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INTRODUCTION

The physics of ultra-cold gases has proved to be an almost unlimited source
of beautiful phenomena. When the temperature is low enough, such that the
thermal wavelength is comparable to the inter-particle spacing, atoms become
governed by the laws of quantum mechanics. This regime is quite different,
for instance, from room temperature physics, where atoms can be considered
for most purposes as point-like classical objects. At low temperatures (of the
order of 100 nK), the atoms behaves as extended waves that overlap and in-
terfere [1]. These interference effects are the ones leading to the spectacular
phenomenon known as Bose-Einstein condensation (BEC), where (bosonic)
atoms massively occupy one quantum state and behave as a macroscopic
matter wave.

With the realization of the first BEC in 1995 [2, 3], a completely new world
has come within reach. Although the proposal of this new state of matter
dates back to the 20’s, when Einstein first put forward this idea after receiv-
ing a letter from Bose on the quantum statistics of photons [4, 5], more than
70 years of research have been necessary to overcome the technical limita-
tions. Helium, the primary candidate for BEC, cannot undergo condensation
because, at low temperatures, it becomes a strongly interacting liquid and
the atoms cannot occupy a macroscopic quantum state. Nevertheless, another
quantum mechanical phenomenon sets in, namely the liquid can flow with-
out dissipating energy and forms a superfluid.

On the contrary, alkali atoms preserve their gaseous state and can there-
fore be employed to reach Bose-Einstein condensation. The drawback is the
requirement of very low density, which lowers unfortunately by orders of
magnitude the critical temperature to observe BEC. The quest for the experi-
mental realization of extremely low temperatures stimulated a lot of work in
developing cooling techniques, such as laser cooling and evaporative cooling,
that ultimately led to the achievement of BEC [1]. Since then, many different
types of atoms have been cooled and the techniques have been refined to deal
with the challenges that the different atomic species exhibit.

Over the years, the field of cold atoms has considerably grown, going far
beyond the achievement of Bose-Einstein condensation. The high degree of
control allowed in experiments is the crucial reason behind its success. One
can tune interactions, effective mass of the particles, lattice geometry, den-
sity and much more [6]. As a first example, we briefly describe the BEC-BCS
crossover, one of the phenomena that cold atoms have made possible to ob-
serve and realize.
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BCS BEC

FIGURE 1.1: BEC-BCS crossover. In the BCS limit the electrons form weakly-bound
pairs, whereas in the BEC limit the electrons are tightly bound into molecules that
form a Bose-Einstein condensate.

In the presence of a weakly-attractive interaction, Fermi gases exhibit su-
perconductivity at sufficiently low temperatures, as described by the theory
of Bardeen, Cooper and Schrieffer (BCS) [7]. Fermions form weakly-bound
pairs (Cooper pairs), the size of which is, in general, much larger than the av-
erage interparticle spacing. When the attraction becomes stronger, the size of
the pairs starts decreasing and, ultimately the two atoms will form a bound
state. These tightly-bound pairs can be considered to all intents as bosons
that can condense and form a BEC. Although the two regimes are very dif-
ferent with respect to each other because the former is a state of matter that
arises because of a many-body instability while the latter is a consequence of
the two-body attraction®, there is no symmetry change between these two sce-
narios. Therefore, no phase transition occurs, but a rather smooth crossover,
known as the BEC-BCS crossover [8].

At first, it was difficult to imagine an experiment that could verify this the-
oretical proposal. However, the high tunability available in cold atoms allows
one to control the effective two-body interaction described at low temperature
by a single quantity, the s-wave scattering length a5, by using an external mag-
netic field (Feshbach resonances) that plays the role of a knob [9, 10]. In this
way, it has been possible to tune interactions from the weakly to the strongly-
interacting regime and explore the behaviour of the degenerate Fermi gas
through the crossover [11-13].

The wave function in the BCS state manifests oscillations with the periodicity set by the Fermi
momentum, while for the BEC bound state there are no oscillations but an exponential decay.
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1.1 QUANTUM SIMULATION AND PHASE TRANSITIONS

Condensed matter physics typically deals with the understanding of the be-
havior of electrons in solids, where they usually move on the periodic crys-
talline potential created by the atoms. Very often, this is an extremely compli-
cated problem to address theoretically. What if we can design a system where
the role of the electrons is played by a certain type of quantum objects (for
instance fermionic atoms at very low temperature) and make them experi-
ence a periodic potential? In this way one could simulate the behavior of the
electrons in a crystalline material. Certainly, atoms are objects quite different
from electrons: besides having a much larger mass and a complicated internal
structure, they are also electrically neutral. However, many features and phys-
ical phenomena are quite general and occur as a consequence of the generic
model describing the system. Hence, as long as we are able to implement
a specific model of interest in a controlled experiment, we can explore the
type of physics that it describes, provided that we can tune the parameters in
the required region of phase space. This is quite similar to what a computer
does when implementing a simulation, except for the fact that the cold-atom
system can span the exponentially large Hilbert space of the model that we
want to understand because it is an intrinsically quantum system itself [14].

Systems of cold atoms provide, for this reason, a rich playground for physi-
cists [6, 15]. The possibility to tune interactions discussed previously is not,
however, the only freedom that is available to experiments. In 1998, just a
few years after the realization of the first BEC, Jaksch et al. [16] proposed
a scheme to realize the Bose-Hubbard model in optical lattices. As for the
BEC-BCS crossover, also in this case cold atoms provided a platform to make
possible the observation of physical phenomena theoretically proposed be-
forehand [17].

In the proposal by Jaksch ef al. [16] and in its subsequent experimental
implementation [18], a cloud of bosonic atoms (in the experiment Rubid-
ium 8y) is trapped by a magnetic field. Counter-propagating laser beams
are used to create an optical "lattice” on top of the magnetic trap. The inten-
sity of the lasers allows one to control the lattice depth 1}, i.e. the height
of the potential barrier between neighboring wells, and therefore the tunnel-
ing amplitude. In typical experimental condition, atoms occupy the lowest
exponentially-localized quantum state in each well of the periodic potential
and tunnel to the nearest-neighbor wells with hopping amplitude J. Because
the lattice depth controls the height of the potential barriers between two
neighboring wells, it allows to control J, which decreases when V; increases.
Repulsive contact interactions lead to an energy cost U when two atoms oc-
cupy the same localized state. Contrary to the hopping, U becomes larger
upon increasing Vy because more localized states have a larger overlap of the
wave functions describing each of the two interacting atoms. The ratio J/U
therefore depends monotonically on the lattice depth Vj.
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The phase diagram of the Bose-Hubbard model displays a second-order
phase transition as a function of J/U [17, 19, 20]. Let us focus for simplicity
on integer filling, say n particles per site, with n = 1,2, .... When the hopping
J is dominant, particles are free to delocalize and form a condensate, occupy-
ing the zero-momentum state. This is the superfluid phase. When instead the
interactions, governed by the single parameter U, are dominant, the energy is
minimized by having an insulating and incompressible state, the Mott insula-
tor phase, with vanishing particle-number fluctuations on each site and a gap
in the excitation spectrum. The phase transition has been observed by vary-
ing the lattice depth Vj, and therefore J/U, in a three-dimensional optical
lattice and recording the momentum distribution [18].

After the realization of the superfluid - Mott insulator phase transition,
many possibilities to engineer models of physical interest were devised [15,
21]. Ultra-cold atoms in optical lattices became the paradigm to concretize
the idea of quantum simulator envisaged by Feynman years before [22]. The
simulation of a many-body quantum system on a classical computer would
require an exponentially large amount of time because the Hilbert space of
a many-body system grows exponentially with its size. However, a quantum
simulator is instead a system that can directly encode the quantum degrees
of freedom and process their dynamics. The key element is to engineer a
mapping between the model to simulate and the degrees of freedom to be
used in the quantum simulator.

There are two ways to look at this problem. On one side, one can use a
cold-atom system to simulate a certain model known in condensed matter,
with the aim of understanding whether such a model can describe the be-
haviour observed in a specific class of materials. This would be the case of
the simulation of the Fermi-Hubbard model [23, 24] to understand whether
it describes the phase diagram of high-temperature superconductors [25, 26],
for example. On the other side, a quantum simulator can be seen as a plat-
form to observe novel physical phenomena that have been only theoretically
predicted. In typical condensed-matter systems, the parameters cannot usu-
ally be tuned: not only the crystalline potential is fixed, but also the type
of particles, their mass and their interaction strength. In a cold-atom system,
instead, many parameters can be controlled, thus allowing one to explore
quantum phase transitions for many classes of models [27]. This is the case
for some old problems in condensed matter, such as the Bose-Hubbard model
[17], the Hofstadter butterfly [28], the Haldane model [29] and many others
[14].

Other theoretical speculations which have no analog in solid-state systems
have also been implemented in experiments. A remarkable example is Bose-
Einstein condensation in higher orbitals [30, 31]. When bosons condense in
a higher orbital, the many-body wave function is not constrained to be real
and unique, as Feynman’s no-node theorem requires [32, 33]. Time-reversal
symmetry, which corresponds to complex conjugation of the bosonic wave
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FIGURE 1.2: P-band condensates. (a) The lobes represent the py and py orbitals. The
phases of the wave function are indicated, corresponding to a py — ipy state with non
vanishing angular momentum tha breaks time-reversal symmetry. (b) Time-of-flight
pattern showing the orbital condensation signature at finite momenta (71/4,0) and
(0, t/a), where a is the lattice spacing. The figures are adapted from Ref. [34].

function, can therefore be spontaneously broken and the emergent superfluid
phases may have intriguing properties. A recent realization of a condensate
in p-bands [34] and f-bands [35] has made use of a chequerboard optical
lattice to stabilize a long lived condensate in an excited state. The experiment
has shown that a new class of phenomena is within reach: bosons condense
in states with finite crystalline momentum, non-zero angular momentum and
staggered orbital currents [36].

States that break time-reversal symmetry have been introduced to explain
controversial phases of matter, such as the 7r-flux phase or the Varma phase,
both proposed to describe the pseudo-gap regime of high-T; superconductors
[26]. We will show in Chapter 5 how condensates in p-bands can be used to
simulate bosonic analogs of the Varma phases in an optical Lieb lattice, which
is the lattice of the Cu-O plane of cuprate superconductors. In particular,
we will show how to generate a Varma phase that, in the fermionic version,
displays anomalous Hall effect as for the Haldane model [37].

1.1.1  Hubbard models in cold-atom systems

The Bose-Hubbard model, being the prototype of a typical cold-atomic real-
ization in optical lattices, has been the object of a thorough investigation over
the years. The superfluid - Mott insulator phase transition has been addressed
in one [38], two [39] and three [18] dimensions. New imaging techniques have
been invented, allowing to probe single lattice-site occupation and therefore
the many-body wave function [40, 41]. Thermalization properties and the ef-
fect of correlations, e.g., have been investigated using this technique. These
studies revealed the full power of the quantum simulator because numerical
approaches on classical computers are unable to capture the highly-entangled
relaxation process observed at long times in the experiments [42]. In this ex-
periment, a bichromatic one-dimensional lattice is used to generate an initial

5
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density wave with occupations |...,1,0,1,0...) which forms a Mott insula-
tor with inhomogenous density, when the tunneling is inhibited by a large
potential barrier. The dynamics is studied by quenching the lattice depth to
lower values such that the atoms can start tunneling again.

However, an open question to address is how the transition from a super-
fluid to an inhomogeneous Mott insulator occurs. In Chapter 4, we focus on
a static bipartite lattice in which Mott insulators with imbalanced popula-
tion are generated by detuning the potential depth of neighboring wells. This
procedure is different from the one used in Ref. [42] to prepare the initial
state of the experiment, where the Mott phase is realized by imposing a large
potential barrier to prevent the atoms to tunnel to the neighboring empty
sites. Using a mean-field theory supplemented by perturbative calculations,
we show that detuning nearest-neighbor wells can destroy coherence and
drive the system into Mott insulators with inhomegeneous density. Our find-
ings suggest that the physics of static Bose-Hubbard models has still many
aspects that remain to be explored.

A significant effort has been devoted also to the simulation of the Fermi-
Hubbard model [24], which is exactly solvable in one dimension [43], but
represents a challenge in dimensions higher than one. In two dimensions,
in particular, it has been proposed to describe the elusive high-temperature
superconducting cuprates [44]. The simulation of the Fermi-Hubbard model
with cold atoms could shed some light into its phase diagram, for which the-
oretical and numerical efforts have not provided conclusive answers [26, 45].
The scheme for the simulation of the Fermi-Hubbard model with cold atoms
was discussed shortly after the proposal for the Bose-Hubbard model [24].
Its experimental implementation has been successfully achieved by using a
two-component Fermi gas in a three dimensional optical lattice [46, 47]. Two
hyperfine states of the atoms are the degrees of freedom used in this setup to
mimic spin.

In the Hubbard model at half-filling (one particle per site on average) with
strongly repulsive interactions U > |, the Mott phase appears when lowering
the temperature below T ~ U. In this phase, double occupation and number
fluctuations are suppressed and the system is an insulator, with a gap in
the excitation spectrum of the order of U [48]. Clearly, this phenomenon is
quite similar to the bosonic counterpart described earlier. An experiment per-
formed in this regime by the group of Esslinger [47] showed the formation of
a Mott insulator for a Fermi gas described by the repulsive Hubbard model.
In this experiment, Feshbach resonances were used to tune the interactions.

Cooling further the system, the next temperature scale to achieve is the
one leading to Néel antiferromagnetism, which is set by the exchange energy
T ~ J?/U. The strongly-repulsive Hubbard model can indeed be mapped
into a Heisenberg model [48, 49], for which spin-spin correlations become
important when the temperature is sufficiently low. Exploring quantum mag-
netism is the next frontier in the experimental study of strongly-correlated
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Fermi systems with cold atoms. However, limitations of cooling techniques
still do not permit to go below the Néel scale. Recent experimental efforts
showed quite some progress by getting close to the transition temperature by
less than a factor of two [50] or by engineering special geometries that can
enhance magnetic correlations [51]. On the theoretical front, some procedures
have also been proposed to limit the entropy gain (and therefore the temper-
ature) during the loading of the Fermi gas into the optical lattice [52], which
is the major source of non-adiabaticity [53].

From a theoretical perspective, cold-atomic gases offer not only the op-
portunity to investigate fermionic models that are relevant to understand
solid state materials, but also to discover novel phenomena and unconven-
tional phase transitions. In the next paragraph, we will describe how time-
dependent driving forces can be used for quantum simulation of bosonic
and fermionic systems. In particular, in Chapter 2 and 3, we will use specific
driving protocols to engineer lattice models for fermions described by gener-
alized Hubbard models that can support exotic superconducting states and
transitions to metallic states with a non-trivial Fermi surface.

1.2 SHAKING AND DRIVING FORCES FOR QUANTUM SIMULATION

Among the many methods that have been used to realize systems and Hamil-
tonians of interest in cold atoms during the last years, time-dependent forces
have played a prominent role. The seminal papers by Eckardt et al. [54] and
Creffield et al. [55] suggested that the Mott insulator - superfluid phase tran-
sition could be achieved using a dynamic protocol to control the ratio J/U,
instead of tuning the lattice depth. The procedure involves the shaking of
the lattice with a large frequency w, much larger than the characteristic
energy scales in the problem. This periodic time-dependent model can be
effectively studied using the so-called Floquet formalism, based on a time-
independent effective Hamiltonian operator. The effective description works
at stroboscopic times, namely when the time ¢ is a multiple of the period
T = 2n/w, leading to a renormalization of the hopping parameter | by a
Bessel function of zeroth order, the argument of which depends on the ratio
between the driving force and the frequency. As a result, one can reduce the
magnitude and change the sign of the hopping. When tuning the driving pa-
rameters close to a zero of the Bessel function, the hopping is dynamically
suppressed and a Mott insulator is formed.

This proposal is not only very appealing, but it has proved to be experi-
mentally realizable [56, 57]. The phase transition from a superfluid to a Mott
insulator was observed with time-of-flight imaging [57], and the renormal-
ization of the hopping by a Bessel function was detected by measuring the
expansion rate of the cloud when the magnetic trapping is turned off [56].
It was noticed that higher-order hopping terms become important to under-
stand the experimental data near the vanishing of the Bessel functions [58].
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FIGURE 1.3: Dynamic superfluid - Mott insulator transition. (a) Lattice shaking in one
dimension. The on-site interaction U is not affected by the shaking procedure, whereas
the hopping J is renormalized to the effective value o = JJp(Ko), where Ky is the
driving parameter (see text). (b) Time-of-flight pattern as a function of the driving
parameter Ky showing the dynamic loss of coherence. The figure also shows a con-
densation at 7r/a, corresponding to the sign inversion of the hopping. (c) Measured
effective hopping as a function of the driving displaying the characteristic Bessel func-
tion behavior. The nodes are the points where the tunneling is coherently suppressed
corresponding to the Mott insulating phase. Figures are adapted from Ref. [56, 57].

Considering the growing interest in the study of fermionic systems in op-
tical lattices, a natural question is whether one can observe metal-insulator
transitions dynamically generated. We show in Chapter 3 how that is pos-
sible, by considering a one-dimensional dimerized lattice at half-filling that
is a band insulator (Peierls insulator) in the static case. A shaking protocol
allows to close such a gap and obtain several metal-insulator transitions. One
of these transitions leads to a non-standard metal with four Fermi points.

Driving forces have been investigated not only in the limit when the fre-
quency is much larger than the other energy scales, but also at lower fre-
quencies, in resonant regimes. For instance, the coupling of the lowest two
bands by a resonant shaking has been used to generate a single-particle spec-
trum with two minima, which leads to very interesting physics [59, 60]. It is
observed that atoms form spatially distinct ferromagnetic domains, in which
each domain corresponds to condensation in one of the two minima [59], and
the excitation spectrum displays a roton minimum [61], typical of superfluid
helium [62].

In two dimensions the problem is even richer because one has the freedom
to shake the lattice along different trajectories. In particular, an elliptical tra-
jectory allows one to control the hopping parameters of a triangular lattice
[63] and generate a model that leads to the simulation of frustrated classical
magnetism [64]. In this system, the phase of the condensate in each site of
the triangular lattice plays the role of classical spin degrees of freedom.
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These last experiments are examples of the interest in using cold atoms
to understand magnetic properties of matter. Coupling the electronic charge
with an external electromagnetic field can lead to striking phenomena. The
most prominent example is the quantization of the transverse conductivity
described by the quantum Hall effect, which is the prototype of a class of
phases of matter known as topological insulators [65-67]. In the presence of
the lattice, beautiful effects can arise, such as the fractalization of the energy
spectrum known as the Hofstadter butterfly [28], provided that the flux per
plaquette is large enough. Such phenomena are, in principle, out of reach in
optical lattices because atoms are neutral objects. However, it has also been
possible to engineer artificial gauge potentials via shaking [68], among other
possible methods?® [71]. A synthetic engineering of the gauge potential can
therefore overcome these technical limitations imposed by Nature. The first
experiment to simulate a synthetic gauge potential using shaking was a one
dimensional realization with bosons [68], but later two-dimensional exper-
iments have been performed for Abelian [72] and also proposed for non-
abelian fields [73].

Recently, the topological Haldane model has been realized by using reso-
nant shaking [74] in an optical lattice with honeycomb geometry [75, 76]. This
achievement made possible the observation of a topological transition in ab-
sence of a net magnetic field, as theoretically proposed long ago by Haldane
[29]. At the same time, it is the first realization of a fermionic topological in-
sulator in cold atoms and it leaves no doubts that a lot of room is available to
explore topological states of matter in optical lattices. For instance, the quan-
tum spin Hall effect predicted for graphene by Kane and Mele [77, 78] has
never been observed because of the small spin-orbit coupling present in this
material3. However, methods exist in cold atoms to engineer synthetic spin-
orbit interactions and synthetic magnetic fields [71, 80], and probably not in
the far future we will see a realization of this state of matter and many others
[66].

All the accomplishments obtained through the use of shaking techniques
described above are based on a manipulation of the single-particle physics.
On the other hand, by modulating the interactions in time, one can reach
a completely different regime in which particle correlations become highly
non-trivial. In the bosonic case, it has been shown that one can generate
non-standard Bose-Hubbard models [81], in which the hopping depends on
the particle density [82]. The model is intrinsically strongly correlated and
supports exotic states of matter such as pair superfluidity, namely a phase in
which the condensate is made of pairs of particles (or holes).

This scheme has not been realized in experiments yet, but it turns out to
be a very promising method to engineer classes of models otherwise out of

2 The simulation of the Hofstadter model with cold gases has been achieved very recently using
Raman assisted tunneling [69, 70].
3 It has instead been observed in CdTe/HgTe quantum wells [79].
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reach. We explore in Chapter 2 the consequences of modulating interactions
in time for a fermionic gas in an optical lattice. The effective theory in this case
is an extended Hubbard model with additional nearest-neighbor interactions
that affect the hopping processes. The new interactions make possible the re-
alization of an unconventional type of superconductivity, known as #-pairing
superconductivity, introduced by Yang in 1989 for the Hubbard model [83].
Superconductivity originates from pairs of fermions with zero size and lat-
tice momentum 7t/a, with a the lattice spacing. This state can be thought of
as a condensate of molecules (as in the BEC side of the BEC-BCS crossover
discussed before) but with molecules having a finite crystal momentum, as
for the elusive FFLO superconductivity [84-86].

Contrary to the BEC limit of interacting fermions, in this case there is no
need for strong attractive interactions because the existence of these eigen-
states relies simply on the symmetries of the model. Unfortunately, in the
Hubbard model they are never the ground state but rather metastable higher-
energy states that can, in principle, be accessed after a quench scheme [87]. In
the model that we propose to simulate, this is not the case because the ground
state phase diagram in one dimension has 7 pairs in a certain regime of pa-
rameters where the model is exactly solvable [88]. However, the macroscopic
degeneracy of the ground state prevents the observation of this exotic super-
conducting state. It is well possible that this degeneracy may be removed in
favor of the y-superconductivity by moving away from the integrable point.
Moreover, the richness of the model appears also in other peculiar features,
such as the appearance of spin and charge density correlations that are in-
commensurate with the lattice spacing.

Recently, a new proposal, in which the lattice shaking is combined together
with the modulation of interactions, has shown that one can extend the pa-
rameter phase space of the model to regimes where, for instance, triplet su-
perconductivity appears [89]. Quantum simulation of these models can there-
fore reveal novel phases of matter. The effect of dimensionality and special
geometries is yet to be explored, both theoretically and experimentally. On
the experimental part, the quantum simulation of this strongly-correlated
model could be also useful in the search for quantum magnetism. Indeed,
we have noticed from quantum Monte Carlo simulations in one-dimensions
(see Chapter 2) that the new interaction terms enhance antiferromagnetism
in the regime of repulsive contact interactions. In three dimensions, where
true long-range order can be realized, one might speculate that this effect can
be used to push the Néel transition temperature to larger values and allow
experiments in cold-atoms to finally glance at antiferromagnetism.

