
favourable, because the crop production has to be moved to elsewhere and 
eventually some natural vegetation will probably be converted7. This means that 
the position and shape of the Pareto frontier changes as well as the spatial  
patterns of sugar cane fields and mills belonging to the points on the frontier. 

 

                                                           
7
 The area of natural vegetation eventually converted is often not equal to the area of sugar 

cane allocated, for example because the location where the agricultural land has been 
moved, has a higher or lower productivity or different management practices. Or because 
of price effects, which can only be determined if an economic equilibrium model is used. 
These things are additional complications when trying to include iLUC in the optimization. 
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Figure 6.6: Spatial patterns of sugar cane fields and mills belonging to the optimal individuals for 
different carbon prices of (a) 0; (b) 10; (c) 100; and (d) 200 US$2014 / tonne CO2-eq. Fields with the 
same colour belong to the same mill. At the bottom the input maps (e) yield fraction (Tóth et al., 
2012) and (f) initial land use (2006) (Chapter 5) are displayed. The red circles with numbers are 

locations referred to in the main text. 
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6.3.2. Costs and emissions optimized versus scenario projection 

The scenario projection using current trends generates production costs of 715 
US$2014 / m3 ethanol and GHG emissions of -80 ∙ 10-3 tonne CO2-eq / m3 ethanol 
(Figure 6.4). As expected, current trends result in somewhat higher production 
costs than the minimum attainable, 59 US$2014 / m3 ethanol higher. Yet, the 
scenario projection is surprisingly close to the Pareto frontier, near our optimal 
results for a carbon price of 200 US$2014 / tonne CO2-eq (Figure 6.4), thus with GHG 
emissions lower than we expected. We supposed that, with no carbon pricing 
system installed, ethanol producers would not be too concerned about GHG 
emissions. Still, GHG emissions are 865 ∙ 10-3 tonne CO2-eq / m3 ethanol lower than 
what our optimization comes to at zero carbon price, mainly because about 80% of 
the sugar cane field expansion is projected to occur on croplands (Jonker et al., in 
prep.).  

We believe that two factors contribute to these relatively low GHG emissions of 
the scenario projection. Firstly, not only does the conversion of croplands result in 
low GHG emissions, croplands have two other advantages why they are often 
selected to be converted to sugar cane by the land use change model, used to 
create the scenario projection (Chapter 5): 1) they are easier, i.e. cheaper, to 
convert compared to non-agricultural land, and 2) sugar cane is likely to be 
allocated in the neighbourhood of existing sugar cane fields and mills, because this 
creates economies of scale, and in Goiás a large share of the existing sugar cane 
fields happens to be bordered by croplands (Figure 6.2).  

The second reason is that, although no carbon pricing system is currently installed 
in Brazil, current trends can take into account GHG emissions through other 
sustainability regulations. The RED (Figure 6.5b) is not likely to have an effect, 
because it is a European regulation and almost all Brazilian ethanol is currently 
used domestically. But there are some Brazilian sustainability regulations. Examples 
are the federal ecological zoning for sugar cane and certification of sustainably 
produced ethanol (Lucon and Goldemberg, 2010). Although such regulations were 
not explicitly included in the land use change model, they might have been 
implicitly captured in the model structure through calibration on historic data.  

Note that our projection assumes that current trends are continued towards 2030, 
while in reality a land use system can change quite abruptly (Chapter 4). Therefore, 
the low GHG emissions of the scenario projection are uncertain and by no means 
undermine the potential benefits of a carbon pricing system in Brazil. 
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6.4. Conclusion 

This study has spatially assessed trade-offs between production costs (US$2014 / m3 
ethanol) and GHG emissions (tonne CO2-eq / m3 ethanol) of a 2030 bioethanol 
supply increase of 10.2 million m3 ethanol in the state Goiás, Brazil, by optimizing 
the location of sugar cane fields and the location and size of processing mills. The 
Pareto frontier between the production costs and GHG emissions of bioethanol has 
been obtained by carrying out this optimization for different carbon prices (US$2014 

/ tonne CO2-eq). The minimum attainable GHG emissions are -399 ∙ 10-3 tonne CO2-
eq / m3 ethanol, i.e. carbon sequestration, and the minimum attainable production 
costs (excluding GHG costs) are 656 US$2014 / m3 ethanol. The Pareto frontier 
ranges between those two extremes and shows a steep decrease in GHG emissions 
while production costs practically remain at their minimum at a relatively small 
increase in carbon price from 0 to 10 US$2014 / tonne CO2-eq. In-between these 
prices the emission savings required by the Renewable Energy Directive (RED) 
(European Parliament and Council of the European Union, 2009) are reached, 
which is promising for potential sustainability policies.  

The main spatial determinant of production costs is the potential yield and the 
main determinants of the GHG emissions are the replaced land use type, where 
current cropland has a high sequestration potential, and also potential yield. This 
information can be used to restrict zoning for sugar cane fields to current cropland 
fields while monitoring that, for the given supply, the area of high potential yield in 
these regions is large enough to reach a competitive production price per m3 
ethanol.  

Production costs and GHG emissions projected for Goiás for 2030 using current 
land use change trends are 715 US$2014 / m3 ethanol and -80 ∙ 10-3 tonne CO2-eq / 
m3 ethanol respectively. We expected suboptimal results with high emissions 
because no carbon pricing system is currently installed in Brazil, but these values 
are relatively close to the Pareto frontier, near our optimal results for a carbon 
price of 200 US$2014 / tonne CO2-eq.  

Our study illustrates how much more information can be derived from the 
construction of a Pareto frontier between economic and environmental objectives, 
compared to a scenario projection, the currently most frequently used approach 
for the assessment of potential futures. A Pareto frontier shows the trade-offs 
between the two objectives, interesting for producers, and, in our case study, 
indicates at which carbon price a particular GHG emission reduction is reached, 
information of interest for policy making. The spatial configurations of the 
optimized commodity give, in contrast to scenario projections, information about 
the robustness or uncertainty of promising locations under different (in our case 
carbon pricing) policies, thereby facilitating management decisions. The developed 
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methodology is general and can easily be applied to other regions, scales, 
objectives and commodities. 
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6.6. Appendix A: Equations of the cost and emission components 

6.6.1. General 

This section provides all equations used for the cost and emission components of 
the allocation model. In the equations the following notations are used 
throughout. Italic variables are non-spatial and bold variables are spatial, i.e. a map 
of values at raster cells instead of a single value. The subscript i for a spatial 
variable indicates the selection of a cell in the map on which sugar cane is 
allocated, for i = 1, 2, … I. The value for I, the total number of cells with sugar cane, 
varies per model run (per individual in the genetic algorithm (GA) population), 
depending on whether sugar cane is allocated on high yielding (low I) or low 
yielding (high I) cells. 

Many of the equations contain the yield of sugar cane. Sugar cane is a semi-
perennial crop. This means that after planting, it can be harvested for some 
consecutive years. In Brazil, a 6-year cycle is most common: the first harvest takes 
place 12 or 18 months after planting and the subsequent harvests once every year 
for four years (Macedo et al., 2008). During these four years, the yield gradually 
decreases. In the next year, the field is renewed. The yield we use, is the average 
yield over this 6-year cycle. The exception are the cultivation costs, where we do 
specifically account for the changing yield over the cycle, because here it influences 
the total costs. The yield of sugar cane in a cell, 𝐲𝑖 (tonne cane), is constructed 
from a map showing the relative yield distribution over space and an average (over 
the cycle) maximum attainable yield:  

 𝐲𝑖 = 𝐟𝑖 ∙ 𝑚 ∙ 𝑎     for each i 6.4  

In Equation 6.4, 𝑚 (tonne cane / ha) is the maximum attainable yield, in our case 
for 2030. Furthermore, 𝐟𝑖  ∈ [0, 1] (-) is the fraction of the maximum yield that can 
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be obtained. And 𝑎 (ha) is the cell area, which is constant over space since we use 
an Albers Equal Area map projection. 

Many of the cost and emission components are expressed per tonne cane. Because 
we are interested in the costs of the end product, ethanol, all components are 
converted to costs and emissions per m3 ethanol, using the conversion efficiency 𝜂 
(m3 ethanol / tonne cane). We assume a single conversion efficiency for all mills 
allocated. 

 

6.6.2. Costs 

All cost equations are derived from the equations by Jonker et al. (2015). For more 
detailed information we refer to that study. The land costs, 𝑐𝑙  (US$2014 / m3 

ethanol), consist of two parts: the costs to buy the land and the land conversion 
costs to make the land cultivatable for sugar cane. Both parts contain area 
dependent costs and yield dependent costs: 

 
𝑐𝑙 = ∑

𝛼 ∙ 𝑎 ∙ (𝑎𝑙 ∙ (𝐛𝑖 + 𝐥𝑖) + 𝑏𝑙 ∙ 𝐲𝑖 ∙ (𝐛𝑖 + 𝐥𝑖))

𝐲𝑖 ∙ 𝜂

𝐼

𝑖=1

 6.5  

In Equation 6.5, 𝐛𝑖 (US$2014 / ha) are the costs to buy the land and 𝐥𝑖 (US$2014 / ha) 
are the land conversion costs. Both vary over space based on region and/or current 
land use type. The factors 𝑎𝑙  (-) and 𝑏𝑙 (ha / tonne) distinguish between the area 
dependent costs and yield dependent parts. The factor 𝛼 (-) is the annuity factor 
that transforms the total costs to yearly costs: 𝛼 = 𝑟 (1 − (1 + 𝑟)−𝐿)⁄ . Herein, 𝑟 (-
) is the discount rate, i.e. the time value of money according to the theory of time 
preference, and L (years) is the lifetime or amortization period (Blok, 2006, p. 195, 
Equation 11.2b). Again, a is the cell area. 

