Publisher: GSA Journal: GEOL: Geology Article ID: G34804 1 Rapid high-amplitude variability in Baltic Sea hypoxia

2 during the Holocene

3 Tom Jilbert*and Caroline P. Slomp

4 ¹Department of Earth Sciences (Geochemistry), Faculty of Geosciences, Utrecht

5 University, P.O. Box 80.021, 3508 TA Utrecht, Netherlands

6 *E-mail: T.S.Jilbert@uu.nl.

7 ABSTRACT

8 Hypoxia (oxygen concentrations of <2ml/L) and "dead zones" are a growing 9 concern in coastal marine environments. The Baltic Sea is a shelf sea which is highly 10 sensitive to hypoxia, and may serve as a laboratory for studying the interplay between 11 natural and anthropogenic forcing of redox conditions in the global coastal zone. Past 12 occurrences of hypoxia in the Baltic Sea have been shown by previous studies, but high-13 resolution, quantitative reconstructions of past hypoxia intensity are lacking. Here we 14 present bulk sediment geochemical records from the deep basins of the Baltic Sea, which 15 show multicentennial oscillations during intervals of past hypoxia, suggesting rapid alternations between hypoxic and relatively oxic conditions. While the onset of past 16 17 hypoxic events was likely forced by climatic variability, these events intensified and 18 terminated rapidly due to feedbacks in the phosphorus (P) cycle. The modern intensity of 19 hypoxia is similar to several past events, suggesting that hypoxia in the Baltic Sea has a 20 maximum potential intensity. However, using ultrahigh-resolution laser ablation-21 inductively coupled plasma-mass spectrometry scanning of sediment blocks, we show

22	that modern hypoxia intensified more rapidly than any past event. This confirms the role
23	of anthropogenic nutrient loading in driving this system into its current hypoxic state.
24	INTRODUCTION
25	Hypoxia in coastal marine environments has expanded greatly during the past
26	century, due to anthropogenic eutrophication of the global coastal zone (Diaz and
27	Rosenberg, 2008). One of the world's largest brackish water bodies, the Baltic Sea,
28	experienced a 13-fold increase in the area of hypoxic waters from A.D. 1905–2002
29	(Savchuk et al., 2008). Due to its relative isolation from the global ocean, the Baltic Sea
30	is salinity-stratified and hence naturally vulnerable to hypoxia. Although major inflows of
31	saline water temporarily replenish the deep basins with oxygen, they also maintain
32	stratification (Conley et al., 2002). The modern hypoxic conditions in the Baltic Sea
33	represent the third major hypoxic interval since the transition from the Ancylus freshwater
34	phase to the Littorina marine phase at 9000–7000 yr B.P. (Zillén et al., 2008), with
35	hypoxia also present during the Holocene Thermal Maximum (HTM), ca. 8000–4000 yr
36	B.P. (Sohlenius et al., 2001; Zillén et al., 2008) and the Medieval Climate Anomaly
37	(MCA), ca. 1700–700 yr B.P. (Zillén et al., 2008; Kabel et al., 2012).
38	A solid understanding of past variability in hypoxia is crucial to predicting the
39	development of hypoxia in the future. Here we use sediment geochemical records to
40	investigate the frequency, intensity and rate-of-change of hypoxia in the Baltic Sea
41	throughout the Holocene. We focus on three sedimentary properties: the ratio of
42	molybdenum to aluminum (Mo/Al), organic carbon (C_{org}) content, and the ratio of
43	organic carbon to total phosphorus (C_{org}/P_{tot}). Sedimentary Mo uptake increases in the
44	presence of hydrogen sulfide (H ₂ S)—a toxic dissolved gas in severely hypoxic marine

45	environments—due to the conversion of seawater MoO_4^{2-} to particle-reactive
46	oxythiomolybdates (Erickson and Helz, 2000) followed by scavenging into sediments.
47	Long-term burial of Mo may also be preceded by a reduction step from Mo (VI) to Mo
48	(IV) (Dahl et al., 2013). Mo concentrations are typically normalized to Al to correct for
49	variable dilution between major sedimentary components, and Mo/Al enrichments above
50	the detrital background value may thus be used to reconstruct the intensity of hypoxia.
51	C_{org} contents are typically elevated in hypoxic sediments and may contain quantitative
52	information about redox conditions and the carbon flux to the sediments (Reed et al.,
53	2011). Meanwhile, C_{org}/P_{tot} increases under hypoxia due to accelerated release of P
54	during organic matter breakdown and the lack of P retention by iron (oxy)hydroxides
55	(Fe-P) (Algeo and Ingall, 2007).
56	METHODS
57	Sediment Coring and Bulk Analysis
58	Sediment multi-cores (~0–50 cm) and gravity cores (~0–500 cm) were collected
59	from site LL19 in the Northern Gotland Basin (58.8807°N, 20.3108°E, 169 m water
60	depth) and site F80 in the Fårö Deep (58.0000°N, 19.8968°E, 191 m water depth; Fig. 1).
61	An additional multi-core was collected from site BY15 in the Gotland Deep (57.3200°N,
62	20.0500°E, 238 m water depth). All cores were sliced under nitrogen at 0.5–2 cm
63	resolution, and analyzed for C_{org} by thermal combustion and for Mo, P, and Al by
64	inductively coupled plasma-optical emission spectrometry (ICP-OES) after hydrofluoric
65	acid digestion. Further analytical details, and core chronologies, are discussed in the GSA
66	Data Repository ¹ .

67 Resin Embedding and LA-ICP-MS

68	Article ID: G34804 Ultrahigh-resolution elemental profiles of selected core sections were generated
69	by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line
70	scanning of epoxy-embedded sediment blocks (Jilbert et al., 2008). The blocks were
71	taken from sections of the site LL19 gravity core and from a multi-core subcore from site
72	BY15. A 193 nm Excimer laser beam was focused onto the polished sample surface, and
73	ablated material was transported to a Thermo Element 2 high-mass-resolution ICP-MS.
74	The sample stage was set in motion perpendicular to the sediment laminations, to produce
75	a continuous flow of material to the ICP-MS. Mo and Al were measured on isotopes
76	⁹⁸ Mo and ²⁷ Al, respectively. For further details of the LA-ICP-MS analysis and data
77	normalization procedure, see the Data Repository.
78	RESULTS
79	Pronounced in-phase excursions in Mo/Al, C_{org} , and $C_{\text{org}}/P_{\text{tot}}$ are seen in the
79 80	Pronounced in-phase excursions in Mo/Al, C_{org} , and C_{org}/P_{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions
79 80 81	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and
79 80 81 82	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past
 79 80 81 82 83 	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past events are multicentennial in duration, although maximum values are typically sustained
 79 80 81 82 83 84 	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past events are multicentennial in duration, although maximum values are typically sustained for only a few decades. At both sites, Mo/Al values during the modern hypoxic event
 79 80 81 82 83 84 85 	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past events are multicentennial in duration, although maximum values are typically sustained for only a few decades. At both sites, Mo/Al values during the modern hypoxic event (~0.004 at LL19, ~0.005 at F80) are remarkably similar to those at the maxima of the
 79 80 81 82 83 84 85 86 	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past events are multicentennial in duration, although maximum values are typically sustained for only a few decades. At both sites, Mo/Al values during the modern hypoxic event (~0.004 at LL19, ~0.005 at F80) are remarkably similar to those at the maxima of the three strongest past excursions (during HTM2, HTM7, and MCA2; Fig. 2). C _{org} /P _{tot}
 79 80 81 82 83 84 85 86 87 	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past events are multicentennial in duration, although maximum values are typically sustained for only a few decades. At both sites, Mo/Al values during the modern hypoxic event (~0.004 at LL19, ~0.005 at F80) are remarkably similar to those at the maxima of the three strongest past excursions (during HTM2, HTM7, and MCA2; Fig. 2). C _{org} /P _{tot}
 79 80 81 82 83 84 85 86 87 88 	Pronounced in-phase excursions in Mo/Al, C _{org} , and C _{org} /P _{tot} are seen in the discrete-sample profiles from both site LL19 and F80 (Fig. 2). Seven excursions (henceforth termed hypoxic events) are seen during the HTM, two during the MCA, and one corresponding to the modern hypoxic event. From onset to termination, the past events are multicentennial in duration, although maximum values are typically sustained for only a few decades. At both sites, Mo/Al values during the modern hypoxic event (~0.004 at LL19, ~0.005 at F80) are remarkably similar to those at the maxima of the three strongest past excursions (during HTM2, HTM7, and MCA2; Fig. 2). C _{org} /P _{tot} values are also rather similar during these events, as are C _{org} values, except for the

90	The rate of change in Mo/Al is generally greatest at the onset and termination of
91	hypoxic events (Fig. 2). Typically, Mo/Al rises and falls over a period of decades to
92	centuries. However, the modern event displays a more rapid increase in Mo/Al than
93	observed at the onset of any previous event. This is most pronounced at site LL19, where
94	the rate of change in Mo/Al was a factor $\sim 5 \times$ higher than at the onset of any previous
95	event (Fig. 2). Here, a shift in Mo/Al from <0.001 to ~0.004 occurred within a decade in
96	the late 20 th century. The slightly less extreme rate of change in Mo/Al during the onset
97	of the modern hypoxic event at site F80 (Fig. 2) is likely a consequence of lower
98	sampling resolution in the basal part of the multi-core from this site.
99	LA-ICP-MS line scanning of sediment blocks circumnavigates issues of discrete
100	sampling resolution to investigate very short time-scale variability in Mo/Al. LA-ICP-MS
101	data from MCA2 (site LL19) and the modern hypoxic event (site BY15) both show
102	strong sub-annual to inter-annual variability in Mo/Al. The greater rapidity of the modern
103	increase in Mo/Al is confirmed by the LA-ICP-MS data. During the onset of MCA2,
104	Mo/Al steadily rose over ~100 yr (Fig. 3a), while at the onset of the modern hypoxic
105	event, a comparable shift occurred within a decade (Fig. 3b). When plotted on a
106	logarithmic scale, the interannual variability in Mo/Al since A.D. 1950 shows some
107	similarity with variations in bottom water H ₂ S concentrations (Fig. 3b), which are
108	associated with the inflow-stagnation cycle of the Baltic Sea (Conley et al., 2002).
109	DISCUSSION
110	For Mo/Al to be a valid proxy for hypoxia intensity, it must first be shown that
111	the marine system in question is both weakly sulfidic and weakly restricted; i.e., that the
112	supply of MoO_4^{2-} is not depleted by basin reservoir effects (Algeo and Lyons, 2006). The

