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Introduction

Fix a simple complex algebraic group G and a positive integer `, called level.
To a complex projective curve C we associated, in a natural way, a finite di-
mensional vector space; this construction is smooth, in the sense that a family
of curves C/B gives rise to a vector bundle of finite rank over B. Moreover,
the vector bundle comes with a natural flat projective holomorphic connection,
that is locally given by a connection with scalar curvature. A comment on
the adjective projective: what we will construct is globally only defined as
projective holomorphic connection, but can locally be represented by a true
holomorphic connection.

There are two ways to construct this vector bundle and the projective
holomorphic connection. The first one, historically, uses a representation-
theoretic approach, and has been baptized the vector bundle and (projective)
connection as the vector bundle of conformal blocks and the Wess-Zumino-Witten
(WZW) connection, respectively. The standard reference for this is [25], but
this paper is notoriously difficult to read. Several papers, such as [19], [26],
[2], (partly) redo [25], and the reader may find these more accessible.

The second approach is called geometric quantization, and started with
[14]. In this construction the vector bundle and (projective) connection are
called the generalized θ-functions and the Hitchin connection. It has been known
for some time that conformal blocks and generalized θ-functions are essen-
tially the same, for there is a natural isomorphism between them that is called
the Verlinde isomorphism. More recently, Y. Laszlo also proved in [17] that
this isomorphism identifies the connections.

In this thesis we introduce a natural filtration on the vector bundle of
conformal coblocks (the dual of the vector bundle of conformal blocks), and
discuss the graded quotient. It has a natural connection with scalar curva-
ture and a unitary structure that is compatible with it. From a certain point of
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ii Introduction

view, this connection is the graded equivalent of the WZW (projective) con-
nection. It remains unclear to me what can be inferred form this regarding
the unitary of the WZW connection itself.

In order to make the comparison between the WZW connection and its
“graded counterpart”, both are constructed using the same approach. As a
whole, both of these constructions are rather technical and lengthy, but the
key idea of the common approach is very simple and elegant: let C be a com-
plex curve, p a point (or set of points) on C, and P/C a principal G-bundle
with flat connection. From this geometric data we extract two kinds of data.
The first is a complex presymplectic1 Lie algebraKg that (almost) encodes the
entire geometry. The second is the singular cohomology of C with coefficients
in the adjoint bundle of P/C. This data is then used to construct a projective
representations of the algebra of vectorfields on a pointed formal disc near p
- we will describe this construction in general.

Let (H, (·, ·)) be a symplectic complex vector space. Then Ĥ := H⊕ C has
a natural structure of a Lie algebra, by requiring that

[a⊕ r, a ′ ⊕ r] = 0⊕ (a, a ′), a, a ′ ∈ H, r, r ′ ∈ C.

Using the symplectic form, we can identify an endomorphism α ofHwith an
element E(α) of H⊗2, and in particular an infinitesimal symplectic endomor-
phism with an element of Sym2H. This allows us to define

τ : sp(H)→ UĤ[~−1] : α 7→ 1

~
E(α),

where H⊗2 is mapped to UĤ by the obvious map2. Here UĤ is the universal
enveloping algebra of Ĥ, and UĤ[~−1] the polynomial algebra in the formal
variable ~−1 over the ringUĤ. The key point is that τ is an algebra morphism,
up to a scalar. Stated differently, the algebra generated by the image of τ is
a central extension of sp(H); by construction, this central extension acts on
any UĤ[~−1] module. This projective representation is used to define the
connection on the vector bundle of conformal coblocks. The construction of
the WZW connection is more involved, but nevertheless essentially follows
the same theme.

1A presymplectic form is an antisymmetric bilinear form; if it is nondegenerate we call it
symplectic.

2This is the composition of the inclusions H⊗2 ↪→ Ĥ⊗2 ↪→⊗
• Ĥ with the natural quotient

map
⊗
• Ĥ→ UĤ
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When reading this thesis, reader may find himself lost at times due to the
multitude of technical details. Of course, sometimes this is caused by fact
that the author also lost himself in the details. However, it also seems to be
part of the nature of the subject: though the end results are elementary geo-
metric objects (vector bundle and connection), the way to get there consists
of many small technical steps and uses a variety of notions from geometry
and algebra. Below is an outline of this thesis that will hopefully allow the
reader to keep track of “where he is” and to give him an idea of “where all
this is going”.

In the first chapter we briefly review a number of notions that we will use
in the rest of the chapters: pointed curves,G-bundles on them, moduli spaces
of these, loop groups and the Picard group of the moduli space ofG-bundles.

In the second chapter we introduce generalized θ-functions, along with
the Hitchin (projective) connection. The rest of the thesis is independent of
this chapter, with the exception of a very short discussion of the Verlinde
isomorphism at the very end.

The third chapter describes how to associate certain algebraic data to a
pointed curve endowed with a G-bundle. This algebraic output will serve as
input for the next two chapters.

The fourth chapter is devoted to the definition of a certain Fock module,
that is defined in terms of the cohomological data of that comes with a unitary
structure a compatible connection of scalar curvature. In the final chapter,
a quotient of this Fock module will be identified with the vector bundle of
graded conformal coblocks.

In chapter five we define the conformal blocks and the WZW (projective)
connection.

The final chapter compares the output of chapter 2,4,5. In particular, it
is shown here that (a quotient of) the Fock module from chapter 4 can be
identified with the graded quotient of the conformal coblocks from chapter 5.
It is argued that with respect to this identification, the connection on the Fock
module can be thought of as a “graded counterpart” of the WZW connection.

A final note: unless stated otherwise, everything will be described in the
language of locally ringed spaces3. These will be either in the category of
C-schemes, or in the complex analytic category (we will be a bit sloppy with
the distinction). In either case, a “map” will be a morphism of locally ringed

3A reference for this is [13], chapter 2
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spaces; if we mean a C∞-map, we will explicitly say so. Furthermore, if
(X,OX) is such a locally ringed space, θX denotes the sheaf of local vector
fields on X, ΩX its dual and ωX the highest nontrivial exterior power of ΩX.
If f : X→ Y is a map, then θY/X denotes the sheaf of local vertical vector fields
on Y;ΩY/X andωY/X have a similar meaning. Also, ifF is anOY module, then
f−1F denotes the sheaf theoretic pullback and f∗F the coherent pullback.
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Chapter 1

Moduli of curves and G-bundles

In this chapter, we introduce the geometric setting that will form the basis for
the rest of this thesis. In particular, we define the notions of pointed curves,
principalG-bundles over them and families thereof. We will discuss the mod-
uli of these object, and later on introduce loop groups to describe the moduli
space of G-bundles.

1.1 (Families of) N-pointed curves.

Fix an integerN > 0. Let (C, p = (p1, . . . , pN)) be a pointed smooth projective
connected curve over C of genus g. Here (p1, . . . , pN) is an ordered set of
points in C. We always assume the points p1, . . . , pN to be distinct and closed.
If (C ′, p ′) is another one, then they are said to be isomorphic iff there is an
isomorphism φ : C→ C ′ over C such that φ(pi) = p ′i, i = 1, . . . ,N.

A family (over a smooth variety B) of these objects is a pair (C/B, p), where
C/B : C → B is a proper surjective map and p = (p1, . . . , pN) is an N-tuple of
disjoints sections, such that (Cb, pb) is a complex pointed smooth projective
connected curve of genus g for every closed b ∈ B (here Cb denotes the fiber
over b ∈ B). If C ′/B ′ : C ′ → B ′, p ′ = (p ′1, . . . , p

′
N) : B → Cn is another

such family, then a morphism from (C/B, p) to (C ′/B ′, p ′) is pair of maps

5



6 Introduction

φ : C → C ′, ψ : B→ B ′ such that

C
φ //

C/B
��

C ′

C ′/B ′
��

B

p

UU

�

�
)

ψ // B ′

p ′

II

)
� �

is a Cartesian diagram for the downward pointing arrow, and a commutative
diagram for the upward pointing ones. A morphism of such families is an
isomorphism if it has an inverse, which is the case iff φ is bijective.

In the following, by a (N-)pointed curve, we shall mean an N-pointed smooth
projective connected genus g curve over C, and a family of (N-)pointed curves will
be a family of N-pointed smooth projective connected genus g complex curves.

Continuing with the previous notation, we suppose a family of pointed
curves (C/B, p) is given. For any map f : B ′ → Bwe have a pullback square

f∗C := B ′ ×B C
f∗(C/B)

��

// C
C/B

��
B ′

f∗p

II

)
� �

f // B,

p

UU

�

�
)

where f∗p is the universal morphism induced by the pair of maps id : B ′ → B,
p ◦ f. In the left column is a family of pointed curves, which we call the pull
back of (C/B, p) along f and denote f∗(C/B, p). A family of pointed curves
(Cu/Bu, pu) is called universal iff every family of pointed curves is, up to
unique isomorphism, the pullback of (Cu/Bu, pu) along a unique map to
Bu: every (C/B, p) as before is isomorphic to f∗(Cu/Bu, pu) for some unique
smooth f : B→ Bu.1 Such a family does not exist, but there is a family that is
“locally universal”, as we will see shortly.

1.1.1 Tg,N, Cg,N andMg,N

A N-pointed curve (of genus g) corresponds to a complex structure on a
N-pointed smooth compact orientable genus g real surface. The diffeomor-
phism type of the latter is unique, so one can think of an arbitrary pointed
curve (C, p) as a complex structure on a fixed smooth compact oriented sur-
face Σg with an N tuple of distinct labeled points. Moreover, almost com-
plex structures on Σg are always integrable, so isomorphism types of N-pointed

1This is of course just saying that (Cu/Bu, pu) is a universal object in the category of fami-
lies of pointed curves.



Introduction 7

curves are in 1-1 correspondence with almost complex structures on Σg up to diffeo-
morphisms preserving p.

Definition 1.1.1. Let Diff(Σg, p) denote the group of diffeomorphisms of Σg
that fix the elements of p, and let Diff0(Σg, p) be the subgroup of diffeomor-
phisms that are isotopic to the identity. The Teichmüller space is defined as

Tg,N = {almost complex structures on Σg}/Diff0(Σg, p).

and the mapping class group as Γg,N = Diff(Σg, p)/Diff0(Σg, p). Their quo-
tient, as orbifold, is denoted

Mg,N := Tg,N/Γg,N.

These three objects have been, and still are, the object of extensive study, and
much is already know about them. We list some of their properties:

For 3g − 3 +N > 0, the Teichmüller space Tg,N has a natural structure
of a contractible 3g− 3+N dimensional complex manifold,

with respect to this structure, Γg,N acts holomorphically and proper dis-
continuously so thatMg,N receives an orbifold structure,

there is a family of N-pointed curves (Cg,N/Tg,N, pg,N), called the Te-
ichmüller family, such that any family of N-pointed curves is locally a
pullback thereof,

Mg,N has a natural structure of a quasi-projective irreducible variety,
compatible with the complex structure induced from Tg,N.

1.1.2 (Co)tangent space of a miniversal family

Suppose we are given a family (C/B, p) of pointed curves, then we denote
by θC the sheaf of local vectorfields on C and by θC/B the subsheaf vertical
vectorfields over B. The latter can be characterized by the property that it
consists of vectorfields that kill (C/B)−1OB. The “points” p determine another
subsheaf of θC : the vectorfields that are tangent to p, and we denote it by
θC(logp). Consider the short exact sequence

0 // θC/B(−p) // θC(logp) // (C/B)∗θB // 0 ,
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where θC/B(−p) is the sheaf of vectorfields that are both vertical over B and
tangent to p, i.e. the vertical vectorfields that vanish at p. By pushing down
to Bwe obtain the exact sequence

0 // (C/B)∗θC/B(−p) // (C/B)∗θC(logp) // (C/B)∗(C/B)∗θB

δ // R1(C/B)∗θC/B(−p) // R1(C/B)∗θC(logp) ,

where the connecting map δ is called the Kodaira-Spencer map. Since projec-
tive curves only have constant global functions, (C/B)∗(C/B)∗θB = θB.

We call (C/B, p) miniversal if δ is an isomorphism. From Serre duality it
follows that if (C/B, p) is miniversal, i.e. δ : θB ' R1(C/B)∗θC/B(−p), then we
also have thatΩB ' (C/B)∗ Sym2ΩC/B(p).

Lemma 1.1.2. The Teichmüller family (Cg,N/Tg,N, pg,N) is miniversal.

For more details regarding this section, we refer the reader to [20]. In the rest

of this chapter, we fix a miniversal family of pointed curves (C/B, p).

1.2 The moduli space of G-bundles over a curve

In the following, let G be a simple complex algebraic group with Lie algebra g. We
remark that simple algebraic implies that Z(G), the center of G, is finite. The
approach taken in this section is based on [17]. Below we introduce the no-
tions of principal G-bundle, families thereof, and subsequently review their
moduli spaces; references for this material are [22, 1].

1.2.1 Principal bundles and stability

Let C be a curve, then P/C : P → C is called a principal G-bundle if P has
a free proper right G-action that commutes with P/C and if the quotient of
P by G is isomorphic to C. Two principal G-bundles P/C, P ′/C are called
isomorphic if there is a G equivariant morphism P → P ′ that commutes with
the projections. In particular, the right action of an element of Z(G), the center
of G, is an automorphism of P/C.

For any representation ρ : G → V of G, there is an associated vector
bundle

ρP/C : P ×G V → C.
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In particular for the adjoint representation, we have a vector bundle AdP/C,
simply called the adjoint bundle. The determinant of AdP/C, i.e. its highest
nontrivial exterior power, is trivial: the determinant of the adjoint represen-
tation of G is a character of G and hence trivial, since G is simple. Therefore
deg AdP/C = 0 (the degree of a vector bundle is by definition the degree of its
top nontrivial exterior power).

We define the slope of a vector bundle ξ : F→ C over C by

deg ξ
rank ξ

.

A vector bundle ξ is called semi-stable iff for any proper holomorphic subbun-
dle ξ ′ we have

deg ξ ′

rank ξ ′
≤ deg ξ

rank ξ
,

and it is called stable if the inequality is always strict. Moreover, we say that
a semistable vector bundle ξ is polystable if it is a direct sum of subbundles
of the same slope. Note that for AdP/C the stability condition reduces to
deg ξ ′ < 0 for any proper holomorphic subbundle ξ ′ of AdP/C.

For principal G-bundles we also have the notion of stability, semistabil-
ity and polystability, but they coincide with that of their adjoint bundles. A
finer notion of stability for principal bundles is regular stability: we say that
P/C is regularly stable if it is stable and its automorphism group is Z(G). As
was noted above, Z(G) is always contained in the automorphism group, so
regular stability means stable and minimal automorphism group.

1.2.2 M0
G

The notions above extend to families of G-bundles over curves. Of course,
we must first explain what a family means in this case: a family of G-bundles
over C with base space B, is a G-bundle P → CB := C×B. Such a family is called
stable, semi-stable, regularly stable if every PC×{b} has that property, b ∈ B. A
morphism of families of G-bundles over C from P → CB to P ′ → CB ′ is a map
that commutes with the projections. Given a family P/CB : P → CB and a
map φ : B ′ → B, we pull back P/CBB along φ in the obvious manner and
thus obtain a family φ∗P → CB ′ . Finally, a family is called universal if every
other family arises (up to unique isomorphism) as a pullback.
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Let g denote the genus of the curve C. We list some facts about moduli
spaces of G-bundles over C under the assumption that either g ≥ 3 or g = 2

and G not of type SL(2), PSL(2).

The set of isomorphism classes of regularly stable G-bundles over C,
denoted Mrs

G (C), has a natural structure of a connected quasiprojective
variety.

There is a universalG-bundle Pu(C)/Mrs
G (C)×C : Pu(C)→Mrs

G (C)×C.

There is a natural compactification Mss
G (C) of Mrs

G (C) with boundary
of codimension ≥ 2, i.e. there is a natural (singular) projective variety
Mss
G (C), together with an open embedding Mrs

G (C) ↪→ Mss
G (C), such

that the complement of the image is a closed subvariety of codimension
≥ 2.

For the reader who is familiar with moduli spaces, the compactification men-
tioned is obtained as the coarse moduli space of semi-stable G-bundles.

We now let the base curve C vary in a family: let C/B : C → B be a family
of curves (we forget the points for the moment).

• There are respectively quasiprojective and projective morphisms

Mrs
G (C/B)/B :Mrs

G (C/B)→ B, Mss
G (C/B)/B :Mss

G (C/B)→ B,

both flat, and such thatMrs
G (C/B)b 'Mrs

G (Cb),Mss
G (C/B)b 'Mss

G (Cb),
b ∈ B.

• There is a principalG-bundle Pu(C/B)→Mrs
G (C/B)×B C, such that the

restriction toMrs
G (C)× C is isomorphic to Pu(Cb), b ∈ B.

We callMrs
G (C/B)/B the family of moduli spaces of regularly stable G-bundles for

the family C/B. In the next subsection we will discuss the (co)tangent sheaves
ofMrs

G (C) andMrs
G (C/B)/B.
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1.2.3 (Co)tangent spaces to the moduli space of G-bundles

Let C be a curve of genus g > 1. Abbreviate Pu(C) to P and Mrs
G (C) to M for

the moment, and consider the diagram

P

��
Y := M× C

πM
��

πC // C

M

.

We write (πP/Y∗θP)
G for the G-invariant part of πP/Y∗θP. Then

0 // AdP/Y // (πP/Y∗θP)
G // θY // 0

is exact. Pushing down by πM yields the exact sequence

0 // πM∗AdP/Y // πM∗(πP/Y∗θP)
G // πM∗θY

δG //

R1πM∗AdP/Y // R1πM∗(πP/Y∗θP)
G.

Lemma 1.2.1. We have that

πM∗AdP/Y = 0, πM∗θY = θM,

and that the connecting map δG induces isomorphisms

θM ' R1πM∗AdP/Y , ΩM ' πM∗(Ad∗P/Y ⊗ π∗CωC).

The first claim follows from a fiberwise argument: over every point m ∈ M,
we have that H0(Ym,AdP/Y) is the space of infinitesimal automorphism of
P/Ym, which must be equal to Z(g) since P/Ym is regularly stable. But G is
simple, so Z(g) = 0. For the second statement, note that θY = π∗MθM ⊕ π∗CθC,
and that πM∗π∗CθC = H0(C, θC) ⊗ OM = 0, because genus > 1 curves do
not have infinitesimal automorphisms. It follows that πM∗θY = πM∗π

∗
MθM =

θM ⊗ H0(C,OC) = θM. The third statement does not admit such a short
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explanation; we refer the reader to the literature, e.g. [6],[7]. To derive the
final statement, one just applies the Serre duality

R1πM∗AdP/Y = πM∗(Ad∗P/Y ⊗ π∗CωY/M)∗,

and the identificationωY/M = π∗CωC.

We now let our curve C vary in a family of genus g curves (we call this the rel-
ative case): for a fixed family of curves C/B : C → Bwe make the abbreviations
M =Mrs

G (C/B), P = Pu(C/B) and have a commuting diagram

P

��
Y :=M×B C

πM
��

πC // C

��
M // B

.

Furthermore, the short exact sequence

0 // AdP/Y // (πP/Y∗θP/B)
G // θY/B // 0

gives rise to a long exact sequence

0 // πM∗AdP/Y // πM∗(P/Y)∗θP/B)
G // πM∗θY/B

δG //

R1πM∗AdP/Y // R1πM∗(P/Y)∗θP/B)
G.

Lemma 1.2.2. We have that

π1∗AdP/Y = 0, π1∗θY/B = θM/B,

and that the connecting map δG induces isomorphisms

θM ' R1πM∗AdP/Y , ΩM/B ' πM∗(Ad∗P/Y ⊗ π∗CωC/B).

These claims can be proved by applying lemma 1.2.1 over every point of B,
but we will not make this precise.
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1.2.4 Relation with moduli space of flat connections

The relation between moduli of holomorphic vector bundles and moduli of
flat connections goes back to Narasimhan and Seshadri’s paper [21]. Their
results have been generalized in various ways, in particular to the setting of
principal G-bundles; see e.g. [23], [1], [16].

Let P/C : P → C be a principalG-bundle over a curve and letGc be a com-
pact form of G. A C∞-connection on P/C is a C∞-map θC → (P/C)G∗ θP that is
a section of the derivative of P/C. If Gc is a compact form of G, then we say
that a principal Gc-bundle Pc/C is obtained by reduction of the structure group
of P/C to Gc if P is C∞-isomorphic to Pc ×Gc G. A C∞-connection on such a
reduction induces one on P/C, and we say that a C∞-connection on P/C is
Hermitian if it is induced by a C∞-connection on Pc/C, for some Pc/C as just
described. Furthermore, a Hermitian connection on P/C is called Einstein if
its curvature is central. Note that for a semi-simple Lie group the center of its
Lie algebra is trivial, so that the Einstein condition amounts to flatness.

Theorem 1.2.3 ([1], Theorem 3.7). A principal G-bundle P/C is polystable iff it
admits a Hermite-Einstein connection. This connection is unique if it exists.

Another result of [1] says that if P/C is stable, then it is also polystable. From
this we derive the following consequence

Corollary 1.2.4. IfG is a simple Lie group, then any regularly stableG-bundle over
a curve admits a unique flat Hermitian connection.

1.3 Loop groups

The following considerations are crucial for the rest of this thesis: it allows
for the geometric data of pointed curves and principal G-bundles over them,
to be translated into algebraic data. We will investigate this in greater detail
in Chapter 3.

Let (C, p) be a N-pointed curve. Then C0 := C\p is affine and we write
A(C0) := H0(C0,OC0) for its ring of regular functions. Thus C is covered by
the affine subschemesC0 and the completion ofC at p: Ĉp = Spec ÔC,p. Here
ÔC,p denotes the completion of the semilocal ring OC,p with respect to the
intersection of the ideals defining the pi ∈ p. The intersection Ĉ0p = C0 ∩ Ĉp
is also affine and equal to Spec K̂C,p, where K̂C,p is the ring of fractions of
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the semilocal ring ÔC,p. One can think of Ĉp as an infinitesimal disk in C
centered at p, and of Ĉ0p as this disk with p deleted.

If t1, . . . , tN are local parameters at p1, . . . , pN, respectively, then

ÔC,p =

N⊕
i=1

C[[ti]], K̂C,p =

N⊕
i=1

C((ti)),

and A(C0) is some subalgebra of
⊕
i = 1NC((ti)).

Now suppose we are given a principal G-bundle P/C : P → C, then P/C
is trivial over C0 and Ĉp because they are affine. This can be seen as follows:
take a faithful representation ρ of G and consider the bundle ρP/C. Since G
is simple, it has trivial determinant. Furthermore, since C is a nonsingular
curve, A(C0) is a Dedekind domain. Hence, over C0, ρP/C corresponds to a
projective module over A(C0) with trivial determinant, so by ([11]), it is free.
It follows that P is obtained by gluing the trivial bundles on the cover C0, Ĉp
over the intersection Ĉ0p.

Definition 1.3.1.

LG(C, p) := MorSpec C(Ĉ0p, G),

L≥G(C, p) := MorSpec C(Ĉp, G),

LG(C0) := MorSpec C(C0, G),

where MorSpec C(·, ·) denotes the group of morphisms of C-schemes.

We call LG(C, p) the loop group of G. Since Ô(C,p) =
⊕
i = 1NC[[ti]] if ti is a

formal coordinate at pi, LG(C, p) and L≥G(C, p) do not depend on (C, p) up
to isomorphism. The isomorphisms however, are noncanonical, so we insist
on including (C, p) in the notation.

Returning to our previous discussion, the transition function on Ĉ0p be-
tween trivializations of P/C over C0, Ĉp is given by an element of LG(C, p).
Conversely, for any element of LG(C, p) we can construct a principalG-bundle.
Since changing a trivialization over C0 or Ĉp does not change the isomor-
phism type of the bundle, the element in LG(C, p) corresponding to the iso-
morphism class of P is determined up to automorphisms over C0 and Ĉp,
i.e. up to elements of LG(C0) and L≥G(C, p) respectively. When viewing this
change of trivialization as an action of LG(C, p), we have that L≥G(C, p) and
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LG(C0) act on from different sides on LG(C, p) by multiplication - we con-
vene that LG(C0) acts on the left and L≥G(C, p) on the right (this choice just
depends on the ordering of the cover C0, Ĉp). Hence the isomorphism types
of principal G-bundles on C are in bijective correspondence with

LG(C0)\LG(C, p)/L≥G(C, p).

Even more is true:

Theorem 1.3.2. (Y. Laszlo, C. Sorger [18])
The moduli stack of principal G-bundles over C, denotedMG(C), is isomorphic to
the quotient stack

LG(C0)\LG(C, p)/L≥G(C, p).

It is known that LG(C, p), L≥G(C, p) and LG(C0) are simply connected; this
is a consequence of the fact thatG, being a simple finite dimensional complex
group, is 2-connected. Hence if we let LGrs(C, p) be the open part of LG(C, p)

corresponding to regularly stable bundles, then LGrs(C, p) is connected: its
quotient by the connected groups L≥G(C, p) and LG(C0), i.e.Mrs

G (C), is con-
nected.

We extend the arguments above to families: let (C/B, p) be a family of
N-pointed curves over B. Define the B-scheme

C0 := C\p,

and let C0/B be its structure morphism.

Definition 1.3.3. We define the following OB algebras:

O := ÔC,p, A := (C0/B)∗OC , K := K̂C,p

and B-schemes

Ĉp/B : Ĉp := Spec O → B, Ĉ0p/B : Ĉ0p := Spec K→ B.

Locally over B, C0 is always affine, so we can cover B by small open sets U
such that C0U = Spec A(U). Since this is functorial in U, C0 = Spec OBA. We
note that the assignment (O,K,A) 7→ (Ĉp/B, Ĉ0p/B, C0/B) is functorial.
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Now let U ⊆ B be as before (so C0U is affine), then define

LG(C/B, p)(U) := Mor(Ĉ0p|U, G),

L≥G(C/B, p)(U) := Mor(Ĉp|U, G)

LG(C0/B)(U) := Mor(C0U, G).

The assignments U 7→ LG(C/B, p)(U),L≥G(C/B, p)(U),LG(C0/B)(U) define
a presheaves over B, with values in (complex ind-) groups over B.

Definition 1.3.4. Let LG(C/B, p), L≥G(C/B, p), LG(C0/B) be the sheaves as-
sociated to the presheaves determined by

U 7→ LG(C/B, p)(U),L≥G(C/B, p)(U),LG(C0/B)(U),

respectively. We call these (sheaves of) loop groups.

If (Cb, pb) is the pointed curve over a closed point b ∈ B, then

LGb = LG(C, p), L≥Gb = L≥G(C, p), LG(C0/B)b = LG(C0)(C, p).

The quotient stack

MG(C/B, p) := LG(C0/B)\LG(C/B, p)/L≥G(C/B, p)

is the moduli space of G-bundles for the family C → B, in the sense that
for any b ∈ B, the restriction to b is the moduli stack of G-bundles for
Cb as introduced before: MG(Cb). If we let LGrs(C/B) be the subsheaf of
LG(C/B) corresponding to regularly stable G-bundles, then by definition,
L≥G,LG(C0/B) ⊆ LGrs. Clearly the right action of L≥G on LG is free and
preserves LGrs, and the same goes for the left action of LG(C0/B). Since left
and right action commute, the right action of LG(C0/B) descends to the quo-
tient LGrs/L≥G. It is, however, not free: the stabilizer at a point of LGrs
corresponds to the automorphism of the bundle represented by the point.
For the regularly stable part, this is precisely Z(G), so the stabilizer of the
LG(C0/B) action on LGrs/L≥G is Z(G) (as constant sheaf over B). It follows
that LG(C0/B)red := LG(C0/B)/Z(G) acts freely on LGrs/L≥G and that we
have a quotient scheme

Mrs
G (C/B) := LG(C0)(C/B)red\LGrs(C/B)/L≥G(C/B).
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This is the moduli space of regularly stable G-bundles for the family C/B as
mentioned before, soMrs

G (C/B)→ B is a quasiprojective morphism. For any
affine U ⊆ B, Mrs

G (C/B)U has a natural compactification with complement
of codimension ≥ 2, as was stated before. These compactification are com-
patible in the sense that the glue to a projective morphism Mss

G (C/B) → B,
together with open embedding of B schemesMrs

G (C/B) →Mss
G (C/B) whose

complement is of codimension ≥ 2.

1.3.1 The generator of the Picard group and L̂G.

References for this subsection are [16] and [4]. For a curveC, the Picard group
of Mss

G (C) is infinitely cyclic. As was mentioned earlier, the codimension of
Mrs
G (C) in Mss

G (C) is ≥ 2. However, Mss
G (C) does not have a smooth bound-

ary, so Hartogs’ theorem does not apply here. Nevertheless, line bundles on
Mrs
G (C) do extend uniquely to line bundles on Mss

G (C), and the same holds for
isomorphisms between them. Thus

Pic(Mrs
G (C)) = Pic(Mss

G (C)) = Z,

the first identification being canonical since it is induced by pullback; the sec-
ond one is canonical because there is only one ample generator. For the rela-
tive situation C/B we have the following: pullback gives inclusions Pic(B) ⊂
Pic(Mrs

G (C/B) = Pic(Mss
G (C/B)) and

PicC/B(Mrs
G (C/B)) := Pic(Mss

G (C/B))/Pic(B) ' Z.

1.3.2 L̂g

Fix a family of pointed curves (C/B, p). For brevity, we use the following
abbreviations:

Mrs
G =Mrs

G (C/B), LG = LG(C/B, p),
LGrs = LGrs(C/B, p), L≥G = L≥G(C/B, p).

We can construct explicit representatives for PicC/B(Mrs
G ) using a certain cen-

tral extension of LG. There is in fact, a 1-1 correspondence between the char-
acters of L≥G, central extensions of LG induced from L≥G and classes of line
bundles onMrs

G , but we will not completely elaborate this. We start with the
infinitesimal description:
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Definition 1.3.5.

Lg(C/B, p) := Lie(LG(C/B, p)),
L≥g(C/B, p) := Lie(L≥G(C/B, p)) ⊂ Lg,

Lg(C0/B) := Lie(LG(C/B, p)) ⊂ Lg,

where the Lie algebra functor should be interpreted in the obvious sheafified
manner. These OB-modules are called loop algebras. We use the abbrevia-
tions analogous to those for the loop groups: Lg = Lg(C/B, p) and L≥g =

L≥g(C/B, p). The correspondence between morphisms of affine schemes and
ring homomorphisms gives us

Lg = HomOB(K,OB ⊗CB gB) = K ⊗C g,

L≥g = HomOB(O,OB ⊗CB gB) = O ⊗C g,

Lg(C0/B) = HomOB(A,OB ⊗CB gB) = A⊗C g,

where gB is the constant sheaf on B determined by g (recall that g = Lie(G)),
and similarly CB the one determined by C.

For an open subset U ⊆ B, Lg(U) is generated by elements of the form
X ⊗ f, where X ∈ g and f ∈ K(U). If Y ⊗ g is another section of Lg over U of
the same form, then

[X⊗ f, Y ⊗ g] = [X, Y]⊗ fg.

