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Abstract

Compilers, amongst other programs, often work with data that
(slowly) changes over time. When the changes between subsequent
runs of the compiler are small, one would hope the compiler to
incrementally update its results, resulting in much lower running
times. However, the manual construction of an incremental com-
piler is very hard and error prone and therefore usually not an op-
tion.

Attribute grammars provide an attractive way of constructing
compilers, as they are compositional in nature and allow for aspect
oriented programming. In this work we extend previous work on
the automatic generation of incremental attribute grammar evalu-
ators, with the purpose of (semi-)automatically generating an in-
cremental compiler from the regular attribute grammar definition,
by adding support for incremental evaluation of higher order at-
tributes, a well known extension to the classical attribute grammars
that is used in many ways in compiler construction, for example to
model different compiler phases.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental compilers

General Terms Algorithms, Languages, Theory

Keywords incremental evaluation, attribute grammars, change
propagation, program transformation, type inference

1. Introduction

Attribute grammars (Knuth!/[1968)) are known to be well-suited for
the implementation of the semantics of programming languages.
There exist several attribute grammar compilers including UUAGC
(Swierstra et al.||1998)), JastAdd (Hedin and Magnusson| [2003)
and Silver (Van Wyk et al.|2010), using which many attribute
grammar based compilers have been implemented. The motivating
example for this paper is the Utrecht Haskell Compiler (Dijkstra
et al.|[2009). The implementation of the UHC consists of attribute
grammar code combined with Haskell expressions (Peyton Jones
2003), which is compiled by the UUAGC to a Haskell program,
which is then compiled by the Glasgow Haskell Compiler (GHC)
to an executable. In this paper we therefore use Haskell as the basis
for the implementation of our techniques.
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The typical usage of a compiler like the UHC is as follows. The
programmer works on a project containing many lines of source
code, and compiles and runs the code in order to test. The pro-
grammer then changes some lines of code, and compiles and runs
the code again. This changing code, compiling and running repeats
itself until the project is finished. A potential problem with a tra-
ditional compiler is that when the project grows, the compilation
time increases, even though the changes to the compiled program
are minimal between consecutive runs. To solve that problem we
aim to build an incremental compiler, that uses results of the previ-
ous compilation to efficiently update the results based on the small
changes made to its input.

Incremental compilation is not a new idea, but the problem is
that building such compilers is very hard and error-prone. In our
work we therefore aim to (semi-)automatically generate an incre-
mental compiler from the attribute grammar definition of the reg-
ular compiler. Because data dependencies are explicit in attribute
grammar definitions, we hope to statically use this dependency in-
formation to generate attribute grammar evaluators that incremen-
tally update their output based on (small) changes to the input.

In this paper, building upon our earlier work (Bransen et al.
2014), we extend our techniques to support higher order attributes
(Vogt et al.[[{1989). A higher order attribute is an attribute value
which itself is a tree structure over which attributes can be com-
puted. Higher order attributes are heavily used in the UHC and
support for this in the context of incremental evaluation of attribute
grammars is therefore essential to reach our goal. A theoretical lim-
itation is that we rely on attribute grammars to be linearly ordered
(Engelfriet and File[1982); we have reasons to believe that all prac-
tical attribute grammars fall in that class (Van Binsbergen et al.
2015).

The outline of the paper is as follows. In Section 2] we infor-
mally introduce attribute grammars together with a running exam-
ple that we use in the rest of the paper to explain our technique. We
then give a high-level overview of our approach in Section [3| be-
fore describing the details. Section[d]introduces earlier work on the
representation of changes made to the input, and in Section[5|we de-
scribe the techniques for incremental attribute grammar evaluation
without higher order attributes. This is similar to our earlier work
(Bransen et al.|2014) but adapted to support the main contribution
of this paper in Section [f] where the support for higher order at-
tributes is added. In Section[7] we evaluate the results with a bench-
mark and we discuss some shortcomings in Section |8} Finally, we
describe related work (Section[9) and conclude (Section [I0).

2. Attribute grammars and running example

To illustrate the techniques described in this paper we use a sim-
ple running example that we introduce in this section. Alongside
the example we informally introduce some core attribute grammar
concepts and show some syntax from the Utrecht University At-
tribute Grammar Compiler (Swierstra et al.|[1998)). Although the



UUAGC syntax is not important for the techniques described in
this paper, we believe that it might help the reader in understanding
the usefulness of attribute grammars.

2.1 Running example

As running example for this paper we look at the very simple task
of pretty printing expressions of the untyped lambda calculus, con-
taining variables, lambda abstractions and applications. To illus-
trate the use of inherited attributes, we make the example slightly
less trivial by printing no parentheses around variables or around
the child expression of a lambda abstraction. Concretely, a certain
term is pretty printed as follows.

\fA\x. QO\y.y) (£ x) x)

This results in a string which can be parsed back unambiguously
to the AST from which it was pretty printed, but not necessarily
with the minimum number of parentheses: in the above example
the parentheses around £ x could have been left out.

2.2 Attribute grammars

Attribute grammars as introduced by (Knuth|{1968) consist of a
context-free grammar, a set of attribute definitions per nonterminal,
and for each attribute defined at a production a semantic rule defin-
ing the value of the attribute in terms of other attributes. Attributes
can be inherited, meaning that the value is passed from parent to
child nodes in the derivation tree (“defined from above”), or syn-
thesized, meaning that the value is passed from the child node to
the parent node (“defined from below”).

The UUAGC implements attribute grammars in a slightly differ-
ent way, by letting the user specify an abstract syntax tree (AST) in-
stead of a context-free grammar describing the concrete syntax. As
the default back-end of UUAGC is Haskell, the AST corresponds
to an algebraic data type with notation similar to that of Haskell,
except that the children of a constructor are named.

