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Spatial and spatiotemporal analyses are exceedingly relevant to determine criminogenic factors. The estimation of Poisson
and negative binomial models (NBM) is complicated by spatial autocorrelation. Therefore, first, eigenvector spatial filtering
(ESF) is introduced as a method for spatiotemporal mapping to uncover time-invariant crime patterns. Second, it is
demonstrated how ESF is effectively used in criminology to invalidate model misspecification, i.e., residual spatial
autocorrelation, using a nonviolent crime dataset for the metropolitan area of Houston, Texas, over the period 2005–
2010. The results suggest that local and regional geography significantly contributes to the explanation of crime patterns.
Furthermore, common space-time eigenvectors selected on an annual basis indicate striking spatiotemporal patterns
persisting over time. The findings about the driving forces behind Houston’s crime show that linear and nonlinear, spatially
filtered, NBMs successfully absorb latent autocorrelation and, therefore, prevent parameter estimation bias. The considera-
tion of a spatial filter also increases the explanatory power of the regressions. It is concluded that ESF can be highly
recommended for the integration in spatial and spatiotemporal modeling toolboxes of law enforcement agencies.

Keywords: spatial filtering; spatial autocorrelation; spatiotemporal crime mapping; Poisson regression; negative binomial
regression; generalized additive model

Introduction

In times of scarce monetary resources for policing and safety,
aswell asfiscal constraints, crime surveillance and prevention
has gained significant importance and emerges as an intrinsic
research topic (Kollias,Mylonidis, and Paleologouc 2013). A
solid theoretical background about the spatial and temporal
dimension of crime exists (e.g., Chainey and Ratcliffe 2005;
Rey, Mack, and Koschinsky 2012; Leitner 2013), including
such well-known theories as routine activities (Cohen and
Felson 1979), rational choice (Clarke and Cornish 1985), and
geometry of crime (Brantingham andBrantingham1981) and
support the understanding of crime mechanisms, which is a
crucial initial step toward crime reduction (Andresen 2006;
Short et al. 2010). However, just like data mining (e.g.,
Helbich, Hagenauer, et al. 2013) and geographic profiling
techniques (e.g.,Mburu andHelbich Forthcoming), statistical
modeling of crime remains challenging. Thereby, regression
models are of utmost importance to law enforcement agencies
and academic researchers alike (e.g., Osgood 2000). These
models support the understanding of underlying spatial and
social processes affecting the presence or absence of crime.
Offenses are an inherently spatially and spatiotemporally
occurring phenomenon (Ratcliffe 2011) and do not spread
evenly across space; they tend to cluster in certain neighbor-
hoods and residential areas (e.g., Messner et al. 1999;
Sampson, Morenoff, and Gannon-Rowley 2002; Townsley
2009; Hagenauer, Helbich, and Leitner 2011; Helbich and

Leitner 2012; Ye and Wu 2011; Rey, Mack, and Koschinsky
2012).

Such coincidence of locational and attributional similar-
ity is referred to as spatial autocorrelation (Cliff and Ord
1973; Anselin and Bera 1998; Townsley 2009). Two kinds of
spatial autocorrelation may appear, negative and positive.
The latter and most prevalent in empirical studies depicts
patterns where similar values are closely located in space,
while former describes patterns where dissimilar values are
in close geographical proximity. If (positive) spatial autocor-
relation is not explicitly modeled, serious consequences may
arise because model assumptions (e.g., spatial indepen-
dence), which are mandatory for inference statistics, are
violated. Along with the inflation of degrees of freedom,
standard errors and estimated coefficients may be biased as
well as inconsistent, risking erroneous conclusions on the
basis of a misspecified regression model (Anselin and Bera
1998). Empirical evidence that “place matters” is now abun-
dant (Tita and Greenbaum 2008). A classic example is
Morenoff, Sampson, and Raudenbush (2001), who analyze
homicide rates while considering neighborhood effects
through a spatially lagged variable. Their results confirm
that spatial effects are most important, surpassing other
local characteristics. Subsequent empirical analyses clearly
support their findings (see Leitner 2013).

Thus, to receive unbiased estimates and correct infer-
ence, spatial autocorrelation must be explicitly modeled in
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statistical analysis (Tita and Radil 2011). This is not trivial
in count regressions where the response variable used is
the number of crimes within a spatial unit for a certain
time period (Griffith and Haining 2006). Counts are a
common data type in criminal analysis, for instance,
offenses per spatial unit (e.g., Osgood 2000; Braga 2003;
Lattimore et al. 2005; Macdonald and Lattimore 2011).
Because count data are highly skewed and include solely
positive integers, Gaussian models are inappropriate
(Griffith and Haining 2006; Ver Hoef and Boveng 2007;
O’Hara and Kotze 2010) as they can only furnish approx-
imations in ideal circumstances. Nevertheless, ordinary
least squares regression has been widely used in combina-
tion with ex ante logarithmic and square root transforma-
tions of the response to obtain independent and identically
distributed residuals. Because a natural logarithm is not
specified for zeros, it is necessary to add a small constant
to each count, which induces an extra estimation bias as
demonstrated by Osgood (2000). Furthermore, ordinary
least squares regression tends to predict negative counts
and wrongly assumes homoscedasticity (Cameron and
Trivedi 1998; Winkelmann 2008). Based on simulation
experiments, O’Hara and Kotze (2010) unequivocally dis-
courage (logged) ordinary least squares regression models
with counts and strongly recommend that the special nat-
ure of count data be explicitly considered. For instance,
Huang and Cornell (2012) compare count data regressions
with ordinary least squares regression by investigating
school victimization in Virginia. As expected, they under-
pin that Poisson-based analyses result in a more reliable
model. Griffith and Haining (2006) argue that spatial
independence of counts does not hold true and anticipate
that there will be interdependencies in the model residuals.
Minor attempts have been made hitherto to consider spa-
tial autocorrelation in criminological count regressions.
For example, Osgood (2000) neglects spatial autocorrela-
tion when investigating juvenile arrest rates for robberies.