113	similar duration of each hypoxic event as determined by Mo/Al and C_{org}/P_{tot} (Fig. 2)
114	shows that MoO_4^{2-} was never depleted to such an extent that the Mo flux to the sediment
115	declined before the termination of an event. Accordingly, a strong correlation exists
116	between Mo/Al and $C_{\text{org}}/P_{\text{tot}}$ (Fig. DR7 in the Data Repository). The validity of the
117	Mo/Al proxy is further supported by a cross-plot of Mo_{tot} versus C_{org} for anoxic basins
118	worldwide (Fig. 4). This shows that Mo sequestration in the Baltic Sea during hypoxic
119	events is comparable to Saanich Inlet on Vancouver Island (British Columbia, Canada)
120	considered to experience negligible basin reservoir effects (Algeo and Lyons, 2006).
121	The modern hypoxic event in the Baltic Sea is characterized by an elevated flux
122	of organic matter to the sediments, due to enhanced productivity in surface waters
123	(Gustafsson et al., 2012). Reed et al. (2011) showed that once anoxic conditions are
124	established in a restricted marine basin, the C_{org} content of sediments serves as a direct
125	proxy for the organic matter flux. Hence, the strong correlation we observe between $\mathrm{Mo}_{\mathrm{tot}}$
126	and C_{org} (Fig. 4) shows that productivity and deep-water redox conditions have closely
127	co-varied in the Baltic Sea throughout the Holocene.
128	Liberation of Fe-P from the sediments during the Ancylus-Littorina transgression
129	likely triggered an increase in productivity during the HTM (Sohlenius et al., 2001). At
130	this time, the greater depth of the Danish Straits also promoted a more saline and
131	stratified water column than today, making deep water masses more vulnerable to
132	stagnation (Zillén et al., 2008). The multicentennial hypoxic events in the HTM were
133	likely forced by climate variability 'tipping the balance' in and out of a hypoxic, high

- 134 productivity state. Multicentennial frequencies have been seen in several Northern
- 135 Hemisphere climate records from this period (Lamy et al., 2006; Jilbert et al., 2010), and

136	may be related to atmospheric modes such as the North Atlantic Oscillation (NAO).
137	Since the modern NAO influences the ventilation rate of the Baltic Sea—by modulating
138	the hydraulic balance of the Danish Straits (Hänninen et al., 2000)-shifts in its mean
139	phase may have forced the multicentennial oscillations in hypoxia during the HTM.
140	Although the initial trigger for hypoxia in the MCA remains debated (Kabel et al., 2012),
141	the similar multicentennial oscillations observed during this interval (Fig. 2) may be
142	explained by the same mechanism.
143	The rapidity with which past hypoxic events waxed and waned is likely related to
144	positive feedbacks in the P cycle during these transitions. High productivity during the
145	modern hypoxic event is sustained by efficient regeneration of P from the sediments,
146	leading to low nitrogen to phosphorus (N/P) ratios in surface waters and the fixation of
147	atmospheric nitrogen by cyanobacteria (Vahtera et al., 2007). Thus, although production
148	during individual blooms is N-limited, the availability of P dictates the amount of N
149	accumulated from one year to the next, and hence P may be described as ultimately
150	limiting to productivity. In the intervals between hypoxic events, a large amount of P is
151	stored as surface-sediment Fe-P (Conley et al., 2002). When a hypoxic event is triggered,
152	efficient regeneration of Fe-P, and remineralization of organic P, fuels further
153	productivity and expansion of hypoxia (Conley et al., 2002). Similarly, as a hypoxic
154	event wanes, storage of Fe-P back into the sediments accelerates the return to oxic
155	conditions. However, the similar Mo/Al and $C_{\rm org}$ values during HTM2, HTM7, MCA2,
156	and the modern event suggest that potential hypoxia intensity and productivity are
157	somehow limited, i.e., that these are site-specific "maximum" attainable values (Fig. 2).
158	If P availability indeed limits productivity, the maxima may be related to factors

159	controlling the supply of P to the photic zone. Vertical expansion of the hypoxic zone
160	terminates at the halocline (Conley et al., 2002), which may impose an upper limit on the
161	supply of P from sedimentary Fe-P during the most intense hypoxic events. Alternatively,
162	the extent of wind-driven mixing in the supra-halocline waters may limit the vertical flux
163	of P. Otherwise, factors other than P availability may regulate productivity and hypoxia
164	intensity. For example, cyanobacteria in the Baltic Sea have been shown to bloom only
165	above specific thresholds of temperature and insolation (Wasmund, 1997). The finite
166	duration of favorable conditions during the growth season may thus limit P uptake in the
167	photic zone despite ready availability of P.
168	Our LA-ICP-MS line scanning approach allows more detailed examination of
169	Mo/Al variability in selected hypoxic events (Fig. 3). The strong sub-annual to inter-
170	annual variability in Mo/Al observed during MCA2 and the modern hypoxic event
171	confirm that Mo enrichment is sensitive to very short-term temporal changes in hypoxia
172	intensity (Fig. 3). Furthermore, the highly localized enrichments of Mo suggest that Mo
173	uptake in these sediments occurs within organic-rich aggregates at the sediment-water
174	interface, rather than via diffusive exchange across the sediment-water interface and
175	precipitation at a critical bulk pore-water H_2S concentration. Hence, the short-term redox
176	changes recorded by individual peaks in the LA-ICP-MS Mo/Al data are likely related to
177	sub-annual variations in the flux of organic material to the seafloor.
178	The LA-ICP-MS data also confirm the rapidity with which the modern hypoxic
179	event intensified. The rate of intensification we observe for the modern hypoxic event at
180	site BY15, from oxic to highly sulfidic mean conditions within one decade (Fig. 3),
181	appears consistent with water column data at many deep basin sites (Gustafsson and

182	Medina, 2011). The comparison with MCA2, itself one of the most rapidly intensified
183	past events (Fig. 2), confirms that such a rate of intensification is unprecedented in the
184	Holocene. Thus, while the absolute intensity of hypoxia during the two events appears
185	similar, the modern event reached its maximum intensity far more rapidly, presumably as
186	a consequence of anthropogenic nutrient loading during the 20 th century (Gustafsson et
187	al., 2012).
188	Many coastal marine systems worldwide currently experience hypoxia due to
189	anthropogenic nutrient loading (Diaz and Rosenberg, 2008). Our study has demonstrated
190	the importance of feedbacks in the P cycle in driving the intensification of hypoxic events
191	in the Baltic Sea. These processes are also active in other coastal systems, and in
192	restricted basins with high P inputs may be implicated in similar rapid intensification of
193	hypoxia. However, we have also shown that the Baltic Sea exhibits a maximum potential
194	hypoxia intensity, likely due to factors limiting P availability after the establishment of
195	high productivity conditions. These findings raise the question of whether other coastal

196 systems may behave in a similar manner, potentially allowing for better predictability of

197 biogeochemical responses to hypoxia and nutrient inputs in the future.

198 ACKNOWLEDGMENTS

We thank the captain, crew, and scientific participants aboard R/V *Aranda* (2009) for their assistance with the fieldwork. Ton Zalm, Arnold van Dijk, Helen de
 Waard, Gert-Jan Reichart, Conny Lenz, and Paul Mason are acknowledged for
 analytical assistance in Utrecht. We thank Wim Boer for analytical assistance with
 ²¹⁰Pb dating, and Bo Gustafsson for provision of water column data. Ben Gill,
 Thomas Algeo, and one anonymous reviewer are thanked for their constructive and

- 205 helpful comments. This research was funded by the Netherlands Organization for
- 206 Scientific Research (NWO Vidi), the EU-BONUS project HYPER, and the European
- 207 Research Council under the European Community's Seventh Framework Programme
- for ERC Starting Grant 278364.

209 **REFERENCES CITED**

- 210 Algeo, T.J., and Ingall, E., 2007, Sedimentary Corg:P ratios, paleocean ventilation, and
- 211 Phanerozoic atmospheric pO2: Palaeogeography, Palaeoclimatology, Palaeoecology,
- 212 v. 256, p. 130–155, doi:10.1016/j.palaeo.2007.02.029.
- 213 Algeo, T.J., and Lyons, T.W., 2006, Mo-total organic carbon covariation in modern
- 214 anoxic marine environments: Implications for analysis of paleoredox and
- 215 paleohydrographic conditions: Paleoceanography, v. 21, PA1016,
- 216 doi:10.1029/2004PA001112.
- 217 Conley, D.J., Humborg, C., Rahm, L., Savchuk, O.P., and Wulff, F., 2002, Hypoxia in
- 218 the Baltic Sea and basin-scale changes in phosphorus biogeochemistry:
- 219 Environmental Science & Technology, v. 36, p. 5315–5320,
- doi:10.1021/es025763w.
- 221 Dahl, T.W., Chappaz, A., Fitts, J.P., and Lyons, T.W., 2013, Molybdenum reduction in a
- 222 sulfidic lake: Evidence from X-ray absorption fine-structure spectroscopy and
- 223 implications for the Mo paleoproxy: Geochimica et Cosmochimica Acta, v. 103,
- 224 p. 213–231, doi:10.1016/j.gca.2012.10.058.
- 225 Diaz, R.J., and Rosenberg, R., 2008, Spreading dead zones and consequences for marine
- 226 ecosystems: Science, v. 321, p. 926–929, doi:10.1126/science.1156401.

227	Erickson, B.E., and Helz, G.R., 2000, Molybdenum(VI) speciation in sulfidic waters:
228	Stability and lability of thiomolybdates: Geochimica et Cosmochimica Acta, v. 64,
229	p. 1149–1158, doi:10.1016/S0016-7037(99)00423-8.
230	Gustafsson, B.G., and Medina, M.R., 2011, Validation data set compiled from Baltic
231	Environmental Database, Version 2: Baltic Nest Institute Technical Report Number
232	2, Baltic Nest Institute, Stockholm University, ISBN: 978–91–86655–01–3, 25 p.
233	Gustafsson, B.G., Schenk, F., Blenckner, T., Eilola, K., Meier, H.E.M., Müller-Karulis,
234	B., Neumann, T., Ruoho-Airola, T., Savchuk, O.P., and Zorita, E., 2012,
235	Reconstructing the development of Baltic Sea eutrophication 1850–2006: Ambio,
236	v. 41, p. 534–548, doi:10.1007/s13280-012-0318-x.
237	Hänninen, J., Vuorinen, I., and Hjelt, P., 2000, Climatic factors in the Atlantic control the
238	oceanographic and ecological changes in the Baltic Sea: Limnology and
239	Oceanography, v. 45, p. 703–710, doi:10.4319/lo.2000.45.3.0703.
240	Jilbert, T., de Lange, G., and Reichart, G.J., 2008, Fluid displacive resin embedding of
241	laminated sediments: preserving trace metals for high-resolution paleoclimate
242	investigations: Limnology and Oceanography, Methods, v. 6, p. 16-22,
243	doi:10.4319/lom.2008.6.16.
244	Jilbert, T., Reichart, G.J., Mason, P., and de Lange, G.J., 2010, Short-time-scale
245	variability in ventilation and export productivity during the formation of
246	Mediterranean sapropel S1: Paleoceanography, v. 25, p. PA4232,
247	doi:10.1029/2010PA001955.
248	Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T.J., Siegel, H.,

249 Gerth, M., Leipe, T., Jansen, E., and Sinninghe Damsté, J.S., 2012, Impact of climate

Publisher: GSA Journal: GEOL: Geology

Article ID: G34804

- change on the Baltic Sea ecosystem over the past 1,000 years: Nature Climate
- 251 Change, v. 2, p. 871–874, doi:10.1038/nclimate1595.
- 252 Lamy, F., Arz, H.W., Bond, G.C., Bahr, A., and Patzold, J., 2006, Multicentennial-scale
- 253 hydrological changes in the Black Sea and northern Red Sea during the Holocene
- and the Arctic/North Atlantic oscillation: Paleoceanography, v. 21, PA1008,
- doi:10.1029/2005PA001184.
- 256 Reed, D.C., Slomp, C.P., and de Lange, G.J., 2011, A quantitative reconstruction of
- 257 organic matter and nutrient diagenesis in Mediterranean Sea sediments over the
- 258 Holocene: Geochimica et Cosmochimica Acta, v. 75, p. 5540–5558,
- doi:10.1016/j.gca.2011.07.002.
- 260 Savchuk, O.P., Wulff, F., Hille, S., Humborg, C., and Pollehne, F., 2008, The Baltic Sea
- a century ago—A reconstruction from model simulations, verified by observations:
- 262 Journal of Marine Systems, v. 74, p. 485–494, doi:10.1016/j.jmarsys.2008.03.008.
- 263 Sohlenius, G., Emeis, K.C., Andren, E., Andren, T., and Kohly, A., 2001, Development
- 264 of anoxia during the Holocene fresh-brackish water transition in the Baltic Sea:
- 265 Marine Geology, v. 177, p. 221–242, doi:10.1016/S0025-3227(01)00174-8.
- 266 Vahtera, E., Conley, D.J., Gustafsson, B.G., Kuosa, H., Pitkanen, H., Savchuk, O.P.,
- 267 Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and Wulff, F., 2007, Internal
- 268 ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate
- 269 management in the Baltic Sea: Ambio, v. 36, p. 186–194, doi:10.1579/0044-
- 270 7447(2007)36[186:IEFENC]2.0.CO;2.