The cultivation costs, 𝑐𝑐 (US$2014  / m3 ethanol), contain many factors, like fertilizer 
application and machinery use. A simplified equation, summing all cost 
components in area-dependent and yield dependent cultivation costs, is derived 
from the equation given by Jonker et al. (2015). The initial investment costs are 
annualized, but this cannot simply be done using 𝛼 as in Equation 6.5, because the 
yearly costs vary over the 6-year sugar cane cultivation cycle: 

 
𝑐𝑐 =

1

𝜂
∑ (

∑ (𝑎𝑐,𝑡 ∙ 𝑎)6
𝑡=1 / ∑ (1 + 𝑟𝑡)6

𝑡=1

∑ (𝐲𝑖
6
𝑡=1 ∙ 𝑦𝑡) / ∑ (1 + 𝑟𝑡)6

𝑡=1

+
∑ (𝑏𝑐,𝑡)6

𝑡=1 / ∑ (1 + 𝑟𝑡)6
𝑡=1

∑ 𝑦𝑡
6
𝑡=1 / ∑ (1 + 𝑟𝑡)6

𝑡=1

)

𝐼

𝑖=1

 6.6  

In Equation 6.6, 𝑦𝑡 (-) is the yield factor for year t = 1, 2, 3, 4, 5, 6, decreasing over 
the 6-year sugar cane cultivation cycle, 𝑎𝑐,𝑡 (US$2014 / ha) are the area-dependent 
cultivation costs at year t, for example the costs of machinery, 𝑏𝑐,𝑡 (US$2014 / tonne 
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cane) are the yield dependent cultivation costs at year t, for example for fertilizers. 
Again, 𝑟 (-) is the discount rate. 

The costs of transporting the sugar cane to the mill, 𝑐𝑡 (US$2014 / m3 ethanol), are 
calculated over the road network. It is assumed that the truck will take the fastest 
route. The fastest route is determined by applying a least cost path algorithm on 
the road map with speed differing per road type and off-road, where the ‘costs’ 
per kilometre are one divided by the speed (higher speed are lower ‘costs’ because 
it is faster). The ‘costs’ themselves are not used, only the route, to compute the 
average speed and diesel use along the routes and total distance of the routes per 
sugar cane cell: 

 
𝑐𝑡 = ∑

(𝑎𝑡 𝐯𝑖 + 𝐛𝑖) ∙ 𝐝𝑖 + 𝑜𝑡⁄

𝜂

𝐼

𝑖=1

 6.7  

In Equation 6.7, 𝐯𝑖 (km / hour) is the average truck speed, and 𝐝𝑖  (km) is the total 
distance of the fastest route to the nearest (time-wise) mill. Furthermore in 
Equation 6.7, 𝑎𝑡 (US$2014 / tonne-hour) are the annual costs of the truck, 𝐛𝑖 
(US$2014 / tonne-km) are the diesel costs per tonne cane that differ per field 
depending on the road types in the route to the mill, and 𝑜𝑡 (US$2014  / tonne cane) 
are the costs of loading and unloading the truck. When, during the allocation 
process of the fields, one of the mills has reached the maximum capacity, the 
spatial variables are updated for all cells that had this ‘full’ mill as their closest mill, 
according to the fastest route to the next nearest mill. 

The costs of processing the sugar cane (converting it to ethanol), 𝑐𝑝 (US$2014 / m3 

ethanol), include capital depreciation, operational costs and revenues from 
electricity generation. In contrast to the other cost components, the processing 
costs are calculated per mill instead of per field, because the costs depend on the 
scale of the mill. Therefore, the total processing costs are obtained by summing 
over all active mills, j = 1, 2, … J. The notion ‘active’ indicates all mills to which fields 
are assigned. Mills to which no fields are assigned, do have a location in theory 
(they have a x and y coordinate in the GA), but do not contribute to the total costs 
of the individual and are thus excluded from the analysis: 

 

𝑐𝑝 = ∑ (
(𝛼 ∙ (𝑎𝑝 ∙ 𝐬𝑗) + 𝑏𝑝)

𝐬𝑗 ∙ 𝑞 ∙ 𝜂
+ 𝑐𝑜 − 𝑔𝑒 ∙  𝑟𝑒)

𝐽

𝑗=1

 6.8  

In Equation 6.8, 𝐬𝑗 (tonne cane / hour) is the scale of the mill, indicating the sugar 

cane processing capacity, and 𝐬𝑗 ∙ 𝑞 ∙ 𝜂 (m3 ethanol) is the annual output of the 

mill, in which 𝑞 (hours) is the number of hours per year the mill is in running. In this 
study, 𝑞 is assumed to be the same for all mills. Furthermore, 𝑎𝑝 (US$2014-hour / 

tonne) is a cost factor that decreases with the scale of the mill, representing the 
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advantages of economies of scale, while 𝑏𝑝 (US$2014) is a fixed cost factor. 

Moreover, 𝑐𝑜 (US$2014 / m3 ethanol) are the fixed operation costs, and 𝑔𝑒 (kWh / 
m3 ethanol) is the electricity surplus. This electricity is generated from bagasse, a 
fibrous product left over after the sugary juice is extracted from the sugar cane. 
The electricity surplus, the part of the generated electricity the mill does not need 
for the sugar cane processing, can be sold to the grid; 𝑟𝑒 (US$2014  / kWh) are the 
revenues obtained for this surplus. Again, as with land costs, 𝛼 (-) is the annuity 
factor that transforms the total costs to yearly costs. 

 

6.6.3. Emissions 

The land emissions, 𝑒𝑙 (tonne CO2-eq / m3 ethanol), from carbon stock changes are 
calculated using the IPCC approach (IPCC, 2006). This approach involves five carbon 
pools: above ground biomass, below ground biomass, dead wood, litter, and soil 
organic carbon (SOC). In line with the Tier 1 approach of the IPCC, an equilibrium is 
assumed in the dead wood and litter stocks, i.e. they are considered not to change: 

 
𝑒𝑙 =

44

12
∑

(𝐬𝑖,2006 − 𝐬𝑖,𝑐 + 𝐛𝑖,2006 − 𝐛𝑖,𝑐) ∙ 𝑎

ℎ ∙ 𝐲𝑖 ∙ 𝜂

𝐼

𝑖=1

 6.9  

In Equation 6.9, 𝐬𝑖,2006 (tonne C / ha) is the mineral soil organic carbon for 2006, 
the reference year. The mineral SOC is calculated given the soil type, climate, land 
use and management (IPCC, 2006). Next, 𝐬𝑖,𝑐 (tonne C / ha) is the mineral soil 
organic carbon when all cells i = 1, 2, … I are converted to sugar cane. This means 
that land use and management are changed, while soil type and climate remain the 
same. Organic SOC is not considered in Equation 6.9, because our study area does 
not contain organic soils. Furthermore, 𝐛𝑖,2006 (tonne C / ha) is the above and 
below ground biomass for 2006, based on land use and productivity. In the same 
fashion as with 𝐬𝑖,𝑐, 𝐛𝑖,𝑐 (tonne C / ha) is the above and below ground biomass in 
all cells i = 1, 2, … I where sugar cane is cultivated. The total carbon stock changes 
are divided over a time horizon h (years). The factor 44/12 is to convert from C to 
CO2-eq.  

The cultivation emissions, 𝑒𝑐 (tonne CO2-eq / m3 ethanol), originate from the use of 
diesel (for machinery), fertilizers, agrochemicals and other chemicals:  

 
𝑒𝑐 = ∑

𝑙𝑐 ∙ 𝑎 + 𝐲𝑖 ∙ 𝑘𝑐

𝐲𝑖 ∙ 𝜂

𝐼

𝑖=1

 6.10  

In Equation 6.10, 𝑘𝑐 (tonne CO2-eq / ha) are the diesel emissions from the 
machinery, and 𝑙𝑐 (tonne CO2-eq / tonne cane) are the yield-dependent emissions, 
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including primarily fertilizer emissions. These are mainly N2O emissions, converted 
to CO2-eq. 

The transport emissions, 𝑒𝑡 (tonne CO2-eq / m3 ethanol), are diesel emissions from 
the trucks transporting the sugar cane to the mill:  

 
𝑒𝑡 = ∑

𝐤𝑖 ∙ 𝐝𝑖

𝑙𝑡 ∙ 𝜂

𝐼

𝑖=1

 6.11  

In Equation 6.11, 𝒌𝑖  (tonne CO2-eq / km) are the diesel emissions per tonne cane 
that differ per field depending on the road types in the route to the mill, including 
a factor to correct for the empty return of the truck, and 𝑙𝑡 (tonne) is the load of a 
full sugar cane truck. 