Despite the importance of spatially explicit regressions
for count data, such models are rare and even more rarely
applied. Explicitly accounting for area-specific spatial
effects, the auto-Poisson model (Besag 1974) is of limited
use because it models negatively autocorrelated patterns
scarcely present in social science (Griffith and Haining
2006; Griffith 2012). Although this constraint is obviated
in the modification by Kaiser and Cressie (1997), the model
has not been implemented in software packages, to the best
of our knowledge. Recently, Bayesian spatial models (e.g.,
Sparks 2011; Law and Quick 2013) were introduced to
handle spatial autocorrelation in count data. These highly
complex approaches are still in an early development stage
and rely on Markov Chain Monte Carlo approaches that are
computationally intensive. Combined with ESF, generalized
linear models (McCullagh and Nelder 1989) – which have
been recommended for transportation (e.g., Wang,
Kockelman, and Wang 2013) and health studies (e.g.,

Helbich, Blüml, et al. 2013) and are transferable to crime
analysis – are thus highly suitable. A comparative study by
Dormann et al. (2007) confirms that generalized linear
models linked to ESF are effective to address spatial auto-
correlation. Grimpe and Patuelli (2011) were the first to
report promising results in linking both the negative bino-
mial model (NBM) with ESF. Recently, Thayn and Simanis
(2013) verified the results of Dormann et al. (2007) by
exploring real-world and artificial datasets. They found an
improved model fit and fewer misspecifications. Based on
these studies, ESF should be explored in conjunction with
criminological count regression. Unlike generalized linear
models, which assume a linear relationship, an advantage of
ESF is a possible integration into nonlinear (mixed) smooth-
ing models (Wood 2006), offering additional flexibility
when nonlinearities of criminogenic factors are expected.

To conclude, quantitative spatial criminology may profit
from bridging count regression and ESF, although not yet
introduced to this domain. In this research, we enhance the
current count regression methodology by taking advantage
of ESF in a reliable and integrative way. Besides producing
a comprehensive literature review about count regression in
criminological studies, this research makes the following
important contributions to the literature:

● First, ESF is utilized to map temporally persistent
crime patterns.

● Second, responding to a recent call by Bernasco and
Elffers (2011), it is shown how ESF can be effec-
tively applied to obviate a misspecified count
regression model by means of considering a (spa-
tiotemporal persistent) spatial filter.

● Third, the suitability of ESF within a linear and non-
linear model is illustrated by analyzing nonviolent
crimes for the period 2005–2010 in Houston, Texas.
This provides law enforcements with a deeper under-
standing of the major criminogenic forces and allows
formulating more situational policies and actions.

The remainder of this article is structured as follows: The
following section introduces both the theoretical foundations
of count regressions and ESF. Next, the study area and the
data are described. We then demonstrate the effectiveness of
ESF for nonviolent crimes in Houston. Finally, key conclu-
sions and directions for future research are highlighted.

Methods

Count regressions

Poisson model

Count regression emerges as a part of the generalized
linear models family, extending the linear model to non-
normal error distributions. For count data, the Poisson
distribution is well suited, assuming mean and variance
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equivalence (E Yð Þ ¼ μ; var Yð Þ ¼ μ). Poisson regression
linearly relates the mean number of counts within a spatial
unit i during a period t to a set of j explanatory variables.
This regression has the following form:

E½log λð Þ� ¼ β0 þ
Xp
j¼1

βjXj

where λ is the expected value of Y , β0 is the intercept
term, βj is a set of regression coefficients to be estimated
for the j independent variable X , and log λð Þ represents the
canonical link function that connects the response to the
related explanatory variables and guarantees that the esti-
mated counts remain positive.

For crime data, equidispersion is a strong and restric-
tive assumption (Osgood 2000). Usually, overdispersion,
which means that the variance exceeds the mean, is pre-
sent in empiricism. Reasons for variance variations are
nonlinear relationships, spatial autocorrelation, and within
or between-area heterogeneity of spatial units (White and
Bennetts 1996; Griffith and Haining 2006). Ver Hoef and
Boveng (2007) supplement this argumentation by stating
that grouping effects or a misspecified model are addi-
tional causes. Criminological explanations for overdisper-
sion are extensively discussed in Osgood (2000), while
statistical reasons (e.g., contagion, state dependence) are
discussed in Winkelmann (2008). In contrast, underdisper-
sion, which describes the situation when the variance is
below the mean, is scarcely relevant for criminology
(Osgood 2000).

A consequence of a missing mean–variance equality is
that the standard errors are too narrow although, as long as
the conditional mean function is correctly defined, Poisson
models still result in consistent parameter estimates. Thus,
statistical significance tests could be too liberal and may
result in wrong conclusions (Cameron and Trivedi 1998;
Kleiber and Zeileis 2008). Depending on the degree of
overdispersion, effective options to handle a lacking
mean–variance equality are, besides mixed models, either
the quasi-Poisson model or the NBM.

Quasi-Poisson model

The quasi-Poisson model offers an ad hoc fix for small
amounts of overdispersion (Berk and MacDonald 2008).
Due to an additional dispersion parameter, which adapts
the variance, equidispersion is enforced. If the quasi-
Poisson model’s dispersion parameter is larger than 1, it
indicates overdispersion. This requires that the model’s
standard errors must be corrected by multiplying them
by the square root of the dispersion parameter (Kleiber
and Zeileis 2008). Increasing the standard errors reduces
the significance of the parameters, which makes the esti-
mates more reliable, while the estimated coefficients

remain unchanged. Obtaining dispersion parameters
beyond 20, Zuur et al. (2009) recommend refitting the
model using a zero-inflated model or a NBM.