271	Wasmund, N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to
272	environmental conditions: Internationale Revue der gesamte Hydrobiologie, v. 82, p.
273	169–184.
274	Zillén, L., Conley, D.J., Andren, T., Andren, E., and Bjorck, S., 2008, Past occurrences of
275	hypoxia in the Baltic Sea and the role of climate variability, environmental change
276	and human impact: Earth-Science Reviews, v. 91, p. 77–92,
277	doi:10.1016/j.earscirev.2008.10.001.
278	FIGURE CAPTIONS
279	Figure 1. Location of the Baltic Sea and study sites. Coring sites are indicated by circles,
280	with corresponding water depths in meters. 100 m and 200 m depth contours are
281	indicated by dotted lines. Arrows show flow directions of major deep-water inflows.
282	
283	Figure 2. Composites of geochemical data from multi-core and gravity core discrete
284	samples. Symbols along left margin are dating points: filled square is interval of ²¹⁰ Pb
285	dating; other symbols are paleomagnetic secular variation and Pb pollution features (see
286	the Data Repository [see footnote 1] for further details). Horizontal gray bars indicate
287	hypoxic events, defined by maxima and minima in Mo/Al. HTM—Holocene Thermal
288	Maximum; MCA—Medieval Climate Anomaly; Mod. —Modern hypoxic event. Rates of
289	change in Mo/Al are estimated for each consecutive pair of data points. Maximum rates

- 290 of change during the principal intensification and decline phases of each event are
- 291 indicated by red symbols. Corresponding data pairs are also red in the Mo/Al series. Note
- that the high sampling resolution of the uppermost sediments generates high rate-of-

Publisher: GSA Journal: GEOL: Geology

293	Article ID: G34804 change values due to capturing of shorter-time-scale variability, despite the consistently
294	high Mo/Al of the modern hypoxic interval.
295	
296	Figure 3. High-resolution records of hypoxic events. A: Laser ablation-inductively
297	coupled plasma-mass spectrometry (LA-ICP-MS) line scan of Mo/Al in epoxy-
298	embedded sediments from hypoxic event MCA2 (site LL19). Solid lines are raw LA-
299	ICP-MS data. Triangles represent Mo/Al in discrete samples, measured by ICP-optical
300	emission spectrometry. Circles are mean values of raw LA-ICP-MS data, binned to
301	equivalent depth intervals as the discrete samples. See Figure DR2 (see footnote 1) for
302	errors in absolute age estimates. B: Data from the modern hypoxic event (site BY15):
303	LA-ICP-MS line scan of Mo/Al in epoxy-embedded sediments (left, symbols as in A).
304	Natural logarithm of raw LA-ICP-MS Mo/Al profile (center). Bottom-water oxygen
305	concentrations at site BY15 (right, data assimilated from the Baltic Environmental
306	Database by Gustafsson and Medina [2011]). Positive values indicate presence of O_2 and
307	negative values indicate presence of H_2S , assuming the stoichiometry 1 mol $H_2S = 2$ mol
308	O ₂ .
309	
310	Figure 4. Sedimentary Mo_{tot} versus C_{org} gradients for selected anoxic basins. Data for

311 Saanich Inlet (Vancouver, Canada), Framvaren Fjord (Norway), Cariaco Basin (offshore

312 Venezuela), and the Black Sea were summarized in Algeo and Lyons (2006). Data from

313 Saanich Inlet are presented in raw form; for all other basins, only gradients are presented.

314 Data from the Baltic Sea derive from sites LL19 and F80 gravity core samples (this

315	study). Multi-core data are excluded due to the distorting influence of enhanced C_{org}
316	concentrations in the fluffy layer.
317	
318	¹ GSA Data Repository item 2013xxx, Figures DR1–DR7 and Table DR1, is available
319	online at www.geosociety.org/pubs/ft2013.htm, or on request from
320	editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO
321	80301, USA.

Mo (ppm)

1	Data repository item for "Rapid high-amplitude variability in
2	Baltic Sea hypoxia during the Holocene"
3	Tom Jilbert ¹ and Caroline P. Slomp ¹
4	¹ Department of Earth Sciences (Geochemistry), Faculty of Geosciences, Utrecht University
5	P.O. Box 80.021, 3508 TA Utrecht, The Netherlands (T.S.Jilbert@uu.nl), Tel +31 30 253
6	5037, Fax +31 30 253 5302.
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

25 SUPPLEMENTARY METHODS

26 Sediment coring and bulk analysis

27 Sediment multi-cores (~0-50 cm) and gravity cores (~0-500 cm) were collected from sites LL19 in the Northern Gotland Basin (58.8807°N, 20.3108°E, 169m water depth) and 28 29 F80 in the Fårö Deep (58.0000°N, 19.8968°E, 191m water depth) during a cruise with R/V 30 Aranda in May/June 2009 (Fig. 1 of main article). An additional multi-core was collected 31 from site BY15 in the Gotland Deep (57.3200°N, 20.0500°E, 238 m water depth) on the same 32 cruise. All cores were sliced at 0.5-2 cm resolution in a nitrogen- or argon-filled glovebox. 33 Sediment samples were freeze-dried and returned to the glovebox to be powdered and ground 34 in an agate mortar. Subsamples were decalcified by shaking in excess 1M HCl, initially for 12 35 h and for a further 4 h after addition of new acid. The decalcified sediment was dried, ground in an agate mortar and analysed by combustion for Corg by Fisons NA 1500 NCS (precision 36 37 and accuracy <2% based on an atropine/acetanilide standard calibration and checked against 38 internal laboratory standard sediments). A second subsample was dissolved in 2.5 ml HF (40 39 %) and 2.5 ml of an HClO₄/HNO₃ mixture, in a closed Teflon bomb at 90 °C for 12 h. The acids were then evaporated at 190 °C and the resulting gel was dissolved in 1M HNO₃, and 40 41 analysed for Mo (202.030 nm), P (177.495nm) and Al (308.215 nm) by ICP-OES (Ametek Spectro Arcos, precision and accuracy <5 %, based on calibration to standard solutions and 42 checked against internal laboratory standard sediments). 43

44

45 LL19 and F80 core chronology

Multi-core and gravity core data were combined on the basis of overlaps in the Mo/Al
profiles. The age models for the multi-cores of LL19 and F80 were constructed by ²¹⁰Pb
dating, using α-spectrometry and applying a constant rate of supply (CRS) model, as
described for other Baltic Sea sites in Jilbert et al. (2011). The age models for the gravity

Figure DR1. Tuning of gravity core C_{org} profiles in LL19 and F80 gravity cores to LOI in core 372740-3
(Lougheed et al, 2012). The 29 tie-points used in the tuning are shown on the right margin. The 12 PSV/Pb
dating points used in the construction of the age model for 372740-3 are shown on the left margin. Plus
symbols are Pb pollution features; filled diamonds are PSV inclination features; open diamonds are PSV
declination features. Sedimentation rate in 372740-3 is estimated for each depth interval between adjacent
PSV/Pb dating points.

73 Figure DR2. Complete dated Corg profiles of LL19 and F80. The 68.2% confidence interval of the PSV/Pb 74 age model is shown by the grey envelope around the 1:1 line of the two age scales. Example absolute dates 75 and errors are shown by the horizontal dashed lines and grey envelopes, respectively, for hypoxic events 76 MCA 2 and HTM 7. The dating approach applied in each section of the cores is indicated in the right 77 margin. In 'Extrapolation 1', a constant sedimentation rate was assumed between the oldest ²¹⁰Pb dating 78 point and the youngest PSV/Pb dating point. 'Extrapolation 2' indicates an interval below the oldest 79 PSV/Pb dating point, for which LOI data for 322740-3 is present. The LL19 and F80 records in this 80 interval are tuned to LOI in 322740-3, assuming a constant sedimentation rate of 322740-3 equal to that of 81 the oldest PSV/Pb dated interval. For LL19 only, 'Extrapolation 3' indicates an interval for which no 82 equivalent LOI data from 322740-3 are present. The mean sedimentation rate of LL19 during 83 Extrapolation 2 is assumed throughout this interval. Linear interpolation was applied between all dating 84 points.

87 Resin embedding and LA-ICP-MS

88 High resolution elemental profiles of selected core sections were generated by Laser 89 Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) line scanning of epoxy-embedded sediment blocks (Jilbert et al., 2008). The blocks were taken from selected 90 91 sections of the LL19 gravity core and from a multi-core sub-core from site BY15. A 193 nm Excimer laser beam (repetition rate 10 Hz, energy density 8 J cm⁻², spot size \emptyset 120 µm) was 92 93 focused onto the polished sample surface, and ablated material was transported by He-Ar carrier gas to a Thermo Element 2 high mass resolution ICP-MS. The sample stage was then 94 95 set in steady motion at 0.0275 mm/s, perpendicular to the plane of sediment lamination, to produce a continuous flow of material to the ICP-MS. The combination of stage speed and 96 97 measurement frequency (2 Hz) yields a theoretical vertical data resolution of $13.75 \,\mu m$. 98 although in reality the resolution is limited by the spot size of the laser beam (\emptyset 120 µm). Molybdenum and Al were measured on isotopes ⁹⁸Mo (97.9049) and ²⁷Al (26.9810), 99 100 respectively, each with a resolution of 0.01 atomic mass units. Raw count data were corrected 101 for element-specific sensitivity factors with respect to the glass standard NIST 610, and the 102 natural isotopic abundance ratios of Mo. The effect of density variability on sample yield was 103 corrected for by normalization of Mo data to Al (%/%). Mo/Al ratios were further corrected for potential matrix effects by calibration of binned Mo/Al mean values to ICP-OES-derived 104 Mo/Al values of discrete samples from the equivalent interval (Fig. DR3). 105

106

107 LA-ICP-MS data calibration

108 Raw Laser Ablation (LA)-ICP-MS count data for Molybdenum (Mo) and Aluminium
109 (Al) were converted to the Mo/Al values reported in the main article by a two-stage

calibration procedure. Firstly, the raw counts of isotopes ⁹⁸Mo and ²⁷Al were corrected for
background values in the carrier gas, the sensitivity of each element under LA-ICP-MS (as
measured in the glass standard NIST610), and the abundances of each isotope as a proportion
of the total naturally occurring isotopes of each element (Eq. DR1):

114

$$Mo/Al_{LA} = \frac{\begin{bmatrix} 98 \\ c \end{bmatrix} Mo - \frac{98}{b} Mo \end{bmatrix} \times F_{Mo \ N610} \times \left[\frac{100}{A_{98 Mo}}\right]}{\begin{bmatrix} 27 \\ c \end{bmatrix} Al - \frac{27}{b} Al \end{bmatrix} \times F_{Al \ N610} \times \left[\frac{100}{A_{27 Al}}\right]}$$

115

116 where

117 Mo/Al_{LA} = the LA-ICP-MS-derived Mo/Al ratio,

118 ${}^{98}{}_{c}Mo$ and ${}^{27}{}_{c}Al$ = the raw counts of ${}^{98}Mo$ and ${}^{27}Al$, respectively,

119 ${}^{98}{}_{b}Mo$ and ${}^{27}{}_{b}Al$ = the background counts of ${}^{98}Mo$ and ${}^{27}Al$, respectively,

120 $F_{Mo N610}$ and $F_{Al N610}$ = the sensitivity factors (in ppm/counts) of Mo and Al, respectively, as

121 determined in the glass-matrix standard NIST610, and

122 A_{98Mo} and A_{27Al} = the natural abundance (in %) of ⁹⁸Mo and ²⁷Al, respectively, as a proportion

123 of the total naturally occurring isotopes of Mo and Al (note that $A_{27Al} = 100$).