Remark 1.3.6. For our simple Lie group G, there is a unique G-invariant bilin-
ear form tr on g = Lie(G) such that the longest root, with respect to a choice
of Borel subalgebra and positive roots, has length 2. Since tr is a nonzero
multiple of the Killing form, it is nondegenerate.

Definition 1.3.7. Denote by L̂g the OB-module Lg ⊕ OB with Lie algebra
structure given by (X⊗ f and Y ⊗ g as above)

[X⊗ f⊕ b, Y ⊗ g⊕ b ′] = [X, Y]⊗ fg⊕ 0+ 0⊕ tr(X, Y) Resp(g df).

We write c for the global section 0 ⊕ 1, so L̂g is a central extension of Lg by
OB with central generator c.

By the residue theorem for closed curves,

L̂≥g := L≥g⊕OB, L̂g(C0/B) := Lg(C0/B)⊕ 0

areOB-subalgebras of L̂g. We will identify L̂g(C0/B) withLg(C0/B) and write
the latter for its image in L̂g.
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1.3.3 The fundamental representation

For every integer ` > 0, which we will call level, there is a representation of
L̂g, called the (sheaf of) fundamental representations of level `. Consider OB
as an L̂≥g representation, by letting L̂≥g acts via the character `χ, where

χ : L̂≥g = L≥g⊕OB :→ OB : (x, f) 7→ f.

So c acts as multiplication with `, and L≥g as 0. Induce this up to L̂g, and let

F(L̂g, L̂≥g)` := UL̂g⊗
UL̂≥g

OB

be the resulting Verma module2, which has a global section v` := 1 ⊗ 1 that
is an U(L̂g) generator. There is a unique maximal proper submodule Z ′` , and
we write

H`(L̂g, L̂≥g)` := F(L̂g, L̂≥g)`/Z ′`

for the irreducible quotient sheaf; it is called the fundamental representation of
level `. A more explicit way to define this quotient over an affine subset of B is
the following: let t1, . . . , tN be coordinates of C at p over some affine U ⊆ B,
and let Xθ be a highest root vector of g (relative some choice of positive roots).
Then (

(Xθ ⊗ t−1i )`+1 ⊕ 0
)
◦ v`, i = 1, . . . ,N

is anN-tuple of local sections of V`, and Z ′` is the V`-submodule that is locally
generated, over UL̂g, by these sections.

1.3.4 L̂G

The representation of L̂g on H` gives a morphism of OB-algebras L̂g →
EndOB(H`), which induces an algebra morphism Lg→ EndOB(H`)/OB. The
latter representation integrates locally to a morphism LG(U)→ PGL(H`(U)),
U being a suitably small open subset of B, and does so in a functorial manner.
We write PGL(H`) for the sheaf associated to the presheaf U 7→ PGL(H`(U)),

2Perhaps it would be better to writeUOB L̂g to indicate that we actually mean the universal
enveloping algebra of L̂g regarded as OB-module, but we trust that the notation is clear to
reader.
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U ⊆ B small enough. So we have a morphism LG → PGL(H`) of sheaves of
(ind-)schemes over B. More details can be found [3] (where the origin of the
idea is attributed to Faltings).

Definition 1.3.8. Define L̂G to be the pull back of LG along the usual central
extension GL(H1) of PGL(H1) by O×B , the invertible part of OB, so that the
following diagram is Cartesian:

1 // O×B // L̂G� _

��

// LG� _

��

// 1

1 // O×B // GL(H̃1) // PGL(H1) // 1.

We let L̂≥G, L̂G(C0/B) be the preimages of L≥G, LG(C0/B) under the projec-
tion L̂G→ LG, respectively.

The corresponding diagram of Lie algebras is

0 // OB // L̂g� _

��

// Lg� _

��

// 0

0 // OB // EndOB(H1) // EndOB(H1)/OB // 0

where in the upper row, the map L̂g → Lg comes from reduction modulo
OBc.

By construction, L̂≥G contains the central part by which L̂G extends LG,
so it follows that L̂G/L̂≥G = LG/L≥G. Hence, if we let L̂G

rs
be the part of

L̂G projecting to LGrs, then

LG(C0/B)red\L̂G
rs
/L̂≥G = LG(C0/B)red\LGrs/L≥G =Mrs

G .

1.3.5 L

We are now ready to define a generator of PicC/B(Mrs
G (C/B)). Note that L̂≥g

leavesOBv1 invariant, and therefore L̂≥G does so as well. This action defines
a character

eχ : L̂≥G→ O×B ,
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which by definition splits

1 // O×B // L̂≥G
χ

kk // L≥G // 1 .

As the notation suggests, eχ is the exponentiation of χ. Use χ−1 to lift the
right action of L̂≥G on L̂G

rs
to an action on L̂G

rs
× C, i.e.

(g, z) · h = (gh, χ(h)−1z)

for local sections (g, z) of L̂G
rs
×B OB and h of L̂≥G. This action commutes

with the projection L̂G
rs
× C→ L̂Grs and is free, so that

(L̂G
rs
× C)/L̂≥G→ L̂Grs/L̂≥G (1.1)

is a morphism of (ind-)schemes whose fibers are free OB-modules of rank 1,
i.e. a line bundle.

We now lift the LG(C0/B)red-action on L̂G
rs
/L̂≥G to the domain of (1.1)

using the trivial character: f·[(g, z)] = [(fg, z)] for local sections f of LG(C0/B)

and (g, z) of L̂G × C. Since χ is invariant under Z(G), this action is indeed
well defined. Hence, we have a morphism of B schemes:

Definition 1.3.9.

L := LG(C0/B)red\L̂G
rs
× C/L̂≥G

��

LG(C0/B)
red

\L̂G
rs
/L̂≥G =Mrs

G

Over any affineU ⊆ B, L̂G
rs

(U)×C→ L̂Grs(U) is a line bundle. Since the left
action ofL≥G(U) on L̂G

rs
(U)×C is free, and the right action on their quotient

by LG(C0/B)(U)red as well, L is a line bundle over Mrs
G (CU/U). Hence L

is a line bundle over all of Mrs
G . This line bundle is the canonical positive

generator of PicC/BMrs
G (C/B). A section over some affine U ⊆ B is a function

θ : L̂G(CU/U)rs → C that satisfies

θ(fgh) = θ(g)χ(h), f ∈ LG(C0U/U), g ∈ L̂G(CU/U)rs, h ∈ L̂≥G(CU/U).
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Remark 1.3.10. Any element in PicC/B(Mrs
G ) is obtained as a power of L. For

an integer ` ∈ Z, we can define L` in a way analogous to L: if in the defini-
tion of L above, we use (eχ)` = e`χ instead of the character eχ of L̂≥G, the
resulting line bundle is L`.

By the previous remark, the determinant bundle onMrs
G (C/B) is of course

also given by a power of L; we give this number explicitly.

Definition 1.3.11. Consider the projection π1 : Cg = Mrs
G ×B C → Mrs

G and
define

Ldet := detR•π1∗AdP/CG =
⊗
i≥0

(detRiπ1∗AdP/CG)(−1)i ,

where P was the universal G-bundle on CG.

This line bundle is called the Knudson-Mumford determinant of AdP/CG over
Mrs

G . Since stable bundles do not admit sections, we have that π1∗AdP/CG =

0, and as a consequence

Ldet = (detR1π1∗AdP/CG)∗ = (det θMrs
G
/B)∗ = ωMrs

G /B
.

The degree such a Knudson-Mumford determinant of a vector bundle, asso-
ciated to P though a representation ρ, is given by the Dynkin index of ρ (see
[16]3). In the case of the adjoint representation this is minus twice the dual
Coxeter number ȟ, so

ωMrs
G /B

= Ldet = L−2ȟ. (1.2)

3Notice that our definition of Knudson-Mumford determinant is dual to the one in [16].



Chapter 2

Generalized θ-functions and Hitchin’s
connection

In this chapter, G is a simple simply connected complex Lie group with dual Coxeter
number ȟ. We will assume an integer ` > 0, called level, to be fixed.

For a family of curves C/B, we will construct a vector bundle Θ` over B
called the Verlinde bundle. It comes with a natural flat projective holomor-
phic connection, nowadays called the Hitchin connection, which was first
introduced in Hitchin’s paper [14].

2.1 Generalized θ-functions

We recall the setting of the previous chapter: for a family of curves C/B :

C → B we have a quasi-projective morphismMrs
G → B, the family of moduli

spaces of regularly stable G-bundles on C, together with an open embedding
over B into a projective morphismMss

G → B, with complement of codimen-
sion ≥ 2. In this chapter, we writeM =Mrs

G andM =Mss
G for short.

Definition 2.1.1. The sheaf of generalized θ-functions (of level ` for the family
C → Bwith respect to the group G) is defined to be the OB-module

Θ` := (C/B)∗L`.

A was stated in Chapter 1, line bundles onM extend uniquely toM; we will
denote the extension of L` toM also by L`. Local sections of L` overM also

23
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extend uniquely toM, and so (M/B)∗L` ' (M/B)∗L`. Since L` is coherent
and (M/B) proper, these sheaves are coherent OB-modules. In particular:

Corollary 2.1.2. Θ` is coherent.

2.2 The Hitchin connection

2.2.1 (Projective) connections

We briefly recall some general notions, and refer the reader to the appendix
for details. Let X be a smooth complex scheme, Y a smooth scheme of finite
type over X and F a coherent sheaf on Y. We denote by DkY/XF the sheaf of
differential operators of order at most k on F over X. If X = Spec C we just
write DkYF for DkY/XF . From its definition it is clear that DkY/XF ⊆ D

k+1
Y/XF ;

the corresponding quotients sequences are called symbol sequences, and the
quotient maps are denoted σk and called symbol maps. For k = 1 this gives

0 // EndOXF // D1Y/XF
σ1(F) // θY/X ⊗ EndOXF // 0 .

By corollary A.1.6 from the appendix, σ1(F) is surjective iff F is locally free -
assume this is the case. The corresponding exact sequence has a subsequence

0 // EndOYF // AY/XF
σ1(F) // θY/X , (2.1)

where AY/XF is the preimage of θY/X ⊗ id under σ1(F). We call this exact
sequence the Atiyah sequence and its extension class is called the Atiyah class
and is denoted cA(F).

Note that AY/XF has a natural Lie algebra structure, for it is a subalgebra
of EndOX(F). A holomorphic connection over X on F is a global right inverse of
σ1(F) - clearly, this can only exist if σ1(F) is surjective. Such a holomorphic
connection is called flat if it is an algebra morphism.
Assume that (2.1) is right-exact. Instead of the Atiyah sequence, one can
consider its projectivization:

0 // End0OYF/OY // A0Y/XF
Pσ1(F)// θY/X // 0 ,
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where End0OYF = (EndOYF)/OY and A0Y/XF = (AY/XF)/OY . A projective
holomorphic connection over Y/X on a coherent sheafF is a right inverse of Pσ1(F).
Note that since OY is an ideal in AY/X(F), the quotient receives an algebra
structure. We say that a projective holomorphic connection over X is flat if
it is an algebra morphism. Clearly, a holomorphic connection determines a
projective holomorphic connection. If the latter is flat, the former is called
projectively flat, which in particular is the case if the holomorphic connection
itself is flat. However, not every projective holomorphic connection comes
from a right inverse of σ1(F).

2.2.2 Connections from heat operators

The following approach comes from [27] and is applied to our situation: the
fibration M → B and the line bundle L` over M. For a direct image sheaf
such as Θ`, there is a special class of (projective) connections, namely those
coming from heat operators on the sheaf which was pushed down. Morally
speaking, heat operators are first order differential operators on the direct im-
age, whose endomorphism part acts as fiberwise differential operators. This
is made precise by the following:

Definition 2.2.1. Let DkML` be the sheaf of differential operators of order at
most k on L` overM, and DkM/BL

` the subsheaf of differential operators on
L` of order at most k overM/B.. We define

Wk
M/B(L

`) := DkM/BL
` +D1ML`

to be the sheaf of heat operators of order at most k on L` with respect toM/B.

For brevity, we writeWk
` forWk

M/BL
`. Since L` is locally free,

Wk
` /Wk−1

` = DkM/BL
`/Dk−1M/BL

` ' SymkθM/B⊗EndOML
` = SymkθM/B,

the isomorphism being given by σk(L`). In other words, we have an exact
sequence

0 //Wk−1
`

//Wk
`

wk // SymkθM/B // 0. (2.2)

On the other hand, by taking the quotient of Wk
` with respect to DkM/B(L

`),
we find

Wk
` /DkM/BL

` = D1ML`/(DkM/BL
`∩D1ML`) = D1ML`/D1M/BL

` ' (M/B)∗θB
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and the associated exact sequence

0 // DkM/BL
` //Wk

`

σn // (M/B)∗θB // 0 . (2.3)

The map σn is called the normal symbol. Apply (M/B)∗ to (2.3) and obtain
the following exact sequence:

0 // (M/B)∗DkM/BL
` // (M/B)∗Wk

`

(M/B)∗σn// θB // 0 , (2.4)

where we used that

(M/B)∗(M/B)∗θB = (M/B)∗OM ⊗OB θB = (M/B)∗OM ⊗OB θB = θB.

Lemma 2.2.2. We have a natural inclusion (M/B)∗Wk
` ⊆ AM/BΘ`, such that

(M/B)∗σn coincides with σ1(Θ`).

Proof. Clearly, (M/B)∗DkM/BL
` commutes with the OB-action when acting

on Θ`, so (M/B)∗DkM/BL
` ⊆ EndOBΘ` ⊆ D1BΘ`. Furthermore, if s, f,H are

local sections of Θ`, OB and (M/B)∗D1ML` respectively, then we have that

H(fs) = [H, f]s+ fH(s) = σ1(Θ`)(H)(f)s+ fH(s)

by definition of σ1(Θ`), so that H acts as a first order differential operator
on Θ`. Hence (M/B)∗DkM/BL

` ⊆ D1BΘ` and consequently (M/B)∗Wk
` ⊆

D1MΘ`. By interpreting a local section f of OB as a local section of the sheaf
(M/B)∗D1ML`, we also have that [H, f] = (M/B)∗σn(H)(f), so that σn equals
σ1(Θ`) on (M/B)∗D1ML`. However, since both σn and σ1(Θ`) vanish on
(M/B)∗DkM/BL

` so that they coincide on (M/B)∗Wk
` . Finally,

(M/B)∗Wk
` = ((M/B)∗σn)−1θB ⊆ σ1(Θ`)−1(θB) = AM/BΘ`.

As an immediate consequence we obtain the following.

Corollary 2.2.3. A (local) section of (M/B)∗σn provides a (local) holomorphic con-
nection on Θ`.

Such local sections, if they exist, need not be unique, as one can see from (2.4):
they are affine with respect to sections of HomOB(θB, (M/B)∗DkM/BL

`).

Theorem 2.2.4. Suppose k ≥ 0, then π∗DkM/BL
` = OB, so that if (M/B)∗Wk

` →
θB has sections, they must be unique up to OB.
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Proof. We will prove the statement by induction on k. For k = 0, the state-
ment is true because (M/B)∗D0M/BL

` = (M/B)∗OM = (M/B)∗OM = OB,
so suppose it is true for a k ≥ 0. Consider k+ 1-th symbol sequence of L`

0 // DkM/BL
` // Dk+1M/BL

` σk // Symk+1θM/B // 0

and its quotient with respect to Dk−1M/BL
`,

0 // SymkθM/B // Dk+1M/BL
`/Dk−1M/BL

` σk // 0,

where the identification with SymkθM/B was made by σk. These give rise to
connecting homomorphisms

(M/B)∗Symk+1θM/B
δk+1 // R1(M/B)∗DkM/BL

` ,

(M/B)∗Symk+1θM/B
δ̃k+1 // R1(M/B)∗SymkθM/B

By theorem A.2.1 from the appendix, δ̃k+1 is given by cupping with (k +

1)cA(L`) − kcA(ωM/B). For a line bundle, the Atiyah class coincides with
the first Chern class, so cA(L`) = c1(L`) = `c1(L). By formula (1.2) from the
first chapter,ωM/B = L−2ȟ, so cA(ωM/B) = −2ȟc1(L). It follows that δ̃k+1 is
given by cupping with

(k+ 1)`c1(L) + k2ȟc1(L) = (`(k+ 1) + 2ȟk)c1(L).

With `, ȟ > 0, we see that this is a nonzero multiple of c1(L). Since moreover
it is known that, fiber wise over B, the first Chern class of L is represented by
a Kähler form, δ̃k+1 is injective. However, δ̃k+1 = R1σk ◦ δk+1, so δk+1 must
also be injective. From the exact sequence

0 // (M/B)∗DkM/BL
` // (M/B)∗Dk+1M/BL

` (M/B)∗σk //

(M/B)∗Symk+1θM/B
δk+1 // R1(M/B)∗(M/B)∗DkM/BL

` ,

we can then conclude that (M/B)∗DkM/BL
` ' (M/B)∗Dk+1M/BL

`.

The previous theorem makes the following notions interesting:
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Definition 2.2.5. We call (M/B)∗Wk
` /OB the sheaf of projective heat operators

of order at most k, and P(M/B)∗σn the induced normal symbol map.

We thus arrive at an interesting uniqueness result, which was also noted in
[24]:

Corollary 2.2.6. For every k ≥ 0: if P(M/B)∗σn : Wk
` /OB → θB has a (local)

section, then it is unique and gives a (local) projective holomorphic connection onΘ`.
Hence there can be at most one projective holomorphic connection that comes from a
heat operator.

Note that since Wk
` /OB ⊆ W

k+1
` /OB, and the map Wk+1

` /OB → θB ex-
tends Wk

` /OB → θB, it follows that if Wk
` /OB → θB has a section, then

Wk+n
` /OB → θB has a section for every n ≥ 0.

2.2.3 Hitchin’s connection

Below we will show the existence of a projective holomorphic connection
under the following assumption: suppose C/B is miniversal. Consider the fol-
lowing setting: the Cartesian diagram

Y :=M×B C
π2 //

π1
��

C

��
M // B,

the universal principal G-bundle P/Y : P → Y and its adjoint bundle AdP/Y .
In Chapter 1 we saw that

θM/B = R1π1∗AdP/Y , ΩM/B = π1∗Ad∗P/Y ⊗ π∗2ΩC/B.

Since we assumed the family C/B to be miniversal, the Kodaira-Spencer map
is an isomorphism θB = R1(C/B)∗θC/B. We let tr be as in remark 1.3.6. By
AdG invariance, it defines an morphism (of OY -modules) AdP/Y ' Ad∗P/Y .
Since tr is nondegenerate, this map is an isomorphism. Use this and the nat-
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ural contraction between θC/B andΩC/B to produce the following map:

(M/B)∗R1(C/B)∗θC/B
⊗

π1∗(Ad∗P/Y ⊗ π∗2ΩC/B)
// R1π1∗Ad∗P/Y // R1π1∗AdP/Y

e(M/B)∗θB ⊗ΩM/B θM/B,

In [14], Hitchin makes the important observation that this map is nondegen-
erate, and therefore induces an injective map

H : (M/B)∗θB → Sym2θM/B.

Remark 2.2.7. Suppose our family is pointed, i.e (C/B, p) is anN-pointed fam-
ily of curves as defined before, for some choice of p. Then

θB = R1(C/B)∗θC/B(−p) ⊆ R1(C/B)∗θC/B (2.5)

The map (M/B)∗R1(C/B)∗θC/B → Sym2θM/B remains well defined, so by
taking the composition of the inclusion (2.5) and this map, we still have an
injective map (M/B)∗θB → Sym2θM/B.

By the previous remark, we can assume H to be defined and injective, re-
gardless whether C/B is pointed or not. We pull the second symbol sequence
of L` over B back alongH, and obtain an extension of (M/B)∗θB byD1M/BL

`:

0 // D1M/BL
` // D2M/BL

` σ2 // Sym2θM/B // 0

0 // D1M/BL
` // (σ2)−1(imH)

H∗σ2 //
?�

OO

(M/B)∗θB

H

OO

// 0

.

As we saw previously (for k = 1), the extension class defined by the up-
per sequence in Ext1OB((M/B)∗θB,D1M/BL

`) was given by cupping with (2`+

2ȟ)c1(L), so the lower one is given by cupping with (2` + 2ȟ)H∗c1(L). We
now compare this with the extension class that

0 // D1M/BL
` // D1ML`

σn // (M/B)∗θB // 0 . (2.6)

determines in Ext1OB(((M/B)∗θB,D1M/BL
`)) - denote this by en(L`).
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Theorem 2.2.8. en(L`) = ` H∗cA(L).

This result was first obtained by Hitchin in [14] - though in a somewhat
different form - using complex differential geometric methods. More re-
cently, in [24] Sun and Tsai gave a different proof using sheaf cohomology
and Beilinson-Schechtman’s trace complex introduced in [5].

As a consequence of theorem 2.2.8,

0 // D1M/BL
` // (σ2)−1(imH)

2`+2ȟ
`

H∗σ2
// (M/B)∗θB // 0

defines the same class in Ext1OB((M/B)∗θB,D1M/BL
`) as (2.6). By subtracting

them, we obtain an extension of (M/B)∗θB by D1M/BL
` that is trivial: con-

sider the maps

0 // (D1M/BL
`)⊕2

i⊕ // (σ2)−1(imH)⊕D1ML`
p⊕ // ((M/B)∗θB)⊕2 // 0

where i⊕ is the direct sum of the given inclusions, and p⊕ = (−2`+2ȟ
` σn)⊕σn.

Now let ∆((M/B)∗θB) denote the diagonal in (M/B)∗θB ⊕ (M/B)∗θB, and
∆a(D1M/BL

`) the anti-diagonal in D1M/BL
` ⊕D1M/BL

`. Then define

W̃ :=
p−1
⊕ ∆((M/B)∗θB)

∆a(D1M/BL`)
.

We observe that the kernel of the natural map

(σ2)−1(imH)⊕D1ML` ⊆ D2M/BL
` ⊕D1ML` →W2

`

is precisely ∆a(D1M/BL
`), so that we have a natural injection W̃ ↪→W2

` . Iden-
tifying

D1M/BL
` = (D1M/BL

`)⊕2/∆a(D1M/BL
`)

(M/B)∗θB = ∆((M/B)∗θB)

we have that i⊕, p⊕ define maps i : D1M/BL
` → W̃ and p : W̃ → (M/B) ∗ θB

which are injective, surjective, respectively.
This construction gives us an extension which is embedded in the second

symbol sequence of the heat operators of L`:

0 // D2M/BL
` //W2

`
// π∗θB // 0

0 // D1M/BL
` i⊕ //

� ?

OO

W̃
p⊕ //

� ?

OO

π∗θB // 0

.
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By construction, the extension class of the lower sequence is trivial, so that
(M/B)∗ is right exact when applied to the lower sequence, and we find an
embedded short exact sequence

0 // (M/B)∗D2M/BL
` // (M/B)∗W2

`

(M/B)∗σn // θB

0 // (M/B)∗D1M/BL
` //

� ?

OO

(M/B)∗W̃
(M/B)∗p⊕ //

� ?

OO

θB // 0.

(2.7)

It follows that (M/B)∗p locally has sections, and that such local sections pro-
vide local sections of (M/B)∗σn. In particular, (M/B)∗σn is surjective.

Corollary 2.2.9 (local Hitchin connection). The normal map

(M/B)∗σn : (M/B)∗W2
` → θB

is surjective so that

0 // (M/B)∗D2M/BL
` // (M/B)∗W2

`

(C/B)∗σn // θB // 0

is exact. As a consequence, Θ` locally has a connection given by heat operators, and
in particular, Θ` is locally free.

In corollary 2.2.6 we saw that, under certain conditions, (M/B)∗DkM/BL
` '

OB, so the last corollary implies that

P(M/B)∗σn :W2
` /OB → θB

is an isomorphism, and hence has a unique global section.

Corollary 2.2.10 (Hitchin projective connection). We have that Θ` has a flat
projective holomorphic connection, that is given by

0 // End0OBΘ`
// A0M/B Θ

` // θB

∇Hss
// 0 ,

where ∇H := P((M/B)∗σn)−1. It is uniquely determined by the property that it
can be locally given by a heat operator.
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It just remains to explain the flatness, so let X, Y be local vectorfields on B.
Then, at least locally, there are local sections WX,WY ,W[X,Y] of (M/B)∗σn
that, respectively, lift X, Y, [X, Y]. By direct computation one can verify that
[WX,WY ] is a local section of (M/B)∗W3

` and that (M/B)∗σn([∇HX ,∇HY ]) =

[X, Y]. Hence the normal symbol of [WX,WY ] −W[X,Y] vanishes, so that it is in
fact a local section of (M/B)∗D3M/BL

`. However, (M/B)∗D3M/BL
` = OB by

theorem 2.2.4, so that the image of [WX,WY ] −W[X,Y] in End0OBΘ` vanishes.



Chapter 3

Algebraic data of G-bundles over
pointed curves

Fix a simple and simply connected complex Lie group G. In this chapter
we investigate certain algebraic data determined by the following geometric
data: a family of pointed curves over a smooth complex base space, that is
endowed with a principal G-bundle. More precisely, we will consider the
following: a smooth finite dimensional complex manifold B, an N-pointed
family of curves (C/B, p), N ≥ 1, and a principal G-bundle P/C : P → C. To
this we shall associate certain OB-modules.

3.1 The data of an affine family of pointed curves

We recall the natural affine open cover of C that was introduced in Chapter 1:
let Ĉp be the completion of p in C, and let C0 be given by C\p. The intersection
C0 ∩ Ĉp is denoted Ĉ0p. We have that Ĉp, Ĉ0p, C0 are B-schemes, and that

O := (Ĉp/B)∗OĈp , A := (C0/B)∗OC0 , K := (Ĉ0p/B)∗OĈ0p ,

are quasi-coherent OB-algebras. The restriction map C0 → Ĉ0p induces an
injective map of sheaves A ↪→ K, so that we can identify A with an OB-
subalgebra of K. Similarly, the restriction Ĉ0p → Ĉ0p allows us to identify O
with an OB-subalgebra of K. There is another OB-subalgebra of K that we

33
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will often use:

K0 := Ker dK/OB ⊆ K.

As OB-algebra, O has precisely N maximal ideals, which correspond to the
points p1, . . . , pN - let mi be the maximal ideal corresponding to pi. We denote
the intersection of these by

m := ∩imi.

Clearly, the inclusion K0 ⊆ O induces an isomorphism K0 = O/m.
For a small affine open U ⊆ B, we have formal coordinates (t1, . . . , tN)

along p = (p1, . . . , pn) over U. Denoting OB(U) by R, we have that

O(U) =

N⊕
i=1

R[[ti]] ⊆ K(U) =
⊕
i

R((ti))

and also A(U) ⊆
⊕
i R((ti)). Furthermore,

mi = tiO(U), m =
∑
i

tiO(U),K0 = ⊕iR,

where in the last sum the i-th summand corresponds pi. Hence, up to iso-
morphism, all the information of (C/B, p), restricted to U, is encoded by the
subalgebra A(U) of

∑
i R((ti)).

Lemma 3.1.1. The map sending (C/B, p) to the quasi-coherentOB-algebrasO,A ⊆
K as above is functorial. It has a left inverse if we forget the ordering of p =

(p1, . . . , pN).

Proof. The functoriality is obvious from the definition. For the left inverse,
let (C/B, p) be a family ofN-pointed curves giving rise to quasi coherent OB-
algebras O,A ⊆ K as above. Then, continuing with the notation introduced
above, we have that C0 = Spec A, Ĉp = Spec O and Ĉ0p = Spec K. Moreover,
the maps Ĉ0p → Ĉp, Ĉ0p → C0 are the ones determined by the inclusionsO,A ⊆
K. Hence C = Spec O ×Spec K Spec A. The points p1, . . . , pN are determined
by the maximal OB ideals of O, though without ordering.

Example 3.1.2. Suppose B = Spec R. Let f(x) ∈ R[x] be of the form (x −

r1) · · · (x − r2g+1), ri ∈ R and g > 0, such that there are no ri, rj that are
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simultaneously zero on Spec R. So f is family of polynomials over B with
distinct roots. Then A = R[x, y]/(y2 − f(x)) defines an affine family C0 :=

Spec A of plane curves over B, whose regular functions are given by R[x] +

R[x]y. Let C̃ be the closure of this curve in P2 × B, then it consists of C0 and
a single (R-) point p at infinity. This point is singular, for every curve in the
family C̃/B. Let C be the normalization of C̃, then C is smooth and has a closed
R point determined by p - we also call it p. Near p, we can find a parameter
t such that x = t−2 and y = t−1−2gu(t), with u(t) a root of t2(2g+1)f(t−1) in
R[[t]]. In this case O(B) = R[[t]] ⊆ K(B) = R((t)) and A(B) = R[x] + R[x]y =

R[t−2] + t−1−2gu(t).

From the lemma above, we see that a pointed family of curves over B cor-
responds to a certain triple of OB-algebras. Therefore, the cohomology data
of the former must also be expressible in the latter. In the next subsection, we
will show how this is done.

3.1.1 Cohomology of an affine family of pointed curves

We will first study the cohomology of a single pointed curve in greater de-
tail; after that we treat the relative case in lesser detail. The reason for this
approach is the following: the arguments used for the relative case are local
variations of the ones used in the absolute case, but the notation used in the
relative case is more involved than in the absolute case. Hopefully, after read-
ing the part concerned with the absolute case, the reader can fill in the details
for the relative case. In the rest of this chapter, we will repeatedly use this
approach.

So, let (C/ Spec C, p) be anN-pointed curve. In this case, we will identify
O,K,A,K0 with their global sections, so that they are algebras over C. Con-
sider the singular cohomology of the pair (C,C0), C0 = C\p with complex
coefficients and focus on the following part of the long exact sequence of the
pair (C,C0):

H1(C,C0; C) // H1(C; C) // H1(C0; C) // H2(C,C0; C) //

// H2(C; C) // H2(C0; C).