Data types In UUAGC syntax the data type for representing ex-
pressions of the untyped lambda calculus is defined as follows.

data TopLam

| Top e :: Lam
data Lam
| Var z :: String
| Lam z :: String
e : Lam
| App e1:: Lam
ez :: Lam

The TopLam type is convenient as top level wrapper in later stages,
but not strictly necessary. Such a wrapper is for example used to
initialise an attribute with an empty environment.

Although we do not use the context-free grammars from the
original definition (Knuth|[1968) in this paper, we stick to the orig-
inal terminology. Therefore, when talking about a nonterminal we
refer to an algebraic type and a production refers to a constructor
of that data type. For example, App is a production of Lam and
has two nonterminal children. The Var production has only a ter-
minal child, since String is a built-in Haskell type and has not been
defined as a nonterminal in the attribute grammar.

Attribute definitions For the pretty printing of the example we
introduce two attributes: a synthesized attribute pp that contains
the result of the computation, and an inherited attribute needp
indicating whether or not parentheses are necessary. This is defined
as follows.
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attr Lam
inh needp :: Bool
syn pp  :: String

Note that both Bool and String are plain Haskell types.

Semantic rules The computation of the value of the attributes is
specified by means of semantic rules. In our system the semantic
rules can be arbitrary Haskell expressions, in which we may refer
to other attributes. The attributes that can be referred to are the in-
herited attributes of the production itself (coming from the parent)
and the synthesized attributes of children (defined within the chil-
dren). The attributes for which a value needs to be defined are the
synthesized attributes of the production and the inherited attributes
of the children.

A semantic rule has the form c.a = e, where c¢ is the name
of the corresponding child or the special name lh{] to refer to the
parent, a is the name of the attribute, and e is an arbitrary Haskell
expression. To refer to other attributes in the expression the notation
@c.a is used; Qc refers to a terminal value.

For our example we define the semantic rules as follows.

sem Lam
| Var lhs.pp = Qz
| Lam lhs.pp = pParens Qlhs.needp $

"\\" 4 Qz H"."H Qe.pp
e.needp = False
| App lhs.pp = pParens Qlhs.needp $
Qer.pp H" " H Qez.pp
e1.needp = True
ez.needp = True

We use the following (Haskell) helper function for conditionally
placing parentheses around an expression.

pParens :: Bool — String — String
pParens True s ="(" H s H ")"
pParens False s = s

At the top level we set the value of needp to Fulse, because
parentheses are not needed around the whole expression. To do this
we use a wrapper TopLam, in which we give needp its initial value
and return the pretty printed expression as the only result.

attr TopLam
syn pp :: String
sem TopLam
| Top e.needp = False
lhs.pp = Qe.pp

Trivial attribute equations like the last line can be omitted. The
UUAGC will add such equation using default rules, in this case
a copy rule for simply propagating an attribute value.

2.3 Standard evaluation

The standard non-incremental evaluation of attribute grammars in
the UUAGC is done by generating Haskell code that performs
the evaluation. The data types are a straightforward translation
except that the constructor names are prefixed with the nonterminal
name in order to avoid name clashes (note that UUAGC does
not require production names to be unique, whereas in Haskell
constructor names have to). This results in the following data type
to be generated:

data Lam = LamVar String
| LamLam String Lam
| LamApp Lam Lam

!'Left-hand side, terminology coming from context-free grammars



The most straightforward way of generating the actual evalua-
tion code is to build a function that takes a tuple of all inherited at-
tributes as argument and returns a tuple of all synthesized attribute
for each nonterminal. Because some inherited attributes may de-
pend on synthesized attributes of that same nonterminal, this relies
on Haskell’s lazy evaluation to compute the result, and may even
loop for cyclic attribute grammars.

In order to get static guarantees about non-cyclicity and to gen-
erate code that can also be evaluated in a strict way, we rely on
linearly ordered attribute grammars (Engelfriet and File|[1982). In
a linearly ordered attribute grammar the attributes are split up into
a linear sequence of visits, where each visit takes some inherited
attributes as input and produces the values of some synthesized
attributes, with the restriction that synthesized attributes can only
depend on the inherited attributes from visits up to the visit they
are computed in. Although the class of absolutely non-circular at-
tributes is larger than the class of linearly ordered attribute gram-
mar, experience has shown that all practical attribute grammars fall
in the latter class. There exist many algorithms for automatically
finding such a linear order from the attribute grammar definition.

In the rest of the paper we talk about linearly ordered attribute
grammars when we mention attribute grammars, and the techniques
described here work for linearly ordered attribute grammars with an
arbitrary number of visits. However, because our example contains
only a single inherited and a single synthesized attribute, we can
simplify some details in the explanation.

The generated function evaluating the attributes for the Lam
production of our example is:

semLamLam :: String — (Bool — String)
— Bool — String
semLamLam _x _e _lhsIneedp =

let _eOneedp :: Bool

_eOneedp = False

_elpp :: String

_elpp = _e _eOneedp

_lhsOpp ;o String

_lhsOpp = pParens _lhsIneedp $

Il\\ll % x ‘H’ n . n % _eIpp

in _lhsOpp

Note that the argument for the child is not the type of the child,
but the type of the evaluator of the child, which can be invoked to
compute the attributes for the child. At top level we construct the
complete evaluator with the function semLam.

semLam :: Lam — Bool — String

semLam (LamVar ) = semLamVar z

semLam (LamLam z e) = semLamLam z (semLam e)

semLam (LamApp e1 e2) = semLamApp (semLam er)
(semLam e3)

For the other nonterminals and productions similar functions are
generated.