1.3 OUTLINE

In this thesis, we discuss quantum phase transitions in low-dimensional opti-
cal lattices, namely one- and two-dimensional lattices. The dimensional con-
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finement is realized in experiments by suppressing the hopping in the extra
dimensions through a deep potential barrier that prevents the atoms to tunnel
across dimensions [6]. The dimensionality considerably affects the physical
behavior of the system. For instance, in one dimension, the celebrated Fermi-
liquid theory does not describe the many-body behavior of a fermionic sys-
tem. Using bosonization to single out the correct degrees of freedom, a new
type of liquid, known as Luttinger liquid, emerges. In this type of liquid there
are no single particle excitations, but instead collective behavior, and spin and
charge degrees of freedom are decoupled [90].

In the first part of this thesis, we consider one-dimensional fermionic gases
under the effect of time-dependent driving forces. In Chapter 2, we describe
a proposal to realize non-standard Hubbard models that display correlated-
hopping terms. The extra terms describe hopping processes that depend on
the particle-density difference in neighboring sites. These processes emerge
when the interactions are modulated through a time-dependent magnetic
field that controls the interaction strength. The effective model is obtained
in arbitrary spatial dimensions, but only in one-dimension it is known to be
exactly solvable for specific values of the parameters [88]. Moreover, an SU(2)
symmetry in the charge sector allows to construct non-trivial superconduct-
ing eigenstates (7 states), discovered by Yang as excited states of the Hubbard
model [83].

In the one-dimensional case at the integrable limit, the additional hopping
terms lead to these eigenstates in the ground-state phase diagram [88]. The
only drawback is the fact that the ground state is macroscopically degenerate.
It is possible that by moving away in the parameter space from the integrable
limit one may remove the degeneracy and single out #-pairs. This question
is at the moment still open. However, we have investigated the charge and
spin sectors in the case of half-filling (one fermion per site on average), and
found that the density-dependent hopping terms generate spin and charge
correlations that are incommensurate with the lattice spacing.

In Chapter 3, we study a one-dimensional bipartite optical lattice with
fermionic atoms at half-filling. The lattice potential barriers have heights al-
ternating in magnitude. As a consequence, the hopping amplitudes also alter-
nate in magnitude and the elementary unit cell has two sites. This system is
known to display Peierls dimerization at half-filling [91]: the fermions form
dimers in neighboring sites that inhibit transport and open a gap in the spec-
trum, thus forming an insulator. A famous example is given by the Peierls
distortion in polyacetylene [92].

We derive the single-particle spectrum describing the low-energy physics
of the model, which reveals that the insulating behavior at half-filling is given
by a gap at momemtum 71/a between the two lowest bands. We then con-
sider the effect of shaking on this system, and find that the renormalization
of the hopping coefficients in the effective model can lead to several scenar-
ios when tuning the driving parameter x. The second band inverts and the
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energy spectrum displays an indirect gap that closes at a critical value of
k. We demonstrate in this way that we can induce a phase transition from
an insulating to a metallic state through shaking. Moreover, the fact that the
band closing is realized through an indirect gap leads to an unconventional
metallic phase with four Fermi points. After bosonization of the model, we
obtain a qualitative picture of the effect of interactions on the gap opening.

The second part of this thesis describes bosonic systems in two-dimensional
optical lattices. In Chapter 4, we consider a square optical lattice with alter-
nating deep-shallow wells arranged in a checkerboard pattern. This lattice
is realized in the experimental laboratory of Prof. Hemmerich in Hamburg.
The relative depth of neighboring wells can be tuned with a high degree of
control and it has been used to achieve Bose-Einstein condensation in excited
bands [34, 93]. In the experiment, the visibility is extracted from the time-of-
flight imaging to quantify the phase coherence of the bosonic gas [94]. The
observation that a modest detuning can destroy the phase coherence in the
trapped gas is object of a detailed theoretical investigation.

We develop a mean-field theory and determine the phase diagram of this
model. The detuning between neighboring wells is accounted for by introduc-
ing a staggered chemical potential. Mott insulating phases with integer (but
non uniform) density arise. We interpret the experimental data by assuming
that at large detuning, only the deeper wells are populated and form an im-
balanced Mott insulator with empty shallow wells and integer density on the
deeper wells. We support this hypothesis by large-scale calculations using a
variational mean-field approach for the wave function, the Gutzwiller ansatz.
Taking into account the parameters of the experiment (e.g. the trapping po-
tential), we compute the condensed fraction and the density profiles. We find
an excellent agreement between the loss of coherence in the experiment and
the vanishing of the population of the shallower wells, which corresponds
to the localization of the atoms in the deeper wells and the formation of the
Mott insulator. We also develop a perturbative theory to compare directly
with the measured visibility data at large detuning.

In Chapter 5, we investigate a system of bosons in the Lieb lattice, which is
the lattice geometry of the Cu-O plane in cuprates [26]. We consider configu-
rations of the optical potential where s and p orbitals sitting on neighboring
wells become resonant and hybridize, which can be achieved by tuning the
relative depth of the neighboring wells. The interest in this problem comes
from the possibility to realize time-reversal broken phases, usually known
as Varma phases [95], which have been proposed to explain the pseudo-
gap regime of cuprate superconductors. Time-reversal symmetry breaking
involves the appearance of loop currents in the ground state of the system,
driven by interactions.

One of the time-reversal symmetry-broken states discovered by Varma is
topologically non-trivial [37, 96], and displays Quantum Anomalous Hall Ef-
fect. It can be considered to be the equivalent of the Haldane model on the
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Lieb lattice. After the recent realization of the Haldane model for fermions
in a honeycomb optical lattice [74], a bosonic analog exhibiting a chiral-
superfluid phase and a Mott insulator phase with topological excitations has
also been theoretically investigated [97]. Similarly to this case, we discuss how
to realize bosonic analogs of the Varma phases. The recent achievement of
Bose-Einstein condensation in higher bands of optical lattices [34, 93] makes
possible to break time-reversal symmetry by two-body on-site interactions
[31]. In the Lieb geometry, we show the conditions under which the sym-
metry breaking can lead to states with loop currents as in Varma’s case. We
study a four-band model with bosons realizing a condensate phase that does
not break translational and inversion symmetry, but breaks mirror symme-
try. In the fermionic case, this condition is sufficient to realize the anomalous
Hall effect. Here, we will show that the lowest branch of the excitation spec-
trum has a non-vanishing Chern number and therefore supports topological
excitations.
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QUANTUM SIMULATION OF CORRELATED-HOPPING
MODELS WITH FERMIONS

By using a modulated magnetic field in a Feshbach resonance for ultracold
fermionic atoms in optical lattices, we show that it is possible to engineer a
class of models usually referred to as correlated-hopping models. These mod-
els differ from the Hubbard model in exhibiting additional density-dependent
interaction terms that affect the hopping processes. In addition to the spin-
SU(2) symmetry, they also possess a charge-SU(2) symmetry, which opens the
possibility of investigating the #-pairing mechanism for superconductivity in-
troduced by Yang for the Hubbard model. We discuss the known solution of
the model in 1D (where 7 states have been found in the degenerate manifold
of the ground state) and show that, away from the integrable point, quantum
Monte Carlo simulations at half filling (performed with the code of Charles
Creffield) predict the emergence of a phase with coexisting incommensurate
spin and charge order.

2.1 INTRODUCTION.

The use of ultracold atoms in optical lattices as condensed matter simulators
has brought a major advance in physics in the last decade. Both bosonic
[16, 18] and fermionic [24, 47] Hubbard models have been theoretically and
experimentally investigated, and the simulation of artificial gauge fields [71,
98] and Quantum Hall physics [69, 70, 99] are some of the many phenomena
that this active field is unveiling [6, 15, 100].

The realization of the fermionic Hubbard model opens the possibility of us-
ing quantum simulators to treat strongly-correlated fermionic systems, with
the ultimate goal of understanding high-T; superconductivity. While it is
more challenging to cool fermionic systems than bosonic ones, state-of-the-
art techniques have recently allowed fermionic atoms to be cooled sufficiently
to reach the regime where quantum magnetism manifests [101].

A particular interest with ultracold gases is the use of time-dependent
driving potentials. Using this technique, it has been possible to observe the
transition from a Mott-insulator to a superfluid phase in the Bose-Hubbard
model by a dynamical suppression of tunneling [54-56], as well as the sim-
ulation of frustrated classical magnetism [63, 64], and schemes for the real-
ization of abelian [68] and non-abelian gauge fields [73]. More recently, a
time-dependent modulation of Feshbach resonances has been proposed for a
system of ultracold bosons, leading to a model with density-dependent hop-

15



16

QUANTUM SIMULATION OF CORRELATED-HOPPING MODELS WITH FERMIONS

ping coefficients, and exotic phenomena like pair superfluidity, and holon
and doublon condensation [82].

In this chapter we extend this idea to fermionic atom systems. We show
how a time-dependent manipulation of the interaction strength allows us to
simulate an unusual class of “correlated-hopping models” [102], opening a
window for the experimental observation of a novel and elusive form of su-
perconductivity called #-superconductivity proposed by Yang in 1989. After
discussing the model derivation and its symmetries, we focus on the 1D case
at half-filling and perform quantum Monte Carlo (QMC) simulations for arbi-
trary values of the Hubbard interaction U and of the correlated-hopping pa-
rameter 7. Our results show that the model can exhibit an interesting phase,
with coexisting incommensurate spin- and charge-density-wave order.

2.2 MODEL

We consider a system of (pseudo) spin-1/2 fermions in the lowest band of an
optical lattice, and use a Feshbach resonance to modulate the interactions in
time [82]. The Hamiltonian of the model reads

H=-] Y (c;racja +he)+U(t)) npng, (2.1)
(i,j),o i

where | is the fermion hopping amplitude between nearest-neighbor sites

(i,7), and U(t) = U + Uy cos(wt) is the time (t) dependent amplitude of the

two fermion coupling at the same site.

According to Floquet theory [103], a time-periodic Hamiltonian H(t) =
H(t+ T) is described by a set of Floquet modes |u,(t)) which are time-
periodic with the same period T, and a set of quasienergies E,, which are
solutions of the eigenvalue equation

H(8)[un(t)) = Enlun(t)), (22)

where $(t) = H(t) — iho; is called the Floquet Hamiltonian. Solutions |, (t))
of the Schrodinger equation thus have the form |¢,,(t)) = exp(—iEqt/h)|u,(t)),
and are unique up to a shift E;, = E, + mhw of the quasienergies by an
integer multiple m of hiw, which thus gives a Brillouin-zone structure in
quasienergy. The eigenvalue problem is defined in the composite Hilbert
space [104] H' = H ® Hp, where H is the standard Fock space and Hr is
the Hilbert space of time-periodic functions. Let us define the following Flo-
quet basis

Uy . .
|{le(7},m> _ | {njlf}>eilﬁ sin(wt) ):]-annlerlmwt’ (2.3)

where m labels the basis of the periodic functions, and | {nj0}> indexes the
Fock states. The unitary transformation performed by the operator

exp[—i(U; /hw) sin(wt) Zﬁﬁﬁju , (2.4)
)
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leads to the time-independent Floquet Hamiltonian. The main goal is now
the calculation of the Floquet quasienergy spectrum, for which one needs the
matrix elements ({1, } ,m|$(t)| {”}a}/ m")) . The symbol ((...))T means that
the ordinary scalar product defined in H has been time-averaged, defining
the natural scalar product in H'. In the high-frequency regime, hw > |, U,
states with different label m decouple, and the Floquet Hamiltonian matrix
elements can be approximated by

<<{Tl‘(7} ’ m|ﬁ(t) |{n/'17}' m/>>T ~ (Sm,m/ <{n't7} ‘Heff| {1/1/"7}> =+ mh(‘J5n,n’ ’ (2-5)
] ] ] ]
defining an effective static Hamiltonian

Heg = —J Z CIUC]U + h.c. j() [K(niﬁ- — n]'(-f)] + UZniTnii . (2.6)
i

The function J [K (niz — n]'(—T)] is a Bessel function of the first kind. Its argu-
ment is the density operator difference between sites i and j relative to the
spin &, where ¢ = | (1) if ¢ = 1 (J), and the parameter K = U; /hw.

We now perform a Taylor expansion of the Bessel function to rewrite the
hopping term. Using the fact that the Bessel function is an even function, we
can write its Taylor series (without necessarily specifying the coefficients of
the expansion) as

Jo [K(nia - nja)] = Z com K=" (njg — ”ja)zm
= 1 + [Jo(K) — 1] (i, + Njo — 2”1'(7”]’0) - (27)

In deriving (2.7) we noted that the first term in the expansion with m = 0 is
just 1, and have used the fermion identity (1;, — njg)zm = Njg + Nje — 2NjgNjs
for arbitrary m > 0. This allows the Hamiltonian to be rewritten as

Hett = —] Y (chcjp +he) {1 = X(nig +njg — 2nignjg) } + U Y nipnyy
(ij).o i
= H] + Hy, (2.8)

where we define X =1 — Jp(K).

Eq. (2.8) can be easily recognized as the Hamiltonian of the Hubbard model
with a correlated-hopping interaction [23, 102]. Similar interaction terms have
appeared in a different context in cold atoms. If one considers a fermionic
lattice system very close to the Feshbach resonance (which is not the regime
studied here) in a static magnetic field, the behavior of the system cannot be
described using the one-band Hubbard model because the on-site interaction
energy exceeds the energy gap and higher bands play an important role. The
physics in this regime can be described by an effective one-band model with
density-dependent tunneling rates [105, 106].
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Let us now discuss some limits of the Hamiltonian (2.8). In the absence of
the driving (U; = K = 0), the Bessel function Jy(K) = 1, and so the effective
Hamiltonian (2.8) coincides with the Hamiltonian of the standard Hubbard
model. Tuning the driving to K = 2.4048.., where J)(K) = 0 and X = 1,
produces a Hamiltonian that coincides, in d = 1, with an exactly solvable
limit of the correlated-hopping model (2.8), in which the strongly correlated
dynamics of the electrons ensures separate conservation of the doubly occu-
pied sites, empty sites, and singly occupied sites [88]. Interest in models with
this particular type of fermionic dynamics was triggered by the concept of
n-superconductivity proposed by C. N. Yang [83]. Motivated by the discov-
ery of high-T, superconductivity, Yang proposed a class of eigenstates of the
Hubbard Hamiltonian which have the property of off-diagonal long-range or-
der, which in turn implies the Meissner effect and flux quantization [107-109],
i.e. superconductivity. These eigenstates are constructed in terms of operators
=y, e_i"'rcITcL that create pairs of electrons of zero size with momen-
tum 7t. Yang also proved, however, that these states cannot be ground states
of the Hubbard model with finite interaction; 77-superconductivity is only re-
alized in the Hubbard model at infinite on-site attraction in d > 2 [110]. Later,
several generalizations of the Hubbard model showing #-superconductivity
in the ground state (for a finite on-site interaction) were proposed [111-115].

The exactly solvable limit of the model (2.8) (X = 1 in d = 1) has been
analyzed in detail by Arrachea and Aligia [88, 116]. Away from the exactly
solvable limit, the model has been mainly studied in the weak-coupling limit
(X < ]) using the continuum limit bosonization treatment and finite-chain
exact diagonalization studies [117, 118].

The infrared behaviour of the system (2.8), determined by the unusual cor-
related dynamics of fermions, is also strongly influenced by its high symme-
try. The three generators of the spin-su(2) algebra

_ 1
S+ = ZCTTCLL/ ST = ZCLCIT’ SZ = E Z(an — nil)/ (29)
1 1

1

commute with the Hamiltonian (2.8), which shows its spin-SU(2) invariance.
To keep the discussion as general as possible, let us consider the case of
bipartite lattices that we label A, B and introduce the index «; that assumes

values o; = 1ifi € Aand w; = —11if i € B. Ind = 1, in particular, one
can choose A to be the even sites and B to be the odd sites and one simply
has a; = (—1)". The electron-hole transformation c;, — (—1)% CIU leaves

the Hamiltonian unchanged and therefore the model is characterized by the
electron-hole symmetry. Moreover, for the case of half-filling that we consider
in this work, the model (2.8) possesses an additional SU(2) symmetry. The
transformation

Cit — Cit, Ci| — (—1)ai CL, (2.10)
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interchanges the charge and spin degrees of freedom and converts
Hegt(J, U, X) = Hege(J, —U, X). (2.11)

In this case therefore, the charge sector is governed by the same SU(2) sym-
metry as the spin sector, and the model has the SU(2) ® SU(2) symmetry
[88] with generators

. _ i 1
nt =Dy, 1T =N ey, =5 (1),
1 1 1
(2.12)

Henceforth we will focus on the case d = 1 where an exact solution of the
model exists both for X = 0 (Hubbard model) and X = 1, as previously
mentioned. For the half-filled Hubbard model the SU(2) ® SU(2) symmetry
implies that the gapped charge and the gapless spin sectors for U > 0 are
mapped by the transformation Eq. (2.10) into a gapped spin and a gapless
charge sector for U < 0. Moreover, at U < 0 the model is characterized by
the coexistence of CDW and singlet superconducting (SS) instabilities in the
ground state [119].

Contrary to the on-site Hubbard interaction U, the X term remains invari-
ant with respect to the transformation Eq. (2.10). For a given X, this immedi-
ately implies that,

e for U = 0 the properties of the charge and the spin sectors are identical;

¢ in the limit in which U > X one expects that the large onsite repulsion
would open a gap in the charge sector. Since for U = 0 the spin and
charge degrees of freedom have the same properties because of the X
symmetry, there must exist a critical value of the Hubbard coupling
U, > 0 corresponding to a crossover from the X dominated regime into
a U dominated regime.

* The Luttinger-liquid parameters of the model characterizing the gapless
charge (K,) and spin (K;) degrees of freedom are K, = K, = 1.

In the following sections, we will separately consider the exactly solvable
cases (X = 0 and X = 1), and the physically relevant case of (0 < X < 1).

2.3 EXACTLY SOLVABLE CASE: X =1,d = 1.

In this section, we mainly follow the route developed by Arrachea and Aligia
[88]. At X = 1, the hopping of an electron with spin ¢ from a site i to a
neighboring site j is only possible if there are no other particles on the sites
(niz = njz = 0), or if both sites are occupied by electrons with opposite spin
(niz = njz = 1). Thus, the only allowed hopping processes in this limit are
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exchange processes of a singly occupied site with a holon (e.g. |0, 1) < | 1
,0)), and a doublon with a singly-occupied site (e.g. | 11, 1) <> | T, T1)).

It is convenient to use the slave-particle formalism to rewrite the model in
another basis, where all available processes are clearly displayed. One defines
the mapping

10)j = h{10), [@); = fi10), | T1); = df|0), (2.13)
where the slave particles must obey the constraint

Wi +didi+ Y fl fio =1 (2.14)
o

at each lattice site. The constraint physically means that the slave particles
act as hard-core particles, with an infinitely large on-site repulsion. The h}
and d! bosonic operators describe, respectively, holons and doublons of the
original system, while the fermionic operators f{; describe fermions with spin
0. Using this mapping, the Hamiltonian can be exactly rewritten in the form

Hoge = =1 3 [fjofio(hihj —did)) +he] + U} did;, (215)
(i) i

where one can immediately observe that the numbers N, Ny, N¢y and Ny
are separately conserved, because the Hamiltonian (2.15) can only interchange
individual particles. This corresponds to a U(1) symmetry for each slave
particle sector. These particle numbers will therefore be used as quantum
numbers to label the eigenstates. Notice that the U term plays the role of a
chemical potential for doublons and that there is not, in general, a free part
of the Hamiltonian for the slave particles. We stress the sign difference in the
exchange process between doublons and holons in Eq. (2.15). The additional
minus sign for the doublons is responsible for the #-symmetry with momen-
tum 7t described by the operators in Eq. (2.12). While the restricted dynamics
of hopping processes expressed in the Hamiltonian (2.15) is a very general
property of the choice X = 1, it is only in d = 1 that there are additional
symmetries (not discussed here) that allow the model to be solved exactly.
The solution of this model in 1D for open boundary conditions was given
in Ref.[88]. The physical properties of the 1D system described by Eq. (2.15)
are very peculiar. When a doublon and a holon are neighbors, they act like
hard-core bosons as previously mentioned, and cannot tunnel through each
other because of the dimensionality of the system. Such a process would re-
quire the doublon and the holon to annihilate into two single fermions on
the neighboring sites and then reform as a doublon and holon on exchanged
sites. This process is forbidden at X = 1, but is possible for X # 1.

As a result, there are three regimes for the ground state phase diagram,
as shown in Fig.2.1: in region I there are only single fermions and holons
(in region 1II, by particle-hole symmetry, only doublons and single fermions);
the dashed line in Fig.2.1 will be discussed later when we concentrate on
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[dhT!]

v [dh]

FIGURE 2.1: Phase diagram of model (2.8) obtained for Jy(K) = 0ind =1 [88].

the regime n = 1; in region III all three types of particles are present, single
fermions, holons and doublons; in region IV there are no single fermions but
only doublons and holons. In all sectors the ground state is highly degenerate
and, in region III and IV, one can show that also #-states belong to the ground
state manifold. For further details, we refer the reader to Ref. [88].