The processing emissions, 𝑒𝑝 (tonne CO2-eq / m3 ethanol), are assumed not to 

differ per mill, in contrast to the processing costs; it is a fixed emission per tonne 
cane: 

 
𝑒𝑝 =

𝑘𝑝 − 𝑙𝑝

𝜂
 6.12  

In Equation 6.12, 𝑘𝑝 (tonne CO2-eq / tonne cane) includes all processing emissions 

and 𝑙𝑝 (tonne CO2-eq / tonne cane) are the emissions avoided by electricity 

production. 

 

6.7. Appendix B: Input data 

This section describes the data used for the Goiás case study within the equations 
given in the previous section. The values of non-spatial variables are given in Table 
6.1 for costs and in Table 6.2 for emissions. The data sources for all maps are given 
in Table 6.3.  

One of the most important variables in the cost calculations is the maximum 
attainable yield, m. The value of m is determined for 2012 by finding the m for 

which ∑ 𝐲𝑖
𝐼
𝑖=1 = 𝑞, where i = 1, 2, … I are in this case all cells that are projected to 

be sugar cane for 2012 by a combination of data from the Canasat project (Rudorff 
et al., 2010) and a model projection from the PCRaster Land Use Change model 
PLUC (van der Hilst et al., in prep.). Furthermore, q is the total sugar cane 
production reported by the Brazilian Sugarcane Industry Association UNICA 
(UNICA, 2015). The value of m for 2030 (Table 6.1) is found by applying a yield 
trend over time from Jonker et al. (2015) to the 2012 value. 

Regarding land emissions we assume, in line with the IPCC method (IPCC, 2006), 
that the above and below ground biomass of cropland is zero, because the crops 
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are fully harvested each year. For planted pasture, it is assumed that all above 
ground biomass is eaten by the livestock each year, so the biomass stock of pasture 
is only its below ground biomass. Rangelands have a stocking rate of about 70% 
lower than pastures (Aguiar and d'Athayde, 2014), so we assume that only 30% of 
the above ground biomass is eaten each year, 70% remains in stock. Along similar 
lines, we assume that the above ground sugar cane is harvested each year and that 
the roots remain intact. The biomass stock of planted forest is also its below 
ground biomass only, as all carbon in the above ground stock is eventually 
harvested. 

Table 6.1 (continues on next page): Non-spatial data for the sugar cane production costs. All 
values are for the year 2030 and expressed in US$2014; if values in the source were in another 

monetary unit, they are converted using the IGP-DI index (Banco Central do Brasil, 2015).  

cost 
component 

variable unit symbol value source 

general maximum 
yield 

tonne/ha 𝑚 212 Rudorff et al., 
2010, see 
explanation in 
main text, van 
der Hilst et al., 
in prep., UNICA, 
2015 

cell area ha 𝑎 2500 - 

conversion 
efficiency 

m
3
 ethanol / 

tonne cane 
𝜂 0.09 Jonker et al., 

2015 

land annuity 
factor 

- 𝛼 0.13 
*
 Jonker et al., 

2015 

correction 
factor 

- 𝑎𝑙 0.33 FNP Informa 
economics, 
2012 

correction 
factor 

ha / tonne 𝑏𝑙 6.67 ∙ 10
-3

 FNP Informa 
economics, 
2012 

cultivation yield factor 
in year t 

- 𝑦𝑡  t 𝑦𝑡  Macedo et al., 
2004 1 0 

2 1.29 

3 1.09 

4 0.95 

5 0.87 

6 0.81 

area-
dependent 
cultivation 
costs in 

US$2014  / ha 𝑎𝑐,𝑡 t 𝑦𝑡  Jonker et al., 
2015 1 2577 

2 1124 

3 1124 
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year t 4 1124 

5 1124 

6 1050 

yield 
dependent 
cultivation 
costs in 
year t 

US$2014  / 
tonne cane 

𝑏𝑐,𝑡 t 𝑦𝑡  Jonker et al., 
2015 1 8.3 

2 15.0 

3 15.9 

4 16.3 

5 16.9 

6 17.2 

discount 
rate 

- 𝑟 0.12 Jonker et al., 
2015 

transport capital 
depreciatio
n of the 
truck 

US$2014 / 
tonne-hour 

𝑎𝑡 2.68 Jonker et al., 
2015 

truck 
loading 
and 
unloading 

US$2014  / 
tonne cane 

𝑜𝑡 2.00 Jonker et al., 
2015 

processing annuity 
factor 

- 𝛼 0.13 
*
 Jonker et al., 

2015 

period per 
year the 
mills runs 

hours 𝑞 170 ∙ 24 Dias et al., 2011 

cost factor 
decreasing 
with scale 

US$2014-hour 
/ tonne 

𝑎𝑝 75.57 
** 

59.09 
***

 
Jonker et al., 
2015 

fixed cost 
facor 

US$2014 𝑏𝑝 40 ∙ 10
6** 

100 ∙ 10
6*** 

Jonker et al., 
2015 

operation 
costs of 
the mill 

US$2014  / m
3
 

ethanol 
𝑐𝑜 98.67 Jonker et al., 

2015 

electricity 
surplus 

kWh / m
3
 

ethanol 
𝑔𝑒 906.67 Jonker et al., 

2015 

revenues 
from 
electricity 

US$2014  / 
kWh 

𝑟𝑒  0.07 Jonker et al., 
2015 

* 
Calculated for an amortization period L of 20 years with a 12% interest rate r (Blok, 

2006, p. 195, Equation 11.2b) 
**

 For mills with a scale smaller than 1000 tonne / hour 
***

 For mills with a scale equal to or larger than 1000 tonne / hour 
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Table 6.2: Non-spatial data for the sugar cane production emissions. All values are for the year 
2030. 

emission 
component 

variable unit symbol value source 

land time 
horizon 

years ℎ 20 European 
Parliament and 
Council of the 
European 
Union, 2009, 
IPCC, 2006 

cultivation yield-
dependent 
emissions 

tonne CO2-
eq / tonne 
cane 
 

𝑘𝑐  15.22 ∙ 10
-3

 quantities: 
Jonker et al., 
2015, emission 
per component: 
Macedo et al., 
2008 

area-
dependent 
emissions 

tonne CO2-
eq / ha 

𝑙𝑐  365.91 ∙ 
10

-3 
quantities: 
Jonker et al., 
2015, emission 
per component: 
Macedo et al., 
2008, Seabra et 
al., 2011 

transport truck load tonne 𝑙𝑡 30 Jonker et al., 
2015, CTBE, 
2012 

processing processing 
emissions 

tonne CO2-
eq / tonne 
cane 

𝑘𝑝 4.45 ∙ 10
-3

 Jonker et al., 
2015, Seabra et 
al., 2010 

emissions 
avoided by 
electricity 
production 

tonne CO2-
eq / tonne 
cane 

𝑙𝑝 10.44 ∙ 10
-3

 energy mix of 
Brazil (excluding 
bagasse) and 
related 
emissions: IEA, 
2013, surplus 
quantity: Jonker 
et al., 2015 
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Table 6.3 (continues on next page): Sources of all spatial data for sugar cane production costs and 
emissions. 

component variable unit symbol source 

general yield fraction tonne / ha 𝐟𝑖 Tóth et al., 2012 

land costs land tenure 
costs  

US$2014  / 
ha 

𝐛𝑖  FNP Informa economics, 2012
* 

land 
conversion 
costs  

US$2014  / 
ha 

𝐥𝑖  FNP Informa economics, 2012
** 

transport costs speed km / hour 𝐯𝑖  speeds on different road types 
adapted from (to correct for 
trucks going slower): de Souza 
Soler and Verburg, 2010 

diesel costs US$2014  / 
tonne-km 

𝐛𝑖  adapted from for different 
speeds: Jonker et al., 2015 

distance  km 𝐝𝑖  calculated over road network 
from: UFG, 2015 

conversion 
costs 

scale tonne 
cane / 
hour 

𝐬𝑗  determined by the model, max 
scale for 2030 set at 1348 
tonne cane / hour 5.5 Mtonne / 
year) (MME, 2013) 

land emissions mineral soil 
organic 
carbon in 
2006 

tonne C / 
ha 

𝐬𝑖,2006  2006 land use map: Chapter 5, 
values for carbon dependent 
on land use type, soil, climate 
and management level: IPCC, 
2006, soil map: Batjes, 2010, 
climate map: Hijmans et al., 
2005, Bernoux et al., 2006

 

mineral soil 
organic 
carbon when 
sugar cane is 
cultivated 

tonne C / 
ha 

𝐬𝑖,𝑐  values for carbon dependent 
on land use type, soil, climate 
and management level: IPCC, 
2006, soil map: Batjes, 2010, 
climate map: Hijmans et al., 
2005

