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f the hexatic phase in systems of
hard disks by quenched disorder due to pinning on
a lattice

Weikai Qi and Marjolein Dijkstra*

We investigate the effect of quenched disorder on the melting mechanism of two-dimensional hard disks

using large-scale event-driven molecular dynamics simulations. The two-stage melting scenario of a

continuous solid–hexatic and a first-order hexatic–liquid transition for a 2D system of hard disks does

not persist in the case of quenched disorder, which arises by pinning less than one percent of the

particles on a triangular lattice. Based on the Halperin–Nelson–Young (HNY) renormalization group

equation, we observe that a first-order solid–liquid transition preempts the Kosterlitz–Thouless-type

solid–hexatic transition in a 2D system of hard disks with quenched disorder as the stiffness of the

crystal is increased by the presence of pinned particles.
I. Introduction

According to the Kosterlitz–Thouless–Halperin–Nelson–Young
(KTHNY) theory, the melting mechanism of a 2D crystal
proceeds via two consecutive continuous transitions, which are
induced by unbinding of topological defects.1–3 A 2D crystal
melts via dissociation of dislocation pairs into an intermediate
hexatic phase. The hexatic phase is characterized by short-
ranged positional order, but quasi-long-ranged bond orienta-
tional order.4–6 Subsequently, the hexatic phase transforms into
a liquid with short-ranged positional and orientational order via
the unbinding of dislocations into free disclinations.1–3

Many simulation and experimental studies have been
carried out to investigate the melting mechanism of a 2D solid,
thereby providing support for both two-stage melting scenarios
via an intermediate hexatic phase as well as a rst-order melting
transition.7–12 These results seem to suggest that 2D melting
depends sensitively on the particle interactions, out-of-plane
uctuations, and nite-size effects. Even in the simple case of a
2D system of hard disks, conicting results have been
obtained.13–25 However, recent simulation studies showed, in
contrast to predictions of the KTHNY theory, that systems of
hard disks melt via a rst-order liquid–hexatic phase transition
and a continuous hexatic–solid transition.26,27 These results
settled a long-standing debate on the 2D melting scenario of
hard disks.

From an experimental point of view, there is, however, still
no consensus on the nature of the 2D melting transition. Even
for particle systems interacting via short-range repulsive pair
potentials conicting results have been found
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experimentally.8,10,28 Therefore, it remains essential to investi-
gate in more detail about the origin of the conict between the
various experimental observations. In most experiments on 2D
melting, colloidal particles were conned between two glass
plates.8,10,28–31 Two main factors in these experiments may alter
the melting scenario from that of a strictly 2D system, i.e., out-
of-plane motion of the particles and quenched disorder due to
pinning of particles by connement. Regarding the out-of-plane
uctuations, a recent simulation study showed that the two-step
melting scenario as observed for 2D hard disks is not altered in
the case of a quasi-2D monolayer of hard spheres with out-of-
plane motions as large as half the diameter of the spheres.32 In
the case of quenched disorder, a random fraction of particles
can be pinned either to random positions in the system or on
lattice sites of an underlying crystal phase. With regard to pin-
ned particles at random sites, it was shown theoretically that the
KTHNY melting scenario persists, and that the solid phase is
destroyed entirely for high pinning fractions resulting in a
hexatic glass.33–37 Experiments and simulations on 2D melting
of super-paramagnetic colloidal particles with quenched
disorder conrmed the increased stability range of the hexatic
phase.38 In this study, we investigate the melting of a 2D system
of hard disks with quenched disorder, which results by pinning
random particles on a crystal lattice. We nd that the two-step
melting mechanism of a 2D system of hard disks changes by
pinning particles on a lattice. More precisely, we show that the
hexatic phase is destabilized and that a rst-order solid–liquid
phase transition preempts the Kosterlitz–Thouless-type solid–
hexatic transition. Thus our results show that quenched
disorder due to pinning of particles on a lattice leads to a
different melting scenario than in the case of pinning at
random positions.
This journal is © The Royal Society of Chemistry 2015
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II. Model and simulation methods