In the following, we focus on the half-filled case n = 1, for which we
perform QMC simulations in Par. 2.5. Since at X = 1 and half-filling the
number of doublons Ny, holons N, = N; and of the single occupied sites
Ny = N — 2N are integrals of motion, the delocalization energy of the sys-
tem coincides with that of 2N; hard-core bosons on a lattice of N sites. This
equivalence allows one to write the density of energy at half-filling as

e(ng) = —Z—HI sin (7t —27mtng) + Uny . (2.16)

For the half-filled case, the three regimes mentioned before become (see
Fig.2.1):

i. U < —4]. In this case, the ground state only contains doublons and
holons (n; = nj, = 1/2) that are frozen in the ground state since no dynamics
is allowed in the absence of single fermions. The system is a doublon-holon
insulator and its energy is Eg = NU/2. The degeneracy of the ground state
~ N diverges in the thermodynamic limit.

ii. U > 4]. In this case there are no doublons and holons in the ground
state; all sites are singly occupied and particles cannot hop. The ground state
has energy Eg = 0 and is 2V times degenerate, due to the freedom of dis-
tribution of spins of particles along the lattice. This state is thus a charge
insulator.

iii. —4] < U < 4]. In this case, the ground state consists of a finite number
of doublons and holons, separated by singly occupied sites to ensure their
maximal delocalization along the lattice. It is clear that at U = 0 the minimum
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of kinetic energy is reached at the densities n; = n;, = 0.25. The doublon
density now depends on the ratio U/ J:

ng = % {1 — %arccos (—Z)} . (2.17)

2.4 AWAY FROM THE EXACT SOLUTION.

Deviation from the exactly solvable limit X = 1 produces the new term

2v] Y [fh ) (hidj + hjdy) +hee], (2.18)
(i),

where we have defined v = Jy(K) = 1 — X. As these new terms allow dou-
blons to convert into two single fermions on neighboring sites (and the re-
verse), the Hamiltonian no longer conserves the individual number of slave
particles, and thus no exact solution is known. However, the r-symmetry is
preserved and one expects that the enormous degeneracy of the ground state
would again be removed. For v ~ 1, i.e. |X| < 1, the model can be treated
using bosonization techniques and the phase diagram is known (also in the
presence of nearest-neighbor interactions) [117] showing for U < 0 that super-
conducting correlations coexist with CDW. For the strongly-interacting case,
exact diagonalization in 1D has been used [120, 121], for systems of up to
12-14 sites. Nakamura [121] presented a phase diagram at half and quarter
filling (for X = +1/4), and Arrachea et al. [120] have shown that supercon-
ducting correlations can appear for n = 1. Most recently, by using a double
modulation, namely combining a modulation of interactions and also a shak-
ing of the lattice, Greschner et al. have shown that the model discussed in
this chapter can be generalized [89]. The density-dependent hopping terms
(two-body and three-body interactions) display two independent coupling
constants while here only the parameter X appears. The phase space is there-
fore enlarged. The results presented in their work have been obtained using
density-matrix renormalization group (DMRG) techniques for the case U = 0.
The half-filled case shows two possible phases: a bond-ordering wave and
triplet superconductivity.

In the next section we will use the QMC technique to investigate the charge
and spin ordering of the Hamiltonian given by Eq. (2.8) at general values of
X and see how the results evolve between the two integrable cases (X = 0
and X = 1) for the specific case of half-filling.

2.5 QUANTUM MONTE CARLO METHOD

To treat the Hamiltonian (2.8), we employed a standard “world-line” algo-
rithm [122] written for this work by Charles Creffield who produced the
numerical data shown below. This is a finite-temperature method, operating
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in the canonical ensemble, which is particularly well-adapted to treat lattice
spin-charge Hamiltonians. In order to sample the zero temperature behavior
of the system, it is important to set the inverse temperature of the system,
B = 1/kT, to a sufficiently large value. By comparing the results for the
ground state energy of the system with v = 1 to the exact results for the
Hubbard model available from the Bethe Ansatz, we established that a suf-
ficiently low temperature was 8] = 48, and accordingly we used this value
in all the simulations. The Trotter decomposition of the imaginary time axis
gives systematic errors which can be made arbitrarily small by increasing the
number of timeslices, thereby reducing the imaginary-time discretization AT.
Our simulations demonstrated that the convergence of the results depended
strongly on the value of y. For the Hubbard model (y = 1) a relatively coarse
value of AT = 0.1 was adequate. However, as v was reduced, At also had to
be reduced further, the lowest values of v = 0.2 requiring a discretization of
AT >~ 0.02, with the simulation involving 2048 timeslices.

As well as the increased number of timeslices required, taking lower val-
ues of 7y was also hindered by ergodic “sticking”, in which local Monte Carlo
(MC) updates are unable to evolve the system from local minima in energy. It
was this factor that set the practical barrier on the lowest values of vy that we
were able to simulate, and accordingly we only present results for y > 0.2. In
order to obtain results of high accuracy, typically 16,000 MC measurements
would be made for each set of parameters, with each measurement being sep-
arated by the next by several MC sweeps in order to reduce autocorrelation
between the data.

A particular advantage of the world-line method is that as it operates in
the real-space occupation number basis, it is simple to evaluate operators
diagonal in number operators, such as the onsite spin 0; = n;; — n;|, the
onsite charge p; = n;; + 1;|, the doublon number, and correlations between
these operators. An especially useful quantity is the static structure function

Su(q) = = Zeiq(m_n)@émlxn —a?) (2.19)
L mn
where m and 7 are integers labeling sites, « = ¢ (p) denotes spin (charge), and
L is the number of lattice sites. As well as using the structure functions to
investigate the type of spin and charge ordering present in the system, they
can also be used to directly estimate the Luttinger-liquid parameters [123],

Sa(q)
g

o« = limy o (2.20)
Thus, when the structure function is linear at low momentum, the Luttinger-
liquid parameter is well-defined and is simply related to its slope. On the
other hand, if the function is quadratic, this indicates that the Luttinger-liquid
parameter is not well-defined and that this sector has a gap. In a uniform
system, continuity requires that S(g — 0) = 0. However, if phase separation
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occurs S(q) will have a peak at the smallest non-zero momentum, which will
diverge as L increases. The regularity of S(g) for small momentum thus also
provides a first check that the system is not phase-separated.

251  QMOC results

Doublon density — In this section we will measure all energies in units of
J. In Fig.2.2 we show the doublon density as a function of 7y for several
different values of the Hubbard interaction U. In these simulations, 7 was
initially set to 1, and then reduced “quasi-statically” in steps of Ay = 0.01.
For each value of 7y and U the ensemble was allowed to rethermalize and a
number (typically 64) of MC measurements made. This technique permits a
rapid scan to be made through the configuration space of the model, at the
expense of only producing results of moderate accuracy.

From Fig. 2.2, we can first see that for U = 0, the doublon density does not
depend on 1. This arises from the underlying symmetry of the Hamiltonian
at half-filling. For negative U, we see that the doublon density increases as
v is reduced, interpolating smoothly between the results for the Hubbard
model (7 = 1), and the exactly solvable case (v = 0). The results for positive
U mirror those for negative U, and can be related via

ng(+U|) = 0.5 — ny(—|U]J). (2.21)

The validity of Eq.(2.21) is clear from the numerical results in Fig.2.2. In
addition, it can be easily proven, starting from Eq.(2.10) and recalling that
N; = Yinjyn;y. Although 7 = 0 is not directly accessible to our QMC simula-
tion due to ergodic trapping, we can obtain estimates for the doublon density
in this limit by extrapolating the data in Fig.2.2. We present the results in
Fig.2.3. The agreement between the numerical results and the exact solution
[88] is excellent, demonstrating the accuracy and reliability of the QMC sim-
ulation.

Correlation functions — In Fig.2.4(a) we show the static charge structure
functions for strong repulsive interactions, U = 4. It can be clearly seen
that for the Hubbard model (y = 1) the charge sector is gapped, and that
the structure function presents a weak peak at k = 2kr = 7. Reducing v
suppresses the structure function, and weakens this peak further. The spin
structure function, shown in Fig. 2.4(b) shows a contrasting behavior. For the
Hubbard model this function possesses a strong peak at 2k, indicating the
presence of strong antiferromagnetic ordering (1,],1, /), and this peak is en-
hanced as 7 is reduced. An infinitesimally small deviation of the coupling
v from zero opens channels for the exchange of spins on neighboring sites.
This gives a preference for an alternating distribution of particles with op-
posite spins along the lattice, i.e. a spin-density-wave (SDW) structure. The
spin excitations are gapless, and the spin-SU(2) symmetry sets the Luttinger-
liquid parameter K, = 1.
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FIGURE 2.2: Doublon density measured as v is quasi-statically reduced toward zero.
For U = 0 (blue squares) the doublon density does not change, reflecting the sym-
metry of the model. For positive U (black circles) the density drops as v is reduced;
the reverse is the case for negative U (red squares). The data are symmetric about
ng = 0.25 (see Eq. (2.21)). The solid lines are cubic fits to the data to guide the eye. The
arrows on the left indicate the analytic values obtained in Ref. [88] for the limit v = 0.
Parameters of the model: 32 sites, f = 48, ny = n,.

0.5¢---1 —
Y
L \ 4
\
N
~
04— N —
k ~
L Sale == exact result
2 Sso QMC extrapolation
‘G S~
— ~e -
£03 .
< Seo
E _
) Sa
= 02 ~o _
o Seo
A F LN 4
~
AN
-
0.1+ S -
N
N
L \ i
\
(= | | | | JE—
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with the results obtained by extrapolating the data shown in Fig.2.2. The agreement
is seen to be excellent.
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FIGURE 2.4: (a) Charge structure function for the half-filled model with U = 4. For
v = 1 there is a weak peak at k = 77; as < is reduced this peak is suppressed. (b)
Spin structure function. For v = 1 there is a strong peak at k = 7 indicating strong
antiferromagnetic ordering. This peak is enhanced as 1 is reduced. (c) As above, but
for U = —4. (d) As above, but for U = —4. The effect of changing the sign of U is to
interchange the spin and charge degrees of freedom. Momentum is measured in units
of the inverse lattice spacing.

Below these plots we show the corresponding structure functions for at-
tractive interaction U = —4. It can be clearly seen that changing the sign
of U simply has the effect of interchanging the spin and charge degrees of
freedom, as noted in Par. 2.2. In this case we see that reducing 7y now has
the effect of suppressing the spin dynamics, while enhancing the staggered
charge order (d,h,d, h). Similarly to before, deviation from the exact solution
for v = 0 opens channels for an alternating distribution of doublons and
holons along the lattice i.e. a charge-density-wave (CDW) structure. Now the
spin degrees of freedom are gapped, the charge excitations are gapless, and
due to the charge-SU(2) symmetry, the Luttinger-liquid parameter K, = 1.

Results for U = —2 are given in Fig.2.5. Looking first at the charge struc-
ture function, the result for the Hubbard model looks similar to that seen
previously for U = —4. As v is reduced, however, a new behavior emerges.

When 7 is reduced below 0.6, the charge structure function forms a peak at an
incommensurate momentum, indicating the formation of an incommensurate
CDW. At the same time an incommensurate SDW forms in the spin sector, at
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FIGURE 2.5: (a) Charge structure function for U = —2. As v is reduced below 0.6, the
system forms an incommensurate CDW. (b) Spin structure function for U = —2. For

low 7 the system also forms an incommensurate SDW. Momentum is measured in
units of the inverse lattice spacing.

a smaller value of momentum. This incommensurate ordering is reminiscent
of the behavior known for stripes in the 2D conventional Hubbard model
upon doping [124].

The incommensurate order occurs generally for low values of v for |U| < 4
(region III of the phase diagram Fig.2.1). Reducing |U| further to U = 0
shows the effect of ¢ on a non-interacting system. For v = 1 the system
consists of free fermions, and as can be seen in Fig. 2.6 the charge and spin
correlators are identical to each other and are featureless. At v = 0.6 the dy-
namics of the system is again slightly suppressed, but at a 7 = 0.2 the system
again manifests incommensurate charge and spin order, with the structure
functions peaking at k = kr.

Let us try to understand how these results connect to the exact solution for
|U| < 4. In this case the ground state consists of a finite number of doublons
and holons, separated by singly occupied sites to ensure their maximal delo-
calization along the lattice. Thus, in this sector a rather special ordering, char-
acterized by coexistence of CDW and SDW order on different lattice sites, is
possible. For a more detailed description let us consider few particular cases.

Let us start from the U = 0 case, where n; = 0.25. The ground state
configuration at X ~ 1 consists of an alternating distribution of doublons
and holons, separated by single occupied sites with alternating spins on these
sites. A possible configuration would be

(dthldthidthl.)

showing the coexistence of period-4 charge and spin density modulations, as
observed in Fig. 2.6.
At U = —2, where n; = 0.3(3), a possible configuration would be

(dthdlhdthdl|h..)
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FIGURE 2.6: (a) Charge structure function for U = 0. (b) Spin structure function for
U = 0. For the non-interacting case the charge and spin degrees of freedom behave
identically. At v = 1 they show no structure (free fermions), but form incommensu-
rate ordered phases for low . Momentum is measured in units of the inverse lattice
spacing.

showing the coexistence of a period-3 charge modulation with a period-6
spin density modulation.

For other values of U, the number of doublons (and singly occupied sites)
will be in general incommensurate. The structure of the coexisting charge
and spin density waves must reflect this incommensurability, and will conse-
quently be much more complicated.

For 0 < U < 4, the behavior is the same as for —4 < U < 0, but with
the spin and charge structure functions inverted. For instance, for U = 2
Fig. 2.5(a) would hold for spin and Fig. 2.5(b) would hold for charge, indicat-
ing an incommensurate spin-charge-density wave.

To ensure that the behavior we have seen is not an artifact of the finite
system size, we have repeated our simulations for U = 2.5 for lattice sizes be-
tween 16 sites and 100 sites. We show the results in Fig. 2.7, and it is clear that
the incommensurate structure seen in the structure functions hardly alters as
the lattice size is increased. We can thus be confident that our standard size
of L = 32 is sufficiently large for finite size effects to be neglected.

From the simulation we have also evaluated the Luttinger parameter K,
using Eq. (2.20). As shown in Fig.2.8, for v = 1 K, is equal to 1 for negative
values of U (the 10% deviation is within the numerical error of our calcula-
tion), indicating the coexistence of superconductivity and charge wave order-
ing. As U becomes positive, a gap opens in the charge sector and K, can no
longer strictly be defined for the half-filled case. This is marked in Fig. 2.8 by
the calculated value of this parameter abruptly dropping, as the charge struc-
ture function is no longer linear at small momentum. For ¢ = 0.6 a similar
behavior is seen, except that the opening of the charge gap now occurs at a
higher value of U ~ 1.8. As v is reduced further this trend continues, and for



2.5 QUANTUM MONTE CARLO METHOD

25 ‘
1
!
L !
1
=1 (Hubbard
N =1 ( )‘%’L
1/
=
g
E
E15F
o
ER
é -0 L=16
2 A A L=64
o 1 v v L=100
5
g |
)
05
M’ 4
0 Sl . ! . |
/2 T
Momentum
FIGURE 2.7: The charge structure function for U = —2.5 as the lattice size is increased.
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FIGURE 2.8: Luttinger-liquid parameter K,. For v = 1, K, is approximately equal to 1
for negative U, then drops as U becomes positive, signaling the opening of the charge
gap. As 1 is decreased, this drop occurs at larger values of U. The dashed line is a
guide to the eye, to assist in estimating where the drop occurs.

7 = 0.2 we find that the critical U has a value of approximately 3.5, in good
agreement with the estimate given in Ref. [88].

Before closing this section, we want to mention that a model, similar to
the one presented here, but without the three-body term, has been been pre-
viously investigated [125, 126]. For this so-called Hirsch model (see for in-
stance Ref. [127]), the strongly-correlated regime at half-filling exhibits an in-
commensurate (singlet) superconducting phase that show many similarities
with our findings. This phase has been captured using DMRG techniques,
while bosonization and RG were unable to describe the transition [128].
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FIGURE 2.9: Feshbach resonance for 4°K with parameters By(G) = 224.2, A(G) = 9.7
and abg/ao = 174.

At present, the phase diagram of the model (2.8) in 1D is only partially
known; however, as we will show in the last section, the model can describe
realistic experiments using cold atoms. This represents a good challenge for
quantum simulations, as well as for new numerical calculations, as performed
for instance in Ref. [89]. A fascinating possibility would be an emerging su-
perconducting phase, with tightly bound pairs of momentum 7, realizing the
n-superconductivity first proposed by Yang [83].

2.6 EXPERIMENTAL PARAMETERS.

For the experimental realization of this model (in 1D for instance) we con-
sider an optical lattice V(r) = Vysin®(kx) + Vj sin(ky) + V. sin?(kz) with
k = 2mt/A generated by a laser with wavelength A = 1064nm; we take the
limit V, Vy, > V; to allow dynamics only in one dimension. We studied
the Feshbach resonance for “°K at By(G) = 224.2, characterized by a width
A(G) = 9.7 and a background scattering length a,,/ap = 174, where ap de-
notes the Bohr radius [10]. The dependence of the scattering length a5 on the
magnetic field B is given near resonance by (see Fig. 2.9)

as = dpg <1 - BABO) . (2.22)

We choose a time dependent magnetic field of the form B(t) = By, + By cos(wt)
and consider |By| < |By, — By|. Therefore, at first order in By /(B — By) we

can write
A B1 cos(wt)
~ 1- = (1 215l
" ”bg{ B — By ( B, — By

= g+ aycos(wt), (2.23)
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FIGURE 2.10: Comparison between frequency modulation w of the magnetic field,
hopping parameter | and Hubbard interaction U (all measured in Hz) at the zero
of the Bessel function Jy(U;/hw) for 4°K close to a zero of a Feshbach resonance
(Bo(G) = 2242, A(G) = 9.7 and apg/ag = 174). (a) In the attractive case a9 < 0,
we have chosen B,,(G) = 233.5 and B1(G) = 4; (b) in the repulsive case a9 > 0,
we have chosen By, (G) = 234.36 and B;(G) = 4. The optical lattices parameters are
Vy = Vy =25Eg, Vz = Vg and A = 1064nm.

where we have defined ag = ap[1 — A/(By — Bo)] and a1 = —ay¢B1A/ (B —
By)>.

In Figs. 2.10(a) and (b), we plot the driving frequency values correspond-
ing to the zero of the Bessel function Jy(U;/hiw) = 0 both in the attractive
and repulsive case, respectively, in a particular range of parameters near the
zero of the Feshbach resonance (so that we can reach the region of inter-
est in the regime of strong coupling analyzed in this chapter) and compare
with an estimate of U and | for the 1D case. We find that w is in the sub-
kilohertz regime w ~ 27 x 500 — 600Hz and we observe that such a choice
of parameters fulfills the main approximations required from Floquet the-
ory, i.e. w > U, J. Actually, in typical experiments [56] the kilohertz energy
scale is far below the band gap and higher band contributions do not play a
role, except for possible multiphoton processes. Moreover, one can see that
the range where Floquet theory can be applied for this choice of parame-
ters of the resonance allows us to explore the phase diagram in the main
region of interest, where the correlated-hopping model should reveal inter-
esting phenomena. Such a choice of parameters plotted in Fig.2.10 can be
considered as an example to show that the model described here can be real-
ized in experiments; one would envisage that for different values or ranges
of U/], the optimal parameters will be chosen accordingly. We finally want
to mention that to calculate the parameters U and | we have used the ap-
proximate formulas (given in terms of the recoil energy Eg = h*(271/A)2/2m,
with m denoting the atomic mass) [6]: U/Er = (271/A)as\/8/m Vol/4 V;}f and
J/Er = (4/\/7) V] /4e=2V where we have introduced the potential depth
Vo = V; (assuming that the electron dynamics would be in the z direction),
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and frozen the motion in the x and y directions taking Vy = V;, = 25 Eg such
that we can consider one-dimensional effective systems.

2.7 CONCLUSIONS.

We have discussed a scheme for cold atoms to engineer an extension of
the Hubbard model that includes nearest-neighbor correlations affecting the
hopping processes for fermions in optical lattices. After imposing a time-
dependent driving of the s-wave scattering length between atoms in two dif-
ferent hyperfine states (that we have modeled as a pseudo-spin 1/2 system
assuming no spin imbalance), we have shown within Floquet theory that the
system can be described by an effective Hamiltonian with correlated-hopping
interactions. The model has an additional SU(2) symmetry, with respect to the
usual spin-SU(2) symmetry of the Hubbard model, generated by the algebra
of 1 operators. This fact opens the possibility of searching for a ground state
characterized by the exotic #-pairing superconductivity proposed by Yang in
1989 as a metastable state of the Hubbard model. This model, for the par-
ticular case of d = 1 on which we focused in this work, has two integrable
points as a function of the driving parameter X that tunes the coupling of
the correlated-hopping interactions: one is the Hubbard model (X = 0) and
the other one (X = 1) has been analyzed in Ref. [88] by Arrachea and Aligia.
The integrable point discussed by them manifests 7-pairing in the ground
state. Unfortunately, the huge degeneracy of the ground state prevents the
system from showing superconducting properties, like anomalous flux quan-
tization [116]. Exploring this region of the phase diagram that extends over
the whole filling axis (see Fig. 2.1, region III) can be quite challenging in gen-
eral for experiments. Indeed, as discussed for the case of the supersymmetric
model by Essler et al. [112], it is possible to draw the phase diagram of Fig. 2.1
using the grand canonical ensemble. Such representation is of fundamental
importance because in typical cold atom systems the presence of the trap can
be interpreted, in the local density approximation (LDA), as a local chemical
potential such that different shells with different quantum phases would ap-
pear radially in the trapped gas. The consequence of this, however, is that the
central “dome” (region III) would correspond to a single value of chemical
potential y = 0, thus rendering its observation problematic.

We have focused on the study of the half-filled model, away from the inte-
grable point X = 1, using the “world-line" algorithm to perform QMC simu-
lations . We have explored the parameter space in the strong coupling regime,
where known analytical methods like bosonization and RG techniques can-
not be employed. We have found that an incommensurate order in the charge
and the spin sector sets in for the ratio |U/J| < 4, where U and ] are re-
spectively the on-site interaction and the bare hopping amplitude. We have
observed that the two kinds of orders manifests as a peak in the spin and
charge structure functions at incommensurate (distinct) momenta. The two



2.7 CONCLUSIONS.

orders exchange their behavior when U — —U as expected from the symme-
tries of the model. In particular, for the case U = 0 a peak appears exactly at
krp = /2 in both structure functions.

A further investigation of the model would require the measurement of
other types of orders, to see, for instance, what role is played by supercon-
ductivity when the incommensurate spin and charge order appears. These
types of correlations cannot be computed with the QMC algorithm used in
this work since it is based on a number-conserving representation of the
fermionic Hilbert space; one would thus need to employ other techniques
to look, for instance, at the 2-body density matrix. Moreover, deviations from
half-filling are still to be studied in the strong coupling regime and the phase
diagram has not been established yet, except for the case X = 1/4 [121] and
U =0[89].

