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Abstract: We use pollen, stomata and plant-macrofossil records to infer Holocene timberline fluctuations and
changes in forest composition at Lac Supérieur de Fully (2135 m a.s.l.), a small lake located near the modern
regional timberline on a highland plateau in the Central Alps. Our records suggest that during the early Holocene
vegetation was rather open on the plateau (eg, heaths of Dryas octopetala, Juniperus nana). The only tree that
was able to build major stands was Betula. Other timberline trees (eg, Pinus cembra and Larix) expanded in the
catchment of the lake after 8200 cal. BP, when Abies alba expanded at lower elevation. The late appearance of
these timberline trees contrasts with previous plant-macrofossil records in the region, which show that the tim-
berline had reached elevations up to at least 2350 m already at 11000 cal. BP. We suggest that local climatic
conditions may have delayed the expansion of closed stands of coniferous trees in the catchment of Lac de Fully

A until ¢. 8200 cal. BP, when climate shifted to more humid and less continental conditions. After c. 4600 cal. BP
HOLOCENE vegetation around the lake primarily responded to human impact, which caused a local lowering of the timber-
RESEARCH line by at least 150 m.
PAPER
Key words: Timberline, tree line, abrupt climate change, Alps, pollen, plant macrofossils, Holocene, Valais,
Switzerland.
Introduction and references therein) unambiguously show how fast plants

may respond to climatic change (eg, Menzel and Fabian, 1999)
in these harsh environments. This sensitivity has been used to
reconstruct Holocene-climatic variability based on changes in
treeline elevation inferred from pollen and plant macrofossils
in lake sediments (eg, Wick and Tinner, 1997; Haas et al.,
1998; Kaltenrieder et al., 2005), from phytolith assemblages in
palacosoils (eg, Carnelli et al., 2004), and from megafossils
and dendrochronologically dated subfossil logs (eg, Carrara
et al., 1991; Kullman, 1995; Nicolussi et al., 2005). Little is
known, however, as to the changes in species composition of
timberline forests in response to climatic change, although the
present distribution of trees in the Alps (Landolt, 1992) and
modelling results (Heiri et al., 2006) indicate the sensitivity of
timberline vegetation also to climatic parameters other than
growing-season length (eg, amount or seasonal distribution of
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The transition between forest and alpine meadows (or treeless
tundra) is one of the major and fascinating worldwide ecotonal
boundaries, the treeline ecotone (Korner and Paulsen, 2004).
The treeline ecotone spans the timberline (ie, the uppermost
limit of closed forest) and the tree species limit or krummholz
limit (ie, the uppermost limit of isolated and small individuals).
Near the treeline (ie, the uppermost limit of isolated groups of
tall trees > 2—5 m in height) the growth of plants is limited by
climatic conditions (such as the length of the growing season;
Korner and Paulsen, 2004). Changes in elevation of the treeline
during the past century (eg, Kullman, 2002; Parmesan, 2006
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Figure 1 Left: sketch map of the Lac de Fully valley (dotted lines, watersheds; continuous lines, rivers); Right: location of study sites mentioned
in the text: 1, Lac de Fully (2135 m a.s.l.); 2, Gouille’ Rion (2343 m a.s.l.); 3, Hinterburgsee (1515 m a.s.l.)

Here we report on pollen and plant-macrofossil records to
reconstruct the vegetation dynamics at Lac Supérieur de Fully,
which is located at 2135 m a.s.l. on a south-facing highland
plateau in the Central Alps (Figure 1). Although the lake is located
below the modern treeline (which might correspond to the eleva-
tion of the potential (natural) timberline at c¢. 2200 m a.s.1.; Landolt,
1992) and near the modern regional timberline (c. 20002100 m
a.s.l.), trees are absent above 1950 m a.s.l. in the lake catchment.
We were therefore particularly interested to know if the timberline
ever reached the catchment during the warmest phase of the
Holocene and how the species composition changed in response to
Holocene climatic changes.