Using the Thom isomorphism Hk(C,C0; C) = Hk−2(p; C), we see that

Hk(C,C0; C) =

{
0 k ≥ 2
K0 k = 0.
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Using the labeling of the points, we can identify K0 with CN.
By Poincare duality, we have thatH2(C; C) ' H0(C; C) ' C and by retract-

ing C0 to a 1 skeleton we see that H2(C0; C) = 0. Thus, the exact sequence
above simplifies to

0 // H1(C; C) // H1(C0; C)
w // K0

∑N
i=1 // C // 0 . (3.1)

In terms of De Rham representatives, the map ~w can be computed explic-
itly: take an element of H1(C0; C) and represent it by a closed smooth 1-
form α. Also, choose small open neighborhoods Vi, Ui of pi diffeomorphic
to B2 such that Vi ⊆ Ui, and denote U =

⋃
iUi, V =

⋃
iUi. We call a

C∞-function φ : C → [0, 1] a smooth cutoff function at p1, . . . , pN, subordi-
nate to U,V if φ is equal to 1 on C\U, and if φ is identically 0 on V - choose
such U,V,φ. Then φα has the same periods as α on C\U, so that it rep-
resents the same class in H1(C\U; C) = H1(C0; C). However, since φ van-
ishes near p, d(φα) is defined over C and therefore defines an element in
H2(U, ∂U; C) ' H2(B2, S1; C)N. But H2(B2, S1; C) has a canonical generator
given by B2, so H2(B2, S1; C) = H2(B

2, S1; C)∗ can be canonically identified
with C by the integration paring. Choose diffeomorphisms κi : Ui → B2 such
that κi(pi) = 0, denote αi = (κi)

∗α andφi = (κi)
∗φ. Then the i-th component

of w(α) is∫
Ui

d(φα) =

∫
B2

d(φiαi) =

∫
S1
φαi =

∫
S1
αi,

i.e. w(α)i is the winding number of α at pi. Note that∑
i

w(α)i =

∫
∂(C\U)

d(α) = 0,

so that w(α) lies in the hyperplane of CN with zero component sum.
To compute the cohomology of C0, can also use a holomorphic resolution:

since C0 is affine, H0,1(C0) = H1(C0,OC0) = 0, so H1(C0; C) = H1,0(C0).
Therefore the complex

0 // O(C0)
d // ω(C0) // 0 ,

computes the cohomology of C0. Here O(X) and ω(X) denote, respectively,
the holomorphic functions and holomorphic 1-forms of a complex variety X.
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Hence, for the first cohomology group we have

H1(C0; C) = ω(C0)/ dO(C0). (3.2)

Thus if we represent an element of H1(C0; C) by a holomorphic 1-form on
C0, w sends it to the vector of 2πi times residues at the points. The image
of H1,0(C; C) = ω(C) in H1(C0; C) = ω(C0)/ dO(C0) can now also be under-
stood as those holomorphic 1-forms onC0 that extend toC, and consequently,
the nontrivial elements ofH0,1(C; C) are represented by holomorphic 1-forms
on C0 that do not extend to C.

Consider the subset V of elements of ω(C0) that represent the image of
H1(C; C). By identifying elements of ω(C0) with their restrictions to Ĉ0p, we
can consider the subset d−1V ⊆ K, i.e. the elements of K whose differential
is the restriction of a holomorphic differential on C0, that corresponds to an
element in H1(C; C). Since a differential on Ĉ0p can always be integrated lo-
cally, the image of d( d−1V) inω(C0)/O(C0) coincides with that ofH1(C; C);
we identify these two. The kernel of the map d : ( d−1V) → H1(C; C) is
A+K0 ⊆ K, so that H1(C; C) = d−1(V)/(A+K0) where the isomorphism is
induced by d.

We now generalize the discussion above to the relative case: let (C/B, p)
be an N-pointed family of curves, and O,K,A,K0,m the corresponding OB-
modules. Below we will use the following notation: Hk(X;F) denotes the
singular cohomology of a topological space X with coefficients in a sheaf F
over X. Using this, we have for a small enoughU ⊆ B the following analogue
of (3.1):

0 // H1(CU; (CU/U)−1OB)U // H1(C0U; (CU/U)−1OB)U
w //

// K0(U) // OB(U) // 0.

HereH1(CU; (CU/U)−1OB)U is short forH1(CU; (CU/U)−1OB)/H1(U;OB), and
H1(C0U; (CU/U)−1OB)U has a similar meaning. Assuming that U is simply
connected, the exact sequence simplifies to

0 // H1(CU; (CU/U)−1OB) // H1(C0U; (CU/U)−1OB)
w //

// K0(U) // OB(U) // 0.
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The assignments that maps U to the OB(U)-modules above are presheaves.
By sheafification we obtain

0 // R1(C/B)∗(C/B)−1OB // R1(C0/B)∗(C0/B)−1OB
w //

// (C/B)∗K0 // OB // 0. (3.3)

The relative version of (3.2) reads

R1(C0/B)∗(C0/B)−1OB =
(C0/B)∗ωC0/B

dC0/BA
,

where we recall that Awas defined as (C0/B)∗OC0 .

Definition 3.1.3. Define

H := R1(C/B)∗(C/B)−1OB
and let B be the maximal subsheaf of K consisting of sections b ∈ K(U) such
that dĈ0p/Bb is the restriction of an element ofH(U) ⊆ ωC0/B(C0U)/ dC0/BA(U)

to Ĉ0p|U, for any U ⊆ B.

Lemma 3.1.4. The sheaf H is a locally free OB-module of finite rank with a natural
flat connection and the sheaf B is a quasi-coherent OB-module. Furthermore, the
differential d : K→ ωĈ0p/B

induces an isomorphismH ' B/(A+K0).

Proof. For a small contractible U ⊆ B containing a (closed) point b, Cb is a
retract of CU. Hence we have a natural isomorphism

H(U) = H1(CU; (CU/U)−1OB) = H1(Cb; C)⊗OB.

This clearly shows that H is locally free and of finite rank, and the naturality
of the isomorphism makes the flat structure determined by the isomorphism
is independent of the choices made.

Locally over B, ωĈ0p/B is of the form (
∑
iOB((ti))){ dt1, . . . , dtN}, so that

locally, a section ofωĈ0p/B has a primitive in K. Thus

0 // A+K0 // B
dĈ0p/B// H // 0

is exact. From this we see thatB, being an extension of quasicoherent sheaves,
is quasicoherent.

TheOB-module K has a natural presymplectic structure, as we will see in
the next subsection.
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3.1.2 (Pre)symplectic structure: the absolute case

We return, for the moment, a single N pointed curve (C/ Spec C, p), and let
the C-algebras K,O,A,K0 and m be as before.

Definition 3.1.5. Let (·, ·) : K ⊗C K→ C be defined by

f⊗ g 7→∑
i

Respi(g df).

In terms of the coordinates ti at pi introduced before,

(tkn, t
l
m) =

∑
i

Resi(tlmt
k−1
n dt) = δn,mδl+k,0.

If f, g ∈ K, then Respi(f dg) = Respi( d(fg))−Respi(g df) = − Respi(g df), so
that (·, ·) is antisymmetric. Furthermore, by the formula above, we see that if
dg is nonzero, there is always an f ∈ K such that

∑
i Respi(f dg) is nonzero,

so that the kernel of (·, ·) coincides with that of d, i.e. K0. We can therefore
conclude that (·, ·) is a degenerate presymplectic form on K with kernel K0.

Lemma 3.1.6. If f1, f2 ∈ B and c(f1), c(f2) are the elements that f1, f2 define in
H1(C; C) (via dĈ0p/B : B/(A+K0) ' H), respectively, then

∫
C
c(f1) ∧ c(f2) = −2πi(f1, f2).

Proof. We can find De Rham representatives as follows: let Uj, Vj be small
open neighborhoods of pj such that the following holds: fi is defined on U\p

for U = (
⋃
jUj), pj ∈ V j ⊆ Uj, Uj is diffeomorphic to B2 and Ui ∩ Uj = ∅

if i 6= j. Choose diffeomorphisms κj : Uj → B2 such that κj(pj) = 0, and
subsequently a cutoff function φ : C → [0, 1] near p, subordinate to U,V ,
where V =

⋃
j Vj. The differentials dfi on Ĉ0p are by assumption restrictions

of differentials, say αi, on C0. We then have that

α̃i := φαi + fi dφ

represents c(fi): first observe that this is a well defined closed 1-form on C.
Second, since on C\Uwe have that α̃i = αi, the periods of α̃i, αi on C are the
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same, so that these forms define the same cohomology class. Note that on U,
α̃i = φ dfi + fi dφ = d(fiφ). The rest now follows from Stokes’ theorem:∫
C
α̃1 ∧ α̃2 =

∫
C\U

α1 ∧ α2 +

∫
U

d(f1φ) ∧ α̃2 = 0+

∫
U

d(f1φα̃2)

=

∫
∂U
f1φ(φ df2 + f2 dφ) =

∫
∂U
f1 df2 = 2πi

∑
i

Respi(f1 df2)

= −2πi(f1, f2).

In the first we used that the wedge product of the forms of type (1, 0) vanishes
and in the fourth step that φ = 1 on C\U.

For any F ⊆ K, we write F⊥ for the annihilator of F in K with respect to
(·, ·).

Lemma 3.1.7. The following holds

• B = A⊥

• (·, ·) is well-defined and nondegenerate on A⊥/(A + K0) and corresponds to
the integration paring under the isomorphism A⊥/(A + K0) = H1(C; C),
which is induced by d.

• the isomorphism A⊥/(A + K0) ' H1(C; C) restricts to an isomorphism B ∩
m = ω(C).

Proof. If f ∈ B and g ∈ A, then df ∈ ω(C0) and therefore g df ∈ ω(C0)

as well. But (f, g) =
∑
i Respi g df = 0 by the residue theorem, so f ∈ A⊥.

The residue theorem also tells us that if
∑
i Respi df = 0, then df ∈ ω(C0).

Thus, if f ∈ A⊥ and g = 1 ∈ A, then 0 = (f, g) =
∑
i Respi df, so df ∈

ω(C0) and f ∈ B. Obviously, (·, ·) is well defined on A⊥/(A + K0), and
since it corresponds to the integration pairing by the previous lemma, it is
nondegenerate. Finally, if f ∈ B∩O, then df is regular near p, so df ∈ ω(C).
Conversely, if α ∈ ω(C0) is regular near p, then so is a primitive in K, hence
d(B ∩O) = d(B ∩m) = ω(C). But d is injective on m, so d : B ∩m→ ω(C)

is an isomorphism.

We summarize what we have derived above: to a pointed curve (C, p),
we associated a vector space H1(C; C), a symplectic form on H1(C; C) and a
Lagrangian subspace (B∩m)/(A+K0). The relative version of this is precisely
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the input data of Chapter 4. Before going to the relative case, we will first give
the relation with the presymplectic structure of K.

Proposition 3.1.8. LetK,K0,O,m,A, (·, ·) be as before, and define F+ = A⊥∩m.
Let A− be a complement for K0 in A. There exist linear subspaces F− ⊆ A⊥ and
A+ ⊆ m such that

• K = A− ⊕F− ⊕K0 ⊕F+ ⊕A+ and m = F+ ⊕A+,

• (A±,F±) = 0,

• (·, ·) restricts to a perfect pairing between F−,F+ and between A−,A+,

• the isomorphism A⊥/(A− + K0) = H1(C; C) identifies F− with H0,1(C) =

H1(C,OC) and F+ with H1,0(C) = H0(C,ωC),

• K≤0 := A+ F− +K0 is independent of the choice of F−.

Proof. Take for F− a lift of H0,1(C) ⊆ H1(C; C) to A⊥ under the isomorphism
A⊥/(A + K0) → H1(C; C), such that F− ∩ (A + K0) = 0 and F− ∩ F+ = 0.
We review how F− is identified withH0,1(C): let f be in F− and letU,V,φ be
as in the proof of lemma 3.1.6. Also, let α ∈ ω(C0) be the differential whose
restriction to Ĉ0p is df. Then the De Rham class of f is represented by φα +

f dφ. By the way F− was chosen, the (1, 0) part of this expression is exact;
the (0, 1) part equals f∂φ. Under the standard isomorphism H1(C,OC) '
H0,1(C), f∂φ corresponds to [f] ∈ H1(C,OC) = K/(A + O). So F− maps
surjectively ontoK/(A+O), and consequentlyK = A+F− +O = A− +F− +

K0 + m. Since in addition, all summands intersect trivially, K = A− ⊕ F− ⊕
K0 ⊕m.
Take A+ to be (F−)⊥ ∩m, then we have that

F+ ∩ A+ = m ∩ A⊥ ∩ (F−)⊥ = 0,

for d(m∩A⊥∩(F−)⊥) = H1,0(C)∩H0,1(C) = 0. Hence the map F+ → m/A+

is injective. However, (·, ·) is well defined and nondegenerate on F−⊗m/A+,
so F+ → m/A+ must be surjective as well. It follows that m = F+ ⊕A+, and
as a result of that, K = A− ⊕F− ⊕K0 ⊕F+ ⊕A+.

The second, third and forth assertion now follow from the definitions
(and lemma 3.1.7 for the fourth one). For the final assertion we remark that
K≤0 = d−1H0,1(C).
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3.1.3 (Pre)symplectic structure: the relative case

We now return to the relative setting: let (C/B, p) be a family of N-pointed
curves and K,O,m,K0,A,H the corresponding OB-modules.

Definition 3.1.9. Define (·, ·) : K ⊗OB K → OB to be the map that for local
sections f, g of K is given by

f⊗ g 7→ Resp(g dC/Bf).

If, locally over B, t1, . . . , tN are coordinates on C along p, then

(tki t
l
j) =

1

2πi
Resp(tljt

k−1
i dt) = δi,jδl+k,0.

The discussion above for the absolute case can, locally over B, be repeated for
the current relative setting. We give the resulting statements.

Corollary 3.1.10. The following holds:

• The kernel of (·, ·) is K0,

• for every U ⊆ B, b ∈ U and f1, g1 ∈ K(U),∫
Cb
c(f1) ∧ c(f2) = −2πi(f1, f2),

where c(fi) denotes the class of fi inH(U)

• B = A⊥,

• (·, ·) is well defined and nondegenerate on A⊥/(A + K0) and corresponds to
−2πi times the integration paring under the isomorphismA⊥/(A+K0) ' H
induced by dC/B,

• dC/B induces an isomorphism B ∩m ' (C/B)∗ωC/B.

The proofs of lemmas 3.1.6 and 3.1.7 can locally be adapted to the relative set-
ting - we will leave the details to the reader. The relative analogue of propo-
sition 3.1.8 is the following:

Proposition 3.1.11. Let the OB-modules K,K0,O,m,A and the OB-bilinear form
(·, ·) be as before, and define F+ = A⊥ ∩ m. Locally over B, one can choose a
complement A− for A ∩ K0 in A such that there exist OB-submodules F− ⊆ A⊥
and A+ ⊆ m such that
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• K = A− ⊕F− ⊕K0 ⊕F+ ⊕A+ and m = F+ ⊕A+,

• (A±,F±) = 0,

• (·, ·) restricts to a perfect pairing between F−,F+ and between A−,A+,

• the isomorphism A⊥/(A− + K0) = H induced by dC/B identifies F− with
R1(C/B)∗OC and F+ with (C/B)∗ωC/B,

• K≤0 := A+F− +K0 ⊆ K is independent of the choice of F− and is therefore
defined over all of B.

We emphasize that in the relative case, A±, F− can only be assumed to ex-
ist locally over B: since they are not chosen naturally, local choices of these
sheaves will in general not glue to global ones. Before proceeding to the next
section, we recall the following identities:

(Ĉp/B)∗ΩC/B = ΩO/OB ,

(Ĉ0p/B)∗ΩC/B = ΩK/OB ,

(C0/B)∗ΩC/B = ΩA/OB .

3.2 The data of an affine family of pointed curves en-
dowed with a labeled G-bundle

We will extend the situation of the previous section, i.e. families of pointed
curves, to principal G-bundles over them. This will be done first for the ab-
solute case: we start by letting (C/ Spec C, p) be a pointed curve and Ĉp, Ĉ0p,
C0, O, K, A, m, K0 be as before.

We recall that we fixed a simple and simply connected complex Lie group
Gwith Lie algebra g, and let P/C : P → C be a principal G-bundle. Define

Og := H0(Ĉp,AdP/C), Kg := H0(Ĉ0p,AdP/C), Ag := H0(C0,AdP/C).

Note that Og is an O-module, Kg is a K-module and Ag is a A-module. By
the first of these observations, we can define another subalgebra of Kg:

mg := Ogm.

Restriction to Ĉ0p gives inclusions Og,Ag ⊆ Kg. By construction, AdP/C inher-
its a Lie product, which in turn defines a Lie product on Kg over K. Clearly,
Ag,Og are subalgebras of Kg.
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Note that P/C is trivial over Ĉp and choose a trivialization - we can then
identify PĈp/Ĉp with G× Ĉp/Ĉp, and correspondingly, identify the restriction

of AdP/C to Ĉp with g ⊗ O. Hence Og ' g ⊗ O and Kg ' g ⊗ K. We let K̃0g
be the subalgebra of Og corresponding to g⊗K0 ⊆ g⊗O with respect to the
trivialization chosen, so

Og = K̃0g ⊗K0 O, Kg = K̃0g ⊗K0 K

as Lie algebras over O, K, respectively. Since C0 is affine, P is also trivial
over C0, as we saw in Chapter 1. Choose a trivialization PC0/C0 ' G ×
C0/C0 and let a be the subalgebra of Ag corresponding to g ⊗ 1 under the
identification AdP

C0
/C0 ' g × C0/C0. So Ag = a ⊗ A as A-Lie algebras and

a ' g. Since a provides a trivialization of AdP/C over C0, the restriction of
this to Ĉ0p provides a trivialization of AdP/C over Ĉ0p. Hence, regarding a a
subalgebra of Kfg, we have that aK = Kg.

Lemma 3.2.1. Up to isomorphism, AdP/C and its Lie product can be reconstructed
from K̃0g and a ⊆ K̃0g ⊗K0 K as above.

Proof. Both K̃0g and a provide a trivialization of AdP/C over Ĉp. Hence they
differ by a transition function g : Ĉ0p → Ad(G). The AdG-bundle

(g× C0)×
Ĉ0p

(g× Ĉp), (3.4)

obtained by gluing the trivial bundles on C0, Ĉp over Ĉ0p by means of g, is
isomorphic to AdP/C. Furthermore, the Lie products on Ag, Og define Lie
products on (3.4) over C0, Ĉp. The restrictions of these products to g × Ĉ0p
are the same. Moreover, since AdG leaves the product of g invariant, we also
have that g leaves the product on g × Ĉ0p invariant. Hence the product on
(3.4) over C0, Ĉp glue over Ĉ0p. This product is identified with the one on
AdPC under the isomorphism that identifies (3.4) with the latter.

Remark 3.2.2. Since P/C is trivial onC0, Ĉp, it is obtained by gluingG×C0, G×
Ĉp over Ĉ0p by means of a transition function g̃ : Ĉ0p → G. The adjoint bundle
is then obtained by the transition function Ad(̃g). Hence, we can take g in
the proof above to be equal to Adg̃. Since Z(G) = Ker(G → AdG), g̃ is in
general not uniquely determined by g. We also note that the class of g in
LG(C0)\LG(Ĉ0p)/L

≥0G(Ĉ0p) corresponds to the isomorphism type of P/C in
the moduli space of G-bundles over C.
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Assume that P/C has a flat connection ∇. This determines a flat connection
on AdP/C, which we also denote ∇. Since the latter comes from a connection
on P/C, it preserves [·, ·]. Given∇, there is a canonical choice for K̃0g:

K0g := Ker∇ ⊆ Og.

Lemma 3.2.3. For any choice of a as before, AdP/C, ∇ can be reconstructed from
K0g, a ⊆ K0g ⊗K0 K up to isomorphism.

Proof. We already saw how P/C can be reconstructed from K0g, a. Let ∇Ĉp
be the unique connection on Ad

PĈp/Ĉp
that has K0g as its flat sections and

let ∇Ĉ0p be its restriction to Ĉ0p. Then ∇Ĉ0p has the property that if X is the

restriction of a vectorfield on C0, then ∇Ĉ
0
p

X preserves Ag. This means that
∇Ĉ0p extends uniquely to a connection over both Ĉp and C0, and therefore
defines a connection on AdP/C, which by construction coincides with∇.

Lemma 3.2.4. One can choose a trivialization of PC0/C0 such that the correspond-
ing a is a subalgebra of K0g iff P/C is trivial and ∇ has no monodromy. If P/C is
regularly stable, then a ∩ K0g = 0 for any trivialization of PC0/C0.

Proof. In case P/C is trivial and ∇ has no monodromy, then there is a triv-
ialization of PC0/C0 coming from a flat trivialization of P/C - this has the
property that a = a ∩K0g. Conversely, if a ∩K0g = a, then a consists of flat sec-
tions that extend to p, so that AdP/C has a global basis of flat sections. Hence
we can take g as in the proof of lemma 3.2.1 to be the map Ĉ0p → {1}. Let g̃ be
the transition function corresponding to the trivialization of P/C over C0, Ĉp
chosen, then Adg̃ = g. Hence g̃ takes values in Z(G). Since G is a simple
algebraic group, Z(G) is discrete and therefore gmust be constant, and there-
fore extends to C0. By changing the trivialization over C0 accordingly, we can
assume g to be constant equal to 1, and hence P/C trivial. Since the trivial-
ization was flat, P/C admits a global flat trivialization so that ∇ has trivial
monodromy.

Finally, if X ∈ a ∩ K0g, then X ∈ H0(C,AdP/C), which is the space of in-
finitesimal automorphisms of P/C, which trivial if P/C is regularly stable.

We proceed to the relative setting: let(C/B, p) be a family of pointed curves
and P/C : P → C a principalG-bundle. Furthermore, let Ĉp/B, Ĉ0p/B, C0/B and
their structure sheaves O,K,A be as before.
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Definition 3.2.5. We define the following OB-modules

Og := (Ĉp/B)∗AdP/C , Kg := (Ĉ0p/B)∗AdP/C , Ag := (C0/B)∗AdP/C .

Clearly,Og, Kg,Ag are also modules overO, K,A respectively, and we define

mg := Ogm.

Suppose that P/C has a flat connection∇ over C/B, i.e. an algebra morphism
θC/B → (P/C)G∗ θP/B which is a section of the derivative of P/C. Given ∇ we
define the K0-module

K0g := Ker∇ ⊆ Kg.

As in the absolute setting, the Lie bracket of g determines a K-linear Lie
bracket [·, ·] on Kg and Og,Ag are subalgebras of Kg. Furthermore, [·, ·] is flat
for ∇, so that K0g is a subalgebra of Kg, and Og = O ⊗K0 K0g, Kg = K ⊗K0 K0g
as O,K Lie algebras, respectively.

Locally over B, we can assume C0 to be affine, so that PC0/C0 is trivial - let
U ⊆ B such so that this is the case. If we choose a trivialization of PU/C0U, we
obtain, in a similar way as above, aOU subalgebra a ofKg|U that is isomorphic
to g ⊗ OU and such that Ag|U = a ⊗ AU as AU-algebra. Lemmas 3.2.3 and
3.2.4, and their proofs, can be adapted to this relative setting, provided we
work locally over B; we will just give the statement.

Corollary 3.2.6. We can reconstruct AdP/C , the Lie product on AdP/C and∇ from
K0g,Ag ⊆ Kg, up to isomorphism. Furthermore, let a be as above for a local trivial-
ization (local over B) of PC0/C0. Then, still locally over B,

• one can choose a ⊆ Kg as above such that a ⊆ K0g iff P/C is trivial and ∇ has
no monodromy,

• if P/C is regularly stable, then a ∩ K0g = 0 for any (local) choice of a.

For the second to last point, we recall that since ∇ lifts sections of θC/B,
parallel transport is only defined for paths in a fiber of C/B.

3.2.1 The cohomology of a family of G-bundles over a family of
pointed curves

There is a presymplectic structure on Kg that has properties similar to that of
K. In order to define it, we need the following: let tr be a nontrivial symmetric
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bilinear G-invariant form on g. We recall that symmetric bilinear G-invariant
forms on g are proportional, and that the Killing form is one of them. Since G
is simple, the Killing form is nondegenerate, and hence tr as well. Later on,
we will assume tr to have a specific normalization, but for the moment we do
not need this.

Since K0g can locally over B be identified with g ⊗ K0, we can transfer tr
to a K0 bilinear form on K0g - one can check that this does not depend on the
choice of isomorphism. This extendsK linearly toKg = K0g⊗K0K, and we also
denote the resulting bilinear form by tr. By construction, it is nondegenerate
and invariant under the adjoint action of Kg on itself. Moreover, it is flat with
respect to∇.

We will describe the (pre)symplectic structure first for the absolute case,
and we will do this using the notation introduced above. In particular, P/C is
a principal G-bundle with flat connection ∇ over a pointed curve (C, p). We
will also need the following: let G be the sheaf of flat local sections of AdP/C over
C, soK0g = H0(Ĉ0p,G). Below we will denote byHi(X;F) the i-th cohomology
group of the topological space X with coefficients in the sheaf F over X; if
X is a scheme and F and OX-module, then Hi(X,F) denotes the coherent
cohomology group.

We consider the following part of the exact sequence of the pairC,C0 with
coefficients in G:

H1(C,C0;G) // H1(C;G) // H1(C0;G) //

// H2(C,C0;G) // H2(C;G) // H2(C0;G) // 0.

Using the Thom isomorphism, we have that Hi(C,C0;G) = Hi−2(p;G). This
vanishes for i 6= 2, and in the remaining case we can identify it with K0g.
Furthermore, observe that C0 has the homotopy type of a 1-skeleton, so that
H2(C0;G) = 0. By Poincare duality, H2(C;G) = H0(C;G)∗, which in turn can
be identified with H0(C;G). The exact sequence above therefore reduces to

0 // H1(C;G) // H1(C0;G)
wg // K0g // H0(C;G) // 0. (3.5)

The cohomology groups above can be computed using the De Rham resolu-
tion with differential∇, e.g H1(C0;G) is given by

{x ∈ E1C0(G) | ∇x = 0}/∇E0C0(G).
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Since H2(C0;G) = 0, this is just equal to E1
C0

(G)/∇E0
C0

(G). The (0, 1) part of
H1(C0;G) with respect to the Hodge decomposition vanishes, for

E0,1C0 (G)/∇0,1E0,0C0 (G) = E0,1C0 (AdP/C)/∂E0,0C0 (AdP/C) = H1(C0,AdP/C).

Here the left term is the (0, 1) part of the complex De Rham cohomology
group, the middle part is the first Dolbeault cohomology group of the sheaf
AdP/C and the last term is the sheaf cohomology of AdP/C over C0. We also
used that Ep,q(G) = Ep,q(AdP/C). Since C0 is affine and AdP/C coherent,
H1(C0,G) vanishes. It therefore follows that

H1(C0;G) = E1,0C0 (G)/∇1,0E0,0C0 (G) = E1,0C0 (AdP/C)/∇1,0E0,0C0 (AdP/C)

=
H0(C0,ωC0 ⊗AdP/C)

∇H0(C0,AdP/C)
=
ωA ⊗A Ag

∇Ag
.

In the last step we used that ωC0 ⊗OC0 AdP/C = a ⊗C ωC0 , where a is as in
lemma 3.2.3.

The map wg in (3.5) has a description similar to the one for map the w
introduced before: take an element of H1(C0;G) and represent is by some
element α ofH0(C0,ωC0 ⊗AdP/C). Its restriction to Ĉ0p can be written as Xiαi
for certain Xi ∈ K0g, αi ∈ ωK. Identifying K0g with ⊕iK0g ∩H0(Ĉ0pi ; AdP/C), we
have that the i-th component ofwg(α) with respect to this direct sum is given
by

wg(α)i =
1

2πi
Respi(αj)X

j. (3.6)

3.2.2 (Pre)symplectic structure: the absolute case

Using the K-bilinear form tr on Kg introduced before, we define the follow-
ing.

Definition 3.2.7. Let (·, ·)g : Kg ⊗K0 Kg → C be the OB bilinear form on Kg

that satisfies

(x, y)g =
∑
i

Respi tr(y,∇x)

for local sections x, y of Kg.
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If f, g ∈ K and X, Y ∈ K0g then

(X⊗ f, Y ⊗ g) = tr(X, Y)(f, g).

From this, we immediately see that (·, ·)g is C linear, antisymmetric, and has
kernel K0g. Below we will construct a “nice” decomposition of Kg, similar to
the one for K as in proposition 3.1.8.

We start by noting that restriction to Ĉ0p identifies H0(C0,ωC ⊗ AdP/C)

with a subset of H0(Ĉ0p,ωC ⊗ AdP/C) = ωK/K0 ⊗K0 Kg. Define Bg to be the
maximal subset of Kg such that ∇(Bg) lies in the image of H1(C;G) ⊆ H1(C0;G).
We have that∇(Bg) = H0(C0,ωC⊗AdP/C), because over Ĉ0p we can solve the
system of first order equations given by ∇f = α, α ∈ H0(C0,ωC ⊗ AdP/C)

and f ∈ Kg. Therefore, the sequence

0 // Ag +K0g // Bg
∇ // H1(C;G) // 0

is exact. We can now formulate the analogues of Lemmas 3.1.6 and 3.1.7 :

Lemma 3.2.8. Suppose f1, f2 ∈ Bg and let c(f1), c(f2) be De Rham representatives
for the classes they define in H1(C;G). Then∫

C
tr(c(f1) ∧ c(f2)) = −2πi(f1, f2)g.

Proof. Let U,V,φ be as in the proof of lemma 3.1.6. Without loss of gener-
ality, we can assume that AdP/C, ∇ are trivial over U, and we let Xi be a
basis of flat sections of AdP/C overU. Furthermore, let α1, α2 be the elements
in H0(C0;ωC ⊗ AdP/C) whose restriction to Ĉ0p equals ∇f1,∇f2, respectively.
Then α̃i = φαi+ fi dφ represents c(fi) inH1(C; AdP/C). OverUwe have that
α̃i = φ∇fi + fi dφ = ∇(φfi) so that∫
C

tr(c(f1)∧c(f2)) =

∫
C\U

tr(α̃1∧α̃2)+
∫
U

tr(α̃1∧α̃2) =

∫
U

tr(∇(φf1)∧∇(φf2)),

where we used that over C\U, α̃i = αi so tr(α1 ∧ α2) is of type (2, 0).
On Uwe can write fi = f

j
iXj for certain fji ∈ K. Using that the Xj’s are flat,

we conclude that∫
C

tr(c(f1) ∧ c(f2)) =

∫
U

tr(Xi d(φfi1) ∧ Xj d(φf
j
2))

= tr(Xi, Xj)
∫
U

d(φfi1) ∧ d(φf
j
2)

= tr(Xi, Xj)
∑
k

2πi Respk(f
i
1, f

j
2) = −2πi(f1, f2).
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To derive the second to last step, one can use Stokes’s theorem in a similar
way as at the end of lemma 3.1.6.

Lemma 3.2.9. The following holds

• Bg = A⊥g ,

• (·, ·)g is a well defined and symplectic form onA⊥g /(Ag +K0g) and corresponds
to the tr-integration pairing under the isomorphism

A⊥g /(Ag +K0g) = H1(C;G)

that is induced by∇,

• this isomorphism restricts to an isomorphism Bg∩mg = H0(C,ωC⊗AdP/C).

Proof. If f ∈ Bg and g ∈ Ag, then ∇f ∈ H0(C0,ωC ⊗ AdP/C), and therefore
tr(g∇f) ∈ ω(C0) as well. The sum of the residues of this differential at p
vanishes, so (f, g) = 0 - hence Bg ⊆ A⊥g . Conversely, suppose that f ∈ A⊥g ,
then for all g ∈ Ag, 0 = (f, g) =

∑
i Respi tr(g∇f), so tr(g∇f) lies inω(C0) (for

all g ∈ Ag) by the residue theorem. If we let g run over an orthogonal basis
{Yi} of a, with a as before for some choice of trivialization of PC0/C0 and write
∇f = Yiα

i for some meromorphic 1-form αi, we see that αi ∈ ω(C0) for all i.
Hence∇f ∈ H0(C0,ωC ⊗AdP/C), so f ∈ Bg and A⊥ ⊆ B.

