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Abstract. The traditional capture-recapture method assumes homogeneity of the capture prob-
abilities. However, differences of character or behaviour between individuals may occur and
models that allow for varying susceptibility to capture over individuals and unequal catchabil-
ity have been proposed and psychometric models, such as the Rasch model, were successfully
applied. In the present work, we propose the use of the multidimensional Rasch model in the
capture-recapture context. We assume that lists may be divided into two or more subgroups,
such that they can be viewed as indicators of the latent variables which account for correlations
among lists. We show how to express the probability of a generic capture profile in terms of
log-linear multidimensional Rasch model and apply the methodology to a real data set.
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1 Introduction

The capture-recapture method is a statistical method originally used to estimate the size of
wildlife populations [1] based on a sequence of trapping experiments where individual trapping
histories are used to estimate the population size.
The capture-recapture method has been successful applied to other contexts, like human popu-
lations, where the common labels are multiple-recapture, multiple-records systems and multiple-
records systems method [2]. In general, it can be applied to any situation in which two or more
lists are available. Here, the estimation of the population size uses two or more incomplete but
overlapping lists. Each list is regarded as a capture sample and data are usually arranged in
an incomplete 2s contingency table where the missing cell corresponds to absence in all s lists;
then log-linear models are used to analyse the data [3].
The traditional capture-recapture method assumes that the S registrations are independent. If
we allow possible dependencies between registrations, this results in interaction terms in log-
linear models [4].
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Another central assumption in the traditional capture-recapture approach is the homogeneity
of the capture probability. However, differences of character or behaviour between individuals
may cause indirect dependence between lists. Models that allow for varying susceptibility to
capture through individuals and unequal catchability have been proposed either in the case of
human populations [5] or in animal population studies [6] and psychometric models, such as the
Rasch model, were successfully applied.

In applying the dichotomous Rasch model to the capture-recapture context, correct or in-
correct answers to an item are replaced by ”being observed” or ”not being observed” in a list
and, if all lists are supposed to be of the same kind, it is possible to treat heterogeneity in terms
of constant apparent dependence between lists (Darroch [5], Agresti [6], International Working
Group for Disease Monitoring and Forecasting [2]). Bartolucci and Forcina [7], shown how to re-
lax the basic assumptions of the Rasch model (conditional independence and unidimensionality)
by adding some suitable columns to the design matrix of the model. Bartolucci and Pennoni [8]
proposed an extension of the latent class model for behaviour effects in which the latent class of
a subject follows a Markov chain with transition probabilities depending on the previous capture
history.

In the present work, we propose the use of the multidimensional Rasch model in the capture-
recapture context. In particular, we assume that lists may be divided into two or more subgroups,
such that they can be viewed as indicators of the latent variables which account for correlations
among lists. To do so, the extension of the Dutch Identity for the multidimensional partial
credit model (Hessen [9]) can be utilized. The Dutch Identity is a tool proposed by Holland
[10], useful in the study of the structure of item response models, used by psychometricians to
explain the characteristics and performance of a test. We use the results of Hessen [9], typically
used in psychometric context, in the capture-recapture framework to express the probability of
a generic capture profile in terms of log-linear multidimensional Rasch model.

We proceed as follows: in Section 2 we discuss the situation with three lists and two latent
variables. In Section 3 we present the model that allows for the presence of a stratifying variable.
In Section 4 we describe the method for a more general situation with S lists and J strata. In
Section 5 we apply the methodology proposed to a real data set on children born with a neural
tube defect (NTD’s) in the Netherlands.

2 Three lists

Consider a situation in which three lists R1, R2 and R3 are available. Let ni1i2i3 denote the
observed frequencies of the data, where is = (0, 1), i = 1, 2, 3 and is = 0 denotes ”not observed”
and is = 1 denotes ”observed”. n000 is the number of individuals ”not observed” in any list that
has to be estimated in order to estimate the total unknown population size N . Data can be
arranged in a 23 contingency table with a missing cell corresponding to absence in all the three
lists (see Table 1).

Let Is, s = 1, 2, 3 be the random variables denoting the presence or absence of an individual in
the corresponding list. Assume that there are two latent variables which explain the correlation
among lists, and suppose that I1, I2 and I3 are conditionally independent given the two latent
variables. Let Θ = (Θ1,Θ2) denotes the vector of latent variables and θ = (θ1, θ2) denotes a
realization.
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R3
Observed Not Observed

R2 R2
Observed Not Observed Observed Not Observed

R1
Observed n111 n101 n110 n100

Not Observed n011 n001 n010 0∗

∗ Missing cell is treated as structurally zero cell

Table 1. Contingency table for three lists

We are interested in analysing a log-linear model that allows the presence of the two latent
variables.