Site description

The Valais, ie, the Swiss part of the Rhone Valley, is an inner-
alpine valley positioned SE-NW (Figure 1) and characterized by a
dry climate mainly caused by inner-valley shielding (average
annual rainfall of about 600 mm at low elevation (600 m a.s.l.) and
about 1000 mm at 2300 m a.s.l.; Heiri et al., 2006). Although the
amount of rainfall on the south- and north-facing slopes is similar,
vapour-pressure deficit is higher on the south-facing slope because
of more intense sunlight. This causes more evaporation and
drought stress to plants living there than to plants on the north-facing
slope (Zweifel et al., 2006). The different microclimate is reflected
in the present vegetation: Quercus pubescens, Pinus sylvestris and
Juniperus sabina are abundant on the south-facing slope, while on
the north-facing slope the drought-sensitive Abies alba forms
major stands and thermophilous and drought-adapted Q. pubescens
is lacking (Steiger, 1995). The natural treeline in the Valais occurs
at about 22002400 m a.s.l., although only a few forests can be
found above 2200 m a.s.l. today (Tinner and Theurillat, 2003; Heiri
et al., 20006).

Lac Supérieur de Fully has an area of ¢. 25 ha and is located at
the bottom of a former glacier cirque in a local highland of ¢. 10
km? area. The site is bordered by mountain chains reaching 2300
to 3000 m a.s.l. towards west, east and north (Figure 1). The
bedrock geology at the site is dominated by sedimentary deposits

(Carboniferous, Triassic, Jurassic and Cretaceous). The lake has a
minor inlet on the north and an outlet on the south. An artificial
dam c. 100 m long was built Ap 1912—-1914 to increase the size of
the lake. Climatic conditions at these elevations are harsh. Annual
mean temperature at 2100 m is ¢. 2°C, July mean temperature c.
9°C, and annual precipitation ¢. 1000 mm (linear interpolations
and extrapolations from stations in the Valais region).

Materials and methods

A continuous section 268 cm long was taken in late summer 2003
from an open pit at Lac Supérieur de Fully (GPS: 573’372; 113" 983;
2135 m a.s.l.). Lake-level was low at that time because the dam had
been kept open during the previous year. The section was collected
in overlapping segments 50 cm long and stored at +4°C room tem-
perature in the Institute of Plant Sciences (University of Bern). The
sediment was subsampled for pollen and plant-macrofossil analyses
(1 cm thick slices) avoiding the sand layers (Table 1). For pollen
analysis, 64 samples were prepared, but only 62 were analysed
because pollen in the clayey sediment at the base of the sequence (ie,
266 cm and 257 cm depth) was virtually absent. Lycopodium spores
were first added to 1 cm?® of sediment in order to calculate pollen con-
centrations, following Stockmarr (1971). Samples were treated phys-
ically and chemically, following standard procedures (Moore et al.,
1991). The residue was mounted in glycerine on slides and analysed

Table 1 Simplified sediment description of the studied section at
Lac Supérieur de Fully

Depth (cm) Sediment description

0-18 Sand

1820 Sandy gyttia

20-26 Sand layer (coarsening upward)

26-30.5 Sandy gyttia

30.5-237 Stratified sandy gyttia with distinct sand layers
237-248 Stratified gyttia

248-270 Stratified sandy silt with distinct sand layers
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Table 2 Radiocarbon dates and calibrated '“C-ages used to derive the depth—age relationship of the Lac de Fully sediment sequence
Lab. code Depth Macrofossils selected 8C 1C age Calibrated 26 range
(cm) for dating® (%0 PDB) (xlo) 1C age (cal. BP) (cal. yr BP)
P-I° 44 / - 1500 + 100 1400 1690-1190
Poz-10657¢ 43 indet. wood (—bark) -21.2 5450 £ 40 6247 6310-6186
Dendro-90265¢ 100 Larix - - 4693 4703-4683
ETH-29190 124 Larix -24.0 4600 £ 55 5316 5470-5054
Poz-10658 138 Larix N S, indet. BS -30.7 5320 + 40 6097 6266-5956
Poz-10660 171 Larix N S, Betula BS
F, indet. bark -29.1 6640 + 40 7525 7581-7441
Poz-10661 191 J. nana N, Larix N -32.4 7420 + 40 8258 8343-8176
J. nana N, Dryas L,
Poz-10662 241 indet. wood (+ bark), -28.2 9390 + 50 10622 10743-10550