3. High-level overview

Attribute grammar evaluators can be thought of as tree-walk evalu-
ators ‘walking’ up and down the AST. A visit may occur when the
values of some further inherited attributes of a node have become
available and the evaluator is guaranteed to be able to compute the
values of some further synthesized attributes of that node.

One of the steps the evaluator can perform is to directly compute
a synthesized attribute, for example when its value is constant or
it depends only on available inherited attributes. In many cases
other attributes are needed for which the evaluator should first
compute some inherited attributes of children of the node, and then
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recursively visit some of the children before being able to compute
some synthesized attributes and returning to the calling node. So,
in the overall evaluation of the attributes of the top level node, the
evaluator can be thought as walking up and down the tree, possibly
visiting subtrees multiple times (multiple visits), before finally
returning all synthesized attributes at the top level. In the context
of a compiler this is typically a representation of the executable
that is generated.

Now when the AST changes, for example in a compiler due to
a change in the input source code, we would like to efficiently re-
compute the changed attribute values. One approach to incremental
computation is to use change propagation to propagate the changed
values through the tree and only evaluate expressions that have
changed inputs (Reps et al.|[1983). In other words, the evaluator
only visits nodes in which something changed, either due to a di-
rect change to that subtree or to a change in the attribute values.
However, in many cases there are large parts of the AST in which
nothing has changed, so the evaluator needs to perform much fewer
steps to compute a new consistent attributed tree.

Implementation wise there are several aspects that need to be
addressed. First of all the identification of changes to the AST. In
this work we describe how to represent such changes using paths to
locations in the AST and inserted values, assume values of this data
type are constructed by some external process like a diff tool or a
structure editor. Given such a value the incremental evaluation is
performed by invalidating the visit results on the path from the root
of the AST to the changed subtree. For every visit to a node that has
already been evaluated before, it is checked whether the inherited
attributes are changed and whether the visit was invalidated. If both
are not the case the previous result is returned and thus the whole
subtree does not need to be visited for that visit.

To implement this all in a strongly-typed fashion in Haskell we
use several advanced Haskell features. For the representation of a
node we use the record syntax, which produces a standard data type
with constructors with named getters and setters for its fields. To
carry around type information about the type of children we use
Generalized Algebraic Data Types (Cheney and Hinze|[2003]; Xi
et al.|2003). In order to associate derived types to their original
types we use type families. Finally, we use higher-ranked types to
pass generic functions as arguments to higher-order functions. Note
that our implementation uses only pure functions, even though we
like to think about updating the internal state of nodes as a side-
effect.

4. Representation of changes

When talking about incremental evaluation in the context of at-
tribute grammars, we assume that our input AST changes slowly
over time, and we hope to efficiently recompute the attribute val-
ues after a change. In this paper we start from a description of the
change to the AST produced by some external tool, for example an
structure editor or some diff algorithm keeping track of changes to
the source code files.

In this section we describe how to represent these changes,
which is described in (Bransen and Magalhaes|2013) in more de-
tail. The representation that we describe here is not only used as an
external value to alter the original AST, but also inside the evalua-
tion to keep track of changes to constructed values, as described in
Section

Informally, we represent a change to the AST by a path describ-
ing the location and a new tree that is to be inserted in that location.
However, instead of always replacing the full subtree, we allow the
newly inserted tree to refer in some places to values of the original
tree, thereby reusing existing parts. In that way an insertion of a
value v into a list can for example be modelled by a path p and a
Cons v (Ref p), indicating that the value at location p should be



replaced by the C'ons constructor with a value v and as its tail the
value that was originally at location p.

Paths Because ASTs usually consist of a family of mutually re-
cursive data types, we need to carry around some type information
in the paths. We therefore use the generalized algebraic data type
Path f ttorepresent a path in a tree of type f pointing to a node of
type t. The constructors of this type are the End constructor for the
empty path, and a constructor for each nonterminal child for each
production. For our example this leads to:

data Path f t where

End ;2 Path f f

LamPLam :: Path Lam t — Path Lam t
LamPAppL :: Path Lam t — Path Lam t
LamPAppR :: Path Lam t — Path Lam t
TopLamP :: Path Lam t — Path TopLam t

Replacement The values that can be inserted into the tree to re-
place a subtree, are similar to the the original data for that non-
terminal. However, we extend it with a constructor that represents
re-usage of existing values, by means of a path. Because this path
is relative to the top of the tree which depends on the context, we
parametrize over the type of the top level. For our Lam nonterminal
we can therefore represent the replacement values as follows.

data TopLamR top = TopLamRTop (LamR top)
| TopLamR (Path top TopLam)

data LamR top = LamRVar String
| LamRLam String (LamR top)
| LamRApp (LamR top) (LamR top)
| LamR (Path top Lam)

Full change Using the paths and replacement values, we can
represent a change by a pair of those values. However, as the type
of the replacement depends on the type of the node that the path
points to, we can not directly specify it as a pair. Instead, we use
a type family to map each nonterminal type to its corresponding
replacement type as follows.

type family ReplType a 1ok — ok
type instance ReplType TopLam = TopLamR
type instance ReplType Lam = LamR

Using this type we can finally represent changes, which are also
parametrized over the type of the top level node.

type Change top t = (Path top t, ReplType t top)

S.

In this section we describe how to write attribute evaluators that
can efficiently respond to changes in the AST. Although this sec-
tion forms an important part of the final solution, the techniques
described here do not work as expected for higher order attributes.
We postpone the discussion on higher order attributes to Section [6]

The basic idea of our incremental evaluation technique is quite
simple: we store the previous input and output of a visit, and when-
ever the inputs are unchanged the previous output is returned with-
out recomputation. Because visit computations can invoke visits of
the children, this can lead to superlinear speedups. However, be-
cause the AST can change, we also need to keep track of changes
to child nodes for deciding when to recompute, complicating mat-
ters a bit.