 

total (above 
+ below 
ground) 
biomass 
stock for 
2006 

tonne C / 
ha 

𝐛𝑖,2006
 

above ground biomass: 
maximum yield assumptions by 
the authors together with yield 
fraction map by Tóth et al., 
2012, 2006 land use map: 
Chapter 5, ratio below to above 
ground biomass: IPCC, 2006, 
Jangpromma et al., 2012, de 
Miranda et al., 2014, Epron et 
al., 2013
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total 
biomass 
stock when 
sugar cane is 
cultivated 

tonne C / 
ha 

𝐛𝑖,𝑐  above ground biomass: 
maximum yield assumptions by 
the authors together with yield 
fraction map by Tóth et al., 
2012, 2006 land use map: 
Chapter 5, ratio below to above 
ground biomass: IPCC, 2006, 
Jangpromma et al., 2012

 

transport 
emissions 

diesel 
emissions 

tonne CO2-
eq / km 

𝒌𝑖  quantities: Jonker et al., 2015, 
Macedo et al., 2008, Hamelinck 
et al., 2005b 

* 
The FNP (FNP Informa economics, 2012) specifies land value per micro region in Goiás 

per land use type (distinction between natural vegetation, pasture and cropland). A land 
value map was made using the map of micro regions in Brazil and the land use map of 
2006 (Chapter 5). In addition the FNP indicates a higher land value around the cities of 
Rio Verde and Santa Helena de Goiás. This higher land value was assigned to all grid cells 
within a buffer of 50 km around these cities. 
** 

The FNP (FNP Informa economics, 2012) specifies land conversion costs separately for 
nature and agriculture. A conversion cost map was made by linking these values to the 
land use map of 2006 (Chapter 5). 

6.8. Appendix 3: Genetic algorithm 

A GA searches the solution space by mimicking evolutionary processes. It starts 
with a population of N candidate solutions, also called individuals (Figure 6.7). Each 
individual has a genotype, consisting of a bit-string of genes representing the 
control variables of the problem, and a phenotype, the ‘appearance’ resulting from 
the genotype (Bennett et al., 1998). The fitness of each individual in the population 
is calculated by evaluating this phenotype against the objective(s). The best-
performing individuals (a predetermined fraction of the population) are selected to 
‘reproduce’. This is done by crossover, also called recombination, and mutation 
(Blum and Roli, 2003). Crossover is the process of taking genes from two parents 
and combining them into a new genotype. Mutation alters a bit in one or more 
randomly selected genes. The new generation, the parents and the children 
together, generally has a higher fitness than the previous generation. The GA is 
configured to terminate when the optimum has been found. 

The settings of the parameters of our GA are tuned by systematic variation and 
monitoring the effect on the variance in the population and on the objective value 
of the best individual of the final population. First the fraction of the population to 
reproduce and the mutation rate are optimized for a population of 100 individuals.  
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A fraction of the population to reproduce of 0.2 means that the best 20% of the 
population is progressed to the next generation and this 20% creates the new 80% 
of the population by cross-over. When the fraction of the population to reproduce 
is too low, the objective value stabilizes too early, before the optimum is reached, 
because too little variation remains in the population. If the fraction is too high, 
individuals with a relatively low fitness reproduce, thereby not improving the 
fitness of the next generation.  

The mutation rate is the fraction of the total population that will be mutated. If the 
mutation rate is too low, the GA can become stuck at a local optimum, while if it is 
too high, the genotypes of the individuals with a high fitness change too much and 
there is no convergence towards the optimum objective value (e.g. Bennett et al., 
1998). For our optimization problem the fastest conversion towards the lowest 
minimum reached was with a population fraction to reproduce of 0.1 and a 
mutation rate of 0.3. During cross-over, individuals are split at two locations in the 
bit-string. The maximum number of bits to mutate in a single individual is two. 

Next, we increased the population size and number of generations with these 
settings until no improvement in the objective function was reached anymore. This 
was at a population of 1000 (no improvement anymore for 10000) for 24 
generations (no improvement anymore for 25). One run takes 28 hours on a Linux 
server with 16 GB RAM and 24 cores with 2 GHz Intel Xeon processors. Running the 
GA five times with these parameter settings for a single carbon price of 100 US$2014 
/ tonne CO2-eq proved that at generation 24 the objective value of the best final 
individual is always stable for some consecutive generations, and has a maximum 
variation of 2.8 US$2014 / tonne CO2-eq between the different runs (Figure 6.8).

 

Figure 6.8: Development of the objective value x over the generations of the GA for five different 
runs (black lines) at a carbon price p of 100 US$2014 / tonne CO2-eq. The red line indicates the 

mean over the five runs. 
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7. Synthesis 

7.1. Context 

Land use change caused by human drivers can have large impacts on, for instance, 
climate change, water availability and quality, soil quality and erosion, and 
biodiversity (Lambin and Meyfroidt, 2011, Nesheim et al., 2014). Assessing the 
future land use change effects of human drivers requires land use change models. 
Designing such models is not straightforward, because the dynamic processes and 
feedback loops in the land use system are complex and only partially understood 
(Manson, 2007, Verburg et al., 2013). This results in uncertainties in model 
structure, inputs and parameters, which propagate to the land use change 
projections. Another type of uncertainty in these projections, the solution space 
uncertainty, originates from fact that only a limited number of scenarios can be 
analysed, causing a lack of clarity about the complete set of potential futures. 
Current land use change models do not quantify and communicate these 
uncertainties and thereby may create a false sense of certainty. The aim of this 
thesis was to develop methods to quantify and reduce uncertainty in land use 
projections. The focus herein was on bioenergy case studies because bioenergy is 
experiencing a large demand increase and the land use change impacts of this 
demand increase are crucial for its sustainability and therefore need to be 
examined. Four research questions were defined in Chapter 1. They are answered 
and discussed in sections 7.2 to 7.5. Section 7.6 and 7.7 present the future 
perspectives and recommendations for land use change modelling in general and 
for bioenergy case studies specifically. 

 

7.2. How can uncertainty in land use change projections be quantified? 

Uncertainties in land use change projections of two types are evaluated in this 
thesis: uncertainties from errors propagating through the model to the outputs 
and solution space uncertainty (Table 7.1). To quantify uncertainty of error 
propagation, Monte Carlo (MC) analysis is used. The PCRaster Land Use Change 
model (PLUC) is developed, a stochastic land use change cellular automaton (CA) 
coupled to a MC scheme using the PCRaster Python framework (Karssenberg et al., 
2010). This MC analysis scheme also calculates summary statistics or spatial 
metrics, like the probability of occurrence of a particular land use type in a cell 
(Chapters 2, 3, and 5), the total number of patches (Chapter 3), or average area of 
a land use type at a higher aggregation level (Chapters 3, 4, and 5) per year.  
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Table 7.1: Overview of the variables in the model components of which uncertainty is taken into 
account per chapter. 

type of 
uncertainty in 
projections 

model 
component 

variable Chapter 

2 3 4 5 6 

propagating 
errors 

non-spatial 
inputs 

demand x   x
 

 

maximum yield x     

spatial inputs spatial attribute suitability factors x     

potential yield fraction x     

initial land use map    x  

model 
structure 

weights of suitability factors  x x x  

order of allocation    x  

systemic change   x   

parameters parameters of suitability factors x x x   

observations land use composition  x x x  

land use configuration  x    

solution space  - -     x 

 

The embedded coupling of the MC scheme with the land use change model allows 
for two activities that are important in uncertainty modelling. Firstly, because the 
definition of uncertainty in all model components is an integral part of the 
modelling framework, the end user can easily evaluate uncertainty for multiple 
scenarios or case studies. This is necessary as uncertainty in inputs, parameters, 
model structure or observations often varies between scenarios and especially 
between case studies. Secondly, the embedded coupling allows for iterative output 
uncertainty analysis, i.e. for each model time step, because the modelling 
framework comes with calculation and visualisation routines for spatio-temporal 
stochastic variables. This is important for complex systems, of which the land use 
system is an example, because they behave non-linearly through time (Manson, 
2007). Therefore, an uncertainty map of the final time step is not always sufficient 
information for decision making, since the ranges of output uncertainty are likely 
to be non-linear through time too. PLUC is applied in Chapters 2 to 5 to iteratively 
evaluate the effects of uncertainties in all different model components: inputs, 
parameters, model structure and observations used to reduce the uncertainty 
(Table 7.1). Such a full scope error propagation assessment is new in land use 
change modelling. 

To be able to evaluate the error propagation effects of uncertainties in different 
model components, the uncertainties in these components have to be estimated. 
To estimate uncertainty in the non-spatial inputs two methods have been used. In 
the first method (Chapter 2), the probability distribution is defined using a relative 
normal error model. This means that the error is higher for higher mean (expected) 
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values. The standard deviation herein is estimated based on predicted upper and 
lower limits for driving factors like population numbers. In the second method 
(Chapter 5), a general computable equilibrium (CGE) model is applied to estimate 
the demands for the different land use types. The probability distributions of these 
demands are estimated by varying the land transition elasticities, the most 
uncertain parameters in the CGE model. For the uncertainty in the spatial inputs, 
like the digital elevation model to calculate the slope, used as a suitability factor, 
normal and relative normal error models are applied on each cell value (Chapter 2). 
To represent uncertainty in the initial land use map, a method is developed to 
generate a separate realization of this initial land use map for each MC run based 
on presumed errors in the agricultural statistics that were used in creation of the 
map (Chapter 5). 