Negative binomial model

The NBM is based on the negative binomial distribution,
resulting from a mixture of the Poisson-gamma distribution
(Zuur et al. 2009; Vanables and Ripley 2010), which is a
Poisson distribution with a gamma distributed mean. The
NBM relaxes equidispersion by encouraging heterogeneity
among the units (Coxe, West, and Aiken 2009), which
might provoke overdispersion. Compared to the Poisson
model, the mean–variance relationship is now given by
E Yð Þ ¼ μ and var Yð Þ ¼ μþ μ2=θ, where the second part
of the variance specification (θ) is estimated through the
data and controls the amount of overdispersion (Vanables
and Ripley 2010). If the variance function μ2=θ equals zero,
it leads to the basic Poisson model. Because the NBM
yields more accurate estimations, it is heavily promoted
by Osgood (2000) and has since received considerable
attention in criminology (e.g., Braga 2003; Lattimore
et al. 2005; Berk and MacDonald 2008).

A not yet addressed but fundamental assumption of
count regressions is residual independence (Griffith and
Haining 2006). The abovementioned models assume that
counts occur randomly across space and over time, hardly
fulfilled by incorporating spatial data in aspatial models.
Therefore, the following section introduces ESF, which
allows us to model spatial autocorrelation in generalized
linear models.

Eigenvector spatial filtering

The first implemented attempt at spatial filtering, follow-
ing earlier work by Tobler, is by Griffith (1978). Getis
(1990, 2010) argues for transforming a spatial autocorrela-
tion-effected variable by splitting it into its actual variable
effect without spatial autocorrelation and its related spatial
component. Technically, he proposes a combination of
K dð Þ-functions and local G-statistics. It is, however,
necessary to repeat this routine for each variable sepa-
rately, resulting in many variables. Undoubtedly, this con-
tradicts the principle of model parsimony (Burnham and
Anderson 2002). However, this approach corrects for
positive spatial autocorrelation effects and is limited to
positively defined variables having a natural origin
(Getis and Griffith 2002). Although this study satisfies
both conditions, it favors the topology-based ESF
approach (Griffith 1996, 2000; Tiefelsdorf and Griffith
2007) because it is flexible and obviates the above-men-
tioned limitations (e.g., Griffith 2008). A comparison by
Getis and Griffith (2002) reveals that both methods filter
spatial autocorrelation efficiently and produce similar
results. Recently, a third model family emerged,

136 M. Helbich and J.J. Arsanjani

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

3:
19

 1
3 

M
ar

ch
 2

01
5 



comprising principal coordinates of neighbor matrices and
Moran’s eigenvector maps (Dray, Legendre, and Peres-
Neto 2006), which utilizes distance-based eigenfunctions
among locations. Although Griffith and Peres-Neto (2006)
found high similarities between the results of ESF and
spatial eigenfunction analysis by principal coordinates of
neighbor matrices, most regression-based criminological
investigations deal with lattice data (e.g., Andresen 2006),
which are ill-represented by centroids. Because of this
limitation, ESF is clearly preferred.

Based on Tiefelsdorf and Boots (1995), ESF aims to
extract eigenvectors from a transformed spatial neighbor-
hood matrix (Griffith 2000), which describes the spatial
arrangement and connectivity between entities of spatial
systems (Tita and Radil 2011). Even though the matrix
definition is exogenous, it requires that the actual spatial
process is mimicked most appropriately. For this reason,
the neighborhood definition and the subsequent coding
are fundamental for ESF and influence the filtering.
Several definitions are proposed for the neighborhood
matrix (see Getis 2009; Patuelli et al. 2012). Frequently
applied in empirical crime studies (e.g., Leitner and
Helbich 2011) is the first-order queen contiguity (mean-
ing adjacent spatial units share an edge and/or node).
Assuming N spatial units, adjacency is formally repre-
sented through an N � N matrix, C. Each matrix element
cij judges the amount of interaction between unit i and j.
In the simplest case, cij ¼ 1 if location i and j are neigh-
bors, otherwise cij ¼ 0 i�jð Þ. Because of issues with
interpretation, C is further processed through standardi-
zation. Following Patuelli et al. (2012), three standardi-
zation schemes are prevalent: (a) The C-coding, which
refers to a global standardization. Its computation stres-
ses units with higher linkages; therefore, patterns in the
center of the area under investigation are emphasized.
Even Tiefelsdorf, Griffith, and Boots (1999) remark an
overemphasis. (b) The W -coding style, which was con-
sidered because of its appealing interpretation of spatial
spillover effects. However, this coding gives too much
weight to entities with a low number of spatial links
(Tiefelsdorf, Griffith, and Boots 1999). Patuelli et al.
(2011) point out that extreme values along the study
area’s edges are pronounced. (c) The S-style, which
stabilizes the variance by compensating the level of var-
iation within weights (Tiefelsdorf, Griffith, and Boots
1999). Because an incorrect specification may have an
impact on diagnostic tests and an overspecification
reduces the power of statistical tests (Florax and Rey
1995), Cohen and Tita (1999) call for more systematic
research dealing with diverse specifications. This
research answers this call.

Eigenvector spatial filtering (ESF) decomposes the
Moran’s I coefficient, which is a spatial statistical test
used to determine the nature and degree of spatial

autocorrelation, given a predefined spatial weight matrix.
Cliff and Ord (1973) calculate the index as follows:

Moran’s I ¼ N
P

i

P
j cij xi � �xð Þ xj � �x

� �
P

i

P
j cij

� �P
i xi � �xð Þ2

where xi and xj are the attribute values of location i and j,
�x is the overall mean value, cij is an element of the spatial
weight matrix C, and N is the number of spatial units.
The range of Moran’s I is, but not limited to, –1 and +1,
where positive values indicate positive spatial autocorre-
lation and a negative value represents a negative spatial
autocorrelation. 0 represents a random distribution. In
detail, ESF utilizes eigenvector decomposition to extract
a set of eigenvectors directly from the spatial weight
matrix, incorporated in the numerator of the Moran’s I
coefficient (de Jong, Sprenger, and van Veen 1984;
Griffith 2000):