Obviously, (·, ·)g is well defined onA⊥g /(Ag+K0g), and since it corresponds
to the tr-integration pairing by the previous lemma, it is nondegenerate. Fi-
nally, if f ∈ Bg ∩ mg, then ∇f is regular near p, so ∇f ∈ H0(C,ωC ⊗ AdP/C).
Conversely, if Yiαi ∈ H0(C,ωC ⊗AdP/C) is regular near p, then so is it prim-
itive in Kg, and hence Bg ∩ Og → H0(C,ωC ⊗ AdP/C) is surjective; its kernel
is obviously Bg ∩ K0g.

Using these lemmas, we can formulate the “orthogonal” decomposition
result for the absolute case:

Proposition 3.2.10. Let Kg,Og,mg,K0g,Ag, (·, ·)g be as before, and define F+
g =

A⊥g ∩ mg. Also, let A−
g be a complement for K0g ∩ Ag in Ag. There exist linear

subspaces F−
g ⊆ A⊥g and A+

g ⊆ mg such that

• Kg = A−
g ⊕F−

g ⊕K0g ⊕F+
g ⊕A+

g and mg = F+
g ⊕A+

g ,

• (A±g ,F±g ) = 0,
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• (·, ·)g restricts to a perfect pairing between F−
g ,F+

g and between A−
g ,A+

g ,

• the isomorphism A⊥g /(A−
g + K0g) ' H1(C;G) identifies F−

g and F+
g with

H1(C,AdP/C) and H0(C,ωC ⊗AdP/C), respectively,

• K≤0g := Ag + F−
g +K0g is independent of the choice of F−

g .

Proof. Take for F−
g a lift of H0,1(C;G) ⊆ H1(C;G) to A⊥g such that F−

g ∩ (Ag +

K0g) = 0 and F−
g ∩ F+

g = 0. We review how F−
g is identified with H0,1(C;G):

let f be in F−
g , let U,V,φ be as in the proof of lemma 3.1.6, and let α be the

element of H0(C0,ωC ⊗AdP/C) corresponding to f. Then the De Rham class
of f in H1(C;G) is represented by φα+ f dφ. By the way F−

g was chosen, the
(1, 0) part of this expression is exact; the (0, 1) part equals f∂φ. Under the
standard isomorphism H1(C,AdP/C) ' H0,1(C;G), f∂φ corresponds to [f] ∈
H1(C,AdP/C) = Kg/(Ag +Og). So F−

g maps surjectively onto Kg/(Ag +Og),
an consequentlyKg = Ag +F−

g +Og = A−
g +F−

g +K0g +mg. Since in addition,
all summands intersect trivially, Kg = A−

g ⊕F−
g ⊕K0g ⊕mg.

Take A+
g to be (F−

g )⊥ ∩ mg, then because F+
g ∩ A+

g = 0, the map F+
g →

mg/((F−
g )⊥ ∩ mg) is injective. However, (·, ·) is well defined and nondegen-

erate on F−
g ×mg/A+

g , so F+
g → mg/((F−

g )⊥ ∩mg) must be surjective as well.
It follows that mg = F+

g ⊕A+
g , and as a result of that, Kg = A−

g ⊕ F−
g ⊕ K0g ⊕

F+
g ⊕A+

g . For the final assertion we remark that K≤0g = ∇−1H0,1(C;G).

3.2.3 (Pre)symplectic structure: the relative case

We continue the discussion for a family of pointed curves (C/B, p), endowed
with a principal G-bundle (P, C), and assume that P has a flat connection ∇
over C/B. Again, we denote the sheaf of flat local sections of AdP/C over C by G.

Analogous to 3.5, the long exact sequence of the relative cohomology over
B of the pair C, C0 with coefficients in G reduces to

0 // R1(C/B)∗G // R1(C0/B)∗G
wg // K0g // (C/B)∗G // 0,

where this is now an exact sequence of OB-modules. Note that if P/C is reg-
ularly stable, (C/B)∗G ⊆ (C/B)∗AdP/C = 0, since the last term is the sheaf of
infinitesimal automorphisms. Furthermore, we have that

R1(C0/B)∗G =
(C0/B)∗ωC0/B ⊗AdP/C
∇(C0/B)∗AdP/C

=
ωA/OB ⊗A Ag

∇Ag
.
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Equation (3.6) for wg still holds, provided we now interpret Kg,K0g as OB-
modules: if αiXi is a local section of R1(C0/B)∗G, where αi, Xi are local section
of R1(C0/B)∗(C0/B)−1OB and (C0/B)∗G respectively, then

wg(αiX
i)j = Respj(αi)X

i.

Definition 3.2.11. Let Hg be short for R1(C/B)∗G. Furthermore, let B̃g be the
maximal subsheaf of (C0/B)∗(ωC/B ⊗ AdP/C) with image in R1(C0/B)∗AdP/C
equal toHg, and let Bg be the maximal K0-submodule of Kg such that∇Bg ⊆
B̃g, where we identified B̃g with a submodule of Kg ⊗ωC/B.

The map∇ : Kg → Kg⊗ΩK/OB is surjective, so that by definition,∇ : Bg → B̃g

is also surjective. Hence Bg is mapped surjectively toHg, so that the following
sequence is exact:

0 // Ag +K0g // Bg
∇ // Hg // 0.

Note that for a closed b ∈ B, the fiber of Hb is just H1(Cb;G). Moreover,
the pairing that (·, ·)g induces onHb is the tr-integration pairing from lemma
3.2.8, where the integration is over Cb.

We have the following analogue of lemma 3.2.9:

Lemma 3.2.12. The following holds:

• Bg = A⊥g ,

• (·, ·)g is a well defined and symplectic form onA⊥g /(Ag +K0g) and corresponds
to the tr-fiber-integration pairing under A⊥g /(Ag +K0g) ' Hg,

• this isomorphism identifies Bg ∩mg with (C/B)∗ωC/B ⊗AdP/C .

The relative version of proposition 3.2.10 reads:

Proposition 3.2.13. Let Kg,Og,mg,K0g,Ag, (·, ·)g be as before, and define F+
g =

A⊥g ∩ mg. Locally over B, there are OB-modules A−
g ⊆ Ag, F−

g ⊆ A⊥g and A+
g ⊆

mg such that A−
g is a complement for K0g ∩ Ag in Ag and

• Kg = A−
g ⊕F−

g ⊕K0g ⊕F+
g ⊕A+

g and mg = F+
g ⊕A+

g ,

• (A±g ,F±g ) = 0,

• (·, ·)g restricts to a perfect pairing between F−
g ,F+

g and between A−
g ,A+

g ,
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• the isomorphism A⊥g /(A−
g + K0g) ' Hg identifies F−

g with R1(C/B)∗AdP/C
and F+ with (C/B)∗(ωC/B ⊗AdP/C),

• K≤0g := Ag + F−
g +K0g is independent of the choice of F−

g .

The proof is an adaptation of the proof of proposition 3.2.10, where one con-
siders CU/U instead of C/ Spec , where U is such that C0 affine; again, details
are left to the reader. We note that for regularly stable bundles, Ag ∩ Og = 0,
so that we can take A−

g = Ag.

3.2.4 G-symmetry for the case of a trivial bundle with trivial con-
nection

In Chapter 5, we will need a certain G-symmetry of Kg in order to construct
the WZW connection. More specifically:

Assumption 3.2.14 (triviality assumption). We assume that there is a G-action
on Kg that commutes with ∇, leaves [·, ·] invariant, preserves Ag and acts
without fixed points.

Lemma 3.2.15. Suppose P/C is trivial and ∇ has trivial monodromy. Then, locally
over B, Kg has a G-action that satisfies (3.2.14), and preserves tr. Moreover, one can
locally identify Kg with K ⊗ g, such that 1⊗ g consists of flat sections.

Proof. By corollary 3.2.6, locally over B there exists a subalgebra a ofAg ∩K0g,
isomorphic to g and such that Ag = aA - choose such an a and an isomor-
phism a ' g. Then by via the adjoint action, G acts K linearly on g ⊗ K '
a⊗K = Kg and preservesAg. The Lie bracket ofKg is preserved by this action
since the adjoint action of G on g preserves the product; the same goes for tr.
Furthermore, a ⊆ K0, so aK0 = K0g. Since this is preserved by G, it follows
that ∇ commutes with the G-action by K linearity. Finally, there are no fixed
points in g under G (recall that G is a simple algebraic group), so there are
also no fixed points in Kg under G.

We now investigate the relation of proposition 3.2.13with theG-action. First,
note that because K0g is preserved under G, and that the action is K linear,
mK0g = mg andOK0g = Og are also preserved. In fact, it is possible to preserve
the entire decomposition of Kg of proposition 3.2.13:
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Lemma 3.2.16. Assume that locally over B, Kg has a G-action as described in
(3.2.14). Then G acts symplectically on Kg and preserves F+

g . In addition, one
can, locally over B, chooseA±g , Bg and F+

g as in proposition 3.2.13 to beG-invariant.

Proof. Since G preserves mg and Ag, F+
g is clearly also G-invariant. Further-

more, since the G-action commutes with∇, we have that

(g · X1f1, g · X2f2)g = Resp tr(g · X2f2∇g · X1f1)
= tr(g · X2, g · X1) Resp(f2 dC/Bf1)

= tr(X2, X1) Resp(f2 dC/Bf1) = (X1f1, X2f2)g

for any Xi ∈ K0g and fi ∈ K. Here we used the G invariance of tr. Since
Kg is generated by = KK0g, it follows that G preserves (·, ·)g. As a conse-
quence, orthogonal complements of invariant subspaces are preserved, and
in particular, A⊥g is G-invariant. In the proof of 3.2.13, A−

g was chosen as a
complement for K0g ∩Ag in Ag, F− as a complement for Ag +K0g +F+

g in A⊥g
and A+

g as complement for F+
g in mg. Since G is reductive, one can choose a

complement for G-invariant subspace to be G-invariant. Hence F−
g ,A±g can

be chosen to be G-invariant.

3.3 Derivations

We finish this chapter with the relations between the presymplectic struc-
ture described above and the derivations associated to the pointed family
(C/B, p). Besides θC/B, these are

• θĈ0p/B = θK/OB ,

• θĈp/B = θO/OB ,

• (C0/B)∗θC0/B = θA/OB .

Restriction of Ĉp, C0, to Ĉ0p gives, respectively, injective algebra morphisms
θO/OB ↪→ θK/OB , θA/OB ↪→ θK/OB , and we will often identify θO/OB , θA/OB
with their images in θK/OB . Furthermore, we will sometimes also consider
the following sheaves of OB-algebras:

Definition 3.3.1. We denote the subsheaves of, respectively, θK/C, θO/C, θA/C
that preserve OB by θK,OB/C, θO,OB/C, θA,OB/C.
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Again, restriction to Ĉ0p identifies θO,OB/C and θA,OB/C with subalgebras of
θK,OB/C. By definition, we have inclusions

θK/OB ⊆ θK,OB/C, θO/OB ⊆ θO,OB/C, θA/OB ⊆ θA,OB/C.

Lemma 3.3.2. For local sections x, y, z of Kg, e, f, g of K and D of θK/OB we have
the following properties:

(ef, g) = (e, fg) + (f, eg) (3.7)

(De, f) = −(e,Df) = (Df, e) (3.8)

(eDf, g) = (eDg, f) (3.9)

0 = ([x, y], z)g + ([y, z], x)g + ([z, y], x)g (3.10)

(∇Dx, y)g = −(x,∇Dy)g = (∇Dy, x)g (3.11)

([x,∇Dy], z)g = (y, [x,∇Dz])g = −([x,∇Dz], y)g (3.12)

Proof. The first statement is the equality∑
i

Respi(g dC/B(ef)) =
∑
i

Respi(eg dC/Bf) + Respi(gf dC/Be).

For (3.8), let LD denote the Lie derivative with respect toD and ιD contraction
of a 1-form with D, so LD = dC/BιD + ιD dC/B when acting on differential
forms. Observe that

f dC/B(De) +Df dC/Be = f dC/BLD(e) + LD(f) dC/Be = LD(e dC/Bf).

and that becauseΩ∧2
C/B = 0,

LD(e dC/Bf) = ( dC/BιD + ιD dC/B)(e dC/Bf) = dC/BιD(e dC/Bf)

is exact. It follows that

(De, f) + (e,Df) =
∑
i

Respi(f dC/BDe) +
∑
i

Respi(Df dC/Be)

=
∑
i

Respi(LD(e dC/Bf) = 0.

Relation (3.9) simply follows from (3.8) by noting that eD is also again an
element of θK,R/C.
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To prove (3.10)-(3.12), we can, without loss of generality, assume that
x, y, z are respectively of the form Xe, Yf, Zg, where X, Y, Z ∈ K0g. Then

([Xe, Yf], Zg)g = tr([X, Y], Z)(ef, g)

= − tr(X, [Z, Y])(e, fg) − tr(Y, [X,Z])(f, eg)

= −(Xe, [Zg, Yf])g − (Yf, [Xe, Zg])g

= −([Yf, Zg], Xe)g − ([Zg,Xe], Yf)g

proves the (3.10),

(∇DXe, Yf)g = tr(X, Y)(De, f) = − tr(X, Y)(e,Df) = −(Xe,∇DYf),

proves (3.12) and

([Xe,∇DYf], Zg)g = tr([X, Y], Z)(eD(f), g) = tr(Y, [X,Z])(f, eDg)

= (Yf, [Xe,∇DZg])g

proves the sixth equation.

Finally, we have the following useful result.

Lemma 3.3.3. If D is a local section of ∈ θA/OB , f a local section of A⊥ and x of
A⊥g , thenDf is a local section ofA and∇Dx ofAg. If∇ extends to a connection over
B, so∇ is also defined on θK,OB/C, then forD a local section of θA,OB/C,D maps A
to itself and∇D maps Ag to itself.

Proof. By definition of B = A⊥, f has the property that dĈ0p/Bf extends to a lo-

cal section of (C0/B)∗ωC/B, so thatDf, being the contraction between sections
of θC0/B and (C0/B)∗ωC/B, is a section of (C0/B)∗OC = A.

A similar argument goes for Bg = A⊥g : ∇Dx is the contraction between
D, ∇x, and since the first lies θC0/B, and the second in (C0/B)∗AdP/C, the
contraction is a local section of (C0/B)∗AdP/C = Ag.

The final assertion follows form the observation that is f is a local section
of A (or Ag), then locally over B, both D (or ∇D) and f are defined on C0, so
that Df (or ∇Df) is also defined on C0, and hence is a local section of A (or
Ag).



Chapter 4

The Fock representation associated to a
variation of Hodge structure

In the previous chapter, we have extracted certain algebraic data from a geo-
metric object: a family of pointed curves, endowed with aG-bundle with con-
nection. This data will serve as input for this chapter and the next. Morally
speaking, in this chapter we will only use the cohomological data associated
to the geometry, whereas in the next one, we will use a little more. Both out-
puts will be compared in the last chapter where, as we will see, the results of
this chapter can be interpreted as the “graded” version of the next chapter,
with respect to a certain natural filtration. We start by, basically, redoing the
first part of [10].

4.1 The Fock module F(H,F).

We will work with the following setting: let B be a smooth finite dimensional
complex manifold with sheaf of holomorphic functions OB. Furthermore,
we assume given a locally free OB-module H of finite rank, a OB-bilinear
symplectic form (·, ·), and a Lagrangian OB-submodule F of H. The reader
can take B,F ,H, (·, ·) as in the previous chapter as example in mind. Below
we will often shorten the assumption ‘x is a local section of an OB-module
M’ to x ∈M - we trust that no confusion will arise.

57
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Since (·, ·) is nondegenerate,

H→ H∗ := HomOB(H,OB) : a 7→ (a, ·)

is an isomorphism; we call the pair (H, (·, ·)) a symplectic OB-module. There
is a Lie algebra naturally associated to the symplectic OB-module (H, (·, ·)):

Definition 4.1.1. Define Ĥ := H⊕OB and endow it with the product

[a⊕ r, b⊕ r ′] = 0⊕ (a, b).

The global section 0⊕ 1 is denoted ~.

One easily checks that (Ĥ, [·, ·]) is a Lie algebra with center OB~; it is called
the Heisenberg algebra. If we regardH as Lie algebra with trivial product, than
Ĥ is a central extension ofH by OB with central generator ~.

Identify the isotropic submodule F ⊆ Hwith its image in Ĥ, and observe
that it is an abelian subalgebra, as is the trivial central extension F̂ := F+~OB.
The latter has a character χ, given by the projection to OB along F . One can
use χ, or any multiple of χ, to define an action of F̂ on OB.

Definition 4.1.2. To the tuple (H, (·, ·),F , `), with ` ∈ Z and the rest as above,
we associate the Verma module

F(H,F)` := UĤ ⊗
UF̂ OB,

where F̂ acts onOB by `χ. We call this the Fock module associated to (H, (·, ·),F)

of level ` and write f` for the (global) generator 1⊗ 1.

From now on, we will assume ` in Z to be fixed. Note that ~ acts on F(H,F)` as
multiplication by `, and that ` is in fact characterized by this property.

If F ′ is a Lagrangian subspace complementary to F , we have that the
inclusion Sym•F ′ → F(H,F)` is an isomorphism: surjectivity follows by
commuting all factors ~OB andF to the right, were they act via multiplication
and 0 respectively. Injectivity follows from the vanishing of (·, ·) on F ′. We
write ~x ◦ f0 for the image of ~x ∈ Sym•F

′ in F(H,F)`

4.1.1 The representation of sp(H) on F(H,F)`

There is a canonical representation of sp(H) on F(H,F)`, as we will show
next. By tensoring an isomorphism H → H∗ with H, we obtain another iso-
morphism H ⊗ H → H ⊗ H∗ = End(H). In case of the one induced by the
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symplectic form, we call the resulting map E:

E : H⊗H // H⊗H∗ : a⊗ b � // (x 7→ a(b, x)) .

The natural involution on H ⊗ H corresponds to an involution on End(H)

under this isomorphism, and we denote it by (·)>, so

(Ea⊗b)
> = Eb⊗a.

Since (Ea⊗bx, y) + (x, Ea⊗by) = (b, x)(a, y) + (b, y)(x, a), we see that Ea⊗b is
symplectic iff a = b. It follows that E restricts to an isomorphism Sym2H →
sp(H) and that sp(H) is the fixedpoint set of (·)>.

We now introduce a special class of local bases of H, in which E takes a
very nice form.

Definition 4.1.3. We call a set of local sections {ei}|i|=1,...,n ⊂ H a local qua-
sisymplectic basis of H over OB, if locally it is a basis for H over OB and
(ei, ej) = iδi,−j.

Given such {ei} and a x ∈ H, we have that x =
∑
i

(x,e−i)
i ei. Using this, one

readily verifies that

E−1(α) =

n∑
|i|=1

−1

i
αei ⊗ e−i =

n∑
|i|,|j|=1

(αei, ej)

ij
e−i ⊗ e−j.

If we regardHom(H/F ,F) as a submodule ofHom(H,H), then E restricts to
an isomorphism of Sym2F to Hom(H/F ,F): suppose a⊗ a ∈ Sym2F , then
Ea⊗a obviously has its image in F and has kernel equal to F , so that it factors
overH/F ' F ′. Conversely, if Ea⊗b maps to F and has kernel F , then b ∈ F
and (a,F) = 0, so a ∈ F . By choosing a Lagrangian submodule F ′ ⊆ H
complementary to F , we can identify H/F with F ′, so that E restricts to an
isomorphism Sym2F = Hom(F ′,F). Similarly, E restricts to an isomorphism
Sym2F ′ → Hom(F ,F ′). We now define

τ : End(H)→ UĤ[~−1] : α 7→ 1

2~
E−1(α).

Lemma 4.1.4. The restriction of τ to sp(H) is a homomorphism of Lie algebras.
Furthermore, if α ∈ sp(H), then ad τ(α) acts on UĤ[~−1] as α.
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Proof. It suffices to check these statements for α, β of the form Ea⊗a, Eb⊗b,
respectively. We start with the last statement; let x ∈ H, then

ad τ(Ea⊗a)(x) =
1

2~
[a◦a, x] =

1

2~
(a◦ [a, x]+ [a, x]◦a) = a(a, x) = Ea⊗ax.

For the first statement we have that

4~2[τ(Ea⊗a), τ(Eb⊗b)] = [a ◦ a, b ◦ b]
= [a, b] ◦ a ◦ b+ a ◦ [a, b] ◦ b+ b ◦ [a, b] ◦ a+ b ◦ a ◦ [a, b]

= 2~(a, b)(a ◦ b+ b ◦ a) = (a, b)τ(Ea⊗b+b⊗a)

and

[Ea⊗a, Eb⊗b](x) = (b, x)(a, b)a− (a, x)(b, a)b = (a, b)((b, x)a+ (a, x)b)

= (a, b)Ea⊗b+b⊗a(x)

so that τ([Ea⊗a, Eb⊗b]) = (a, b)τ(Ea⊗b+b⊗a)

The lemma above shows that, if we let ρ denote right multiplication ofUĤ on
F(H,F)`, then ρ◦τ is a representation of sp(H) on F(H,F)`. For E(a⊗a) = α,
~x ∈ UĤ, we can give an explicit formula for the action:

2~ρ(τ(α))(~x ◦ f`) = a ◦ a ◦ ~x ◦ f` = ad[a ◦ a,~x] ◦ f` + ~x ◦ a ◦ a ◦ f`
= 2~α(~f) ◦ f` + 2~~f ◦ τ(α) ◦ f`.

We now make a small digression here to discuss the notion of normal or-
dering.

4.1.2 Intermezzo: normal ordering

Suppose M is an OB-module and {Mi}i∈I are submodules of M such that
M =

⊕
i∈IMi. In case M has a topology, we relax the latter requirement

to the condition that
⊕
i∈IMi is dense inM. We also assume that a partial

order P on I is given. The normal ordering associated to ({Mi}i∈I,P) is the
map

M⊗2 →M⊗2 :Mi ⊗Mj 3 a⊗ b =

{
b⊗ a j < i

a⊗ b otherwise

We call it nontrivial if it is not the identity. The common notation for a normal
ordering is x 7→: x : (and the colons are called the normal ordering symbol), but
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the reader should be aware that the meaning of this depends on the data men-
tioned above. This can lead to very different normal orderings; we analyze
the possibilities.

The set NO(M) of pairs ({Mi}i∈I,P) forms a partial order, where we de-
clare that ({Mi}i∈I,P) ≤ ({M ′

i}i∈I ′ ,P ′) iff there exists an order preserving
map ν : I ′ → I such that M ′

i ′ ⊆ Mν(i). The minimal element is (M, ∅)
and leads to a normal ordering map which is the identity. In fact, any pair
({Mi}i∈I, ∅) leads to a trivial normal order. The simplest nontrivial orderings
are obtained by a decompositionM = M1 ⊕M2, i.e. I = {1, 2} and 1 < 2:
these form the smallest elements in our partial order with a nontrivial nor-
mal ordering map. The maximal elements on the other hand are of the form
({Mi}i∈I,P) such that everyMi is free of rank 1 and P is a total order - this
corresponds to giving a totally ordered basis {vi} ofM.

We return to the representation τ. Suppose F ′ is a maximal isotropic sub-
space of H complementary to F . Then the decomposition F ′ ⊕ F defines a
normal ordering, which shall be denoted nF ′,F : H⊗2 → H⊗2. Furthermore,
let φ denote the composition of the natural maps H⊗2 → UH → UĤ[~−1],
and write φF ′,F := φ ◦ nF ′,F . We define

τF ′ :=
1

2~
φF ′,F ◦ E−1 : End(H)→ UĤ[~−1].

Remark 4.1.5. If ({Hi}i∈I,P) ∈ NO(H) defines a normal ordering map n ′ and
({Hi}i∈I,P) > F ′⊕F , then 1

2~φ◦n
′◦E−1 = τF ′ . This follows from the fact that

for a, b ∈ F (or a, b ∈ F ′), a ◦ b = b ◦ a, so that within isotropic subspaces,
the ordering has no effect when composed with τ. Thus we can freely refine
the normal order defined by F ′ ⊕ F used in the definition of τF ′ - the result
will stay the same.

Lemma 4.1.6. τF ′(α) = τ(α) + 1
2 tr(α)F , where tr(·)F denotes the trace of the

End(F) component with respect to the decompositionH = F ′ ⊕F .

Proof. It suffices to check this for elements of the form E((a+ a ′)⊗ (b+ b ′)),
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a, b ∈ F and a ′, b ′ ∈ F ′. On one the hand one has

τF ′(E(a+a ′)⊗(b+b ′)) =
1

2~
φF ′,F ((a+ a ′)⊗ (b+ b ′))

= τ(E(a+a ′)⊗(b+b ′)) +
1

2~
(−a ◦ b ′ + b ′ ◦ a)

= τ(E(a+a ′)⊗(b+b ′)) +
1

2~
[b ′, a] = τ(E(a+a ′)⊗(b+b ′)) +

1

2
(b ′, a).

whereas on the other

tr(E(a+a ′)⊗(b+b ′))
F = tr((b, ·)a+ (b ′, ·)a+ (b, ·)a ′ + (b ′, ·)a ′)F

= tr((b ′, ·)a) = (b ′, a).

One should be aware that tr(α)F depends on the choice of F ′, for it is equal
to tr(πF ◦ α ◦ πF ), where πF is the projection of H on F along F ′. From this
and the previous lemma, it follows that τF ′ depends on the choice of F ′, but
ad τF ′ does not. Another direct consequence of the lemma is the following.

Corollary 4.1.7. If α,β ∈ End(H), then

[τF ′(α), τF ′(β)] = τF ′([α,β])−
1

2
tr([α,β])F = τF ′([α,β])−

1

2
tr(α[πF ′ , β]),

where πF ′ is the projectionH = F ⊕ F ′ → F ′.
Proof. Since τ(·) and τF ′(·) differ by a central term, we have that

[τF ′(α), τF ′(β)] = [τ(α), τ(β)] = τ([α,β]) = τF ′([α,β]) −
1

2
tr([α,β])F .

Therefore, it remains to show that tr([α,β])F = tr(α[πF ′ , β]). We can decom-
pose α,β : H→ H according to the decompositionH = F ⊕ F ′:

α = αFF + αFF
′
+ αF

′F + αF
′F ′ , β = βFF + βFF

′
+ βF

′F + βF
′F ′ ,

where αPQ, βPQ ∈ Hom(P,Q) for P,Q ∈ {F ,F ′}. In terms of this, we have
that

tr([α,β])F = tr(αFFβFF + αF
′FβFF

′
− βFFαFF − βF

′FαFF
′
)

= tr(αF
′FβFF

′
− βF

′FαFF
′
).
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Furthermore, since [πF ′ , β
FF ] = [πF ′ , β

F ′F ′ ] = 0, we also have that

tr(α[πF ′ , β]) = tr(α[πF ′ , β
F ′F + βFF

′
]) = tr(αβFF

′
− αβF

′F )

= tr(αF
′FβFF

′
− αFF

′
βF

′F ) = tr(αF
′FβFF

′
− βF

′FαFF
′
).

Before finishing this section, we prove two formulas for τF ′ that will be used
later on.

Lemma 4.1.8. Let F ,F ′, τF ′ be as above and let α,β ∈ sp(H) be such that αF =

0 = βF ′. Then

τF ′(αβ) = −τF ′(βα).

Proof. Choose a basis OB-basis e1, . . . , en of F and let e−1, . . . , e−n be a basis
of F ′ such that (ei, e−j) = iδi,j, so {ei} is a quasisymplectic basis ofH. Then

2~τF ′(αβ) = φF ′,F

 n∑
|i|,|j|=1

(αβei, ej)

ij
e−i ⊗ e−j


= φF ′,F

 n∑
|i|,|j|=1

−(βei, αej)

ij
e−i ⊗ e−j

 .
Since αF = βF ′ = 0, (βei, αej) can only be nonzero if i > 0 and j < 0. In that
case, φF ′,F (e−i ⊗ e−j) = e−i ◦ e−j so that

2~τF ′(αβ) =

n∑
|i|,|j|=1

−(βei, αej)

ij
e−i ◦ e−j.

For τF ′(βα) we have exactly the converse:

2~τF ′(βα) = φF ′,F

 n∑
|i|,|j|=1

−(αei, βej)

ij
e−i ⊗ e−j


=

n∑
|i|,|j|=1

−(αei, βej)

ij
e−j ◦ e−i =

n∑
|i|,|j|=1

−(αej, βei)

ij
e−i ◦ e−j

=

n∑
|i|,|j|=1

(βei, αej)

ij
e−i ◦ e−j,

which equals −2~τF ′(αβ).
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Lemma 4.1.9. Let F ,F ′ be as above and let Hom(F ′,F), Hom(F ,F ′) be the
corresponding direct summands of End(H). If α ∈ sp(H) ∩ Hom(F ,F ′) and
β ∈ sp(H) ∩Hom(F ′,F), then

tr(αβ)F = 0, tr(βα)F = tr(αβ)

Proof. Simply observe that αβ lies in the direct summand Hom(F ′,F ′) of
End(H), and βα in Hom(F ,F).

4.2 A unitary structure on F(H,F)`.

In this section we will describe a natural unitary structure on F(H,F)`, of
which the canonical connection has scalar curvature.

Convention. For any OB-module M, we write M∞ for E ⊗OB M, where E
denotes the sheaf of C∞-functions on B; as an exception to this, we write
F∞(H,F)` for E ⊗OB [F(H,F)`.

We observe that the constructions above for the tuple (OB,H, (·, ·),F) can
also be done for the tuple (E ,H∞, (·, ·),F∞), where we also write (·, ·) for the
C∞-extension of the OB-linear symplectic form onH, and that

F∞(H,F)` = F(H∞,F∞)`.

Of course, τ induces a representation of sp(H) on F(H∞,F∞)`.
We now assume the following additional data: a real structure on H∞ given by

a conjugation map a 7→ a, and a C∞-connection on H∞ over B. The following
compatibility conditions are assumed: (·, ·) and ∇ are real with respect to a 7→ a,
(·, ·) is flat for ∇ and

〈·, ·〉 : a⊗ b 7→ −i(a, b)

is negative definite on F∞. Finally, ∇ is compatible with the OB-structure: ∇0,1 is
OB-linear and∇H = 0.

Remark 4.2.1. Though the following can be applied to any suitable variation
of Hodge structure, the idea goal is to apply it to the sheaves Hg, F+

g from
Chapter 3 - the reader can keep these in mind as example.

From the assumptions it follows that F∞ is a Lagrangian complement for
F∞ in H∞ and that 〈·, ·, 〉 is positive definite on F∞. Thus 〈·, ·〉 is a positive
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definite Hermitian form on F∞, that extends to one on Sym•F∞, and carries
over to F(H∞,F∞)` using the above introduced isomorphism Sym•F∞ →
F(H∞,F∞)`.

Definition 4.2.2. Denote

• the right multiplication of a ∈
⊗
H∞ on F(H∞,F∞) by ρ,

• the adjoint of an element α ∈ EndF(H∞,F∞)` with respect to 〈·, ·〉 by †.

