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In many systems, the time scales of the microscopic dynamics and macroscopic dynamics of interest
are separated by many orders of magnitude. Examples abound, for instance, nucleation, protein
folding, and chemical reactions. For these systems, direct simulation of phase space trajectories does
not efficiently determine most physical quantities of interest. The past decade has seen the advent
of methods circumventing brute force simulation. For most dynamical quantities, these methods all
share the drawback of systematical errors. We present a novel method for generating ensembles of
phase space trajectories. By sampling small pieces of these trajectories in different phase space
domains and piecing them together in a smart way using equilibrium properties, we obtain physical
quantities such as transition times. This method does not have any systematical error and is very
efficient; the computational effort to calculate the first passage time across a free energy barrier does
not increase with the height of the barrier. The strength of the method is shown in the Ising model.
Accurate measurements of nucleation times span almost ten orders of magnitude and reveal
corrections to classical nucleation theory. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2911689�

I. INTRODUCTION

The average time it takes a protein to fold, an under-
cooled liquid to crystallize, or a chemically active molecule
to react can, in principle, be obtained from brute force com-
puter simulations by simply starting several times in the un-
folded, liquid, or prereaction state and then integrating the
dynamical equations in time until folding, crystallization, or
reaction takes place. However, the typical time scales of the
microscopic dynamics and macroscopic dynamics of interest
are often separated by many orders of magnitude; for such
systems, direct simulation of relevant phase space trajecto-
ries is very inefficient, if at all possible. In the past decade,
methods have been developed that sample transition path-
ways while circumventing brute force simulation, such as
transition path sampling,1 transition interface sampling2 and
milestoning,3 but most dynamical quantities, e.g., the aver-
age transition time, are not provided by those methods or are
provided with systematical errors. We present a method to
determine such dynamical quantities, free from systematic
errors and very efficient. Our method is generally applicable
to systems with known equilibrium properties, consisting of
two regions with locally stable states, separated from each
other by a barrier, which may be very high.

II. METHOD

A. Problem

A typical question that can be addressed by our method
is the following: if a system is in equilibrium in region A of
the phase space, what is the average time of first arrival in

another region B? One should typically think of A and B as
attracting basins in phase space, separated by a barrier. Ex-
amples of structures where such phenomena are found in-
clude nucleation, protein folding, and chemical reactions.
The simplest approach to answer such questions is by direct
simulation: The system is started in A and evolved in time
until B is reached, and this procedure is repeated many times
to collect statistics. If, however, after leaving A returns to it
are much more frequent than traversals to B, this direct simu-
lation approach becomes very inefficient since most of the
computational effort is invested in dynamical trajectories
from A back to A rather than to B. Our method more effi-
ciently distributes the computational effort, spending more
time on actual traversals.

B. Sampling subtrajectories

The main idea behind our method is to sample different
relatively small pieces of the phase space trajectories, which
we call subtrajectories, and combine them with an appropri-
ate weighing into complete trajectories. To classify the dif-
ferent subtrajectories, one should identify a slice M in phase
space, such that every path connecting A and B has to pass
through it. In the case of nucleation, for instance, regions A,
B, and M could be the set of states in which the size of the
largest nucleus is smaller than half, larger than twice, or
equal to the critical nucleus size �or a good estimate of this�.
A long simulation trajectory can then be divided into subtra-
jectories, which are classified according to �1� their initial
and final states �A or B� where the system resides at least the
correlation time �c,

4 �2� whether M has been crossed �de-
noted by an “M” between the initial and final states�, and �3�
whether the path crosses the other region without residinga�Electronic mail: jkuipers@phys.uu.nl.
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there longer than �c continuously or not �denoted by an “x”
or “o,” respectively�. All these different types of subtrajecto-
ries are illustrated in Fig. 1. Figure 1 also shows A and B
subtrajectories that account for the time spent in A or B in
excess of �c.