Betula F

*Abbreviations: N, needle; S, seed; BS, budscale; F, fruit; L, leaf fragment; (+/— bark), with/without bark.
°P-1, pollen-inferred age based on the correlation of the Lac de Fully pollen record with the pollen stratigraphy in nearby Gouillé Rion (Tinner et al., 1996).

‘Rejected *C date.
dDendrochronologically inferred age (see text for details).

Age (cal yrs BP)

510000 8000 6000 _ 4000 _ 2000 0
50 M :
— 100} -
g 1007
S I
M
£ I
3 I
O 150} .
200 F .
250 I I AR A A A I A A I I T I N A
~8000 -6000 —4000 —2000 0 2000

Age (yrs AD/BC)

Figure 2 Depth-age relationship of the Lac de Fully sediment
sequence. The error bars indicate calibrated 2 ranges for the cali-
brated “C dates. Full circle, calibrated '“C date; empty circle, pollen-
inferred age; triangle, rejected “C date (see text and Table 2 for details)

at x 400 magnification. At least 300 pollen grains were counted for
each pollen sample. The pollen key of Moore et al. (1991) and the
photographic pollen atlas of Reille (1992, 1995) were used. Pollen
percentages are referred to the sum of terrestrial pollen, which
includes trees, shrubs, herbs and terrestrial ferns. Microcharcoal par-
ticles were counted on pollen slides following Tinner and Hu (2003)
and Finsinger and Tinner (2005). Conifer stomata were identified
following Trautmann (1953).

For plant-macrofossil analysis, 84 sediment samples were taken
between 246 cm and 29 cm depth. Sediment volume was meas-
ured by water displacement before samples were soaked in
pyrophosphate 5% for 1-2 h and washed through a 200 um sieve.
The residue was collected and stored in distilled water at —18°C to
avoid contamination with recent carbon (Wohlfahrt ez al., 1998).

Plant macrofossils were analysed with a binocular 10-50 x mag-
nifications. Plant remains of 13 taxa were identified.

Plant macrofossils collected from five samples (Table 2) were
washed twice in distilled water, dried overnight at 60°C, and
analysed under the microscope for absence of recent carbon
sources (eg, wool, cotton, fibres) before they were sent to the
Poznan Radiocarbon Laboratory. In addition to these macrofossils,
we used one dendrochronologically inferred age (No. 90265.0,
M. Schmidhalter, personal communication, 2004) and one '*C-age
(No. 90266.0, M. Schmidhalter, personal communication, 2004),
which estimate the age of death of two tree trunks present in the
stratigraphy. All '“C ages were calibrated to calendar ages using the
Calib5 program and selecting the IntCal04 data set (Reimer et al.,
2004). The depth—age relationship was established with a linear
interpolation of median probability ages (Figure 2). One C age (at
43 cm depth) was rejected from the model because it appeared to
be too old and was replaced with a pollen-inferred age estimate
based on the first appearance and increase of Castanea pollen
(Figure 3), which is dated to ¢. 1500 BP in radiocarbon-dated
pollen records of that region (Tinner et al., 1996).

The pollen data were zoned numerically with the optimal-sum-of-
squares partitioning (Birks and Gordon, 1985). The application of a
broken stick model (Bennett, 1996) showed four statistically signifi-
cant pollen assemblage zones (PAZ). The plant-macrofossil data
were zoned visually into five macrofossil assemblage zones (MAZ).