Lemma 4.2.3. If a ∈ H∞, then ρ(a)† = iρ(a). Moreover, if a1, . . . , ak ∈ H∞,
then

ρ(a1 ⊗ · · · ⊗ ak)† = ikρ(ak ⊗ · · · ⊗ a1).

In particular, if s ∈ Sym2F∞+Sym2F∞, then ρ(s+s) is a unitary transformation
of F∞(H,F)`.

With a little abuse of notation we write (a1 ⊗ · · · ⊗ ak)† = ikak ⊗ · · · ⊗ a1.

Proof. The pairing 〈·, ·〉 is characterized by the following formula: for xi, yj ∈
EF , we have that

〈x1 ◦ · · · ◦ xn, y1 ◦ · · · ◦ yn〉 =

{ ∑
σ∈Sn

∏n
i=1〈xi, yσ(i)〉 n = m

0 n 6= m.

We are therefore to prove that

〈a1◦· · ·◦ak◦x1◦· · ·◦xn, y1◦· · ·◦ym〉 = 〈x1◦· · ·◦xn, inak◦· · ·◦a1y1◦· · ·◦yn〉.

Note that it suffices to prove this for k = 1 - one then just “moves the ai’s one
by one to the other entry of the hermitian form”. We can also assume that
a = a1 ∈ F∞, because the statement for a ∈ F∞ is just the statement for a in
reverse order. The rest now follows by direct computation:

ρ(a)x1◦· · ·◦xk =

n∑
i=1

(a, xi)x1◦· · ·◦x̂i◦· · ·◦xk =

n∑
i=1

−i〈xi, a〉x1◦· · ·◦x̂i◦· · ·◦xk.

From this it is also clear that we can restrict ourselves to the casem = n− 1.

〈a ◦ x1 ◦ · · · ◦ xn, y1, ◦ · · · ◦ yn−1〉

= −i
∑
σ∈Sn

〈xσ(1) , a〉〈xσ(2) , y1〉 · · · 〈xσ(n) , yn−1〉

= 〈x1 ◦ · · · ◦ xn, ia ◦ y1 ◦ · · · ◦ yn−1〉.
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4.3 The connection∇F

Below, we will denote the (p, q) forms on B by Ep,q, and similarly denote the
sections of an OB-moduleMwith values in Ep,q by Ep,q(M).

Consider the map

σ : F → E1,0(F∞),

defined as the composition of ∇ : F → E1,0(H) with the projection E1,0(H) →
E1,0(F∞). Note that we used that ∇0,1F = 0. If f ∈ OB and a ∈ F , then
∇(fa) = f∇(a)+( df)a. Since the last term is an element of E1,0(F), it follows
that σ(fa) = fσ(a). Hence σ is an element of E1,0(Hom(F ,F)); it is called the
second fundamental form of ∇ with respect to the decomposition H∞ = F∞ ⊕ F∞.
We observe that since, respectively, F∞ is isotropic and (·, ·) is flat,

(σ(a), b) = (∇(a), b) = d(a, b) − (a,∇b) = −(a, σ(b))

for all a, b ∈ F∞. This means that σ lies E1,0(sp(H)) ∩ E1,0(Hom(F ,F∞)), so
that

s := E−1 ◦ σ

is an element of E1,0(Sym2F). Similarly, s = E−1 ◦ σ ∈ E0,1(Sym2F∞). By
Lemma 4.2.3, ρ(s+ s) acts unitary on F∞(H, F)` with respect 〈·, ·〉.

Next, consider the Hom(F∞,F∞) part of ∇, i.e. the composition of ∇ :

F∞ → E1(H) and the projection E1(H) → E1(F∞). This is a connection on
F∞ and we denote it by∇F∞ . Observe that for all a, b ∈ F∞

d〈a, b〉 = −i(∇EFa, b) − i(a,∇EFb) = −i(∇a, b) − i(a,∇b)
= −i(∇a, b) − i(a,∇b) = −i d(a, b) = d〈a, b〉,

so∇F∞ is unitary with respect to 〈·, ·〉. It follows that under the identification
Sym•F∞ ' F∞(H,F)`,∇F becomes a unitary connection on F∞(H,F)` with
the property that∇F∞~ = 0.

Definition 4.3.1.

∇F := ∇F∞ + ρ(s+ s).

A direct consequence of lemma 4.2.3 is the following.
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Corollary 4.3.2. The connection∇F on F∞(H,F)` is unitary.

We give another description of ∇F: suppose ~x = x1 ⊗ · · · ⊗ xn ∈ Sym•F∞,
then using that ad(s)(xi) = σ(xi) and that∇F∞ + σ equals∇when acting on
F∞, it follows that in F∞(H,F)`

∇F(~x ◦ f`) = ∇EF (~x) ◦ f` + s ◦ ~x ◦ f` + s ◦ ~x ◦ f`
= (∇EF + ad s)(~x) ◦ f` + ~x ◦ s ◦ f` + s ◦ ~x ◦ ◦f`
= ∇(~x) ◦ f` + s ◦ ~x ◦ f`
= (∇+ ρ(s)(~x ◦ f`).

Hence we have proven the following.

Corollary 4.3.3. ∇F = ∇+ ρ(s).

We use this observation to compute the curvature of∇F.

Theorem 4.3.4. (∇F)2 = 1
2 tr(σ∧ σ†), so in particular,∇F is projectively flat.

Proof. First observe that ρ(s) = 2~τ(σ), and that

(∇F)2 = (∇+ τ(σ))2 = ∇2 +∇τ(σ) + τ(σ)∇+ τ(σ) ∧ τ(σ) = ∇(τ(σ)).

This uses the fact that∇ is flat and that [τ(σ(v)), τ(σ(w))] = τ([σ(v), σ(w)]) =

0 for all derivations v,w, because σ takes it values in Hom(F∞,F∞). Since
(·, ·) is flat for ∇, τ is flat for ∇ so the curvature equals τ(∇σ). It therefore
suffices to show that τ(∇σ) ◦ ~x ◦ f` = 1

2 tr(σ ∧ σ)~x ◦ f`, and in this, we can
assume that ~x lies in the image of Sym•F∞ in UĤ.

We start by expanding ∇ on a local basis of H∞ that is adapted to the
decomposition H∞ = F∞ ⊕ F∞: choose a local basis of F∞, and use the
conjugates as basis of F∞. On this basis, ∇ takes the form d + ω, where
connection matrixω is of the form

ω =

(
A σ

σ A

)
;

here A is the End(F∞) part of ω, and its End(F∞) part is A, because ∇ is
real. With respect to this local basis we have

∇(σ) = dσ+ω∧ σ+ σ∧ω

= dσ+A∧ σ+ σ∧ σ+ σ∧A+ σ∧ σ
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We can simplify this using that ∇ is flat: its curvature is dω + ω ∧ ω = 0,
and theHom(F∞,F∞) part of this reads dσ+A∧σ+σ∧A = 0. Using this,
we find that∇(σ) = σ∧ σ+ σ∧ σ. Lemma 4.1.6 tells us that

(∇F)2 = τ(σ∧ σ+ σ∧ σ) = τEF (σ∧ σ+ σ∧ σ) +
1

2
tr(σ∧ σ+ σ∧ σ)EF .

We use Lemma 4.1.9 to simplify the last term: tr(σ∧σ+σ∧σ)F∞ = − tr(σ∧

σ) = tr(σ ∧ σ), where in the last step we used the invariance property of the
trace and the anti-commutativity of 1-forms. It therefore suffices to show that
τF∞(σ∧ σ+ σ∧ σ) ◦ ~x ◦ f` = 0 for any ~x ∈ Sym•F∞. One has that

τF∞(σ∧ σ) ◦ ~x ◦ f` = [τF∞(σ∧ σ),~x] ◦ f` + ~x ◦ τF∞(σ∧ σ) ◦ f`

The last term vanishes because τF∞(σ ∧ σ) takes its values in F∞ ◦ F∞ and
the first term vanishes because [τF∞(σ∧σ),~x] = [τ(σ∧σ),~x] = σ∧σ(~x) = 0.
The result now follows from the fact that τF∞(σ ∧ σ) = τF∞(σ ∧ σ). To see
this, decompose σ on a local basis dx1, · · · , dxk of 1-forms on B: σ = dxiσi,
where σi ∈ sp(H∞) and σiF∞ = 0. By conjugation, σ = dxiσi and σiF∞ = 0.
We now apply Lemma 4.1.8:

τF∞(σ∧ σ) = dxi ∧ dxjτF∞(σiσj) = − dxi ∧ dxjτF∞(σjσi)

= dxj ∧ dxiτF(σjσi) = τF∞(σ∧ σ).

Remark 4.3.5. Assume that we are given a UĤ-submodule Z of F(H,F)`
such that Z∞ is preserved by ∇ as submodule of F(H∞,F∞)`. Then ∇F =

∇ + ρ(s) obviously also preserves Z∞. It follows that ∇F is a connection on
F(H∞,F∞)`/Z∞, whose curvature is of course still 12 tr(σ∧ σ).

Denote the orthocomplement of Z∞ with respect to 〈·, ·〉 by Z⊥∞, then ∇F

preserves Z⊥∞: if ~y ∈ Z∞ and x ∈ Z⊥∞ then

〈∇Fx, y〉 = d〈x, y〉− 〈x,∇Fy〉 = 0.

By identifying Z⊥∞ with F(H∞,F∞)`/Z∞, the latter obtains an innerproduct
with respect to which∇F is unitary.

We summarize the main results of the chapter in a theorem.

Theorem 4.3.6. Assume the following given:
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• a finite dimensional complex manifold B with structure sheaf OB and smooth
function sheaf E ,

• a freeOB-module of finite rankH with symplectic form (·, ·) and a Lagrangian
submodule F ,

• a flat connection ∇ and real structure a 7→ a on H∞ such that (·, ·) is real
and flat, ∇ is real, a⊗ b 7→ −i(a, b) is negative definite on F∞ and F∞ is a
Lagrangian complement for F∞ inH∞.

To this we associated

• an OB-Lie algebra Ĥ,

• an UĤ-module F(H,F)` with a representation τ of sp(H),

• a positive definite hermitian form 〈·, ·〉 on the E-module F∞(H,F)`,

• a connection ∇F on F(H∞,F∞)` that is unitary with respect to 〈·, ·〉 and
whose curvature is a scalar, namely 1

2 tr(σ∧ σ†).

For any UĤ-submodule Z` ⊆ F(H, F)` that is preserved by ∇, ∇F descends to
a connection on F(H∞,F∞)`/Z∞ that acts unitary with respect to the inherited
innerproduct. These associations are functorial.

The last assertion follows from the fact that all constructions depend natu-
rally on the input data; no choices were made.





Chapter 5

Conformal blocks and the WZW
connection

We continue to assume an integer ` > 0 (level) to be fixed. This chapter consists
of two parts: the first is more or less the infinite dimensional analogue of the
previous chapter, whereas the second one is a variation of the first, in that
we assume an additional Lie algebra structure present on the presymplectic
module. We try to present it in such a way that it best resembles the previous
chapter. As we did there, we assume the data from Chapter 3 given. In par-
ticular, B is a smooth complex variety andK0,K,O, m,A areOB-module as in
Chapter 3. Locally over B, K0,m ⊆ O ⊆ K are of the form

⊕N
i=1OB,

∑
i tiO,⊕N

i=1OB[[ti]],
⊕N
i=1OB((ti)), respectively, for certain local sections t1, . . . , tN

of O. We call the latter local coordinates of O. Moreover, we assume that K
has a presymplectic form (·, ·) with kernel K0 that satisfies the properties of
proposition 3.1.11 and lemmas 3.3.2,3.3.3.

Remark 5.0.7. Below, we will endow OB-modules with a topology. By this we
mean the following: a topology on an OB-module F is a topology on F(U)

for every open U ⊆ B, such that the restriction maps are continuous and
moreover, the addition on F(U) and multiplication by OB(U) are continuous
(for every open U ⊆ B).

71
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5.1 The Fock module F(K,O)`

We define a filtration {FkK}K∈Z on K as follows: let FkK := mk for k > 0,
F0K = O and for k < 0 we define FkK to be the maximal subsheaf of K such
that m−kFkK ⊆ O. The ideal m ofO also givesK a compatible topology, called
the m-adic topology. It is characterized by the property that it is invariant
under addition of K and that a sequence (an)n∈N ∈ K converges to 0 iff for
every k, an ∈ FkK for n large enough; K is complete with respect to this
topology.

The presymplectic form (·, ·) is continuous as map from K × K → OB,
where OB has the discrete topology. This amounts to the following property:
for every f ∈ K we have that (f, FkK) = 0 for k large enough.

Definition 5.1.1. We defineKred := K/K0 asOB-module and give it the topol-
ogy it inherits from K.

Note that since K0 is not an ideal, Kred does not inherit the commutative al-
gebra structure ofK. On the other hand, (·, ·) clearly descends to a symplectic
form onKred - we also denote it by (·, ·) and note that it is continuous. The im-
age of O in Kred is denoted Ored, and since K0 ⊆ O, we can - and will - identify
it with O/K0 = m. It is maximal isotropic with respect to (·, ·).

In the previous chapter, we defined a Fock module for a triple (H,F , (·, ·)),
that by construction had an action of the symplectic algebra of H. Here we
will do something similar for the triple (Kred,Ored, (·, ·)) and a subsheaf of
sp(Kred).

Definition 5.1.2. Define

K̂ := K ⊕OB, Ô := O ⊕OB, K̂red := K̂/K0, Ôred := Ô/K0,

and give K̂ an OB-Lie algebra structure by defining the product as

[a⊕ r, a ′ ⊕ r ′] = 0⊕ (a, a ′),

for local sections a, a ′ of K. It is commonly called the oscillator algebra, and
the element 0⊕ 1 is denoted ~.

If we regard K as Lie algebra with trivial product, then K̂ is the central
extension of K by OB, determined by the cocycle (·, ·).
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Corollary 5.1.3. Ô is a subalgebra of K̂, the Lie bracket of K̂ descends to K̂red, and
with respect to this product, Ôred is a subalgebra.

The first claim is a consequence of the fact thatO is an isotropic subspace,
the second follows from the observation that [K0,K] = 0, hereby identifying
K with its image in K̂.

The subalgebra Ô = O+ ~OB has a character χ given by the projection on
the second summand, and this character descends to Ôred.

Definition 5.1.4. For ` ∈ Z, define

F(K,O)` := UK̂ ⊗
UÔ OB,

where Ô acts on OB via `χ. We call this the Fock module associated to the tuple
(OB,K,O, (·, ·)) of level `. The UK̂ generator 1⊗ 1 is denoted v`.

We will assume ` to be fixed. As a direct consequence of this definition, we
have the following:

Corollary 5.1.5. For any submodule V ⊆ O, χ is well defined on Ô/V and

F(K,O)` = UK̂/(V)⊗
UÔ/(V)

OB,

where Ô acts on OB by `χ. Here (V) denotes the two sided ideal generated by V . In
particular

• for V = K0 we get that F(K,O)` = UK̂red ⊗
UÔred OB,

• for V = O and O ′ ⊆ K a Lagrangian submodule complementary to O:

F(K,O)` = UK̂/(O)⊗
UÔ/(O)

OB = Sym•O
′,

where the last isomorphism in induced by O ′ ⊆ K ↪→ K̂.

5.1.1 The representation of sp(Kred) on F(K,O)`

Since (·, ·) is continuous in both variables, it follows that if a ⊗ a ′ is a local
section of K ⊗OB K, then x 7→ (a, x)a ′ is a continuous endomorphism of K.

Definition 5.1.6. For topological OB-modulesM,M ′, we denote by

Homct
OB(M,M ′) ⊆ HomOB(M,M ′)

the continuous OB-linear maps fromM toM ′.
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WithM,M ′ as in the definition, the continuity property can be characterized
by the following: if (an)n∈N is a sequence in M and α ∈ HomOB(M,M ′),
then α is continuous iff limn→∞ an = a implies that limn→∞ α(an) = α(a).

As was remarked above, the presymplectic form is a continuous. Hence
we have a map

K⊗2 → Homct
OB(K,K) : a⊗ a ′ 7→ (a ′, ·)a.

Clearly, its kernel is K ⊗ K0, so that it factors over K ⊗ Kred and descends to
an injective map K ⊗ Kred → Homct

OB(Kred,K), which in turn descends to an
injective map

E : (Kred)⊗2 → Homct
OB(Kred,Kred).

This map is not surjective, as we will see later. We introduce a special kind
of local basis for Kred over OB in order to facilitate computations that we will
perform below.

Definition 5.1.7. We call a set of local sections {ei}i∈Z\{0} of Kred a local topo-
logical quasisymplectic basis (of Kred over OB) if, locally over B,

• itsOB span is dense inKred and if the ei’s are linearly independent over
OB,

• (ei, e−j) = iδi,j,

•
∑
j≥i eiOB is a neighborhood basis of 0.

The last property can be reformulated more explicitly: for every k there is a
Nk such that ei ∈ FkK for every i ≥ Nk, and there is an Mk such that FkK is
contained in

∑
i≥Mk

eiOB. From this it is immediately clear that the filtration
on K determines the topology.

The next example shows that such a local basis indeed exists.

Example 5.1.8. Let t1, . . . , tn be coordinates of O over some open U ⊆ B, and
take a bijectionm = (m1,m2) : N>0 → N>0 × {1, . . . , n}. Define

ei = t
m1(i)
m2(i)

, e−i =
i

−m1(i)
t
−m1(i)
m2(i)

, i ∈ N>0,

and identify them with their image in Kred(U). Then {ei}i6=0 is a basis of
Kred(U) '

⊕
iOB(U)((ti))/OB(U) and (ei, ej) = iδi,−j. Finally, using that

FkK(U) =
∑

i1+···+iN≥k
ti1 · · · tiNOB(U)
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one readily checks that the third property also holds, so that {ei}i 6=0 is a qua-
sisymplectic topological basis over U.

Choose a topological quasisymplectic basis {ei}i6=0 over some open part U ⊆
B. For every k, FkK(U) is contained in the closure of the span of the ei’s for
i > Mk, for a certain Mk, so for any x ∈ Kred(U), x =

∑∞
j≥jmin,j 6=0 xjej for

certain xj ∈ OB(U), jmin ∈ Z. In fact, the xj’s can are given explicitly by the
formula (x, e−j) = jxj:

∞∑
|i|=1

(x, e−i)

i
ei =

∞∑
|i|=1

(limN→∞∑N
j=jmin

xjej, e−i)

i
ei

=

∞∑
|i|=1

lim
N→∞

N∑
j=jmin

xj(ej, e−i)

i
ei =

∞∑
|i|=1

lim
N→∞

N∑
j=jmin

xiδi,jei

=

∞∑
|i|=1

xiei = x,

where the last term converges since xj = 0 for j < jmin. Note that here we
had to use the continuity of (·, ·). This formula

x =

∞∑
|i|=1

(x, e−i)

i
ei (5.1)

will be extremely useful in the rest of this chapter. In what follows, we will
allow ourselves some sloppiness in the notation and write

∑
i instead of

∑∞
|i|=1,

when denoting a linear combination of ei’s.
We return to our discussion of the map E; suppose α ∈ Homct

OB(Kred,Kred),
then

α(x) = α( lim
N→∞

N∑
|i|=1

xiei) = lim
N→∞

N∑
|i|=1

xiα(ei) =
∑
i

(x, e−i)

i
α(ei).

If
∑
i

−1
i α(e−i)⊗ei would converge in (Kred)⊗2, then its image under Ewould

equal α. However, this series need not converge in (Kred)⊗2 since, for exam-
ple,
∑
i>0 e−i ⊗ ei does not converge, because

∑
i>0 e−i does not converge in

Kred. We remedy this by the following: let Ẽ be the map

Homct
OB(Kred,Kred)→ lim←−

k

(Kred)⊗2/(FkKred ⊗Kred +Kred ⊗ FkKred)
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that sends α ∈ Homct
OB(Kred,Kred) to

∑
i

−1
i α(e−i)⊗ei. To see that this is well

defined, note that
∑
i

−1
i α(e−i)⊗ei will always converge in (Kred)⊗2 because,

for every k, either α(ei) ∈ FkKred or e−i ∈ FkKred, provided |i| is big enough.
Using this we can define

(Kred)⊗2 := im Ẽ.

Lemma 5.1.9. If
∑
i ai ⊗ bi ∈ (Kred)⊗2, then x 7→ ∑i(bi, x)ai is an element of

Homct
OB(Kred,Kred). The hereby defined extension of E to (Kred)⊗2 is an isomor-

phism of OB-modules onto Homct
OB(Kred,Kred).

We also denote this extension by E.

Proof. Choose a quasisymplectic topological basis {ei}i 6=0 of Kred. By defini-
tion, any element of (Kred)⊗2 is of the form

∑
i

−1
i α(e−i)⊗ ei, so

E∑
i

−1
i
α(e−i)⊗ei =

∑
i

−1

i
α(e−i)(ei, ·) =

∑
i

1

i
α(ei)(·, e−i) = α.

This shows that the first claim holds, but also that E is surjective. However,
since (·, ·) is nondegenerate on Kred, it readily follows that E is also injective.

This extended version of the map E can be considered as the infinite dimen-
sional version of its namesake in the previous chapter. We would proceed in
a similar way to the discussion of the previous chapter, i.e. let (Kred)⊗2 act on
F(K,O)`. To that end, we introduce a completion of a universal enveloping
algebra.

5.1.2 Intermezzo: filtration and completion of a universal envelop-
ing algebra.

Let L be a filtered Lie algebra over OB, whose Lie algebra structure is com-
patible with the filtration, in that [FnL, FmL] ⊆ Fn+mL for all n,m. Its univer-
sal enveloping algebra UL inherits two filtrations: the left filtration Fnl UL :=

FnL ◦ UL and the right filtration FnrUL := UL ◦ FnL. If L is commutative,
Fnl UL = FnrUL, but in general they will differ. We will always use the right fil-
tration, and simply denote it by FnUL. It has the following relation with the Lie
product:

[FnUL, FmUL] ⊆ Fmin(n,m)UL.
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However, for a fixed section ~x of FnUL, there is an m such that [FkUL,~x] ⊆
Fk+mUL. Therefore,

UL := lim←−
k

UL/FkrUL,

the completion of UL with respect to the filtration, inherits the Lie product
of UL. As to the behavior with respect to morphisms, if f : L → L ′ is a
morphism of filtered OB Lie algebras, so in particular f(FkL) ⊆ FkL ′, then by
construction, f induces a morphism f : UL → UL ′. This map is compatible
with the filtrations: f(FkUL) ⊆ FkUL ′.

We apply his to the filtered Lie algebras Kred, K̂red: this gives us filtered
Lie algebras UKred and UK̂red, respectively. The projection of the latter on its
first summand, i.e. K̂red = Kred ⊕OB → K is compatible with the filtrations,
so it induces a map UK̂red → UKred. Similarly, we have an induced map
UÔred ↪→ UK̂red. The completion of UK̂red induces a completion of F(K,O)`:

F(K,O)` = UK̂red ⊗
UÔred OB,

but since the image of FkUK̂red ◦ v` in F(K,O)` vanishes for k ≥ 1, F(K,O)` =

F(K,O)`. This implies that the action of UK̂red on F(K,O)` extends to UK̂red.

We resume our discussion of the map E. Under the obvious map (Kred)⊗2 →
UK̂red,Kred⊗FkKred maps to FkUK̂red, but FkKred⊗Kred does not: for example,
we have that

∑
i>N e−i ◦ ei converges in UK̂red, because ei ∈ FkUK̂red for i

big enough. If however
∑
i>N ei ◦ e−i would also converge, then

∑M
i>N ei ◦

e−i−e−i◦ei =
∑M
i>N i~ would converge, which is not the case. Therefore, the

map Kred ⊗ Kred → UK̂red does not extend to the completions. This problem
is remedied by a normal ordering: choose a O ′ ⊆ Kred that is maximal isotropic
and complementary to Ored. Using the notation from the previous chapter, we
denote the normal ordering associated to the decompositionKred = O ′⊕Ored

by nO ′,Ored . Then for k > 0, the image of

nO ′,Ored(FkKred ⊗ K̂red) ⊆ O ′ ⊕ FkKred + FkKred ⊕Ored

does lie in FkUK̂red since [FkKred,Ored] = 0. We have therefore shown that the
composition of the natural map φ : (Kred)⊗2 → UK̂red with nO ′,Ored extends
to a map

φO ′,Ored : (Kred)⊗2 → UK̂red.

Following the lines of the previous chapter, we define:
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Definition 5.1.10.

τO ′ :=
1

2~
φO ′,Ored ◦ E−1 : Homct

OB(Kred,Kred)→ UK̂red[~−1].

The kernel of this map has a nice description. To identify it, let Sym2Kred

and
∧2Kred denote the closure of Sym2K

red and
∧2Kred in (Kred)⊗2, respec-

tively, so that (Kred)⊗2 = Sym2Kred ⊕
∧2Kred. This decomposition induces a

decomposition

E(Sym2Kred)⊕ E(

2∧
Kred)

of Homct
OB(Kred,Kred). The restriction of τO ′ to

∧2Kred vanishes: first note
that Kred ∧ Kred = Ored ∧ Ored + O ′ ∧ O ′ + Ored ∧ O ′. Since nO ′,Ored is
the identity on the first two summands, their image under φO ′,Ored is locally
generated by expressions of the form a◦b−b◦a = (a, b)~ = 0 and a ′◦b ′−b ′◦
a ′ = (a ′, b ′)~ = 0 for local section a, b of ∈ Ored and a ′, b ′ of O ′. The third
summand is also mapped to 0, for nO ′,Ored(a⊗a ′−a ′⊗a) = a ′⊗a−a ′⊗a = 0.

Thus, Ker τO ′ ⊇
∧2Kred, and as we will see in a minute, this inclusion is in

fact an equality.
The restriction of τO ′ to Sym2Kred is more interesting.

Definition 5.1.11. Let spct(Kred) denote the continuous symplectic OB-linear
maps Kred → Kred, so spct(Kred) ⊆ Homct

OB(Kred,Kred).

Let {ei}i 6=0 be a local topological quasisymplectic basis for Kred and α a local
section of Homct

OB(Kred,Kred), then

E−1(α) =
∑
i

−1

i
α(ei)⊗ e−i =

∑
i,j

(αei, ej)

ij
e−i ⊗ e−j.

This expression is symmetric iff (αei, ej) = (αej, ei) = −(ei, αej), i.e. iff α is
a local section of spct(Kred). Hence, E restricts to an isomorphism Sym2Kred →
spct(Kred).

Corollary 5.1.12. τO ′ restricts to an injective map spct(Kred)→ UK̂red[~−1].

Note that from this result and the inclusion Ker τO ′ ⊇
∧2Kred it follows that

Ker τO ′ =
∧2Kred.
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Proof. It remains to show thatφO ′,Ored is injective on Sym2Kred. SinceφO ′,Ored

is the identity on Sym2O
red, Sym2O

′, it is certainly injective on Sym2Ored +

Sym2O ′. Thus, we are left to show that φO ′,Ored is injective on (sums of)
expressions of the form a⊗b+b⊗a, a ∈ O ′ and b ∈ Ored. However, φO ′,Ored

maps such a⊗ b+ b⊗ a to 2a ◦ b, , . From this it readily follows that φO ′,Ored

is injective on all of Sym2K
red.

We continue to investigate this restriction of τO ′ . Suppose V is an isotropic
OB-submodule of K. If α is a local section of spct(Kred) that maps V⊥ to V ,
then we can say the following about τO ′ :

Lemma 5.1.13. Let V ⊆ Kred be an isotropic OB-submodule, and α a local section
of Homct

OB(Kred,Kred) such that α(V⊥) ⊆ V . Then E−1 ∈ V ⊕ K +K ⊕ V .

Proof. Let V̌ be a complement for V⊥, and let W a complement for V in V⊥
such that (V,W) = 0. ThenK = V⊕W⊕V̌ and (·, ·) restricts to a nondegener-
ate pairing between V and V⊥. Now use that E−1α =

∑
i

−1
i αei ⊗ e−i for any

local topological quasisymplectic basis {ei}i 6=0. Choose one such that {ei}i∈I
is a basis for V , {e−i}i∈I a basis for V̌ and {ei}±i6=I a basis for W for certain
I ⊆ Z\{0}. Then clearly,

∑
±i∈I αei⊗ e−i lies in K ⊗ V . Moreover, if i 6= I, then

αei ∈ αV⊥ ⊆ V , so that
∑
±i6=I αei ⊗ e−i lies in V ⊗ K.

Below, we will use τO ′ to construct a central extension of spct(Kred). The
crucial step for this is the next theorem.

Theorem 5.1.14. If α,β are local sections of sp(Kred) then ad τO ′(α) acts on UK̂
as α and

[τO ′(α), τO ′(β)] = τO ′([α,β]) +
1

2
tr(α[πO ′ , β]),

where πO ′ is the projection of O ′ ⊕Ored on its first summand.

Proof. Let {ei}i 6=0 be a local quasisymplectic topological basis of K. We have
that

2~τO ′(α) =
∑
i

φO ′,Ored(
α(ei)

i
⊗e−i) = lim

N→∞
(

N∑
i=−N

α(ei)

i
◦ e−i − cα,N~

)

for certain local sections cα,N of OB. Therefore, if x is a local section of K̂red,
then using the continuity of α and the Lie product (which is equivalent with
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the continuity of the presymplectic form), it follows that

[2~τO ′(α), x] = − lim
N→∞

N∑
i=−N

[
α(ei)

i
◦ e−i, x]

=

∞∑
i=−∞ ~(

(e−i, x)

i
α(ei) +

(α(ei), x)

i
e−i)

= ~
∑
i

(x, e−i)

i
α(ei) + ~

∑
i

(αx, e−i)

i
ei = 2~α(x).

Using this, we have that

[τO ′(α), τO ′(β)] =
∑
i

−1

2~i
ad τO ′(α)φO ′,O(β(ei)⊗ e−i)

=
∑
i

−1

2~i
ad τO ′(α)(β(ei)⊗ e−i) =

∑
i

−1

2~i
(αβei ◦ e−i + βei ◦ αe−i),

where we used that φO ′,O(β(ei)⊗ e−i) differs from βei ◦ e−i by sum of com-
mutators, i.e. by something central. We now split the remaining expression
in its normally ordered part and the correction terms. In order to do that, we
first note that if x, y are local section of Kred, then

φO ′,Ored(x⊗ y) − x ◦ y = −[πOredx, πO ′y] = −(x, πO ′y)~,

where πO ′ , πOred denote the projection of Kred = O ′ ⊕ Ored on the first and
second summand, respectively. Using this we conclude that [τO ′(α), τO ′(β)]

equals

φO ′,Ored

(∑
i

αβei ⊗ e−i + βei ⊗ αe−i

−2~i

)

+
∑
i

−1

2i
((αβei, πO ′e−i) + (βei, πO ′αe−i)) . (5.2)
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Rewriting

∑
i

1

i
β(ei)⊗ αe−i =

∑
i,j

(αe−i, e−j)

ij
βei ⊗ ej

=
∑
i,j

1

ij
β((αe−j, e−i)ei)⊗ ej =

∑
j

1

j
βαe−j ⊗ ej

= −
∑
i

1

i
βαei ⊗ e−i,

we see that the first two terms of (5.2) add up to

φO ′,O
∑
i

1

2~i
(βα− αβ)ei ⊗ e−i =

1

2~
φO ′,OredE

−1([α,β]) = τO ′([α,β]).