Incremental evaluation

5.1 Representation

In order to store all information we create a data type for evaluators
with a constructor for each production. For the Lam production of
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the example this data type, written using Haskell record notation,
looks as follows.

data TLam top = TLamVar {... } | TLamLam {
tlam_eval 2V t.TLam top — Path Lam t
— SemType t top,
2V r.TLam top
— (V t.Path top t — SemType t top)
— Path Lam r
— ReplType r top — TLam top,
:: TLam top — Bool
— (String, TLam top),
tlam_vqg_dirty :: Bool,
tlam_e :: TLam top
Y| TLamApp {... }

This data type contains a record for each production representing
the state of the evaluator for that node, and has the following fields:

tlam_change

tlam_v,

e An eval function to retrieve the evaluator for the node at a given
location, which is used when a subtree is inserted in a different
part of the AST.

e A change function for pushing a change to the current subtree.
e A vX function for each visit X.

e A dirty flag for each visit function indicating whether or not
that visit is dirty, i.e. some state changed since last evaluation
and the visit should be re-evaluated because it may return a
different result.

e A field for the state of the evaluator of each child. These are the
only fields that can differ for different productions of the same
nonterminal.

The type SemType appearing in the type of the change function
is again a type family mapping the nonterminal types to the corre-
sponding evaluator types.

type family SemType t Dk > %
type instance SemType TopLam = TTopLam
type instance SemType Lam = TLam

It is important to notice that change and all visit functions take
the current state of the evaluator as argument and return the new
state of the evaluator, because the state can be updated. We use this
pattern because we work in a purely functional language without
global state, which means that all state of an evaluator for a subtree
is stored inside the evaluator type of that subtree. The advantage of
this is that we do not need any global cache purging strategies but
just rely on Haskell’s garbage collection for cleaning up unused
values, and that whenever a subtree is duplicated and used in
multiple places, the states of those subtrees are not shared but
diverge from the point when they were split up.

In the next section we introduce the implementation of all these
functions and explain how they are used, by showing the imple-
mentation of the example.

5.2 Implementation

The semantic functions return an instance of such data type, in
which the computation is “remembered”. Let us illustrate this with
the Lam constructor of the example. The basic function is imple-
mented as follows, with eval, change and vy bound in the where-
clause:

semLamLam :: String — TLam top — TLam top

semLamLam z_ e_ = TLamLam {
tlam_wv = %o,
tlam_eval = eval,



tlam_change = change,
tlam_vq_dirty = True,
tlam_e =e

} where

The actual visit code is implemented as follows, where each visit
takes the state of the children and the inherited attributes, and
returns the synthesized attributes and the new state of the children.
These functions are then wrapped to support incremental evaluation
in case nothing has changed.

realvo :: TLam top — Bool — (String, TLam top)
realvo ey _lhsIneedp = (_lhsOpp, e1) where
_eOneedp = False
(_elpp, e1) = tlam_vq eo ey _eOneedp
_lhsOpp = pParens _lhsIneedp $
"\\"Hz_H " _elpp

There are several things to notice here. The evaluation order is
made explicit in the source code, so computations only depend on
values that were defined in earlier bindings. For the computation
of the pp value of the child e the visit vy of the child is invoked,
taking the current state of the child as argument (next to the first
occurrence of eg used to retrieve the visit function from that current
state) and returning the new state of the child. Finally, together
with the pp value for the current node the new state of the child
is returned.

The wrapping code for a visit is then as follows. The visit is per-
formed as usual by calling the realvo function. However, then the
visit function in the evaluator is replaced by a memoizing version
that directly returns the synthesized attributes in case nothing has
changed.

vo :: TLam top — Bool — (String, TLam top)
vo cur inh = (syn, res) where

(syn, e') = realvo (tlam_e cur) inh

res = update $ cur {

tlam_v = memuo,
tlam_vo_dirty = False,
tlam_e =ec'}

inh = inh/

A = (Ham_vo_dirty cur’)
then (syn, cur’)

else vy cur’ inh’

memug cur’ inh’ = if

The update function is a helper function that is used to update the
dirty flags after some evaluation has happened. This is where the
static dependency graph is represented.

update cur = cur {
tlam_vo_dirty = tlam_vq_dirty cur
V tlam_vq_dirty (tlam_e cur)
}

To get the evaluator residing at a given path the eval function
is used. This function is implemented by simply propagating the
request to the given path and then returning the evaluator. Note that
on the type level the target type ¢ of the path is already present, so
at the end of the path we can return the current evaluator since the
End constructor is the witness to the fact that ¢~ Lam in this case.

eval :: TLam top — Path Lam t — SemType t top

eval cur End = cur

eval cur (LamPLam p) = tlam_eval (tlam_e cur)
(tlam_e cur) p

The change function is used to propagate a change to the evaluator.
When the current evaluator is changed we replace the full evaluator
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with the new one, and otherwise we propagate the change to the
corresponding child. After propagating the type we update the
dirty flags.

change :: TLam top
— (V t.Path top t — SemType t top)
— Path Lam r
— ReplType r top
— TLam top
change cur lu End repl = semLamR lu repl
change cur lu (LamPLam p) repl = update_e p $

cur {tlam_e = tlam_change (tlam_e cur)