Results and interpretation

Pollen stratigraphy and vegetation history
The lowest pollen assemblage zone (FUY-1; ~11 000-7400 cal. BP;
Figure 3) is dominated by P. sylvestris, P. cembra and Corylus
pollen. High values of Ulmus pollen may suggest that, together with
Corylus, these trees were fairly abundant on the mountain slopes at
lower elevation. Pinus, Larix and Juniperus stomata attest to the
presence of these trees and shrub taxa near the lake after c. 9000 cal.
BP. Alnus viridis pollen was present in low amounts, suggesting the
local (but rare) presence of the shrub in the area. Based on the pollen
assemblages the base of this zone is attributed to the early Holocene.
Zone FUY-2 (c. 7400-4700 cal. BP) is characterized by high
percentages of Abies and P. cembra, which were present in the
lake catchment as suggested by the continuous presence of conifer
stomata in the pollen slides. Ulmus percentages decrease during
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Figure 3 Pollen diagram for Lac de Fully.
to pollen assemblage zones (PAZ)

this zone, possibly indicating a continued forest reduction at lower
altitudes. The presence of Plantago lanceolata and Plantago
alpina pollen, two cultural indicators for agricultural activities (cf.
Behre, 1981), may attest to human activities in the valley and pos-
sibly near the lake. Discontinuous presence and low percentages
of Urtica pollen since the onset of this zone might be linked to
grazing (cf. Behre, 1981) and nitrogen-rich soils on the mountain
slopes, although, just as with Plantago alpina, the plant occurs
also naturally in the area. In zone FUY-3 (c. 4700-3700 cal. BP)
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Only a selection of taxa are shown (the complete records are available from the authors). Zones refer

pollen values of Picea and A. viridis increased, while Abies and P,
cembra percentages decreased. The complete collapse of the
conifer forest in the lake catchment, however, can be ruled out
because of the presence of conifer stomata (Larix and Pinus) in
this zone. Human activities in the valley increased, as inferred
from higher percentages of cultural indicators (eg, P. lanceolata,
P, alpina). Zone FUY-4 (3700 cal. BP—present) is characterized by
high percentages of A. viridis and Picea, lower percentages of
Larix and Pinus, and the absence of conifer stomata.
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Figure 4 Macrofossil diagram for Lac de Fully. Only a selection of taxa are shown (the complete records are available from the authors). Zones
refer to macrofossil assemblage zones (MAZ). Results are given as plant-macrofossil concentrations in 50 ¢cm?
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Macrofossil stratigraphy and local vegetation
history

The first macrofossil zone (FUY-MI1; 11000-10 300 cal. BP) is
initially dominated by alpine dwarfshrubs and shrubs (Dryas
octopetala and Juniperus nana) and by tree birches (Betula
(‘alba’)) (Figure 4), suggesting the presence of light-demanding
trees, shrubs and heaths around the lake. In the second zone (FUY -
M2; 103008300 cal. BP), Larix decidua needles indicate stands
of this coniferous tree near the lake. Macroscopic charcoal frag-
ments are absent in all samples. After 8300 cal. BP (onset of FUY-
M3) the macrofossil assemblage is dominated by remains of
coniferous trees (P. cembra, Larix) and Betula (‘alba’), indicating
the establishment of rather closed forests around the lake. At the
onset of this zone high concentrations of J. nana needles occur,
suggesting that the establishment of forests was preceded by the
formation of rather dense J. nama heaths around the lake.
Macroscopic charcoal fragments are present in many samples, and
three of them were identified as Larix/Picea (166 cm and 180 cm)
and P. cembra (167 cm), indicating that local forest fires occurred
around the lake. Because of the virtual absence of Abies macro-
fossils, we infer that this species never really played a major role
in the forest vegetation at the elevation of Lac de Fully. The only
evidence for the presence of Abies near the lake is given by one
single anther (identified through its pollen content), which could
have been transported by wind. Zone FUY-M4 (4900-3200 cal.
BP) is characterized by high concentrations of Larix and charcoal
fragments, the absence of Betula remains and only few P. cembra
seeds, suggesting that heliophilous Larix stands or forests pre-
vailed around the lake. Plant macrofossils such as leaves, needles
and fruits are lacking in the uppermost zone (FUY-MS5; < 3200
cal. BP), and the wood fragment at 43 cm depth (as inferred from
the "C date, Table 2) might be so old because of the longer ter-
restrial residence time of wood.