For the remaining two terms of (5.2) we have that∑
i

1

2i
((αβei, πO ′e−i) + (βei, πO ′αe−i))

=
∑
i

−1

2i
((ei, βαπO ′e−i) − (ei, βπO ′α(e−i)))

=
∑
i

1

2i
(ei, (βπO ′α− βαπO ′)e−i) =

1

2
tr(βπO ′α− βαπO ′)

=
1

2
tr(αβπcO ′ − απO ′β) =

1

2
tr(α[πO ′ , β]).

In the last step we used the cyclic invariance of the trace.

One should compare this result with lemma (4.1.7).

Example 5.1.15. Let {ei}i6=0 be a topological quasisymplectic basis over some
open U ⊆ B. In the rest of this example, we restrict ourselves to U. Define

Tk : Kred → Kred : ei 7→ { iei+k i+ k 6= 0

0 i+ k = 0
.

and call these the translation operators associated to the topological quasisymplectic
basis {ei}i 6=0. These Tk are sections of spct(Kred), for

(Tkei, ej) = i(i+ k)δi+j+k,0 = (ei, Tkej)
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and for any n, we have that Tkei ∈ FnKred, provided i is large enough. Fur-
thermore, we have that

E−1(Tk) =
∑
i 6=0

−1

i
Tkei ⊗ e−i = −

∑
i 6=0,i6=−k

ei+k ⊗ e−i.

If k 6= 0, then ei+k ◦ e−i = e−i ◦ ei+k so that

τO ′(Tk) =
−1

2~
∑
i 6=0,−k

ei+k ◦ e−i, (5.3)

independent of the choice ofO ′. For k = 0 this relation holds trivially, so that
(5.3) holds for all k. We shall now illustrate the last result of theorem 5.1.14

for the Tk’s:

[τO ′Tk, τO ′Tl] = τO ′ [Tk, Tl] +
1

2
tr(Tk[πO ′ , Tl]).

To this end, we first compute both terms on the right hand side of this equa-
tion. From the definition it is clear that TkTlei = i(i + l)ei+k+l for all i 6=
−l,−k − l, and 0 otherwise. Using this, a small computation shows that
[Tk, Tl]ei = i(l − k)ei+k+l = (l − k)Tk+lei, and as a consequence [Tk, Tl] =

(l− k)Tk+l. Next we compute the trace:

tr(Tk[πO ′ , Tl]) =
∑
i

1

i
((TkπO ′Tl − TkTlπO ′)ei, e−i)

=
∑

i 6=−l,−l−k,i+l<0

i(i+ l)

i
(ei+k+l , e−i) −

∑
i 6=−l,−l−k,i<0

i(i+ l)

i
(ei+k+l , e−i)

= δk+l,0
∑

i<−k,i6=0
(i+ k)(i+ k+ l) − δk+l,0

∑
i<0

(i+ l)(i+ k+ l)

= δk+l,0
k3 − k

6
.

Combining these results, we find that

[τO ′Tk, τO ′Tl] = −(k− l)τO ′Tk+l + δk+l,0
k3 − k

12
. (5.4)

This relation is known as the Virasoro relation, and an algebra whose gener-
ators {τO ′Tk}k∈Z satisfy it, is known as the Virasoro algebra - it has many
incarnations, and we will later choose a specific one.



Introduction 83

Theorem 5.1.14 allows us to define a central extension of sp(Kred):

Definition 5.1.16. Let ̂spct(Kred) be the subalgebra of UK̂red generated by the
image of τO ′ .

Corollary 5.1.17. The following holds:

• ̂spct(Kred) does not depend on the choice of O ′,

• the image of OB is contained in ̂spct(Kred),

• τO ′ factors to anOB-module isomorphism spct(Kred)→ ̂spct(Kred)/OB and

0 // OB // ̂spct(Kred) // spct(Kred) // 0. (5.5)

is a central extension of Lie algebras.

The image of the global section 1 of OB in ̂spct(Kred) is denoted c.

Proof. By the Theorem 5.1.14 it is clear that im τO ′ ⊆ ̂spct(Kred) ⊆ im τO ′ +

OB, and from Example 5.1.15 we see that OB ⊆ ̂spct(Kred). All but the first
assertion follows from this and, again, Theorem 5.1.14.

If O ′′ is another Lagrangian submodule of Kred complementary to Ored,
then φO ′,Oredx and φO ′′,Oredx differ by a sum of commutators, i.e. by an ele-
ment of ~OB. Hence τO ′ ≡ τO ′′ mod OB, which proves the first assertion.

Thus, the map τO ′ is section of ̂spct(Kred) → spct(Kred) as OB-modules, but
depends on the choice of O ′, and is therefore noncanonical.

5.1.3 An incarnation of the Virasoro algebra

We recall that θK/OB denotes the derivations ofK overOB. Since we assumed
that the properties of lemma 3.3.2 holds, θK/OB preserves the presymplectic
form, i.e. θK/OB ⊆ sp(K). Since θK/OB annihilates K0, every such derivation
descends to a well defined map Kred → K, which in turn descends to a map
Kred → Kred. The latter is of course symplectic. Moreover, one easily checks
that it acts continuously, and that if it is trivial, than the derivation as map
from K → K is trivial. Hence we can identify θK/OB with a subalgebra of
spct(Kred).
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Definition 5.1.18. Define θ̂KK/OB as the subalgebra ofUK̂red[~−1] generated by
the image of θK/OB under τO ′ .

We could alternatively have defined θ̂KK/OB as the pullback

θ̂KK/OB
//_____

���
�
�

θK/OB

��
̂spct(Kred) // spct(Kred).

From this and corollary 5.1.17, it follows that this algebra is independent of
the choice of O ′.
Example 5.1.19. In this example we assume that N = 1. Locally over B, we
choose a coordinate t = t1, and restrict ourselves to the part of B over which
t is defined. So K = OB((t)) and θK/OB = K ∂

∂t . If we define

ei = ti, Tk = tk+1
∂

∂t
, i, k ∈ Z, i 6= 0,

then ei is a quasi topological basis of Kred and the ei’s and Tk’s satisfy the cri-
teria of example 5.1.15. Thus forN = 1, θ̂KK/OB is generated by c, {τO ′tk+1 ∂∂t }k∈Z
as OB-module, and the algebra structure is given by

[τO ′t
k+1 ∂

∂t
, τO ′t

l+1 ∂

∂t
] = −(k− l)τO ′t

k+l+1 ∂

∂t
+ δk,−l

k3 − k

12
c.

5.2 The Segal-Sugawara representation

Until now, we have consideredK (and in the previous chapterH) as a presym-
plectic (symplectic) OB-module, without any additional algebraic structure.
In this section we will extend the considerations above to the setting where
an additional Lie product is present. This setting is the output of Chapter 3;
more precisely, we fix a simple complex algebraic group G with Lie algebra g and let
Kg,K0g,Og,mg,Ag, (·, ·)g be as in Chapter 3. For the readers convenience, we
recall that

• K0g is locally over B of the form K0 ⊗ g (as K0 Lie algebra),

• Kg = K0g ⊗K0 K, Og = Og⊗K0 K0g and mg = m⊗K0 K0g as K, O and m Lie
algebras, respectively,
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• Ag is a subalgebra of Kg that is locally of the form A⊗ g as A algebra,

• (·, ·)g is anOB-bilinear and ad-invariant presymplectic form on Kg with
kernel K0g,

• Ag is an isotropic and Og a maximal isotropic submodule of Kg,

• Kg has a connection∇ as K-module over OB.

The K-module structure gives Kg a natural filtration and topology. The for-
mer is given by

FkKg := FkK ⊗K0 K0g ⊆ Kg,

and the latter is the one coming from the given topology on K and the indis-
creet topology on g, under a local identificationKg = K⊗g. More explicitly, a
sequence (xn) in Kg converges to 0 iff for every k there exists anNk such that
xn ∈ mk⊗K0g for all n ≥ Nk. This, and translation invariance, also determine
the topology. Since K is complete, so is Kg.

Lemma 5.2.1. The Lie bracket on Kg is continuous and compatible with the filtra-
tion, in the sense that

[FkKg, F
lKg] ⊆ Fk+lKg.

Furthermore, for any local section D of θK/OB , ∇D is continuous and compatible
with the filtration, in that if D lies in FkθK/OB , then for all l

∇DFlKg ⊆ Fk+lKg.

The proof is straightforward.

5.2.1 K̂g and F(Kg,Og)`

We now follow the same steps as in the beginning of this chapter:

Definition 5.2.2. We define K̂g := Kg⊕OB, and endow it with the Lie product
that satisfies

[x⊕ r, y⊕ s] = [x, y]⊕ 0+ 0⊕ (x, y)g,
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for local sections x, y ofKg and r, s ofOB. The central element 0⊕1 is denoted
~. We give K̂g the product topology and define a filtration by

FkK̂g =

{
FkKg ⊕ 0 k > 0

FkKg ⊕OB k ≤ 0.

Remark 5.2.3. We often identifyKg withKg⊕0 ⊆ K̂g. This makes the meaning
of [x, y] in K̂g ambiguous, for local section x, y on Kg. To avoid this, we will
denote the Lie bracket of Kg by [·, ·] ′ in what follows, and the one on K̂g by [·, ·]:

[x, y] = [x, y] ′ + ~(x, y)g.

The obvious projection K̂g → Kg and injection OB → K̂g are algebra mor-
phisms, where we let the Lie product on OB be the trivial one. Since OBcg is
central,

0 // OB
f7→fcg // K̂g

// Kg // 0

is a central extension of OB-Lie algebras. Since Ag and mg are subalgebras of
Kg that are both isotropic with respect to (·, ·)g, Ag ⊕ 0 and mg ⊕ 0 are subal-
gebras of K̂g, and we identify them with Ag,mg respectively. Furthermore,

Ôg := Og ⊕OB ⊆ K̂g

is also a subalgebra of K̂g:

[Ôg, Ôg] ⊆ [Og,Og]⊕ 0+ 0⊕ (Og,Og)g ⊆ Og ⊕ 0+ 0 ⊆ Ôg.

Definition 5.2.4. Let χ be the character of Ôg defined by projection on the
second summand: χ : Ôg = Og ⊕OB → OB. Then we define

F(Kg,Og)` := UK̂g ⊗UÔg
OB,

where Ôg acts on OB by `χ, ` ∈ Z. We call this Verma module the Fock module
associated to the triple Kg,Og, (·, ·)g of level `.

Remark 5.2.5. Given a representation ρ : K0g → EndOB(M) ofK0g on a coherent
OB-module, the definition above can be generalized to the following:

F(Kg,Og)`,ρ := UK̂g ⊗UÔg
M,
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where Ôg acts as follows onM: cg acts by multiplication with ` and Og acts
by the composition of Og → Og/mg = K0g with ρ.

If we locally identify K0g with ONB ⊗ g, we can locally define such a ρ as
follows: for an N-tuple of weights ~λ of g, let Vλi be the highest weight repre-
sentation of weight λi. ThenM~λ

= OB⊗
⊗
i Vλi is anK0-linear representation

of K0g under the obvious action. We write F(Kg,Og)`,~λ for the corresponding
Fock module. We call this the Fock module of level ` and weight~λ.

For ~λ = 0, ρ is the trivial representation on OB, so that F(Kg,Og)`,0 =

F(Kg,Og)`. For this reason, we can also call F(Kg,Og)` the Fock module of
weight 0 and level `.

5.2.2 The OB-linear action of spct(Kred
g )G on F(Kg,Og)`.

Below, we will introduce an analogue of τO ′ for our current setting. Due to
the addition Lie algebra structure, the analogy will not be complete for we
will only be able to prove a part of the properties of τO ′ .

Similar to the notation used earlier, we denote

Kred
g := Kg/K0g = K0g ⊗K0g K

red

and give it the topology it inherits from Kg. By construction, (·, ·)g descends
to a symplectic form on Kred

g . The Lie algebra structure of Kg, however, does
not pass over to Kred

g , since K0g is not an ideal of Kg.
SinceKred

g is a topological symplecticOB-module, we also have the notion
of quasisymplectic basis for Kred

g - the definition is the same as definition
5.1.7, but with Kred replaced by Kred

g .
Example 5.2.6. A semi-natural choice for a local topological quasisymplectic
basis is obtained as follows: suppose X0, . . . , Xn−1 is a local basis of K0g over
K0, that is orthonormal with respect to tr, and let {ei}i6=0 be a local topolog-
ical quasisymplectic basis of Kred. Furthermore, let f = (f1, f2) : Z\{0} →
{0, . . . , n − 1} × Z\{0} be the function that maps a positive integer i to (j, k),
where j + kn = i and 0 ≤ j ≤ n − 1, and a negative integer i to (j,−k). More
explicitly,

f2(i) =

{
bi/nc i > 0

di/ne i < 0
, f1(i) = i− nf2(i).

Then Ẽi := Xf1(i) ⊗ ef2(i) is a local topological basis of Kred
g . Since

(Xf1(i) ⊗ ef2(i), Xf1(j) ⊗ ef2(j))g = δi,−jf2(i),
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we can make it quasisymplectic by a minor modification: Ei := i
f2(i)

Ẽi is a
local topological basis satisfying (Ei, Ej)g = iδi,−j.

Locally over B, Kred is indistinguishable from Kred
g as topological symplectic

OB-module. By choosing local topological quasisymplectic bases for both,
one can find an explicit local identification. As a consequence of this, the
constructions we did for Kred pass over to Kred

g . The first example of this
is the following: choose a local topological quasisymplectic basis {Ei}i6=0 for
Kred

g , then we locally have that

x =

∞∑
|i|=1

(x, E−i)

i
Ei,

for any local section x of Kred
g . Another example is the following isomor-

phism:

Eg : (Kred
g )⊗2 −→ Homct

OB(Kred
g ,Kred

g ).

Here

(Kred
g )⊗2 ⊆ lim←−

k

(Kred
g )⊗2/(FkKred

g ⊗Kred
g +Kred

g ⊗ FkKred
g ).

is defined in a way analogous to (Kred)⊗2. The map Eg is characterized by the
property that Eg(x, y)(z) = (y, z)x for local sections x, y, z of Kred

g . In terms of
the {Ei}i6=0, the inverse of Eg is locally given by

E−1
g (α) =

∑
i

−1

i
αEi ⊗ E−i =

∑
i,j

(αEi, Ej)

ij
E−i ⊗ E−j

for any section α of Homct
OB(Kred

g ,Kred
g ). Lemma 5.1.13 has the following ana-

logue:

Lemma 5.2.7. Let V ⊆ Kred
g be an isotropic OB-submodule and α a local section of

Homct
OB(Kred

g ,Kred
g ) such that α(V⊥) ⊆ V . Then E−1

g ∈ V ⊕ Kred
g +Kred

g ⊕ V .

Let spct(Kred
g ) denote the continuous symplecticOB-endomorphisms ofKred

g . Then
as third example of the above mentioned identification, we have that Eg re-
stricts to an isomorphism

Eg : Sym2Kred
g → spct(Kred

g ).
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We would like to derive a result for Eg, similar to theorem 5.1.14, namely
that up to a factor, adE−1

g (α) acts on UK̂g as α. Unfortunately, perhaps, there
is no natural map from (Kred

g )⊗2 to UK̂g. One way to overcome this is to
assume the following: let O ′g be an isotropic complement for Og in Kg. Such an
O ′g may not exist globally, but will always exist locally - in the following we will
restrict ourselves to some open subset of B if necessary, and assume that such an O ′g
exists. This allows us to identify Kred

g with O ′g ⊕ mg in Kg and lift an element
of (Kred

g )⊗2 to K⊗2g - this can then be mapped to UK̂g in the obvious way. In
order to extend this composition (Kred

g )⊗2 → UK̂g to (Kred
g )⊗2, we introduce

a normal ordering and a completion of the universal enveloping algebra; we
start with the latter.

Give UK̂g the right-filtration it inherits from K̂g, i.e.

FkUK̂g := UK̂g ◦ FkKg

and denote the completion with respect to it by UK̂g. Then, as before, we
have for the induced completion of the Fock module

F(Kg,Og)` = UK̂g ⊗UÔg
OB = UK̂g ⊗UÔg

OB = F(Kg,Og)`,

because FkK̂g annihilates OB for k > 0. By this remark, the action of UK̂g on
F(Kg,Og)` extends to UK̂g.

Our choice of O ′g identifies Kred
g with O ′g ⊕mg, and this gives us a normal

ordering map

nO ′g,mg
: (Kred

g )⊗2 → (Kred
g )⊗2

Denote the natural map K⊗2g → UK̂g by φ, its composition with the lifting map
(Kred

g )⊗2 → K⊗2g by φ̃, and the composition of this with nO ′g,mg
by φ̃O ′g,mg

. It is
easy to see that φ̃O ′g,mg

extends to a map

φ̃O ′g,mg
: (Kred

g )⊗2 → UK̂g.

With a modest amount of foresight, we define the following.

Definition 5.2.8.

τO ′g :=
1

2~ + 2ȟ
φ̃O ′g,mg

◦ E−1
g : spct(Kred

g )→ UK̂g[
1

~ + ȟ
],

where ȟ is the dual Coxeter number of g.



90 Introduction

This determines an OB-linear action of spct(Kred
g ) on F(Kg,Og)` by com-

bining τO ′g with left multiplication. In the next subsection we will prove that
it is an OB-algebra representation for a certain OB-subalgebra of spct(Kred

g ).

5.2.3 The projective representation of θK/OB on F(Kg,Og)`.

In order for τO ′g to have properties similar to those of τO ′ , we must restrict its
domain and moreover make the triviality assumption 3.2.14 stated in section
3.2.4: we assume that Kg has a K-linear G-action that acts symplectically, preserves
Ag, leaves the Lie bracket invariant, commutes with ∇ and acts without nontrivial
fixed points. We recall that these conditions are satisfied if the bundle used as
“input” in Chapter 3 has a global flat section.

Remark 5.2.9. Below we will show that θK/OB can be identified with a sub-
algebra of spct(Kred

g ), and that the action of θK/OB on F(Kg,Og)` given by
left-multiplication with τO ′g is a projective Lie algebra representation. Theo-
rem 5.2.14 and 5.2.16 are the key results for this. The proofs of these, and the
two preliminary results below, are rather technical in nature; the reader who
wishes to skip these technicalities can just read the statements of theorem
5.2.14, 5.2.16 and then proceed to definition 5.2.17.

Note that since K0g is preserved by the G-action, the latter descends to an
action on Kred

g .

Lemma 5.2.10. The above mentionedG-action is continuous, so that the induced ac-
tion on (Kred

g )⊗2 extends to (Kred
g )⊗2. Furthermore, Eg isG-equivariant with respect

to this action and the one induced on spct(Kred
g ), and restricts to an isomorphism

Eg : Sym2Kred
g

G → spct(Kred
g )G.

Here the superscript G denotes the G-invariant part.

Proof. The first statement follows from the K-linearity of the action on Kg,
and facts that G preserves K0g - this assures that G preserves FkKg. The G-
equivariance basically follows from the G-invariance of (·, ·)g: for local sec-
tions x, y, z of Kred

g we have that

g(Eg(x⊗ y)z) = (y, z)ggx = (gy, gz)ggx = Eg(gx⊗ gy)gz,

so that g ◦ Eg(x⊗ y) = Eg(x⊗ y) ◦ g iff x⊗ y is G-invariant. By subsequently
using the K-linearity of the G-action, one readily derives the G-equivariance.
The final statement is then obvious.
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Remark 5.2.11. If
⊕
i∈IWi is a decomposition of Kred

g in G-invariant submod-
ules, then a local section s of Kred

g ⊗ Kred
g is G-invariant iff the projection of s

on every summandWi ⊗Wj, i, j ∈ I, is G-invariant. This statement extends
to Kred

g ⊗Kred
g .

In order to prove the desired results for τO ′g , we will assume that O ′g is a G-
invariant isotropic complement forOg inKg. The following two technical results
will allow us to prove a result analogous to theorem 5.1.14.

Lemma 5.2.12. The lifting map (Kred
g )⊗2 → K⊗2g is equivariant. Furthermore, if

we let C : K⊗2g → Kg be the map that sends local sections x ⊗ y to [x, y], then
C((K⊗2g )G) = 0.

Proof. The first claim follows from the fact that O ′fg and mg are preserved by
G. For the second assertion, we use that G leaves [·, ·] invariant, and that
C maps G-invariant sections to G-invariant sections. Hence if x ⊗ y is G-
invariant, then g∗[x, y] = [g∗x, g∗y] = C(g∗(x ⊗ y)) = [x, y], g ∈ G. Thus
C((K⊗2g )G) ⊆ Kg is G-invariant, and must therefore be 0.

Corollary 5.2.13. If α ∈ spct(Kred
g )G, then ad τO ′g(α) acts on K̂g inUK̂g[1/(~+ȟ)]

as 1
2~+2ȟ

ad(φ̃ ◦ E−1
g (α)) (i.e. we can forget the normal ordering).

Proof. By the lemma above, E−1
g (α) is G-invariant, and by the successive re-

mark, so are its projections onto subspaces O ′g ⊗ O ′g, O ′g ⊗ mg, mg ⊗ O ′g and
mg ⊗ mg;we call them s±± where + refers to mg and − to O ′g. By definition,
nO ′g,mg

is the identity on s++, s−−, s−+ and will “swap” the factors of s+−.
More concretely, if s+− =

∑
k xk⊗yk, for local sections xk of mg and yk ofO ′g,

then nO ′g,mg
(s+−) =

∑
k yk ⊗ xk. Hence in UK̂g we have

[φ̃O ′g,mg
(s+−), x] =

∑
k

[xk ◦ yk − [xk, yk]
′ − ~(xk, yk), x]

=
∑
k

[xk ◦ yk − [xk, yk]
′, x].

However, s+− is G-invariant by the previous remark, so
∑
k[xk, yk] = 0 by

Lemma 5.2.12, and the assertion follows.

We are now ready to formulate the analogue of theorem 5.1.14, albeit only for
part of spct(Kred

g ). Recall that since ∇θK/OB acts continuously and symplecti-
cally on Kred

g , we have that ∇θK/OB ⊆ spct(Kred
g ). Moreover we assumed that

the G-action commutes with∇, so that∇θK/OB ⊆ spct(Kred
g )G as well.
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Theorem 5.2.14. For a local section D of θK/OB , ad τO ′g(∇D) = ∇D when acting
on UK̂g, where we convene that∇~ = 0.

Proof. Choose a local topological quasisymplectic basis {Ei}i6=0 of Kred
g such

that Ei lies in mg for i > 0, and inO ′g for i < 0. Then according to the previous
corollary,

(2~ + 2ȟ)[τO ′g(∇D), x] =
∑
ij

(∇DEi, Ej)g

ij
[E−i ◦ E−j, x]

=
∑
ij

(∇DEi, Ej)g

ij
~ ((E−i, x)gE−j + (E−j, x)gE−i)

+
∑
ij

(∇DEi, Ej)g

ij

(
[E−i, x]

′ ◦ E−j + E−i ◦ [E−j, x]
′) ,

where we recall that [·, ·] ′ denotes the Lie bracket of Kg. For the first term of
the last expression we have that∑

ij

(∇DEi, Ej)g

ij
~ ((E−i, x)gE−j + (E−j, x)gE−i)

= ~
∑
j

1

j
(
∑
i

(∇DEj, Ei)g

i
E−i, x)E−j + ~

∑
i

1

i
(
∑
j

(∇DEi, Ej)g

j
E−j, x)E−i

= −2~
∑
i

(∇DEi, x)g

i
E−i = 2~

∑
i

(∇Dx, E−i)g

−i
Ei = 2~∇Dx.

The second term∑
ij

(∇DEi, Ej)g

ij

(
[E−i, x]

′ ◦ E−j + E−i ◦ [E−j, x]
′) (5.6)

can be rewritten as∑
ijk

(∇DEi, Ej)g([E−i, x]
′, Ek)g

ijk
E−k◦E−j+

(∇DEi, Ej)g([E−j, x]
′, Ek)g

ijk
E−i◦E−k

which, by renaming indices, is equal to∑
ijk

(∇DEi, Ej)g([E−j, x]
′, Ek)g

ijk
E−k◦E−i+

(∇DEi, Ej)g([E−j, x]
′, Ek)g

ijk
E−i◦E−k.
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We rewrite this expression using a normal ordering. It is important here that
we can choose this normal order, and we take it to be of the following type: let
t1, . . . , tN be coordinates ofO and takeO ′′g to be the subspace ofKg generated
by K0gtki for k < 0 and i = 1, . . . ,N. Then (without using anything special
about our normal ordering yet)

φ̃O ′′g ,mg

∑
ijk

(∇DEi, Ej)g([E−j, x]
′, Ek)g

ijk
E−k ⊗ E−i

+φ̃O ′′g ,mg

∑
ijk

(∇DEi, Ej)g([E−j, x]
′, Ek)g

ijk
E−i ⊗ E−k

= φ̃O ′′g ,mg

∑
ijk

(∇DEk, Ej)g([E−j, x]
′, Ei) + (∇DEi, Ej)g([E−j, x]

′, Ek)g

ijk
E−i ⊗ E−k

= φ̃O ′′g ,mg

∑
ik

−([∇DEk, x] ′, Ei)g − ([∇DEi, x] ′, Ek)g

ik
E−i ⊗ E−k.

Since we assumed lemma 3.3.2 to hold, this vanishes by 3.12: for any sections
x, y, z of Kg, ([∇Dx, y], z) = −([∇Dz, y], x) .

At this point exploit our choice of O ′′g to bring us to the setting of [15]
(Lecture 10): first, choose a local basis X0, . . . , Xn of K0g over K0 that is or-
thonormal with respect to tr. Then {Xit

k
j } is basis of Kg that is compatible

with the topology, in the sense that Xitkj ∈ FkKg for all i, j, k. We can make a
quasisymplectic topological basis from this in a way similar to example 5.2.6
- let {Ei}i 6=0 be the result. Then

O ′′g :=
∑
i<0

EiOB =
∑
i,jk<0

is a complement for Og in Kg.
Because our problem isOB-linear in X andD, we can assume without loss

of generality that X = X ′tmn and D = t
q+1
p

∂
∂tp

. With these two assumptions
and the special choice of quasisymplectic topological basis, (5.6) takes the
form

δn,p
∑
α

i+q=j

[Xα, X
′] ′tm−i

n ◦ Xαt−jn + Xαt
−i
n ◦ [Xα, X

′] ′tm−j
n . (5.7)

This expression differs from its normally ordered version in a very simple
way: one just ‘swaps’ the factors of [Xα, X

′] ′tm−i
n ◦ Xαt−jn for those i, j for
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which j > 0 and m − i ≥ 0. By straightforward computation one can check
that this difference is

δn,p
∑
α

[Xα, [Xα, X
′]]tq+1

p

∂

∂tp
tmn = 2ȟ∇Dx.

The proof of the last theorem, which is an adaptation of the computation
found in [15] (Lecture 10), suggests that it is perhaps possible to extend it to
all of sp(Kred

g )G in the following sense: ad τO ′g(α) acts as α, for α ∈ sp(Kred
g )G.

It is only in the last part that we need information beyond the quasisymplectic
structure and the G-action.

Remark 5.2.15. The last theorem in particular shows that ad τO ′g(∇D) does not
depend on the choice ofO ′g, for any sectionD of θK/OB . In the proof corollary
5.2.13we even saw that φ̃(E−1

g (∇D)) and φ̃O ′g,mg
(E−1

g (∇D)) are equal modulo
~OB. Hence τO ′g(∇θK/OB ) does not depend on the choice of O ′g, up to OB. As

we will soon see, this OB submodule of UK̂g[
1

~+ȟ
] is in fact a subalgebra.

Theorem 5.2.16. For local sections D,D ′ of θK/OB , we have that

[τO ′g(∇D), τO ′g(∇D ′)] = τO ′g(∇[D,D ′]) +
~

2~ + 2ȟ
tr(∇D[πO ′g ,∇D]).

Proof. Using the last theorem, the proof becomes almost a copy of that of
theorem 5.1.14. Choose a local topological quasisymplectic basis {Ei}i 6=0 of
Kred

g such that Ei is in mg for i > 0 and in O ′g for i < 0. Then

2(c+ ȟ)[τO ′g(∇D), τO ′g(∇D ′)]

=
∑
i

−1

i
ad τO ′g(∇D) φ̃O ′g,mg

(∇D ′(Ei)⊗ E−i)

=
∑
i

−1

i
(∇D∇D ′Ei ◦ E−i +∇D ′Ei ◦ ∇DE−i).

This expression is G-invariant, as can be seen from the fact that it is propor-
tional to [φE−1

g (∇D), φE−1
g (∇D ′)].

Let nO ′g,Og
: K⊗2g → K⊗2g be the normal ordering map associated to the

decomposition Kg = O ′g ⊕ Og; we denote the composition with the map to
UK̂g by φO ′g,Og

. If x, y are sections of Kg, then

φO ′g,Og
(x⊗ y) − x ◦ y = −[πOgx, πO ′gy] = −[πOgx, πO ′gy]

′ − (x, πO ′gy)g~,
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where πO ′g , πOg denote the projection of Kg = O ′g ⊕ Og on the first and sec-
ond summand, respectively. Since both summands are preserved by G, these
projections areG equivariant. Hence, if x⊗y isG-invariant, then so is πOgx⊗
πO ′gy. In that case, [πOgx, πO ′gy]

′ = 0 and

x ◦ y = φO ′g,Og
(x⊗ y) + (x, πO ′gy)g~.

Using this observation, we conclude that 2(~+ ȟ)[τO ′g(∇D), τO ′g(∇D ′)] equals

φO ′g,Og

∑
i

∇D∇D ′Ei ⊗ E−i +∇D ′Ei ⊗∇DE−i

−i
(5.8)

+~
∑
i

(∇D∇D ′Ei, πO ′gE−i)g + (∇D ′Ei, πO ′g∇DE−i)g

−i
.

By noting that

∑
i

1

i
∇D ′Ei ⊗∇DE−i =

∑
i,j

(∇DE−i, E−j)g

ij
∇D ′Ei ⊗ Ej =

∑
i,j

1

ij
∇D ′((∇DE−j, E−i)gEi)⊗ Ej =

∑
j

1

j
∇D ′∇DE−j ⊗ Ej = −

∑
i

1

i
∇D ′∇DEi ⊗ E−i,

we see that the first part of (5.8) equals

φO ′g,Og

∑
i

−1

i
(∇D∇D ′ −∇D ′∇D)Ei ⊗ E−i = 2(~ + ȟ)τO ′g([∇D,∇D ′ ]).
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For the second part of 5.8we have that

∑
i

~
−i

(
(∇D∇D ′Ei, πO ′gE−i) + (∇D ′Ei, πO ′g∇DE−i)

)
=

∑
i

~
−i

(
(Ei,∇D ′∇DπO ′gE−i) − (Ei,∇D ′πO ′g∇DE−i)

)
=

∑
i

~
−i

(Ei, (∇D ′∇DπO ′g −∇D ′πO ′g∇D)E−i) =

∑
i

~
i
((∇D ′∇DπO ′g −∇D ′πO ′g∇D)Ei, E−i) =

~ tr(∇D ′∇DπO ′g −∇D ′πO ′g∇D) = ~ tr(∇DπO ′g∇D ′ −∇DπO ′g∇D ′) =

~ tr(∇D[πO ′g ,∇D ′ ]).