Let π0s , s = 1, 2, 3 be the probability of not being observed in the s−th list and let π1s =
1− π0s be the probability of being observed in the s−th list. The probability of inclusion in list
s given the vector of latent variables may be expressed in a logistic form in the following way:

π1s|θ =
eu

′
sθ−δs

1 + eu′
sθ−δs

(1)

where δs is the parameter for the list s, θr is the parameter for the r−th latent variable and
u′s is the row vector of the (3 × 2) full column rank matrix U = [usr] of weights for the latent
variables, where

usr =

{
1 if the list Rs is indicator of the r−th latent variable

0 otherwise

Let t = (t1, t2) be the vector of total scores, where the total scores are given by t1 =
u11i1 + u21i2 + u31i3 and t2 = u12i1 + u22i2 + u32i3.

Let i = (i1, i2, i3) denotes a generic capture profile for an individual. According to standard
probability theory, the probability of a generic capture profile (πi1i2i3) may be written as

πi1i2i3 =

∫
. . .

∫
πi1i2i3|θf (θ) dθ (2)

where πi1i2i3|θ is the probability of a generic capture profile conditional to θ and f (θ) is the
multivariate density of θ. Under the assumption that the posterior distribution of the vector
of latent variables conditional to the capture profile i1i2i3 = 000 follows a multivariate normal
distribution, we have

πi1i2i3 = π000 exp

{
3∑

s=1

isδs + t1µ1 + t2µ2 +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ12

}

= π000 exp

{
3∑

s=1

isδs + t′µ+
1

2
t′Γt

}
(3)

where t = (t1, t2)
′ = i′U, µ is the mean vector and Γ = [γir] is symmetric.

Let n the number of individuals observed in all lists. Since the probability of a generic
capture profile i1i2i3 has multinomial distribution, we can express the expected frequencies of
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ni1i2i3 as
mi1i2i3 = nπi1i2i3 (4)

Substituting (4) in (3) and taking the logarithm we obtain:

lnmi1i2i3 = δ +
3∑
s=1

isδs + t′µ+
1

2
t
′
Γt (5)

where δ = ln(nπ000).
The model in equation (5) is not identified. Setting µ = 0 for identification, the log-linear

multidimensional Rasch model can be rewritten as:

lnmi1i2i3 = δ +

3∑
s=1

isδs +
1

2
t
′
Γt

= δ + i1δ1 + i2δ2 + i3δ3 +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ12 (6)

Note that there are 2(2 + 1)/2 = 3 parameters to account for the two latent variables θ1 and
θ2. In particular, γ11 and γ22 represent, respectively, the variance of the first latent variable and
the variance of the second latent variable, given the total scores t1 and t2 , while γ12 represents
the covariance between the two latent variables, given the total scores t1 and t2. In general, to
account for q latent variables, we need q(q + 1)/2 parameters.

3 Model with a stratifying variable

Suppose now that a stratifying variable is available. Let ni1i2i3j and πi1i2i3j denote the ob-
served frequencies and the probabilities for strata j, respectively. In this case, n000j indicates
the frequency of individuals not observed in any lists in the j-th strata. With two strata the
contingency table has two missing cells, as shown in Table 2.

R3
Observed Not Observed

R2 R2
Year R1 Observed Not Observed Observed Not Observed

1
Observed n1111 n1011 n1101 n1001

Not Observed n0111 n0011 n0101 0∗

2
Observed n1112 n1012 n1102 n1002

Not Observed n0112 n0012 n0102 0∗

∗ Missing cell are treated as structurally zero cells

Table 2. Contingency table for three lists and two strata

We assume that lists are indicators of the latent variables which explain correlations among
lists and the posterior distribution of the latent variables (given the capture profile of not
observed) follows a multivariate normal distribution; similarly to the previous case, we have

lnmi1i2i3j = δj +
3∑
s=1

isδsj +
1

2
t′Γjt (7)
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where δj = ln(nπ000j), Γj is a symmetric matrix, t is the vector of total scores and the mean
vector for the j-th strata µj is set equal to zero for identification.

If parameters are equal across the strata δsj = δs,∀j, that is the assumption of measurement
invariance holds, we can test whether µj = µ = 0 and Γj = Γ for all j.

If the simultaneous hypothesis holds, then the model in (7) becomes

lnmi1i2i3j = δj +

3∑
s=1

isδs +
1

2
t′Γt. (8)

4 Generalization

The extension to a more general situation with S registrations and J strata is straightforward.
Let ni1...isj and πi1...isj be the observed frequencies and the probabilities, respectively, where

the index is, s = 1, 2, . . . , S denotes the cross-classification of S lists and j = (1, 2, . . . , J) is the
index denoting the strata. The resulting contingency table has J structural zeros (one for each
stratum).

Suppose now that the covariances between the random variables I1, . . . , IS can be explained
by q latent variables. Let u′s denotes the s−th row of the SJ × q full column rank matrix
U = [usr], where usr = 1 if list RS is indicator of the r−th latent variable and 0 otherwise, and
let t = (t1, . . . , tq) be the vector of the total scores of the latent variables, that is tr =

∑S
s=1 usris.