I � 11T

N

� �
C I � 11T

N

� �

where I represents the N � N identity matrix with 1s in
the main diagonal and 0s elsewhere, 1 is N � 1 vectors of
1s, C is the spatial weights matrix, and T denotes the
matrix transpose. The resulting eigenvectors are orthogo-
nal and independent of each other. Tiefelsdorf and Boots
(1995) show that each extracted eigenvectors mimics
latent spatial autocorrelation in accordance with the spatial
weight matrix. Furthermore, each eigenvector portrays a
certain nature and degree of spatial autocorrelation and
thus a characteristic map pattern. Closely referring to
Griffith (2000), the first eigenvector contains a set of
numerical values resulting in the largest possible
Moran’s I value for any set of real numbers. The second
eigenvector expresses the set of values that has the largest
obtainable Moran’s I by any possible set of eigenvectors
that are not correlated with the first eigenvector. This
continues for the remaining eigenvectors until the N th
eigenvector is achieved, which is characterized through
the highest possible negative spatial autocorrelation.
Based on the degree of spatial autocorrelation, the number
of eigenvectors can be grouped in three groups where the
class boundaries are not strictly defined. The first group
comprises eigenvectors that tend to portray broad-scale
patterns, basically along the main cardinal directions;
i.e., North-South and East-West trends. They are distin-
guished by a high positive Moran’s I values. The second
group classifies regionally sized patterns with moderate
spatial autocorrelation. The third group portrays a set
of local map patterns, mainly dispersed across space at a
finer scale, and associated with low Moran’s I values.
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The eigenvector extraction results in N eigenvectors
whose elements are attached to each spatial unit i. Using
the complete set of eigenvectors is not feasible due to
missing degrees of freedoms (Patuelli et al. 2011). This
requires a preselection to uncover potential eigenvector
candidates, with a potentially relevant spatial autocorrela-
tion pattern. Tiefelsdorf and Griffith (2007) propose a
threshold value1 of Moran’s I divided by Moran’s
Imax > 0.25, where Moran’s Imax is the largest positive
Moran’s I value. This assures that eigenvectors represent-
ing more randomly distributed patterns, i.e.,
Moran’s I , 0, are not further considered. Moreover, this
critical Moran’s I value guarantees a manageable number
of eigenvectors for the subsequent selection procedure. It
must be noted that ESF is not limited to positive spatial
autocorrelation. The ultimate eigenvectors are achieved by
regressing candidate eigenvectors on the response. Due to
the orthogonality and independence of eigenvectors, a
stepwise selection approach minimizing a quality criterion
(e.g., Akaike information criterion (AIC); Burnham and
Anderson 2002) is valid. The final model includes only
spatial patterns significantly related to the response.

The ESF results have two benefits: (a) Single eigen-
vectors can be visualized to explore spatial patterns inher-
ent in the response, while common eigenvectors over time
refer to persistent spatiotemporal patterns (see Patuelli
et al. 2012). (b) Eigenvectors modeled as additional expla-
natory variables theoretically remove spatial autocorrela-
tion and approve standard statistical techniques. However,
instead of considering each eigenvector as a fixed effect, a
single and more parsimonious spatial filter comprising all
relevant eigenvectors can be computed through a linear
combination. Analogous to the separate eigenvectors, this
spatial filter accounts for spatial autocorrelation on differ-
ent scales and serves as a surrogate for possible missing
predictors (Thayn and Simanis 2013). Both advantages are
demonstrated in the subsequent case study.

Study area and data

The study area is the metropolitan area of Houston, Texas,
with a population of nearly 2.1 million (US Census
Bureau 2010). Besides being delineated in official spatial
units, the metropolitan area is divided into 15 police beat
districts used for patrol and statistical purposes by the
Houston Police Department. Because of the small number
of units, this coarse subdivision lacks sufficient geo-
graphic resolution to be suitable for statistical analysis.
Hence, to illustrate ESF, this empirical study uses the
census tract level, which keeps the computing time feasi-
ble and allows linkage to supplementary census data. After
removing all enclaves within the metropolitan area, the
study area consists of 467 census tracts.

Crime data for the period 2005–2010 were obtained by
a data request through the Houston Police Department.

Between 2005 and 2010, the annual mean number of
offenses was 126,000. In accordance with the Uniform
Crime Reporting classification schema (Part 1), all crimes
were divided into violent and nonviolent crimes. Since
there are more nonviolent crimes in Houston than violent
ones, the focus will be on the former and comprise bur-
glaries, larceny, auto theft, and arson. Besides the crime
locations, crime type and offense date were compiled. The
address where a crime occurred allows geocoding with a
Geographic Information System. After excluding incom-
pletely reported crimes, approximately 621,000 nonviolent
offenses were successfully geocoded using the TIGER
street network. The hit rate of successfully and accurately
geocoded crimes ranged between 91% and 93%, which is
higher than Ratcliffe’s (2004) critical value of 85%, ensur-
ing high overall accuracy. Finally, the absolute number of
nonviolent crimes per tract was determined yearly by
means of point-in-polygon aggregations. High positional
accuracy is crucial and reduces misallocations to geo-
graphic units, while having noticeable impact on subse-
quent spatial statistical analysis (Griffith et al. 2007). This
area-based representation permitted the integration of
socioeconomic and demographic census data for 2010
obtained from the US Bureau of Census, which was
necessary to understand the driving forces of crime. The
variable selection was guided by theoretical considerations
grounded in previous empirical research (e.g., Leitner and
Helbich 2011). All variables are listed in Table 1.

Results

This section discusses the main empirical results. After the
initial exploratory analysis, eigenvector mapping is
employed to analyze pure spatial effects in yearly, non-
violent crime counts. Moreover, temporally persistent
eigenvector-based crime patterns are identified for the 6-
year period. Then this spatial filter is used to model spatial
autocorrelation in linear and nonlinear count regressions.

Spatiotemporal steady crime patterns

Descriptive statistics in Table 1 and Figure 1a confirm that
the distribution of crime counts is skewed. The number of
crimes per census tract ranges from 0 to almost 1620 for
the year 2010. Mappings show similarity between the
crime patterns on a yearly basis, indicating possible eigen-
vector agreement. The spatial crime distribution for 2010
is given in Figure 1b.