This theorem allows us to define the following.

Definition 5.2.17. Define

θ̂K/OB := τO ′g(∇θK/OB ) +OB ⊆ UK̂g[
1

~ + ȟ
].

By the previous theorem, it is a OB subalgebra; we let it inherit the product
and call it the Virasoro algebra. The central element 1 ∈ UK̂g[

1
~+ȟ

] is denoted
cg

From this definition and the previous theorem it is clear that OB ⊆ θ̂K/OB
by means of 1 7→ cg, and moreover that τO ′g : θK/OB → θ̂K/OB/cgOB is
an isomorphism of Lie algebras. Note that the latter map does not depend
on the choice of O ′g, so that we have a natural isomorphism of OB-algebras
θ̂K/OB/OB → θK/OB . We conclude that θ̂K/OB is a central extension of θK/OB
by OB:

0 // OB + 1 7→ cg
+ // θ̂K/OB

// θK/OB // 0 .

As the notation suggests, θ̂K/OB is related to θ̂KK/OB , and in fact, they are iso-
morphic. In order to prove this, we first relate the cocyles occurring in the
theorem above and theorem 5.1.14.
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Lemma 5.2.18. Let O ′ be an isotropic K0 submodule of K that is a complement for
O, and takeO ′g = K0g⊗K0O ′ - it is clearlyG-invariant. For any local sectionsD,D ′

of θK/OB we have that

dim(g) tr(D[πO ′ , D
′]) = tr(∇D[πO ′g ,∇D ′ ]).

Proof. Locally over B, identify K0g with K0 ⊗ g and choose a local topological
quasisymplectic basis {ei}i6=0 of Kred such that ei is in m for i > 0 and in O ′
if i < 0. Let X1, . . . , Xdim g be a basis of g, orthogonal with respect to tr, so
(Xaei, Xbej)g = iδabδi,−j. Then {Xa, ei} is a local topological basis ofKred

g , that
diagonalizes (·, ·)g. We compute:

tr(D[πO ′ , D
′]) =

∑
i

1

i
(D[πO ′ , D

′]ei, e−i)

and

tr(∇D[πO ′g ,∇D ′ ]) =
∑
i

dim g∑
a=1

1

i
(∇D[πO ′g ,∇D ′ ]Xaei, Xae−i)g

=
∑
i

dim g∑
a=1

1

i
tr(Xa, Xa)(D[πO ′ , D

′]ei, e−i)

= dim(g) tr(D[πO ′ , D
′]).

Now letO ′, O ′g be as in the previous lemma. Then we define a map θ̂KK/OB →
θ̂K/OB by sending τO ′(D) to τO ′g(∇D) and c to ~

dim g(~+ȟ)
cg. By the previous

lemma and theorem 5.2.16, this is an isomorphism of algebras. One can check
that this isomorphism does not depend on the choice of O ′.

Definition 5.2.19 (Segal-Sugawara representation). We let the Virasoro alge-
bra act on F(Kg,Og)` by left multiplication, and denote the action by Tg.

A direct consequence of the definition above, we have the following result.

Corollary 5.2.20. The representation Tg of factors to a projective representation of
θK/OB on F(Kg,Og)`.

We give an explicit formula for the composition of Tg ◦ τO ′g ◦ ∇, with O ′g as
before. It suffices to describe the action on a local section of F(Kg,Og)` of the
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form ~x ◦ v`, where ~x is a section of UK̂g. One has that for a local section D of
θK/OB :

Tg(τO ′g(∇D)) ◦ ~x ◦ v` = τO ′g(∇D) ◦ ~x ◦ v`
= [τO ′g(∇D),~x] ◦ v` + ~x ◦ τO ′g(∇D) ◦ v`
= ∇D(~x) ◦ v` + ~x ◦ τO ′g(∇D) ◦ v`.

This formula also gives the projective action of D on ~x ◦ v`, provided we
interpret the expression modulo OB~x ◦ v`.

Given a choice O ′g of G-invariant isotropic complement of Og in Kg, we
define TO ′g to be the map θK/OB → EndOBF(Kg,Og)` given by left multiplication
with τO ′g(∇D). As we have seen, TO ′g defines a representation of θK/OB asOB-
module, but not as Lie algebra. Its projectivization however, does define a
projective Lie algebra representation and moreover does not depend on O ′g;
we denote it by

PTg : θK/OB → EndOBF(Kg,Og)`/OB.

5.2.4 The horizontal extension

In this subsection we assume a choice of G-invariant isotropic complement
O ′g for Og in Kg given. The projective action of θK/OB on F(Kg,Og)` can be
extended to derivations of K that are not OB-linear, provided they preserve
OB - recall that we denoted these, the derivations of K over C that preserve
OB, by θK,OB/C. In order to extend PTg to θK,OB/C, we have to make an addi-
tional assumption:

assume that∇ extends to the “horizontal” (i.e. the B-) directions, so that∇ is also
defined on θK,OB/C.

Locally over B, choose coordinates t1, . . . , tn for O, so that we can identify
K with

⊕
iOB((ti)). This identifies θK,OB/C with θK/OB ⊕ θOB/C, and corre-

spondingly identifies a local sectionD of θK,OB/C with a local sectionDv⊕Dh
of θK/OB ⊕ θOB/C. Here Dh is characterized by the property that Dh(ti) = 0

for all i. We now extend TO ′g to θK,OB/C by letting TO ′g(D) act as follows
F(Kg,Og)`: for a section ~x ◦ v` of F(Kg,Og)` we define

TO ′g(D)~x ◦ v` := TO ′g(Dv)~x ◦ v` +∇Dh(~x) ◦ v`
= ∇D(~x) ◦ v` + ~x ◦ TO ′g(Dv)v`. (5.9)
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A priori, this definition depends on the choice of coordinates t1, . . . , tN, but
appearances can be deceiving:

Lemma 5.2.21. The expression defined in (5.9) does not depend on the choice of the
local parameters t1, . . . , tN.

Proof. Let s1, . . . , sN be another set of local coordinates of O. This also gives
us an identification of θK,OB/C with θK/OB ⊕ θOB/C, with respect to which D
decomposes as D̃v + D̃v. So D̃v + D̃v = Dv + Dv = D, D̃v, Dv ∈ θK/OB and
Dh(ti) = D̃h(si) = 0 for all i.

Since m = (t1, . . . , tN) = (s1, . . . , sN) as ideals in O, m/m2 is an OB-
module that is freely generated by the images of t1, . . . , tN, but also by the
images of s1, . . . , sN. Hence ti = a

j
isj mod m2 for an invertible OB-valued

matrix [a
j
i]. If we write D0 = D̃h −Dh = Dv − D̃v, then clearly D0 ∈ θK/OB .

However,

D0(ti) ∈ D̃h(ajisj + m2) ⊆ D̃h(aji)sj + D̃h(m)m ⊆ m,

soD0(m) ⊆ m. As a consequence,∇D0mg ⊆ mg. Since mg is maximal isotropic
as submodule ofKred

g , m⊥g = mg and we can apply lemma 5.2.7: E−1
g (∇D0) lies

in mg ⊕Kred
g +Kred

g ⊕mg. It follows that φ̃O ′g,mg
E−1

g (∇D0) is in Kg ◦ mg and
hence τO ′g(∇D0) ◦ v` = 0 (for every choice of O ′g).

We observe that TO ′g : θK,OB/C → EndCF(Kg,Og)` is independent of O ′g up to
scalar. We denote the projectivization by PTg:

PTg : θK,OB/C → EndCF(Kg,Og)`/OB.

Since this extends the previous definition of PTg, no confusion can arise.

5.3 Co-invariants

The data we have used up till now, did not use the geometric structure that
was the input for Chapter 3 (for that was encoded inA andAg). In this section
we will incorporate this data.

Definition 5.3.1. We call

F(Kg,Og)`;Ag := F(Kg,Og)/Ag ◦ F(Kg,Og)`

the module of co-invariants.
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Below, we will define an action of θA,OB/C = θK,OB/C∩θA/C on F(Kg,Og)`,Ag ,
and start by first defining this locally. This allows us to choose A±g , F±g as in
proposition 3.2.13; by lemma 3.2.16 we can assume them to be G-invariant.
With O ′g := A−

g + F−
g as G-invariant complement for Og, consider TO ′g :

θK,OB/C → EndCF(Kg,Og)`. We investigate the restriction of TO ′g to θθA,OB/C ,
and after that to θA/OB

Lemma 5.3.2. If D is a local section of θA,OB/C, then TO ′g(D) preserves Ag ◦
F(Kg,Og)`, and hence is well defined on F(Kg,Og)`,Ag .

Proof. By equation 5.9,

TO ′g(D)Ag ◦ F(Kg,Og)` = ∇D(Ag) ◦ F(Kg,Og)` +Ag ◦ TO ′g(D)F(Kg,Og)`.

By lemma 3.3.3,∇D(Ag) ⊆ Ag, so the result follows.

Lemma 5.3.3. For any local section D of θA/OB and O ′g as above, TO ′g(D) maps
F(Kg,Og)` to A ◦ F(Kg,Og)`

Proof. Choose a local topological quasisymplectic basis {Ei}i6=0 such that for
a certain γ, {Ei}i>γ is a basis for A+

g , {Ei}i<γ for A−
g , {Ei}i=1,...,γ for F+

g and
{Ei}i=−γ,...,−1 is a basis for F−

g . We have that E−1
g (∇D) =

∑
i

−1
i ∇DEi ⊗ E−i.

By lemma 3.3.3, ∇θA/OB sends A⊥g to Ag, so
∑
i≤γ

−1
i ∇DEi ⊗ E−i lies in

A−
g ⊗A+

g . Hence φ̃O ′g,mg

∑
i≤γ

−1
i ∇DEi⊗E−i lies inAg ◦Kg. In the following,

we identify A±g ,F±g with their images in Kred
g .

The remaining part of E−1
g (∇D), i.e.

∑
i>γ

−1
i ∇DEi ◦ E−i, can by charac-

terized as the Kred
g ⊗A−

g part of E−1
g (∇D). We decompose this in itsA−

g ⊗A−
g ,

F−
g ⊗A−

g , F+
g ⊗A− andA+

g ⊗A−
g parts and denote these by (E−1

g (∇D))A
−
g ,A−

g ,
(E−1

g (∇D))F
−
g ,A−

g , (E−1
g (∇D))F

+
g ,A−

g and (E−1
g (∇D))A

+
g ,A−

g , respectively. Clearly,
φ̃O ′g,mg

(E−1
g (∇D))A

−
g ,A−

g lies in Ag ◦ Kg. Furthermore, since F+
g ⊆ mg and

A−
g ⊆ O ′g, we also have that φ̃O ′g,mg

(E ∈g (∇D))F
+
g ,A−

g lies in Ag ◦ Kg; the
same goes for φ̃O ′g,mg

(E ∈g (∇D))A
+
g ,A−

g .

It remains to show that φ̃O ′g,mg
(E−1

g (∇D))F
−
g ,A−

g takes its values inAg ◦ Kg.
The normal ordering acts as the identity on (E−1

g (∇D))F
−
g ,A−

g because F−
g and

A−
g are both contained in O ′g. Hence, φ̃O ′g,mg

(E−1
g (∇D))F

−
g ,A−

g is of the form∑
i fi ◦ ai for certain sections fi of F−

g and ai of A−
g . It is also G-invariant:

since ∇D is G equivariant, E−1
g (∇D) is G-invariant, and since moreover the
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summands A±,F±g are preserved by G, the F−
g ⊗A−

g part of E−1
g (∇D) is also

G-invariant. It follows that∑
i

fi ◦ ai =
∑
i

ai ◦ fi +
∑
i

[fi, ai]
′ + (fi, ai)~.

By G-invariance,
∑
i[fi, ai]

′ vanishes, and because (F−
g ,A−

g ) = 0, it follows
that
∑
i(fi, ai) also vanishes. Hence φ̃O ′g,mg

(E−1
g (∇D))F

−
g ,A−

g =
∑
i ai ◦ fi also

lies in Ag ◦ Kg.

From the previous two lemmas it follows that TO ′g descends to a well defined
action of θA,OB/C/θA/OB on F(Kg,Og)`;Ag . Since θA,OB/C/θA/OB = θB, so that
we have defined a map

T
Ag

O ′g
: θB → EndCF(Kg,Og)`;Ag .

We now show that this map is a connection: let f be a local section of OB,
~x ◦ v` of F(Kg,Og)`;Ag and D of θB. Lift D locally to D ∈ θA,OB/C. Then

T
Ag

O ′g
(D)f~x ◦ v` = ∇D(f~x) ◦ v` + f~x ◦ τO ′g(∇D)v`

= D(f)~x ◦ v` + f∇D(~x) ◦ v` + τO ′g(∇D)v`

= D(f)~x ◦ v` + fT
Ag

O ′g
(D)~x ◦ v`,

so that TAg

O ′g
liftsD to a first order differential operator on F(Kg,Og)`;Ag whose

symbol is the identity.

Corollary 5.3.4. For any choice ofO ′g as above, TAg

O ′g
is a holomorphic connection on

F(Kg,Og)`;Ag over B.

In order to define TO ′g , we had to choose A±g ,F±g as above, and to do that, we
had to restrict the base space. However, as we saw before, TO ′g depends on

TO ′g only up to scalar, so that the projectivization of TAg

O ′g
is independent ofO ′g.

We give this map a name:

Definition 5.3.5 (WZW projective holomorphic connection). Define ∇WZW
as the map

θB → EndCF(Kg,Og)`;Ag/OB

that is locally defined by TAg

O ′g
, with O ′g equal to F−

g +A−
g as above.

Clearly, ∇WZW is a projective holomorphic connection on F(Kg,Og)`;Ag . We
emphasize that this is now defined globally over B.
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5.3.1 Conformal blocks

The UK̂g-module F(Kg,Og)` has a unique maximal submodule, which we
denote by Z`. We already saw this in Chapter 1: there we denoted K̂g by L̂g,
Ôg by L̂≥g and F(Kg,Og)` by H(L̂g, L̂≥g)`. As was noted there, it is locally
of the following form: locally over B, choose coordinates t1, . . . , tN of O and
identifyKg with g⊗

⊕
i((ti)). Then Z` is of the form

⊕
iUK̂g ◦ (Xθt−1i )`+1 ◦v`,

where Xθ is a highest root vector of g (relative some choice of positive roots).

Definition 5.3.6. We let Z`;Ag be the image of Z` in F(Kg,Og)`;Ag . We call

B(Kg,Og,Ag)
∗
` := F(Kg,Og)`;Ag/Z`;Ag

the module of conformal coblocks and

B(Kg,Og,Ag)` := HomOB(F(Kg,Og)`;Ag/Z`;Ag ,OB)

the module of conformal blocks.

In the literature, this module of conformal blocks is sometimes also called the
module of vacua.

Below, we will see that B(Kg,Og,Ag)` is locally free so that B(Kg,Og,Ag)`
and B(Kg,Og,Ag)

∗
` indeed are each others OB-dual.

Lemma 5.3.7. The submodule Z` of F(Kg,Og)` is preserved by ∇WZW , so that
∇WZW descends to a projective connection on F(Kg,Og)`/(Ag ◦ F(Kg,Og)` +Z`),
and hence defines connections on B(Kg,Og,Ag)

∗
` and B(Kg,Og,Ag)` - we denote

both by ∇WZW .

Proof. It suffices to show this locally, so let ∇WZW be represented by TAg

O ′g
,

where O ′g is as above. Furthermore, let t1, . . . , tN and Xθ be as in the begin-
ning of this subsection so that Z` is generated by (Xθt

−1
i )`+1 ◦ v`, i = 1, . . . ,N.

For a local sectionD on θB, there is a (unique) lift D̃ ofD to θA,OB/C such that
D̃ti = 0 for all i (so the “vertical part” of D̃ is 0). We compute:

T
Ag

O ′g
(D)Z` =

∑
i

∇
D̃

(UK̂red)◦(Xθt−1i )`+1◦v`+
∑
i

UK̂red◦∇
D̃

(Xθt
−1
i )`+1◦v`.

The first term is clearly contained in Z`, so it suffices to prove that∇
D̃

(Xθt
−1
i )

vanishes for all i. By the Leibniz rule, this expression equals ti∇D̃Xθ+XθD̃(ti).
By definition of D̃, D̃(ti) = 0. Now recall that we made a local identification
g ⊗ K ' Kg. By lemma 3.2.15, we can assume g to consist of flat sections, so
that ∇

D̃
Xθ = 0 as well.
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One of the nice properties of the quotient with respect to Z` is the following:

Theorem 5.3.8. B(Kg,Og,Ag)` is a coherent OB-module.

For a proof, we refer the reader to [19], Proposition 3.2.
Locally over B,∇WZW is represented by a holomorphic connection, so the

OB-module B(Kg,Og,Ag)
∗
` locally has a holomorphic connection. Since it is

coherent, by the previous theorem we conclude that

Corollary 5.3.9. The OB-module B(Kg,Og,Ag)
∗
` is locally free and of finite rank.

The same holds for B(Kg,Og,Ag)`.

5.4 The length filtration

By construction, F(Kg,Og)`, F(Kg,Og)`;Ag and B(Kg,Og,Ag)
∗
` inherit any fil-

tration from UK̂g. Above, we used the “right filtration” for the latter, but
here we will introduce a different one: the length filtration, of which let the
k-th part be given by

FLkUK̂g := im(
∑
i≤k
K̂⊗ig ) ⊆ UK̂g.

The corresponding filtration on F(Kg,Og)` is then defined as

FLkF(Kg,Og)` := FLkUK̂g ◦ v`.

This in turn defines a filtration on any quotient of F(Kg,Og)`, by letting the k-
th piece be the image of FLkF(Kg,Og)` - we also denote this induced filtration
by FLk, so e.g.

FLkF(Kg,Og)`;Ag := im(FLkF(Kg,Og)`) ⊆ F(Kg,Og)`;Ag

is the length filtration on F(Kg,Og)`;Ag .





Chapter 6

Comparisons

Let G be a fixed simple complex algebraic group with Lie algebra g, and tr a positive
definite ad-invariant bilinear form on g. We assume tr to be normalized such that
the longest root has length 2 (see remark 1.3.6). Moreover, we let Gc be a compact
real form of G and fix two positive integers `, l.

In this chapter we will compare the results of Chapters 2,4 and 5. In each
of these chapters we associated to a certain geometric setting, a locally free
OB-module of finite rank with a flat projective holomorphic connection, for a
given complex variety B.

6.1 (Graded) conformal blocks

We start by fixing a pointed family of curves (C/B, p). Recall that we can re-
gard this as a family of complex structures, parameterized by B, on a pointed
compact oriented pointed surface (Σ, p). We assume the latter to by equipped
with a Gc-bundle Pc/Σ, together with a flat C∞-connection ∇Pc/Σ. One can
“multiply” all this by B; the result is a principal Gc-bundle

P̃c/Σ× B : P̃c := Pc × B→ Σ× B

over Σ × B that maps to Pc/Σ by contraction in the B directions. We let
∇P̃c/Σ×B be the connection obtained by pulling ∇Pc/Σ back to P̃c/Σ × B; it is
clearly a flat connection over Σ×B. Let P := P̃c×GcG be the complexification
of P̃c, and P/Σ× B the corresponding principal G-bundle; the corresponding

105
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complexification of ∇P̃c/Σ×B is denoted ∇P/Σ×B. As we saw before, the com-
plex structure C/B on Σ × B/B lifts to P/Σ × B via ∇P/Σ×B: a local section s
is holomorphic iff (∇P/Σ×B)0,1s = 0. We denote P/Σ × B endowed with this
complex structure by P/C. Furthermore, for simplicity we will write∇P/C for
be the flat connection ∇P/Σ×B on P/C, whereas the connection on the adjoint
bundle AdP/C inherited from∇P/C is denoted by∇.

Remark 6.1.1. Note that if Pc/Σ has a global flat section with respect to ∇Pc/Σ,
then P/C has a global flat section with respect to ∇P/C . We will later assume
this to be the case.

6.1.1 Graded conformal blocks

We now show how this setting, i.e. (C/B, p), P/C and∇, gives rise to the data
used as input in Chapter 4. Part of this was already defined in Chapter 3:

Hg = R1(C/B)∗G, Fg = (C/B)∗(ωC/B ⊗ G),

where G denotes the sheaf of flat local sections of AdP/C . The sheaf Hg came
with a symplectic form (·, ·) given by the pairing that (·, ·)g induces via the
isomorphism ∇ : A⊥g /(Ag +K0g)→ Hg. With respect to this symplectic struc-
ture, Fg is a Lagrangian submodule ofHg, as we have seen before. However,
since P/C and ∇P/C were obtained by trivial extension in the B direction, Hg

trivializes: we have that

Hg = H1(Σ;GPc)⊗R OB, (6.1)

where GPc denotes the flat sections of AdPc/Σ over Σ. This determines a flat
connection ∇Hg on Hg that takes the form id ⊗ d under the identification
6.1. We remark that such a connection is called a Gauss-Manin connection.
It is compatible with the OB-module structure, in that [(∇Hg)0,1,OB] = 0.
Furthermore, we have seen that the symplectic structure on H is given by
the tr-integration pairing; it follows the symplectic structure onH is induced
from the tr-integration pairing on H1(Σ;GPc). From this, in turn, it immedi-
ately follows that (·, ·) is flat with respect to∇.

We recall some notation from Chapter 4: the sheaf of (p, q) forms on B
with values in M is denoted Ep,q(M). Furthermore, we let E denote the
sheaf of smooth functions on B, and for anyOB-moduleMwe denote the as-
sociated E-module E ⊗OBM byM∞. As an exception, we write F∞(Hg,Fg)l,
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F∞(Kg,Og)` instead of the more cumbersome (F(Hg,Fg)l)∞, (F(Kg,Og)`)∞.
Using this notation, we have e.g. that Hg,∞ = H1(Σ;GPc) ⊗ E is a vector
bundle on B with flat connection ∇Hg , and holomorphic subbundle Fg. The
identification (6.1) shows that it has a natural real structure a 7→ a. Since
the symplectic structure on Hg (and hence the one induced on Hg,∞ as well)
is induced from H1(Σ;GPc), we see that it is real; the same goes for ∇. Fur-
thermore, we have that Fg,∞ is a Lagrangian complement for Fg,∞ in Hg,∞:
one just observes that in a fiber over a point b ∈ B, (Fg,∞)b = H0,1(Cb;G),
(Fg,∞)b = H1,0(Cb;G) and Hg,∞ = H1(Cb;G). Using this, one readily checks
that

(a, b) 7→ −i(a, b)

is a negative definite hermitian form on Fg,∞ and a positive definite one on
Fg,∞.

This brings us in the setting of Chapter 4: to the tuple (Hg,∇,Fg, (·, ·), (·))
we have associated the Fock module F(Hg,Fg)l and an inner product 〈·, ·〉 on
F∞(Hg,Fg)l, such that the canonical connection (compatible with holomor-
phic and hermitian structure) has scalar curvature. We will now compare
this with the results of Chapter 5: in Chapter 3 we associated to (C/B, p),
P/C and ∇, the OB-modules Kg,Og,Ag and a presymplectic form (·, ·)g on
Kg. These satisfy the requirements needed to define F(Kg,Og)`;Ag , Z` and
B(Kg,Og,Ag)

∗
` in Chapter 5. For the former, we defined a filtration that we

denoted {FLkF(Kg,Og)`;Ag}k∈N and called the “length” filtration - let

gr F(Kg,Og)`;Ag

denote the graded quotient of F(Kg,Og)` with respect to this filtration.

Lemma 6.1.2. We have a natural isomorphism of OB-modules

gr F(Kg,Og)`;Ag → F(Hg,Fg)l.

Proof. Recall that the filtration of F(Kg,Og)`;Ag was induced by the filtration
of UK̂g that it received from the tensor algebra of K̂g. From this it is clear that
the graded quotient of UK̂g is commutative, and hence the image of

UK̂g ◦ (X ◦ Y − Y ◦ X) ◦UK̂g ◦ v` (6.2)

in gr F(Kg,Og)`;Ag vanishes, for any local sections X, Y of K̂g. If we also re-
call that O` ◦ v` = 0, OB~v` = OBv` and that Ag ◦ F(Kg,Og)`;Ag vanishes in
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F(Kg,Og)`;Ag , then a PBW-type argument shows that gr F(Kg,Og)`;Ag can be
naturally identified with Sym•(Kg/(Og+Ag)) asOB-modules: using the com-
mutativity relation (6.2), one “moves all factors in Ag to the left, and factors
in Ôg to the right”.

The same trick can be applied to F(Hg,Fg)l: using that F̂g ◦ fl = OBfl and
that [F̂g, Ĥg] = ~OB, we see by “moving all terms in F̂g to the right” that

F(Hg,Fg)l = Sym•(Hg/Fg) = Sym•A⊥g /((Og ∩ A⊥g ) +Ag)

= Sym•(Kg/(Og + Ag)).

Note that locally over B, we can choose a F−
g as in proposition 3.2.13.

Then the map
⊗
F−

g → F(Kg,Og)`;Ag induces an isomorphism from Sym•F−
g

to gr F(Kg,Og)`;Ag . However,∇ : F−
g → Hg gives an isomorphism Sym•F−

g →
F(Hg,Fg)` so that by composition, we obtain an identification ofOB-modules
gr F(Kg,Og)`;Ag ' F(Hg,Fg)`. This is the same isomorphism as the one just
defined, and therefore does not depend on the choice of F−

g .

We recall that F(Kg,Og)` has a maximal UK̂g submodule Z`, and that Z`;Ag

denotes its image in F(K,Og)`;Ag . The module of graded conformal coblocks
should of course be the graded quotient of F(K,Og)`;Ag/Z`;Ag with respect to
some filtration. Before make this precise, we first take a small detour to dis-
cuss some generalities about filtered modules, and show that “taking graded
quotient commutes with dividing out by a submodule”.

Let V be a module (over some ring or sheaf) with increasing filtration
{Vk} and submodule W. The latter naturally inherits a filtration that is given
by {Wk = Vk ∩ W}. Moreover, the quotient V/W also naturally inherits a
filtration, in which the k-th piece is given by the image of Vk in V/W.

Lemma 6.1.3. There is a natural isomorphism grV/W = grV/grW, where the
right-hand side is the quotient in the category of graded modules.

Proof. We compare the degree k summands: on the left hand side this is

(grV/W)k = Vk+W/(Vk−1+W) = Vk/((Vk−1+W)∩Vk) = Vk/(Vk−1+Wk),

whereas on the rights hand side this is given by

(grV/ grW)k = (grV)k/(grW)k = Vk/(Vk−1 +Wk).
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We now apply this to the submodule Z`;Ag of F(K,Og)`;Ag :

gr(F(Kg,Og)`;Ag/Z`;Ag) = gr F(Kg,Og)`;Ag/grZ`;Ag .

If we subsequently apply the natural isomorphism from lemma 6.1.2, we can
conclude the following.

Corollary 6.1.4. We have a natural isomorphism

grB(Kg,Og,Ag)
∗
` = F(Hg,Fg)l/grZ`;Ag .

This result legitimates the following definition. Because of this result, we call
F(Hg,Fg)l/grZ`;Ag the sheaf of graded conformal coblocks. This isomorphism
gives a relation between ∇WZW and ∇F, provided `, l satisfy a certain con-
dition. However, in order for the first one to be defined, we have to make
more assumptions on our principal bundle and its connection: assume that
the assumption of remark 6.1.1 holds, so that (P/C,∇P/C) is (isomorphic to) the
trivial G-bundle over C/B with corresponding connection. For this setting, we
have defined a projective holomorphic connection ∇WZW on B(Kg,Og,Ag)

∗
`

in Chapter 5. We recall how it acts on B(Kg,Og,Ag)
∗
` . Of course, it suffices

to do this locally, and hence we can choose coordinates t1, . . . , tN of O. Since
P/C and ∇P/C were assumed trivial, AdP/C has a global basis of flat sections.
This ensures that we can identify Kg with K ⊗ g, where 1 ⊗ g consists of flat
sections, and that Kg has a G-action that satisfies the conditions of 3.2.14 in
Chapter 3. We define O ′g := g ⊗

⊕
iOB[t

−1
i ], and note that it is a G-invariant

isotropic complement for Og in Kg.
Now, letD be a local section of θB = θOB/C with a local lift D̃ to θA,OB/C ⊆

θK,OB/C. Write D̃ = D̃v + D̃h for D̃h ∈ θA,OB/C such that D̃h(ti) = 0 and
D̃v ∈ θK/OB . Then, for a local section ~x ◦ v` of F(Kg,Og)`;Ag/Z` we have that
∇WZW
D̃

~x ◦ v` is given by

∇
D̃h

(~x) ◦ v` + τO ′g(∇D̃v) ◦ ~x ◦ v` = ∇
D̃

(~x) ◦ v` + ~x ◦ τO ′g(∇D̃v) ◦ v`.

Clearly, ∇
D̃

preserves the filtration (and Z`, as we saw in Chapter 5), so that
it descends to gr(F(Kg,Og)`;Ag/Z`). We denote the induced map by gr∇

D̃
.

Before we discuss the second term, we introduce some notation: if ~x ◦
v` lies in FLdF(Kg,Og)`, then we write [~x ◦ v`]d for the image of ~x ◦ v` in
gr(F(Kg,Og)`;Ag/Z`;Ag)d. We note that the image of ~x ◦ τO ′g(∇D̃v) ◦ v` in the
graded quotient is equal to [τO ′g(∇D̃v) ◦ ~x ◦ v`]. Inspired by this, we define
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an endomorphism gr TO ′g(∇D̃v) of gr(F(Kg,Og)`;Ag/Z`), homogeneous of degree 2,
as follows. Any nontrivial section of gr(F(Kg,Og)`;Ag/Z`)d can be represented by
some section ~x ◦ v` of FLdF(Kg,Og)`. It therefore suffices to define the action of
gr TO ′g(∇D̃v) on [~x ◦ v`]d:

gr TO ′g(∇D̃v)[~x ◦ v`]d = [τO ′g(∇D̃v) ◦ ~x ◦ v`]d+2.

Definition 6.1.5 (Graded WZW (projective) connection). Let gr∇WZW de-
note the projective holomorphic connection on gr(F(Kg,Og)`;Ag/Z`;Ag) that
is locally defined as follows: with the notation as above,

gr∇WZWD = gr∇
D̃h

+ gr TO ′g(∇D̃v).