The different types of subtrajectories are generated by
performing three different simulations. First, by starting in A,
staying there for a time �c, and evolving from then, ignoring
the paths that go through M, the A and AA subtrajectories are
sampled. Next, analogous simulations around B are per-
formed to find the B and BB subtrajectories. Finally, simu-
lations starting in M are performed to generate the subtrajec-
tories through M. These subtrajectories through M are
sampled by starting in M and evolving both forward and
backward in time until a correlation time �c is spent in A or
B continuously at both ends of the path. As shown in Refs. 5
and 6, the starting points should be chosen from the set of
points of first arrival in M from either A or B to sample the
trajectories with the correct frequency. Because of time re-
versal symmetry, this can be achieved by sampling points on
M from its equilibrium distribution, generating the trajectory
by going forward and backward in time, and ignoring all
paths that encounter M again on its backward part.

C. Recombination of subtrajectories

Now that the different types of subtrajectories are
sampled, they should be recombined to generate complete
phase space trajectories. These are concatenations of the sub-
trajectories, where the ones of the types AA, AMAo, AMAx,
AMB, BB, BMBo, BMBx, and BMA are intertwined with A
and B subtrajectories. Recombination is based on the notion
that in the stable regions in phase space A and B, the system
will mostly wander for a long time. If this time exceeds some
value �c, the system has lost memory of where it entered.
Since after this time there is no correlation between the en-
trance and exit point of region A or B, any random recombi-
nation of these subtrajectories would constitute a valid tra-
jectory. The subtrajectories of different simulations can be
recombined if given the proper weights; that is why the
method is efficient. In a straightforward simulation, the sub-
trajectories crossing M typically are extremely rare, which
strongly reduces statistical accuracy, but we generate addi-

tional subtrajectories through M by starting there and these
subtrajectories can be combined with the AA and BB subtra-
jectories to sample long trajectories.

The weights for the different sets of subtrajectories can
be determined from the condition that in the resulting long
trajectories the system must be found in A, B, or M with the
correct equilibrium probabilities, p�A�, p�B�, and p�M�. We as-
sume these are known, either analytically or from other kinds
of simulations, for instance, parallel tempering,7 methods in-
volving umbrella sampling,8,9 cluster algorithms,10,11 or the
Wang–Landau method.12 For each subtrajectory, we measure
the time it spends in regions A, B, and M. From these mea-
surements, we determine for each class C of subtrajectories
�where C can be AA, AMAo, AMAx, AMB, BB, BMBo,
BMBx, and BMA� the average time spent in each region X
�where X can be A, B, or M� and these average times are also
determined for the class M of all subtrajectories crossing M;
these are the quantities TC

�X�. The notation TC without super-
script will denote the average total time spent on one subtra-
jectory of class C. Since these different subtrajectories are
always preceded and succeeded by either an A or B subtra-
jectory, the time these latter subtrajectories take is also in-
cluded in the times TC

�X�. The frequency with which a long
trajectory enters subtrajectories of class C is called nC. With
these definitions, it immediately follows that the probabilities
of being in the three regions satisfy the equalities

p�A� = nMTM
�A� + nAATAA

�A�, �1a�

p�B� = nMTM
�B� + nBBTBB

�B�, �1b�

p�M� = nMTM
�M�. �1c�

From these, the subtrajectory frequencies may be expressed
as follows:

nAA = �p�A� − nMTM
�A��/TAA

�A�, �2a�

nBB = �p�B� − nMTM
�B��/TBB

�B�, �2b�

nM = p�M�/TM
�M�. �2c�

During the simulations through M, the number of times

FIG. 1. �Color� Division of a trajec-
tory in subtrajectories. A cut is made
in the trajectory every time that the
system resides in region A or B longer
than some time �c, which is the time in
which the system loses its memory of
when, how, and where it entered. Ran-
dom recombinations of these subtra-
jectories are equally valid trajectories.
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NC that the specific classes of subtrajectories through M are
encountered are counted. These lead to the following rela-
tionships:

nC =
NC

NM
nM, �3�

and these determine the remaining frequencies.
From the frequencies of the different subtrajectories, we

immediately obtain the probabilities for subtrajectories leav-
ing A or B to be of specific type

pAA = nAA/NA, �4a�

pAMAo = nAMAo/NA, �4b�

pAMAx = nAMAx/NA, �4c�

pAMB = nAMB/NA, �4d�

with NA=nAA+nAMAo+nAMAx+nAMB and the analogous re-
lations for the paths starting in B. Knowing these probabili-
ties, we can randomly recombine subtrajectories with the
proper weights to generate complete trajectories.