We investigate the melting mechanism of a 2D system of N ¼
10242 ¼ 1 048 576 hard disks of diameter s in the presence of
pinned particles using event-driven molecular dynamics
(EDMD) simulations in the NVT ensemble with V the volume
and T the temperature. In an EDMD simulation, the system
evolves via elastic collision events, which are described by
Newton's equations of motion. The collisions are perfectly
elastic, i.e., energy and momentum are preserved. In addition,
we employed an event calendar to maintain a list of all particle
collisions. In the simulations, we started from a perfect lattice
and quenched disorder is introduced by pinning randomly
chosen particles with a fraction qd to the sites on a triangular
commensurable lattice. For sufficiently high pinning fractions,
the solid phase exhibits long-ranged positional order, whereas
for low pinning fractions, the positional order in the solid phase
is quasi-long ranged. The simulation times of all our runs were
2000s corresponding to about 2 � 1010 displacements, with

s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=kBT

p
and m ¼ 1 being the mass of the particles. Aer

such a long equilibration time, we nd that the pressure rea-
ches a plateau as a function of time and that the statistical
uctuations in the pressure are very small, thereby lending
support that our simulations are equilibrated.

We compute the reduced pressure P* ¼ bPs2 from the
collision rate via the virial theorem given by

P* ¼ Ns2

A

�
1� bm

2t

1

N

X
rij$vij

�
; (1)

where A ¼ LxLy is the area,m is the mass of the particles, t is the
time interval, rij and vij are the distance and velocity vectors,
respectively, between particles i and j.
III. Results
A. Equation of state

In Fig. 1, we plot the reduced pressure P* as a function of the
area fraction h¼ pNs2/4A for varying pinning fractions 0# qd#
Fig. 1 Reduced pressure P* ¼ bPs2 as a function of area fraction h ¼
pNs2/4A forN¼ 10242 hard disks with diameter s and area A¼ LxLy for
varying pinning fractions qd. From top to bottom the pinning fraction
qd is 0 (pure hard disks), 0.003, 0.005, 0.008 and 0.01, respectively.

This journal is © The Royal Society of Chemistry 2015
0.01. We checked our results for N ¼ 10242 particles with those
obtained for N ¼ 1282, but averaged over 16 different realiza-
tions of randomly pinned particles. We nd good agreement
within our statistical accuracy. For all qd considered, we observe
a Mayer–Wood loop in the equation of state due to interfacial
tension effects on nite systems.39 We determine the coexisting
densities using a Maxwell construction to the equation of state,
and plot the phase boundaries in Fig. 2. The clear presence of a
Mayer–Wood loop in the equation of state lends strong support
for a rst-order phase transition.26 We clearly observe from
Fig. 2 that the rst-order phase transition shis to lower area
fractions h upon increasing the pinning fraction qd. We have
calculated the latent heat per particle L/N for the rst-order
phase transition using L/N¼ pcoex(1/rf� 1/rs) with pcoex the bulk
coexistence pressure, and rf and rs the bulk density of the
coexisting uid and solid (hexatic) phase. The result is shown in
Fig. 3. The latent heat L increases with pinning fraction qd, and
we nd that the slope of the latent heat L changes at qd ¼ 0.0035
where the uid–hexatic phase coexistence becomes unstable
with respect to the uid–solid phase coexistence.
B. Subblock scaling analysis

Subsequently, we turn our attention to the positional and bond
orientational order of the coexisting phase at a high density. To
this end, we perform a sub-block scaling analysis of the 2D
positional order parameter in reciprocal space