To analytically explore the annual crime patterns,
Moran’s I coefficients are calculated by selecting the reg-
ularly applied first-order queen contiguity. Because
Patuelli et al. (2012) demonstrate a high agreement
between the queen and rook specification, this analysis is
restricted to the former. The queen contiguity results in
2966 nonzero links, corresponding to 1.4% nonzero
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weights. The average number of links is 6.4. More critical
is the specification of the coding scheme, which may
induce slightly diverse results (Patuelli et al. 2011).
Besides, highly relevant for criminology, the definition is
more than ad hoc and defines social interactions too
(Leenders 2002). Following the research call of Cohen
and Tita (1999), three coding styles (i.e., W , C, S) are
compared in this article. The Moran’s I results for the
crimes per year and each coding style are presented in
Table 2.

The temporal development of the Moran’s I values
shows similar behaviors of moderate and significant spa-
tial autocorrelation over time. For all coding schemes the
maximum Moran’s I values occurred in 2007, followed by
a continuous decrease over 2008 and 2009. The minimum
Moran’s I value occurred in 2009. The Moran’s I scores

increased slightly for 2010. Given these results, the
assumption of independent residuals in subsequent regres-
sions might be violated – independently of the coding

Table 1. Variable descriptions and descriptive statistics.

Description Min. 1st Qu. Median 3rd Qu. Max.

Nonviolent crimes
Crimes 2005 0.0 128.5 199.0 298.0 1340.0
Crimes 2006 0.0 127.5 200.0 296.0 1418.0
Crimes 2007 0.0 127.0 200.0 290.6 1596.0
Crimes 2008 0.0 116.0 178.0 262.5 1412.0
Crimes 2009 0.0 123.0 190.0 286.5 1897.0
Crimes 2010 0.0 117.0 186.0 268.0 1620.0
Explanatory variables
Total population 2010 33 3134 4231 5600 10,150
% White population 2010 1.4 33.4 54.3 68.0 94.8
% African-American population 2010 0.3 3.9 13.7 34.0 94.8
% Asian population 2010 0.0 0.7 3.9 9.4 45.7
% Owner-occupied housing units 2010 0.0 31.1 50.0 67.5 98.1
% Homeowner vacancy rate 2010 0.0 1.3 2.0 3.2 29.7
% Rental vacancy rate 2010 0.0 8.1 10.9 15.7 55.0
Euclidean distance to police stations and storefronts (meters) 2010 360 1603 2367 3620 9847
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Figure 1. (a) Histogram and (b) spatial distribution of nonviolent crimes for the year 2010.

Table 2. Moran’s I statistics for annual crimes on the basis of
different spatial weight matrices.

W-style C-style S-style

Year MC p-Value MC p-Value MC p-Value

2005 0.208 0.001 0.224 0.001 0.217 0.001
2006 0.230 0.001 0.248 0.001 0.240 0.001
2007 0.234 0.001 0.253 0.001 0.244 0.001
2008 0.200 0.001 0.222 0.001 0.212 0.001
2009 0.175 0.001 0.194 0.001 0.186 0.001
2010 0.186 0.001 0.206 0.001 0.197 0.001
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scheme – providing sound statistical motivations to
account for spatial autocorrelation.

To filter out this spatiotemporal autocorrelation, an
ESF approach is set up to construct a temporally persistent
spatial filter, which is used as a regression proxy variable.
The following extraction procedure is repeated for each
spatial weight matrix specification: First, 467 eigenvectors
are extracted. Due to significant overdispersion, NBMs are
applied for selecting significant eigenvectors. Figure 2
depicts four examples of candidate eigenvectors using
the C-style weighting. Global patterns are characterized
by eigenvectors ≤4, regional patterns by eigenvectors 5–
25, and local ones by eigenvectors ≥26.

Next, to obtain the final eigenvectors, each yearly
crime pattern is repeatedly regressed on the candidate
eigenvectors separately through Poisson models and
quasi-Poisson models. Once more, as confirmed by the
significant overdispersion test (p < 0.001), equidispersion
must be rejected, which disqualifies the Poisson model
and quasi-Poisson model for the final eigenvector selec-
tion. Refitting the models as NBM yields substantial
improvements. For all regressions, the χ2-values strongly
suggest that NBMs are much more appropriate compared
to the Poisson model and quasi-Poisson model.
Additionally, NBMs substantially reduce the AIC scores.
To decrease the candidate eigenvectors further, backward
variable selection is applied by minimizing the AIC. The
dispersion parameters of all final NBMs are noticeably

reduced to approximately 1.33, only slightly above the
ideal value of 1. To correct such a minor deviation from
equidispersion, robust standard errors are advised by
Kleiber and Zeileis (2008). Figure 3 illustrates the fits of
the NBMs, highlighting distinctions between all years and
each spatial weighting scheme. All graphs show similar
characteristics with a clear peak of the explanatory powers
in the year 2007. The pseudo-R2s range between 0.27 and
0.37. Compared with the other coding styles, the C-style
performs best, resulting in higher model fits. The W-style
is the only style with a weak performance; it also results in
the lowest pseudo-R2s. Thus, a considerable part of the
variance in the crime distribution is explained by the pure
eigenvectors themselves, emphasizing the high relevance
of space in the crime patterns.

On average, 46 final eigenvectors were selected (see
Tables 3 and 4). Each selected eigenvector portrays a
characteristic map pattern. As an example, the best per-
forming C-style is outlined. While eigenvectors ≤4 visua-
lize global patterns following a West-East decline, the
fourth eigenvector, labeled as EV4, obviously depicts
more regional patterns, where two areas show high posi-
tive values and two areas show increasingly negative
values (Figure 2). High positive values are accumulated
in the north-western and south-eastern parts of Houston,
declining toward the city center. This map has a Moran’s I
of 0.931. In comparison, EV50 is representative of local
map patterns on a finer scale. EV50 has a Moran’s I of

EV50 EV80

EV4 EV15

–0.15

–0.10

–0.05

0.00

0.05

0.10

0.15

Figure 2. Candidate eigenvectors depicting global (EV4), regional (EV15), and local patterns (EV50, EV80) grounded on the C-style
weighting.
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0.533. A straightforward way of achieving a temporally
persistent eigenvector pattern is to identify similar eigen-
vectors for each time stamp (Patuelli et al. 2012). Tables 3
and 4 deal with common and specific eigenvectors, reveal-
ing components inherent to temporal spatial crime pat-
terns. The results suggest that the crime patterns during
the period 2005–2010 are mainly driven by local and
regional eigenvectors; the ESF approach identified several
conspicuous similarities on a regional and local scale and
over time. This lead to the conclusion that crime primarily
acts on local and regional levels over time.