D. Determining transition times

Depending on the exact quantity of interest, often the
explicit recombination process can be skipped and replaced
by a combination of appropriate averages over the subtrajec-
tories. Here, we specifically want to address the average tran-
sition time from A to B. Note that a traversal to B has to end
with either an AMB or AMAx subtrajectory. To calculate the
average transition time, we need to know the probabilities of
finishing with an AMB or AMAx subtrajectory, the average
numbers of times the AA and AMAo subtrajectories are tra-
versed before this happens, and the average times these sub-
trajectories take. This results in the following equation for
the transition time:

TA→B
* =

pAATAA + pAMAoTAMAo + pAMAxTAMAx
first + pAMBTAMB

first

pAMAx + pAMB
. �5�

The labels “first” are added to TAMAx and TAMB since the first
time that region B is reached is relevant for the transition
time, instead of the total time of the subtrajectory. These can
also be measured during the simulations. We added an aster-
isk to distinguish these times from the first arrival time of B
for a system starting Boltzmann distributed in A; these times
are the first arrival times of B for a system starting in A with
another distribution, namely, the distribution of points after
being in A for a time �c. To obtain the real first arrival time
TA→B, we must perform final simulations that start Boltz-
mann distributed in A until either �c time is spent in A or
arrival in B occurs. We call the average time until a time �c

in A is spent TA→A
start , and the average time until arrival in B

occurs TA→B
start ; these events happen with the probabilities

pA→A
start and pA→B

start . The transition time from A to B, starting
Boltzmann distributed in A, is then

TA→B = pA→A
start �TA→A

start + TA→B
* � + pA→B

start TA→B
start . �6�

E. Overview

Since the determination of the transition time from A to
B involves multiple simulations in which a lot of quantities
are measured, this section provides an overview of the dif-
ferent simulations including all the measured quantities;
these are presented in Table I. With these quantities mea-
sured, Eqs. �2�–�6� yield the average time of first arrival in B
for a system starting Boltmann distributed in A; other dy-
namical quantities can be obtained as well from different
related equations.

III. SIMPLE TOY MODEL

As a first test, we applied this method to a system con-
sisting of a 10�10 lattice with a potential energy assigned to
each site.13 The dynamics consist of jumps of a single par-
ticle to the neighboring sites with Metropolis14 jump rates.
“Regions” A and B are two opposing corners of the lattice,
which are the minima of the potential. M is the diagonal in
between, which forms a ridge in the potential landscape. The
simulations are performed for different values of the tem-
perature. Their results are shown in Fig. 2, together with the
results of brute force simulations. Both simulations lasted for
1 min of CPU time. Also plotted is the exact transition time
that is calculated by solving a set of linear equations.

The results are as expected: both our method and the
brute force method sample the transition time without any
systematical error. However, with our method the statistical
error is constant as a function of the transition time, while
the statistical errors of brute force simulation increase pro-
portional to the inverse square root of the transition time, as
the law of large numbers dictates �see inset of Fig. 2�.

IV. ISING MODEL

To show that the method does not only work efficiently
in low-dimensional toy systems, we apply it to determine the
nucleation time of a 64�64 Ising model with spin-flip dy-
namics and Metropolis acceptance probabilities for a large
range of parameter values for �J and �h, i.e., the coupling
constant and the external magnetization in units of kBT.
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Details of the simulations are as follows. We start in a
metastable state consisting of spins antiparallel to the exter-
nal magnetization. The coordinate used to characterize re-
gions A, B, and M is the number n4 of spins that are parallel
to the external magnetization and have four neighbors which
are also parallel to it. This turns out to be a much better
reaction coordinate than, for instance, the size of the largest
cluster of parallel spins. The convenient property of n4 is that
it can only change by a maximum of five; if the size of the
largest cluster is taken as a reaction coordinate, it can un-
dergo large changes due to the merging or splitting of clus-
ters. To obtain the free energy as a function of n4, we use

successive umbrella sampling:15 by restricting n4 to either i
or i+1, the free energy difference between n4= i and n4= i
+1 is determined; this process is repeated for increasing val-
ues of i, until the free energy �as a function of n4� returns to
the value at n4=0. A typical result of this free energy sam-
pling is shown in Fig. 3.