124

In the second stage of the calibration procedure, Mo/Al_{LA} values for a given depth 125 126 interval were regressed against the equivalent ICP-OES- derived discrete sample Mo/Al 127 values. This treatment was applied to correct for potential artifacts introduced by the use of a 128 non-matrix matched standard (i.e., glass) in determining the sensitivity factors for Mo and Al 129 in a heterogeneous sediment sample. The complete Mo/Al_{LA} series was first divided into intervals of equivalent resolution to the discrete samples, and a mean value was calculated for 130 131 each interval and plotted alongside the discrete sample data (Fig. DR3A). These mean, or 132 'bin' values were then regressed against the discrete sample data (Fig. DR3B). The resulting

(Eq. DR1)

133 regression equation (e.g., Eq. DR2 for the MCA2 interval) was used to correct the Mo/Al_{LA}

134 series and its binned means to $Mo/Al_{corr.}$ (Fig. DR3C). These data correspond to those

135 reported in Fig. 3 of the main article.

136

$$Mo/Al_{corr.} = Mo/Al_{LA} \times 0.624$$

137

138 where

139 $Mo/Al_{corr.}$ = the corrected Mo/Al ratio, and

140 Mo/Al_{LA} = the LA-ICP-MS-derived Mo/Al ratio.

141

143Figure DR3. Second stage of the LA-ICP-MS calibration procedure. Black lines in A. and C. represent the144complete data series of Mo/Al_{LA} and Mo/Al_{corr} , respectively, across hypoxic event MCA2. Note that the145depth scale corresponds to the original depth in LL19 and not the realigned depth of 322740-3.146

After both stages of the calibration procedure, the binned means of the raw LA-ICPMS Mo/Al data show a good match with the discrete-sample Mo/Al data for the
corresponding intervals (Fig. DR3C and Fig. 3 of main article). This is especially true for
MCA2, for which two halves of the same gravity core were used in the respective analyses.
More scatter is observed between the LA-ICP-MS and discrete sample Mo/Al profiles of the

(Eq. DR2)

modern hypoxic event, which derive from parallel multi-core sub-cores (Fig. 3b of mainarticle).

154

155 Chronology for modern hypoxic event at BY15

The multi-core sub-core from site BY15 was initially dated by ²¹⁰Pb chronometry 156 157 using a Constant Rate of Supply (CRS) algorithm. The CRS model is sensitive to various sources of error, including measurement precision and accuracy, variability in the flux of 158 ²¹⁰Pb to the sediments, and the estimated value of background (supported) ²¹⁰Pb activity. Of 159 these, uncertainty in the supported ²¹⁰Pb activity generates the largest potential error in the age 160 model. The ²¹⁰Pb decay curve of BY15 appears to reach the supported background between 161 162 ~15 cm and ~20 cm depth, although non-stable activity deeper in the core hampers precise identification of the intercept (Fig. DR4). We generated two possible CRS age vs. depth 163 scales for BY15, assuming supported ²¹⁰Pb activities of 113 mBq/g and 137 mBq/g, 164 respectively (Fig. DR4). Using these as end-member scales, we tuned the age model by 165 166 matching four peaks in the LA-ICP-MS-derived Mo/Alcorr. profile to minima in the bottom-167 water O₂ time series from BY15 (Figs. DR4, DR5). The tuning relies on the assumption that the timing of maximum Mo uptake in the sediments coincides with minimum O₂ (hence 168 169 maximum H_2S) concentrations. We consider this assumption valid on the basis of the sharply-170 defined Mo/Al peaks in our LA-ICP-MS data (implying a rapid response of sedimentary Mo 171 uptake to redox changes close to the sediment-water interface), and the demonstrated absence 172 of reservoir effects in the Mo/Al signal (see main article). However, due to the non-linear 173 relationship between [H₂S] and Mo/Al, we plotted Mo/Al on a logarithmic scale for the 174 purposes of the tuning (Fig DR5). Linear interpolation was applied between the four tuning 175 points.

Figure DR4. Salt dilution-corrected ²¹⁰Pb activity profile for the multi-core from site BY15, indicating the
shallowest depths at which activities of 137 mBq/g and 113 mBq/g were reached (left). Error bars
represent analytical precision. Age vs. depth scales for end-member CRS age models of BY15 (dashed
lines) assuming supported ²¹⁰Pb activities of 113 and 137 mBq/g, respectively (right). Filled symbols
represent the age model constructed by tuning peaks in Mo/Al to bottom-water O₂ minima within the
constraints of the end-member profiles (see accompanying text). The resolution of the symbols
corresponds to the discrete-sample resolution of the multi-core.

Figure DR5. Construction of the Mo/Al-tuned age model for the BY15 multi-core. ²¹⁰Pb-dated *Mo/Al_{corr}* from site BY15, assuming supported ²¹⁰Pb activity of 113 mBq/g and reported on a logarithmic scale (left).
 Bottom-water O₂ time series for BY15 (Gustafsson and Medina, 2011; centre, in which positive values

189 indicate the presence of O_2 and negative values indicate the presence of H_2S , assuming the stoichiometry 1 190 mol $H_2S = 2 \mod O_2$. Tuned *Mo/Al_{corr}* profile (right). Red arrows indicate the four tuning points.

191

192 SUPPLEMENTARY DISCUSSION

193 **Relative intensity of hypoxic events at LL19 and F80**

194 Although hypoxic events can be easily correlated between the two studied sites, Mo/Al, Corg and Corg/Ptot are consistently more elevated at F80 than at LL19 (Fig. 2 of main 195 196 article). The relative intensity of hypoxia at different deep basin sites in the Baltic Sea is a 197 function of the local ventilation rate and the organic matter flux to the seafloor. The Fårö 198 Deep lies 'upstream' of the Northern Gotland basin with respect to major Baltic inflow events 199 (Fig. 1 of main article), implying that the former sub-basin was generally more frequently 200 ventilated throughout the Holocene (Leppäranta and Myrberg, 2009). However, the 201 bathymetry of the Fårö Deep is complex and F80 itself is located within a highly localized 202 bathymetric depression, which may act both as a trap for laterally transported organic matter and as a barrier to ventilation. Due to the hydrographic isolation of F80 with respect to LL19, 203 204 the bottom waters at this site are consistently more sulfidic today (Gustafsson and Medina, 205 2011). This slight contrast in hypoxia intensity is reflected in the modern core-top Mo/Al values of 0.004 (LL19) and 0.005 (F80), and has apparently existed throughout the Holocene. 206 207

208 Non-linearity between Mo/Al and bottom water H₂S concentrations

The broad-scale evolution of Mo/Al at BY15 since 1950 shows a non-linear relationship to bottom-water H₂S concentrations (Fig. 3 of main article). Firstly, enrichment of Mo per mole H₂S appears greater at the higher bottom-water [H₂S] observed around 1990, when the modern hypoxic event was fully developed, than at the lower bottom-water [H₂S] observed around 1970. Hence, we plotted Mo/Al on a logarithmic scale (Fig. 3 of main article) to highlight the full range of Mo/Al variability in the record. Secondly, although

215 maxima in Mo/Al are observed during strongly sulfidic stagnation intervals such as around 216 1990 and 2000, the minima associated with the inflow events of 1993 and 2003 remain well 217 above the 1950 background despite the briefly positive bottom-water oxygen concentrations 218 (Fig. 3b of main article). We interpret both these non-linearities as a consequence of the H_2S 219 inventory which accumulates in the upper sediments after the onset of a hypoxic event, due to 220 the ongoing breakdown of organic matter. As a hypoxic event evolves, $[H_2S]$ in the upper-221 sediment porewaters is expected to increase, and to remain partly buffered from ventilation-222 induced changes in [H₂S] in the overlying bottom waters. Hence, even during brief intervals of oxic bottom-waters, porewaters within organic-rich aggregates close to the sediment-water 223 224 interface remain sulfidic, allowing continuous sediment Mo enrichment during intense 225 hypoxic events.

226

227 Sedimentation rate and organic matter accumulation

Many of the onset and termination transitions of past hypoxic events are sufficiently short-lived to occur entirely between PSV/Pb dating features (Fig. DR1). Hence, the 'rate of change in Mo/Al' calculations for some of the transitions shown in Fig. 2 of the main article assume that no change in sedimentation rate occurs as a hypoxic event intensifies or declines. However, hypoxic events are characterized by enhanced fluxes of organic matter and other biogenic phases to the sediments (resulting in higher LOI and C_{org} contents), which may be expected to increase sedimentation rate should all other sediment fluxes remain unchanged.

To assess the possible influence of variable organic and biogenic matter fluxes on sedimentation rate, we plotted the sedimentation rate between each PSV/Pb feature against the mean LOI of the corresponding interval in the reference core 372740-3. The results show that no significant correlation exists between the two parameters (Fig. DR6), implying no

systematic influence of organic and biogenic fluxes on sedimentation rate. Although
sedimentation rate variability between PSV/Pb dating features cannot be ruled out, the mean
sedimentation rate between each feature would have to underestimate the true rate during past
hypoxic event onsets by a factor 5 for the 'rate of change in Mo/Al' estimates to resemble that
of the modern event onset at LL19 (Fig. 2 of main article). Since mean sedimentation rate
varies by only a factor 2 throughout the PSV/Pb-dated interval (Fig. DR1), this scenario
appears highly unlikely.

247

Figure DR6. Cross-plot of LOI vs. sedimentation rate for core 372740-3. Each point corresponds to an
interval between two adjacent PSV/Pb dating features (Fig. DR1).

251

248

252 Comparison between Corg/Ptot and Mo/Al proxies for hypoxia intensity

The two proxies used to reconstruct hypoxia intensity, C_{org}/P_{tot} and Mo/Al, co-vary throughout the Holocene as shown in Fig. 2 of the main article. The positive correlation between C_{org}/P_{tot} and Mo/Al is confirmed by a cross-plot of the two parameters (Fig. DR7). The correlation is strongest for samples of $C_{org}/P_{tot} > 100$. For samples of $C_{org}/P_{tot} < 100$, the correlation is weaker and the gradient is shallower. The weaker correlation of these samples may be related to the more detectable influence of variable rates of phosphate mineral authigenesis on P_{tot} at lower C_{org} contents (Jilbert and Slomp, 2013), while the change in gradient may be related to the non-linear response of Mo uptake into sediments in response to increasing H₂S concentrations (the so-called 'sulfide-switch', Helz et al., 1996).