(tlam_e cur) lu p repl}

The updating of the dirty flags is slightly less trivial; one could
think that we need to invalidate all visits in which the child e is
used because somewhere in that subtree something has definitely
changed. However, it could be the case that no information from
that changed node is ever used. Therefore, we adopt the following
strategy: whenever the child of a node is replaced all visits in which
that child is used are invalidated, and otherwise we use the update
function to propagate changes. This is implemented as follows.

update_e End cur = cur {tlam_vo_dirty = True}
update_e —  cur = update cur

Finally, for the changed child the new evaluators should be con-
structed or reused. This is done using the following function which
is very similar to the semLam function except that is takes a lookup
function as first argument to retrieve the evaluators for the reused
nodes.

semLamR :: (V t.Path top t — SemType t top)
— LamR top
— TLam top
semLamR lu (LamR p)
semLamR _ (LamRVar ) =
semLamR lu (LamRLam z e) =

lu p

semLamVar x

semLamLam x
(semLamR lu e)

semLamApp
(semLamR lu e1)
(semLamR lu e3)

semLamR lu (LamRApp e1 e2) =

5.3 Example invocation

The example lambda term as shown in Section 2] is represented
as follows.

term = LamLam "£" (LamLam "x" (LamApp
(LamLam "y" (LamVar "y"))
(LamApp
(LamApp (LamVar "£") (LamVar "x"))
(LamVar "x"))))

To perform the initial evaluation of the attributes the semantic
wrapper function needs to be invoked. This returns the evaluator
for which the top level visit can be invoked to retrieve the result
and the new state of the evaluator.

st1 = semTopLam (TopLamTop term)
(str, st2) = ttoplam_v, st1 st

The value of stris \f.\x.(\y.y) ((f x) x) as expected.

Let us imagine we would like to add a lambda abstraction to
the term to let it be \f.\x.\y. (\y.y) ((£f x) x).We represent
that change by a path and a replacement value. The path needs to
point to the subterm under the outermost two lambda abstractions
and can thus be represented as follows.

path = TopLamP (LamPLam (LamPLam End))



The replacement needs to be of type LamR and is a lambda ab-
straction. However, its body is the value which was at the location
of path, so we represent the inserted value by the following.

repl = LamRLam "y" (LamR path)

To push this change to our evaluator we call the change function
as follows.

stz = ttoplam_change sta sta
(ttoplam_eval sto st2) path repl

Finally, we can retrieve the result again by calling the top level visit
function.

(stra, sta) = ttoplam_v, st3 st3

The result is that strp has the desired value, but for computing
this value the pretty printing result of the shared subtree has been
reused.

5.4 Intra-visit attributes

One difficulty that does not occur in the running example of this
paper is that of so called intra-visit attributes. In linearly ordered at-
tribute grammars the computation of the synthesized attributes may
depend on inherited attributes of that visit or earlier visits. However,
with the implementation that we propose the inherited attributes of
previous visits are not in scope and need to be explicitly passed to
the visit in which the inherited attribute is used.

For the standard non-incremental evaluation the visit-tree ap-
proach (Saraiva et al.|[2000) is used by the UUAGC. There it is
statically computed which attributes from the first visit are used in
subsequent visits, and these are passed as extra arguments to the
second visit. For the second visit the attributes used in later visits
are passed on to the third visit, and so on.

However, in our implementation we can do better. Since we are
already explicitly encoding the current state of a node, the attributes
used in later stages can be stored inside this record. Whenever such
attribute value is updated due to the recomputation of the visit in
which the attribute was declared, the visits in which the attribute is
used can be invalidated by setting the dirty flag to True. The result
of this is that only visits that really use the intra-visit attribute are
recomputed, and no intermediate visits that only pass on the value
to the subsequent visit.

6. Higher order attributes

An important extension to attribute grammars is that of higher
order attribute grammars (Vogt et al.|[1989). In a typical attribute
grammar the attribute values themselves can be trees, and the idea
of a higher order attribute grammar is to decorate those trees again
with attributes. In the UUAGC this is implemented by allowing the
user to give an expression, which can refer to attributes as usual,
constructing a new child of the current node for which attributes
are also evaluated.

The use of higher order attributes is especially useful in the
context of building a compiler, where the result of one compiler
phase is again a tree, over which attributes are computed in the
next phase. Another use of higher order attributes is to abstract over
common patterns like generation of fresh variables.

The problem with the incremental evaluation as discussed in
the previous section is that whenever a change to the AST occurs,
the value of the higher order attribute changes and therefore the at-
tributes of the corresponding higher order child have to be recom-
puted. However, when a small change to AST happens, we also
expect only a small change the higher order child, and we want to
have the same incremental speedups for changes to the higher order
child as we have in the case of a change to the AST. In this section
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we extend the example with a higher order child and show how our
technique can be extended to obtain the desired behaviour.

6.1 Extended example

We now extend the running example in the following way. Imagine
that our input AST is not a term in the lambda calculus as discussed
previously, but in a language that also contains let-bindings. The
AST of such language is represented as follows.

data Sug

| Var z : String

| Lam z :: String
e :: Sug

| App e1:: Sug
e2 :: Sug

| Let z : String
e1:: Sug
ez 11 Sug

What usually happens in a compiler is desugaring, by rewriting
the AST with a rich syntax to an AST containing only simpler
constructions. In this case we desugar the Sug data type to the
Lam data type by translation an expression like let z = y in z to
the expression (Az.z) y. In UUAGC syntax this can be written as
follows.

attr Sug
syn desug :: Lam
sem Sug
| Var lhs.desug = LamVar Qzx
| Lam lhs.desug = LamLam Qz Qe.desug
| App lhs.desug = LamApp Qe;.desug Qez.desug
| Let lhs.desug = LamApp
(LamLam Qx Qey.desug)
Q@e;.desug

At top level, for which we have also added a TopSug nonterminal
as convenient wrapper, we now need to instantiate the result of the
desugaring as new child. We can then get the result of the pretty
printing by simply referring to the pp attribute of the higher order
child. For this we use the inst syntax that defines the higher order
child and instantiates it.

attr TopSug
syn pp :: String

sem TopSug
| Top inst.des :: TopLam
inst.des = TopLamTop Qe.desug
lhs.pp = Qdes.pp

As before, the last rule could be omitted because it is a copy rule
that can be automatically generated by the UUAGC, but for clarity
we have included it here.