A priori, it is not clear that this is indeed a (projective) connection, or even
that it is well defined at all. However, by theorem 6.1.6, gr∇WZW is indeed
a well defined projective connection. Before we proceed with this theorem, a
few comments on the name “Graded WZW connection” are in place.

In general, given a filtered vector bundle and connection on it that does
not preserve the filtration, the connection does not pass over to the graded
quotient of the vector bundle in a natural way. In this case, there is no such
thing as “the graded connection”. However, because of the way ∇WZW is
defined, there is at least an “obvious” way to define a (projective) connec-
tion on gr(F(Kg,Og)`;Ag/Z`;Ag), which is definition 6.1.5. For this reason we,
somewhat pretentiously, call gr∇WZW the graded WZW connection. By the fol-
lowing theorem, this is at least an interesting object.

Theorem 6.1.6. For l = ` + ȟ, the projectivization of ∇F coincides with E-linear
extension of gr∇WZW .

Proof. Since P/C and ∇ are trivial (in the sense that there is a global flat sec-
tion), Kg has a global G-action satisfying the conditions of assumption 3.2.14.
Thus, locally over B, we choose A±g ,F±g as in proposition 3.2.13 and assume
them to be G-invariant. Now, let D, D̃, D̃v and D̃h be as above. A local sec-
tion of (gr F(Kg,Og)`;Ag/Z`)d can (locally) always be represented by a section
~x ◦ v` of FLdF(Kg,Og)`, and in this we can assume ~x to be in the image of⊗
•F−

g . We have that (up to a multiple of ~x ◦ v`)

gr∇WZWD [~x ◦ v`]d = [∇
D̃

(~x) ◦ v`]d + [τO ′g(∇D̃v) ◦ ~x ◦ v`]d+2,
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where O ′g = A−
g + F−

g . On the other hand,

∇F
D[~x ◦ v`]d = ∇Hg

D [~x ◦ v`]d + ρ(s(D)) ◦ [~x ◦ v`]d.

Before we compare these two expression, we first introduce some more no-
tation. Let ~y be a local section of FLdUK̂g. Then ~y is congruent to the image
of some section ỹ of (F−

g )⊗d modulo FLd−1UK̂g. Now, recall that ∇ induces
a natural isomorphism A⊥g /(Ag + K0g) = Hg. Via this isomorphism, ỹ deter-
mines a section [~y]d ofUĤg, that is well defined in terms of ~y mod FLd−1UK̂g.
This association ~y 7→ [~y]d has the property that [~y ◦~z]d+e = [~y]d ◦ [~z]e, for any
section ~z of FLeUK̂g. Using this notation, the expressions above reduce to

gr∇WZWD [~x ◦ v`]d = [∇
D̃

(~x)]d ◦ fl + [τO ′g(∇D̃v) ◦ ~x ◦ v`]d+2,

and

∇F
D[~x ◦ v`]d = ∇Hg

D [~x]d ◦ fl + ρ(s(D)) ◦ [~x]d ◦ fl.

By [12] lemma 3.7, we have that the action of ∇Hg

D on Hg is induced by ∇
D̃

on Kg, so that

[∇
D̃

(~x)]d = ∇Hg [~x]d.

It therefore remains to prove that

[τO ′g(∇D̃v) ◦ ~x ◦ v`]d+2 = ρ(s(D)) ◦ [~x]d ◦ fl. (6.3)

Since the problem is nowOB-linear, we can restrict ourselves to the fiber over
a point b ∈ B. This means that we can identify Hg with H1(Cb;G), Fg with
H1,0(Cb;G) and Fg,∞ = H0,1(Cb;G) with H1(Cb,AdP/Cb). Moreover, we can
choose F−

g to be such that it maps to Fg,∞ under the map A⊥g → A⊥g /(Ag +

K0g) = Hg.
We finish the proof with an explicit computation of both sides of equa-

tion (6.3). Choose a topological quasisymplectic basis {Ei}i6=0 of Kred
g , that is

adapted to F±g ,A±g in the following sense: for a certain γ > 0, {Ei}i<−γ is a ba-
sis of A−

g , {Ei}i=−γ,...,−1 is a basis of F−
g , {Ei}i=1...,γ is a basis of A+

g and {Ei}i>γ
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is a basis of F+
g . In terms of this, we have that

[τO ′g(∇D̃v) ◦ ~x ◦ v`]

=
1

2(`+ ȟ)

φ̃O ′g,mg

∑
i,j

(∇
D̃v
Ei, Ej)g

ij
E−i ⊗ E−j

 ◦ ~x ◦ v`


=
1

2(`+ ȟ)

∑
i,j

(∇
D̃v
Ei, Ej)g

ij
[E−i ◦ E−j ◦ ~x ◦ v`]

=
1

2(`+ ȟ)

γ∑
i,j=1

(∇
D̃v
Ei, Ej)g

ij
[E−i ◦ E−j ◦ ~x ◦ v`]

=
1

2(`+ ȟ)

γ∑
i,j=1

(∇
D̃v
Ei, Ej)g

ij
[E−i] ◦ [E−j] ◦ [~x] ◦ fl.

The first equality is just the definition of τO ′g . In the second one, we used
that normal ordering can be omitted due to the commutativity of the graded
quotient. For the third equation, we use the special choice of the topological
quasisymplectic basis, in combination with the observations that [Ag◦~x◦v`] =

0 and [Og ◦ ~x ◦ v`] = [~x ◦ Og ◦ v`] = 0. However, {[Ei]}|i|=1,...,γ provides a
quasisymplectic basis of Hg that is adapted to Fg, Fg in the sense that [Ei] ∈
Fg for i > 0 and [Ei] ∈ Fg for i < 0. It follows that

ρ(s(D)) ◦ [~x]d ◦ fl =
1

2l

γ∑
i,j=1

(∇Hg

D [Ei]1, [Ej]1)

ij
[Ei]1 ◦ [Ej]1 ◦ [~x ′]d ◦ fl.

Since by assumption l = `+ ȟ, we see that it suffices to prove that

(∇Hg

D [Ei]1, [Ej]1) = (∇
D̃v
Ei, Ej)g.

To see why this is the case, we first note that

(∇Hg

D [Ei]1, [Ej]1) = (∇Hg

D ∇(Ei),∇(Ej)) = (∇(∇
D̃
Ei),∇(Ej)).

Since (·, ·) was defined as the pairing that (·, ·)g induces via the isomorphism
∇ : A⊥g /Ag → Hg, we see that (∇(∇

D̃
Ei),∇(Ej)) indeed equals (∇

D̃v
Ei, Ej)g.

As a direct consequence of the theorem above and corollary 4.3.2 we have

Corollary 6.1.7. The graded WZW connection, i.e. gr∇WZW , is locally unitary.
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6.2 The Verlinde isomorphism

We conclude with a sketch of the Verlinde isomorphism, which identifies con-
formal blocks with θ-functions and the WZW-projective connection with the
Hitchin projective connection. For details, we refer reader to [17].

Continue with the setting above; in particular assume (C/B, p), P/C and
∇P/C given, but make an additional assumption on C/B: assume it to be
miniversal. In this section we compare the results of section 5 with those
of section 2. In the latter, we defined a morphismM/C :M → C, a line bun-
dle L on M, and an OB-module Θ` := (M/C)∗L`. The latter is locally free
and of finite rank, and has a natural flat projective connection (the Hitchin
connection), which is unique with the property that is locally given by heat
operators.

Theorem 6.2.1. There is a natural isomorphism B(Kg,Og,Ag)` → Θ`, called the
Verlinde isomorphism, that identifies the WZW projective holomorphic connection
on the right hand side with the Hitchin projective holomorphic connection on the left
hand side.

We will sketch the isomorphism: recall that for a given family of pointed
curves (C/B, p), we have (locally over B):

• loop groups LG(C0/B)red,L≥G ⊆ LG,

• a central extension L̂G of LG with subextension L̂≥G of L≥G and an
injective homomorphism LG(C0) ↪→ L̂G.

We denoted the Lie algebras of L̂G, L̂≥G and L̂G(C0/B)red by L̂g, L̂≥g and
Lg(C0/B)red, respectively. If we trivialize P in a flat manner, we can identify,
Kg = (Ĉ0p/B)∗AdP/C with (Ĉ0p/B)∗(OC ⊗ g) = K ⊗ g = Lg. We assume such a
trivialization given. The identification Kg = Lg induces identifications

Og = L≥g, Ag = Lg(C0/B), K̂g = L̂gg, Ôg = L̂≥g.

We have seen that the family of moduli spaces of regularly stable G-bundles
over C is (locally) given by

M = LG(C0)red\LGrs/L≥G.

On this, we defined a line bundle L`, whose total space is given by

LG(C0/B)red\L̂G
rs
× C/L̂≥G,
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where LG(C0/B)red acts trivially on C and L̂≥G via a character e−`χ. Now, let
{Ui}i∈I be an open cover ofM such that we have sections

gi :M⊇ Ui → L̂Grs.
Then L` is trivialized over {Ui}i∈I by nonvanishing local sections

σi : Ui → LG(C0/B)red\L̂G
rs
× C/L̂≥G : x 7→ [gi × 1].

Over an overlap Ui ∩ Uj, gi = fijgjhij for certain sections fij of LG(C0/B)red

and hij of L̂≥G, so σi = e−`χ(hij) ·σj ·1. For a local section u of B(Kg,Og,Ag)`,
we will define a local section θu of Θl using the following: the UK̂g-action on

F(L̂g, L̂≥g)` = F(Kg,Og)`/Z`

integrates to an action of L̂G. This has the property that LG(C0/B) acts triv-
ially and L̂≥g acts via e−`χ. We define

θu(Ui) = u(gi · v`)σi.

This is well defined iff on Ui ∩Uj

u(gi ·v`)σi = u(gj ·v`)σj = u(fijgihij ·v`)e`χ(hij)σi = u(gihij ·v`)e−`χ(hij)σi,

where in the last step it was used that u is LG(C0/B) invariant. By construc-
tion, L̂≥g = Ôg = Og ⊕ OB acts on v` via `χ, which is ` times the projection
on its second summand. The character e`χ is the exponentiation of this action
and hence hij ·v` = e`χ(hij)v` so that θu is well defined. This map u 7→ θu de-
fines the isomorphism claimed in the theorem. Under this isomorphism, the
Segal-Sugawara tensor τO ′(∇D̃v) acts as a second order differential operator
on sections of L`, and hence, the WZW connection is (locally) represented by
a heat operator. By the corollary 2.2.10, it must equal the Hitchin connection.
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A.1 Derivations, connections and differential operators

In this section, k will be an algebraically closed field of characteristic 0, S a
finitely generated k-algebra, and R a finitely generated S-algebra. We remark
that both R and S are Noetherian, and that for a Noetherian ring the notions
of finitely generated, finitely presented and coherent modules coincide. Ref-
erences for this section are [8] and [9]. Define

DerS(R) := {∂ ∈ EndS(R) | ∂(ab) = ∂(a)b+ a∂(b)}

to be the R-module of derivations of R over S. DerS(R) is dual to the module
of Kähler differentials J/J2, where J is the kernel of the multiplication map
R ⊗S R → R. If x1, . . . , xr are generators of R over S, then J is generated by
the elements xi ⊗ xj − xj ⊗ xi, i 6= j. Hence J/J2 is finitely generated, and as a
consequence, DerS(R) is finitely generated as well.

For a finitely generated R-module M define the R-module of R-differential
operators onM over S of order at most i by

DiR/S(M) := EndR(M) for i = 0

DiR/S(M) := {D ∈ EndS(M) | [D,EndR(M)] ⊆ Di−1R/S(M)} for i ≥ 1.

Clearly, DiR/S(M) ◦ DjR/S(M) ⊆ Di+jR/S(M).

Lemma A.1.1. There is a natural exact sequence

0
i // EndR(M) // D1R/S(M) σ1 // DerS(R)⊗R EndR(M)

called the first symbol sequence, where i is the inclusion map.

115
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Proof. Let D be in D1R/S(M). Any element of R is a polynomial p in a set of
generators, say x1, . . . , xr, of R over S. Let µ : R → EndR(M) be the multipli-
cation map, then by the Leibniz rule

[D,µ(p)] =
∂p

∂xi
[D,µ(xi)],

with ∂p
∂xi

the formal derivative. Call Ai = [D,µ(xi)] and define

σ1(D) :=
∂

∂xi
⊗Ai ∈ Derk(R)⊗R EndR(M).

Of course, it is not yet clear that this is well defined. To see why this is the
case, let ρ(x1, . . . , xr) be a relation in R with coefficients in S, so that we must
have ∂ρ(x1,...,xr)

∂xi
Ai = 0. Since ρ(x1, . . . , xr) vanishes in R, it follows that indeed

0 = [D,µ(0)] = [D,µ(ρ)] =
∂ρ

∂xi
Ai.

Secondly, it is to be shown that σ1(D) is independent of the choice of genera-
tors, so let y1 . . . , ys be another set of generators. We denote [D,µ(yi)] by Bi
and, by abbreviating x1, . . . , xr to x and y1, . . . , ys to y, express x in terms of y
- we write x(y) to express this. Any element in R can be represented by some
p(x) ∈ S[x1, . . . , xn], but can also be represented by p(x(y)) ∈ S[y1, . . . , ys].
By formally differentiating,

∂p(x(y))

∂yi
Bi =

∂p

∂xj

∂xj

∂yi
Bi

but also

∂p(x)

∂xj
Aj =

∂p

∂xj
Aj =

∂p

∂xj
[D,µ(xj(y))] =

∂p

∂xj

∂xj

∂yi
[D,µ(yi)] =

∂p

∂xj

∂xj

∂yi
Bi,

so that σ is indeed well defined. Finally, σ1(D)(r) = 0 for every r ∈ R iff D
commutes with the R action onM, i.e. iff D ∈ EndR(M).

Since M is finitely generated, so is EndR(M). Moreover, the image of σ
is a submodule of DerS(R)⊗R EndR(M), and since is finitely generated, so is
im(σ). ThusD1R/S(M), being an extension of the finitely generated R-modules
EndR(M) and im(σ), is finitely generated.
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We now specialize to the case S = k. In that case, there is an interesting
criterion for σ to be surjective, i.e. for

0 // EndR(M) // D1R/kM
σ1 // Derk(R)⊗R EndR(M) // 0 (A.4)

to be exact, provided R is nice enough. To simplify the proof, we first recall
that a sequence of finitely generated R-modules is exact iff it is exact at all
the maximal ideals. Since R is finitely generated over k, its localization at any
maximal ideal is a local ring of finite dimension. Hence it suffices to prove
the following.

Theorem A.1.2. Suppose R is a regular local k-algebra of finite dimension. Then
(A.4) is exact iffM is a free R-module.

Proof. If M is free over R, say M ' R⊕r, any element ∂ ⊗ A ∈ Derk(R) ⊗R
EndR(M) is lifted by A ◦ ∂⊕r. Hence in this case, (A.4) is exact.

Now suppose σ1 is surjective. Denote the maximal ideal of R by m. If
we complete R with respect to m, then the completion of σ1 is also surjective.
Moreover, if the completion of M is free, then M itself is also free. Hence we
can assume R to be complete.

Let n be the dimension of m/m2 over k. Since R is a regular complete local
k-algebra of dimension n, we know it is of the form k[[x1, . . . , xn]] for certain
x1, . . . , xn ∈ R. It then follows that Derk(R) = R < ∂

∂x1
, . . . , ∂

∂xn
>. Clearly,

• if r ∈ R, then ∂r = 0 for all ∂ ∈ Derk(R) iff r ∈ k,

• if r ∈ mk\mk+1, then there is a ∂ ∈ Derk(R) such that ∂r ∈ mk−1\mk (for
any k ≥ 1).

Now let m1, . . . ,mn be a set of generators of M over R, such their images in
M/mM are linearly independent over k. Suppose there is a relation between
them, say rimi = 0, ri ∈ R. We can assume it to be of minimal m degree in
the following sense: for at least one of the i’s, say i = 0, ri ∈ md\md+1 with d
minimal. In case d ≥ 1, then there is a ∂ ∈ Derk(R) such that ∂r0 ∈ md−1\md.
We now assume σ to be surjective, so that there is a D ∈ DR/kM such that
σ(D) = ∂. Apply D to the relation:

0 = D(rimi) = ∂(ri)mi + riD(mi) = (∂(ri) + rjA
j
i)mi,
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where Aji ∈ Rm are such that D(mi) = A
j
imj. We thus obtain a new relation

with coefficients (∂(ri) + rjA
j
i) ∈ md−1. However, since rjA

j
i = 0 mod md

but r0 6= 0 mod md, we have obtained a relation of degree lower than d,
contradicting the minimality.

Hence we can assume d = 0. In this case however, rimi projects to a
nontrivial relation inM/mMwhile themi’s were assumed to be independent.
The conclusion is that the mi freely generated M, and that by the remark
above,M is a free R-module.

We return for the moment to the more general situation where R is finitely
generated over S. Without proof, we remark that for higher order differential
operators, we have similar results. In particular, for all i ≥ 0, DiR/S(M) is
finitely generated and we have an exact sequence

0 // DiR/S(M) // Di+1R/S(M) σi+1 // Symi+1 DerS(R)⊗R EndR(M) .

called the i + 1-th symbol sequence. Here σi+1 is defined inductively: for
D ∈ Di+1R/S(M) and x1, . . . , xn generators of R over S, σi+1(D) = ∂

∂xj
⊗ σi(D).

Finally, ifM is free, then σi+1 is surjective.

A.1.1 Differential operators on OS-modules

We now discuss that sheafification of the discussion above. Suppose X is a
Noetherian scheme over an algebraically closed field k, π : Y → X scheme
of locally finite type, and F an OX-module. Then we define θY/X to be the
subsheaf of Endπ−1OXOY of sections satisfying ∂(fg) = ∂(f)g + f∂(g), for
local sections f, g of OY and ∂ of Endπ−1OXOY . If Y/X is smooth, then θY/X
is the sheaf of vector fields on Y over X, and if X = Spec C, we simply write
θY . We have the following relation with the notions above: if X = Spec R,
Y = Spec S, then θX/Y is the sheafification of DerS(R).

The definition of differential operators for sheaves is also analogous to the
algebraic setting:

Definition A.1.3. Define D0Y/X(F) := EndOY (F). Starting from this, we in-
ductively define DiY/X(F) to be the subsheaf of EndOY (F) consisting of D ∈
EndOY (F)(U), such that [D|V , EndOY (F)(V)] ⊆ Di−1Y/X(F)(V) for any open
subsets U ⊆ Y and V ⊆ U. We call DiY/X(F) the sheaf of differential operators on
(the OY-module) F over X.
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If X = Spec R, Y = Spec S and M = H0(X,F), then DiY/X(F) is the sheafifica-

tion of DiR/S(M). Since DiY/X(F) ⊂ Di+1Y/X(F) we can take a direct limit:

DY/X(F) := lim
−→
i

DiY/X(F).

In inherits a filtration by construction, in which the i-th part is DiY/X(F).
Since Y/X is of locally finite type, we can cover X by affine subsets {Ui =

Spec Si} and Y by affine subsets {Vij = Spec Rij} such that Vij lies over Ui
and Rij is finitely generated over Si as algebra. Therefore, θX/Y and DiY/X(F)

are locally (over Y) sheafifications of DerS(R), DiR/SM, for certain (locally de-
termined) R, S,M as before. Hence the properties of the latter derived above,
extend to local properties of the former, and in particular

Corollary A.1.4. For i ≥ 0 there is a natural exact sequence called the i+ 1 symbol
sequence:

0 // DiY/X(F) // Di+1Y/X(F) σi+1 // Symi+1θY/X ⊗OY EndOY (F) .

Now assume X = Spec k, Y/X is smooth and F coherent. First recall that a
sequence

0 // EndOX(F) // D1Y/X
−−σ1// θY/X ⊗R EndOY (F) // 0 (A.5)

is exact iff it is locally exact, and that this is so, iff it is exact on the stalks at
closed points. So p ∈ Y be a closed point. Since Y/k is smooth and of finite
dimension, OY,p satisfies the conditions of theorem A.1.2. So σ1 is surjective
at p iff Fp is a free OY,p-module. We have therefore shown the following:
(A.5) is exact iff F is a locally free OY-module.

An often used subsequence of (A.5) is the following.

Definition A.1.5. Let AY/X(F) be the preimage of θY/X ⊗ id in D1Y/X(F), then
we have an exact sequence

0 // EndOX(F) // AY/X σ // θY/X // 0, (A.6)

where we identify θY/X with θY/X ⊗R EndOY (F) using id ∈ EndOY (F). This
is called the Atiyah sequence. The class of it in Ext(θY/X, EndOX(F)) is denoted
cA(F) and is called the Atiyah class of F .
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Clealy, if (A.5) is exact, then the Atiyah sequence is also exact. The con-
verse, however, is also true: D1Y/X(F) is a left EndOY (F)-module by composi-
tion in EndOX(F), θY/X ⊗ EndOY (F) also has an obvious EndOY (F), and σ1

commutes with these actions. Hence, if σ1(AY/X(F)) = θY/X ⊗ id, then

σ1(D1Y/X(F)) = σ1(EndOY (F)AY/X(F)) = EndOY (F)σ1(AY/X(F))

= θY/X ⊗R EndOY (F).

Corollary A.1.6. The sequence (A.6) is exact iff F is a locally free OY-module.

A global splitting of (A.6) is called a holomorphic connection over Y/X and a
local splitting is called a local holomorphic connection over Y/X. In case X =

Spec C, we just say (local) connection over Y. Clearly, the existence of a local
holomorphic connection is equivalent with the local freeness of F . If k = C
and Y is a smooth variety, then it has a C∞ structure, and we can tensor
the Atiyah sequence with the sheaf of smooth functions - we call the result
the smooth Atiyah sequence. This then will be exact iff the original Atiyah
sequence is exact. Since the sheaf of smooth functions is fine, local splitting
always glue to a global splitting, so that the smooth Atiyah sequence is exact
iff there is a global splitting. We call such a splitting a C∞ connection on F .

Corollary A.1.7. If Y is a smooth complex variety, then F is locally free iff it has a
C∞-connection.

A.2 Extension classes associated to differential opera-
tors

We now assume Y to be a Kähler manifold, and L a line bundle on Y. The
sheaf of differential operators of order at most k on L will be denoted DkL.
For every integer k > 0we have the (k+ 1)-th symbol sequence

0 // DkL // Dk+1L
σk+1

// Symk+1θY // 0 .

By reduction modulo Dk−1L one finds

0 // SymkθY // Dk+1L/Dk−1L σk+1
// Symk+1θY // 0 . (A.7)

Theorem A.2.1. The extension class defined by (A.7) is given by cupping with
kcA(L) − (k− 1)cA(ωY), where cA denotes is the Atiyah class.
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Proof. Choose C∞ connections ∇L, ∇ on L and θY , respectively, and such
that ∇ is torsion free. For line bundles, the construction of the connecting
homomorphism via the Dolbeault resolution gives that the Atiyah classes are
represented by the (1, 1) part of a curvature, so cA(L) = ∂∇L and cA(ωY) =

− tr(∂∇); these identities will be used later on.
To compute the extension class defined by (A.7) we will use Dolbeault

resolutions: we lift a local section of SymkθY to a C∞ section of DkL/Dk−2L,
and subsequently take the ∂ of this. The result will be a smooth section of
Symk−1θY with values in the (0, 1) forms. The map thus defined, taking a
local section of SymkθY to a (0, 1) form valued local section of Symk−1θY ,
represents the connecting homomorphism. We will now compute this explic-
itly.
By induction on k ≥ 1, we define C∞ lifts for the symbol maps:

u1 : θY → E0,0D1L : X 7→ ∇LX
ũk+1 : θ

⊗(k+1)
Y → E0,0Dk+1L : X⊗ X1 ⊗ · · · ⊗ Xk

7→ ∇LX ◦ uk(X1 ⊗ · · · ⊗ Xn) − ũk(∇X(X1 ⊗ · · · ⊗ Xn))

uk := ũk|SymkθY .

The extension class of (A.7) is given by the class that ∂uk represents in

Ext1(Symk−1θY , SymkθY).

For local sections X,X1, . . . , Xn of θY one has

∂ũk+1(X,X1, . . . , Xn)

= (∂∇L)(X) ◦ ũ(X1 ⊗ · · · ⊗ Xn) +∇LX ◦ (∂ũ)(X1 ⊗ · · · ⊗ Xn)

= −(∂ũk)(∇X(X1 ⊗ · · · ⊗ Xn)) − ũk
(
∂(∇X(X1 ⊗ · · · ⊗ Xn))

)
If we consider this module E0,1Dk−1L, we see that the last term vanishes and
that ∇LX ◦ (∂ũ)(X1 ⊗ · · · ⊗ Xn) simplifies to X ◦ (∂ũ)(X1 ⊗ · · · ⊗ Xn), since
∇LX ≡ X mod E0,0. Therefore,

∂ũk+1(X,X1, . . . , Xn) ≡ cA(L)(X)X1 ⊗ · · · ⊗ Xn + X⊗ (∂ũ)(X1 ⊗ · · · ⊗ Xn)

−ũk
(
∂(∇X(X1 ⊗ · · · ⊗ Xn))

)
mod E0,1Dk−1L

≡ (cA(L)⊗ id+ id⊗ ∂ũ)(X⊗ X1 ⊗ · · · ⊗ Xn)

−∂(∇X(X1 ⊗ · · · ⊗ Xn)) mod E0,1Dk−1L
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To identify the last term, consider

∇(X⊗s X1 ⊗s · · · ⊗s Xn) ∈ E0,0SymkθY ⊗ΩY

and take the contraction tr1 betweenΩY and the first factor θY , so

tr1∇(X⊗ X1 ⊗ · · · ⊗ Xn) = ∇X(X1 ⊗ · · · ⊗ Xn) + tr(∇X)X1 ⊗ · · ·Xn.

Since tr1∇(X ⊗ X1 ⊗ · · · ⊗ Xn) is a C∞ section of SymkθY , the image of
∂ tr1∇(X⊗ X1 ⊗ · · · ⊗ Xn) in H1(Y, SymkθY) is trivial, so that

−∂∇X(X1 ⊗ · · · ⊗ Xn) ≡ ∂ tr(∇X)X1 ⊗ · · ·Xn

on the level of cohomology. We will simplify this further using some standard
differential geometry. If we denote the curvature of ∇ by R∇, then (∂∇)(X)

is the 1, 1 part of R∇(X) - we denote this by R1,1∇ (X). Now let h(·, ·) be a local
hermitian form on θY , ei be a local basis of vector fields that is holomorphic
and satisfies [ei, ej] = 0 and h(ei, ej) = δi,j. We locally have that

∂ tr(∇X) = tr(∂∇X) =
∑
i

h(∂∇eiX, ei).

Since the problem is linear in X, we can without loss of generality assume that
[ei, X] = 0 for all i, so that the torsion-freeness of ∇ gives us ∇eiX = ∇Xei. It
then follows that

∂ tr(∇X) =
∑
i

h(∂∇Xei, ei) = tr(∂∇)(X) = cA(θ
∧top
Y )(X) = −cA(ωY)(X).

Therefore, we have that in H1(Y, SymkθY)

∂(∇X(X1 ⊗ · · ·Xn)) ≡ cA(ωY)(X)X1 ⊗ · · · ⊗ Xn,

and hence we have for the class of ∂ũk+1(X,X1, . . . , Xn) in H1(Y, SymkθY)

[∂ũk+1(X,X1, . . . , Xn)]

=
(
(cA(L) − cA(ωY))⊗ id + id⊗ ∂ũ

)
(X⊗ X1 ⊗ · · · ⊗ Xn).

Since [∂ũ1(X)] = cA(L)(X), by induction, [∂ũk] is given by cupping with the
class

(cA(L) − cA(ωY))⊗ idθk−1
Y

+ · · ·+ idθk−2
Y
⊗ (cA(L)

− cA(ωY)) ⊗ idθY + idθk−1
Y
⊗ cA(L).
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We conclude that the class of (A.7) is given by cupping the expression above
with a section of SymkθY ; because of the symmetry this to cupping with the
class kcA(L) − (k− 1)cA(ωY) ∈ H1(Y,ΩY).





Samenvatting

Dit proefschrift gaat over conforme coblokken, hun gegradeerde quotient en een
unitaire structuur daarop. Om te weten wat dit nou precies betekend moet de
lezer eigenlijk bij het begin van dit boekje beginnen; hieronder zal ik daarom
alleen proberen om een idee te geven van wat voor dingen dit nu zijn. Daarbij
heb ik de nodige details weggelaten waardoor het onderstaande in strikte zin
niet meer helemaal klopt, maar hopelijk wel begrijpelijker is.

Om te beginnen moet ik eerst uitleggen wat een compact gesloten Riemann
oppervlak1 is. Dit gaat het makkelijkste door een paar voorbeelden te schetsen:

(a) 2-Sfeer (b) Torus (c) Geslacht 2
oppervlak

(d) Nog een
geslacht 2 oppervlak

Zo’n compact gesloten Riemann oppervlak is dus een oppervlak, dat overal
glad is en geen rand heeft. De laatste twee oppervlakken kunnen op een con-
tinue manier in elkaar vervormd worden. Dat geldt niet voor ieder ander
tweetal van de hierboven afgebeelde oppervlakken, aangezien ze een ver-
schillend aantal gaten hebben (0, 1, 2 en 2 respectievelijk). Bij een continue
vervorming mag er namelijk niet geknipt worden, zodat het aantal gaten al-

1Dit correspondeerd met wat in de text “curve” wordt genoemd
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tijd constant blijft.
Vervolgens moet ik uitleggen wat een vectorruimte is: dat is een verzamel-

ing waarin je de elementen, die vectoren worden genoemd, met een getal kan
vermenigvuldigen en onderling kan op tellen. Denk hierbij aan alle vectoren
in het platte vlak die in een punt aangrijpen, waarbij optellen geschiedt door
het kop-aan-staart leggen en vermenigvuldiging door de vector te schalen.

De ruimte van conformal coblokken is nu een vectorruimte die je op een
natuurlijk manier kan produceren uit een compact gesloten Riemann opper-
vlak en geschikte Lie groep - wat dit laatste is leg ik verder niet uit. Deze con-
structie is zodanig dat als je een vector kiest uit deze ruimte van conforme
blokken, behorende bij een Riemann oppervlak, en vervolgens het Riemann
oppervlak op een continue manier vervormt, dat je de vector dan op een
natuurlijke continue manier mee kan laten varieren. Dit laatste heet een con-
nectie.

In dit proefschrift introduceer ik een variant op bovengenoemde con-
forme coblokken, genaamd het gegradeerde quotient van conforme coblokken, en
een bijbehorende connectie. Hiervoor geeft ik een expliciete compatibele uni-
taire structuur is (een unitaire structuur is een lengte- en hoekbegrip voor vec-
toren, en compatibel betekend hier dat dit lengte- en hoekbegrip netjes mee-
variëert wanneer we het oppervlak vervormen). Zo’n explicite compatibele
unitaire structuur voor conforme coblokken is tot op heden nog niet bekend;
hopelijk helpt bovengenoemd resultaat voor de gegradeerde versie bij het
vinden daarvan.
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