Next, regions A, B, and M are characterized in terms of
n4. Region M is chosen at the top of the barrier and has a
width of 5, so that every nucleation trajectory intersects it.
Regions A and B are such that the free energy barriers to its
boundaries are 5kBT. The motivation behind this is as fol-

TABLE I. The measured quantities in the different simulations.

Simulations starting with a time �c in A

TA The total time of an A trajectory.
TAA The total time of an AA trajectory.

TAA
�A� The time an AA trajectory spends in A

Simulations starting with a time �c in B
TB The total time of a B trajectory.
TBB The total time of a BB trajectory.

TBB
�B� The time a BB trajectory spends in B

Simulations starting in M
TM The total time of an M trajectory

TM
�A�, TM

�B�, TM
�M� The time an M trajectory spends in A, B, or M,

respectively
TAMAx

first , TAMB
first The first time that an AMAx or AMB trajectory arrives

in B
NM The total number of M trajectories
NAMAx, NAMAo, NAMB The number of AMAx-, AMAo- and AMB-trajectories,

respectively
NBMBx, NBMBo, NBMA The number of BMBx-, BMBo- and BMA-trajectories,

respectively

Simulations starting Boltzmann distributed in A
TA→A

start The time until a time �c is spent in A continuously
TA→B

start The time to reach B without spending a time �c in A
continuously

PA→A
start , PA→B

start The probabilities of starting with A→A and A→B

FIG. 2. �Color online� Results of our method applied to the toy model.
Shown are the results of our method, compared to brute force simulations
and an analytic result. Error bars of our method are omitted since they are
very small. The inset shows the relative error of both our method and brute
force simulation.

FIG. 3. Free energy of the two-dimensional Ising model with 64�64 sites,
a coupling constant of �J=0.60 and an external field of �h=0.06, as func-
tion of the number n4 of spins parallel to the external field which have four
aligned neighbors. Also the prenucleation region A, the barrier region M,
and the postnucleation region B are indicated.
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lows: the barriers should be high enough so that the system
will linger in A and B long enough to lose correlation, but,
on the other hand, low enough that it can be crossed by
thermal activation to sample AA and BB trajectories; 5kBT
seems a reasonable choice for that. We will call region A as
the prenucleation state and B as the nucleated state since
when the system arrives in B, it is extremely likely to con-
tinue to a stable state in which most spins are aligned with
the external field. Regions A, B, and M are also indicated in
Fig. 3. With regions A, B, and M defined and the probabili-
ties of being there are known, the method can be applied to
determine the nucleation times. In our simulations, we took a
correlation time �c of 100 attempted spin-flips per site.
Equilibration inside regions A and B is fast, and the system is
certainly statistically uncorrelated within this time. We also
verified this in simulations with �c=200 and 500.

The resulting nucleation times are presented in Fig. 4.
Note that the nucleation times span ten orders of magnitude
with constant relative statistical errors. For comparison, re-
sults of brute force simulations �if possible� and classical
nucleation theory �CNT�16 are also shown. The general trend
is well captured by CNT. However, as shown in the insets,
our method is accurate enough to reveal the shortcomings of
CNT.

The computational effort in this calculation of the aver-
age nucleation time is approximately 13 h of CPU time on
an AMD-64 single-processor workstation for each set of tem-
perature and field strength; 1 h is spent for the determination

of the free energy as a function of cluster size and 12 h for
the generation of the various subtrajectories and the nucle-
ation time. An equal amount of computational effort was
invested in the brute force computations.
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FIG. 4. �Color online� Nucleation
times in the two-dimensional Ising
model with spin-flip dynamics, with a
system of 64�64 sites. Left: as func-
tion of the coupling constant �J, for a
fixed strength of the external field �h
=0.06. Right: as function of the
strength of the external field �h, for
fixed coupling constant �J=0.6. Error
bars of our method are omitted since
they are very small. The insets show
the deviations from classical nucle-
ation theory.
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