Discussion

In mountain regions pollen spectra at high altitude also contain
pollen grains produced by plants growing in vegetation belts at
lower elevations and thus do not reflect the local vegetation
accurately. Therefore, inferences on changes in vegetation com-
position and treeline elevation are substantially improved by
considering plant macrofossils (Birks and Birks, 2000; Tinner
and Theurillat, 2003). In the Lac Supérieur de Fully record, how-
ever, pollen, stomata and plant macrofossils of Betula, Larix and
P. cembra show similar changes in their abundances (Figure 5).
We may therefore infer that changes in pollen percentages of
these timberline species were not primarily influenced by
changes in pollen productivity (Autio and Hicks, 2004) but by
changes in population densities of the timberline forests, which
is in agreement with recent modelling results (Heiri ef al., 2006).

Vegetation response to long-term climate
change

The general trend observed at many high-elevation sites
(> 1600-1800 m a.s.l.) in the Alps involves afforestation at the
beginning of the Holocene and a subsequent decline of the timber-
line by several 100 m at ¢. 5000 cal. BP (Burga and Perret, 1998).
It resulted mainly from climatic changes that were probably cou-
pled to changes in summer and winter insolation (Tinner and
Kaltenrieder, 2005) as well as from human disruption of forests,
which led to an artificial lowering of the timberline after ¢. 5000
cal. BP (Tinner and Theurillat, 2003). This long-term trend is also
reflected in the pollen and macrofossil record from Lac de Fully
(Figures 3, 4 and 5): an open alpine vegetation dominated by
shrubs (Dryas octopetala and J. nana) was followed by an open
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Figure 5 Comparison between early and middle Holocene forest dynam-
ics at Lac de Fully, a proxy record for summer air temperature in the Alps
(Heiri et al., 2004), and 8'°0 in Greenland (Rasmussen ef al., 2006). Plant
macrofossils (histograms), pollen (line), stomata (line with solid circles) of
selected taxa. Arrow (top) indicates the 8.2 ka event in the ice-core record

treeline condition with shrubs and sparse trees (Betula and Larix)
since 9500 cal. BP. Then, at c. 8300 cal. BP, P. cembra and Larix
expanded in the catchment, indicating the maximum expansion of
timberline, which dominated the local vegetation and the highland
plateau until ¢. 3500 cal. BP.

Vegetation response to the abrupt climate change

at 8.2 ka

Superimposed on the long-term millennial climatic trend, which
primarily resulted from variations in the Earth’s orbit, centennial-
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scale abrupt climatic changes occurred. Among these abrupt
climate changes, the ‘8.2 ka event’ (Wick and Tinner, 1997; Alley
et al., 1997; Rohling and Pélike, 2005) stands out as being one of
the most pronounced and probably therefore most studied abrupt
climatic changes that occurred during the Holocene. The existence
of a unique event at ¢. 8200 cal. BP around the North Atlantic is
no longer in question, but there remain uncertainties about how
widespread the anomalies were and how well the length, duration
and character of the event can be characterized (Alley and Agust-
dottir, 2005; Rohling and Pilike, 2005; Nesje et al., 2006). The
currently favoured hypothesis is that these anomalies were related
to a transient change in the North Atlantic overturning circulation
(Came et al., 2007), possibly triggered by the final drainage of
Lake Agassiz (eg, Nesje et al., 2004). The isotope data suggest a
climate cooling of ~1.7°C in mean-annual air temperature in
Central Europe (von Grafenstein et al., 1998). In the Alps a chi-
ronomid-inferred July air-temperature decrease of ~1°C at high
elevation shows a close temporal agreement with the 8.2 ka event
in the Greenland ice-core records, but suggests that the cooling in
the Alps may have been protracted by several centuries (Heiri
et al., 2003, 2004; Figure 5). A similar feature is indicated also in
a speleothem 8'°0 record of the Spannagel Cave (Vollweiler et al.,
2006), where the greatest positive 8'*0 anomaly (possibly indicat-
ing colder temperatures) occurred after 8000 cal. BP and was fol-
lowed by a rapid climate warming.