JG ¼
�����
1

N

XN
i¼1

expðiG$riÞ
�����
2

; (2)

where the sum runs over all particles i, ri is the position of
particle i and G denotes the wave vector that corresponds to a
diffraction peak and equals 2p/a with a the averaged interpar-
ticle distance as determined by taking the value of a that
maximizes JG. In the solid phase, the averaged particle
distance equals the averaged lattice spacing, which is corrected
for the presence of vacancies and other defects.26 In addition,
we calculated JG for varying sub-block sizes Lb/L with
Fig. 2 Phase diagram of a system of hard disks subject to quenched
disorder due to pinned particles on a crystal lattice in the area fraction
h versus pinning fraction qd representation. The blue and red dots
denote the liquid and solid binodal, respectively. The green dots
correspond to a continuous solid–hexatic phase transition, which was
calculated from a finite-size scaling analysis of the positional order. All
lines are guides to the eye. The dashed part of the green line indicates
that the hexatic phase is metastable with respect to a first-order
liquid–solid phase transition.

Soft Matter, 2015, 11, 2852–2856 | 2853
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Fig. 3 The latent heat L/N for N ¼ 10242 hard disks as a function of
quenched disorder qd. Dashed lines are linear fittings of the data for
qd > 0.0035 and qd < 0.0035.
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L ¼ ffiffiffiffiffiffiffiffiffi
LxLy

p
=4 and analyzed the scaling of ln(JG(Lb)/JG(L))

versus ln(Lb/L). The statistical averaging was performed by
dividing the system into 64 subsystems, which yielded satis-
factory statistics. According to the KTHNY theory, the positional
order parameter is expected to decay algebraically, i.e.,JG(L) f
L�a with an exponent 0# a# ht in the solid phase, while in the
liquid and hexatic phase the positional order decays exponen-
tially, and thus a plot of ln(JG(L)) versus ln(L) should show a
slope of �2 for sub-block sizes larger than the bulk correlation
length in the liquid phase.40 According to the KTHNY theory, ht
is 1/3, which should not be affected by quenched disorder.33 In
the case of pure hard disks, i.e., without any pinning effects, a
rst-order uid–hexatic phase transition with coexisting
densities hL ¼ 0.700 and hH ¼ 0.716 of the liquid and hexatic
phase, respectively, and a continuous hexatic–solid transition at
hHS x 0.724 were observed.26,27 These results were conrmed by
a sub-block scaling analysis in ref. 32. In Fig. 4, we show the sub-
block scaling analysis for a system of hard disks with a pinning
fraction qd¼ 0.005. Fig. 4 shows that the positional order decays
algebraically with a slope a < 1/3 for h $ 0.716. We thus nd a
continuous hexatic–solid phase transition at an area fraction
Fig. 4 Sub-block scaling analysis of the 2D positional order parameter
in reciprocal space JG(Lb) versus Lb for hard disks with a pinning
fraction qd ¼ 0.005 for varying area fractions h as labeled. The slope of
the black dashed lines corresponds to �1/3, which indicates a
continuous hexatic–solid transition according to the KTHNY theory.

2854 | Soft Matter, 2015, 11, 2852–2856
h x 0.716, which lies well-inside the solid–liquid coexistence
region as determined from a Maxwell construction to the
equation of state. Hence, the hexatic phase is pre-empted by a
rst-order uid–solid transition by the presence of pinned
particles.

Employing the same analysis as described above for other
values of qd, we nd that a stable hexatic phase persists only in
the range of pinning fractions 0# qd # 0.003. For qd > 0.003, we
did not observe a stable hexatic phase. In Fig. 2, we show the
resulting phase diagram of hard disks subject to quenched
disorder due to pinned particles on a lattice. We nd that the
coexisting densities of the liquid and solid phase decrease upon
increasing the pinning fraction qd. Moreover, our results show
that the hexatic phase is preempted by a rst-order uid–solid
transition for sufficiently high pinning fractions qd. Our nd-
ings contrast the results for the case of quenched disorder due
to particles pinned at random sites, where the density regime of
the hexatic phase enlarges upon increasing qd.35–37 We thus nd
that pinning particles at random positions destabilizes the solid
and stabilizes the hexatic phase, whereas pinning particles on
random positions of a crystal lattice stabilizes the solid phase
and destroys the hexatic phase.