To quantify uncertainty in the model structure, methods were developed to vary 
the order of allocation of the dynamic land use types (Chapter 5) and the weights 
of the suitability factors of these land use types (Chapter 3, 4, and 5). A problem 
herein is that one cannot use a simple error model, such as the normal of relative 
normal distribution, to generate a realization for a single transition rule (e.g. a 
weight or the position of a land use type in the order of allocation), because the 
overall model structure has to be coherent. For the given variables this means that 
two land use types cannot be in the same position in the order of allocation and 
the weights of all suitability factor together should sum to a value of one. 
Therefore, specific error models were developed in Chapters 3 to 5 to ensure a 
coherent model structure. An additional source of model structure uncertainty is 
that the model structure can become invalid through time because of a systemic 
change. This denotes that a certain model structure, which was at previous time 
steps able to give an accurate representation of the land use change system, has to 
be altered at a certain point in time to remain able to simulate this system. In 
Chapter 4, we have developed a method to quantify uncertainty stemming from 
this non-stationarity of a land use system. We assessed which values for weights 
and parameters were valid for different points in time and how the variation in 
these values (systemic change) affects projection uncertainty. A visual inspection 
and an analysis of the quantity of this variation, as well as the outcome of two 
statistical tests have provided a strong indication of non-stationarity for three out 
of the four weights of the suitability factors, indicating a period of systemic change. 

For the model parameters there is not prior indication that they are correlated. 
Hence, simple error models are used such as the normal and uniform distribution 
to represent uncertainty in the parameters (Chapter 2 to 4). Herein, the standard 
deviation of the normally distributed parameters is estimated based on expert 
knowledge.  
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Uncertainty in the observational data, which are used to reduce projection 
uncertainty (see next section), is estimated in various ways throughout this thesis. 
In Chapter 3, we use a stochastic simulation method to simulate the observation 
variances and covariances. In Chapter 4, it is assumed that there is no spatial or 
temporal correlation in the errors of the observational data because the data are 
used at a higher aggregation level, and therefore only the variance has to be 
estimated, which is done from 1) errors in the classification of the remote sensing 
image, using the reported classification accuracy (Adami et al., 2012b), and 2) 
errors from the upscaling to a larger cell size. In Chapter 5, we estimate the 
observation error by comparing two data sources.  

After running the MC analysis, uncertainty in the projected land use change for the 
required point in time is transformed to the attribute and scale of interest for the 
end user. We have shown that output uncertainty is highly scale dependent. In 
Chapter 2, the maximum variance in the total potential yield of eucalyptus in 
Mozambique drops from 1 ∙ 105 to 680 to 298 (kg km-2 year-1)2 when scaling from 
cell level to province level to country level, respectively. Chapter 5 illustrates that 
the maximum coefficient of variation (cv) in indirect land use change area 
decreases from 6 to 0.72, when going from regional (250 x 250 km2 blocks) to 
national (Brazil) level. This is because local differences between realizations are 
levelled out at higher aggregation levels.  

Uncertainty in the outputs does not only depend on the scale level, but also on the 
evaluated attribute. For Brazil as a whole, the direct land use change (dLUC) area 
has a coefficient of variation (cv) of only 0.02, while the indirect land use change 
(iLUC) area has a cv of 0.72 (Chapter 5). The uncertainty in iLUC area and location is 
generally higher than in dLUC area, because iLUC is caused by the interplay of 
various land use types that each have their uncertain demand and model structure, 
while dLUC is mainly affected by the demand and weights of the suitability factors 
for sugar cane. It is relevant for the end user to realize that some output variables 
respond differently to alterations in parameters and parameter uncertainties than 
other output variables. 

Besides the propagated errors in the land use projections, solution space 
uncertainty exists in these projections. This solution space uncertainty can be 
quantified by optimization of certain objectives and Pareto frontier construction 
(Seppelt et al., 2013). A Pareto frontier provides all (in this case land use) 
alternatives for which it is impossible to improve one objective, without impairing 
another. Scenarios can be used to quantify impacts, but an optimization study in 
combination with a Pareto frontier visualisation demonstrates the lowest 
attainable values for all impacts and the trade-offs between different impacts 
(Chapter 6). We plea for a more extensive use of optimization in land use change 
studies that focus on impacts.  



187 
 

Thus, error propagation and solution space uncertainty effects on land use change 
projections have been quantified. Assessing the error propagation effects of 
uncertainties in different model components through MC analysis requires 
estimation of the uncertainties in these components. Although methods have been 
given for doing this, often strong assumptions had to be made about data 
accuracies. Data products about land use often include very little or no information 
on accuracy, or provide an overall value only, i.e. no accuracy information at cell 
level. Therefore we request the land use data suppliers to provide, preferably cell-
based, accuracy information on their data products, to allow us to improve on this 
point. Another problem is that the model structure is a strong abstraction of the 
processes that can be observed. For example, the weights and the order of 
allocation of the land use types are variables for which values cannot be observed 
in reality. A model setup representing processes at a more detailed level could help 
to overcome this. Section 7.6 further elaborates on this potential solution. 

 

7.3. How can uncertainty in land use change projections be reduced? 

Current problems in land use change modelling are that there are no methods for 
uncertainty reduction, that uncertainty in the observational data is not taken into 
account and that calibration is often not targeted on the attribute of interest 
related to the modelling aim. These problems are solved through the coupling of a 
particle filter to the PLUC model. A particle filter is a data assimilation technique 
(van Leeuwen, 2009) that updates prior knowledge about model structure, 
parameters and inputs during model runtime. The prior knowledge is represented 
by the probability distributions of all uncertain inputs, parameters and model 
structure, represented in the MC ensemble. The update occurs at time steps when 
observations of state variables or derived spatial metrics are available. It thereby 
takes into account the uncertainty in these observations. This method has the 
advantage that subjective knowledge of experts can be used to define uncertainty, 
in the form of probability distributions, in model structure, parameters and inputs, 
but then objective knowledge of observations is used to adjust these probability 
distributions. An additional advantage is that the posterior (calibrated) distribution 
of the model structure and parameters discloses information about how the land 
use system functions. 

Obviously, the main advantage of the particle filter is that it can reduce the 
uncertainty in land use change projections and derived summary statistics or 
metrics. In Chapter 3, the 95% confidence intervals of three spatial metrics 
(landscape shape index, sugar cane fraction in 150 x 150 km2 blocks, and number 
of sugar cane patches) were reduced by at least a factor 3 by the particle filter, 
compared to an MC run without the particle filter. In Chapter 5, the root mean 
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squared error (RMSE) in the modelled median land use areas per state were 
reduced by 20% on average, compared to an MC run without the particle filter. 
Here the average uncertainty reduction is relatively low compared to Chapter 3, 
because the RMSE of the land use types rangeland and planted forest is not 
improved at all, probably due to poor data availability for the drivers of location of 
land-use change and because the observational data of these land use types are 
problematic to derive from remote sensing. The performance improvement by the 
particle filter holds for most spatial metrics when observational data are 
incomplete, in space or in time. This was demonstrated in Chapter 3 by using only 
half of the observational data. The decrease in RMSE of the landscape shape index 
and the number of patches compared to a run without particle filter was on 
average still ~50% five years after the calibration period, compared to ~70% when 
using all data. This is a considerable advantage given the fact that time series of 
good quality land use maps are rare, and thus missing data in a calibration time 
series is common (Straatman et al., 2004). 

A challenge in applying the particle filter is the estimation of the prior probability 
distributions of inputs, parameters, model structures and observational data. 
Although it is an advantage that these distributions can be defined by experts, it 
should be kept in mind that this prior information has an effect on the outcomes. 
This effect has not been assessed quantitatively, but we stress that candidate 
suitability factors and the prior distribution of their weights should be selected 
sensibly. The potential solution to use a larger number of candidate suitability 
factors to ensure that all possible drivers are considered is not feasible, because 
the addition of only one parameter causes an exponential increase in the number 
of required particles (Bengtsson et al., 2008). Three solutions can be considered: 1) 
make a selection of parameters stochastic, preferably based on sensitivity analyses 
that indicate which inputs and parameters have most influence on the output, 
while fixing the others at a single deterministic value. Reducing the number of 
stochastic inputs and parameters, reduces the number of MC realizations required. 
2) Use super computers or cluster machines, to allow a rapid calculation of all MC 
realizations. For example, on our Linux server with 24 cores the 500 sample 
Mozambique run takes two hours instead of almost two days. 3) Use of a more 
advanced particle filter scheme giving similar results with a lower number of 
particles and thus shorter run time (Spiller et al., 2008, Jeremiah et al., 2012).  

While the use of the particle filter reduces uncertainty, land use projections of 
more than a few years ahead are not very reliable, as the 95% confidence interval 
of all spatial metrics quickly increase in width over the projection period in Chapter 
3. For example, if one wants to be able to predict the number of patches with a 
maximum 95% confidence interval width of 1000 patches, which is wide 
considering that it is about 50% of the mean, this is possible only for a projection 
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period of three years ahead. This is very problematic given that 1) policy analysis 
and implementation typically take longer than that, and 2) ‘three years ahead’ 
often means that the current point in time is not even reached, because the initial 
land use map generally dates from a few years ago. For example, in Chapter 5, the 
most recent initial land use map we could construct for Brazil was for 2006. The 
calibration period was 2006 to 2012, so three years ahead from that means a 
projection for 2015, the same year that the chapter was published as an article and 
thus not really a future projection. 