Spatial filtering to account for residual dependency

The previous section dealt with spatiotemporally consis-
tent eigenvector mapping, while this section demonstrates
how to use these eigenvectors as a spatial filter to absorb
latent spatial autocorrelation in linear and nonlinear
NBMs. The focus was on nonviolent offenses occurring
in 2010 for which census data were available. This analy-
sis was limited to the queen representation linked to the
C-style weighting scheme, resulting in the highest fit
compared to those of other coding styles (Figure 3).
Note, if the intention is to perform regressions for several
time stamps during the period 2005–2010, temporally
persistent eigenvectors are an ideal choice. Because the
following analysis deals exclusively with the year 2010, a
spatial filter based on the corresponding eigenvectors for
2010 is more appropriate and contains all relevant

W-style
C-style
S-style

P
se

ud
e 

- 
R

2

Figure 3. Model fits of the negative binomial models for different coding styles over time.

Table 3. Temporally persistent eigenvectors (EV).

Global
patterns Regional patterns Local patterns

W -style EV4 EV6, EV9, EV10, EV26, EV28, EV29,
EV30, EV32,

EV14, EV15, EV19, EV33, EV38, EV41,
EV43, EV47,

EV20, EV24, EV25 EV48, EV49, EV50,
EV59, EV62,

EV66, EV67, EV71,
EV72, EV73,

EV80, EV86, EV91,
EV93, EV104

C-style EV3 EV7, EV8, EV10, EV26, EV27, EV28,
EV29, EV31,

EV11, EV12, EV15, EV35, EV40, EV42,
EV44, EV45,

EV16, EV19, EV22, EV51, EV53, EV55,
EV59, EV61,

EV24 EV62, EV64, EV67,
EV70, EV71,

EV72, EV76, EV78

S-style EV6, EV7, EV8, EV27, EV32, EV35,
EV36, EV41,

EV10, EV12, EV13, EV42, EV45, EV49,
EV50, EV63,

EV15, EV22, EV23, EV67, EV68, EV71,
EV72, EV77,

EV25 EV83, EV87, EV91,
EV92, EV94

Note: Global EVs ≤ 4, regional EV = 5–25, local EVs ≥ 26.

Cartography and Geographic Information Science 141

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

3:
19

 1
3 

M
ar

ch
 2

01
5 



eigenvector patterns. To account for different population
sizes within the census tracts, the total population for 2010
was considered as exposure variable and was incorporated
as an offset term in subsequent regressions.

Spatially filtered negative binomial model

Starting with a non-spatial Poisson model, crime counts of
2010 were regressed on the covariates listed in Table 4.
The initial Poisson model was strongly affected by over-
dispersion and thus refitted as Quasi-Poisson model.
Although this specification reduces overdispersion, it did
not remove it, which requires a NBM. Likelihood ratio
tests and the AIC score confirm better fit of the NBM.
This agrees with Osgood (2000) who favors the NBM.
Although the achieved dispersion ratio of approximately
1.187 points to a well-specified model (Griffith and
Haining 2006), it did have robust standard errors, as
reported in Table 5. To remove insignificant predictors of
the full nonspatial NBM, a stepwise selection was applied.
Because the AIC tends to be too liberal in penalizing more
complex models, the algorithmical selection was coupled

with a subsequent manual selection (Venables and Ripley
2010). χ2-tests were conducted to remove the least signifi-
cant terms. As long as no significant differences were
found, the more parsimonious model was preferred.
Table 5 shows the full and the reduced model, along
with its robust standard errors and significance values.
Residual diagnostics for both models point to a significant
Moran’s I (p < 0.05), which contradicts the NBM assump-
tion of spatial independence.2 To account for these spatial
autocorrelation effects, a spatial filter is required. Instead
of using the individual eigenvectors for 2010 listed in
Tables 3 and 4, a linear combination of the multiscale
map patterns was employed. It is expected that this spatial
filter would account for redundancy in the locational
information by providing a surrogate for potentially lack-
ing explanatory variables. The results for the spatially
filtered NBM are given in Table 5.

The model comparison, the likelihood ratio test, the
pseudo-R2, as well as the reduction of the AIC score all
indicated a clear preference for the spatially filtered NBM.
The spatial filter was highly significant (p < 0.001), elim-
inating entirely unexplained residual spatial

Table 4. Temporally specific eigenvectors (EV).

Year Global patterns Regional patterns Local patterns

W -style 2005 EV1, EV2, EV3 EV11, EV12 EV37, EV40, EV56, EV74, EV83, EV85, EV97, EV100
2006 EV1, EV2, EV3 EV7, EV8, EV11 EV37, EV45, EV56, EV61, EV63, EV65, EV83, EV85,