The abrupt climate change at 8200 cal. BP had important effects
in the shaping of vegetation in Central Europe during the Holocene
(Tinner and Lotter, 2001), and it caused an unambiguous lowering
of the timberline in the Central Alps (Wick and Tinner, 1997; Haas
et al., 1998; Tinner and Kaltenrieder, 2005). On the basis of the
macrofossil record, it seems likely that at Lac de Fully the short-
term increase of J. nana and collapse of the open Larix forest at
c. 8200 cal. BP may indicate the response of local vegetation to the
abrupt climate change at 8.2 ka that was very soon followed by the
expansion of P. cembra and Larix near the site. A similar pattern
has been observed at Gouillé Rion (2343 m a.s.l.), where the
collapse of Larix occurred at c. 8400-8300 cal. BP (Tinner and
Kaltenrieder, 2005). The subsequent expansion of P. cembra that
led to the dominance of the species at Gouillé Rion took place at
c. 8300-8200 cal. BP (Tinner and Kaltenrieder, 2005).

In contrast to other records in the Valais, early Holocene
afforestation at Lac de Fully was delayed by several millennia:
Larix remains are absent until 9500 cal. BP and P. cembra remains
are absent until 8300 cal. BP, while at Gouill¢ Rion (2343 m a.s.l.)
alpine grasslands were afforested by Larix and J. nana c. 11000
cal. BP and P. cembra expanded at c. 10000 cal. BP (Tinner and
Kaltenrieder, 2005). Also at lower elevation, macrofossil-inferred
afforestation occurred earlier than at Lac de Fully: at Bohnigsee
(c. 2100 m a.s.l.; Markgraf, 1969) and at Simplon (c. 2050 m a.s.1.;
Lang and Tobolski, 1985) timberline rose above these lakes
around 11000 cal. BP (Tinner and Theurillat, 2003). It is highly
unlikely that the difference in the timing of afforestation by
P. cembra and Larix depended on the low speed of spread of these
species (see discussion in Tinner and Kaltenrieder, 2005) or on
climatic gradients producing shorter growing-season lengths at
Lac de Fully. Instead, the late expansion of Larix and P. cembra
may be explained by the local climatic conditions involving either
higher drought stress or shorter growing-season length at Lac de
Fully that inhibited their growth in the catchment of the lake. The
late appearance of P. cembra might be related to its higher
drought-stress intolerance than Larix, Dryas and J. nana. Larix
sheds its needles in winter, and the two shrubs take advantage of
the thermal insulation of snow in late winter, while P. cembra nee-
dles are fully exposed to late winter drought stress (Korner, 1999;
Tinner and Kaltenrieder, 2005). However, slope contrasts may
come into play in low-stature plant cover, when oceanicity, snow

pack or general moisture gradients are important, as was shown
for subarctic-birch treelines and as can be seen in some very dry
parts of central Asia or northern Chile (Korner and Paulsen, 2004).
Alternatively, cold-air retention at the bottom of the former glacier
cirque might have caused lower soil temperatures, which have a
negative influence on tree growth (Koérner and Paulsen, 2004;
Korner and Hoch, 2006).

Surprisingly, tree-species that had established at the timberline
and at lower elevation after 8200 cal. BP were significantly dif-
ferent from those that were growing there before. Thus, synchro-
nously with the expansion of P. cembra and Larix at the
timberline, Abies expanded at lower elevation (Figure 5). We sug-
gest that the expansion of Abies, as inferred from the Lac de Fully
pollen record, may indicate that drought stress in the Central Alps
was lower after 8200 cal. BP. In effect, it is likely that Abies (and
Fagus) in Central Europe were at their physiological drought limit
during the early Holocene (Tinner and Lotter, 2001), when nega-
tive precipitation anomalies occurred (< —400 mm annual precip-
itation in comparison with today; Guiot et al., 1993) and
seasonality was enhanced because of higher summer insolation
and lower winter insolation (Kutzbach and Webb, 1993). The suc-
cessful expansion of 4. alba and Fagus in the lowlands of Central
Europe further suggests that after 8200 cal. BP climatic conditions
did not return to the early Holocene mode with its frequent (sum-
mer) droughts and (spring) frosts, which favoured the abundance
of Corylus (Tinner and Lotter, 2001; Finsinger et al., 2006).