We conclude that a particle filter has the ability to reduce the uncertainty in land 
use projections, but not enough to ensure reliable projections for time frames 
longer than a decade, even for spatially aggregated attributes such as the total 
number of patches in the study area. 

 

7.4. What are the contributions of different model components to the 
uncertainty in land use change projections? 

PLUC is applied in Chapters 2 to 5 to evaluate the effects of uncertainties in 
different model components on different attributes related to land use or land use 
change (Table 7.1). It is difficult to make statements about which model 
component contributes most to the land use projection uncertainty, because, as 
discussed in section 7.2, uncertainty depends on which attribute is evaluated. 
Thereby, the contribution to uncertainty of the components also depends on which 
attribute is evaluated. However, we did quantify the contribution to uncertainty of 
different components at different spatial scales. In general, non-spatial inputs 
determine projection uncertainty at high aggregation levels (coarse scale) and 
spatial inputs determine projection uncertainty at low aggregation levels (fine 
scale). 

For example, in Chapter 3, at high aggregation levels (national, i.e. the whole of 
Mozambique, or provincial), the variance in total potential eucalyptus yield is 
mainly determined by the interplay of demand and maximum yield, because local 
uncertainties, stemming from variations within the maps, are levelled out, as also 
explained in section 7.2. At the cell (1 x 1 km2) level, the local differences do 
matter. Most cells have a variance of zero, because their potential yield fraction is 
zero or because they have a bioenergy availability probability of zero, i.e. they are 
currently or in the future used for the production of food, feed or fibres and should 
therefore not be used for bioenergy crop cultivation. Some cells have a variance 
slightly above zero; these cells have an availability probability of one, but their yield 
differs because of the stochastic parameters in yield fraction and maximum yield. 
Finally, there are some cells with very high variances; these cells are in some MC 
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runs unavailable, and then have a yield of zero, and in others available, and then 
have a yield dependent on the stochastic parameters yield fraction and maximum 
yield. This generates very large variances, up to 1 ∙ 105 (kg km-2 year-1)2.  

The fact that the contribution of different components to output uncertainty 
depends on the evaluated attribute is shown in Chapter 5. At national level, the cv 
of the dLUC area is caused by the uncertainties in the CGE model for 100%. The 
contribution of the uncertainties in the economic model to the cv of iLUC area at 
this level is about 93%, although this cannot be determined precisely, because 
errors from the two models partly compensate each other.  

Another factor causing uncertainties in the outputs is the uncertainty from non-
stationarity in model structure and parameters (Chapter 4). The systemic change 
increased the width of the projected 95% confidence interval of the sugar cane 
area per 25 x 25 km2 block by a factor 2, compared to a run without systemic 
change. The systemic change appeared to be indirect: something has an effect on 
the input demand for sugar cane, in such a way that the transition rules and 
parameters have to change as well (Filatova and Polhill, 2012). But, although an 
inventory was made of societal changes in the study area during the studied 
period, none of these could be related to the onset of the observed systemic 
change in the land use system in 2006. We do realize that our method to detect 
systemic changes has drawbacks. Therefore, we suggest it should be further 
developed, but also stress that for any case study it should always be questioned 
whether or not continuation of past trends is expected. 

As for the other components, such as observational data and parameters, it is 
difficult to draw general conclusions about their contribution to output uncertainty 
because we did not systematically turn uncertainty in these components on and off 
to test the sensitivity of the land use change projections to these uncertainties. We 
suggest this as a line for further research, although it still has to be proven whether 
general conclusions, valid throughout scenarios and case study areas, can be 
derived from such experiments. 

To conclude, it is shown that quantification of uncertainties of the different model 
components gives insights in the contribution of these components to different 
output variable at different scales. The assessment of the propagation of 
uncertainties enables the identification of the components with the highest priority 
for improvement given the aim of the end user.  
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7.5. What are the implications of the land use change projection 
uncertainties for bioenergy implementation strategies? 

The uncertainty in land use change model projections is rarely communicated to 
the end users, which is problematic given that a land use projection that is 
erroneous or has not been put into perspective can result in wrong conclusions 
(Pontius Jr. and Spencer, 2005, Moulds et al., 2015). In this thesis, uncertainty was 
not only quantified and reduced, but also visualized in a Spatial Decision Support 
System (SDSS) (Chapter 2). We deem that, independent of the implications of 
uncertainty, we at least created the conditions for end users to take into account 
uncertainty in their decisions by presenting uncertainty in the land use projections 
in an understandable way. Next, the implications for bioenergy implementation 
strategies of the following aspects are discussed: 1) projection uncertainty, 2) land 
use system non-stationarity, 3) solution space uncertainty, and 4) input data. 

The most important implication of the presented uncertainties in land use change 
projections for the bioenergy community is the achieved comprehension that the 
direct effects, and even more the indirect effects of bioenergy crop expansion, are 
difficult to project. In Chapter 5, cell-based (5 x 5 km2) probabilities of dLUC range 
from 0 to 0.77, and of iLUC from 0 to 0.43. In 250 x 250 km2 blocks, the maximum 
cv is 4 for dLUC and 6 for iLUC. For Brazil as a whole, the dLUC area has a cv of only 
0.02, while the iLUC area has a cv of 0.72 (Chapter 5). The latter means that, 
considering the width of the 95% confidence interval, the iLUC area in Brazil might 
be 2.4 times as high or as low as the projected mean. Because this confidence 
interval is so wide, it is likely it will straddle any selected legislation threshold. Thus, 
threshold evaluation for iLUC indicators is a very questionable practice. Therefore, 
we propose, in line with others (e.g. Finkbeiner, 2014, Mathews and Tan, 2009), a 
change of focus from quantifying iLUC to taking proactive measures to mitigate 
iLUC, even though we know that the effectiveness of these measures is difficult to 
quantify. 

One potential option to reduce uncertainty in a linked CGE - land use change 
model would be to link the models with a hard link that includes a feedback, as also 
suggested by Wicke et al. (2012). However, there is an inherent risk that this 
feedback loop is infinite, meaning that the land use dynamics cannot be resolved. 
In addition, there are many technical obstacles that complicate hard linking, like 
dissimilar programming languages or dissimilar spatial and temporal discretizations 
between the two models (Schmitz et al., 2014). And also, hard linking might partly 
solve the uncertainties stemming from the conceptual differences between the 
CGE and the land use change model, but it does not solve the structural 
uncertainties within the CGE and land use change model. Besides the coupling of a 
CGE model to the land use change model, other multi-model approaches could be 



192 
 

beneficial, not only through coupling but also through collaboration between 
modellers in harmonizing input data and parameters (Wicke et al., 2015). 

At the aggregation level of Brazil, dLUC can be to a certain extent be projected. It 
has a cv of 0.02 for Brazil. Note however, that at the aggregation level of the whole 
of Brazil the CGE model directly projects dLUC; no spatially explicit land use change 
model is required at this level. At the level of the 250 x 250 km2 blocks, the 
maximum cv of 4 for dLUC is still very high, but there are also areas about which 
something can be said with a cv of about 0.5. Land use change projections at this 
level are functional in our opinion to select areas of interest for further impact 
analyses, for example using optimization approaches like in Chapter 6 (see next 
section). 

A land use system can be non-stationary, i.e. a systemic change can occur, as 
illustrated by Chapter 4. There was an indication that the observed systemic 
change was indirect: something has an effect on the input demand for a particular 
land use type, in such a way that the transition rules and parameters have to 
change as well (Filatova and Polhill, 2012). In other words, the demand trend over 
time suddenly changes, beyond the function domain of the transition rules, with 
the result that the transition rules become invalid. Although it could not be tested, 
it can be expected that the introduction of a new bioenergy crop in an area and the 
implementation of new policies related to that have such an effect. If the 
bioenergy crop is a new crop in that area, the demand was zero before, so the 
trend changes by definition, and if the bioenergy crop was already in cultivation in 
the area for food, feed or fibres, the demand is expected to experience a sudden 
upsurge. These changes can commence systemic change, which is not taken into 
account in the land use change model projections currently used. Therefore, the 
current land use change models might not be very suitable for such ex-ante 
evaluations of new technologies/crops. However, this should be tested on a case 
study, and preferably on several case studies, with data on the introduction period 
of the bioenergy crop.  