EV97, EV100
2007 EV1, EV2, EV3 EV7, EV8, EV12, EV21 EV37, EV42, EV45, EV56, EV61, EV63, EV74, EV81,

EV83, EV85, EV97, EV100
2008 EV1, EV2, EV3 EV7, EV8, EV12 EV40, EV42, EV45, EV56, EV63, EV65, EV74, EV78,

EV81, EV84, EV85, EV97, EV100
2009 EV3 EV7, EV12 EV40, EV42, EV45, EV56, EV61, EV63, EV74, EV78,

EV85, EV97, EV100
2010 EV1 EV5, EV7, EV8 EV27, EV40, EV42, EV45, EV63, EV74, EV78, EV84,

EV92

C-style 2005 EV17, EV20, EV25 EV30, EV36, EV43, EV49, EV52, EV54, EV57, EV75,
EV79, EV82, EV87

2006 EV20 EV30, EV32, EV36, EV43, EV47, EV49, EV63, EV75,
EV79, EV82

2007 EV2 EV17, EV20, EV25 EV36, EV47, EV52, EV56, EV57, EV63, EV87
2008 EV2 EV20, EV25 EV30, EV36, EV43, EV47, EV58, EV63, EV75, EV79,

EV87, EV90
2009 EV25 EV30, EV47, EV58, EV63, EV75, EV79, EV90, EV91
2010 EV25 EV30, EV43, EV47, EV49, EV58, EV75, EV82, EV90

S-style 2005 EV20 EV29, EV39, EV43, EV47, EV55, EV57, EV59, EV62
2006 EV3 EV24 EV29, EV39, EV55, EV57, EV58, EV62, EV65, EV76,

EV98
2007 EV1 EV29, EV39, EV44, EV47, EV48, EV55, EV57, EV59,

EV76, EV98
2008 EV3 EV19 EV29, EV39, EV43, EV44, EV47, EV48, EV55, EV58,

EV60, EV62, EV65, EV78, EV88, EV98
2009 EV3 EV11 EV39, EV44, EV47, EV48, EV55, EV57, EV58, EV52,

EV65, EV78, EV88, EV98
2010 EV11, EV20 EV26, EV43, EV44, EV47, EV48, EV54, EV58, EV60,

EV62, EV64, EV65, EV78, EV88, EV98

Note: Global EVs < = 4, regional EV = 5–25, local EVs ≥ 26.
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autocorrelation. This was confirmed by a nonsignificant
Moran’s I of the residuals (I = 0.019; p = 0.148). Variance
inflation factors did not indicate any multicollinearity. The
estimated coefficients of the spatially filtered NBM were
slightly lower compared with the aspatial NBMs, although
the same three criminogenic predictors were significant at
least at the 0.05 level. For example, the estimated regres-
sion coefficient for the percentage of the white population
was about 0.024. Thus, all other covariates being constant,
a one-unit increase in the percentage of Asians multiplies
the expected crime rate by 1.024. The same was valid for
African-Americans. In contrast, the percentage of owner-
occupied housing units has a negative impact on crime
rates. A final sensitivity analysis, which involved chan-
ging the spatial representation of the spatial filter (i.e.,
queen to rook), lead to similar conclusions.

Spatially filtered, generalized, additive negative binomial
model

The previous NBM assumes that covariates impact the
crime pattern linearly. To overcome this restriction,
Wood (2006) introduced generalized, additive, negative
binomial models (GANBM) that are more flexible and
thus more appropriate when effects are not clear. Unlike
polynomial terms, which are normally used to model non-
linear effects, smoothing terms can be determined in a
data-driven fashion, by means of generalized cross-valida-
tion during the fitting process. This requires no a priori
knowledge about the “true” functional form. Thus,

GANBMs offer functional flexibility where required,
while linear restrictions are imposed where appropriate.
To estimate GANBMs, penalized regression splines were
utilized, as described in Wood (2006). The following
models are estimated: The first GANBM neglects residual
spatial autocorrelation, while the second one accounts for
spatial autocorrelation patterns through the previously
used spatial filter for 2010. Results for both models are
given in Table 6. The variable selection for the nonspatial
GANBM resulted in a slightly larger model than the
NBMs, containing two significant linear and three signifi-
cant nonlinear terms. Due to a highly significant residual
pattern, an interpretation was omitted and we continued
with the spatially explicit GANBM.3

The spatially filtered GANBM consisted of four linear
covariates and two nonlinear terms. More importantly, the
spatially filtered GANBM resulted in a residual Moran’s I,
which is no longer significant (p = 0.116) and thus leads to
a well-specified model. The AIC score (5667) clearly
prefers this model to all previously reported models,
which underpins the virtue of ESF for modeling crimino-
genic factors. The socioeconomic and environment cov-
ariates linearly related to the crime rates included (a)
percentage of white population, (b) percentage of
African-American population, and (c) distance to police
stations. Although being significant, distance to police
stations had a minor impact on crime. Compared with
those for the NBM, these coefficients did not deviate
markedly in their magnitudes (Table 6). The two signifi-
cant smoothers are shown in Figure 4.

Table 5. Estimation results of the nonspatial negative binomial models and the spatially filtered negative binomial model.

Full nonspatial NBM Reduced nonspatial NBM Spatially filtered NBM

Coefficients

Robust
standard
errors

p-
Values Coefficients

Robust
standard
errors

p-
Values Coefficients

Robust
standard
errors

p-
Values

Intercept −3.852 0.440 *** −4.207 0.684 *** −4.370 0.664 ***
% White

population
0.024 0.013 † 0.027 0.012 * 0.024 0.012 *

% African-
American
population

0.022 0.012 † 0.025 0.011 * 0.024 0.010 *

% Asian population −0.009 0.006
% Owner-occupied

housing units
−0.014 0.006 ** −0.015 0.003 *** −0.009 0.003 **

% Homeowner
vacancy rate

0.013 0.035

% Rental vacancy
rate

−0.003 0.016

Distance to police 0.000 0.000
Spatial filter – – 0.830 0.071 ***
θ 1.522 1.503 1.843
Pseudo-R2 (%) 32 30 42
Dispersion ratio 1.187 1.177 1.185
AIC 5931 5929 5833

Note: Significance codes: *** < 0.001, ** < 0.01, * < 0.05, † < 0.1.
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The smoothing effect of the percentage of owner-
occupied housing units was highly significant, indicating
a positive effect up to approximately 25%; from there on
the effect turns out to be negative (Figure 4a). The rental
vacancy rate (Figure 4b) shows a significant nonlinear
behavior. Up to 8%, this variable has a strong negative
effect, while there is no impact on crime rates within 15%
and 35%, followed by a positive effect. Note that due to a
small number of cases in the second half of this variable
range, the confidence intervals were wide.