264 Figure DR7. Cross-plot of Corg/Ptot and Mo/Al for all data presented in Fig. 2 of main article.

265

263

266

267 SUPPLEMENTARY DATA TABLES

268 Table DR1. Data used in the production of Fig. 2 of the main article. 'Depth' indicates true depth in

- 269 sediment cores LL19 and F80. 'Age' is calculated after re-alignment of LL19 and F80 to the depth scale of
- 270 the dated reference core 322740-3, as outlined in Figs. DR1 and DR2 an associated text. Empty cells = no
- 271 data.
- 272

LL19					F80				
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
cm	ka	%	mol/mol	%/%	cm	ka	%	mol/mol	%/%
0.25	0.000	11.83	178.8	0.0029	0.25	0.000	14.03	202.5	0.0049
0.75	0.001	13.65	196.5	0.0042	0.75	0.000	15.72	203.4	0.0046
1.25	0.002	12.87	194.5	0.0039	1.25	0.001	14.25	207.0	0.0045
1.75	0.004	11.68	192.1	0.0035	1.75	0.001	15.01	217.9	0.0047
2.50	0.005	9.82	188.5	0.0026	2.50	0.002	16.42	199.8	0.0042
3.50	0.009	8.83	177.7	0.0025	3.50	0.003	13.54	192.5	0.0042
4.50	0.012	8.44	174.1	0.0026	4.50	0.005	11.63	183.9	0.0031
5.50	0.016	8.47	159.6	0.0026	5.50	0.006	9.09	194.2	0.0029
6.50	0.019	7.59	153.6	0.0029	6.50	0.009	9.98	195.8	0.0030
7.50	0.025	7.73	167.2	0.0035	7.50	0.012	10.71	172.2	0.0022
8.50	0.031	7.18	175.6	0.0021	8.50	0.014	9.40	177.1	0.0034
9.50	0.036	3.74	100.6	0.0003	9.50	0.017	9.19	204.8	0.0036
11.00	0.041	2.87	85.1	0.0001	11.00	0.019	9.35	186.4	0.0038
13.00	0.051	2.48	75.3	0.0001	13.00	0.026	9.14	154.7	0.0028
15.00	0.065	2.21	66.4	0.0001	15.00	0.033	8.16	170.1	0.0029
17.00	0.079	1.42	69.5	0.0001	17.00	0.039	8.25	190.3	0.0032
19.00	0.098	1.88	72.3	0.0001	19.00	0.046	8.83	175.7	0.0027
21.00	0.118	1.83	63.8	0.0001	21.00	0.055	7.91	166.1	0.0030
23.00	0.147	1.57	62.4	0.0001	23.00	0.066	7.56	67.8	0.0005
25.00	0.164	1.96	59.3	0.0001	25.00	0.088	2.94	59.7	0.0006
27.00	0.181	2.08	65.6	0.0000	27.00	0.113	2.55	49.0	0.0004
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
29.00	0.197	2.01	64.4	0.0001	29.00	0.142	2.58	72.4	0.0002
31.00	0.214	1.99	60.2	0.0001	31.00	0.157	2.60	42.4	
33.00	0.231	1.92	60.3	0.0001	34.00	0.173	2.49	28.5	
35.00	0.248	1.80	59.2	0.0001	36.00	0.183	2.50	52.1	
37.00	0.265	1.84	57.5	0.0001	38.00	0.194	2.56	52.8	
39.00	0.282	2.01	61.5	0.0001	40.00	0.205	2.59	58.6	
41.00	0.299	1.88	58.0	0.0002	42.00	0.216	2.65	55.7	
43.00	0.316	1.93	65.3	0.0001	44.00	0.226	2.60	44.9	
45.00	0.332	1.93	60.9	0.0001	46.00	0.237	2.11	67.9	
47.00	0.349	1.94	59.5	0.0002	48.00	0.248	3.04	55.6	
49.00	0.366	1.85	60.3	0.0002	50.00	0.258	2.73	60.5	
51.00	0.383	1.92	66.2	0.0001	52.00	0.269	2.77	60.4	
53.00	0.400	1.95	64.9	0.0001	54.00	0.280	2.72	61.7	
55.00	0.417	2.00	66.5	0.0001	56.00	0.291	2.65	56.1	

56.50	0.429	2.03	62.8	0.0002	58.00	0.301	2.58	56.7	
57.50	0.438	2.17	71.1	0.0003	60.00	0.312	2.65	63.3	
58.50	0.446	2.15	72.9	0.0004	62.00	0.323	2.68	67.9	0.0002
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
59.50	0.455	2.26	72.9	0.0004	64.00	0.334	2.90	62.0	
60.50	0.463	2.19	68.7	0.0002	66.00	0.344	2.89	37.4	
61.50	0.472	2.20	67.4	0.0002	68.00	0.355	2.68	62.5	
62.50	0.480	2.15	70.7	0.0003	70.00	0.366	2.81	69.5	
63.50	0.489	2.21	78.6	0.0002	72.00	0.377	3.04	67.9	0.0001
64.50	0.497	2.18	70.4	0.0003	74.00	0.387	2.84	70.3	0.0002
65.50	0.505	2.08	71.9	0.0002	76.00	0.398	2.84	53.4	0.0002
66.50	0.514	2.17	80.2	0.0002	78.00	0.409	2.63	61.9	
67.50	0.522	2.07	71.3	0.0003	80.00	0.419	2.61	59.6	
68.50	0.531	2.23	82.9	0.0002	82.00	0.430	2.92	68.2	
69.50	0.539	2.22	80.7	0.0002	84.00	0.441	3.03	50.0	
70.50	0.548	2.37	78.0	0.0002	86.00	0.452	3.11	74.2	
71.50	0.556	2.19	72.4	0.0002	88.00	0.462	3.22	58.3	0.0003
72.50	0.565	2.31	81.5	0.0001	90.00	0.473	3.12	49.6	
73.50	0.573	2.11	66.7	0.0002	92.00	0.484	2.93	45.0	0.0002
74.50	0.581	2.21	57.3	0.0002	94.00	0.495	3.02	62.5	0.0007
75.50	0.590	2.14	65.8	0.0000	96.00	0.505	3.06	68.3	0.0003
77.00	0.602	2.31	84.7	0.0000	98.00	0.516	3.11	72.2	0.0004
79.00	0.619	2.52	101.9	0.0003	100.00	0.527	3.01	61.2	0.0003
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
81.00	0.636	2.37	94.5	0.0003	102.00	0.538	2.83	70.9	0.0004
83.00	0.653	2.33	81.7	0.0003	104.00	0.548	3.06	67.6	0.0004
85.00	0.670	2.52	76.9	0.0002	106.00	0.559	2.88	54.1	0.0004
86.50	0.720	2.71	79.8	0.0003	108.00	0.570	2.68	64.2	0.0005
87.50	0.729	2.79	82.4	0.0003	110.00	0.580	2.89	77.0	0.0004
88.50	0.741	3.46	103.3	0.0003	112.00	0.591	3.37	61.5	0.0006
89.50	0.753	4.93	135.8	0.0015	114.00	0.602	3.07	60.1	0.0006
90.50	0.765	7.49	208.4	0.0039	116.00	0.613	3.26	42.0	0.0012
91.50	0.823	6.57	181.4	0.0037	118.00	0.623	3.73	42.6	0.0009
92.50	0.863	5.15	150.2	0.0019	120.00	0.634	2.90	81.8	0.0006
93.50	0.915	5.30	153.2	0.0015	122.00	0.645	3.42	55.5	0.0013
94.50	0.956	4.29	108.1	0.0009	124.00	0.656	3.77	77.2	0.0007
95.50	1.002	4.73	142.5	0.0007	126.00	0.666	3.41	42.7	0.0006
96.50	1.062	4.37	138.8	0.0008	128.00	0.677	3.06	79.6	0.0005
97.50	1.107	3.00			130.00	0.688	3.42	111.9	0.0006
98.50	1.134	3.37			132.00	0.699	4.23	117.9	0.0013