In dimensions d > 2, the physics of the model is almost all to be explored;
weak-coupling Hartree-Fock calculations in d = 2 show that the model can ex-
hibit d-wave superconductivity [129]. A very interesting possibility, deferred
to further studies, would be the appearance of 77-superconductivity in the
ground state.
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METAL-INSULATOR TRANSITIONS DRIVEN BY
SHAKING

We theoretically investigate the behavior of a system of fermionic atoms
loaded in a bipartite one-dimensional optical lattice that is under the action
of an external time-periodic driving force. By using Floquet theory, an ef-
fective model is derived. The bare hopping coefficients are renormalized by
zeroth order Bessel functions of the first kind with different arguments for
the nearest-neighbor and next-nearest neighbor hopping. The insulating be-
havior characterizing the system at half-filling in the absence of driving is dy-
namically suppressed and for particular values of the driving parameter the
system becomes either a standard metal or an unconventional metal with four
Fermi points. The existence of the four Fermi-point metal relies on the fact
that, as a consequence of the shaking procedure, the next-nearest-neighbor
hopping coefficients become significant compared to the nearest-neighbor
ones. We use the bosonization technique to investigate the effect of on-site
Hubbard interactions on the four Fermi-point metal-insulator phase transi-
tion. Attractive interactions are expected to enlarge the regime of parameters
where the unconventional metallic phase arises, whereas repulsive interac-
tions reduce it. This metallic phase is known to be a Luther-Emery liquid
(spin gapped metal) for both, repulsive and attractive interactions, contrarily
to the usual Hubbard model which exhibits a Mott insulator phase for re-
pulsive interactions. Ultracold fermions in driven one-dimensional bipartite
optical lattices provide an interesting platform for the realization of this long
studied four Fermi-point unconventional metal.

3.1 INTRODUCTION

In recent years, cold atoms in optical lattices have become a powerful tool
for investigating quantum phase transitions and realizing new and uncon-
ventional states of matter [6, 15, 100]. Since the observation of the superfluid-
Mott insulator (SF-MI) phase transition for the Bose-Hubbard model [16, 18],
many models have been experimentally engineered and investigated with
unprecedented control.

By introducing external time-dependent driving forces that dynamically
suppress the hopping, namely by shaking the optical lattice [56, 130], the SF-
MI phase transition has been achieved without the need of controlling the
lattice potential depth [54, 55, 57]. Since then, the shaking technique has been
employed in many other experimental setups to realize, for instance, classi-
cal magnetism [64], artificial gauge potentials in one [68] and two [72] dimen-
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sions, extended ferromagnetic domains [131], to control photon-assisted [132]
and correlated tunneling [133, 134], to generate super Bloch oscillations [135]
and has inspired theoretical works that proposed schemes to realize doublon-
holon condensates [82], non-Abelian gauge fields [73], density-dependent
gauge potentials [136], and correlated-hopping models [137].

The high freedom available for generating optical lattices has also allowed
one to play with the lattice geometry and to create bipartite lattices, which
turned out to be a key ingredient to achieve higher-band condensates [35,
36, 138], coherence control [139], density-wave dynamics [42], graphene-like
physics [75, 76], and to measure the Zak phase characterizing topological
Bloch bands [140].

In condensed-matter systems, the model of correlated electrons in bipartite
lattices with staggered on-site potential, known as the ionic-Hubbard model,
has been the subject of intensive studies during the last decades [141-149]. Ini-
tially, the ionic-Hubbard model was proposed to study organic mixed-stack
charge-transfer crystals [141] and later it has been used to describe the ferro-
electric transition in perovskite materials [142]. Intensive interest in the study
of the low-dimensional versions of the ionic-Hubbard model was motivated
by the extremely rich phase diagram of this model revealing, at half-filling,
the possibility for the realization of the band-insulator to Mott-insulator quan-
tum phase transition with increasing on-site Hubbard coupling, via the se-
quence of unconventional insulating and/or metallic phases [143-149].

A similar, but different mechanism for the realization of the band-insulating
state in the one-dimensional half-filled electron system has been proposed by
Peierls in the early 30s of the last century, via the alternation in magnitude
of the nearest-neighbor hopping amplitude [91]. However, contrary to the
ionic-Hubbard model, the behavior of the Peierls model smoothly depends
on the on-site Hubbard coupling and no quantum phase transitions are real-
ized. Instead, one just finds a crossover from a band-insulating phase at weak
coupling into the spin-Peierls phase at strong repulsive interaction [150-152].
Therefore, less attention has been given to the search of quantum phase tran-
sitions in the Peierls insulator.

In this chapter, we study a driven 1D bipartite optical lattice half-filled
with fermionic atoms and show that it is possible to drive (band)-insulator
to metal transitions by tuning the shaking parameter. Due to the presence of
the A — B sublattice characterized by nearest-neighbor hopping coefficients
alternating in magnitude, the half-filled system is a Peierls insulator. Shaking
the optical lattice at high-frequencies leads to a model with effective hopping
parameters, where the bare value is multiplied by a Bessel function. Since the
relevant hopping parameters are renormalized in different ways, the system
realizes a large variety of quantum phases, such as several metals character-
ized by a Fermi surface with four Fermi points or two Fermi points, and
Peierls insulators with direct or indirect gaps.
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3.2 OPTICAL POTENTIAL

We consider a one-dimensional optical potential of the form [153]
V(x) = Vy sin?(qx) + Vasin®(2gx + 77/2), (3.1)

where V1, V, > 0 and q = 71/d, so that the periodicity of the lattice is d. In
Fig. 3.1 we show the shape of such a potential for the choice of parameters
Vi = 1Egec and Vo = 7Eyec, Where Eree = h27t2/2Md? denotes the recoil
energy of atoms with mass M. The choice of the phase 77/2 in the optical
potential ensures that the bottom of all the wells is at the same depth, while
the maxima alternate in height, thus leading to a bipartite lattice. Therefore,
the unit cell of the corresponding optical lattice contains two sites, that we
denote by A and B. We introduce here a notation that will become useful later:
since the spacing between neighboring wells is not constant, but is alternating
in length, we call the shortest distance 2al and the largest distance d — 2al,
where a = d/2 is now the average distance between two neighboring wells.
The aim of this work is to study the optical potential (3.1) subject to an
external driving that periodically shifts the full potential according to

x — x + xp cos(wT), (3.2)

with xp the maximum displacement and w the frequency of the shaking. Re-
cently, such a problem has been studied for a single atom loaded in the lattice,
focusing in particular on the phenomenon of dynamical localization and its
consequences on the superfluid-Mott insulator transition for an interacting
gas of bosons [154]. In our work, we will instead discuss the effect of the
driving term on a system of fermions, for which the presence of a Fermi
surface has dramatic consequences already at the non-interacting level. This
time-periodic shift of the potential can be realized, for instance, by frequency
modulation of the laser beams creating the optical potential [56].

We now focus our attention on the potential (3.1) in the absence of driv-
ing, and let the study of the time-dependent problem to the second part of
the present work. To calculate the band structure, it is useful to rewrite the
potential as

\Z _ Vo i
v () o 3 (o), o

where we have dropped an overall constant. The Schrodinger equation for an
atom in a space-periodic potential reads

hZ aZ
[—maxz + V(x)l Pk (x) = €n(k)Pur(x), (3-4)

with 9, (x) = e**u,(x), where n is the band index, k is quasi-momentum,
and u,; are Bloch functions. Since the Bloch functions are periodic with the
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420 W 2q ®@ """

FIGURE 3.1: Potential profile for Vi = 1E;c and V, = 7E;e. The main hopping
coefficients used in the tight-binding model are also displayed (see text). For this
potential profile, one finds I = 0.2443.

periodicity d of the lattice, we can perform a Fourier expansion and finally
express the wave function as

Pren (X Z o gilht frm)x (3.5)

where m € Z. By substituting Eq. (3.3) and Eq. (3.5) in Eq. (3.4), one can cast
the Schrodinger equation into the form

4(k+m)2ely) + [—‘2 (ehly+ely) + 2 ( ™+ )] — en(k)chy,
(3.6)

where we renamed ka/m — k, so that —1/2 <k <1/2and V4, V,, and ¢, are

now expressed in units of Eec. This equation defines a linear system for the

unknown coefficients C,(; ) that can be easily solved with standard libraries.
We have truncated the Fourier expansion retaining m from —5 to 5, corre-

sponding to 11 bands. The result for V7 = 1Eec and V, = 7E;ec is shown in
Fig. 3.2.

3.3 TIGHT-BINDING MODEL

The single-particle Hamiltonian in second quantization reads

P(x). 3.7)

n 92
Hy = '/dx P (x) [_zmaxz + V(x)
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FIGURE 3.2: Lowest two bands for V; = 1E;ec and Vo = 7E;ec. The red solid line is
the result from the numerical solution of the Schrédinger equation; the blue dashed
line is the tight-binding spectrum, where the parameters have been chosen by fitting
the lowest band.

We restrict ourselves to a zero-temperature analysis and thus we retain the
lowest two bands only, which is a reasonable assumption for sufficiently deep
optical lattices, i.e. when max{Vj, Vo} 2 5 Erec, and when the interactions are
weak compared to the energy separation between these two bands and higher
ones. One can introduce a set of maximally-localized Wannier functions [155]
centered around the minimum of each well which form a complete single-
particle orthonormal basis (further details of how to construct these single-
particle states for a bipartite lattice are given in Refs. [153, 156]). Thus, we
can expand the field operators (retaining only the lowest bands states) as

¥(x) =Y apWo(x —Rj,), (3.8)

jv

where a](:) destroys (creates) an atom in the Wannier state Wy (x — R]',,) local-
ized at the minimum v = A, B in the cell j. From now on, we will suppress the
double-index notation to identify the lattice sites, in favor of a single-index
notation and use the convention that A sites are mapped to even sites. The
single-particle tight-binding Hamiltonian is therefore

Ho = =11} (a3;a1 +hec) — oY (a3 1 +he) =] Z(a}aﬁz +h.c.)

j j j
(3-9)
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The definition of the parameters of the tight-binding Hamiltonian can be
written as

i = - /dx Wy (x — Rja) Ho Wo(x — R;p) (3.10)
L o= - /dx W5 (x — Rja) Ho Wo(x — R(j_1)p) (3.11)
J'o= = [dx Wex = Ryy) o Wo(x — Ry (12)

We dropped a term }; Ejn; because it only leads to an energy shift, given
that one can assume the on-site energies in each well to be equal, i.e. E4 = Ep
(the wells have the same depth and the same curvature). However, the on-site
energy has been determined when fitting the bands (see Table 1). Moreover,
because of the symmetries of the potential, we assumed the next-nearest-
neighbor hopping A — A to be equal to B — B and we called it J'. The
Hamiltonian can be diagonalized in momentum space, yielding the spectrum
(in units where we take the lattice spacing a = 1)

€+ (k) = —2] cos2k £+ /A(k), (3.13)
where
A(k) = J; +J5 +2J1]2 cos 2k. (3.14)

We see that the spectrum is invariant under the following two transforma-
tions:

h—~l, J2——), (3-15)

and

Ji— ]2, Jo = i (3.16)

Moreover, one notices that the gap at k = 71/2 is directly connected to the fact
that J; # J». Indeed, were this not the case, i.e. J; = J,, one would recover the
monopartite limit and the gap would close.

The hopping coefficients of the tight-binding model have been estimated by
fitting the lowest branch of the spectrum e_ (k) in Eq. (3.13) to the numerical
results from the band structure calculation. The results for the case V; = 1Eec
and V, = 7Eye. are summarized in Table 1 and the comparison with the exact
band structure calculation is shown in Fig. 3.2. A more accurate estimate of
these parameters would require the calculation of the Wannier functions or
the use of the method described in Ref. [153], which is beyond the scope of
this work.
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’ Parameter ‘ Fit ‘

Eap 0.612
J1 0.6195
J2 0.4870
7 -0.0564

TABLE 1: Fitting parameters of the tight-binding model for V) = 1 Erec and V, = 7 Erec.
All the parameters are given in units of recoil energy Erec.

3.4 FLOQUET THEORY

Let us now turn to the time-dependent problem and consider a shaken optical
potential according to x — x + xgcos(wT). In the reference frame of the
lattice, the single-particle Hamiltonian can thus be written as [54, 157]

H(t) = Ho + W(), (3.17)
where the driven part is the dipole term

W(t) = xF, cos(wT), F» = Mxow?. (3.18)
In second quantization, the driven part has the form

W(t) = F, cos(wT) Z(Ri|x|Rj>a;raj, (3.19)
ij

where we defined

(Ri|x|R;) = /dx Wi (x = R;) x Wo(x — R;). (3.20)

Performing the shift x — x + (R; + R;)/2 and assuming that the Wannier
functions can be chosen real and with a well defined parity (in the present
case they can be taken as even functions), one finds that the matrix elements
(3.20) are vanishing unless i = j. Since the Wannier functions are exponen-
tially localized [153, 156], one obtains

/alx Wi(x — R;) x Wo(x — R;) ~ R;. (3.21)

We choose now the zero of coordinates as in Fig. 3.1 and we thus rewrite the
positions of the lattice sites R; as R; = a(j +[;), where [; = —1 — j/2 for j
even and /; = [ — (j +1)/2 for j odd. This leads to a time-dependent term

W(t) = Kcos(wT) Z(] +1)ng, K = aMxgw?. (3.22)

J
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To treat the full time-dependent problem, we use the Floquet theory, valid
for Hamiltonians that are periodic in time [103, 104, 158]. We introduce a
composite Hilbert space H' = H ® Hr, where H is the original Hilbert space
and Hr is the Hilbert space of T-periodic complex-valued functions. We then
define the scalar product in ' as

(1) =7 [ il 62

where (-|-) is the scalar product in H. According to Floquet theorem, the solu-
tions of the Schrodinger equation have the form |9, (7)) = e~ "E7|u, (7)). The
quasienergies E, and the Floquet modes |u, (7)) satisfy the eigenvalue prob-
lem $(7)|uy (7)) = En|un(t)), where $H(t) = H(T) — ihd¢ is the so-called Flo-
quet Hamiltonian. Moreover, quasienergies that differ by mhw, with m € Z,
identify the same solution of the Schrédinger equation, leading to a Brillouin
zone structure. The next aim is to calculate the eigenvalues of the Floquet
Hamiltonian. We choose Fock-like states [{7;}) as a basis of H, whereas we
consider plane waves as a basis of 7. The basis vectors in #' are therefore
defined as

[{nj},m)) = [{n;}) exp(imwr). (3-24)

It is now convenient to perform a unitary transformation [54] that changes
the basis vectors into

[{n;}) exp —iy sin(wT) Z(]—i—lj)nj +imwt| , (3.25)
]
which is useful to compute the matrix elements of the Floquet Hamiltonian,

(({nj}, m'|Ho + W(t) — ihde|{n;}, m)). (3-26)

We now focus the attention on the hopping terms, i.e Hy. They are all of the
form

(({nf}, m'|afay|{n;},m)) = ({n}|afay|{n;})g(T), (3.27)

with
(T) = —1 /T dtex i—s in(wr) — i(m’ — m)w'r
g T 0 € p h ) e 4

where we defined s = ) (j +1;) (n; — ;). By using the integral representation

]
of the Bessel functions of the first kind

1 m ixsint—int
TIn(x) dte , (3-28)

:EO
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FIGURE 3.3: Relevant Bessel functions renormalizing the hopping coefficients as a
function of x = K/fhw. As in Fig. 3.1, we have considered [ = 0.2443.

we can rewrite Eq. (3.27) as

(o 0}) T () - (29

Only a limited set of matrix elements (3.27) is needed, because the tight-
binding Hamiltonian includes three main hopping processes. Let us consider,
as an example, the case i = 2p and i’ = 2p + 1 with p an integer, which corre-
sponds to the hopping term with amplitude J;. The Fock-state configurations
that give non-zero matrix elements are

{1’1]} = {nlanI' -~/n2pr n2p+1/-- . }/ (330)
{ni} ={nyma, ... myp £ myp1 ¥1,... 3, (3-31)
yielding

s = (Zp + lZp) (lep +1-— lep) —+ (Zp +1+ 12p+1) (H2p+1 F1-— nsz) = F2I.
(332)

By using the property that Bessel functions of the first kind with odd index
are odd and Bessel functions with even index are even, one can finally write

K . K
Tovm (%) = FV" T (215 ). 633)

Similar arguments can be applied when i = 2p — 1, i’ = 2p (hopping term J5)
and when |i —i’'| = 2 (hopping terms |'), leading respectively tos = (1 —2I)
and s = F1. For the matrix elements of the density operator, namely i = 7/,
one finds that s = 0 and thus g(T) = J;, .

The term W(7) in the matrix elements now drops because the time deriva-
tive term —ihd, cancels it. In the limit iw > J;, J», ]’ one can perturbatively

43



44

METAL-INSULATOR TRANSITIONS DRIVEN BY SHAKING

neglect the off-diagonal elements of the Floquet Hamiltonian with m # m’
and therefore write the matrix elements in block-diagonal form

(({nf}, m' (95 {nj}, m)) = Sy ({nj}HET + mhcol{n;}), (3-34)

where the operator Hgff has the same functional form as Hy [see Eq. (3.9)],
but with renormalized hopping coefficients

T = (21> I, (3:35)

L — h= [(1—21) }]2, (3-36)
_ K

J = I’:Jo(hw)l/- (337)

The behavior of the Bessel functions is shown in Fig. 3.3. From now on we
take m = 0 in Eq. (3.34), thus choosing one specific Brillouin zone for the
quasienergies.

3.5 SPECTRUM OF THE EFFECTIVE HAMILTONIAN

The dependence of the renormalized hopping coefficients on the driving pa-
rameter ¥ = K/hw allows for the realization of several regimes, due to fun-
damental changes in the shape of the quasienergy spectrum of the effective
Hamiltonian H§. Since for each hopping coefficient the regimes where the
Bessel function changes sign occur for different values of the argument x,
a very rich behavior is expected, with various realizations of band struc-
ture configurations. Let us consider the different scenarios and discuss the
changes of the spectrum as a function of x. We concentrate on the half-filled
case and investigate the influence of the spectrum on the transport properties
of the different ground states realized.

For relatively small values of x, the nearest-neighbor hopping coefficients
J1 and ], simultaneously reduce in magnitude, but the shape of the bands
is not much affected, as long as these coefficients are large compared with
J' (see Fig. 3.4(a)). Around x = 4.5, the second band is inverted and the
system displays an indirect gap, as shown in Fig. 3.4(b): the minimum at
k = 0 of the second band is larger in energy than the maximum at k = 7/2
of the lowest band. In Fig. 3.4(c) we show the case where the minimum at
k = 0 of the second band lowers in energy and the indirect gap now vanishes.
This scenario makes possible the realization of a four Fermi-point metallic
state. In Fig. 3.4(d), the limiting case where the two bands touch at k = 0 is
shown. This requires, from Eq. (3.14), that A(0) = (J; + J»)> = 0, ie. J; =
—J», as can be observed by a simple inspection of Fig. 3.5(a). This scenario
is only realizable because the Bessel functions that renormalize the nearest-
neighbor hopping coefficients have different arguments, so that ], can change
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FIGURE 3.4: Quasienergy spectra of Hgff in units of Erec for (a) K/hw = 4, (b) K/hw =
4.6, (c) K/hw = 4.8, (d) K/hw = 4.824, (e) K/hw = 5.7, (f) K/hw = 11.074. The red
dashed line is the Fermi level at half-filling.
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FIGURE 3.5: Renormalized hopping coefficients near the (a) first and (b) second zero
of the Bessel functions Jp (2/x) and Jp [(1 — 21)«], respectively.
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FIGURE 3.6: Band gap as a function of the shaking parameter x showing several
metal-insulator transitions.

sign before J; does. Since the renormalized hopping coefficients J; and J,
change with different slope as functions of x, they can therefore become equal,
despite the fact that their bare value was different in the undriven case. This
happens at ¥ ~ 5.7, and causes the closing of the gap at k = 71/2 since
A(rt/2) = (J1 — J2)? [see Fig. 3.4(e)]. Another case appears for larger values
of k. For x = 11.074, near the points where J) (2Ix) and Jp [(1 — 2I)«] vanish,
one finds once again that /; = —J,. The band touching point at k = 0 is
shown in Fig. 3.4(f).

36 PHASE DIAGRAM AT HALF-FILLING

By using the band analysis presented in the previous paragraph, we can now
describe the behavior of the system in the half-filled case (one particle per site
and total (pseudo)spin 57, = 0) in the absence of interactions. In Fig. 3.6 we
show how the band gap A changes as a function of x = K/fiw. In the regimes
where A # 0 (which include the undriven case with x = 0), the Fermi energy
lies inside the gap and the system is a Peierls insulator.

One notices that near ¥ = 4.5, the gap function is not smooth and starts
dropping rapidly to zero. The reason for this non-smooth behavior is the
inversion of the second band, leading to a change of the gap from direct to
indirect. These features in the gap behavior appear for many values of «, and
are always related to band inversion (either the first or the second band).

The system undergoes two metal-insulator transitions around x ~ 4.8. One
can easily prove that the metal phase appears for ' > (|J1 + 2| — |1 — J2|) /4.
For the parameters chosen here, this yields 4.74 < x < 4.89. In this metal
phase, the Fermi surface exhibits four Fermi points as shown in Fig. 3.4(c)-
(d).

For x > 4.89, a gap opens again and leads to a (Peierls) insulating behavior.
Eventually, the gap at k = 71/2 vanishes at k = 5.7 where J; = ], and one
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finds again a metal (see Fig. 3.4(e)). Moreover, since the nearest-neighbor
hopping coefficients are now equal, the unit cell consists of only one lattice
site and the Brillouin zone is doubled. Therefore, the spectrum of Fig. 3.4(e)
corresponds to a folded cosine-like band and the metallic phase in this case
is the standard two Fermi-point gapless phase of a 1D half-filled electron
system in absence of lattice dimerization.

A remarkable behavior seems to occur at ¥ = 11.074. At this point, the
bands approach each other linearly at k = 0 because the gap closes since
J1 = —Ja (see Fig. 3.4(f)). However, this dispersion that apparently exhibits
one single Fermi point does not lead to a new metallic phase but to a conven-
tional Luttinger liquid with two Fermi points. One can easily reach this con-
clusion by performing a canonical transformation on the fermionic operators
a, — e*nq,, where {an} ={...,m,m,00,7m7mm0,0,...} Such a transforma-
tion flips the sign of the hopping coefficient every second bond and therefore
maps the model with alternating hopping to the typical model with uniform
hopping and a cosine-like band, thus leading to a conventional metal with
two Fermi points. The price to pay is that the next-nearest neighbor hop-
ping coefficient will also change sign, but since it is quite small in magnitude
compared to the nearest-neighbor one, it will have no consequences on the
metallic properties.

3.7 EFFECT OF INTERACTIONS

Let us now add to the Hamiltonian (3.9) a Hubbard interaction term, com-
monly realized in experimental setups at low temperatures [47],

Hu = UZniTnii, (338)
i
where
1 4mh*asf

and a¢f is the effective s-wave scattering length for the 1D system, there-

fore containing also the contribution of the harmonic confinement in the two
orthogonal spatial directions. The Hubbard parameter U, depends on the
s-wave scattering length a5, and can therefore be tuned by using Feshbach
resonances (for example for 4°K atoms), thus spanning the repulsive regime
U > 0, the attractive regime U < 0 and the non-interacting limit U = 0. Since
this term has a density-density form, it is not affected by the shaking scheme
previously discussed and therefore appears also in the effective Hamiltonian
Hg!, under the supplementary condition that fiw > U. Moreover, one can
understand the reason why the Hubbard parameter U does not carry a sub-
lattice index by considering the harmonic approximation. Since the two wells
have the same curvature, the corresponding harmonic oscillator states (i.e. the
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Wannier functions) have the same form in the two wells and the integral in
Eq. (3.39) will be independent on which well is referred to.