To sum up, accounting for spatial autocorrelation in
the NBM constrains the magnitude of the estimated coef-
ficients; both positive and negative coefficients decrease.

In contrast, such an effect is not noticeable in the case of
the GANBM. Based on all models, the significant crim-
inogenic factors are (a) percentage of the white popula-
tion, (b) percentage of the African-American population,
(c) percentage of owner-occupied housing units, and (d)
the rental vacancy rate.

Discussion and implications

Spatial autocorrelation is a critical feature in regression,
especially in area-based analysis, which is a frequently
applied methodology in law enforcement. Even though
spatial autocorrelation can be well handled in Gaussian

Table 6. Estimation results for the nonspatial and the spatially filtered, generalized, additive, negative binomial models.

Nonspatial GANBM Spatially filtered GANBM

Coefficients Standard errors p-Values Coefficients Standard errors p-Values

Intercept −4.178 0.227 *** 4.139 0.244 ***
% White population 0.016 0.003 *** 0.016 0.003 ***
% African-American population 0.014 0.003 *** 0.016 0.003 ***
Distance to police −0.000 0.000 **
Spatial filter 0.719 0.068 ***

EDF EDF
% Owner-occupied housing units 5.027 *** 5.042 ***
% Rental vacancy rate 7.732 *** 6.959 ***
% Homeowner vacancy rate 3.542 ***
AIC 5850 5667

Note: Significance codes: *** < 0.001, ** < 0.01, * < 0.05.
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Figure 4. Nonparametric smoothers (black lines) for percentage of (a) owner-occupied housing units and (b) rental vacancy rate. The
scale of covariates is given on the horizontal axes and the vertical axes and reports the values for the estimated curves. The shaded
regions represent 95% confidence intervals. The associated effective degree of freedom (EDF) is given in the headings. An EDF of
freedom around 1 represents a linear relationship while larger values indicate nonlinear functions (Wood 2006).
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models, including the family of spatial autoregressive
models, an apparent lack is identified for generalized
linear models. In particular, this is true for count regres-
sion because spatial autocorrelation biases statistical infer-
ence and may result in wrong conclusions. In this context,
this article contributes to the literature threefold: First, it
demonstrates ESF as a spatial statistical technique to map
temporally persistent crime patterns on different scales.
Second, it shows how this temporally consistent spatial
filter efficiently absorbs spatial autocorrelation from the
variable’s actual effect in linear and nonlinear NBMs,
resulting in well-specified regressions that assure model
assumptions. Third, the performance of unfiltered and
spatially filtered count regressions and the impact on the
parameter estimates are compared.

Assessment of temporally persistent patterns in the form
of similar eigenvectors indicates that regional and local
patterns, rather than global, existed for nonviolent crime in
Houston during the period 2005–2010. The results are lar-
gely independent of the chosen weighting style. This fact
might be interpreted as an absence of a global trend, meaning
that the crime patterns over time were principally driven by
regional and more local spatial processes. Furthermore, the
results demonstrate that redundant information in the form of
inherent and temporally constant spatial patterns can bias
count regression estimates. Evidence for this conclusion is
provided by the case studies involving a linear NBM and a
GANBM. In both cases, ESF emerged as a methodological
enhancement highly suitable for analytical crime analysis. It
turns out that ESF effectively eliminates residual spatial
autocorrelation effects by extracting spatially independent
and orthogonal patterns. Neglecting spatial filters results in
unequivocally misspecifiedmodels. Based on this analysis, it
is apparent that nonspatial count models should be avoided
with spatial crime data because they may lead to false con-
clusions. This research confirms the findings by Thayn and
Simanis (2013) that ESF improves the model fits and reduces
prediction errors. This suggests that filtering unexplained
residual patterns leads to more precise models. Once more,
this can be ascribed to the importance of space (Tita and
Greenbaum 2008; Ratcliffe 2011). Another strength of ESF
is that generalized linear model parameters can be interpreted
in the usual way. The estimated model coefficients of spa-
tially explicit models differ in magnitude compared to those
of nonfiltered models. Given the findings of previous non-
spatial studies (e.g., Osgood 2000; Braga 2003; Lattimore
et al. 2005), this fact suggests that the reported coefficients
might be overoptimistic and should be slightly reduced.
These findings have important implications for crime pre-
vention policies that build on such models. Future research
should be aware of the consequences of spatial autocorrela-
tion in NBMs.

To conclude, quantitative criminology is open for
new developments in spatial statistics to model spatially
distributed criminal offenses. The ESF approach has

been proven to be a flexible and capable methodology
to account for spatial autocorrelation in generalized lin-
ear models and generalized additive models. Chun and
Griffith (2011) reveal that ESF also reduce spatially
biasing effects in movement flow data, including jour-
ney-to-crime models, which is gaining increased signifi-
cance in criminology (Levine and Block 2011; Mburu
and Helbich Forthcoming). As stated in Leitner and
Helbich (2011), criminogenic processes are only partly
rendered by global models resulting in average effects
valid for the whole study area. Thus, for future research,
it is reasonable to interact the eigenvectors with socio-
economic covariates, which permits the exploration of
geographically varying model parameters (Griffith 2008,
2012). In addition, it seems advisable to consider a more
comprehensive set of explanatory variables (e.g., income
and educational levels) in future models. Such research
will stimulate the understanding of spatial variation in
crime. However, ESF will continue to be a rich research
area in criminology.
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Notes
1. For an alternative approach, see Griffith (2012, 19).
2. The investigation of residual spatial autocorrelation for gen-

eralized linear models remains “speculative and provisional”
(Bivand, Pebesma, and Gómez-Rubio 2008, 298). A first
test statistic is proposed by Lin and Zhang (2007).

3. Generalized additive models also make it possible to model
spatial autocorrelation by means of bidimensional coordi-
nate smoothers (Wood 2006).
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