The solution space uncertainty quantification shown in this thesis has constructive 
implications for bioenergy implementation strategies, especially because bioenergy 
certification schemes require quantification of different environmental and socio-
economic impacts (e.g. Roundtable on Sustainable Biofuels, 2010). In Chapter 6, 
we demonstrate how a Pareto frontier between production cost and GHG emission 
objectives can be constructed for an ethanol supply increase and how information 
derived from it could aid to formulate management or policy recommendations. 
The scenario projection for Goiás for 2030 using current land use change trends 
results in production costs of 715 US$2014 / m3 ethanol and GHG emissions of -80 ∙ 
10-3 tonne CO2-eq / m3 ethanol. The Pareto frontier shows that the minimum 
attainable production costs are 656 US$2014 / m3 ethanol and the minimum 
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attainable GHG emissions are -399 ∙ 10-3 tonne CO2-eq / m3 ethanol. This puts the 
scenario in the scope of what is possible and thereby supports the decision making 
process. The developed methodology has the prospect to identify trade-offs and 
win-win situations for other regions, scales, objectives and commodities.  

Final implications are related to the input data. The large uncertainty in two 
important land use change model inputs considerably decreases the value of land 
use change models for the evaluation of bioenergy related questions: potential 
yield maps and demands. In all chapters in this thesis, potential yield maps for 
different crops and for pasture are used from the IIASA (Tóth et al., 2012). In 
Chapter 2, the demand for land is given in tonnes of products, and the potential 
yield maps are used to rate the total mass of the product that can be obtained 
from a cell. As such, the potential yield maps have a large influence on the results. 
For Brazil, however, the consulted experts had doubts about the validity of these 
yield maps. Therefore, in Chapter 3 to 5, the demand is given in areal units, and the 
potential yield maps are used as a suitability factor only. In Chapter 6, the potential 
yield for sugar cane is one of the main determinants of the calculated production 
price and GHG emissions of bioethanol. It is helpful that global potential yield maps 
are freely available, but more trustworthy potential yield maps, including cell based 
projections of yield developments, and, perhaps more importantly, cell based 
information on the accuracy of these maps, would be a huge asset for future land 
use change projection efforts.  

Also related to input data, in Chapter 2, the uncertainty in the demand input, 
constructed through an extrapolation of population and diet, is one of the main 
factors determining output uncertainties (see previous paragraphs). So, even 
though the applied land use change model has its intrinsic uncertainties too, the 
main unknown factor in determining which part of the land will be available is this 
demand. In Chapter 5, it was tried to solve this issue, by coupling a CGE model to 
the land use change model. However, two new issues arise here. Firstly, the 
economic model turns out to generate large uncertainties in projected land areas 
too (ranges of ~10-20%). And secondly, the dissimilarity in model concepts 
between the two models within the integrated model chain augments output 
uncertainty. 

It is positive that spatially explicit analyses are starting to become prevalent in 
bioenergy impact assessment. The uncertainty quantification demonstrated in this 
thesis can help to guide users what such analysis can and cannot be used for. The 
next section elaborates on potential future directions for land use change 
projections.   
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7.6. Future perspectives for spatially explicit land use change 
projections 

Given the very wide uncertainty ranges of the projected attributes evaluated in this 
thesis, we conclude that the value of spatially explicit land use change models for 
answering questions about the future directions of the system at local scale levels 
(up to 100 x 100 km2) and for long time frames (more than a decade) is limited. We 
add the remark that these conclusions are based on model studies with PLUC only. 
Although we deem that the conclusions are applicable to demand-driven land use 
change models in general, this cannot be proven. We challenge other modellers to 
make their models stochastic and prove us wrong in our scepticism about the use 
of land use change models at local scales and for long time frames. Yet, there are 
conditions under which, or aims for which spatially explicit land use change models 
can be valuable decision support tools in our opinion. 

At higher aggregation levels uncertainties can be reasonable. Conclusions about 
regions, e.g. state or province level, can be drawn, but not for all attributes of 
interest and not for all time frames. Therefore, even when results are aggregated, 
it is important that uncertainties are quantified. Our research facilitates modellers 
herein. An interesting application of regional assessments is to identify a region of 
interest, for example a region where a bioenergy crop can be expected to expand 
with reasonable confidence. For this region of interest an optimization and Pareto 
frontier approach can be applied to see how bioenergy cropland expansion can be 
regulated to obtain minimal negative impacts. 

Uncertainties of differences between two scenarios are often lower than the 
uncertainties within one scenario (Chapter 5). This is valid under the assumption 
that, although e.g. a parameter value might be unknown, it will probably be the 
same value for different scenarios. Therefore, land use change models are more 
valuable for the relative comparison of impacts between two (or more) scenarios 
than for the assessment of the absolute impacts of a single scenario. Problematic 
herein is that the uncertainty between two scenarios becomes smaller when the 
scenarios are more divergent in terms of demands, but the likelihood that the 
assumption about the correspondence of parameter values and model structures 
holds for these scenarios becomes lower. This is because (indirect) systemic 
change is more likely to occur (Chapter 4). 

Under the condition that the demand can be accurately estimated, communication 
of information via visualization is one of the advantages of land use change 
projections. When society is informed that, for example, 35 billion litres of ethanol 
will be produced in Brazil by 2020 (example from Lapola et al., 2010), only very few 
people will be able to grasp this number, even when converted to areal units, e.g. 
90 000 km2. In the media, such numbers are usually converted to units of 
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something people are familiar with, in the Netherlands usually the number of 
soccer fields. Even for a soccer player like myself, conceiving the extent of anything 
above about 10 soccer fields is problematic, which is certainly at stake in the 
example of 90 000 km2. The meaning of such a number is easier to grasp when the 
extent is shown on a map. For this purpose, policy makers and other end users 
might benefit from the visualization of land use change shown by land use change 
models. Yet, hereto the sophistication level that land use change models currently 
have is not necessary, because it is of lesser relevance where exactly the land use is 
allocated. Our suggestion is to create a ‘light’ land use change model with fewer 
parameters as a web-based simulation tool. Such a web-based tool has, additional 
to the benefit of visualisation, numerous advantages like the ability to use the 
model at all times at all places (with internet access), easy access for everyone, 
provision of computation power by the server instead of the user’s computer, and 
easy maintenance by the modeller for all users at once (Byrne et al., 2010).  

Land use change models might be more valuable for local assessments if they 
become more process based. For example, all suitability maps of the suitability 
values could be expressed in terms of costs (e.g. Koomen et al., 2015), instead of as 
normalized values between zero and one. The factor ‘distance to roads’ can be 
transformed to transportation costs, the factor ‘potential yield’ can be transformed 
to cultivation costs minus revenues, et cetera, similar to the approach used in 
Chapter 6 to calculate production costs of ethanol. This approach has two 
advantages. Firstly, all suitability maps can be summed without using the intangible 
and immeasurable ‘weights’. Secondly, there is a chance that systemic change, 
present in more conceptual models, can be avoided, because the modelled 
processes have been described more realistically. This reduces the uncertainty 
from the wrongfully stationary model structure. Two disadvantages are that some 
suitability factors are difficult to express in terms of money and that the new 
model will have more parameters, including ones that are problematic to project 
into the future, e.g. petrol prices that are included in transportation costs. 

 

7.7. Recommendations 

 Better-quality data are required as the inputs and observational data of 

land use change models, e.g. time series from classified remote sensing 

images, agricultural statistics databases and potential yield maps, 

preferably with a global coverage. In addition, more information is 

required on uncertainty in these data products. It would be helpful for land 

use change modellers if uncertainty in these sources was quantified and 

distributed alongside the products. 
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 Uncertainty in spatially explicit land use change model projections should 

be quantified, reduced by observations, and communicated to the end 

users, even when the accuracies of the model components are difficult to 

estimate; concealing uncertainty is not the solution. Users of land use 

change models indicators should have the opportunity to grasp the 

(un)reliability of these models. 

 Spatial aggregation of land use projections is recommended because local 

uncertainties are too high. Depending on the case study and the attribute 

of interest, projections at higher aggregation levels might be reliable 

enough to support decisions, as uncertainty is highly scale-dependent with 

lower uncertainties at higher spatial scale levels. 

 If one really wants to use spatially explicit land use change models to 

project future land use changes locally, other approaches should be 

examined to try to improve the predicative value of the land use 

projections. Suggestions for improvements are collaborations with 

modellers from other domains, hard links with models from these 

domains, and more process based model rules in the land use change 

model. 

 The creation of a ‘light’, web-based version of a spatially explicit land use 

change model, including visualization tools, is recommended. A quick, 

uncertainty-inclusive, accessible and understandable model for a broad 

public, would be constructive for decision making throughout the world 

and throughout decision making levels. 

 More research is required regarding systemic change in land use systems. 

An especially interesting question is whether the land use system remains 

stationary when a new crop with new technologies, e.g. a bioenergy crop, 

is introduced. 

 The usage of optimization and Pareto frontiers should be expanded in land 

use change modelling, because scenario studies alone do not describe the 

complete solution space of potential impacts with the result that win-win 

land configurations might be overlooked. 
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Dankwoord 
 

“He hallo! / Kijk mij eens het gras zien groeien / En iedereen maar denken da'k niks 
doe.”8 Veel mensen in mijn omgeving hebben me de laatste jaren gevraagd 
wanneer ik nou klaar ben met studeren en eindelijk ga werken. Zelf had ik niet het 
idee dat ik niks deed, een antwoord dat nooit kon overtuigen. Nu kan ik dan toch 
zeggen dat ik klaar ben. Maar ik heb het gras niet in m’n eentje gegroeid. Degenen 
die daaraan de hebben bijgedragen wil ik hier bedanken.  