Although some proxies of climatic change do not show a sig-
nificant difference in climatic conditions before and after the 8.2
ka event (eg, the 8'%0 record of Greenland ice-cores, Figure 5),
indications for the onset of warmer climatic conditions after 8200
cal. BP can be derived from chironomid-inferred temperatures
(Heiri et al., 2003; Figure 5), from a stalagmite record in the
Central Alps (Vollweiler et al., 2006) and from the elevation of
treeline as inferred from dendrochronologically dated subfossil
logs in the Austrian Alps (Nicolussi et al., 2005). In the Northern
Alps, based on the evidence of a more temperate aquatic fauna at
Bachalpsee, Lotter et al. (2006) suggest that warmer and/or longer
summers could have favoured the expansion of Abies at 8400 cal.
BP below timberline. A change towards a different climate regime
around 8200 cal. BP has been suggested for Fennoscandia (Seppa
and Birks, 2001; Seppé et al., 2005) by means of pollen-based
summer temperature reconstructions and from 80 records of
lake carbonates. Seppd et al. (2005) suggested that the maritime
climate mode that dominated until 8200 cal. BP in Fennoscandia
was followed by a stable ‘Holocene thermal maximum’, which
was characterized by higher annual temperatures and by markedly
drier conditions. This enduring climatic change in Scandinavia
may have been coupled to a shift towards oceanic and wetter con-
ditions in Central Europe (Tinner and Lotter, 2006).

Despite the wealth of palacobotanical data for change in vegeta-
tion composition at low elevation in Central Europe (Tinner and
Lotter, 2001) and for timberline fluctuations in the Alps (eg, Tinner
et al., 1996; Haas et al., 1998; Heiri et al., 2004), little is known
concerning vegetation dynamics below timberline in response to
abrupt climate changes. Results of modelling studies indicate that
forests just below the treeline seem to be in a continuous state of
change, involving dieback of trees in response to temperature
decreases, after which more cold-adapted species can take advan-
tage of reduced competition (Heiri ef al., 2006). The time-resolution
of the pollen and macrofossil records at Lac de Fully is probably not
sufficiently high to reflect the reforestation succession in response
to a centennial-scale temperature decrease. On the other hand, our
results may indicate that vegetation near the modern timberline and
below this elevation responded rapidly to the climate warming after
c. 8200 cal. BP, allowing the observed expansions of Abies alba
and Pinus cembra. It suggests also that moisture and/or local
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Figure 6 Selected pollen taxa and microcharcoal concentration (no.
charcoal fragments/cm?) for Lac de Fully

topography may play an important role in vegetation dynamics at
timberlines in mountain regions.

The demise of timberline forests as a result of
human impact at Lac de Fully

The first regular appearance of Cerealia t. pollen at lower eleva-
tion in the Valais is dated to 7000 cal. BP (Welten, 1982; van der
Knaap and Ammann, 1997). However, unambiguous archaeolog-
ical evidence for Neolithic land use was found in Sion and is
dated to c. 7450 cal. BP (Stockli, 1995). First signs of human
activities in the Lac de Fully pollen record are provided by pollen
of cultural indicators that are present starting from ~7300 cal. BP
(Urtica pollen), though land use became intensive only at around
c. 4500 cal. BP (Figures 3 and 6). This finding is in agreement
with other pollen records from the Valais (eg, Welten, 1982;
Tinner et al., 1996), which suggest that agricultural activities
intensified at the time of the Neolithic/Bronze Age transition at
high elevation in the Valais region and elsewhere in the Alps (eg,
Gobet et al., 2003; Lotter et al., 2006).