Of course one could also get the same behaviour by directly
returning a pretty printed version of the Sug language by pretty
printing the let-case in the correct way, but that leads to code
duplication and is therefore undesired.

6.2 Improved evaluation

The instantiation of the higher order child is evaluated by con-
structing the value of the higher order child and then calling the
semTopLam on it as follows.

semTopSugTop = ... where

realvg :: TSug top — (String, TSug top)
realvg eo = (_lhsOpp, e1) where



(_eldesug, e1) = tsug_v, eo €o

des_val_ = TopLamTop _eldesug
des_inst_ = semTopLam des_val_
(_lhsOpp, —) = ttoplam_v, des_inst_ des_inst_

However, although des_inst_ itself is also an AST that implements
the incremental behaviour, we do not represent changes to that AST
and construct a new one every time a (small) change happens to the
TSug AST.

To retain incremental behaviour for higher order attributes, we
add a new synthesized attribute to T'Sug that is computed in in a
similar fashion as the desug attributes. Such attribute is a repre-
sentation of the change to the higher order attribute compared to
the previous evaluation which we call derived change. Whenever a
change happens to the T'Sug AST and a memoized value is used
for the desug attribute, a reference is used as value for the derived
change.

In order to fill the path in the references of this derived change,
we need information about the location where the current value of
the tree ends up when it is instantiated. To propagate that infor-
mation we also add an inherited attribute to 7'Sug containing that
information. This path can then be stored when a reference is re-
turned.

To implement this, the type of tsug_v, is changed to the fol-
lowing.

tsug_vy :: TSug top
— (V t.Path Lam t — Path TopLam t)
— (Lam, LamR TopLam, TSug top),

The second argument is the path where the Lam value ends up
when it is instantiated, but instead of (inefficiently) appending to
the end of a path, we use the trick of difference lists. As a synthe-
sized attribute the LamR TopLam is added, which represents the
change to the Lam relative to the previous evaluation, in some top
level structure TopLam (when the higher order child is instanti-
ated).

The visit function for semSugApp is then changed as follows.

semSugApp = ... where
vo :: T'Sug top
— (V t.Path Lam t — Path TopLam t)
— (Lam, LamR TopLam, TSug top)
vo cur p = (syn, synr, res) where
(syn, synr, (e, €3)) = realvo (tsug_e, cur,
tsug_e, cur) p
res = update $ cur {

tsug_v, = memuo,
tsug_v,_dirty = False,
tsug_e, =ef,
tsug_e, =ey}

memuo :: T'Sug top
— (V t.Path Lam t — Path TopLam t)
— (Lam, LamR TopLam, TSug top)
memug cur’ p’ = if = (tsug_vq_dirty cur’)
then (syn, LamR (p End), cur’)
else vy cur’ p

Note the in memug the synr attribute is replaced by a reference to
the path p, which is completed by passing the End constructor. Due
to the smart use of a higher-ranked type together with GADTSs and
type families this is all strongly typed and also works for families
of mutually recursive data types.

In the realv( function of semSugApp the paths are altered by
function composition to construct the correct path for each of the
children. Note that these paths do not correspond to constructors of
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the T'Sug AST over which these attributes are computed, but are
relative to the desug attribute in which the different parts end up.

realvo :: (TSug top, TSug top)
— (V t.Path Lam t — Path TopLam t)
— (Lam, LamR TopLam, TSug top, TSug top)
realvo (e10, e20) p = (_lhsOdesug, _lhsOdesugR, €11, €21)
where
(—e1ldesug, —e1 IdesugR, e11) = tsug_v, e1o €10
(p o LamPAppL)
(—ezIdesug, —eaIdesugR, e21) = tsug_v, e €20
(p o LamPAppR)
_lhsOdesug = LamApp _eildesug _exldesug
_lhsOdesugR = LamRApp _eiIdesugR _esIdesugR

Finally, at top level the higher order child is instantiated only
the first time. The field deso is of type Maybe (TLam top)
and is initially set to Nothing. In subsequent evaluations in
semTopSugTop that field is used for updating the existing evalua-
tor as follows.

realvo :: TSug top — Maybe (TTopLam TopLam)
— (String, TSug top, TTopLam TopLam)
realvg ey desg = (_lhsOpp, e1, des1) where
(_eldesug, _eldesugR, e1) = tsug_v, eo eo TopLamP

des_val_ = TopLamTop _eldesug
des_valR_ = TopLamRTop _eldesugR
des_inst_ = case desg of

Nothing — semTopLam des_val_
Just v — ttoplam_change v v (ttoplam_eval v v)
End des_valR_
(_lhsOpp, des1) = ttoplam_v, des_inst_ des_inst_

With this transformation in place, we now have restored the incre-
mental behaviour of our code when higher order attributes are used.

7. Evaluation

We have implemented the techniques described into a simple com-
piletﬂ To simplify the implementation the compiler takes a linearly
ordered attribute grammar as input and generates the code as de-
scribed in the previous sections.