We will focus in the rest of this section on the fate of the region where
the unconventional metal with four-Fermi points is found, once the Hubbard
interaction is turned on. As we will show, a central role is played by the
next-nearest neighbor hopping J'. On the other hand, interactions will not
affect the positions where the two Fermi-point metals are realized because
this involves only a relation between J; and ], namely J; = +],.

To study the effect of interactions, we first write the non-interacting part in
the Peierls form

Ho = —t;(l + (=1)"5) (a;anﬂ +h.c.> + t’; (a;f,an+2 +h.c.) +uN
= Hi+ H;s + Hy + uN, (3-40)
where we have defined
t1+0)=h, t1-0)=h, t'=-T, (3.41)

and a chemical potential has been introduced to control the filling. In the case
discussed in this work, the indirect gap is due to the band inversion of the
upper band, given by the condition

- - 1, .- - - - 1
J>T4h = 1 (Ih+Rl—=1h-Dl)= > (1t — [t3]) - (3-42)

The transition in the single particle spectrum from a Peierls insulator to a
metal with four Fermi points appears when the indirect gap closes, i.e.

([t + [£3]) - (3-43)

NI~

1 o
]'>]é2:1(|h+]2|+|h—]2|):

These critical values are renamed for ' as t/; = —J!; and t,, = —]/,. The
transition therefore occurs for t' < t/,. The chemical potential in the Peierls
insulator at half-filling is chosen to lie in the center of the (direct or indirect)
gap. This defines the chemical potential

to| — |t t, <t <t.,
V_{II ot <t <ty (344)

2t/ >t
3.7.1 Bosonization

The theory is bosonized in a similar way as in Ref. [149]. One considers the
terms Hy, Hys and Hy; as perturbations. The “unperturbed" spectrum given
by H; is linearized around the Fermi points, that are given at half-filling by
kp = £7/2a; the corresponding Fermi velocity is vp = £2ta.
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In the continuum limit, one substitutes

ane — Va e F Pro(x) + Vae F ¥ (x), (3-45)

where x = na and 1, (x), Pr,(x) denote, respectively, left and right movers.
The fermionic fields are then bosonized according to

1 .
PR(L)o(X) = Heilﬁ[%(x)ﬂ”(x” . (3.46)

A change of basis for the bosonic fields ¢¢(x) and 6,(x) (from now on we
drop the hat on the operators) is performed to describe the charge and spin
degrees of freedom:

1 1
¢ = \ﬁ(% +¢1), ¢s= \*@(4% - ) (3.47)

V2 V2
The Hamiltonian can thus be cast into the following form
H = Hc + Hs + Hs, (3-49)

where

uCKC
H, = /d{ D (0 + YK 3,0, ()2
—%%E@mw—;;m$@muﬂ,
/dx{ K [Bxs ()% + usKs [0:0s(x)]? + 275112 cos[\/éﬁgbs(x)]}
4t6

fm:—f/Mwmfh«m%N*mn (3.50)

and we defined pe = y — 2, ucKe = usKs = vp, uc/Ke = 1+ U/ o and
us/Ks = 1 — U/mvp. The bosonic model just derived couples charge and
spin degrees of freedom because of the term H. For this reason, the exact
solution of this model is not known and one has to resort to approximation
methods or numerical calculations [149].

3.7.2 Phase diagram analysis

In the non-interacting limit U = 0 studied in the previous sections, the half-
filled system shows a transition from a band insulator to a metal with four
Fermi points. Such a transition, that happens when t' < t/,, can be also pre-
dicted in the bosonized model written in terms of ¢, and 6. The condition is
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that the effective chemical potential ¢ exceeds the mass gap 2t6, which in
turn yields ' < t/, [149]. In the charge and spin representation, the model be-
comes rather more complicated but one can obtain a qualitative understand-
ing (also of the interacting case) by performing a mean-field decoupling of
the H,s term, along the same lines as in Ref. [149].

One introduces the expectations values

me = 4t6(cos[V2mps(x)]), (3.51)

ms = 4t6(cos[V2mee(x)]), (3-52)
and writes H = H. + H; with

H. = H, — % /dx cos[V2mec(x)], (353)

H, = H. — % /dx cos[vV2rs(x)], (3-54)

which now displays a clear decoupling between charge and spin degrees of
freedom. However, the new mass terms still couple the two sectors thanks to
the mean-field equations (3.51)-(3.52). There is an asymmetry in the charge
sector due to the presence of the effective chemical potential ¢, which is
responsible for the phase transition from metal to insulator as previously ar-
gued for the non-interacting case. In the weak coupling limit U < ¢, where
Kcs ~ 1, the terms proportional to cos[v/87¢.s(x)] can be neglected be-
cause they are irrelevant and the new terms cos[v/27¢.s(x)] dominate the
physics of this system. One can therefore analyze the model in the form
(3-53)-(3.54) by using the exact solution found by Zamolodchikov [159] for
the sine-Gordon Hamiltonian with g2 = 27

HEG _ /dx {%[(axfpa)z + (3x9a)2} _ %Cos[mfpa]} ’

when 0 < K, < 2 and & = ¢, s. Here the Luttinger parameter K, has been re-
absorbed into newly defined bosonic fields ¢n — /Ky ¢y and 0, — 6,/ +/Ky.
The excitation spectrum consists of solitons, antisolitons and breathers (soliton-
antisoliton bound states). The lowest-energy excitations in this range of K,
are given by the breathers. The lightest breather mass A, (which is twice the
energy gap of the system) is related to the soliton mass M, via

_ . m K,
Ay = 2M, sin <24 — le) . (3.55)

The soliton mass M, can be calculated from the bare mass m, using the
relation

Ma/A = C(Ky) (mo/ A 4K (3.56)

where A is a high-energy cut-off. Finally, to solve the mean-field equations
one needs [160]

(cos(vV2mKa¢a)) = B(Ka)(Ma JINLIES (3-57)
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The coefficients C(Ky) and B(K,) are given by

W) [T-Ke/4)]7R
Ce) = VAl () {2r(1<a/4)} (3.58)
and
B(Ky) = [T(1/24&/2)T(1 — &/2)]Ke/2)=2
2sin(7té/2) Ky/2 (14 &) 72T (1 — Ko /4)
X{ 4y ] { sin(718)T (K, /4) ] (3.59)

where § = K, /(4 — K) and I'(x) is Euler’s gamma function.

Based on this approach, one can solve the self-consistent equations for the
charge and spin gaps, A. and As respectively, and obtain a qualitative un-
derstanding of the role of interactions. For p.s = 0 the two gaps are equal
when U = 0. The charge gap increases as a function of U, while the spin gap
decreases. Therefore, repulsive interactions lead to a larger charge gap, while
they reduce the spin gap. This picture is confirmed by numerical simulations
[146], but a quantitative agreement would require a careful estimate of the
Luttinger parameters, which is beyond the scope of the present work.

Let us now consider the effect of the chemical potential pg on the four
Fermi-point phase. Such a phase appears for k4 < k¥ < kg, where x4 ~ 4.74
and xp = 4.89. In the non-interacting picture, the transition occurs when g
exceeds the band gap. One can assume an analogous criterion to hold in the
interacting case, i.e. pogr > A;/2, where A, is the lowest breather mass in
the charge sector, as discussed above. In the presence of the interactions the
charge gap is renormalized and increases as a function of U, as concluded
already at the mean-field level. Therefore, the critical value of ¢’ for the metal
transition changes because the effective gap to overcome now depends on U,
and for repulsive interactions it is larger than for U = 0. One thus expects that
the interval [k 4, xp| shrinks because the charge gap that ' needs to overcome
has now increased. In the limit of strong Hubbard coupling (U > t,t') the
charge gap A. ~ U and the range of ¥ where the metallic phase is reached
vanishes above a critical value U, i.e. when the charge gap is large enough,
such that the effect of ¢ is no longer sufficient to close it. On the other hand,
attractive interactions U < 0 have the opposite effect. In the limit of strong
Hubbard coupling (|U| > t,t) the charge gap A. ~ 6t2/|U| and therefore
the region where the metallic phase is realized enlarges.

As it follows from the performed mean-field analysis, in the case of weak
repulsive interaction and in close proximity to the metal-insulator transition
(' < tl,), the charge gapless phase is also spin gapless and thus shows proper-
ties of a Luttinger liquid. However, deeply inside the metallic phase (' < t,),
where the properties of the system are determined by the four Fermi points
and the effect of the direct single-particle gap is negligible, the system be-
comes similar to the one-dimensional half-filled ¢ — # Hubbard model. This
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model has been studied in detail, both analytically and numerically [161-
171], and it is known to give rise to a Luther-Emery liquid for attractive and
repulsive on-site interactions, i.e. a spin gapped metal.

In the repulsive case, the dominant instability is the charge-density-wave,
which exhibits the slowest power-law decay of the corresponding correlations.
Notice that this behavior is different from the conventional Hubbard model,
for which the charge gap is open, the spin gap is zero and the dominant
correlation is the spin-density-wave. In the opposite case of attractive on-site
coupling, the spin gap is present for arbitrary ' < t/, and the system behaves
as a spin gapped metal with dominant singlet-superconducting instability,
characterized by a power-law decay of the corresponding correlations.

3.8 CONCLUSIONS

In this chapter, we have investigated how to realize metal-insulator transi-
tions for a system of fermionic atoms loaded in a bipartite one-dimensional
optical lattice at half-filling. The bipartite character of the optical lattice is es-
sential because it ensures that the nearest-neighbor hopping coefficients alter-
nate in magnitude, opening a gap at the edge of the Brillouin zone (k = 7/2).
The Fermi level lies inside the gap at half-filling and therefore the system
behaves as a band insulator (Peierls insulator).

By introducing an external high-frequency driving force that shakes the
lattice, we have shown that the hopping coefficients are all renormalized by
Bessel functions that depend on the shaking parameter x with different ar-
guments. This feature allows for a competition of the different hopping co-
efficients, which can reduce in magnitude and change sign, severely altering
the shape of the bands. We have observed that the system can exhibit band
inversion, generating an indirect gap, as well as band touching and band
crossing.

The different regimes reached by this scheme show several possible transi-
tions from Peierls insulators with direct or indirect gap to metallic states with
two or four Fermi points. The scheme that we have discussed in this chap-
ter represents, to the best of our knowledge, the first method that has been
proposed to experimentally realize such an unconventional four Fermi-point
metallic state, the properties of which have been theoretically discussed in the
literature in the past decades [161-171]. Notice that this cannot be realized
in conventional lattices, the bipartite nature of the lattice being an essential
requirement.

Finally, we have qualitatively investigated the effect of on-site interactions
on the metallic phases. The two Fermi-point metallic phase, appearing only at
some discrete values of the driving parameter «, behaves as an ordinary Lut-
tinger liquid and therefore is expected to be analogous to the conventional
Hubbard model. Concerning the four Fermi-point metallic phase, we have
argued, based on a mean-field analysis supported by former numerical calcu-
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lations, that the region in x where such a phase appears would shrink (and
eventually disappear) for repulsive interactions, whereas it would widen for
attractive ones. A quantitative estimate of this process is left for future inves-
tigations.
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CONTROLLING COHERENCE IN A BIPARTITE OPTICAL
LATTICE

The control of transport properties is a key tool at the basis of many techno-
logically relevant effects in condensed matter. The clean and precisely con-
trolled environment of ultracold atoms in optical lattices allows one to pre-
pare simplified but instructive models, which can help to better understand
the underlying physical mechanisms. Here we show that by tuning a struc-
tural deformation of the unit cell in a bipartite optical lattice, one can induce a
phase transition from a superfluid into various Mott insulating phases form-
ing a shell structure in the superimposed harmonic trap. The Mott shells
are identified via characteristic features in the visibility of Bragg maxima in
momentum spectra. The experimental findings are explained by Gutzwiller
mean-field and quantum Monte Carlo calculations. Our system bears simi-
larities with the loss of coherence in cuprate superconductors, known to be
associated with the doping induced buckling of the oxygen octahedra sur-
rounding the copper sites.

4.1 INTRODUCTION

Rapid and precise control of transport properties are at the heart of many
intriguing and technologically relevant effects in condensed matter. Small
changes of some external parameter, for example, an electric or a magnetic
field, may be used to significantly alter the mobility of electrons. Promi-
nent examples are field effect transistors [172] and systems showing colossal
magneto-resistance [173]. Often, the control is achieved via structural changes
of the unit cell, leading to an opening of a band gap. In iron-based supercon-
ductors, the variation of pressure is a well-known technique to control their
transport properties [174]. In certain high-T. superconductors, pulses of in-
frared radiation, which excite a mechanical vibration of the unit cell, can for
short periods of time switch these systems into the superconducting state at
temperatures where they actually are insulators [175]. In La-based high-T¢
cuprates, the drastic reduction of T at the doping value of x = 1/8, known
as "the 1/8 mystery", is connected to a structural transition that changes the
lattice unit cell [176].

Ultra-cold atoms in optical lattices provide a particularly clean and well
controlled experimental platform for exploring many-body lattice physics
[15]. Schemes for efficient manipulation of transport properties can be read-
ily implemented and studied with great precision. In conventional optical
lattices, tuning between a superfluid and a Mott insulating phase has been
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FIGURE 4.1: Lattice potential. (a) Sketch of the lattice geometry within the xy-plane.
A = 1064 nm denotes the wavelength of the laser light. (b) The potential along the
dashed trajectory in (a) is plotted for 8§ = 0.51 7t and Vjy = 6 Erec (thick grey line) with
the first and second bands represented, respectively, by the red and blue horizontal
bars. (c) The first two bands are plotted versus 6 for Vj = 6 Erec. (d) The red and blue
squares show the relative number of atoms (normalized to the total particle number
and plotted versus AV /V;) associated with the Bragg peaks enclosed by red and
blue circles in (e), respectively. The filled (open) squares are recorded for V,o = 0
(V0 = 22 Erec). The error bars indicate the statistical errors for 5 measurements. The
solid lines are determined by a full band calculation (neglecting interaction) with no
adjustable parameters. (e) Momentum spectra (Vo = 6Erec, V0 = 0) are shown with
AV =0 (left) and AV /V = 0.5 (right) with the respective FBZs imprinted as dashed
rectangles.

achieved by varying the overall lattice depth V), with the consequence of
changing the height of the tunneling barriers and the on-site contact interac-
tion energy [18]. The equivalent is not easily possible in condensed matter
systems, since the lattice depth is practically fixed.

In this chapter, we present an ultracold atom paradigm, where tuning the
system between a superfluid and a Mott insulator becomes possible via con-
trolled distortion of the unit cell. This distortion acts to adjust the relative
depth AV between two classes of sites (denoted by A and B) forming the
unit cell and allows us to drive a superfluid to Mott insulator transition
without altering the average lattice depth. We can access a rich variety of
Mott-insulating states with different integer populations of the A- and B-sites,
which give rise to a shell structure in the finite harmonic trap potential, lead-
ing to characteristic features in the visibility of Bragg maxima in momentum
spectra. We compare our observations with quantum Monte Carlo (QMC)
and Gutzwiller mean field calculations, thus obtaining a detailed quantitative
understanding of the system. In the following, we first describe the experi-
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mental set-up; then, we theoretically investigate the behavior of the visibility
for two different cases: first, for fixed barrier height Vj, by varying AV (bi-
partite lattice), and second, for AV = 0 (monopartite lattice), by tuning the
lattice depth Vj. Although monopartite lattices have been previously studied
in great detail, and QMC calculations have provided a good fitting of the visi-
bility curve measured experimentally [177], here we show more accurate data
and argue that the main features of the curve can be understood in terms of
a precise determination of the onset of new Mott lobes in the phase diagram.

4.2 DESCRIPTION OF THE EXPERIMENTAL SET-UP

In the experiment, performed by the group of Prof. Hemmerich in Hamburg,
an optical lattice of Rb atoms is prepared using an interferometric lattice
set-up [34, 36, 93, 178]. A two-dimensional (2D) optical potential is produced,
comprising deep and shallow wells (A and B in Fig. 4.1(a)) arranged as the
black and white fields of a chequerboard. In the xy-plane, the optical potential
is given by

V(x,y) = -V {cosz(kx) + cos? (ky) + 2 cos(8) cos(kx) cos(ky)] , (4.1)

with the tunable well depth parameter Vj and the lattice distortion angle 0.
An additional lattice potential V,(z) = —V,gcos?(kz) is applied along the
z-direction. In order to study an effectively 2D scenario, V, ¢ is adjusted to
29 E.ec, such that the motion in the z-direction is frozen out. Here, k = 271/ A,
Erec = h°k2/2m, m denotes the atomic mass, and A = 1064 nm is the wave
length of the lattice beams. Apart from the lattice, the atoms experience a
nearly isotropic harmonic trap potential. Adjustment of § permits controlled
tuning of the effective well depths of the deep and shallow wells V4 = Vj (1+
cos(6))? and their difference AV = V, — V_ = 4Vycos(0) (see Fig. 4.1(b)).
The effective mean well depth Vy = (V4 + V_)/2 = V{ [1 + cos?(0)] is only
weakly dependent on 6. For example, within the interval 0.46 < 0/ < 0.54
one has cos?(#) < 0.015 and hence Vy ~ V;. Tuning of 6 significantly affects
the effective band width, as shown in Fig. 4.1 (c). At 8 = 7/2, the A- and
B-wells become equal, which facilitates tunneling as compared to values 6 #
1t/2, where the broad lowest band of the 6 = 7r/2-lattice splits into two more
narrow bands.

The experimental procedure begins with the production of a nearly pure
Bose-Einstein condensate of typically 5 x 10* rubidium atoms (¥Rb) in the
F = 2,mp = 2 state confined in a nearly isotropic magnetic trap with about
30 Hz trap frequency. The adjusted values of the lattice depth Vj are deter-
mined with a precision of about 2 percent by carefully measuring the reso-
nance frequencies with respect to excitations into the third band along the x-
and y-directions. The adjustment of 6 is achieved with a precision exceeding
71/300 by an active stabilization with about 10 kHz bandwidth. In a typical
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experimental run, the lattice potentials V(x,y) and V,(z) are increased to the
desired values by an exponential ramp of 160 ms duration. After holding the
atoms in the lattice for 20 ms, momentum spectra are obtained by rapidly
(< 1pus) extinguishing the lattice and trap potentials, permitting a free ex-
pansion of the atomic sample during 30 ms, and subsequently recording an
absorption image. The magnetic trap and the finite Gaussian profile of the
lattice beams (beam radius = 100 um) give rise to a combined trap potential.
For V, 0 = 29 Erec and Vy = 18 Erec this yields trap frequencies of 73 Hz in
the xy-plane and 65 Hz along the z-direction. The observed momentum spec-
tra comprise pronounced Bragg maxima with a visibility depending on the
parameters Vjp and AV. These spectra are analyzed by counting the atoms
(n4,0) in a disk with 5 pixel radius around some higher order Bragg peak and
within a disk of the same radius but rotated with respect to the origin by 45°
(14,45)- The visibility is obtained as V = (140 — 1q.45)/ (14,0 + 1q,45) [94]-

The distribution of Bragg peaks reflects the shape of the underlying first
Brillouin zone (FBZ), which changes size and orientation as AV is detuned
from zero. This is illustrated in Fig. 4.1(d) and (e). In (e) two spectra recorded
for AV = 0 (left) and AV /Vy = 0.5 (right) are shown. For AV = 0 (the special
case of a monopartite square lattice), the increased size of the FBZ gives rise
to destructive interference, such that the £(1, £1)hk-Bragg peaks indicated
by the red circle vanish. As AV is detuned from zero, a corresponding imbal-
ance of the A- and B-populations yields a retrieval of the (1, +1)%k-Bragg
peaks. This is shown in Fig. 4.1(d) for the case of approximately vanishing
interaction energy per particle U ~ 0 (V9 = 0) by the filled red squares and
for U ~ 0.3 Erec (V0 = 22 Erec) by the open red squares, respectively. It is
seen that the interaction energy significantly suppresses the formation of a
population imbalance and corresponding +(1, +1)%k-Bragg peaks.

4.3 MODEL

For low temperatures and for large lattice depths V), the system is described
by the inhomogeneous Bose-Hubbard model [16, 17]

- u
H=-] Z(“:'r”j +he)— Zﬂi”i + 5 Zni(ni —-1), (4-2)
(i.f) i i

where [ is the coefficient describing hopping between nearest-neighbor sites,
U accounts for the on-site repulsion, and fi; is a local chemical potential,
which depends on the frequency w of the trap and on the sublattice: ji; =
piap — mw?r?/2. The ratio U/] is a monotonously increasing function of

VO/ Erec-
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FIGURE 4.2: Visibility measurements in the bipartite lattice. The visibility
(parametrized by the color code shown on the right edge) is plotted as a function
of the well depth parameter Vj (measured in units of the recoil energy Eec) and the
potential energy off-set difference AV between shallow and deep wells in the bipartite
lattice. The dashed line corresponds to the theoretical calculation of the points where
the fraction of particles ng = Y ;g 11;/ N of the B sublattice vanishes (1 < 5.5 x 1073).

4.3.1  Band-structure and tight-binding model

Using the potential of Eq. (4.1), we have numerically solved the Schrodinger
equation for the single particle problem to obtain the exact band structure, in-
cluding 14 bands in the plane-wave matrix representation of the Hamiltonian
[179].

The single-particle problem is reformulated in terms of a tight-binding
model Hamiltonian,

Hep=—] E(a;raj +he)—Ja Z (a;ruj +h.c)—Jp 2 (a;ra]- +h.c)
(i) (i)a (ij)B
+EAY ni+Eg)_n, (4-3)
icA i€B
where | is the hopping between neighboring sites of different sublattices, Ja
(Jp) is the hopping coefficient between neighboring sites of sublattice A (B)
(see Fig. 4.3), and Ex (Ep) is the on-site energy of sites belonging to sublattice
A (B). We neglect the A — A hopping (henceforth indicated as ) along the
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FIGURE 4.3: Hopping processes included in the tight-binding model.

diagonal lines of the lattice (same for B — B), because for the monopartite
lattice (6 = /2 or AV = 0) these hopping coefficients are exactly zero as
a consequence of the symmetry of the Wannier functions. For sufficiently
small deviations from 0 = 7/2, we expect that these coefficients are still
negligible compared to JA or [g; this assumption is supported by the full band
structure calculation. For 8 2> 0.53 7r, this assumption becomes less reliable
(see Fig. 4.4).