Under the assumption of a multivariate normal distribution of the posterior distribution of
the latent variables (conditional to the capture profile of individuals not observed in any list)
the log-linear multidimensional Rasch model takes the form:

lnmi1...isj = δj +

S∑
s=1

isδsj + t′µj +
1

2
t′Γjt (9)

where µj is the mean vector for the j-th strata, t is the vector of total scores and Γj is a
symmetric matrix.

Without any additional constraints the model is not identified. If we set µj equal to 0 for
identification we have:

lnmi1...isj = δj +
S∑
s=1

isδsj +
1

2
t′Γjt (10)

The model in (10) can be treated as a traditional log-linear model. Thus, to estimate the
parameters of the model it is possible to follow the approach proposed by Sanathanan [11]
which consists of maximizing the conditional likelihood given the distribution of the observed
frequencies (for more details see Sanathanan [11] and Bishop et al. [4]). Once the parameters
have been estimated they can be used to obtain the estimate of the portion of population missed
by all lists and thus the total unknown population size N .

5 Application

We apply the methodology described in the preceding Sections to the data set of five lists
described by Zwane et al. [12] on children born with a NTD’s in the Netherlands. Data cover
a period of 11 years (from 1988 through 1998) and Year (denoted by Ycat) is treated as a
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stratifying variable. Since the five lists cover different but overlapping periods of time, we use
the EM algorithm proposed by Zwane et al. [12] to estimate the missing cells resulting from the
fact that lists partially overlap. None of these lists record all cases of NTD’s in the Netherlands,
and the scope of this application is to estimate the total unknown number of children affected
by NTD’s.

We assume that the five lists R1, R2, R3, R4 and R5 may be divided into two subgroups
such that they can be view as indicators of the latent variables which account for correlations
among lists. In particular, we consider two multidimensional Rasch models obtained using the
methodology described above and compare them with other log-linear models. In total, we take
into account five models.

Table 3 summarizes the results of these models fitted to the data; for each model we report
the number of parameters, the degrees of freedom, the deviance, the value of AIC, the value of
BIC and the estimated total population size N̂ . Table 4 presents the yearly estimates N̂j , j =
1988, . . . , 1998 for each model.

Model Design matrix Par df∗ Dev AIC BIC N̂

1 R1+R2+R3+R4+R5+Ycat 16 213 400 432 487 2229
2 1+(R1R2+. . .+R4R5) 26 203 298 350 439 3077
3 1+H1 17 212 349 383 441 3009
4 1+θ1 + θ2 19 210 324 362 427 2793
5 1+θ3 + θ4 19 210 311 349 414 3041

Table 3. Selected models with deviance, AIC and BIC

Model N̂88 N̂89 N̂90 N̂91 N̂92 N̂93 N̂94 N̂95 N̂96 N̂97 N̂98

1 199 224 234 206 222 186 189 202 178 210 179
2 275 309 323 285 302 258 261 280 246 290 248
3 272 305 319 281 303 249 252 271 238 280 239
4 251 282 295 260 280 232 235 252 222 261 223
5 271 305 318 281 300 255 258 277 244 287 245

∗ There are 229 observed cells
§H1 is the first-order heterogeneity term
†θ1 = R1 +R2 and θ2 = R3 +R4 +R5
‡θ3 = R1 +R2 +R4 and θ4 = R3 +R4 +R5

Table 4. Selected models with yearly estimates

Note that the model with only the main-effect parameters does not fit the data well, as it
has a high deviance. The model with the first-order heterogeneity parameter improves the fit,
while adding all two-factor interaction parameters to Model 1 results in a smaller deviance.

Both of the multidimensional Rasch models fit the data well and Model 5, in which lists R1,
R2 and R4 are assumed to be indicators of the first latent variable (θ3) and lists R3, R4 and R5
are supposed to be indicators of the second latent variable (θ4), is the best model, since it has
the smallest value of AIC and BIC; thus, it is the selected model.
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6 Conclusion

In this manuscript we proposed the use of the multidimensional Rasch model in the capture-
recapture framework.

We assumed that lists may be divided into two or more subgroups (not necessarily disjoint)
which constitute the latent variables accounting for correlations among lists. As consequence,
the random variables denoting the presence or absence of an individual into a list are assumed
to be conditionally independent, given the latent variable.

Under the assumption that the posterior distribution of the latent variables follows a multi-
variate normal distribution, we used the extension of the Dutch Identity proposed by Hessen [9]
in a psychometric context to the capture-recapture framework and we showed that it is possible
to re-express the probability of a generic capture-profile in terms of the log-linear multidimen-
sional Rasch model.

Finally, we applied the methodology we proposed to a dataset on NTD’s in the Netherlands
from 1988 through 1998. Since lists did not cover the same time periods, we used the EM
algorithm proposed by Zwane et. al [12] to estimate the missing entry in the data set. The
results showed that the selected model for inference is one of the log-linear multidimensional
Rasch models obtained by applying the methodology proposed. In fact, it was preferable among
the other log-linear model, as it presented the smallest value of both AIC and BIC.
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