99.50	1.158	3.33	96.9	0.0002	134.00	0.709	4.34	131.0	0.0017
100.50	1.184	3.21	99.1	0.0002	136.00	0.720	5.02	194.8	0.0036
101.50	1.211	3.48	101.7	0.0002	138.00	0.729	8.83	206.5	0.0038
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
102.50	1.239	3.68	113.5	0.0002	140.00	0.753	9.51	213.2	0.0046
103.50	1.268	3.41	101.5	0.0003	142.00	0.765	10.35	206.5	0.0036
104.50	1.295	3.93	127.9	0.0004	144.00	0.813	8.88	213.5	0.0038
105.50	1.305	3.71	114.8	0.0003	146.00	0.843	9.09	154.8	0.0034
106.50	1.324	3.16	108.5	0.0002	148.00	0.884	7.22	199.6	0.0053
107.50	1.333	3.03	91.1	0.0002	150.00	0.915	8.62	156.8	0.0019
108.50	1.352	2.40	76.7	0.0001	152.00	0.956	6.15	137.4	0.0020
109.50	1.361	2.08	67.1	0.0001	154.00	0.976	5.95	132.0	0.0018
110.50	1.371	1.98	67.0	0.0001	156.00	0.986	5.66	149.8	0.0026
122.00	1.522	1.76	58.2	0.0001	158.00	1.002	5.95	102.4	0.0008
134.00	1.677	2.11	69.9	0.0001	160.00	1.107	4.10	106.8	0.0005
146.00	1.829	2.23	72.1	0.0001	162.00	1.203	4.32	151.1	0.0020
158.00	1.993	1.74	58.0	0.0001	164.00	1.295	6.17	137.9	0.0012
170.00	2.184	1.82	63.5	0.0000	166.00	1.333	5.41	143.6	0.0023
182.00	2.369	1.87	59.8	0.0000	168.00	1.371	6.00	94.8	0.0006
194.00	2.549	2.11	67.5	0.0001	170.00	1.407	3.87	100.4	0.0005
204.00	2.653	1.86	61.1	0.0000	172.00	1.448	4.38	81.1	0.0004
204.00	2.653	1.86	61.1	0.0000	172.00	1.448	4.38	81.1	0.0004
204.00 Depth	2.653 Age	1.86 Corg	61.1 Corg/Ptot	0.0000 Mo/Al	172.00 Depth	1.448 Age	4.38 Corg	81.1 Corg/Ptot	0.0004 Mo/Al
204.00 Depth <i>cm</i>	2.653 Age <i>ka</i>	1.86 Corg %	61.1 Corg/Ptot <i>mol/mol</i>	0.0000 Mo/Al %/%	172.00 Depth <i>cm</i>	1.448 Age <i>ka</i>	4.38 Corg %	81.1 Corg/Ptot <i>mol/mol</i>	0.0004 Mo/Al %/%
204.00 Depth <i>cm</i>	2.653 Age <i>ka</i>	1.86 Corg <i>%</i>	61.1 Corg/Ptot <i>mol/mol</i>	0.0000 Mo/Al %/%	172.00 Depth <i>cm</i>	1.448 Age <i>ka</i>	4.38 Corg %	81.1 Corg/Ptot <i>mol/mol</i>	0.0004 Mo/Al %/%
204.00 Depth <i>cm</i> 216.00	2.653 Age <i>ka</i> 2.792	1.86 Corg % 1.80	61.1 Corg/Ptot <i>mol/mol</i> 55.2	0.0000 Mo/Al %/%	172.00 Depth <i>cm</i> 174.00	1.448 Age <i>ka</i> 1.485	4.38 Corg % 3.61	81.1 Corg/Ptot <i>mol/mol</i> 59.3	0.0004 Mo/Al %/%
204.00 Depth <i>cm</i> 216.00 228.00	2.653 Age <i>ka</i> 2.792 2.941	1.86 Corg % 1.80 1.73	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7	0.0000 Mo/AI %/% 0.0001 0.0000	172.00 Depth <i>cm</i> 174.00 176.00	1.448 Age <i>ka</i> 1.485 1.522	4.38 Corg % 3.61 2.68	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8	0.0004 Mo/Al %/%
204.00 Depth <i>cm</i> 216.00 228.00 240.00	2.653 Age <i>ka</i> 2.792 2.941 3.089	1.86 Corg % 1.80 1.73 1.63	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000	172.00 Depth <i>cm</i> 174.00 176.00 178.00	1.448 Age <i>ka</i> 1.485 1.522 1.568	4.38 Corg % 3.61 2.68 2.37	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3	0.0004 Mo/Al %/% 0.0002
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00	2.653 Age <i>ka</i> 2.792 2.941 3.089 3.145	1.86 Corg % 1.80 1.73 1.63 1.67	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00	1.448 Age <i>ka</i> 1.485 1.522 1.568 1.604	4.38 Corg % 3.61 2.68 2.37 2.46	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7	0.0004 Mo/Al %/%
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00	2.653 Age <i>ka</i> 2.792 2.941 3.089 3.145 3.215	1.86 Corg % 1.80 1.73 1.63 1.67 1.78	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0000	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00	1.448 Age <i>ka</i> 1.485 1.522 1.568 1.604 1.641	4.38 Corg % 3.61 2.68 2.37 2.46 2.25	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7 55.0	0.0004 Mo/Al %/% 0.0002
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 246.00	2.653 Age <i>ka</i> 2.792 2.941 3.089 3.145 3.215 3.287	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00	1.448 Age <i>ka</i> 1.485 1.522 1.568 1.604 1.641 1.677	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7 55.0 61.5	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 246.00 248.00	2.653 Age <i>ka</i> 2.792 2.941 3.089 3.145 3.215 3.287 3.351	1.86 Corg % 1.80 1.73 1.63 1.63 1.67 1.78 1.75 1.83	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00	1.448 Age <i>ka</i> 1.485 1.522 1.568 1.604 1.641 1.677 1.716	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7 55.0 61.5 62.0	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 246.00 248.00 250.00	2.653 Age <i>ka</i> 2.792 2.941 3.089 3.145 3.215 3.215 3.287 3.351 3.432	1.86 Corg % 1.80 1.73 1.63 1.63 1.67 1.78 1.75 1.83 1.82	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.45 2.74 2.93	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1	0.0004 Mo/AI %/% 0.0002 0.0001 0.0001 0.0002 0.0001
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 246.00 248.00 250.00 252.00	2.653 Age <i>ka</i> 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.497	1.86 Corg % 1.80 1.73 1.63 1.63 1.67 1.78 1.75 1.83 1.82 1.97	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00 190.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753 1.789	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 244.00 246.00 248.00 250.00 252.00 254.00	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.432 3.497 3.562	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00 190.00 192.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.641 1.677 1.716 1.753 1.789 1.829	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6	0.0004 Mo/Al %/% 0.0002 0.0001 0.0003 0.0002 0.0001
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 246.00 248.00 250.00 252.00 252.00 254.00 256.00	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.497 3.562 3.614	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00 190.00 192.00 194.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753 1.789 1.829 1.865	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22 2.94	81.1 Corg/Ptot <i>mol/mol</i> 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 244.00 246.00 250.00 252.00 252.00 254.00 256.00	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.432 3.497 3.562 3.614 3.653	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87 2.10	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8 68.2	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00 190.00 192.00 192.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.641 1.677 1.716 1.753 1.789 1.829 1.865 1.892	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22 2.94 2.96	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2 55.7	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001 0.0002 0.0007 0.0007
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 244.00 246.00 248.00 250.00 252.00 252.00 254.00 256.00 258.00 260.00	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.497 3.562 3.614 3.653 3.710	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87 2.10 1.94	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8 68.2 64.3	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 184.00 186.00 190.00 192.00 194.00 194.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753 1.789 1.829 1.865 1.892 1.929	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22 2.94 2.96 2.68	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2 55.7 46.9	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001 0.0002 0.0007 0.0004
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 244.00 246.00 250.00 252.00 252.00 254.00 256.00 258.00 260.00	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.497 3.562 3.614 3.653 3.710 3.767	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87 2.10 1.94 1.94	61.1 Corg/Ptot mol/mol 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8 68.2 64.3 62.0	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00 190.00 192.00 192.00 194.00 194.00 196.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753 1.789 1.829 1.865 1.892 1.892 1.929 1.958	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22 2.94 2.96 2.68 2.14	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2 55.7 46.9 49.9	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001 0.0002 0.0007 0.0004
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 244.00 246.00 250.00 252.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.215 3.287 3.351 3.432 3.497 3.562 3.614 3.653 3.710 3.767 3.841	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87 2.10 1.94 1.94 2.01	61.1 Corg/Ptot <i>mol/mol</i> 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8 68.2 64.3 62.0 71.0	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 184.00 186.00 188.00 190.00 192.00 194.00 194.00 198.00 200.00 202.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753 1.789 1.829 1.865 1.892 1.929 1.929 1.958 1.993	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.45 2.74 2.93 2.89 3.22 2.94 2.96 2.68 2.14 2.06	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2 55.7 46.9 49.9 48.8	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001 0.0002 0.0007 0.0004
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 246.00 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 262.00 265.50	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.497 3.562 3.614 3.653 3.710 3.767 3.841 3.879	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87 2.10 1.94 1.94 2.01 2.11	61.1 Corg/Ptot mol/mol 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8 68.2 64.3 62.0 71.0 67.2	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 182.00 182.00 184.00 186.00 188.00 190.00 192.00 194.00 194.00 194.00 200.00 202.00 204.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.677 1.716 1.753 1.789 1.829 1.865 1.892 1.929 1.958 1.993 2.020	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22 2.94 2.96 2.68 2.14 2.06 2.19	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2 55.7 46.9 49.9 48.8 44.3	0.0004 Mo/Al %/% 0.0002 0.0001 0.0003 0.0002 0.0001 0.0002 0.0007 0.0004
204.00 Depth <i>cm</i> 216.00 228.00 240.00 242.00 244.00 244.00 246.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00 265.50 266.50	2.653 Age ka 2.792 2.941 3.089 3.145 3.215 3.287 3.351 3.432 3.432 3.497 3.562 3.614 3.653 3.710 3.767 3.841 3.879 3.918	1.86 Corg % 1.80 1.73 1.63 1.67 1.78 1.75 1.83 1.82 1.97 2.30 1.87 2.10 1.94 1.94 2.01 2.11 1.89	61.1 Corg/Ptot mol/mol 55.2 60.7 54.0 60.6 56.9 58.1 57.4 57.3 79.5 80.0 59.8 68.2 64.3 62.0 71.0 67.2 59.7	0.0000 Mo/AI %/% 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	172.00 Depth <i>cm</i> 174.00 176.00 178.00 180.00 182.00 184.00 186.00 188.00 190.00 192.00 192.00 194.00 196.00 200.00 202.00 204.00 206.00	1.448 Age ka 1.485 1.522 1.568 1.604 1.641 1.641 1.677 1.716 1.753 1.789 1.829 1.829 1.865 1.892 1.929 1.958 1.993 2.020 2.057	4.38 Corg % 3.61 2.68 2.37 2.46 2.25 2.45 2.74 2.93 2.89 3.22 2.94 2.96 2.68 2.14 2.06 2.19 2.20	81.1 Corg/Ptot mol/mol 59.3 55.8 60.3 52.7 55.0 61.5 62.0 65.1 65.0 59.6 60.2 55.7 46.9 49.9 48.8 44.3 47.6	0.0004 Mo/AI %/% 0.0002 0.0001 0.0003 0.0002 0.0001 0.0002 0.0007 0.0004