We are going to show below that | is the dominant term and we will there-
fore drop the coefficients J4 and Jp as shown in the model (4.2). Moreover,
the onsite energies E4 and Ep will be included in the chemical potential ji;,
namely yy = —E4 and up = —Ep.

By diagonalizing the Hamiltonian in Eq. (4.3) in momentum space and tak-
ing the lattice constant to unity, an analytic expression for the corresponding
band structure (depending on the parameters E,, Eg, ], /o, /) can be derived,

Hep(k) = Ep — 4] cos(2ky) cos(2ky ) —4] cos(ky) cos(ky) (4.4)
5 —4] cos(kx) cos(ky) Eg — 4]p cos(2ky) cos(2ky) -

When 6 is tuned away from zero a gap opens, splitting the lowest band. We

“"_r

denote the two resulting bands by “1” and “2”, with the corresponding ener-
gies Eq(kx, ky) and Ez(ky, ky). It is straightforward to verify that

EA = E1(7‘[/2,7‘(/4),
Eg = Ex(m/2,t/4),

=V E/4,7/4) ~ Ex(e/4,7/4)) = (Ea — Es2,

Ja = é(El(n/Z,O) —Ey(t/2,7/2)),

s = %(Ez(n/z,o) ~Ex(n/2,1/2)). (4.5)

In order to determine the parameters of the model Hamiltonian (4.3), in-
stead of calculating Wannier functions, we use these equations to adjust the
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of the exact diagonalization, the solid line is calculated according to the tight-binding
Hamiltonian (4.3) with parameter values determined according to Eq. (4.5).
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FIGURE 4.5: Tight-binding parameters. (a) Hopping coefficients and (b) energy dif-
ference E5 — Ep versus AV (or equivalently ) according to Eq. (4.5) for Vj = 8 Erec.

tight-binding bands to the exact band structure calculation, finding reason-
able agreement up to 6 = 0.53 77, as shown in Fig. 4.4. The resulting values
of the hopping coefficients and the energy difference Ep — Ep are plotted in
Fig. 4.5. Since |Jo| and |Jp| are nearly two orders of magnitude smaller than
J, we will neglect them in what follows, as long as | # 0.

4.3.2  Mean-field phase diagram of the bipartite lattice model

In this section, we discuss the mean-field phase diagram of the bosonic model
(4.2) in the absence of the trapping potential. We also consider the possibility
that the interaction on A and B sites are different and we therefore introduce
two interaction parameters U4 and Ug. The model is therefore

H:_IZ(a?aj—Fh.C.)—]/lA Z}’li—]/lBZ”i

i icA icB
u U
+ Zni("i—1)+782”i(”i—1)~ (4.6)
icA i€B

We restrict ourselves to nearest-neighbor hopping coefficients, which are the
only relevant ones, as shown in Fig. 4.5. The Hamiltonian in Eq. (4.6) de-
scribes a bipartite lattice, in which one allows for different densities in the
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two sublattices since there are two (in principle) independent chemical po-
tentials. We know already that the chemical potentials are fixed by the onsite
energies found from the exact band structure calculation. However, we keep
the treatment completely general at the moment and we will specify the val-
ues of the parameters when we will apply these findings to the experiments.
A similar problem has been discussed also in Ref. [180]. Extending a standard
approach [20, 181], we apply a mean-field decoupling of the hopping term
[first term in Eq. (4.6)],

aja) = Pa+oajay,  aim) — PB+0a;) (4-7)

with the order parameters 5 5 = (a4 p)) and the fluctuations da; p). Ne-
glecting the second order fluctuations of the fields, one finds

Hy~—4] ) (wgai + nga?) -4y (lPAai + ¢;gai*)

icA icB
+4NAJ (YA + Payp) = Hjo + 4NAJ(Pays + Paip), (4.8)

where N denotes the number of sites in the sublattice A. We use Hjg as a
perturbation to the interaction part of the Hamiltonian (4.6), and neglect for
the moment the irrelevant constant shift given by the last term in Eq. (4.8).
Since Hjj is local, the total Hamiltonian contains only local terms and we can
apply perturbation theory in each unit cell. The unperturbed Hamiltonian
H(J = 0) is diagonal with respect to the number operators and, hence, the
eigenstates of H(J = 0) in each unit cell are |na, ng), where n, and np are the
occupation numbers of the sites A and B, respectively. The energy per unit
cell is given by

u U,
E(na,ng) = 7A”A(”A —1)+ TB”B(”B —1) — pana — pphg.- (4-9)

The ground state corresponds to occupations ga and gg determined by the
relations Uy (gy — 1) < py < Uygy, with v = A, B. The first order contribution
of the perturbation Hjy vanishes because Hjy does not conserve the number
of particles, whereas the second order is found to be

CC. |(ga, 88|Hjolna, 15)

- (nanp)#(8A.88) E(ga,88) — E(na, np)

_ (4))? { |¢8l%ga n |¢B*(ga +1) n |pal’ge
Ua(ga—1) —pa  na—Uaga  Us(gs—1) — s
L palP(gs +1)
ps — Upgs
Including the previously ignored constant shift and using the fact that at zero

temperature the calculated energy is the same as the Helmholtz free energy
F, we can write

F[IIJA/ wB} =F0O + Z ¢;M;4v1/)1/ (4.11)

uv=A,B

(4.10)
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FIGURE 4.6: Mean-field phase diagram in the bipartite lattice. (a) Phase boundaries:
inside each lobe there is a Mott insulator phase with occupations that can differ in
the two sublattices according to the chemical potentials, above the lobes the gas is
superfluid. (b) Configurations of the occupation numbers (ga, gg) inside each lobe.

with
u U,
FO = TAgA(gA 1)+ TBgB(gB —1) — paga — 1BgB (4.12)
and
8B gp+1 2.2
M= (Us(gsfl)fms + VB—U38B> Iz 7 1
8A 8AT 2.2
Z] (UA(gAfl)*HA - VA—UAgA) J*z
(4-13)

Here, z = 2d is the coordination number of the lattice; in our case d = 2 and
z = 4. According to the (generalized) Landau criterion for continuous phase
transitions, the phase boundaries are given by the condition Det[M] = 0.
In the phase diagram shown in Fig. 4.6(a), one observes a series of lobes
corresponding to Mott-insulator phases with occupation numbers that can
vary in the two sublattices according to the value of the chemical potentials
(see also Fig. 4.6(b), where the (g, gp) filling of the Mott lobes is explicitly
given). Outside the lobes the system is superfluid.

We now discuss the effect of the additional harmonic trap potential. We
set Uy = Up = U, which is a very good approximation for § < 0.53 7. In
Fig. 4.7, horizontal sections through the mean-field phase diagram are plotted
for fixed values of Vj. The lobes for yp < 0 correspond to Mott phases with
occupations (ga,gs) = (g,0), with g integer. For different values of 6, we also
plot the lines £(6) given by

pp — pa = Au(6), (4.14)

where Ap(0) = Ej — Ep is the difference of the local energies E5 and Ep
determined through Eq. (4.5). According to the local density approximation,
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/U

na/U up/U ma/U

FIGURE 4.7: Sections through the mean-field phase diagram of the bipartite lattice.
For (a) Vo = 8Erec, (b) Vo = 10Eec, and (c) Vy = 12E;, sections through the phase
diagram in Fig. 4.6 at fixed values of J/U are shown. In each panel, the small change
of the Mott lobe boundaries with 6 is indicated by contours of different colors; the
largest lobe corresponds to the largest value of 6, i.e. the lowest value of J/U (see
Fig. 4.5(a)). The diagonal lines are given by Eq. (4.14), for different values of 6 (or
equivalently, different values of AV /Vp).

one can define a local chemical potential fi; = piap — mw?r?/2 with a maxi-

mal value in the center of the trap fixed by the total particle number, which
decreases towards the edge of the trap. Hence, the phases encountered locally
along a radial path pointing outwards from the trap center are given by the
homogeneous phase diagram, when following the lines £(6) towards decreas-
ing values of ua/U. The lines £(0) shift to large, negative values of up/U
as 6 increases. Since the particle density is a monotonous function of the
chemical potential, the population of the B sites decreases as 6 increases and
eventually vanishes. Hence, the density profile evolves into a wedding cake
structure where only the A sites are populated, i.e., most atoms contribute to
pure A-site Mott shells (g,0) separated by narrow superfluid films, also with
negligible B population (see Fig. 4.8 for an example of density profiles calcu-
lated with the Gutzwiller ansatz). The plot also shows that for increasing Vp
the Mott lobes (g,0) cover an increasing area in the phase diagram, while at
the same time the lines £(8) shift towards lower values of ug/U.

4.3.3 Gutzwiller method

The Gutzwiller ansatz approximation used in this chapter is an extension of
the well-known procedure employed for the Bose-Hubbard model in conven-
tional monopartite lattices [182, 183] that takes into account the different local
energies for the sites of type A and B. The wave-function is assumed to be a
product of single-site wave-functions |¢) = [T; |¢;). On each site the ansatz
reads

i) = Zof’gi) n). (4.15)
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FIGURE 4.8: Density profiles obtained using the Gutzwiller ansatz for an extended
69 x 69 lattice in the presence of an harmonic trap for (a) 6 = 0.5, (b) 8 = 0.505, (c)
0 = 0.51,(d) 8 = 0515, (e) 8 = 0.52, (f) @ = 0.53 at Vj = 10Ey.. Circles (diamonds)
denote A (B) sites.

We have included states up to n = 7 and considered real Gutzwiller coeffi-
cients for an extended 69 x 69 lattice, which is allowed because of the U(1)
symmetry and the fact that the ground state cannot have nodes, according to
Feynman’s no-node theorem.

As shown in the previous section, the mean-field Hamiltonian can be writ-
ten as a sum of site decoupled local Hamiltonians represented in the local
Fock basis, Hyr = )_; H;. This statement is true also in the presence of
the trapping harmonic potential, since the latter can be represented as a
local chemical potential. Each local Hamiltonian needs, as an input, the or-
der parameters of the neighbor sites (p for the local Hamiltonian on sites
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of type A and vice versa). One can thus use the following iterative proce-
dure to determine the ground state at a given value of [/U and fi;/U: start
with a random guess of the order parameters 5 g, diagonalize the local
Hamiltonians H;j, take the eigenvectors of the lowest energy state (i.e., the

Gutzwiller coefficients f,Si)), calculate the new order parameters ¢; = <a?> =

Y.vn+1 7(,i) fﬂl and repeat the procedure until convergence. In this way,
we have obtained Fig. 4.8 for the density profiles and Fig. 4.9 to be discussed
in the next section.

4.4 BIPARTITE LATTICE AV #0

The visibility measured for fixed Vj as a function of AV (see Fig. 4.2) exhibits
a region of rapid decrease. When the lattice barrier is large, e.g. Vo = 12 E,,
a modest detuning AV ~ 0.25 V) is able to completely destroy phase coher-
ence with the consequence of a vanishing visibility. At smaller barrier heights,
e.g. Vo = 6E;.., superfluidity remains robust up to significantly larger val-
ues of AV. To explain this behavior, we performed a mean-field calculation
using the Gutzwiller technique outlined in the previous section for the Bose-
Hubbard model given by Eq. (4.2). The values of | and Ay = pus — pp have
been estimated from the exact band structure and U has been calculated
within the harmonic approximation. The total number of particles has been
fixed to N = 2 x 103 and the trap frequency takes into account the waist of
the laser beam. We performed large-scale Gutzwiller calculations in presence
of a trap, thus going beyond Local Density Approximation [182, 183].

In Fig. 4.9(a), we show the evolution of the fraction of particles in the B sites
(which we assumed to be the shallow wells). As AV increases, the number of
bosons in the B sites decreases because of the excess potential energy required
for their population. Within the tight-binding description, this is captured by
the increased chemical potential difference between A and B sites as AV
grows. Our calculations predict a critical value AV, for which the population
of the B sublattice vanishes. As shown in Fig. 4.9(a), AV, becomes smaller as
W increases. This corresponds to the observation in the phase diagram shown
in Fig. 4.7 that the area covered by the Mott insulating regions with vanishing
B-populations (filling gg = 0) increases as the hopping amplitude is reduced.
The critical values AV, for different values of Vj are also shown in Fig. 4.2 as
a dashed white line on top of the experimental data for the visibility. This line
consistently lies on experimental points corresponding to constant visibility
(V = 0.5), where phase coherence is rapidly lost, and suggests the onset of a
new regime.

In Fig. 4.9(b) it is shown that, in addition to the population of the B sites,
also the condensate fraction at the A sites approaches zero beyond the critical
value AV. (see the inset in Fig. 4.9(a) for the total condensed fraction); in this
regime, the density profile displays only sharp concentric Mott shells of the
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FIGURE 4.9: Gutzwiller results in the trap. (a) Particle number fraction on the B sites
(ng). The inset shows the total condensed fraction p = )_; p;/N. (b) Condensate frac-
tion on the A sites (op = Yic 4 pi/ N, where p; = |i;]?, with ¢; the mean-field order
parameter) as a function of AV for increasing values of V and fixed total number of
particles N = 2 x 103, calculated with the Gutzwiller ansatz. The key shows the color
code for both, the curves in (a) and (b).

form (ga,g8) = (g,0) where the integer filling ¢ of the Mott regions can
reach ¢ = 4 (see Fig. 4.8). This can be understood by considering that in
the new regime where B sites are empty, the particles populating A sites
can only delocalize (and thus establish phase coherence) by hopping through
the intermediate B sites. Since these are second order processes, they are
highly suppressed when Ay is large enough and the system has to become
an imbalanced Mott insulator.

In the new Mott-insulating regime, particle-hole pairs are responsible for a
non-vanishing visibility, as in the conventional case in absence of imbalance
[94]. By performing perturbation theory on top of the ideal Mott-insulating
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FIGURE 4.10: Visibility curves calculated within perturbation theory for Vy = 10.8 Erec.
(a) Visibility up to second order for average filling § = 2 (dashed), § = 2.5 (dash-
dotted), § = 3 (dotted). (b) Comparison of the visibility curves including contributions
up to first order (dotted) and up to second order (dashed) for average filling § = 2.5.

state [MI) = [Tjca |8)iI1jcp |0);, the ground state can therefore be written as
(see Appendix C)

2
9) = (1 55z ) IMD) = £ ¥ alm) 416
(i.f)

- ﬁ ) alaj|MI) — ﬁ ) alaj|MI)
& I ua , = ’
(i)a () a

where A = U(g — 1) + Ap. The first term is simply the unperturbed term
with a wave function renormalization, whereas the linear term in | describes
particle-hole pairs with the particle sitting on the A site and the hole in the
neighbor B site, or vice-versa. The last two terms are second order processes
that involve intermediate B sites and describe particle-hole pairs within the
A sublattice only. This ground state leads to the visibility

V=c1]/A+c]?/UA+ 3]/ A%, (4-17)

where ¢ = —2(§+1)(1—1r1), c2 = 4(§+1)2r1 +1—3), 3 = —4(g+
1)2(r1 +3)(1 — r1), with 1 = cos(v/271) ~ —0.266 and r, = cos(v/87) ~
—0.858. The visibility obtained in Eq. (4.17) is of the order 10~ in the highly
imbalanced regime for filling between 2 and 3 (see Fig. 4.10(a)). The second
order processes contribute significantly, as can be observed in Fig. 4.10(b).
In the theory just discussed, we did not include the contributions given by
the bare next-nearest-neighbor hopping processes (J5), despite the fact that
the ground state (4.16) effectively includes this type of hopping contributions
through virtual transitions. The reason is that the effective hopping processes
contribute more substantially to the visibility than the bare ones (not dis-
played here).

In Fig. 4.11, the experimental data for the visibility (extracted from Fig. 4.2)
are plotted for Vy = 10.8 Erc and V = 11.44 E.. By using the average filling
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FIGURE 4.11: Comparison of the measured visibility with the theory at large imbal-
ance. The data shown are for Vj = 10.8 Eec (squares) and Vy = 11.44 E;ec (circles).
The dashed (dash-dotted) line is obtained by fitting the last four data points with
Eq. (4.17) using the average filling ¢ as a fitting parameter. We obtain respectively
§ =2754+0.23 and g = 3.77 £ 0.31. The data for Vy = 10.8 E;e. are shifted along the
vertical axis by 0.1. The error bars represent the statistical variance of typically 4-5
independent measurements.

g in the trap as a fitting parameter, we found that the theoretical visibility
curve compares reasonably well with the experimental data both in mag-
nitude and scaling behavior, with an average filling of the order § ~ 3 (see
Fig. 4.11). A perturbative description of the visibility data for large 6 by means
of Eq. (4.17) is only possible in a window Vj ~ 11 =1 E;ec, where sufficient
data points are available in the low visibility tail with values of the visibility
large enough to be measured with sufficient precision to allow fitting.

4.5 MONOPARTITE LATTICE AV =0

Adjustment of AV = 0 produces the special case of a conventional monopar-
tite square lattice, extensively studied in the literature during the past decade
[18, 94, 184, 185]. Experiments in 3D cubic lattices have suggested that the
formation of Mott shells within the external trap could be associated to the
appearance of kinks in the visibility [94, 184], whereas experiments in 2D
triangular lattices have rather detected an instantaneous decrease [186]. Ar-
guable attempts were made to interprete small irregularities in the observed
visibility in this respect. On the theoretical front, a quantum Monte Carlo
study of the 1D trapped Bose-Hubbard model [187] has shown the appear-
ance of kinks in V as a function of U/ J. Unfortunately, this study, employing
a trap curvature proportional to | rather than Vj, appears to have limited
relevance for experiments. More realistic QMC simulations of 2D and 3D
confined systems have been able to quantitatively describe the momentum
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FIGURE 4.12: Visibility measurement in the monopartite lattice. (a) Visibility of 3 Rb,
plotted as a function of the well depth V), for AV = 0 and V, g = 29 Eyec. Vertical
dashed lines: values of Vj/ Erec corresponding to the tips of the Mott lobes with differ-
ent filling g, as computed through QMC. Grey solid lines in regions I - III are a guide
to the eyes, whereas the red line in region IV displays a fit to the function A(U/z])*
with A = 4.0£0.7 and « = —1.00 & 0.06, showing good agreement with the theoret-
ical prediction [94]. The error bars represent the statistical variance of typically 4-5
independent measurements. (b) Numerical derivative of the visibility data; vertical
lines as in (a). The error bars are derived from the ones in (a).

distribution [188] and the experimental visibility [177, 189], however with
no indications for distinct features associated to Mott shells. To clarify this
long standing discussion, we have analyzed the visibility of Fig. 4.2 along the
AV = 0 trajectory versus V| with increased resolution in Fig. 4.12. Guided
by an inhomogeneous mean-field calculation indicating that the local filling
g is lower than 4, we computed the critical J/U values for the tips of Mott
lobes with ¢ = 1,2 and 3, by making use of the worm algorithm as imple-
mented in the ALPS libraries [190-192] (the simulations have been run by
Tommaso Comparin). Superimposed upon the experimental data, we mark
in Fig. 4.12 with (blue) dashed lines the values of Vj/Erec corresponding to
the values of J/U at the tip of the Mott lobes obtained by QMC. As Vj is in-
creased in Fig. 4.12, four different regimes are crossed. For small values of Vj
(regime I), most of the system is in a superfluid phase. Increasing Vj yields
only little loss of coherence due to increasing depletion, and hence the visi-
bility remains nearly constant. When the first Mott ring with ¢ = 1 particle
per site is formed, the system enters regime II, where the visibility decreases
slowly but notably as the g = 1-Mott shell grows. When the second Mott-
insulating ring with ¢ = 2 arises (regime III), a sharp drop of the visibility
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occurs indicating a significantly increased growth of the Mott-insulating part
of the system with Vj. Finally, when the third Mott ring with ¢ = 3 forms
or closes in the center of the trap, only a small superfluid fraction remains in
the system, such that the visibility cannot further rapidly decrease with Vj
(regime IV), i.e., a quasi-plateau arises in Fig. 4.12. The red solid line shows
that for large Vj the visibility acquires a (U/])~! dependence, in agreement
with a result obtained by first-order perturbation theory in /U [94].

4.6 CONCLUSIONS

Several conclusions can be drawn from our experimental and theoretical in-
vestigations: for monopartite lattices the visibility comprises characteristic
signatures, which can be connected to the position of the tips of the Mott-
insulator lobes in a u/U versus J/U phase diagram calculated by QMC.
Mean-field calculations are insufficient, even when the inhomogeneity due
to the trap is taken into account. Deforming the unit cell of a bipartite lat-
tice is a means to efficiently tune a transition from a superfluid to a Mott-
insulating state. The visibility displays distinct regions with explicitly differ-
ent slope, as a function of the detuning between the A and B sublattices.
A pronounced loss of coherence occurs at the critical value of the detuning
AV., at which the population of the shallow wells vanish. Our work may
shed some light also on the behavior of condensed-matter systems, where
loss of phase coherence occurs due to a structural modification of the lattice.
For example, in Lay_,Ba,CuOy high-T. cuprate, superconductivity is weak-
ened at the structural transition from a low-temperature orthorhombic (LTO)
into a low-temperature tetragonal (LTT) phase [193]. The same occurs for
Lap_y—yNdySryCuOy [176]. This structural transition corresponds to a buck-
ling of the oxygen octahedra surrounding the copper sites, which changes the
nature of the copper-oxygen lattice unit cell [193]. The critical buckling angle
0. = 3.6deg for the destruction of superconductivity [194] bears similarities
with the critical deformation angle 6. (or equivalently AV,) found here. Most
of the present theoretical studies of high-T. superconductivity concentrate
only on the copper lattice. We hope that our results will inspire further inves-
tigations of the specific role played by the oxygen lattice, and its importance
in preserving phase coherence.
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We investigate superfluid phases of bosonic atoms in optical lattices with
Lieb geometry, which is the well-known 2D Cu-O lattice of high-T. cuprates.
By tuning the difference in the lattice depth between neighboring sites, we
design several scenarios with alternating s and p orbitals hybridizing into
bands that are gapped from the lowest one. We study the possible conden-
sates arising and show which are the conditions to realize a bosonic analog of
the Varma phases. These electronic states of matter that break time-reversal
symmetry but preserve the translational symmetry of the lattice were origi-
nally proposed by Chandra Varma to explain the pseudo-gap phase of high-
Tc cuprates. In particular, we show how one can realize the bosonic ana-
log of Varma’s loop state, known to display the anomalous Hall effect for a
fermionic system.