IV. Renormalization group analysis

To corroborate our results, we also perform a renormalization
group analysis based on the KTHNY theory.1–3 According to the
KTHNY theory, a solid–hexatic phase transition occurs when
the Young's modulus

K ¼ 4mðmþ lÞ
2mþ l

2ffiffiffi
3

p
rkBT

¼ 16p; (3)

where l and m are the 2D shear and bulk Lamé elastic constants
and r the density. This melting criterion is not affected by
quenched disorder.33 However, due to the presence of disloca-
tions, which have a uid-like response to the stress, the Young's
modulus K should be renormalized as described by the KTHNY
renormalization group recursion relationships2,3

dK�1ðlÞ
dl

¼ 3

4
py2ðlÞe

KðlÞ
8p

�
2I0

�
KðlÞ
8p

�
� I1

�
KðlÞ
8p

��
;

dy

dl
¼
�
2� KðlÞ

8p

�
yðlÞ þ 2py2ðlÞe

KðlÞ
16p I0

�
KðlÞ
8p

�
:

where l is the renormalized ow variable, I0 and I1 are modied
Bessel functions, y ¼ e�Ec/kBT is the fugacity of dislocation pairs,
and Ec is the dislocation core energy. The bare value of the
Young's modulus K(0) can be calculated from the strain uc-
tuations41 in a defect-free solid, but with a xed fraction of
pinned particles, and is employed as the initial value for the
renormalization recursion relationship. The core energy Ec can
be calculated by measuring the probability density pd to observe
a dislocation pair per unit area using the expression41

pd ¼ 16
ffiffiffi
3

p
p2

K � 8p
I0

�
K

8p

�
exp

�
K

8p

�
exp

��2Ec

kBT

�
: (4)
This journal is © The Royal Society of Chemistry 2015
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Fig. 5 Renormalized Young's modulus KR as a function of area fraction
h for pure hard disks without quenched disorder qd¼ 0 (blue), and with
pinning fractions qd ¼ 0.003 (green) and qd ¼ 0.01 (red). Dashed lines
denote the solid binodal as obtained from the Maxwell construction to
the equation of state. Fig. 7 Typical configuration of the liquid–solid coexistence phase at h

¼ 0.694 for qd ¼ 0.01. We plot the size of pinned particles in 1.5s just
for visualization. Green particles are particles with six nearest neigh-
bors, blue particles are 5-fold defects, red particles are 7-fold defects,
yellow particles are 4-fold defects and grey particles are 8-fold
defects.
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The initial value of the fugacity y(0) is equal to e�Ec/kBT. Using
the initial values y(0) and K(0) in the renormalization recursion
relationships, we can determine the thermodynamic values of K
and y by taking the limit l / N. Fig. 5 shows the renormalized
Young's modulus KR ¼ K(l/N) as a function of area fraction h

for pure hard disks, and for impurity fractions qd ¼ 0.003 and
0.01. For hard disks without any pinned particles, we nd that
the renormalized Young's modulus KR changes from 16p to 0 at
an area fraction h¼ 0.724, which is indicative of a KT type solid–
hexatic transition. In addition, we nd that the renormalized
Young's modulus KR increases with pinning fraction qd, which
means that the stiffness of the crystal increases by the presence
of these pinned particles. We also determine the area fractions
at which the solid–hexatic phase transition occurs using the
melting criterion eqn (3), and we nd good agreement with the
area fraction values as obtained from the sub-block scaling
analysis as shown in Fig. 4. Comparing the area fraction at
which the solid–hexatic transition occurs with the coexisting
densities as determined from the Maxwell constructions to the
Fig. 6 (a) Probability density pd of a dislocation pair per unit area as a
function of area fraction h and (b) dislocation core energy Ec as a
function of area fraction h for hard disks without quenched disorder qd
¼ 0 (blue), with pinning fractions qd ¼ 0.003 (green) and qd ¼ 0.01
(red). Lines are fits to the data.