268.50	4.007			0.0001	210.00	2.118	2.09	46.2	
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
269.50	4.075	2.93	96.6	0.0002	212.00	2.146	2.12	48.6	0.0001
270.50	4.131	3.16	99.5	0.0003	214.00	2.184	2.11	54.4	
271.50	4.170	3.37	109.9	0.0003	216.00	2.213	2.38	56.9	
272.50	4.229	3.51	106.9	0.0004	218.00	2.251	2.47	56.9	0.0002
273.50	4.288	4.77	148.2	0.0016	220.00	2.282	2.44	52.6	
274.50	4.328	4.30	108.1	0.0009	222.00	2.308	2.55	47.2	0.0002
275.50	4.385	6.67	190.8	0.0029	224.00	2.342	2.28	56.7	
276.50	4.427	5.88	178.1	0.0022	226.00	2.369	2.38	41.1	0.0002
277.50	4.563	7.91	240.7	0.0038	228.00	2.404	2.43	52.9	
278.50	4.655	6.41	190.9	0.0032	230.00	2.429	2.42	51.6	0.0003
279.50	4.703	5.09	156.7	0.0021	232.00	2.463	2.42	43.3	0.0002
280.50	4.764	4.94	163.7	0.0014	234.00	2.490	2.00	53.6	0.0001
281.50	4.810	4.22	127.7	0.0005	236.00	2.524	2.44	58.5	0.0003
282.50	4.874	3.43	106.3	0.0005	238.00	2.549	2.68	58.2	
283.50	4.923	3.69	124.2	0.0004	240.00	2.565	2.36	61.0	
284.50	4.960	4.68	156.3	0.0010	242.00	2.590	2.47	51.9	
285.50	5.008	4.85	157.7	0.0011	244.00	2.609	2.12	43.4	0.0001
286.50	5.045	3.94	120.1	0.0004	246.00	2.626	2.13	51.0	
	•								
Denth		^	0 /01 1	N.A. / A.I.			0	0 /01 1	
Deptil	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
cm	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/AI %/%	Depth <i>cm</i>	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/Al %/%
<u>cm</u>	Age <i>ka</i>	Corg %	Corg/Ptot mol/mol	Mo/Al %/%	Depth <i>cm</i>	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/Al %/%
287.50	Age <i>ka</i> 5.093	Corg % 4.59	Corg/Ptot <i>mol/mol</i> 142.9	Mo/Al %/%	Depth <i>cm</i> 248.00	Age <i>ka</i> 2.653	Corg % 2.15	Corg/Ptot mol/mol	Mo/Al %/%
287.50 288.50	Age <u>ka</u> 5.093 5.127	Corg % 4.59 3.61	Corg/Ptot <i>mol/mol</i> 142.9 137.7	Mo/Al %/% 0.0010 0.0005	Depth <i>cm</i> 248.00 250.00	Age <i>ka</i> 2.653 2.675	Corg % 2.15 2.27	Corg/Ptot <i>mol/mol</i> 52.5 54.5	Mo/Al %/% 0.0001
287.50 288.50 289.50	Age <i>ka</i> 5.093 5.127 5.173	Corg % 4.59 3.61 3.21 4.84	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5	Mo/Al %/% 0.0010 0.0005 0.0003	Depth <i>cm</i> 248.00 250.00 252.00 254.00	Age <i>ka</i> 2.653 2.675 2.694	Corg % 2.15 2.27 2.31 2.18	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4	Mo/Al %/%
287.50 288.50 289.50 290.50 201.50	Age <i>ka</i> 5.093 5.127 5.173 5.238 5.205	Corg % 4.59 3.61 3.21 4.84	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 152.0	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009	Depth <i>cm</i> 248.00 250.00 252.00 254.00	Age <i>ka</i> 2.653 2.675 2.694 2.722	Corg % 2.15 2.27 2.31 2.18 2.24	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.0	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.270	Corg % 4.59 3.61 3.21 4.84 4.44 5.41	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 153.0 174.2	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009	Depth <i>cm</i> 248.00 250.00 252.00 254.00 256.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.773	Corg % 2.15 2.27 2.31 2.18 2.24 2.22	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50	Age <i>ka</i> 5.093 5.127 5.173 5.238 5.305 5.378 5.452	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.59	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 153.0 174.2 150.0	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0014	Depth <i>cm</i> 248.00 250.00 252.00 254.00 256.00 258.00 240.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.702	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.30	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 59.5	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 204.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.452	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0014 0.0008	Depth <i>cm</i> 248.00 250.00 252.00 254.00 256.00 258.00 260.00 260.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.822	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 50.2	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 205.50	Age <i>ka</i> 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.527	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.0	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0008 0.0004	Depth cm 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.842	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30 2.30	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.422	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.00	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.0	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0014 0.0008 0.0004 0.0001	Depth <i>cm</i> 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.843	Corg % 2.15 2.27 2.31 2.18 2.24 2.22 2.20 2.30 2.36 2.50	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.0	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 296.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.642	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 50.2	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0014 0.0001 0.0001 0.0001	Depth cm 248.00 250.00 252.00 254.00 256.00 260.00 262.00 264.00 266.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.800	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30 2.30 2.36 2.50 2.47	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 50.6	Mo/AI %/% 0.0001 0.0002 0.0001
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 296.50 297.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.693 5.744	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57	Corg/Ptot <i>mol/mol</i> 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7	Mo/AI %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001	Depth <i>cm</i> 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00 266.00 268.00 270.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.021	Corg % 2.15 2.27 2.31 2.18 2.24 2.20 2.30 2.30 2.36 2.50 2.47 2.52	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 296.50 297.50 298.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.642 5.693 5.744	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 52.0	Mo/AI %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001	Depth cm 248.00 250.00 252.00 254.00 256.00 260.00 262.00 264.00 266.00 268.00 270.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30 2.30 2.36 2.50 2.47 2.53 2.20	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 40.0	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 293.50 293.50 294.50 295.50 295.50 296.50 297.50 298.50 299.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.693 5.744 5.785 5.820	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57 1.73 2.04	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 53.0 40.1	Mo/AI %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	Depth cm 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00 266.00 266.00 268.00 270.00 272.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921 2.941 2.941	Corg % 2.15 2.27 2.31 2.18 2.24 2.20 2.30 2.30 2.36 2.50 2.47 2.53 2.29 2.35	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 48.9 45.4	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 296.50 297.50 298.50 299.50 300.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.642 5.693 5.744 5.785 5.838 5.838	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57 1.73 2.06 2.52	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 53.0 68.1 07.5	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002	Depth cm 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00 266.00 268.00 270.00 272.00 274.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921 2.941 2.962	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30 2.30 2.30 2.30 2.50 2.47 2.53 2.29 2.25 2.23	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 48.9 45.4	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 293.50 295.50 295.50 295.50 297.50 298.50 299.50 300.50 301.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.693 5.744 5.785 5.838 5.892 5.838	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57 1.73 2.06 2.52	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 53.0 68.1 87.5	Mo/AI %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003	Depth cm 248.00 250.00 252.00 254.00 256.00 260.00 262.00 264.00 266.00 268.00 270.00 272.00 274.00 276.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921 2.941 2.962 2.994 2.914	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30 2.30 2.36 2.50 2.47 2.53 2.29 2.25 2.33 2.10	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 48.9 45.4 50.5	Mo/Al %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 295.50 296.50 297.50 298.50 299.50 300.50 301.50 302.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.642 5.693 5.744 5.785 5.838 5.892 5.844 5.892	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57 1.57 1.73 2.06 2.52 3.82 2.40	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 53.0 68.1 87.5 119.0 70.2	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0006 0.0003	Depth cm 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00 266.00 268.00 270.00 272.00 274.00 274.00 276.00 278.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921 2.941 2.962 2.994 3.016 2.027	Corg % 2.15 2.27 2.31 2.18 2.24 2.20 2.30 2.30 2.36 2.50 2.47 2.53 2.29 2.25 2.33 2.18 2.10	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 48.9 45.4 50.5 46.4	Mo/AI %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 295.50 295.50 297.50 298.50 299.50 300.50 301.50 302.50 303.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.693 5.744 5.785 5.838 5.892 5.838 5.892 5.944 5.984	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57 1.73 2.06 2.52 3.82 2.48 2.10	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 53.0 68.1 87.5 119.0 79.2 72.2	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0009 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003 0.0006 0.0002	Depth cm 248.00 250.00 252.00 254.00 256.00 260.00 262.00 264.00 266.00 268.00 272.00 272.00 274.00 276.00 278.00 280.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921 2.941 2.941 2.962 2.994 3.016 3.037 2.040	Corg % 2.15 2.27 2.31 2.18 2.24 2.32 2.20 2.30 2.30 2.36 2.50 2.47 2.53 2.29 2.25 2.33 2.18 2.10 2.20	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 48.9 45.4 50.5 46.4 47.8	Mo/AI %/% 0.0001 0.0002
287.50 288.50 289.50 290.50 291.50 292.50 293.50 294.50 295.50 295.50 296.50 297.50 298.50 299.50 300.50 301.50 302.50 303.50 304.50	Age ka 5.093 5.127 5.173 5.238 5.305 5.378 5.452 5.510 5.587 5.642 5.642 5.693 5.744 5.785 5.838 5.892 5.838 5.892 5.944 5.984 6.026	Corg % 4.59 3.61 3.21 4.84 4.44 5.41 4.58 2.74 1.75 1.90 1.67 1.57 1.57 1.57 1.73 2.06 2.52 3.82 2.48 2.10	Corg/Ptot mol/mol 142.9 137.7 107.0 157.5 153.0 174.2 150.0 88.4 67.9 71.8 59.2 54.7 53.0 68.1 87.5 119.0 79.2 73.0	Mo/Al %/% 0.0010 0.0005 0.0003 0.0009 0.0009 0.0014 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002	Depth cm 248.00 250.00 252.00 254.00 256.00 258.00 260.00 262.00 264.00 264.00 266.00 270.00 270.00 272.00 274.00 274.00 278.00 280.00 282.00	Age ka 2.653 2.675 2.694 2.722 2.753 2.772 2.792 2.823 2.843 2.863 2.900 2.921 2.941 2.962 2.994 3.016 3.037 3.069	Corg % 2.15 2.27 2.31 2.18 2.24 2.20 2.30 2.30 2.36 2.50 2.47 2.53 2.29 2.25 2.33 2.18 2.10 2.20	Corg/Ptot <i>mol/mol</i> 52.5 54.5 48.9 51.4 51.9 54.0 58.5 59.3 57.4 54.9 59.6 47.7 48.9 45.4 50.5 46.4 47.8 44.1	Mo/Al %/% 0.0001 0.0002

Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
305.50	6.089	2.15	73.6	0.0001	284.00	3.089	2.08	47.4	
306.50	6.140	1.98	68.7	0.0002	286.00	3.119	2.02	55.1	0.0001
307.50	6.200	2.39	80.0	0.0002	288.00	3.171	2.23	53.4	
308.50	6.259	3.28	107.4	0.0004	290.00	3.215	2.32	46.1	0.0003
309.50	6.310	2.43	79.6	0.0004	292.00	3.259	2.56	56.2	0.0002
310.50	6.378	5.03	164.5	0.0013	294.00	3.298	2.58	58.5	0.0002
311.50	6.436	8.02	237.1	0.0035	296.00	3.351	2.67	58.1	
312.50	6.465	8.36	251.6	0.0041	298.00	3.390	2.49		0.0005
313.50	6.495	6.54	190.5	0.0030	300.00	3.432		69.8	0.0003
314.50	6.524	1.77	56.5	0.0003	302.00	3.470	2.81	62.6	
315.50	6.542	1.75	50.3	0.0004	304.00	3.522	2.49	78.5	0.0003
316.50	6.559	1.81	60.0	0.0002	306.00	3.562	3.27	74.1	0.0002
317.50	6.577	1.95	66.0	0.0002	308.00	3.614	3.23	68.5	0.0003
318.50	6.594	1.94	63.9	0.0004	310.00	3.678	2.81	69.1	0.0005
319.50	6.612	2.50	77.9	0.0002	312.00	3.749	3.09	60.2	0.0003
320.50	6.629	3.19	103.6	0.0002	314.00	3.841	2.71	62.3	
321.50	6.647	3.71	124.2	0.0003	316.00	3.918	2.46	61.8	0.0002
322.50	6.691	2.69	87.3	0.0003	318.00	3.974	2.68	110.9	0.0015
323.50	6.731	3.33	105.3	0.0003	320.00	4.055	4.52	82.6	0.0009
-									
Depth	Age	Corg	Corg/Ptot	Mo/Al	Depth	Age	Corg	Corg/Ptot	Mo/Al
Depth cm	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/AI %/%	Depth <i>cm</i>	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/Al %/%
Depth <i>cm</i>	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/Al %/%	Depth <i>cm</i>	Age <i>ka</i>	Corg %	Corg/Ptot <i>mol/mol</i>	Mo/Al %/%
Depth <i>cm</i> 324.50	Age <i>ka</i> 6.770	Corg % 2.76	Corg/Ptot mol/mol	Mo/Al %/%	Depth <i>cm</i> 322.00	Age <i>ka</i> 4.113	Corg %	Corg/Ptot mol/mol	Mo/Al %/%
Depth <i>cm</i> 324.50 325.50	Age <i>ka</i> 6.770 6.810	Corg % 2.76 2.84	Corg/Ptot <i>mol/mol</i> 76.3 79.4	Mo/Al %/% 0.0002 0.0004	Depth <i>cm</i> 322.00 324.00	Age <i>ka</i> 4.113 4.190	Corg % 3.63 4.95	Corg/Ptot <i>mol/mol</i> 106.7 125.7	Mo/Al %/% 0.0008 0.0004
Depth <i>cm</i> 324.50 325.50 327.00	Age <i>ka</i> 6.770 6.810 6.869	Corg % 2.76 2.84 2.55	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8	Mo/Al %/% 0.0002 0.0004 0.0004	Depth <i>cm</i> 322.00 324.00 326.00	Age <i>ka</i> 4.113 4.190 4.249	Corg % 3.63 4.95 5.07	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3	Mo/Al %/% 0.0008 0.0004 0.0028
Depth cm 324.50 325.50 327.00 329.00	Age <i>ka</i> 6.770 6.810 6.869 6.980	Corg % 2.76 2.84 2.55 2.70	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005	Depth <i>cm</i> 322.00 324.00 326.00 328.00	Age ka 4.113 4.190 4.249 4.328	Corg % 3.63 4.95 5.07 3.66	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023
Depth cm 324.50 325.50 327.00 329.00 331.00	Age <i>ka</i> 6.770 6.810 6.869 6.980 7.032	Corg % 2.76 2.84 2.55 2.70 2.35	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002	Depth <i>cm</i> 322.00 324.00 326.00 328.00 330.00	Age ka 4.113 4.190 4.249 4.328 4.385	Corg % 3.63 4.95 5.07 3.66 8.58	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0009
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085	Corg % 2.76 2.84 2.55 2.70 2.35 2.07	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427	Corg % 3.63 4.95 5.07 3.66 8.58 4.95	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0009 0.0033
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0 115.0	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0009 0.0033 0.0022
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 338.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 345.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 338.00 340.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.443 4.485 4.506 4.545	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2	Mo/Al %/% 0.0008 0.0004 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0081
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 345.00 349.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 338.00 340.00 342.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.443 4.485 4.506 4.545 4.563	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0081 0.0037
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 345.00 349.00 353.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6	Mo/Al %/% 0.0002 0.0004 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 338.00 340.00 342.00 344.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.644	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0	Mo/Al %/% 0.0008 0.0004 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0081 0.0037 0.0022
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 345.00 349.00 353.00 355.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 338.00 340.00 342.00 344.00 346.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.644 4.690	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0081 0.0037 0.0022 0.0020
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 343.00 345.00 345.00 353.00 355.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647 7.697	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99 0.88	Corg/Ptot mol/mol 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1 33.7	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 338.00 340.00 342.00 344.00 348.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.644 4.690 4.739	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24 6.66	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3 194.1	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0081 0.0081 0.0037 0.0022 0.0020 0.0032
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 345.00 345.00 349.00 355.00 355.00 357.00 361.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647 7.697 7.797	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99 0.88 0.88 0.88	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1 33.7 35.2	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 340.00 342.00 344.00 346.00 346.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.644 4.690 4.739 4.777	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24 6.66 7.07	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3 194.1 154.6	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0022 0.0033 0.0022 0.0050 0.0043 0.0081 0.0037 0.0022 0.0020 0.0022 0.0020 0.0032 0.0018
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 339.00 343.00 345.00 345.00 355.00 355.00 357.00 361.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647 7.697 7.797 7.897	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99 0.88 0.88 0.88 0.73	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1 33.7 35.2 28.2	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 334.00 338.00 340.00 342.00 342.00 344.00 344.00 348.00 350.00 352.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.545 4.563 4.644 4.690 4.739 4.777 4.825	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24 6.66 7.07 5.96	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3 194.1 154.6 117.2	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0043 0.0081 0.0037 0.0022 0.0020 0.0022 0.0020 0.0032 0.0018 0.0007
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 343.00 345.00 345.00 345.00 355.00 355.00 357.00 361.00 367.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647 7.697 7.797 7.897 7.947	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99 0.88 0.82 0.99 0.88 0.83 0.73 0.91	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1 33.7 35.2 28.2 36.7	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 336.00 340.00 340.00 340.00 340.00 340.00 340.00 340.00 340.00 340.00 350.00 352.00 354.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.644 4.690 4.739 4.777 4.825 4.874	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24 6.66 7.07 5.96 4.35	Corg/Ptot <i>mol/mol</i> 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3 194.1 154.6 117.2 169.8	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0022 0.0033 0.0022 0.0050 0.0043 0.0043 0.0081 0.0037 0.0022 0.0020 0.0020 0.0032 0.0018 0.0007 0.0018
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 343.00 343.00 345.00 345.00 355.00 355.00 357.00 361.00 365.00 367.00 369.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647 7.697 7.697 7.797 7.897 7.947 7.997	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99 0.88 0.82 0.99 0.88 0.73 0.91 0.52	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1 33.7 35.2 28.2 36.7 20.6	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 334.00 338.00 340.00 342.00 342.00 344.00 344.00 346.00 350.00 352.00 354.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.545 4.563 4.644 4.690 4.739 4.777 4.825 4.874 4.923	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24 6.66 7.07 5.96 4.35 6.65	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3 194.1 154.6 117.2 169.8 174.7	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0009 0.0033 0.0022 0.0050 0.0043 0.0043 0.0081 0.0037 0.0022 0.0022 0.0020 0.0032 0.0018 0.0007 0.0018 0.0026
Depth cm 324.50 325.50 327.00 329.00 331.00 333.00 337.00 343.00 343.00 345.00 345.00 345.00 355.00 355.00 357.00 361.00 365.00 367.00	Age ka 6.770 6.810 6.869 6.980 7.032 7.085 7.189 7.242 7.347 7.397 7.497 7.597 7.647 7.697 7.797 7.897 7.947 7.997	Corg % 2.76 2.84 2.55 2.70 2.35 2.07 1.92 1.40 0.90 0.88 0.82 0.99 0.88 0.82 0.99 0.88 0.83 0.73 0.91 0.52	Corg/Ptot <i>mol/mol</i> 76.3 79.4 79.8 91.1 76.2 65.0 60.7 49.1 42.6 34.6 31.6 43.1 33.7 35.2 28.2 36.7 20.6	Mo/Al %/% 0.0002 0.0004 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Depth cm 322.00 324.00 326.00 328.00 330.00 332.00 334.00 336.00 340.00 340.00 340.00 344.00 346.00 346.00 346.00 350.00 352.00 354.00	Age ka 4.113 4.190 4.249 4.328 4.385 4.427 4.443 4.485 4.506 4.545 4.563 4.644 4.690 4.739 4.777 4.825 4.874 4.923	Corg % 3.63 4.95 5.07 3.66 8.58 4.95 7.76 6.60 9.80 8.59 10.12 6.99 6.24 6.66 7.07 5.96 4.35 6.65	Corg/Ptot mol/mol 106.7 125.7 76.3 206.2 121.3 169.0 115.0 220.3 190.0 257.2 205.9 169.0 170.3 194.1 154.6 117.2 169.8 174.7	Mo/Al %/% 0.0008 0.0004 0.0028 0.0023 0.0023 0.0022 0.0033 0.0022 0.0050 0.0043 0.0043 0.0081 0.0037 0.0022 0.0020 0.0022 0.0020 0.0032 0.0018 0.0007 0.0018 0.0026

ст	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
373.00	8.097	1.09	42.2	0.0000	358.00	4.960	7.11	126.8	0.0019
377.00	8.197	0.66	25.4		360.00	5.019	5.77	148.0	0.0017
379.00	8.247			0.0000	362.00	5.068	5.66	155.0	0.0023
381.00	8.297	0.65	23.1	0.0000	364.00	5.127	6.54	120.5	0.0009
385.00	8.397	0.57	20.8		366.00	5.173	4.51	163.3	0.0023
389.00	8.497	0.43	15.6	0.0000	368.00	5.238	6.61	155.7	0.0019
391.00	8.547	0.55	20.9	0.0000	370.00	5.305	6.01	176.2	0.0022
393.00	8.597	0.52	19.1	0.0000	372.00	5.378	6.65	135.4	0.0011
397.50	8.709	0.53	17.8	0.0000	374.00	5.427	5.15	117.3	0.0010
					376.00	5.488	4.85	116.9	0.0014
					378.00	5.542	5.23	56.7	0.0002
					380.00	5.587	2.40	55.3	
					382.00	5.661	2.18	62.9	0.0002
					384.00	5.735	2.30	79.2	0.0005
					386.00	5.796	3.17	84.3	0.0007
					388.00	5.870	4.11	109.8	0.0014
					390.00	5.944	4.68	88.9	0.0009
					392.00	5.973	4.32	67.3	0.0002
					394.00	5.993	3.09	53.7	0.0003
					396.00	6.026	2.64	58.7	0.0002
					398.00	6.100	2.71	73.8	0.0003
Depth	Age	Cora	Cora/Ptot	Mo/Al	Depth	Age	Cora	Cora/Ptot	Mo/Al
cm	ka	%	mol/mol	%/%	ст	ka	%	mol/mol	%/%
					400.00	6.182	3.18	105.2	0.0012
					402.00	6.259	5.56	91.4	0.0003
					404.00	6.310	3.45	136.4	0.0021
					406.00	6.378	7.24	205.7	0.0043
					408.00	6.436	11.05	209.0	0.0032
					410.00	6.458	10.04	111.0	0.0014
					412.00	6.480	5.43	137.5	0.0002
					414.00	6.502	5.62	57.3	
					416.00	6.524	2.47	92.5	0.0002
					418.00	6.586	3.55	116.9	0.0006
					420.00	6.647	5.47	87.5	0.0007
					422.00	6.661	4.10	104.5	0.0003
					404.00	1 171	2.06	02.2	
					424.00	6.6/6	3.90	83.2	
					424.00 426.00	6.676 6.691	3.90 3.21	83.2 73.1	
					424.00 426.00 428.00	6.676 6.691 6.713	3.90 3.21 3.23	83.2 73.1 82.7	
					424.00 426.00 428.00 430.00	6.676 6.691 6.713 6.736	3.90 3.21 3.23 3.47	83.2 73.1 82.7 96.4	
					424.00 426.00 428.00 430.00 432.00	6.676 6.691 6.713 6.736 6.758	3.21 3.23 3.47 3.69	83.2 73.1 82.7 96.4 92.8	
					424.00 426.00 428.00 430.00 432.00 434.00	6.676 6.691 6.713 6.736 6.758 6.780	3.90 3.21 3.23 3.47 3.69 3.88	83.2 73.1 82.7 96.4 92.8 99.7	

274 **REFERENCES CITED**

- 275 Gustafsson, B.G. and Medina, M.R., 2011, Validation data set compiled from Baltic
- Environmental Database, Version 2: Baltic Nest Institute Technical Report Number 2,
 ISBN: 978-91-86655-01-3.
- 278 Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner,
- C.D., and Vaughan, D.J., 1996, Mechanism of molybdenum removal from the sea and
 its concentration in black shales: EXAFS evidence: Geochimica et Cosmochimica

281 Acta, v. 60, p. 3631–3642, doi:10.1016/0016-7037(96)00195-0.

- Jilbert, T., and Slomp, C.P., 2013, Iron and manganese shuttles control the formation of
- authigenic phosphorus minerals in the euxinic basins of the Baltic Sea: Geochimica et
 Cosmochimica Acta, v. 107, p. 155–169, doi:10.1016/j.gca.2013.01.005.
- Jilbert, T., de Lange, G. and Reichart, G.J., 2008, Fluid displacive resin embedding of
- laminated sediments: preserving trace metals for high-resolution paleoclimate
 investigations: Limnology and Oceanography Methods, v. 6, p. 16–22.
- Jilbert, T., Slomp, C.P., Gustafsson, B.G. and Boer, W., 2011, Beyond the Fe-P-redox
- 289 connection: preferential regeneration of phosphorus from organic matter as a key
- 290 control on Baltic Sea nutrient cycles: Biogeosciences, v. 8, p. 1699–1720.
 291 doi:10.5194/bg-8-1699-2011.
- Leppäranta, M. and Myrberg, K., 2009, Physical Oceanography of the Baltic Sea: Berlin,
 Germany, Springer-Verlag, 378 p.
- 294 Lougheed, B.C., Snowball, I., Moros, M., Kabel, K., Muscheler, R., Virtasalo, J.J. and
- 295 Wacker, L., 2012, Using an independent geochronology based on palaeomagnetic
- 296 secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments

- and infer ¹⁴C reservoir age: Quaternary Science Reviews, v. 42, p. 43–58.
- 298 doi:10.1016/j.quascirev.2012.03.013.