5.1 INTRODUCTION

The understanding of the elusive high-temperature supeconductors phase
diagram is one of the major challenges of modern physics, which has de-
feated theoreticians for almost 30 years [26]. Paradoxically, the most myste-
rious regime in this phase diagram (see Fig. 5.1) is not the superconducting
phase itself but the so-called pseudo-gap phase. The understanding of this
phase, which precedes the superconducting one and exhibits also a gap, has
been longly debated and many proposals have been put forward. Without
going into detail, let us just mention the 7-flux phase [195] and the Varma
phases [95], which were proposed as possible candidates for the ground state
in the pseudo-gap regime.

Although both phases break time-reversal symmetry, a fundamental differ-
ence between them is that the latter preserves translational symmetry in the
lattice while the former breaks it. Within mean-field theory, Varma phases
emerge from nearest-neighbor interactions that lead to spontaneous currents
in the bonds of the lattice of cuprates, the geometry of which is also known
as Lieb lattice. There are many possible current patterns that can arise under
these conditions, and one of them (represented in Fig. 5.2(a)) has been used
to explain the pseudogap phase of cuprates. This phase breaks time-reversal
and inversion symmetry, but mirror symmetry is preserved with respect to
the diagonal axis with positive slope. Another possibility (not realized in
cuprates) is shown in Fig. 5.2(b). This last state is quite remarkable because
it is known to exhibit the quantum anomalous Hall effect (QAHE) [37, 96].
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FIGURE 5.1: Cuprate phase diagram [26].

FIGURE 5.2: (a) Ojr-loop phase proposed by Varma for the pseudogap phase of
cuprates [95]; (b) loop state which has anomalous Hall effect. Figures are adapted
from Ref. [37].

The word "anomalous" here is used because no magnetic field is applied and
nevertheless the system displays a quantized transverse conductivity.

Indeed, as shown by Haldane [29], quantum Hall phenomena do not re-
quire a net magnetic field, but simply broken time-reversal symmetry. This
result has been proven at the single-particle level for the case of a honey-
comb lattice, where a staggered flux is engineered in such a way that the net
flux per plaquette is zero and translational symmetry is preserved. Haldane
model describes a topological insulator with quantized transverse conduc-
tivity. The state shown in Fig. 5.2(b) is equivalent to Haldane model but on
the Lieb lattice: it breaks time-reversal symmetry but does not break trans-
lational symmetry. As pointed out by Sun and Fradkin [37], breaking time-
reversal symmetry and mirror symmetry while keeping inversion unbroken
is a sufficient condition to obtain AHE for a fermionic system.
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FIGURE 5.3: Swapping procedure to achieve condensation in the second band of an
optical lattice. Figure adapted from Ref. [34].

States with broken time-reversal symmetry have been recently discovered
in cold-atom systems by forming metastable condensates in higher bands
of bipartite optical lattices [34—36]. Since excited states can have a short life-
time, the challenge of establishing phase coherence in the lowest energy state
of an excited band has been circumvented by employing a swapping proce-
dure that exploits the bipartite character of a chequerboard square lattice (see
Fig. 5.3). In this lattice, there are two classes of sites, A and B3, that alternate
as in a chequerboard. The atoms are prepared in the s-like orbitals of the
deeper wells (let us call it B), where they are localized. After the swap, which
involves a quick change of the optical potential profile such that the A sites
become the deep ones, atoms will be in excited s-like orbitals. To prevent the
decay to the lowest states caused by collisions, the swap is performed such
that the s-orbitals on the B sites are energetically resonant with p-orbitals on
the neighbor A sites. Therefore, the atoms start jumping into the p-orbitals,
where they establish phase coherence and condense before decaying to the
lowest band.

In this chapter, we consider bosons on the Lieb lattice®. The geometrical
structure of the lattice allows us to discuss bosonic models with alternating
s and p orbitals. The time-reversal symmetry breaking occurring in the mod-
els that we are going to analyze leads to condensates that share similarities
with the Varma phases introduced above. We investigate several scenarios
and show under which conditions a bosonic superfluid phase equivalent to
Fig. 5.2(b) can be obtained. We discuss a model with four bands that requires

At present, the Lieb lattice has not been realized in cold atoms yet. However, some schemes to
engineer this lattice currently exist [196].
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FIGURE 5.4: Lieb lattice with py and p, orbitals on the corners, s orbitals on the edges.
The nodal structure of the px and p, orbitals is also shown.

an analysis of the effect of interactions to fix all the free parameters of the
ground-state wave function.

5.2 4-BAND MODEL
5.2.1 Tight-binding Hamiltonian

In this section, we consider a model with p, and p, orbitals on the corners,
and s orbitals on each site along the edges that we call respectively sy and
sy, as shown in Fig. 5.4. Now, there are in total 4 orbitals in the unit cell. The
Hamiltonian is

H =tY" Y Y oph(r)s(ri+oey) +he (5.1)
i a=xyo—+t1

-ty Y s'(ri+oex)s(r; + pe,) + hec.
i po=%1

—t"Y" Y sT(ri+ ey)s(r; + ex +20ey) +hec
i o=%x1

—t"Y" Y st(r;i+ey)s(r; + e, +20ey) +hec..
i o=%1

Notice that there is no hopping between s and p, orbitals along the x axis,
namely terms like p;}(ri)s(ri + ey) do not appear in the Hamiltonian. This is
due to the fact that the s orbitals are even while the p orbitals can be even or
odd, depending on which symmetry axis it is considered. The same reasoning
applies to the hopping between s and p, orbitals along the y axis. To simplify
the notation, we define s(r; + ex) = s4(r;). After going to Fourier space, we
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introduce the vector ¥y = (px(k), py(k),sx(k),sy(k)) and we thus write the
Hamiltonian in the form

H° =Y ¥iH ¥y, (5-2)
k
where
0 0 2it5y 0
0 0 0 2its
Hy=1| v (53)
—2it§y 0 —2t Gy —4t CxCy
0  —2it5, —4t'cic, —2t"¢,

We have defined ¢y, = cos(ky,/2), 5xy = sin(ky,y/2). One can easily show
that the spectrum of the Hamiltonian does not depend on the sign of ¢ or ¢/,
i.e. the spectrum is invariant with respect to t — —t or t — —t'; the sign of
t" instead matters and will be relevant. From now on we consider units of
energy in which t = 1.

The band structure of the model (5.3) can be very rich as shown in Fig. 5.5
and several scenarios are possible depending on the value of the hopping
parameter ”. The sign of t” determines whether the minimum of the band
is at the X point (77,0) (and equivalently (0, 71)) or at the M point (77, 77) (see
Fig. 5.5(a)-(b)). When t” is assumed to be negligible, a degeneracy connecting
the X and M points arises (see Fig. 5.5(c)). In Fig. 5.5(d), we show a fitting
of our model with a realistic band structure obtained from an optical lattice
with Lieb geometry (courtesy of A. Hemmerich). At the moment, regime (b)
cannot be realized because it requires the sign inversion of ¢”.

In the rest of this chapter, we focus on a system of bosons for cases (a) and
(b), which can be treated in the weak-coupling limit within mean-field theory.
We defer case (c) to future investigation. Nevertheless, it is worth mentioning
that case (c) is particularly interesting because the high-degeneracy of the
ground state enhances the role of interactions and can lead to non-trivial
ground states depending on the filling factors [197].

To analyse the condensation of a gas of bosons for cases (a) and (b), we
first compute the eigenstates of the lowest band at the high-symmetry points
X (X') and M:

e X point (77,0)
<; (#+ Va+e2) ,o,1,o> , (5-4)
e X' point (0, 77)

i Z "2
(0,2(1‘ A+t ),0,1>, (5.5)
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FIGURE 5.5: Energy spectrum of the Hamiltonian (5.3) in units of ¢ for (a) ' = 0.2,
t” =01, () ¥ =02t = —-01,(c) ' =02, ¢" = 0. In (d) we fit the tight-binding
model parameters providing the energy spectrum (continuous lines) to the exact band
structure of a Lieb optical potential (dots) (courtesy of A. Hemmerich) with values
t =03, = 0.049, t” = 0.004 in units of 4Esec. The fit requires an energy off-set
¢p = 0.289 for the p orbitals. The optical potential provides a band structure of the
type (a) (or (c) when t” can be neglected), while the band structure (b) requires the
sign inversion of +” and is, at present, out of reach.

* M point (7r,77)

(; (—"+Va+r7),0, 1,0) (0,; (—#"+ Va+em) ,0,1> . (56)

5.2.2 Interactions

Let us now consider onsite interactions for the system of bosons discussed
here. To simplify the notation, we indicate the sublattice where the s and p
orbitals are as S and P, respectively. The interaction part of the Hamiltonian
can be written in general as [31]

u u L, 2
Hiny = 7S Z ns,i(”s,i - 1) + 7p Z (”?;,i - % - 3”;7,1') ’ (5~7)
ieS ieP
where we defined the total density on the p orbitals
i = np, (1;) + np, (1;) (5.8)

and the angular momentum

Lo = =i [ph(x)py (1) — py () pa(rs)] - (5.9)
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We have assumed that we can approximate the orbitals with the isotropic
harmonic oscillator states:

Wp (r) — M xe_%(xz—i—yz) ,
¥ nth

V2Tmw w242
Wy, (r) = o ye s (“+y7) (5.11)

Ws(r) = y %e_%(xz+yz) ‘ (5.12)

Therefore, we may evaluate the interaction parameters

(5.10)

3 mw
Up, E/dl‘|wpx(f)\4 = 8hn’

1 mw
up’f”y E/df|pr(xry)|2|Wpy(y,x)|2 = 8hn’
1 mw
U E/dr|Ws(r)|4 SRl

UP = qu == uPy == 3qupy ,
4
Us = gu,,. (5.13)

The interaction Hamiltonian shows that the states with angular momentum
different from zero L, = £1 lower the energy, which is a sort of Hund'’s rule,
therefore fixing the relative phase between py and p, orbitals and leading to
a px T ipy order that breaks time-reversal symmetry. We will see below in
more detail how this happens.

5.2.3 Mean-field solution

The form of the eigenstates at the minima of the spectrum allows us to take
an ansatz for the condensate wave function of the form

(pa(xi)) =/ppe’e Tt = /ppet® ) (5.14)
(sa(1; +eq)) :\/Fngika'(r,'Jrea)ei% = \/@é@x(ﬁ) , (5.15)

where we let the condensate density on p and s orbitals be different in the
general case and we introduced global phases to be fixed by minimizing the
mean-field energy. For the condensate at the M point one trivially has that
ky = ky, = (71,7), namely all the orbitals will take a contribution from the
condensation at M. For the condensate at X and X’ the ansatz requires ky =
(7,0) and k, = (0, 7r). This is justified from the fact that the eigenstate at the
X point has non-vanishing components only for p, and s, orbitals, while the
eigenstate at the X’ point analogously has non-vanishing components only
for p, and s, orbitals.
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The angular momentum, in the mean-field approximation, takes the simple
form

(Lz(r;)) = 20p sin[Gy(ri) — Ox(r;)] - (5.16)

Therefore, the mean-field energy contribution coming from the interaction is

g - £ "{5+cos[2Ae<rz>1}+usps, (5.17)

where we defined Af(r;) = 0, (r;) — 0y(r;). One immediately notices that in-
teractions are minimized when Af(r;) = /2, which in turn implies that
the expectation value of the angular momentum operator (L;(r;)) is non-
vanishing, a consequence of the time-reversal symmetry breaking.

Let us now define the condensation points as ky = (kax, kay). The mean-
field energy contribution coming from the hopping terms reads

EMF = — 4t sin(kyx/2)/pspp sin(¢x — 6x) (5.18)
— 4t sin(kyy /2)\/pspp sin(p, — 0y) — 2t"ps [cos(kyy) + cos(kyx)]

Notice that there is no contribution from the hopping term t'. This term will

however be present in the study of the excitations. Moreover, for the two kind

of condensates considered here, we have sin(kyx/2) = sin(ky,/2) = 1.
Assuming t > 0, the minimization of the kinetic energy requires

Pu — Oy =1m/2. (5-19)
In the rest of the chapter we will adopt the gauge choice ¢, = 71/2.

5.2.4 Condensate in M = (71, 77)

In this case, since ky = k;, = (71, 77), one has 6y (r;) — 0, (r;) = 0 — 0y = £7/2.
Let us consider the solution with the plus sign (the other solution is the time
reversal conjugate) and obtain for the phases

Ox=m/2, 0,=0, ¢x=m, ¢,=7m1/2. (5.20)

The mean-field free energy is

EMF ~ —8t, /pspp + 4t ps + Sppup + Usp?, (5.21)
and the order parameters can be written as

(px(ri)) :i\ﬁei”'ri ,

\/p:e”r T, (5.22)
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FIGURE 5.6: Superfluid-currents pattern for the condensate in M with rectified an-
gular momenta. The minus signs represents the angular momenta on the sites with
p-orbitals pointing all in the same direction. The inner path inside the plaquette cor-
responds to a flux ® = 27t threading the surface.

The angular momenta on the P sites are non-vanishing and have a ferromag-
netic structure

(Ly(r;)) = —2pp. (5.23)

We introduce a bond-current operator J#'(i,j) that describes the superfluid
current between site i (flavor y) and site j (flavor v)

Vw(ir]‘) = _itij(czicvj - Cj;jcyi)- (5'24)

The expectation value of this operator appears, for instance, in the continuity
equation obtained from the Gross-Pitaevskii equation on the lattice. We will
therefore calculate the average superfluid current of each bond using the
mean-field ansatz ¢,; — (c,j). We start from the py — s, bond

(1725 (x5 + e0) = —ity/pspy (~141) = 0. (525)

The same holds for the bonds py, — sy, so there are no currents running along
the edges of the squares. The currents can only be among the s — s bonds,
and there are 4 of these bonds in each plaquette,

(J*(r; + ey, 1 +ey)) = it'ps(—i—i) = 2t'ps. (5.26)
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This is the current that goes from r; + ey to r; + ey, the direction of which
depends on the sign of t'. The other currents in the plaquette read

(J7v(x; + ex, 1 + 2ex + @) = it'ps(i + 1) = —2t'ps,
(v (xj + ey, 1; + 2e + ex)) = it'ps (—i — i) = 2t'ps,
(Jrox (i 4 2ex + ey, 1; + 2ey + ey)) = it'ps (i + i) = —2tps . (5.27)

In Fig. 5.6, the pattern of superfluid currents and angular momenta (rep-
resented by a minus sign) is shown. This ground state breaks time-reversal
and mirror symmetry but does not break translational and inversion sym-
metry [37]. Moreover, if you consider the portion of the plaquette delimited
by the bond currents, there is a net flux piercing the surface, while the total
flux per plaquette is zero (see Fig. 5.6). The global phase in r; + ey is —71/2,
whereas in r; + ey it is 77. Therefore, the phase difference across each bond is
Appond = 71/2 and the total phase picked up in a closed path (corresponding
to the flux) is ® = 2.

5.2.5 Condensate in X = (7t,0) and X' = (0, )

In this case, since ky = (77,0) and ky, = (0,77), one has 2 [0x(r;) — 0, (r;)] =
2(ky-1; —ky -1; 405 — 0y) = 2(m —n) +2(6; — 0,) = £, where we defined
r; = (m,n) with m, n integers. Since the shift 27t(m — n) does not change the
value of the interaction term (proportional to cos[2A6(r;)]), we find the same
solution for the global phases as before

Ox=m/2, 0,=0, ¢x=m, ¢y,=7m1/2. (5.28)

The mean-field free energy is

4
EMF o~ —81\/pspy — 41" ps + 50Uy + Usp?, (5-29)

where one has to notice the difference in sign in the term proportional to t”,
and the order parameters can be written as

(px(xi)) =i\ /ppe™T

(py(x;)) =/ppe™™,

(sx(xi)) = —iy/pse™™

(sy(1)) = — \/pse™ ™. (530)

The angular momenta on the P sites are non-vanishing and have an anti-
ferromagnetic structure

(Lo(x3)) = ~2pp sin[re(m — n) + 7/2] = —2p,(~1)"*". (5.31)

In this ground state, because of the staggered structure, translational sym-
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)

e ) e e

FIGURE 5.7: Superfluid-currents pattern for the condensate in X — X’ with staggered
angular momenta.

metry is broken. Let us now check the pattern of currents. As before, the
currents along the edges will be vanishing. Instead, the currents along the
diagonal s — s bonds are finite and read

(55 (1; + e, 1; + ey)> _ it,ps(fi . i)(—l)m+n = 2t/ps(71)WL+n
(J% (1; + ex, 1; + 2ex + ey)) = it'ps(i + D(=1)"" = —2t'ps (=)™,
(Jrox (x; + ey, 1 4 2ey + ey)) = it'ps(—i — i) (=1)""" = 2t ps (1),
(e
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Jr5(x; + 2ex + ey, 1; + 2, + ex)) = it ps (i +1)(—1)"" = =2t'pg (—1)" "

(5-32)

The pattern is shown in Fig. 5.7. In the enlarged unit cell one can see that
inversion symmetry (with respect to any P site) is not broken but mirror
symmetry is. The difference between this phase and the one found previously
is the fact that translation symmetry is now broken while it was not before.

5.2.6  Bogolyubov theory and topological excitations

Until now, we have analyzed the possible ground states that the model can
have depending on the sign of the hopping coefficient ¢”. In this section,
we are instead interested in calculating the excitation spectrum within Bo-
golyubov theory. To this intent, each bosonic operator is split into its mean-
field expectation value and the fluctuations around it, namely ¢; — (¢;) + ¢;.
Only terms up to quadratic order in the fluctuations are retained. Imposing
that the terms linear in the fluctuations vanish gives a constraint for the chem-
ical potential.
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The quadratic terms coming from the interactions on the S sites are

Us

5 ((si)25s;r§s;r + h.c. +4|(s;) ]2552(55,') . (5-33)

i€S
On the P sites there are more possibilities and one finds

up
5 L

1 1
{ [<<rf1,i>2 + 3<r1;,,->2> Opxidpsi+ (<p;,i>2 + 3<P§E,i>2> Opy 0Py,
i€eP

+%<Pl,i><iﬂ§,i>5px,i5py,i + % (<P;rc,i><l7y,i> +(py ) <Px,i>) 5px,,'5p§,i} +he

+ (3080 (ps) + 5L 1) ) o0

+(Hh ) + 5 PL P ) o iopi (5:34
The Hamiltonian is now quadratic in the fluctuations and can be Fourier

transformed in the Nambu basis. For the condensate in M we introduce the
vector 0y = (5Px,k,5Py,k,5Sx,k,5Sy,k,5P;,,kr5P;l,k, 551,7k,5s;’7k) and obtain

1 B B HY + H! A
Bog _ * 0g 08 _ k
H™® = Zg&lﬂka o,  Hy®= < At H0k+H1> , (535)

where we defined Hﬁ in Eq. (5.3) and

Supy—p 0 0 0
. 0 %UPP —H 0 0 , (5.36)
0 0 SUps — 0
0 0 0 SUps —
—3Upy 3illpy 0 0
2 2
A §1uplﬂ EUPP 0 0 (5.37)
0 0 —3Ups O
0 0 0 3Ups

Notice that we have introduce the chemical potential # and we defined
u=u,= %Us (see (5.13)). We are going to calculate the chemical potential
assuming that 2(ps + p,) = 1, where n is the fixed total density of condensed
particles per plaquette and y = SEMY/on. The non-linearity of the mean-
field energy functional (5.21) requires that the chemical potential has to be
found numerically. The excitation spectrum is found by diagonalizing the

non-Hermitian operator UZHEOg, where 0, = diag(1,1,1,1,-1,-1,—-1,-1),
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FIGURE 5.8: Bogolyubov spectrum for a model of bosons condensing at the M point.
Parameters are chosen in units where t = 1: ¢/ = 0.2, " = —0.1, U = 0.01. Mini-
mization of the mean-field free energy with the constraint that ps + p, = 100 gives
u = —1.4347 and p;U = 0.5187.

as discussed in standard textbooks [1]. The eigenvalue problem has therefore
the form UZHEOg W, = wi W}.. The normalization of the eigenvectors is such
that WEUZWk = 0, and Wk(TZW£ = 0, where Wy is the matrix having the
eigenvectors W in its columns. These normalization conditions guarantee
that the new operators in which the Hamiltonian is diagonal dy; = Wy oy
satisfy bosonic commutation relations.

The excitation spectrum in Fig. 5.8 shows that the degeneracy at the M
point is lifted, as it should be since only one continuous symmetry is broken,
namely U(1), and therefore there will be only one gapless mode, according
to Goldstone’s theorem. Moreover, the lowest branch of the spectrum has
no degeneracy with respect to the other branches. This makes possible to
investigate the existence of a Chern number associated to it [67]

1
Cn = P /dkny(k) ’ (5:38)
where the Berry curvature Fyy (k) is defined as

Fry(k) = 0, Ay (k) = 9, Ax(k),  Ax = —i(Wi[og, [W) . (5-39)

The scalar product used in the definition of the Berry potential A, has a sig-
nature given by the metric 0; [198]. The computation is performed using the
method by Hatsugai [199] and we find a non-zero Chern number ¢, = 1
for the lowest branch of the Bogolyubov spectrum. The Berry curvature is
shown in Fig. 5.9. The system just described proves that a weakly interacting
bosonic superfluid can have excitations which possess topological properties,
as a non-vanishing Berry curvature, generated by a time-reversal symmetry-
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FIGURE 5.9: Berry curvature Fyy of the lowest branch of the Bogolyubov spectrum for
the condensate at the M point. (a) Berry curvature in the full Brillouin zone. (b) Berry
curvature for ky = ky.

breaking mechanism. To the best of our knowledge, it provides the first ex-
ample where such phenomenon occurs. It is known that the dynamics of
the excited modes of a condensed gas are influenced by a non-trivial Berry
curvature [200, 201], which is a way to reveal the effects of the topological
properties.

An interesting question to be addressed is whether for the superfluid in
the strongly-interacting limit one could split the excitation branches in a way
that a gap between the first and second branch appears for all values of the
momenta. In that case, one can expect the presence of edge states inside the
gap. Moreover, at low filling and strong interactions the system becomes a
Mott insulator with a gap in the excitation spectrum [16, 30, 202]. Also in this
case one might wonder whether edge states will appear in the newly formed
gap together with persistent currents [97].

We have also analyzed the Bogolyubov spectrum for the X — X’ condensate
and we have found that there is not a separated lower branch for which a
Chern number can be defined. Moreover, the Berry curvature is locally zero
and this system does not display topological excitations. The reasons behind
the difference between the two condensates is at the moment still not clarified
but is expected to be characterized by the symmetries of the Bogolyubov
Hamiltonian.