“Maar niets minder waar / Want al ben ik dan niet klaar / Ik ben de wedstrijd met 
de Beatles en de buren moe.” Derek, zonder jou had ik de wedstrijd niet 
uitgespeeld. Gelukkig vroeg jij me heel nuchter wat dan mijn eisen waren om door 
te kunnen gaan. Met je grote conceptuele denkvermogen, integriteit en precisie 
ben je de beste begeleider die ik me had kunnen wensen. Je gedrevenheid en 
humor maken dat ik graag met je samenwerk en hoop dat we dat in de toekomst 
nog eens kunnen doen. Floor, ik vind het bewonderenswaardig hoe jij je door de, 
door Derek en mij opgezette en vaak ‘ver van jouw bed’, teksten heen werkte en 
daar zeer zinvolle feedback op kon geven. Aan de ene kant leerde je me wat voor 
soorten gras je allemaal kan zien groeien in de bio-energie wereld (vingergras, 
suikerriet, ...), en aan de andere kant liet je me helemaal mijn eigen weg gaan. 
Super combi! En onze reisjes, of het nou naar den Haag was of naar de VS, 
leverden altijd interessante situaties op... André, jij had vaak minder tijd voor die 
technische teksten en schreef er ook schitterend eerlijk bij ‘niet gelezen, te 
wiskundig’. Voorts, ik weet dat alle PhD studenten dit over je zeggen, maar het is 
onontkoombaar: je enthousiasme is aanstekelijk en onbeschrijfelijk waardevol in 
een promotietraject. Steven, jij kwam bij mijn begeleidingsteam toen André weg 
ging uit Utrecht. Je hebt inhoudelijk dus minder bijgedragen aan het proefschrift, 
maar het gaf me gemoedsrust om een achtervanger te hebben. En ook in andere 
rollen was je waardevol: als stok achter de deur voor mijn BKO, en als de soigneur 
die mij op veldwerk ontbijt kwam brengen toen ik een kapot was omdat ik dacht 
dat het slim was in één ruk door van Dallas via Amsterdam naar Savournon te 
reizen.  

De werksfeer wordt naast het begeleidingsteam ook bepaald door collega’s. 
Allereerst dank ik iedereen van het Copernicus instituut. Vooral in het laatste jaar, 
toen jullie mij gevonden hadden als ‘GISser’, heb ik genoten van de samenwerking. 
Ik dank ook het gehele, voormalige en huidige, BE-Basic team. Speciale bedankjes 
zijn er voor mijn kamergenoten. Gert-Jan, zonder onze gezamenlijke evaluatie van 
het voetbalweekend kon mijn werkweek niet beginnen. En Anne Sjoerd, wetend 
                                                           
8
 Dit citaat komt uit ‘De Beatles en de buren’ van Acda en de Munnik, evenals alle volgende 

citaten in dit dankwoord (samen het hele nummer), tenzij anders aangegeven. 
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dat er altijd iemand met een brede lach achter m’n rug zat, kon ik nooit lang in een 
tegenslag blijven hangen. In het bijzonder dank ik de collega’s die goede vrienden 
geworden zijn. Boudewijn, onze gedachtewisselingen over wetenschap en 
onderwijs waren inspirerend, evenals de whisky. Karina, your openness and fervour 
are marvellous; I promise to come visit you in Brazil.  

Ook bedank ik alle collega’s bij fysische geografie. Mijn kamergenoten, Edwin, Niko, 
en later Jannis, jullie waren een welkome afleiding van het werk met grappige of 
goede gesprekken, een goed team voor het oplossen van technische problemen en 
een goed testpanel voor mijn baksels. De eerstejaars veldwerken 
aardwetenschappen die ik mocht begeleiden behoorden tot de mooiste perioden 
in m’n PhD. Martin, bedankt voor de altijd weer feilloze organisatie. En alle 
docenten en studenten, dank voor jullie gezelligheid en inzet. Ik heb ook erg 
genoten van het vaste clubje waarmee we Champions League wedstrijden keken 
(en hopelijk kijken) in O’Connells: Edwin, Jannis, Kim, Koko, en sporadisch wat 
anderen. Ook dank ik het PCRaster team, Kor en Oliver, voor de softwarematige 
hulp. En Oliver, dankjewel dat ik altijd bij je terecht kon met vragen over wat dan 
ook, en steevast een bruikbaar, innemend en humoristisch antwoord kreeg. 

Geert, dankjewel voor onze prettige samenwerking bij de koppeling van MAGNET 
en PLUC. Everyone at CTBE, thank you for the help during my stay in Brazil. 
Everyone at INPE in Brazil, and especially Bernardo, many thanks for the Canasat 
data, an invaluable part of many of my analyses. 

“He hallo! / Kijk mij eens de wolken breken / Liggend op mijn rug hier in het gras.” 
Het TNO voetbal: wat voor week ik ook had, ik kon er al die jaren (ook al voor m’n 
PhD) op vertrouwen dat er met lunchtijd op donderdag een leuke pot voetbal 
gespeeld werd. Bij naam bedank ik de harde kern van de laatste jaren, Geert, Mart, 
Enrico, Bas, Simon, Jens, Sjef, Frank (2x), Jonathan, Jan, en Olwijn, maar uiteraard 
ook dank aan iedereen die af en toe meedeed en sorry aan degenen die ik 
vergeten ben. Verder qua voetbal, Sporting '70 vrouwen 3 zaterdag en vrouwen 1 
zondag, bedankt voor de weekendafleiding! 

“Verslagen maar preciezer / De gelukkige verliezer / Van wat een wedstrijd met de 
Beatles en de buren was.” Sanne en Michiel, het was jammer dat ik jullie kwijt 
raakte als collega’s en kamergenoten maar ik heb er twee fantastische vrienden 
voor teruggekregen. Michiel, altijd fascinerend hoe je de grenzen van mijn 
denkbeelden ter discussie stelt; blijven doen. Sanne, van jouw onbevangenheid kan 
ik veel leren, je maakt me altijd vrolijk. Dankjewel dat je mijn paranimf wilt zijn. 

“Alles moet aparter dan apart / Alles moet unieker dan uniek / Alles moet bijzonder 
/ En dat alles maakt dat alles weer moet.” Als er teveel moest, waren daar altijd 
mijn beste vrienden om op terug te vallen. Marijn, dankjewel voor je goede raad en 
de wandelingen in het weekend. Jules, waar zou ik zijn zonder jouw nuchtere 
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bespiegelingen. Christine, ik zie je niet vaak, maar onze vakanties samen zijn altijd 
intens en verrassend. En Siebe, jij verblijdt me vaak met leuke ideeën voor uitjes en 
activiteiten, waardoor we nu rock ’n roll dansen samen. Top dat je er altijd voor me 
bent er en ook nu als mijn paranimf.  

“Alles moet aparter dan apart / Alles moet unieker dan uniek / Alles moet 
bijzonderder dan / Alles wat allang bijzonder was.” Mama, dankjewel voor de 
stevige basis die je me gegeven hebt. Je heb me ook geleerd om strak te plannen 
en vast te houden aan die planning, de eigenschap die me tot de selecte groep 
deed behoren van promovendi die binnen de tijd hun proefschrift afkregen. Papa, 
jij hebt me al jong wetenschappelijke bezieling gegeven. Bijvoorbeeld, wanneer ik 
als kleuter met jou de fiets zat en er een brandweerwagen langskwam, legde jij me 
geduldig het Dopplereffect uit. Als eerbetoon aan jou heb ik altijd mijn tweede 
naam voluit op mijn artikelen staan. Jij zult begrijpen waarom. Mensen kijken me 
vaak meewarig aan als ik zeg twee docenten als ouders te hebben, maar ik heb er 
een groot enthousiasme voor doceren aan overgehouden. Mama, bedankt dat je 
me bijbaantjes bezorgd hebt in wiskundebijles en examensurveillance. En papa 
bedankt dat je mij als tiener stiekem jouw tentamens voor de HU liet nakijken... 
Sandra, lief zusje, bedankt voor alles wat je met me deelt. Brent, blij dat jij er bent. 
Kristian en Rutger, de handigste broertjes ter wereld, ik zie jullie niet zo vaak; dat 
komt doordat ik een Honda rijd ;-).  

“Wat de Beatles en de buren was.” Ewout, jij was er voor me op het kritische 
moment in m'n PhD. Jammer dat ‘ik moet je kunnen zien!’ achteraf misschien niet 
alleen een grap was over het inparkeren van een caravan. Enrico, dank je voor je 
steun, vertrouwen en gezelligheid in het laatste jaar, en voor Indonesië en pizza op 
vrijdag. “La la la / la la la / la … / En voor de rest moet je bij de Beatles en de buren 
zijn.” 

Toekomst, de Kans op Iets Moois: “Une valse à mille temps / Une valse à mille 
temps / Une valse à mille temps / Offre seule aux amants / Trois cent trente-trois 
fois le temps / De bâtir un roman.”9 

 

 

 

 

 

  
                                                           
9
 Dit citaat komt uit ‘La Valse à mille temps’ van Jacques Brel. 
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