This journal is © The Royal Society of Chemistry 2015
equations of state, we nd that for qd > 0.003 the KT solid–
hexatic transition is preempted by a rst-order liquid–solid
phase transition. In addition, we plot the probability density pd
to nd a dislocation pair per unit area as a function of area
fraction h in Fig. 6(a). We observe that pd decreases upon
increasing the pinning fraction qd. In addition, it was predicted
by Chui that a rst-order solid–liquid transition driven by the
spontaneous proliferation of grain boundaries may preempt the
solid–hexatic transition when the core energy Ec of a dislocation
becomes less than 2.84 kBT.42 In Fig. 6(b), we show the dislo-
cation core energy Ec as computed from pd (eqn (4)) as a func-
tion of area fraction h, which shows that in the solid phase Ec
always exceeds the critical value 2.84 kBT. This result indicates
that the rst-order solid–liquid transition might not be induced
by spontaneous proliferation of grain boundaries. Fig. 7 shows
a typical conguration of the liquid–solid coexistence phase at h
¼ 0.694 for qd ¼ 0.01. We clearly see from the above picture that
most pinned particles are located at the crystalline region,
whereas the ve- and seven-fold defects are clustered far away
from the pinned particles. This may indicate that the pinned
particles act as a nucleation seed for crystallization.
V. Conclusions

In conclusion, we studied the effect of quenched disorder on
the melting mechanism of 2D solids of hard disks by pinning
randomly chosen particles on a triangular lattice. Using large-
scale EDMD simulations, we observed that the two-stage
melting scenario with an intermediate hexatic phase of a 2D
system of hard disks26,27 does not persist in the presence of
pinned particles on a lattice. We showed that the hexatic phase
is destabilized and that a rst-order solid–liquid phase transi-
tion preempts the Kosterlitz–Thouless-type solid–hexatic
Soft Matter, 2015, 11, 2852–2856 | 2855
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transition. These ndings are corroborated with a renormaliza-
tion group analysis based on the KTHNY theory, which shows
that the renormalized Young's modulus of the crystal is
increased by the presence of pinned particles. With regard to
pinned particles at random sites, it was shown theoretically that
the KTHNYmelting scenario persists, and that the solid phase is
destroyed entirely for high pinning fractions resulting in a hex-
atic glass.33–37 Indeed, experiments and simulations on 2D
melting of super-paramagnetic colloidal particles with
quenched disorder conrmed the increased stability range of
the hexatic phase.38 Thus our results show that quenched
disorder due to pinning of particles on a lattice leads to a
different melting scenario than in the case of pinning at random
positions. In the case of quenched disorder due to pinning on a
lattice, the solid phase is stabilised, whereas pinning at random
sites destabilizes the crystal. Although our results are obtained
for a system of hard disks and it is supposed that the melting
behavior in 2D is very sensitive to the precise interparticle
interactions, it is tempting to speculate that the hexatic phase is
also destabilized by pinning to an underlying crystalline lattice
in a system of repulsive magnetic particles as studied in ref. 38
for sufficiently high pinning fractions. In this case, the stability
of the solid phase can be studied as a function of G, which is
related to the external magnetic eld that controls the dipolar
interactions between the particles.38 For sufficiently high G, the
particle interactions are sufficiently strong to stabilize a solid
phase. Upon decreasing G, the melting behavior can be studied
at a xed fraction of particles pinned to a lattice both in simu-
lations and experiments. The different pinning scenarios may be
investigated in experiments on colloidal particles by using
optical tweezers. We hope that our ndings will stimulate
research in this direction.
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