To evaluate the effectiveness of our approach we have imple-
mented a constraint-based type inference algorithm (Heeren et al.
2002) for the lambda calculus with let bindings and let polymor-
phism. Furthermore, we have added a desugaring step to the algo-
rithm as with the running example in this paper and used a higher
order attribute to infer types for the desugared version of the AST.
This is exactly the case where our previous work falls short because
of the use of the higher order attributes. Furthermore, it is a typical
use case in compiler construction with attribute grammars.

7.1 Implementation details

For the inference of the types we use bottom-up type rules as shown
in Figure[T] which gather constraints used elsewhere by a constraint
solver. Type judgements are of the form M, A,C - e:7 where e is
the expression being typed, 7 is the type, M is a set of monomor-
phic type variables, A is a set of assumptions and C is a list of
constraints. It is important to notice that in the corresponding im-
plementation M is a value that is passed top-down and A, C and 7
are passed bottom-up. In contrast to the well-known algorithm W
(Damas and Milner|1982), the bottom-up constraint based type in-
ference algorithm has a bottom-up behaviour that makes it suitable
for incremental evaluation.

2 The code can be found at:
http://wuw.staff.science.uu.nl/"brans106/iehoa.zip


http://www.staff.science.uu.nl/~brans106/iehoa.zip
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Figure 1. Bottom-up type rules

The type rules can be translated to AGs in an almost straight-
forward way. We use one inherited attribute for M, and three syn-
thesized attributes corresponding to A, C and 7. There are however
two implementation details that do not follow directly from the type
rules.

Fresh variable generation The generation of fresh variables is
usually implemented in AGs using a threaded attribute, which
is both synthesized and inherited. Such an attribute is a simple
counter which is increased every time a fresh variable is needed.
As described in our previous work (Bransen et al.|[2014), such
threaded attributes are bad for the effectiveness of the incremental
evaluation. In previous work we have suggested several solutions
for this, which could also be applied here, but to simplify the
toy implementation we have chosen to implement fresh variable
generation with a global mutable state instead.

Intermediate constraint solving In the constraint based type in-
ference most time is spent in solving the constraints, not construct-
ing the constraints. The incremental AG machinery is used for mak-
ing the constraint generation phase more efficient after changes in
the AST. With constraint solving being done only at top level we
still spend most time there, since the constraint solving is com-
pletely redone even after a simple change.

However, many of the generated constraints are equivalent to
the constraints generated earlier, so the result of the constraint solv-
ing should also be stored. There is a certain order in which con-
straints should be solved, so it is not possible to solve all constraints
as soon as they are generated. For a closed expression, in which
no free variables appear, it is possible to solve all constraints and
immediately apply all resulting substitutions. In the constraint gen-
eration the expression is closed if and only if A is empty. Based on
this observation we have defined our code in such way that when-
ever A is empty, all constraints generated so far are solved and the
substitutions are applied to 7; no more constraints remain.

7.2 Benchmarking

At first we have run the code on some hand-crafted cases to validate
correctness and do preliminary measures. We have measured large

46

speedups (100x) in specific artificial cases, and overall the overhead
seemed within acceptable bounds.

To more thoroughly evaluate the effectiveness and measure the
overhead of our approach we have run several benchmarks. For the
time measurement we used Criterion (O’Sullivan|2009) which is a
framework for measuring the performance of Haskell programs. It
takes care of running benchmarks multiple times for more accurate
results, forcing evaluation of the benchmark results, avoiding un-
desired sharing between runs and generating statistics. In our case
we have directed Criterion to use 100 runs for each benchmark.

In order to generate arbitrary sugared lambda expressions and
changes to the AST we used QuickCheck (Claessen and Hughes
2000) which is a tool for formulating and testing properties of
Haskell programs. As a part of this tool there is a set of functions
for generating arbitrary instances of data types, which we use to
generate the data for our benchmarks.

7.3 Results

In Figure [Z] we show the benchmark results. In each sub figure two
bar charts are shown: Base is the standard evaluation as described
in Section 2] and Incr is the incremental evaluation as described in
Section [6] For all different test cases we have used a set of 100
randomly generated well-typed lambda terms, and five different
types of changes for each of them. The unit of measure on the y-
axis is in milliseconds, and notice that that last two sub figures have
a y-axis spanning twice as much time.

The initial run for both approaches is shown in Figure 2a] The
overhead of the incremental evaluation is a 9.3% time increase on
average. Figure[2b|and Figure[2c|show are the corner cases in which
the expression is only changed at top level by adding an unused let
binding or application of the identity function respectively. Even
though it is to be expected that in these cases the code would
benefit maximally from incremental evaluation, the speedups are
only 28.2% and 32.3%.

Two cases where we would expect speedups but have measured
decrease in runtime are the deletion of an arbitrary subtree (Fig-
ure [2d) and doing an arbitrary (valid) change (Figure [2¢). The in-
crease in runtime is 8.9% and 15.5% respectively. Finally in Fig-
ure [21] we show the worst case for incremental computation in
which the full AST is replaced by another one, such that no in-
formation can be reused. Here the overhead is also 15.5%, which
we believe is reasonable if large speedups would be achieved on
other cases.

8. Discussion

Benchmarks We have been able to achieve large speedups (100x)
in hand-crafted test cases, but we have not measured any speedups
in the larger benchmarks. One of the reasons is that the generation
of arbitrary well-typed lambda terms is not easy, and our solution is
ad-hoc. As a result of this, the types of the generated lambda terms
are quite large and evaluating those could take up large parts of the
overall computation time.

To improve upon this better benchmarks need to be constructed,
for example by generating the lambda terms in a uniformly dis-
tributed way (Claessen et al.||2014). Furthermore, the types of
changes presented in our benchmarks should be closer to real use,
for example by taking data from a structure editor or the revision
history of some project.