5.3 CONCLUSIONS

In this chapter, we discussed the possibility to realize Varma phases in a
two-dimensional Lieb lattice with bosons in the weak-coupling limit. We con-
sidered a four-band model with hybridized s and p orbitals sitting on neigh-
boring sites, namely s orbitals on the edges of the lattice and py, p, orbitals
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on the corners. We found that two ground states are possible depending on
whether the minima of the bands are at the X — X’ points or at the M point.
The ground state for the condensate at the M point is the analogous of the
Varma loop state, which shows anomalous Hall effect. The p orbitals dis-
play a ferromagnetic order given by rectified angular momenta of the form
px +ipy (or its time-reversal state py —ipy). Loop currents connect the s —s
bonds in each plaquette, such that translational and inversion symmetry are
not broken but mirror symmetry is. The other ground state instead breaks
translational symmetry and the angular momenta are staggered. The first
scenario has a non-trivial excitation spectrum with non-vanishing Berry cur-
vature. These topological features would become observable when probing
the collective modes of the gas.

In future, it would be interesting to investigate the strongly-correlated
regime, in particular the Mott-insulating phase, where one can expect the
appearance of a bosonic Mott insulator with persistent currents and topolog-
ical excitations.
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PROOF OF ODLRO FOR ETA-PAIRING STATES

The existence of off-diagonal long-trange order (ODLRO) and therefore su-
perconductivity requires that some matrix elements of the reduced two-body
density matrix p, are non-vanishing at large distances [107, 109]. To apply
this concept to 7-superconductivity, let us assume that an eigenstate of the
Hamiltonian |¢p) that is of highest-weight of the SU(2) algebra (2.12) exists,
ie.

ae) =0, g=lg) = 3(L-N)p). (A1

Such a state must therefore contain a fixed number of doublons and in par-
ticular, the first of Eqs. (A.1) reveals that this number is exactly zero. Because
of the relations (2.12), we see that the corresponding angular momentum op-
erators for such an SU(2) algebra are

o= e, 1t T, o (A.2)

where ], and J_ are, respectively, raising and lowering operators of a generic
SU(2) algebra and [+ = ]y £ J,. From (A.1) it follows that we are considering
a representation of the SU(2) algebra with j = (L — N)/2 and the state |¢)
has m = j. What about the state with m = —j? One can obtain it by several
applications of the operator 7, i.e. J_. This happens upon applying the 7"
operator L — N times. Indeed, the number of holes in |¢) is precisely L — N
and thus L — N is the maximum number of times that one can apply 7' to
the state |¢).
Let us recall that in general the following relation holds:

J-ljm) = \Ji(i+1) = m(m = 1)]j,m ~1), (A3)

where the states |j, m) and |j, m — 1) have norm one. We can now define the
state |¢,) = (11)"|y), which contains n doublons, and focus on the matrix
elements of the density matrix for the state |i,,),

(ly"cliclicjiep ()" 1)

L 1 lpali i) = (p2);i = L (Ag)
i 1 o2l i 1) = (p2); e
To have ODLRO is sufficient to require”

(02);i e A, (A.5)

Here we are assuming for simplicity that the 5t operator is creating doublons with momen-
tum zero. In the 1, case discussed by Yang and that applies to the correlated-hopping model

discussed in Chapter 2, one has to substitute A — A ™) and the proof holds as well.
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in the thermodynamic limit, with A # 0. To calculate such a constant, we set
[112]

A= lim % %(PZ)jir (A.6)
and thus

Loy = gl - el ool g
You can prove by induction that

[z, (1")"] = =n ()", (A.8)
and then

(@nlnzln) = Wuln=01")" 1) = =0 (ultpn) + (Pul (1)) =

—(pulyn) | 3L =) =] (A9)

The last task is to calculate the ratio (¢;,41|¥n+1)/ (¥n|tn) . This can be easily
done because of the relation (A.3),

2
(1 lnir) = (1" )P = (H\/]]+1 )(m—a—1)> (ly).
(A.10)

The ratio yields

WZj(j+1)—(m—n)(m—n—l). (A11)

After some straightforward algebra in which one must use j = m = (L —
N)/2, you find

Lzzpz {(L N)—le-i-n}:Z(l—f—z—i-llJ).(A.12)

Calling the doublon density 7, in the thermodynamic limit L — oo, with all
densities finite, we recover

A=ny(l—-v—ny), (A.13)

where we have denoted by v the electron density of the state |¢), which is
the result by Essler et al. [112]. We are interested in the possibility of having
ODLRO for the state |¢,). Hence, under the assumption that there were no
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doublons in the state |i), we can consider that v is the density of single
electrons n f of the state |¢,). Thus, using the relation n; + n;, +n F=1we
find

A=mnyny. (A.14)

We can therefore conclude that to have ODLRO we need a finite density of
either doublons and holons. This is why, for instance, the upper part of the
phase diagram shown in Chapter 2 does cannot contain such state. Moreover,
as shown in Ref. [88], the ground-state manifold in the central part of the
phase diagram (namely what we called region III in Chapter 2) contains states
of the form [p,) which therefore possess ODLRO, as we have just proven in
detail.
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DERIVATION OF THE EFFECTIVE MODEL

The Hamiltonian of the Hubbard model with a time-dependent interaction
reads:

H = -] Y (cco+he)+ Ut Z”IT”Q
(i.j)e
= -] Y (e +he) +U2nmnl¢+ul cos(wt) Znﬁn,i
(i.j)e
H]+Hu+Hd( ). (B.1)

Let us define the following Floquet basis
_ Uy .
| {njc},m) =] {nj;})exp —ie— sin(wt) Znﬁnﬁ +imwt |, (B.2)
]

where | {nj,}) stands for a Fock state, and compute the Floquet Hamilto-
nian matrix elements using this basis (the double brackets indicates the time
average)

(({nfg}, m'|H — ihd¢| {nje } ,m)) . (B.3)

The derivative —ifidy| {nj,} ,m) cancels with Hy(t)| {njo},m). Let us now
examine Hj;: we have to calculate the following term

1 (T ot Uy
f/o dt "0 (g} Hu| {njo}) exp | ~iz— sin(wt) ;(”ﬁ”jw”%”ﬂ)
(B.4)

| {nj,}) are eigenstates of Hy, hence nj, = 1, Vj, and we find

jo’

1T iwt(m—m') / /
T/o dte ({njeHHul {njc }) = {nje HHul {nj } )0pm - (B.5)

For the hopping part, we have to calculate

/ dt elwttm=m’ <{n]0}|H]|{n]g} exp z—sm (wt) Y (njpny —niymgy)
j

(B.6)
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It is crucial now to evaluate the term ({n}, }|Hj| {njs }). The typical form of
this quantity is

<{n;'a}|cjacka| {nja}> . (B-7)

If ¢ =1 (and correspondingly & = ), it implies that 1} = n;; + 1, nj, = n;z,
ny, = gy — 1, nj, = nye and n;p = nj, for j # i, k. As a consequence, the
density dependent part in the exponential becomes

§ = Z(nﬁnﬁ — n}Tn;i) = niT”ii + nankl — (nl-T + 1)71% — (nkT — 1)nkl
j
= —nj +ng . (B.8)

An analogous result holds for ¢ = |. We now use the integral representation
of Bessel functions of first kind:

T, (x) — i /ﬂ dt ei(xsintfnt) (B.9)
n 27_[ . 7 .
define T = wt and then shift T — T + 7r. The integral then becomes

L/7T dr el (T (m—m')—i %1 in(t+7) _ (7/ dt el T(m=—m")+ig lssmr
27T —T

(B.10)

which yields

hw

)" T (”1) , (B.11)

that can be reabsorbed in H ;- In the large frequency limit fiw > |, U, the
off-diagonal elements of the Floquet Hamiltonian can be (perturbatively) ne-
glected and we can then consider only m = m’ and choose m = 0 in the
first Floquet Brillouin zone. Therefore, the approximate form of the Floquet
Hamiltonian is

Heg = —] Y (chycjo +hc)Jo [K(niy — njp)| + UY niym;y, (B.12)
(i.j)or i

where we defined K = U, /hiw.



PERTURBATIVE APPROACH FOR THE VISIBILITY IN THE
ASYMPTOTIC LIMIT.

The regime where the imbalance between A and B sites is large can be studied
using perturbation theory up to second order [203], when the filling is chosen
to be integer in the homogeneous case. In the limit where the hopping term
is neglected (which is also the mean-field ground state), the ground state is
given by a perfect Mott insulator of the form (ga, gs) = (g,0)

IMI) =TTl TTI0); (C1)

icA jeB

Let us start from the first-order term. The only non-vanishing terms are the
ones for which a particle is removed from a site A and moved to one of the
nearest-neighbor B sites. The energy difference is A = U(g — 1) + Ay and the
first-order correction has thus the form

Z ala;|MI) . (C.2)
<l]>

The quadratic correction is such that a particle is removed from an A site,
moved to a nearest-neighbor B site and from there it is transferred again to an
A site that is different from the original one. The final A site can be a nearest-
neighbor A site or a next-nearest-neighbor one. The correction becomes

2
UA <Z> aja;|MI) — L]IA <<Z>> ala;|MI) . (C.3)
L] A

The ground state is therefore
(1= LYy - Ly atamany - 22 Fa; | MI
[¥G) = A2 |MI) — Azﬂz‘”ﬂ >—ﬂ Z”iaﬂ )

2
-2 Y daimi), )
(i) a

where the first term is simply the unperturbed term with a wave function
renormalization.
We can now calculate the momentum distribution

:ngel i) (afaj), (C:5)
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where N; is the number of unit cells in the system. The visibility V is calcu-
lated at momenta kyax = (0,0) and kmin = (v/271, v/277). Therefore,

2
Smax=<1—i2)g—88(g+1)i (3J+1), (C.6)
Soam— (1= 1 4 M n+ 2 C
mm—( —Az)g— glg+ ){A(rw )+ A r1+r2)}, (C7)

where r; = cos(v2m) ~ —0.266 and r, = cos(v/871) ~ —0.858, and we
eventually find

vV :(Smax - Smin)/(smax + Smin)

J 4
=-2(g+ )1 —r)3 +(g+1)(2n+r2=3) 1
2
~4(g 17201 +3) (1~ 1) 4y (C8)



SUMMARY

In extreme conditions, matter can behave in a very unexpected way compared
to what we are used to experience on a daily basis. In this thesis, we discuss
atomic gases at very low temperatures, just a few millionths of degrees above
the absolute zero, much colder than the outer space temperature of 2.7K.
When temperatures are lowered so much, the laws of Quantum Mechanics
kick in and new remarkable phenomena manifest.

The focus of this work is on the study of quantum phase transitions. We are
used to observe phase transitions in ordinary life. For instance, by increasing
the temperature, metals or ice will melt. In this example, temperature drives a
change in the symmetry of the material, from an ordered crystalline structure
to a disordered system, namely a liquid. Quantum phase transitions manifest
similarly as a change in the symmetry of the system, however thermal fluctu-
ations are not responsible for this to happen, but quantum fluctuations. For
instance, the increase of the strength of interactions in a bosonic gas can drive
the system from a superfluid to an insulator. Throughout this thesis, we do
not consider the effects of temperature and we assume that the gases are so
cold that the effective temperature is exactly the absolute zero.

Atoms can be classified as bosons or fermions, depending whether their
spin is integer or half-integer, respectively. The former are social atoms, mean-
ing that they can occupy the same state: for instance, more than one identical
atom can have the same velocity; the latter are atoms that prefer to avoid each
other: using the same example as before, each identical fermion must have
a different velocity. Fermions could move at the same velocity if they were
not identical, for instance in a mixture of K and °Li. The first part of this
thesis deals with quantum phase transitions for fermionic atoms, while in the
second part we discuss bosonic atoms.

Systems of cold atoms are a suitable tool to simulate models of interest
because they can be tuned with a high control. They can therefore be used
to observe or understand new physical phenomena. For instance, an impor-
tant goal would be to unveil the mystery behind high-temperature supercon-
ductors, which are believed to be described by the Hubbard model. In this
paradigm of quantum simulation, one wants to mimic what electrons (which
are fermions) do in crystals. In a cold-atomic setup, the fermionic atoms move
into a crystal of light realized by counter-propagating laser beams, the so-
called optical lattice.

The high degree of control also allows one to play with the dimensionality
of the system. One can therefore constrain the atoms to move on a plane or
on a line by inhibiting the motion in the other directions via a strong con-
finement. In this way, very peculiar quantum phases can arise. For example,
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when moving on a line, atoms cannot avoid each other and only a collective
behavior is possible. Fermions typically are described by a new type of lig-
uid, known as Luttinger liquid. Moreover, Mermin-Wagner theorem does not
allow long-range order to appear in low-dimensional systems, and for this
reason proper superfluidity or superconductivity cannot appear.

In the Introduction, we discuss the status of the field of cold atoms and its
most recent developments. We focus on quantum simulation, time-dependent
schemes used to engineer models of interest and the realization of exotic
superfluids in higher energy states that break time-reversal symmetry.

In Chapter 2, we discuss how to realize a system of fermions on a lat-
tice with additional interaction terms compared to the conventional Hub-
bard model. These new interactions affect the rate at which the atoms jump
between neighboring sites and allow the model in one spatial dimension
to have a ground state with unconventional superconductivity, known as
n-superconductivity. This generalized Hubbard model is obtained by mod-
ulating the interactions with time.

In Chapter 3, we consider fermions loaded on a one-dimensional optical
lattice with a unit cell containing two sites. The bipartite character of this
lattice is described by hopping rates alternating in magnitude. With one par-
ticle per site, the system is a band insulator. By shaking the lattice one can
dynamically obtain a quantum phase transition from the insulating phase to
an unconventional metal with four Fermi-points.

In Chapter 4, we study a system of bosons in a two-dimensional square
optical lattice. The unit cell contains two sites that differ by an energy off-
set. Since atoms prefer to stay in the deeper wells, the relative population of
neighboring wells is affected. This system is realized in the experimental lab-
oratory of Prof. Hemmerich in Hamburg and it is observed that superfluidity
is lost when the detuning of the neighboring wells is sufficiently large. We
model this system and describe it quantitatively concluding that the loss of
superfluidity coincides with the regime in which the population in the higher
wells disappears. The system becomes a Mott insulator with imbalanced den-
sity.

In Chapter 5, we study bosons in an unconvential geometry in two di-
mensions: the Lieb lattice. This is the lattice of the Cu-O plane in a class of
high-temperature superconductors called cuprates. However, we focus on a
system of bosons in an excited energy band and we analyze minimal mod-
els and the type of superfluid phases that can arise. Since in higher bands
time-reversal symmetry can be broken, this system can realize the bosonic
counterparts of the so-called Varma phases, which are proposed to explain
the pseudo-gap phase of high-temperature superconductors. Among several
possibilities, we find a bosonic Varma phase with topological excitations.
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Onder extreme omstandigheden kan materie zich anders gedragen dan dat
we in het dagelijks leven gewend zijn. In dit proefschrift beschouwen we een
voorbeeld van een dergelijk systeem, namelijk koude, atomaire gassen bij ex-
treem lage temperaturen van ongeveer een miljoenste graad Kelvin boven het
absolute nulpunt. Bij deze temperaturen die veel lager zijn dan de 2.7 Kelvin
van de kosmische achtergrondstraling, gelden de wetten van de kwantumme-
chanica en worden bijzondere fenomenen zichtbaar.

In dit proefschrift ligt de nadruk op kwantumfaseovergangen. Dagelijks
hebben wij ook met faseovergangen te maken, denk aan het smelten van met-
alen of ijs door verhoging van de temperatuur. Een kenmerk van faseover-
gangen is dat de symmetrie van het systeem gedurende de transitie veran-
dert. Bij de genoemde voorbeelden gaat het metaal of ijs van een geordend
kristal naar een ongeordende vloeistof. Kwantumfaseovergangen worden ook
gekarakteriseerd door het veranderen van de symmetrie van het systeem.
Alleen wordt dat in dit geval niet veroorzaakt door fluctuaties in de temper-
atuur, maar door zogenaamde kwantumfluctuaties. Een voorbeeld van een
systeem met een kwantumfaseovergang is een koud gas van bosonen. In dit
systeem kan een toename van de interacties ervoor zorgen dat er een over-
gang plaatsvindt van een supervloeistof naar een isolator. In het vervolg van
dit proefschrift verwaarlozen we de temperatuureffecten. We nemen dus aan
dat de atomen dusdanig koud zijn dat ze zich hetzelfde gedragen als op het
absolute nulpunt.

Het gedrag van een deeltje wordt mede bepaald door zijn spin. Deeltjes
met heeltallige spin, de zogenaamde bosonen, zijn sociale deeltjes en kunnen
dezelfde toestand bezetten. Een voorbeeld is een gas van identieke bosonen
die allen dezelfde snelheid hebben. Daarentegen kunnen identieke deeltjes
met halftallige spin, de zogenaamde fermionen, niet in dezelfde toestand
zitten. Identieke fermionen kunnen dus niet dezelfde snelheid hebben. Dit
principe is echter alleen van toepassing voor identieke fermionen en in een
mengeling van 4°K en °Li kunnen fermionen wel bewegen met dezelfde snel-
heid. In het eerste gedeelte van dit proefschrift bekijken we kwantumfaseover-
gangen van fermionen en in het tweede gedeelte behandelen we bosonen.

Systemen die bestaan uit koude atomen zijn zeer geschikt om het gedrag
van verschillende interessante modellen te bestuderen. Dit komt omdat de fy-
sische eigenschappen met grote precisie kunnen worden ingesteld. Hierdoor
kunnen in deze systemen nieuwe fenomenen voor het eerst worden geob-
serveerd. Koude atomen kunnen ook worden gebruikt om bepaalde fenome-
nen beter te begrijpen, zoals de fysica omtrent hoge-temperatuur supergelei-
ders. Met behulp van kwantumsimulaties kunnen we het gedrag van elek-
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tronen in kristalstructuren nabootsen. Door gebruik te maken van lasers die
in tegengestelde richting bewegen, kan deze kristalstructuur ook worden be-
werkstelligd in systemen die uit koude atomen bestaan. Hierdoor ontstaat
er een optisch rooster, waarbij de atomen in een kristalstructuur van licht
bewegen.

Doordat het gedrag van atomen bij lage temperaturen relatief makkelijk
kan worden gemanipuleerd, is het ook mogelijk om de dimensionaliteit van
het systeem te veranderen. Door de bewegingsvrijheid van atomen in één
of meerdere richtingen te beperken, kunnen de deeltjes zich alleen voortbe-
wegen op een lijn of in een vlak. Met behulp van deze technieken kunnen
systemen worden gemaakt die zeer speciale kwantumfaseovergangen bevat-
ten. Als de atomen zich bijvoorbeeld alleen op een lijn kunnen verplaatsen, is
het onmogelijk elkaar te ontwijken. Het gevolg is dat de atomen zich alleen
als één collectief kunnen voortbewegen. In het geval van fermionen gedra-
gen de deeltjes zich dan als een nieuw soort vloeistof, namelijk een Luttinger
vloeistof. Verder volgt uit de stelling van Mermin-Wagner dat het onmogelijk
is dat er een correlatie is tussen atomen, die zich op grote afstand van elkaar
bevinden. Hierdoor is echte supergeleiding of superfluiditeit onmogelijk.

In de introductie van dit proefschrift geven we een overzicht van het on-
derzoek in het vakgebied van koude atomen en verder zullen ook recente
ontwikkelingen aan bod komen. Hierna beschouwen we kwantumsimulaties
en tijdathankelijke schema’s om bepaalde modellen te realiseren. Ook beki-
jken we exotische supervloeistoffen die zich in hoog energetische toestanden
bevinden, waardoor invariantie onder tijdsomkering niet meer mogelijk is.

In Hoofdstuk 2 bespreken we verschillende manieren om een optisch rooster
met fermionen te maken, waarbij in vergelijking met het normale Hubbard
model meerdere interacties zijn toegevoegd. Dit beinvloedt de frequentie
waarmee atomen tussen aanliggende roosterpunten bewegen. In één dimen-
sie kan dit ook leiden tot een grondtoestand met een bijzondere vorm van su-
pergeleiding, namelijk #-supergeleiding. Dit gegeneraliseerde Hubbard model
kan worden gemodelleerd door de interacties in tijd te variéren.

Vervolgens bekijken we in Hoofdstuk 3 fermionen in een ééndimension-
aal rooster dat bestaat uit eenheidscellen met twee roosterpunten. Door de
sterkte van de frequentie waarmee de atomen tussen de roosterpunten bewe-
gen te laten alterneren, kunnen we dit systeem beschrijven. Als er zich pre-
cies één deeltje op een roosterpunt bevindt, is het systeem een bandisolator.
Door het rooster te schudden, vindt er een dynamische kwantumfaseover-
gang plaats van een isolator naar een onconventioneel metaal met vier Fer-
mipunten.

In Hoofdstuk 4 bestuderen we het gedrag van bosonen in een tweedi-
mensionaal vierkant optisch rooster. Tussen de twee roosterpunten van een
eenheidscel kan een energieverschil zitten. Dit kan gevolgen hebben voor
de relatieve bezetting van atomen op aanliggende roosterpunten, omdat de
atomen zich het liefst bevinden op plaatsen met de laagste energie. In een ex-
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periment van prof. Hemmerich uit Hamburg is aangetoond dat in dit systeem
de superfluiditeit verloren gaat als het energieverschil tussen aanliggende
punten te groot wordt. We geven een kwalitatieve beschrijving van dit sys-
teem en we vinden dat het verlies van superfluiditeit overeenkomt met het
regime waar de roosterpunten met de grootste energie niet bezet zijn. In dit
geval is het system een Mottisolator, waarbij de dichtheid in de verschillende
roosterpunten ongelijk is.

Tot slot onderzoeken we in Hoofdstuk 5 bosonen in een meer onconven-
tionele tweedimensionale geometrie, namelijk het Lieb rooster. Dit rooster
van het Cu-O vlak is gerelateerd aan een bepaalde klasse van hoge-temperatuur
supergeleiders, de zogenaamde cupraten. In het bijzonder bestuderen we
de bosonen in een aangeslagen toestand en we analyseren de verschillende
soorten superfluide fases die kunnen ontstaan. Omdat in hogere banden in-
variantie onder tijdsomkering verloren gaat, kan in dit systeem een bosonis-
che tegenhanger van de Varmafase gerealiseerd worden. Deze Varmafase kan
een mogelijke verklaring geven voor het pseudogat dat we vinden in hoge-
temperatuur supergeleiders. Van de vele mogelijke Varmafases vinden we
een bosonische variant met topologische excitaties.
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