Pollen and macrofossils indicate that until 3500 cal. BP timber-
line forests were not disrupted by human impact. However, the for-
est at the timberline started to be opened around 4700 cal. BP
(Figure 5), and the tree population decreased abruptly around 3500
cal BP at Lac de Fully. This pattern is typical for the Valais region,
where the timberline lowered by about 300 m at 4700 cal. BP and
was below 2100 m at c. 4000 cal. BP (Tinner and Theurillat, 2003).
Palacoecological and modelling evidence (Heiri et al., 2006) sug-
gest that human impact was the primary cause of this timberline
collapse. In contrast, treeline remained more or less stable, and it
decreased by about only 100 m after 4700 cal. BP (Tinner and
Theurillat, 2003). At Lac de Fully Picea, a subalpine tree, was
more abundant after 4500 cal. BP than before, which is in agree-
ment with other findings in the Valais (eg, Tinner et al., 1996).
Spruce forests were probably placed at altitudes < 2000 m a.s.l.,
and it has been hypothesized that spruce was able to expand in
response either to climatic change or to human impact (eg,
Markgraf, 1970; Heiri et al., 2006).

Based on the pollen record, three distinct phases of human impact
were distinguished. Between 3700-2600 cal. BP treeline was below
Lac Supérieur de Fully, 4. viridis expanded and grazing indicators

(eg, P alpina) were reduced. This might indicate a lessening of
human impact and a reoccupation of abandoned areas by A. viridis
that was later followed by Picea. However, it has been also hypothe-
sized that the widespread expansion of 4. viridis in the Valais was a
consequence of land-use change and increased fire frequencies (cf.
Welten, 1982; Tinner et al., 1996; Gobet et al., 2003). In agreement,
microcharcoal values increased towards the top of this zone, indicat-
ing increasing regional fire activity (Figure 6). A second and clearer
phase of human impact is indicated by higher percentages of P,
alpina, P. lanceolata and Urtica pollen from c. 2000 to 1500 cal. BP.
Also the higher abundance of Botrychium spores suggests more open
ground near the lake (Figure 3). In addition, an opening of the spruce
forest at lower elevation may be inferred from the decrease of Picea
pollen and the increase of Vaccinium and A. viridis pollen. The last
human-impact phase (younger than 1500 cal. BP) is characterized by
Cerealia and Humulus/Cannabis pollen, which attest to the expansion
of agriculture at lower altitudes. Timberline during this phase was fur-
ther decreased, as can be inferred from lower A. viridis, Picea, Abies
and P, cembra and increasing amounts of herb pollen. The increase of
microscopic charcoal towards the top of the sequence (Figure 6) prob-
ably indicates that forest disruptions were partly caused by fire.

Conclusions

Pollen, stomata and plant-macrofossil analyses at Lac Supérieur
de Fully (2135 m a.s.l.) indicate that the lake was located below
the timberline from c. 9200 to 3500 cal. BP and that after, at lat-
est, 4700 cal. BP vegetation around Lac Supérieur de Fully pri-
marily responded to human impact. Maximum forest cover
occurred after 8200 cal. BP, when P. cembra, Larix and Abies
forests expanded on the south-exposed highland plateau or below.
In comparison with other records in the Central Alps, at Lac
Supérieur de Fully initial afforestation was delayed by several mil-
lennia. It is suggested that this change in vegetation was a
response to the onset of a different climate mode, which began
after ¢. 8200 cal. BP and involved less frequent droughts and
spring frosts than during the early Holocene (Tinner and Lotter,
2001; Finsinger et al., 2006). Possibly local factors such as the
position on a south-facing and the kettle-shaped highland plateau
played a role by inhibiting, because of increased drought stress,
the establishment of trees until 8200 cal. BP at Lac de Fully. It is
noticeable that the late early-Holocene afforestation at Lac
Supérieur de Fully was only recognized because of earlier studies
in nearby regions. Thus, a network of well-studied and well-dated
sites is important for studying spatial patterns of population
expansion and noticing local climatic effects.
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