Overhead One common problem of incremental evaluation is that
there is always overhead involved. In our case the initial evaluation
is slower because of the extra state that is built up next to the actual
evaluation, and in the case of the example the overhead can actually
be larger than the actual computation. It is therefore not desirable
to apply this technique to all attribute grammars.
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Figure 2. Benchmark results of constraint based type inference

A possible solution for this problem is to rely on Haskell’s lazy
evaluation mechanism to perform the extra work to achieve incre-
mental speedups at the moment that the incremental step happens,
resulting in practically no extra runtime in the first evaluation. In
our previous work we found promising results in that direction, but
in order to support higher order attributes we need to do more work
and evaluate some part of the state in a slightly stricter way.

The reason our current approach does not perform so well on
our benchmark is probably because it is too fine-grained. For the
type inference example in many nodes only some constraints are
gathered, and only in some nodes the constraints are solved. With
our incremental evaluation of attributes we check for equality of
inherited nodes and propagate the dirty flags for every node, which
may take more time than the actual constraint gathering. For our
technique to be usable in practice we therefore intend to run the
checks only in certain nodes, for example only on nodes where
constraints are solved. Although this leads to more actual attribute
evaluation, it can be much faster in practice.

Non-observable construction An important limitation of our
technique is that it requires knowledge of the construction of the
higher order attribute. In particular, when a higher order attribute
a is used to construct a new value of a higher order attribute, a
path needs to be constructed to indicate in which part of the new
AST a ends up. However, because our expressions can be arbitrary
Haskell, we can write attribute grammars for which we can not
(automatically) find out this information.

In order for our technique to work we therefore require the
construction of higher order attributes to be of a restricted form
in which only constructors, attribute references, and constants are
used. In particular, pattern matching is not allowed as it would
highly complicate dependency analysis.

However, in practice there are of course cases where more com-
plicated code is written to construct the higher order tree. Another
possibility is to mix observable and non-observable construction
of higher order attributes and only get good incremental behaviour
when enough attributes can be observed. A concrete example of
this could for example be type inference, where the AST describes
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expressions of the untyped lambda calculus and the result is a term
in the typed lambda calculus. In that case, the spine of the result, so
the expression itself, can be constructed in an observable way for
which incremental behaviour is retained, but the types themselves
are considered black boxes for which all information is lost after
they are reconstructed.

9. Related work

Dynamic dependencies One of the recent developments in incre-
mental computing is that of so-called self-adjusting computation
(Chen et al.|2014). In self-adjusting computation all data is labelled
with either static or changeable, and special constructs are added to
the language in order to handle changeable data in such a way that
changes can be efficiently propagated. Based on the types, these
special constructs can even be automatically inferred by the com-
piler.

The important difference to our approach is that in self-adjusting
computation all dependencies are gathered dynamically in the first
run. While evaluating in the first run a dependency graph is built,
and that graph is used in subsequent runs to propagate the changes.
Although in essence our technique is doing the same thing, in the
attribute grammar world all dependencies are known statically and
can therefore be used to generate incremental evaluators that have
no runtime dependency tracking overhead.

Function caching Another technique for the incremental evalu-
ation of higher order attribute grammars is to use function caching
or memoization (Vogt et al.||1991} |Saraiva et al.|[2000). Because
the subtree and inherited attributes together are used as key for the
memoization table, this technique also works for higher order at-
tributes. However, the problem is that such technique requires a
global cache which needs to be purged to avoid running out of
memory, since otherwise the cache could infinitely grow. However,
no purging strategy can perfectly predict future calls to the func-
tion, so it can result both in recomputations due to wrong cache
items being purged and in cache items that are stored and take up
memory but are never used.



In our approach the cache is (implicitly) stored inside the AST,
such that the subtree itself is not a parameter of the cache lookup.
This does not only make sure that our caches stores exactly the val-
ues that are needed, but also can result in faster lookups. In our ap-
proach we do however only store one cache item per visit per node,
with the immediate previous values, so when a tree is changed to
another tree and then is changed back, some recomputation can
happen.

Incremental higher order evaluation The work of (Cai et al.
2014) discusses automatically generating incremental evaluators
for higher-order languages, by statically constructing derivatives of
functions that can handle changes efficiently. However, to get actual
incremental speedups the work assumes the existence of certain
user-defined change structures that specify for all base-types how
changes can be constructed and represented.

Our support for higher order attributes is similar to the construc-
tion of derivatives for higher order functions. However, in our case
the basic incremental attribute grammar forms the basic change
structure, and therefore there is no need for the user to specify any
extra information to get incremental speedups. Our work on the
other hand only works for the class of attribute grammars, which is
of course much more limited than higher order languages in gen-
eral.

Profiling based caching (Soderberg and Hedin|[2011) describe
the incremental evaluation of reference attribute grammars based
on caching in an imperative setting. However, to improve caching
behaviour they use a selective caching mechanism based on profil-
ing, thereby optimising the caching to specific use cases. To avoid
cases like our running example where the actual computation time
is in some cases smaller than the overhead, such an approach could
be viable in our setting too.

10. Conclusion

We have presented a technique for the incremental evaluation of
higher order attribute grammars. Our technique is based on earlier
work and uses static dependency information to generate efficient
evaluators. We have created a toy implementation of our tool and
verified that the resulting code is strongly typed and returns correct
results. We have measured large runtime speedups on some hand-
crafted cases indicating that our technique can be effective, but it
is future work to evaluate the techniques on a wider scale to find
out in which cases attribute grammars can benefit from incremental
evaluation.
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